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SCATTERING FOR THE RADIAL 3D CUBIC WAVE EQUATION

BENJAMIN DODSON AND ANDREW LAWRIE

Consider the Cauchy problem for the radial cubic wave equation in 1+ 3 dimensions with either the
focusing or defocusing sign. This problem is critical in Ḣ 1/2

× Ḣ−1/2(R3) and subcritical with respect
to the conserved energy. Here we prove that if the critical norm of a solution remains bounded on the
maximal time interval of existence, then the solution must in fact be global in time and must scatter to
free waves as t→±∞.

1. Introduction

Consider the Cauchy problem for the cubic semilinear wave equation in R1+3, namely,

ut t −1u+µu3
= 0,

Eu(0)= (u0, u1),
(1-1)

restricted to the radial setting and with µ ∈ {±1}. The case µ = 1 yields what is referred to as the
defocusing problem, since here the conserved energy,

E(Eu)(t) :=
∫

R3

(
1
2
(
|ut(t)|2+ |∇u(t)|2

)
+

1
4
|u(t)|4

)
dx = constant, (1-2)

is positive for sufficiently regular nonzero solutions, and the Ḣ 1
× L2(R3) norm of a solution,

Eu(t) := (u(t), ut(t)),

is bounded by its energy.
The case µ=−1 gives the focusing problem, and the conserved energy for sufficiently regular solutions

to (1-1) is given by

E(Eu)(t) :=
∫

R3

(
1
2
(
|ut(t)|2+ |∇u(t)|2

)
−

1
4
|u(t)|4

)
dx = constant. (1-3)

As we will only be considering radial solutions to (1-1), we will often slightly abuse notation by writing
u(t, x)= u(t, r), where (r, ω), with r = |x |, x = rω, ω ∈ S2, are polar coordinates on R3. In this setting
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we can rewrite the Cauchy problem (1-1) as

ut t − urr −
2
r

ur ± u3
= 0,

Eu(0)= (u0, u1),

(1-4)

and the conserved energy (up to a constant multiple) as

E(Eu)(t)=
∫
∞

0

(
1
2
(
u2

t (t)+ u2
r (t)

)
±

1
4

u4(t)
)

r2 dr. (1-5)

The Cauchy problem (1-4) is invariant under the scaling

Eu(t, r) 7→ Euλ(t, r) :=
(
λ−1u

(
t
λ
,

r
λ

)
, λ−2ut

(
t
λ
,

r
λ

))
. (1-6)

One can also check that this scaling leaves unchanged the Ḣ 1/2
× Ḣ−1/2-norm of the solution. It is for

this reason that (1-4) is called energy-subcritical. It is natural to consider the Cauchy problem with initial
data (u0, u1) ∈ Ḣ 1/2

× Ḣ−1/2. We remark that (1-4) is also invariant under conformal inversion:

u(t, r) 7→
1

t2− r2 u
(

t
t2− r2 ,

r
t2− r2

)
. (1-7)

A standard argument based on Strichartz estimates shows that both the defocusing and focusing
problems are locally well-posed in Ḣ 1/2

× Ḣ−1/2(R3). This means that for all initial data Eu(0) =
(u0, u1) ∈ Ḣ 1/2

× Ḣ−1/2, there is a unique solution Eu(t) defined on a maximal interval of existence
Imax with Eu(t) ∈ C(Imax; Ḣ 1/2

× Ḣ−1/2). Moreover, for every compact time interval J ⊂ Imax, we have
u ∈ S(J ) := L4

t (J ; L
4
x). The Strichartz norm S(J ) determines criteria for both scattering and finite-time

blow-up, and we make these statements precise in Proposition 2.4. Here we note that in particular, one
can show that if the initial data Eu(0) has sufficiently small Ḣ 1/2

× Ḣ−1/2-norm, then the corresponding
solution Eu(t) has finite S(R)-norm and hence scatters to free waves as t→±∞.

The theory for solutions to (1-4) with initial data that is small in Ḣ 1/2
× Ḣ−1/2 is thus very well

understood: all solutions are global in time and scatter to free waves as t→±∞. However, much less
is known regarding the asymptotic dynamics of solutions to either the defocusing or focusing problems
once one leaves the perturbative regime.

It is well known that there are solutions to the focusing problem that blow up in finite time. To give an
example,

φT (t, r)=

√
2

T − t
(1-8)

solves the ODE φt t = φ
3. Using finite speed of propagation, one can construct from φT a compactly

supported (in space) self-similar blow-up solution to (1-4). Indeed, define EuT (t) to be the solution to
(1-4) with initial data EuT (0, x)= χ2T (x)

√
2, where χ2T ∈C∞0 (R

3) satisfies χ2T (x)= 1 if |x | ≤ 2T . Then
EuT (t) equals φT (t) for all r ≤ T and 0≤ t < T , and blows up at time t = T . However, such a self-similar
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solution must have its critical Ḣ 1/2
× Ḣ−1/2-norm tending to∞ as t→ T :

lim
t→T
‖EuT (t)‖Ḣ1/2×Ḣ−1/2 =∞.

Indeed, one can show by a direct computation that the L3(R3)-norm of EuT (t, x) tends to∞ as t→ T+.
Since Ḣ 1/2

⊂ L3, this means that the Ḣ 1/2
× Ḣ−1/2-norm must blow up as well. Such behavior is typically

referred to as type I, or ODE, blow-up.
One the other hand, type II solutions, Eu(t), are those whose critical norm remains bounded on their

maximal interval of existence, Imax:

sup
t∈Imax

‖Eu(t)‖Ḣ1/2×Ḣ−1/2 <∞. (1-9)

In this paper we restrict our attention to type II solutions, i.e., those which satisfy (1-9). We prove that
if a solution Eu(t) to (1-4) satisfies (1-9), then Eu(t) must in fact exist globally in time and scatter to free
waves in both time directions. To be precise, we establish the following result.

Theorem 1.1. Let Eu(t) ∈ Ḣ 1/2
× Ḣ−1/2(R3) be a radial solution to (1-4) defined on its maximal interval

of existence Imax = (T−, T+). Suppose in addition that

sup
t∈Imax

‖Eu(t)‖Ḣ1/2×Ḣ−1/2(R3) <∞. (1-10)

Then Imax = R, i.e., Eu(t) is defined globally in time. Moreover,

‖u‖L4
t,x (R

1+3) <∞, (1-11)

which means that Eu(t) scatters to a free wave in each time direction, i.e., there exist radial solutions
Eu±L (t) ∈ Ḣ 1/2

× Ḣ−1/2(R3) to the free wave equation, �u±L = 0, such that

‖Eu(t)− Eu±L (t)‖Ḣ1/2×Ḣ−1/2(R3)→ 0 as t→+∞. (1-12)

Remark 1. Theorem 1.1 is a conditional result. Other than the requirement that the initial data be small
in Ḣ 1/2

× Ḣ−1/2, there is no known general criterion that ensures that (1-10) is satisfied by the evolution
for either the defocusing or the focusing equation. While the methods in this paper apply equally well to
both the focusing and defocusing equations, one should expect drastically different behavior from generic
initial data in these two cases.

Remark 2. The proof of Theorem 1.1 readily generalizes to all subcritical powers p ≤ 3 for which
there is a satisfactory small data/local well-posedness theory. In particular, the methods presented here
allow one to deduce the exact analog of Theorem 1.1 for radial equations (1-13) for all powers p with
1+
√

2< p ≤ 3; here 1+
√

2 is the F. John exponent [1979; Schaeffer 1985]. We have chosen to present
the details for only the cubic equation to keep the exposition as simple as possible. We also remark that
only the material in Section 4 relies on the assumption of radiality.
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1A. History of the problem. The cubic wave equation on R1+3 has been extensively studied and we
certainly cannot give a complete account of the vast body of literature devoted to this problem.

For the defocusing equation, the positivity of the conserved energy can be used to extend a local
existence result to a global one if one begins with initial data that is sufficiently regular. Jörgens [1961]
showed global existence for the defocusing equation for smooth compactly supported data. There has
been a good deal of recent work extending the local existence result of Lindblad and Sogge [1995] in
H s
× H s−1 for s > 1

2 to an unconditional global well-posedness result, and we refer the reader to [Kenig
et al. 2000; Gallagher and Planchon 2003; Bahouri and Chemin 2006; Roy 2009] and the references
therein for details. However, since these works are not carried out in the scaling critical space, the issue
of global dynamics, and in particular scattering, is not addressed.

For the focusing equation, type II finite-time blow-up has recently been ruled out for initial data that lies
in Ḣ 1

× L2 in the work of Killip, Stovall, and Vis,an [Killip et al. 2012]. There are several works that open
up interesting lines of inquiry related to the question of asymptotic dynamics. In two remarkable works,
Merle and Zaag [2003; 2005] determined that all blow-up solutions must blow up at the self-similar rate.
In the radial case, an infinite family of smooth self-similar solutions is constructed by Bizoń et al. [2010].
Bizoń and Zenginoğlu [2009] give numerical evidence to support a conjecture that a two-parameter family
of solutions, obtained via time translation and conformal inversion of a self-similar solution, serves as a
global attractor for a large set of initial data. In fact, Donninger and Schörkhuber [2012] showed that the
blow-up profile (1-8) is stable under small perturbations in the energy topology.

Equations of the form

�u =±|u|p−1u (1-13)

for different values of p and for different dimensions have also been extensively studied. For d = 3, the
energy-critical power, p= 5, exhibits quite different phenomena than both the subcritical and supercritical
equations. Global existence and scattering for all finite-energy data was proved by Struwe [1988] for the
radial defocusing equation and by Grillakis [1990] in the nonradial, defocusing case.

For the focusing energy-critical equation, type II blow-up can occur, as explicitly demonstrated by
Krieger, Schlag, and Tataru [Krieger et al. 2009] via an energy concentration scenario resulting in the
bubbling off of the ground state solution, W , for the underlying elliptic equation; see also [Krieger and
Schlag 2014a; Donninger et al. 2014; Donninger and Krieger 2013].

Kenig and Merle [2008] initiated a powerful program of attack for semilinear equations (1-13) with the
concentration compactness/rigidity method, giving a characterization of possible dynamics for solutions
with energy below the threshold energy of the ground state elliptic solution. The subsequent work of
Duyckaerts, Kenig, and Merle [Duyckaerts et al. 2011; 2012a; 2012b; 2013] resulted in a classification
of possible dynamics for large energies. In particular, all type II radial solutions asymptotically resolve
into a sum of rescaled solitons plus a radiation term at their maximal time of existence. Dynamics at the
threshold energy of W have been examined by Duyckaerts and Merle [2008] and above the threshold by
Krieger, Nakanishi, and Schlag [Krieger et al. 2013a; 2013b; 2014].

Analogs of Theorem 1.1 have been established for radial equations with different powers in 3 dimensions.
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Shen [2012] proved the exact analog of Theorem 1.1 for subcritical powers 3< p < 5; and Kenig and
Merle [2011], and then Duyckaerts, Kenig, and Merle [Duyckaerts et al. 2014], established the analog of
Theorem 1.1 for all supercritical powers p > 5. Here we address type II behavior in the remainder of the
subcritical range for the radial equation, 1+

√
2 < p ≤ 3. While we focus on the cubic equation, our

proof readily generalizes to other subcritical powers. The extra regularity for critical elements proved in
Section 4 gives an extension and simplification of the argument in [Shen 2012] which allows us to treat
the cubic and lower-power equations.

Leaving the setting of type II solutions, Krieger and Schlag [2014b] have recently constructed a family
of solutions to the supercritical equation, p > 5, which are smooth, global in time, and stable under small
perturbations, and have infinite critical norm.

1B. Outline of the proof of Theorem 1.1. The proof of Theorem 1.1 follows the concentration compact-
ness/rigidity method developed in [Kenig and Merle 2006; 2008]. The proof follows a contradiction
argument: if Theorem 1.1 were not true, the linear and nonlinear profile decompositions of Bahouri and
Gérard would allow one to construct a minimal solution to (1-4), called the critical element, which does
not scatter (here the minimality refers to the size of the norm in (1-10)). This construction, which is by
now standard in the field and is outlined in Section 3, yields a critical element whose trajectory in the
space Ḣ 1/2

× Ḣ−1/2 is precompact up to modulation. The goal is then to prove that this compactness
property is too rigid a property for a nonzero solution and thus the critical element cannot exist.

A significant hurdle in the way of ruling out a critical element Euc(t) for the cubic equation (or any
subcritical equation) is that Euc(t) is constructed in the space Ḣ 1/2

× Ḣ−1/2, and thus useful global
monotone quantities that require more regularity, such as the conserved energy and virial type identities,
are not, a priori, well defined. In general, solutions to the cubic wave equation are only as regular as their
initial data, as evidenced by the presence of the free propagator S(t) in the Duhamel representation for
the solution

Euc(t0)= S(t0− t)Euc(t)+
∫ t0

t
S(t0− s)(0,±u3) ds. (1-14)

The critical element is rescued by the fact that the precompactness of its trajectory is at odds with the
dispersive properties of the free part, S(t0− t)Eu(t), and thus the first term on the right of (1-14) is forced
to vanish weakly as t → sup Imax and as t → inf Imax. The second term on the right thus encodes the
regularity of the critical element, and a gain can be expected due to the presence of the cubic term. The
additional regularity is extracted by way of the “double Duhamel trick”, which refers to the consideration
of the pairing 〈∫ t0

T1

S(t0− s)(0,±u3) ds,
∫ T2

t0
S(t0− τ)(0,±u3) dτ

〉
Ḣ1×L2

,

where T1 < t0 and T2 > t0. This technique was developed by Tao [2007] and utilized in the Kenig–Merle
framework for nonlinear Schrödinger problems by Killip and Vis,an [2010a; 2010b; 2013], and for
semilinear wave equations in [Killip and Vis,an 2011; Bulut 2012a; 2012b]. This method is also closely
related to the in/out decomposition used by Killip, Tao, and Vis,an in [Killip et al. 2009, Section 6]. For
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more details on how to exploit the different time directions above, we refer the reader to Section 4, and in
particular to the proof of Theorem 4.1.

Indeed, we bound the critical element in Ḣ 1
× L2. We then use the conserved energy to rule out a

critical element which fails to be compact by a low frequency concentration, as such a solution would
have vanishing energy; see Section 5A. One is then left with a critical element that is global in time and
evolves at a fixed scale. In Section 6, we prove that such a solution cannot exist by way of a virial identity.
We note that this virial-based rigidity argument works for precompact solutions to (1-13) with powers
p ≤ 3, but fails to produce useful estimates for powers 3< p < 5. However, in this range one can use the

“channels of energy” method pioneered in [Duyckaerts et al. 2013; 2014]; see [Shen 2012]. For more on
this, see Remark 12.

2. Preliminaries

2A. Harmonic analysis. In what follows we will denote by Pk the usual Littlewood–Paley projections
onto frequencies of size |ξ | ' 2k and by P≤k the projection onto frequencies |ξ |. 2k . These projections
satisfy Bernstein’s inequalities.

Lemma 2.1 (Bernstein’s inequalities [Tao 2006, Appendix A]). Let 1 ≤ p ≤ q ≤ ∞ and s ≥ 0. Let
f : Rd

→ R. Then

‖P≥N f ‖L p . N−s
‖|∇|

s P≥N f ‖L p ,

‖P≤N |∇|
s f ‖L p . N s

‖P≤N f ‖L p , ‖PN |∇|
±s f ‖L p ' N±s

‖PN f ‖L p ,

‖P≤N f ‖Lq . N d/p−d/q
‖P≤N f ‖L p , ‖PN f ‖Lq . N d/p−d/q

‖PN f ‖L p .

(2-1)

Next, we define the notion of a frequency envelope.

Definition 3 [Tao 2001, Definition 1]. We define a frequency envelope to be a sequence β = {βk} of
positive real numbers with β ∈ `2. Moreover, we require the local constancy condition

2−σ | j−k|βk . β j . 2σ | j−k|βk,

where σ > 0 is a small fixed constant; in what follows we will use σ = 1
8 . If β is a frequency envelope

and ( f, g) ∈ Ḣ s
× Ḣ s−1, then we say that ( f, g) lies underneath β if

‖(Pk f, Pk g)‖Ḣ s×Ḣ s−1 ≤ βk for all k ∈ Z,

and we note that if ( f, g) lies underneath β, then we have

‖( f, g)‖Ḣ s×Ḣ s−1 . ‖β‖`2 .

We will require the following refinement of the Sobolev embedding for radial functions, which is a
consequence of the Hardy–Littlewood–Sobolev inequality.
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Lemma 2.2 (radial Sobolev embedding [Tao et al. 2007, Corollary A.3]). Let 0 < s < 3 and suppose
f ∈ Ḣ s(R3) is a radial function. Suppose that

β >−
3
q
,

1
2
− s ≤

1
q
≤

1
2
,

1
q
=

1
2
−
β + s

3
,

and at most one of the equalities q = 1, q =∞, 1
q + s = 1

2 holds. Then

‖rβ f ‖Lq ≤ C‖ f ‖Ḣ s . (2-2)

2B. Strichartz estimates. An essential ingredient for the small data theory are Strichartz estimates for
the linear wave equation in R1+3,

vt t −1v = F,

Ev(0)= (v0, v1).
(2-3)

A free wave will mean a solution to (2-3) with F = 0 and will be denoted by Eu(t)= S(t)Eu(0). In what
follows we will say that a pair (p, q) is admissible if

p, q ≥ 2,
1
p
+

1
q
≤

1
2
. (2-4)

The Strichartz estimates we state below are standard and we refer the reader to [Keel and Tao 1998;
Lindblad and Sogge 1995] or the book [Sogge 2008] and the references therein for more details.

Remark 4. We note that since we will only consider the waves with radial initial data and with F radial,
we can allow the endpoint (p, q)= (2,∞) as an admissible pair. The admissibility of (2,∞) in the radial
setting was established in [Klainerman and Machedon 1993]. This endpoint is of course forbidden for
nonradial data in dimension d = 3.

Proposition 2.3 [Keel and Tao 1998; Klainerman and Machedon 1993; Lindblad and Sogge 1995; Sogge
2008]. Let Ev(t) be a solution to (2-3) with initial data Ev(0) ∈ Ḣ s

× Ḣ s−1(R3) for s > 0. Let (p, q) and
(a, b) be admissible pairs satisfying the gap condition

1
p
+

3
q
=

1
a′
+

3
b′
− 2=

3
2
− s, (2-5)

where (a′, b′) are the conjugate exponents of (a, b). Then, for any time interval I 3 0, we have the
estimates

‖v‖L p
t (I ;L

q
x )
. ‖(v0, v1)‖Ḣ s×Ḣ s−1 +‖F‖La′

t (I ;Lb′
x )
. (2-6)

2C. Small data theory — global existence, scattering, perturbative theory. A standard argument based
on Proposition 2.3 with s = 1

2 , (p, q)= (4, 4), and (a′, b′)=
( 4

3 ,
4
3

)
yields the following small data result.

Proposition 2.4 (small data theory). Let Eu(0) = (u0, u1) ∈ Ḣ 1/2
× Ḣ−1/2(R3). Then there is a unique

solution Eu(t) ∈ Ḣ 1/2
× Ḣ−1/2(R3) defined on a maximal interval of existence Imax(Eu)= (T−(Eu), T+(Eu)).

Moreover, for any compact interval J ⊂ Imax, we have

‖u‖L4
t (J ;L4

x )
<∞.
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A globally defined solution Eu(t) for t ∈ [0,∞) scatters as t→∞ to a free wave, i.e., a solution EuL(t) of
�uL = 0, if and only if ‖u‖L4

t ([0,∞),L4
x )
<∞. In particular, there exists a constant δ > 0 such that

‖Eu(0)‖Ḣ1/2×Ḣ−1/2 < δ =⇒ ‖u‖L4
t (R;L4

x )
. ‖Eu(0)‖Ḣ1/2×Ḣ−1/2 . δ, (2-7)

and hence Eu(t) scatters to free waves as t →±∞. Finally, we have the standard finite-time blow-up
criterion:

T+(Eu) <∞ =⇒ ‖u‖L4
t ([0,T+(Eu));L4

x )
=+∞. (2-8)

A similar statement holds if −∞< T−(Eu).

For the concentration compactness procedure in Section 3 one requires the following perturbation
theory for approximate solutions to (1-4).

Lemma 2.5 (perturbation lemma). There are continuous functions ε0,C0 : (0,∞)→ (0,∞) such that
the following holds: Let I ⊂ R be an open interval (possibly unbounded); let Eu, Ev ∈ C(I ;H) satisfy, for
some A > 0,

‖Ev‖L∞(I ;Ḣ1/2×Ḣ−1/2)+‖v‖L4
t (I ;L4

x )
≤ A,

‖eq(u)‖L4/3
t (I ;L4/3

x )
+‖eq(v)‖L4/3

t (I ;L4/3
x )
+‖w0‖L4

t (I ;L4
x )
≤ ε ≤ ε0(A),

where eq(u) :=�u±u3 in the sense of distributions, and where Ew0(t) := S(t− t0)(Eu− Ev)(t0), with t0 ∈ I
arbitrary but fixed. Then

‖Eu− Ev− Ew0‖L∞(I ;Ḣ1/2×Ḣ−1/2)+‖u− v‖L4
t (I ;L4

x )
≤ C0(A)ε.

In particular, ‖u‖L4
t (I ;L4

x )
<∞.

2D. Blow-up for nonpositive energies. Finally, we recall that in the case of the focusing equation, any
nontrivial solution with negative energy must blow up in both time directions. This result was proved in
[Killip et al. 2012] for solutions to (1-4).

Proposition 2.6 [Killip et al. 2012, Theorem 3.1]. Let Eu(t) be a solution to (1-4) with the focusing sign
and with maximal interval of existence Imax = (T−, T+). If E(Eu)≤ 0, then Eu(t) is either identically zero
or blows up in finite time in both time directions, i.e., T+ <+∞ and T− >−∞.

3. Concentration compactness

In this section we begin the proof of Theorem 1.1. We will follow the concentration compactness/rigidity
method introduced by Kenig and Merle [2006; 2008]. The concentration compactness part of the argument,
which is based on the profile decompositions of Bahouri and Gérard [1999], is by now standard, and we
will essentially follow the scheme from [Kenig and Merle 2010], which is a refinement of the methods
from [Kenig and Merle 2006; 2008]. Indeed, the main conclusion of this section is that in the event that
Theorem 1.1 fails, there exists a minimal, nontrivial, nonscattering solution to (1-4), which we will call
the critical element.
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We begin with some notation, following [Kenig and Merle 2010] for convenience. For initial data
(u0, u1) ∈ Ḣ 1/2

× Ḣ−1/2, we let Eu(t) ∈ Ḣ 1/2
× Ḣ−1/2 be the unique solution to (1-4) with initial data

Eu(0)= (u0, u1) defined on its maximal interval of existence Imax(Eu) := (T−(Eu), T+(Eu)). For A> 0, define

B(A) :=
{
(u0, u1) ∈ Ḣ 1/2

× Ḣ−1/2
: ‖Eu(t)‖L∞t (Imax(Eu);Ḣ1/2×Ḣ−1/2) ≤ A

}
. (3-1)

Definition 5. We say that SC(A) holds if for all Eu = (u0, u1) ∈ B(A), we have Imax(Eu) = R and
‖u‖L4

t L4
x
<∞. We also say that SC(A; Eu) holds if Eu ∈B(A), Imax(Eu)= R, and ‖u‖L4

t L4
x
<∞.

Remark 6. Recall from Proposition 2.4 that ‖u‖L4
t ;L4

x
<∞ if and only if Eu scatters to a free wave as

t→±∞. Therefore Theorem 1.1 is equivalent to the statement that SC(A) holds for all A > 0.

Now suppose that Theorem 1.1 is false. By Proposition 2.4, there is an A0 > 0 small enough that
SC(A0) holds. Given that we are assuming that Theorem 1.1 fails, we can find a threshold, or critical
value AC such that for A < AC , SC(A) holds, and for A > AC , SC(A) fails. Note that 0 < A0 < AC .
The standard conclusion of this assumed failure of Theorem 1.1 is that there is a minimal nonscattering
solution Eu(t) to (1-4) such that SC(AC , Eu) fails, which enjoys certain compactness properties.

We will state a refined version of this result below, and we refer the reader to [Kenig and Merle 2010;
Shen 2012; Tao et al. 2007; 2008] for the details of the argument. As usual, the main ingredients are the
linear and nonlinear Bahouri–Gérard type profile decompositions [1999] used in conjunction with the
perturbation theory in Lemma 2.5.

Proposition 3.1. Suppose that Theorem 1.1 is false. Then there exists a solution Eu(t) such that SC(AC ; Eu)
fails. Moreover, we can assume that Eu(t) does not scatter in either time direction:

‖u‖L4((T−(Eu),0];L4
x )
= ‖u‖L4([0,T+(Eu));L4

x )
=∞. (3-2)

In addition, there exists a continuous function N : Imax(Eu)→ (0,∞) such that the set

K :=
{(

1
N (t)

u
(

t,
·

N (t)

)
,

1
N 2(t)

ut

(
t,
·

N (t)

)) ∣∣ t ∈ Imax

}
(3-3)

is precompact in Ḣ 1/2
× Ḣ−1/2(R3).

Remark 7. After passing to subsequences, scaling considerations, and possibly time reversal, we can
assume, without loss of generality, that T+(Eu)=+∞, and N (t)≤ 1 on [0,∞). We can further reduce
this to two separate cases: either we have

• N (t)≡ 1 for all t ≥ 0, or

• lim supt→∞ N (t)= 0.

These reductions follow from general arguments and are now standard. See, for example, [Kenig and
Merle 2010; Killip et al. 2009; Shen 2012] for more details.

In what follows it will be convenient to give a name to the compactness property (3-3) satisfied by the
critical element.
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Definition 8. Let I 3 0 be a time interval and suppose Eu(t) is a solution to (1-4) on I . We will say Eu(t)
has the compactness property on I if there exists a continuous function N : I → (0,∞) such that the set

K :=
{(

1
N (t)

u
(

t,
·

N (t)

)
,

1
N 2(t)

ut

(
t,
·

N (t)

)) ∣∣ t ∈ Imax

}
is precompact in Ḣ 1/2

× Ḣ−1/2(R3).

Remark 9. A consequence of a critical element having the compactness property on an interval I is that,
after modulation, we can control the Ḣ 1/2

× Ḣ−1/2 tails uniformly in t ∈ I . Indeed, by the Arzelà–Ascoli
theorem, for any η > 0 there exists C(η) <∞ such that∫

|x |≥C(η)/N (t)

∣∣|∇|1/2u(t, x)
∣∣2 dx +

∫
|ξ |≥C(η)N (t)

|ξ ||û(t, ξ)|2 dξ ≤ η,∫
|x |≥C(η)/N (t)

∣∣|∇|−1/2ut(t, x)
∣∣2 dx +

∫
|ξ |≥C(η)N (t)

|ξ |−1
|ût(t, ξ)|2 dξ ≤ η,

(3-4)

for all t ∈ I .

Another standard fact about solutions to (1-4) with the compactness property is that any Strichartz
norm of the linear part of the evolution vanishes as t→ T− and as t→ T+. A concentration compactness
argument then implies that the linear part of the evolution must vanish weakly in Ḣ 1/2

× Ḣ−1/2, i.e., for
any t0 ∈ I ,

S(t0− t)u(t) ⇀ 0 (3-5)

weakly in Ḣ 1/2
× Ḣ−1/2 as t ↗ sup I , t ↘ inf I ; see [Tao et al. 2008, Section 6; Shen 2012, Proposition

3.6]. This implies the following lemma, which will be crucial in the proof of Theorem 1.1.

Lemma 3.2 [Tao et al. 2008, Section 6; Shen 2012, Proposition 3.6]. Let Eu(t) be a solution to (1-4) with
the compactness property on an interval I = (T−, T+). Then for any t0 ∈ I , we can write∫ T

t0
S(t0− s)(0,±u3) ds ⇀ Eu(t0) as T ↗ T+ weakly in Ḣ 1/2

× Ḣ−1/2,

−

∫ t0

T
S(t0− s)(0,±u3) ds ⇀ Eu(t0) as T ↘ T− weakly in Ḣ 1/2

× Ḣ−1/2.

(3-6)

4. Additional regularity for critical elements

In this section we show that the critical element Eu(t) from Section 3 has additional regularity for t ∈ I . In
particular, we prove the following result.

Theorem 4.1. Let Eu(t) be a solution to (1-4) defined on a time interval I = (T−,∞) with T− < 0 and
suppose that Eu(t) has the compactness property on I with N (t)≤ 1 for all t ∈ [0,∞). Then for each t ∈ I
we have Eu(t) ∈ Ḣ 1

× L2, and the estimate

‖Eu(t)‖Ḣ1×L2(R3) . N (t)1/2 (4-1)

holds with a constant that is uniform for t ∈ I .
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Remark 10. We note that all constants this section implicit in the symbol . will be allowed to depend
on the L∞t (I ; Ḣ 1/2

× Ḣ−1/2)-norm of Eu, which is fixed.

We will prove Theorem 4.1 using a bootstrap procedure with two steps. In particular, we will first
show that if Eu(t) has the compactness property on an interval I as in Theorem 4.1, then Eu(t) must lie in
Ḣ 2/3
× Ḣ−1/3. We then use this result to attain Theorem 4.1.

Proposition 4.2. Let Eu(t) be as in Theorem 4.1. Then for any t0 ∈ I , we have

‖Eu(t0)‖Ḣ2/3×Ḣ−1/3(R3) . N (t0)1/6. (4-2)

We momentarily postpone the proof of Proposition 4.2 and use it to deduce Theorem 4.1.

4A. Proof of Theorem 4.1 assuming Proposition 4.2. The first step is to establish refined Strichartz
estimates.

Lemma 4.3. Let Eu(t) satisfy the conclusions of Proposition 4.2. Then there exists δ > 0 sufficiently small
that for any t0 ∈ I ,

‖u‖L3
t L6

x ([t0−δ/N (t0),t0+δ/N (t0)]×R3) . N (t0)1/6. (4-3)

Proof. To simplify notation, let J = [t0− δ/N (t0), t0+ δ/N (t0)]. We also let Y = L∞t L18/5
x ∩ L3

t L6
x with

the natural norm. Using Strichartz estimates, we have

‖u‖Y (J×R3) . ‖Eu(t0)‖Ḣ2/3×Ḣ−1/3(R3)+‖u
3
‖L6/5

t L3/2
x (J×R3)

. N (t0)1/6+ (δ/N (t0))1/3‖u‖
3/2
L3

t L6
x (J×R3)

‖u‖3/2
L∞t L18/5

x (J×R3)

. N (t0)1/6+ δ1/3(N (t0)−1/6
‖u‖Y (J×R3)

)2
‖u‖Y (J×R3). (4-4)

Choosing δ = δ
(
N (t0)−1/6

‖u(t0)‖Ḣ2/3×Ḣ−1/3

)
> 0 small enough, the lemma follows by a standard boot-

strapping argument. We remark that here it is important that the constant in (4-2) is uniform in t0 ∈ I . �

An immediate consequence of Lemma 4.3 is the following estimate.

Corollary 4.4. There exists δ > 0 such that for each t0 ∈ I , we have

‖u3
‖L1

t L2
x ([t0−δ/N (t0),t0+δ/N (t0)]×R3) . N (t0)1/2. (4-5)

We are now ready to begin the proof of Theorem 4.1 assuming Proposition 4.2.

Proof that Proposition 4.2 implies Theorem 4.1. Fix t0 ∈ I . By translating in time, we can, without loss of
generality, assume that t0 = 0. Let

v = u+
i
√
−1

ut . (4-6)

Then we have

‖v(t)‖Ḣ1 ' ‖Eu(t)‖Ḣ1×L2 . (4-7)
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And if Eu(t) solves (1-4), then v(t) is a solution to

vt =−i
√
−1v±

i
√
−1

u3, (4-8)

where + corresponds to the focusing equation and − to the defocusing equation. By Duhamel’s principle,
for any T such that T− < T < 0,

v(0)= eiT
√
−1v(T )±

i
√
−1

∫ 0

T
eiτ
√
−1u3(τ ) dτ. (4-9)

Next, we define an approximate identity {ψM}M>0. Indeed, let ψ ∈ C∞0 (R
3) be a radial function,

normalized in L1(R3) so that ‖ψ‖L1 = 1. Set ψM(x) := M3ψ(Mx). We then define the operator QM

given by convolution with ψM :

QM f (x) :=
∫

R3
ψM(x − y) f (y) dy. (4-10)

Of course QM is also a Fourier multiplier operator, given by multiplication on the Fourier side by ψ̂M ,
where ψ̂M(ξ)= ψ̂

(
ξ
M

)
. Since ψ ∈ C∞0 , we have ψ̂ ∈ S(R3).

With this setup, it clearly suffices to prove that there exists an M0 > 0 such that

‖QMv(0)‖Ḣ1 . N (0)1/2 (4-11)

for all M ≥ M0 > 0 with a constant that is independent of M .
To begin, let T− < T1 < 0 < T2 <∞ and let M be a large number to be determined below. By the

Duhamel formula, we have〈
QMv(0), QMv(0)

〉
Ḣ1 =

〈
QM

(
eiT2
√
−1v(T2)∓

i
√
−1

∫ T2

0
ei t
√
−1u3 dt

)
,

QM

(
eiT1
√
−1v(T1)±

i
√
−1

∫ 0

T1

eiτ
√
−1u3 dτ

)〉
Ḣ1
, (4-12)

where the bracket 〈 · , · 〉Ḣ1 is the Ḣ 1 inner product, namely

〈 f, g〉Ḣ1 = Re
∫

R3

√
−1 f ·

√
−1g.

We start by estimating the term that contains both Duhamel terms:∣∣∣∣〈QM

(
i
√
−1

∫ T2

0
ei t
√
−1u3(t) dt

)
, QM

(
i
√
−1

∫ T1

0
eiτ
√
−1u3(τ ) dτ

)〉
Ḣ1

∣∣∣∣
=

∣∣∣∣〈QM

(∫ T2

0
ei t
√
−1u3(t) dt

)
, QM

(∫ 0

T1

eiτ
√
−1(u3(τ )) dτ

)〉
L2

∣∣∣∣. (4-13)

With δ > 0 as in Corollary 4.4, we use (4-5) to deduce that∫ δ/N (0)

−δ/N (0)
‖QM(u3(t))‖L2

x (R
3) dt . N (0)1/2. (4-14)
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Next, define a decreasing, smooth, radial function χ ∈C∞0 (R
3), with χ(x)≡ 1 for all |x | ≤ 1 and χ(x)= 0

if |x | ≥ 2. Also, let c > 0 be a small constant, say c = 1
4 . We have∥∥∥∥QM

(∫
∞

δ/N (0)
ei t
√
−1

(
1−χ

(
x

c|t |

))
u3(t) dt

)∥∥∥∥
L2

x (R
3)

.
∫
∞

δ/N (0)

∥∥∥∥(1−χ)( x
c|t |

)
u3(t)

∥∥∥∥
L2

x (R
3)

dt. (4-15)

By the radial Sobolev embedding (i.e., Lemma 2.2), we note that∥∥|x |3/2u3∥∥
L2

x
.
∥∥|x |1/2u

∥∥3
L6

x
. ‖u‖Ḣ1/2 . (4-16)

Therefore, ∥∥∥∥(1−χ)( x
c|t |

)
u3
∥∥∥∥

L2
x (R

3)

.
1
|t |3/2
‖u‖3Ḣ1/2 . (4-17)

Thus, ∫
∞

δ/N (0)

∥∥∥∥QM

(
(1−χ)

(
x

c|t |

)
u3(t)

)∥∥∥∥
L2

x (R
3)

dt . δ−1/2 N (0)1/2. (4-18)

The same is also true in the negative time direction. With these estimates in hand, we write (4-13) as a
pairing

〈A+ B, A′+ B ′〉 = 〈A+ B, A′〉+ 〈A, A′+ B ′〉+ 〈B, B ′〉− 〈A, A′〉, (4-19)

where

A := QM

(∫ δ/N (0)

0
ei t
√
−1u3 dt +

∫ T2

δ/N (0)
ei t
√
−1(1−χ)

(
x

c|t |

)
u3 dt

)
,

B := QM

(∫ T2

δ/N (0)
ei t
√
−1χ

(
x

c|t |

)
u3(t) dt

)
,

(4-20)

and A′, B ′ are the corresponding integrals in the negative time direction. We start by estimating the term
〈A, A′〉. By (4-14) and (4-18),〈
QM

(∫ δ/N (0)

0
ei t
√
−1u3 dt +

∫ T2

δ/N (0)
ei t
√
−1(1−χ)

(
x

c|t |

)
u3 dt

)
,

QM

(∫ 0

−δ/N (0)
eiτ
√
−1u3 dτ +

∫
−δ/N (0)

T1

eiτ
√
−1(1−χ)

(
x

c|τ |

)
u3 dτ

)〉
L2
. N (0). (4-21)

Next, we examine the term 〈B, B ′〉, which is given by∫
−δ/N (0)

T1

∫ T2

δ/N (0)

〈
QM

(
ei t
√
−1χ

(
x

c|t |

)
u3(t)

)
, QM

(
eiτ
√
−1χ

(
x

c|τ |

)
u3(τ )

)〉
L2

dt dτ

=

∫
−δ/N (0)

T1

∫ T2

δ/N (0)

〈
QM

(
χ

(
x

c|t |

)
u3(t)

)
, QM

(
ei(τ−t)

√
−1χ

(
x

c|τ |

)
u3(τ )

)〉
L2

dt dτ.

To estimate the above, we begin by noting that the sharp Huygens principle implies that(
ei(t−τ)

√
−1χ

(
·

c|τ |

)
u3(τ )

)
(x)
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is supported on the set |x | > 3
4 |t − τ | for c = 1

4 . Also, we note that since t > 0 and τ < 0, we have
|t − τ |> |t |, |τ |. Next, recall that the kernel of QM is given by the function ψM(x)= M3ψ(Mx), where
ψ ∈ C∞0 . This implies that for M � N (0)−1 large enough, we have

supp
(∫

R3
ψM(x − z)χ

(
z

c|t |

)
u3(t, z) dz

)
⊂

{
|x |< 1

2
|t |
}
,

supp
(∫

R3
ψM(x − y)

(
ei(τ−t)

√
−1χ

(
·

c|τ |

)
u3(τ )

)
(y) dy

)
⊂

{
|x |> 1

2
|t − τ |

}
.

Therefore, as long as M is chosen large enough, say for M ≥ M0� N (0)−1, and since |t |< |t − τ | for
t > δ/N (0) and τ <−δ/N (0), we have〈∫

ψM(x − z)χ
(

z
c|t |

)
u3(t, z) dz,

∫
ψM(x − y)

(
ei(τ−t)

√
−1χ

(
·

c|τ |

)
u3(τ )

)
(y) dy

〉
L2
= 0. (4-22)

It remains to estimate the terms 〈A, A′+ B ′〉 and 〈A+ B, A′〉, which are given by〈
QM

(∫ δ/N (0)

0
ei t
√
−1u3(t) dt +

∫ T2

δ/N (0)
ei t
√
−1(1−χ)

(
x

c|t |

)
u3(t) dt

)
,

QM

(∫ 0

T1

eiτ
√
−1u3(τ ) dτ

)〉
L2 (4-23)

and〈
QM

(∫ T2

0
ei t
√
−1u3(t) dt

)
,

QM

(∫
−δ/N (0)

T1

eiτ
√
−1(1−χ)

(
·

c|τ |

)
u3(τ ) dτ +

∫ 0

−δ/N (0)
eiτ
√
−1u3(τ ) dτ

)〉
L2
. (4-24)

We provide the details for how to handle (4-23), as the estimates for (4-24) are similar. First recall that by
the Duhamel principle (4-9), we can write

QM

∫ 0

T1

eiτ
√
−1u3(τ ) dτ =∓i

√
−1QMv(0)± i

√
−1eiT1

√
−1QMv(T1). (4-25)

Using again (4-14) and (4-18), we have∣∣∣∣〈√−1QMv(0), QM

(∫ δ/N (0)

0
ei t
√
−1u3 dt +

∫ T2

δ/N (0)
ei t
√
−1(1−χ)

(
x

c|t |

)
u3 dt

)〉
L2

∣∣∣∣
. N (0)1/2‖QMv(0)‖Ḣ1(R3). (4-26)

We remark that all of the estimates established so far have been uniform in T− < T1 < 0< T2 < T+. This
is important as we will now take limits, T1 ↘ T− and T2 ↗ T+. Indeed, using the weak convergence
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result in Lemma 3.2, we claim that for any fixed T2 ∈ (0, T+), we have

lim
T1↘T−

〈
i
√
−1eiT1

√
−1QMv(T1),

QM

(∫ δ/N (0)

0
ei t
√
−1u3 dt +

∫ T2

δ/N (0)
ei t
√
−1(1−χ)

(
x

c|t |

)
u3 dt

)〉
L2
= 0. (4-27)

In fact, (4-14) and (4-18) imply that letting T2↗ T+, for M fixed,

(−1)1/4 QM

(∫ δ/N (0)

0
ei t
√
−1u3 dt +

∫ T2

δ/N (0)
ei t
√
−1(1−χ)

(
x

c|t |

)
u3 dt

)
converges in L2(R3) to

(−1)1/4 QM

(∫ δ/N (0)

0
ei t
√
−1u3 dt +

∫ T+

δ/N (0)
ei t
√
−1(1−χ)

(
x

c|t |

)
u3 dt

)
∈ L2(R3).

Therefore, since Lemma 3.2 says that eiT1
√
−1v(T1) ⇀ 0 weakly in Ḣ 1/2(R3) as T1↘ T−, we have

lim
T1↘T−

lim
T2↗T+

〈
√
−1eiT1

√
−1QMv(T1),

QM

(∫ δ/N (0)

0
ei t
√
−1u3 dt +

∫ T2

δ/N (0)
ei t
√
−1(1−χ)

(
x

c|t |

)
u3 dt

)〉
L2
= 0. (4-28)

Thus we have proved that ∣∣ lim
T1↘T−

lim
T2↗T+

〈A, A′+ B ′〉
∣∣. N (0)1/2‖QMv(0)‖Ḣ1 . (4-29)

Using an identical argument, we can similarly prove that∣∣ lim
T1↘T−

lim
T2↗T+

〈A+ B, A′〉
∣∣. N (0)1/2‖QMv(0)‖Ḣ1, (4-30)

where A, B, A′, B ′ are defined as in (4-20). Therefore, combining (4-21), (4-26), (4-29), and (4-30), we
have proved that∣∣∣∣ lim

T1↘T−
lim

T2↗T+

∫ T2

0

∫ 0

T1

〈
ei t
√
−1QM(u3), eiτ

√
−1QM(u3)

〉
L2 dt dτ

∣∣∣∣. ‖v(0)‖Ḣ1(R3)N (0)
1/2
+N (0). (4-31)

We are left to examine the terms in (4-12) (once expanded) that contain at most one Duhamel integral.
Here we will rely heavily on the Ḣ 1/2-weak convergence in Lemma 3.2.

Indeed, for a fixed T1 and fixed M , we see that
√
−1QMv(T1) ∈ Ḣ 1/2(R3). Therefore, by Lemma 3.2,

we have
lim

T2↗T+

〈
eiT1
√
−1QMv(T1), eiT2

√
−1QMv(T2)

〉
Ḣ1 = 0. (4-32)

Next, for fixed T1 > T−, Corollary 4.4 and the bound (4-5) imply that

‖u3
‖L1

t L2
x ([T1,0]×R3) <∞,
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which in turn implies that
∫ 0

T1
QM ei t

√
−1u3 dt ∈ Ḣ 1/2(R3), where again we are using that the multiplier

ψ̂M is in S(R3). Therefore, Lemma 3.2 implies

lim
T2↗T+

〈
QM

(∫ 0

T1

ei t
√
−1u3 dt

)
, eiT2

√
−1QMv(T2)

〉
Ḣ1/2
= 0. (4-33)

Finally, we claim that

lim
T1↘T−

lim
T2↗T+

〈
QM

(
eiT1
√
−1v(T1)

)
, QM

(∫ T2

0
eiτ
√
−1u3 dτ

)〉
Ḣ1/2
= 0. (4-34)

To see this, we use (4-25). Indeed, using Lemma 3.2 again, we have

lim
T1↘T−

lim
T2↗T+

〈
QM

(
eiT1
√
−1v(T1)

)
,
√
−1QM

(
v(0)− eiT2

√
−1v(T2)

)〉
Ḣ1/2

= lim
T1↘T−

〈
QM

(
eiT1
√
−1v(T1)

)
, QM

(√
−1v(0)

)〉
Ḣ1/2
= 0. (4-35)

Therefore, (4-12) together with (4-31)–(4-35) imply that

‖QMv(0)‖2Ḣ1(R3)
. ‖QMv(0)‖Ḣ1(R3)N (0)

1/2
+ N (0), (4-36)

for all M ≥ M0 and with a uniform-in-M constant. We can then conclude that

‖QMv(0)‖Ḣ1(R3) . N (0)1/2 (4-37)

uniformly in M ≥ M0. Therefore, ‖v(0)‖Ḣ1(R3) . N (0)1/2. This proves Theorem 4.1, assuming the
conclusions of Proposition 4.2. �

4B. Proof of Proposition 4.2. To complete the proof of Theorem 4.1 we prove Proposition 4.2. We
begin with another refined Strichartz-type estimate.

Lemma 4.5. Let η > 0. There exists δ = δ(η) > 0 such that for all t0 ∈ I we have

‖u‖L4
t,x ([t0−δ/N (t0),t0+δ/N (t0)]×R3) . η. (4-38)

Proof. Again, without loss of generality, suppose that t0=0. Then define the interval J =
[
−

δ

N (0)
,

δ

N (0)

]
.

Using the Duhamel formula, we have

‖u‖L4
t,x (J×R3) ≤ ‖S(t)Eu(0)‖L4

t,x (J×R3)+

∥∥∥∥∫ t

0
S(t − s)(0,±u3) ds

∥∥∥∥
L4

t,x (J×R3)

. (4-39)

We estimate the first term on the right side of (4-39) as follows. First choose C(η) as in Remark 9, (3-4),
so that

‖P≥C(η)N (0)Eu(0)‖Ḣ1/2×Ḣ−1/2(R3) ≤ η. (4-40)

Note that by compactness, C(η) above can be chosen uniformly in t ∈ I , which is why it suffices to only
consider t0 = 0 in this argument. Next, we have

‖S(t)Eu(0)‖L4
t,x (J×R3) . ‖S(t)P≥C(η)N (0)Eu(0)‖L4

t,x (J×R3)+‖S(t)P≤C(η)N (0)Eu(0)‖L4
t,x (J×R3). (4-41)
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We use (4-40) together with Strichartz estimates to handle the first term on the right side above:

‖S(t)P≥C(η)N (0)Eu(0)‖L4
t,x (J×R3) . ‖P≥C(η)N (0)Eu(0)‖Ḣ1/2×Ḣ−1/2(R3) . η. (4-42)

To control the second term we use Bernstein’s inequalities, (2-1), and Sobolev embedding,

‖P≤C(η)N (0)S(t)Eu(0)‖L4
x (R

3) . C(η)1/4 N (0)1/4‖u(0)‖Ḣ1/2(R3). (4-43)

Taking the L4
t (J )-norm of both sides above gives

‖S(t)P≤C(η)N (0)Eu(0)‖L4
t,x (J×R3) . C(η)1/4δ1/4. (4-44)

Next we use Strichartz estimates on the second term on the right side of (4-39).∥∥∥∥∫ t

0
S(t − s)(0,±u3) ds

∥∥∥∥
L4

t,x (J×R3)

. ‖u3
‖L4/3

t,x (J×R3)
. ‖u‖3L4

t,x (J×R3)
. (4-45)

Combining all of the above, we obtain

‖u‖L4
t,x (J×R3) . η+C(η)1/4δ1/4

+‖u‖3L4
t,x (J×R3)

. (4-46)

The proof is concluded using the usual continuity argument after taking δ small enough. �

Proof of Proposition 4.2. We can again, without loss of generality, just consider the case t0 = 0. We will
prove Proposition 4.2 by finding a frequency envelope αk(0) such that

‖(Pku(0), Pkut(0))‖Ḣ2/3×Ḣ−1/3 . 2k/6αk(0), ‖{2k/6αk(0)}k∈Z‖`2 . N (0)1/6. (4-47)

Once we find αk(0) satisfying (4-47), Proposition 4.2 follows from Definition 3. With this in mind we
first establish the following claim:

Claim 4.6. There exists a number η0 > 0 such that the following holds. Let 0 < η < η0 and let
J := [−δ/N (0), δ/N (0)], where δ = δ(η) > 0 is chosen as in Lemma 4.5. Define

ak := 2k/2
‖Pku‖L∞t L2

x (J )+ 2−k/2
‖Pkut‖L∞t L2

x (J )+ 2k/4
‖Pku‖L8

t L8/3
x (J ),

ak(0) := 2k/2
‖Pku(0)‖L2

x (R
3)+ 2−k/2

‖Pkut(0)‖L2
x (R

3).
(4-48)

Next define frequency envelopes αk and αk(0) by

αk :=
∑

j

2−| j−k|/8a j , αk(0) :=
∑

j

2−| j−k|/8a j (0). (4-49)

Then, as long as η0 is chosen small enough, we have

ak . ak(0)+ η2
∑

j≥k−3

2(k− j)/4a j (4-50)

and

αk . αk(0). (4-51)
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Proof of Claim 4.6. To prove (4-50), we note that Strichartz estimates, together with Lemma 4.5, imply
that

ak = 2k/2
‖Pku‖L∞t L2

x (J )+ 2k/4
‖Pku‖L8

t L8/3
x (J )

. 2k/2
‖Pku(0)‖L2

x (R
3)+ 2−k/2

‖Pkut(0)‖L2
x (R

3)+ 2k/4
‖Pk(u3)‖L8/5

t L8/7
x (J )

. ak(0)+ η2
∑

j≥k−3

2(k− j)/4a j . (4-52)

To prove the last line above we note that it will suffice, by Hölder’s inequality in time and Lemma 4.5, to
show that

‖Pk(u3)‖L8/7
x
. ‖u‖2L4

∑
j≥k−3

‖Pj u‖L8/3 . (4-53)

First, since Pk((P≤k−4u)3)= 0, we have

‖Pku3
‖L8/7

x
.
∥∥Pk[(P≤k−4u)2 P≥k−3u]

∥∥
L8/7 +

∥∥Pk[P≤k−4u(P≥k−3u)2]
∥∥

L8/7 +‖Pk[P≥k−3u]3‖L8/7

. ‖u‖2L4‖P≥k−3u‖L8/3,

where the last inequality follows from the boundedness of Pk on L p and by Holder’s inequality. This
proves (4-53), and thus we have established (4-50).

To prove (4-51), we use (4-50) to obtain∑
j

2−| j−k|/8a j .
∑

j

a j (0)2−| j−k|/8
+ η2

∑
j

2−| j−k|/8
∑

j1≥ j−3

2( j− j1)/4a j1 . (4-54)

Reversing the order of summation in the second term above gives∑
j1≤k

∑
j≤ j1+3

2( j− j1)/42( j−k)/8a j1 .
∑
j1≤k

2( j1−k)/8a j1 . αk,∑
j1>k

∑
j≤ j1+3

2( j− j1)/42−| j−k|/8a j1 .
∑
j1>k

(
2−(k− j1)/4+ 2−(k− j1)/8

)
a j1 . αk .

(4-55)

Therefore, (4-54) implies that
αk . αk(0)+ η2αk, (4-56)

which in turn yields (4-51) as long as η > 0 is small enough. �

We now return to the proof of Proposition 4.2. We note that the calculation in the proof of Claim 4.6
also allows us to deduce that

2k/2
∥∥∥∥Pk

∫ δ/N (0)

0

e−i t
√
−1

√
−1

u3(t) dt
∥∥∥∥

L2
x (R

3)

. η2
∑

j≥k−3

2(k− j)/4a j . (4-57)

Next, we claim that for any s0 ∈
(
0, 1

2

]
we have the estimate∫

∞

δ/N (0)

∥∥∥∥e−i t
√
−1

√
−1

(1−χ)
(

x
c|t |

)
u3
∥∥∥∥

Ḣ1/2+s0 (R3)

dt . N (0)s0δ−s0, (4-58)
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where c > 0 is a fixed small constant (c = 1
4 will do) and χ ∈ C∞0 (R

3) is radial, χ(x)= 1 for all |x | ≤ 1,
and χ(x)= 0 for all |x | ≥ 2. To prove (4-58), we note that by Sobolev embedding,∥∥∥∥e−i t

√
−1

√
−1

(1−χ)
(

x
c|t |

)
u3
∥∥∥∥

Ḣ1/2+s0

=

∥∥∥∥(1−χ)( x
c|t |

)
u3
∥∥∥∥

Ḣ−1/2+s0

.

∥∥∥∥(1−χ)( x
c|t |

)
u3
∥∥∥∥

L p
,

where
1
p
=

2
3
−

s0

3
. Then using the radial Sobolev embedding, i.e., Lemma 2.2, we have

(c|t |)1+s0

∥∥∥∥(1−χ)( x
c|t |

)
u3
∥∥∥∥

L p
.

∥∥∥∥(1−χ)1/3( x
c|t |

)
|x |(1+s0)/3u

∥∥∥∥3

L3p
. ‖u‖3Ḣ1/2 .

Hence, ∥∥∥∥e−i t
√
−1

√
−1

(1−χ)
(

x
c|t |

)
u3
∥∥∥∥

Ḣ1/2+s0

. |t |−1−s0‖u‖L∞t Ḣ1/2 .

Integrating the above in time from t = δ/N (0) to t =+∞ then yields (4-58).
Once again by the weak convergence result in Lemma 3.2, we have

〈Pkv(0), Pkv(0)〉Ḣ1/2 =

〈
Pkv(0), Pk

(
lim

T2↗T+
±

i
√
−1

∫ T2

0
eiτ
√
−1u3(τ ) dτ

)〉
Ḣ1/2

,

which for all T− < T1 < 0 is equal to

lim
T2↗T+

〈
Pk
(
eiT1
√
−1v(T1)

)
,
±i
√
−1

Pk

(∫ T2

0
eiτ
√
−1u3 dτ

)〉
Ḣ1/2

+ lim
T2↗T+

〈
1
√
−1

Pk

(∫ 0

T1

ei t
√
−1u3 dt

)
,

1
√
−1

Pk

(∫ T2

0
eiτ
√
−1u3 dτ

)〉
Ḣ1/2

. (4-59)

As T1↘ T−, we note that (4-59)→ 0. Indeed, by (4-9),

lim
T1↘T−

lim
T2↗T+

〈
Pk
(
eiT1
√
−1v(T1)

)
,
±i
√
−1

Pk

(∫ T2

0
eiτ
√
−1u3 dτ

)〉
Ḣ1/2

= lim
T1↘T−

lim
T2↗T+

〈
Pk
(
eiT1
√
−1v(T1)

)
, Pk

(
v(0)− eiT2

√
−1v(T2)

)〉
Ḣ1/2

= lim
T1↘T−

〈
Pk
(
eiT1
√
−1v(T1)

)
, Pk(v(0))

〉
Ḣ1/2
= 0. (4-60)

Therefore,

〈Pkv(0), Pkv(0)〉Ḣ1/2 = lim
T1↘T−

lim
T2↗T+

〈
1
√
−1

Pk

(∫ 0

T1

ei t
√
−1u3 dt

)
,

1
√
−1

Pk

(∫ T2

0
eiτ
√
−1u3 dτ

)〉
Ḣ1/2

.

To estimate the right side above, we split each term into two pieces and use the identity

〈A+ B, A′+ B ′〉 = 〈A+ B, A′〉+ 〈A, A′+ B ′〉− 〈A, A′〉+ 〈B, B ′〉, (4-61)
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where

A := Pk

(∫ 0

−δ/N (0)

ei t
√
−1

√
−1

u3 dt
)
+ Pk

(∫
−δ/N (0)

T1

ei t
√
−1

√
−1

(1−χ)
(

x
c|t |

)
u3 dt

)
,

B := Pk

(∫
−δ/N (0)

T1

ei t
√
−1

√
−1

χ

(
x

c|t |

)
u3 dt

)
,

and A′, B ′ are the analogous quantities in the positive time direction.
We begin by estimating the first two terms on the right side of (4-61). In fact, an identical argument

applies to both of these terms, so we only provide details for the term 〈A+ B, A′〉. To begin, we note
that by (4-58), we have∥∥∥∥Pk

(∫ T+

δ/N (0)

eiτ
√
−1

√
−1

(1−χ)
(

x
c|τ |

)
u3 dτ

)∥∥∥∥
Ḣ1/2
. 2−k/6bk, (4-62)

where bk = 2−k(s0(k)−1/6)N (0)s0(k) and we are free to choose any s0 = s0(k) ∈
(
0, 1

2

]
. Setting s0(k)= 5

24
if 2k
≥ N (0) and s0(k)= 1

8 if 2k < N (0), we have

bk :=

{
2−k/24 N (0)5/24δ−5/24 if 2k

≥ N (0),

2k/24 N (0)1/8δ−1/8 if 2k < N (0).
(4-63)

Then

‖{bk}‖`2 . N (0)1/6. (4-64)

Therefore with bk as in (4-63), we can combine (4-57) and (4-62) to deduce that∥∥∥∥Pk

(∫ δ/N (0)

0

eiτ
√
−1

√
−1

u3 dt
)∥∥∥∥

Ḣ1/2
+

∥∥∥∥Pk

(∫ T+

δ/N (0)

eiτ
√
−1

√
−1

(1−χ)
(

x
c|τ |

)
u3 dτ

)∥∥∥∥
Ḣ1/2

. η2
∑

j≥k−3

2(k− j)/4a j + 2−k/6bk .

Then since
±i
√
−1

∫ 0

T1

ei t
√
−1u3 dt ⇀v(0) in Ḣ 1/2 as T1↘ T−, (4-65)

we can deduce the estimate

lim
T1↘T−

lim
T2↗T+

〈A+ B, A′〉Ḣ1/2 = lim
T1↘T−

lim
T2↗T+

〈
Pk

(∫ 0

T1

ei t
√
−1

√
−1

u3 dt
)
,

Pk

(∫ δ/N (0)

0

e−iτ
√
−1

√
−1

u3 dτ
)
+ Pk

(∫ T2

δ/N (0)

eiτ
√
−1

√
−1

(1−χ)
(

x
c|τ |

)
u3 dτ

)〉
Ḣ1/2

. ak(0)
(
η2
∑

j≥k−3

2(k− j)/4a j + 2−k/6bk

)
. (4-66)
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An identical calculation in the other time direction gives the same estimate for 〈A, A′+ B ′〉. Next, we
estimate 〈A, A′〉, again using (4-57) and (4-62). We have〈

Pk

(∫ δ/N (0)

0

eiτ
√
−1

√
−1

u3 dτ
)
+ Pk

(∫ T2

δ/N (0)

eiτ
√
−1

√
−1

(1−χ)
(

x
c|τ |

)
u3 dτ

)
,

Pk

(∫ 0

−δ/N (0)

ei t
√
−1

√
−1

u3 dt
)
+ Pk

(∫
−δ/N (0)

T1

ei t
√
−1

√
−1

(1−χ)
(

x
c|t |

)
u3 dt

)〉
Ḣ1/2

.

(
η2
∑

j≥k−3

2(k− j)/4a j

)2

+ 2−k/3b2
k . (4-67)

Finally, it remains to estimate 〈B, B ′〉, which is given by∫ T2

δ/N (0)

∫
−δ/N (0)

T1

〈
Pk

(
ei t
√
−1

√
−1

χ

(
x

c|t |

)
u3(t)

)
, Pk

(
eiτ
√
−1

√
−1

χ

(
x

c|τ |

)
u3(τ )

)〉
Ḣ1/2

dt dτ

=

∫ T2

δ/N (0)

∫
−δ/N (0)

T1

〈
χ

(
x

c|t |

)
u3(t), P2

k

(
ei(τ−t)

√
−1

√
−1

χ

(
·

c|τ |

)
u3(τ )

)
(x)
〉

L2
dt dτ. (4-68)

Here we perform an argument similar to our use of the sharp Huygens principle in the proof of (4-22).
The kernel of P2

k ei(t−τ)
√
−1(
√
−1)−1 is given by

Kk(x)= Kk(|x |)= c
∫ 2π

0

∫
ei |x |ρ cos θei(τ−t)ρρ−1φ

(
ρ

2k

)
ρ2 dρ sin θ dθ, (4-69)

where the integrand is written in polar coordinates on R3, where ρ=|ξ |. The function φ( · /2k) above is the
Fourier multiplier for the Littlewood–Paley projection, Pk , and its support is contained in ρ ∈ [2k−1, 2k+1

].
Integration by parts L ∈ N times in ρ gives the estimates

|Kk(x − y)|.L
22k〈

2k
∣∣(τ − t)− |x − y|

∣∣〉L . (4-70)

In (4-68) we have |x | ≤ 1
4 |t |, |y| ≤

1
4 |τ |, and therefore |x − y| ≤ 1

4 |τ − t |. Thus we have

(τ − t)− |x − y| ≥ 1
2 |τ − t |

and hence

|Kk(x − y)|.L
22k

〈2k |τ − t |〉L
. (4-71)

If 2k
� N (0), we use (4-71) with L = 5 to obtain∫ T2

δ/N (0)

∫
−δ/N (0)

T1

〈
χ

(
x

c|t |

)
u3(t), P2

k

(
ei(τ−t)

√
−1

√
−1

χ

(
·

c|τ |

)
u3(τ )

)
(x)
〉

L2
dt dτ

. ‖u‖6L∞t L3
x
2−3k N (0)3 . 2−3k N (0)3 . 2−1/2k N (0)1/2. (4-72)
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If 2k . N (0), we use the crude estimate |Kk(x − y)|. 22k in the (t, τ ) region |t − τ |. 2−k , and we use
(4-71) with L = 3 in the region where |τ − t | ≥ 2−k . We can then conclude that if 2k . N (0), we have∫ T2

δ/N (0)

∫
−δ/N (0)

T1

〈
χ

(
x

c|t |

)
u3(t), P2

k

(
ei(τ−t)

√
−1

√
−1

χ

(
·

c|τ |

)
u3(τ )

)
(x)
〉

L2
dt dτ . 1. (4-73)

Therefore, (4-66), (4-67), (4-72), and (4-73) imply that

a2
k (0). ak(0)

(
η2
∑

j≥k−3

2(k− j)/4a j + 2−k/6bk

)
+

(
η2
∑

j≥k−3

2(k− j)/4a j

)2

+ 2−k/3b2
k +min(2−k/2 N (0)1/2, 1). (4-74)

Hence we have

ak(0). η2
∑

j≥k−3

2(k− j)/4a j + 2−k/6bk +min(2−k/4 N (0)1/4, 1). (4-75)

Using the definitions of αk(0), αk and (4-55), we get

αk(0). η2αk +
∑

j

2−| j−k|/82− j/6b j +
∑

j

2−| j−k|/82− j/6 min(2− j/12 N (0)1/4, 2 j/6).

Using (4-51) and choosing η small enough, we then have

αk(0).
∑

j

2−| j−k|/82− j/6b j +
∑

j

2−| j−k|/82− j/6c j , (4-76)

where the c j :=min(2− j/12 N (0)1/4, 2 j/6) satisfy

‖{c j }‖`2 . N (0)1/6. (4-77)

By Schur’s test, using (4-64) and (4-77), we can finally conclude that

‖2k/6αk(0)‖`2 . N (0)1/6, (4-78)

as desired. This finishes the proof, since αk(0) satisfies (4-47). �

5. No energy cascade and even more regularity when N(t) ≡ 1

In this section we begin by showing that an energy cascade, i.e., the case lim supt→∞ N (t) = 0, is
impossible. This leaves us with the soliton-like critical element N (t) = 1 for all t ≥ 0. We can then
reduce this situation to the case of a soliton-like critical element that is global in both time directions with
N (t)≡ 1 for all t ∈ R. Finally, we show that such a solution is in fact uniformly bounded in Ḣ 2

× Ḣ 1,
which in turn means that Eu(t) satisfies the compactness property in Ḣ 1

× L2.
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5A. No energy cascade. We can quickly rule out the case of a critical element Eu(t) with scale N (t)
satisfying lim supt→∞ N (t)= 0. We prove the following consequence of Theorem 4.1 and Proposition 2.6.

Lemma 5.1. Let Eu(t) be a solution to (1-4) defined on a time interval I = (T−,+∞) with T− < 0
and suppose that Eu(t) has the compactness property on I with N (t) ≤ 1 for all t ∈ [0,∞). Then
lim sup

t→∞
N (t)= 0 is impossible unless Eu(t)≡ 0.

Proof. Since Eu(t) satisfies the conditions of (4-1), we see that

lim sup
t→∞

‖Eu(t)‖Ḣ1×L2 . lim sup
t→∞

N (t)1/2 = 0. (5-1)

By Sobolev embedding and interpolation, we also have

lim sup
t→∞

‖u(t)‖L4 . lim sup
t→∞

‖u(t)‖Ḣ3/4 . lim sup
t→∞

‖u(t)‖1/2
Ḣ1/2‖u(t)‖

1/2
Ḣ1 . lim sup

t→∞
N (t)1/4 = 0. (5-2)

Therefore the conserved energy E(Eu(t)) is well-defined and (5-1) and (5-2) imply that we must have
E(Eu(t))= 0. If Eu(t) solves the defocusing equation, then E(Eu(t)) is given by (1-2) and we can directly
conclude that we must have Eu(t) ≡ 0. If Eu(t) is a solution to the focusing equation, then we use
Proposition 2.6 to deduce that Eu(t)≡ 0. �

5B. Additional regularity for a soliton-like critical element. For the case of a soliton-like critical ele-
ment, i.e., N (t)≡ 1, the rigidity argument in Section 6 will require that the trajectory Eu(t) be precompact
in Ḣ 1

× L2(R3) rather that just uniformly bounded in this norm, in time. This is not hard to do given our
work in the previous sections.

Let Eu(t) be as in Proposition 3.1 and assume that N (t)= 1 for all t ∈ [0,∞). Then, without loss of
generality, we can assume that Imax(Eu)= R and we have N (t)≡ 1 for all t ∈ R. Indeed, let tn→∞ be
any sequence. Since Eu(t) has the compactness property on (T−(Eu),∞) we can find a subsequence, still
denoted by tn so that Eu(tn)→ Eu∞ in Ḣ 1/2

× Ḣ−1/2. Then, using the perturbation theory, one can readily
check that the solution Eu∞(t) with initial data Eu∞(0)= Eu∞ is global in time and has the compactness
property on R with N (t)= 1 for all t ∈ R.

We can now establish the following proposition.

Proposition 5.2. Let Eu(t) be the critical element and assume further that Eu(t) is soliton-like, i.e., Eu(t) is
defined globally in time and N (t)≡ 1. Then the trajectory

K := {Eu(t) | t ∈ R} (5-3)

is precompact in (Ḣ 1/2
× Ḣ−1/2)∩ (Ḣ 1

× L2)(R3).

Proof. We prove that in fact we have a uniform-in-time bound on the Ḣ 2
× Ḣ 1-norm of Eu(t). We

only provide a sketch of this fact, as the proof is nearly identical to the proof of Theorem 4.1. The
precompactness of {Eu(t) | t ∈ R} in Ḣ 1

× L2 then follows from its precompactness in Ḣ 1/2
× Ḣ−1/2 and

interpolation, as we have

‖Eu(t)‖Ḣ1×L2 . ‖Eu(t)‖2/3Ḣ1/2×Ḣ−1/2‖Eu(t)‖
1/3
Ḣ2×Ḣ1 .
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First note that by Theorem 4.1, we have

‖Eu(t)‖Ḣ1×L2 . 1. (5-4)

Claim 5.3. There exists a δ > 0 such that for all t0 ∈ R and for J := (t0− δ, t0+ δ), we have

‖u‖L2
t L∞x (J×R3) . 1. (5-5)

Remark 11. In (5-5) we make use of the endpoint L2
t L∞x Strichartz estimate, which is valid in the radial

setting; see [Klainerman and Machedon 1993]. However, this use of the endpoint is for convenience only,
as it will allow for an upgrade of the uniform bound in Ḣ 1

× L2 directly to a uniform bound in Ḣ 2
× Ḣ 1.

This implies that the trajectory is precompact in Ḣ 1
× L2 using the precompactness in Ḣ 1/2

× Ḣ−1/2 and
interpolating with the Ḣ 2

× Ḣ 1 bound. As we are only interested in proving the compactness property in
Ḣ 1
× L2, it would also suffice to prove a uniform bound in Ḣ 1+ε

× Ḣ ε, and for this estimate we would
not need the endpoint Strichartz estimate.

Proof of Claim 5.3. First we note that it suffices to prove the claim for t0 = 0. We apply the endpoint
Strichartz estimates, which are valid in the radial setting. Indeed, denote by Z(J ) the space Z(J ) :=
L∞t (J ; Ḣ 1

× L2)∩ L2
t (J ; L

∞
x ). Then we have

‖u‖Z(J ) . ‖Eu(0)‖Ḣ1×L2 +‖u3
‖L1

t (J ;L2
x )
. ‖Eu(0)‖Ḣ1×L2 +‖u‖3L3

t (J ;L6
x )

. ‖Eu(0)‖Ḣ1×L2 + δ‖u‖3L∞t (J ;Ḣ1
x )
. ‖Eu(0)‖Ḣ1×L2 + δ‖u‖Z(J ), (5-6)

where we remark that we have used the Sobolev inequality and the length of J in the third inequality
above, and nothing else. In the last inequality we have used (5-4). Choosing δ = δ(‖Eu(0)‖Ḣ1×L2) > 0
small enough completes the proof. Note that here it is important that the constant in (5-4) is uniform in
t0 ∈ I . �

The proof of Proposition 5.2 now proceeds exactly as in the proof of Theorem 4.1, except here we seek
an Ḣ 2 bound. We give a brief sketch. Let Ev(t) be defined as in (4-6), and QM as in (4-10). We prove that

〈QMv(t0), QMv(t0)〉Ḣ2 . 1 (5-7)

for all M ≥M0 with a constant that is uniform in M and in t0 ∈R. Extracting weak limits using Lemma 3.2
as in the proof of Theorem 4.1, we note that it will suffice to prove the following estimate for the “double
Duhamel” term:∣∣∣∣〈QM

(∫ 0

T1

ei t
√
−1
∇(u3)(t) dt

)
, QM

(∫ T2

0
eiτ
√
−1
∇(u3)(τ ) dτ

)〉
L2

∣∣∣∣. 1, (5-8)

where T1 < 0 and T2 > 0 and the constant above is uniform in such T1, T2. Note also that above we have
set t0 = 0, as again this case will be sufficient.

By (5-5), we see that for δ > 0 as in Claim 5.3, we have∥∥∥∥QM

(∫ δ

0
eiτ
√
−1
∇(u3)(τ ) dτ

)∥∥∥∥
L2
.
∫ δ

0
‖∇(u3)‖L2 . ‖∇u‖L∞t L2‖u‖2L2

t ([0,δ);L∞x )
. 1. (5-9)
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Next, by the radial Sobolev embedding, ‖|x |3/4u‖L∞x (R3) . ‖u‖Ḣ3/4(R3), we have∥∥∥∥(1−χ)( x
c|t |

)
∇u3(t)

∥∥∥∥
L2
.

1
c3/2|t |3/2

‖∇u‖L∞t L2(R3)‖u(t)‖
2
Ḣ3/4 . |t |

−3/2, (5-10)

where χ ∈ C∞0 (R
3), radial, satisfies χ(x)= 1 for |x | ≤ 1 and χ(x)= 0 for |x | ≥ 2, and c = 1

4 . Therefore
we have∥∥∥∥QM

(∫ T2

δ

eiτ
√
−1

(
1−χ

(
·

c|τ |

))
∇(u3)(τ ) dτ

)∥∥∥∥
L2

.
∫
∞

δ

∥∥∥∥(1−χ
(
·

c|τ |

))
∇(u3)(τ )

∥∥∥∥
L2
. δ−1/2. (5-11)

Next, using the sharp Huygens principle exactly as in the proof of (4-22), the term〈
QM

(
ei t
√
−1χ

(
·

c|t |

)
∇(u3)(t) dt

)
, QM

(
eiτ
√
−1χ

(
·

c|τ |

)
∇(u3)(τ ) dτ

)〉
=

〈
QM

(
χ

(
·

c|t |

)
∇(u3)(t) dt

)
, QM

(
ei(τ−t)

√
−1χ

(
·

c|τ |

)
∇(u3)(τ ) dτ

)〉
(5-12)

is identically 0 for t <−δ and τ > δ. With (5-9), (5-11), and (5-12) playing the roles of (4-14), (4-18),
and (4-22), the proof now proceeds exactly as the proof of Theorem 4.1. We omit the details. �

6. Rigidity via a virial identity

In this section we complete the rigidity argument by proving that a soliton-like critical element (i.e.,
N (t)≡ 1) cannot exist. Indeed, we prove the following proposition:

Proposition 6.1. Let Eu(t) ∈ (Ḣ 1/2
× Ḣ−1/2)∩ (Ḣ 1

× L2)(R3) be a global-in-time solution to (1-4) such
that the trajectory

K := {Eu(t) | t ∈ R} (6-1)

is precompact in (Ḣ 1/2
× Ḣ−1/2)∩ (Ḣ 1

× L2)(R3). Then u(t)≡ 0.

The proposition will follow from a simple argument based on the following virial identity. We will
fix a smooth radial cutoff function χ ∈ C∞0 (R

3) such that χ(r)≡ 1 for 0≤ r ≤ 1, suppχ ⊂ [0, 2], and
|χ ′(r)| ≤ C for all r > 0. For each fixed R > 0, we will denote by χR the rescaling

χR(r) := χ(r/R). (6-2)

Lemma 6.2 (virial identity). Let Eu(t) ∈ Ḣ 1
× L2(R3) be a solution to (1-4). Then for every R > 0,

d
dt
〈ut | χR(u+ rur )〉 = −E(Eu)(t)+

∫
∞

0
(1−χR)

(
1
2

u2
t +

1
2

u2
r ±

1
4

u4
)

r2 dr

−

∫
∞

0

(
1
2

u2
t +

1
2

u2
r ±

1
4

u4
)

rχ ′Rr2 dr −
∫
∞

0
uurrχ ′Rr dr, (6-3)
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where the bracket 〈 f | g〉 is the radial L2(R3) inner product

〈 f | g〉 :=
∫
∞

0
f (r)g(r)r2 dr.

Proof. The proof follows from (1-4) and integration by parts. �

Remark 12. In general, for a semilinear equation of the form

ut t −1u =±|u|p−1u,

one has the formal virial identity

d
dt
〈ut | u+ x · ∇u〉 = −E(u)±

(
p− 3
p+ 1

)
‖u‖p+1

L p+1 .

Note that the right side can be bounded from above by a negative constant times the conserved energy
in the case 1+

√
2 < p ≤ 3, yielding a monotone quantity. But in the case 3 < p < 5, the right side

cannot be controlled by the conserved energy in the case of the focusing equation. However, for the
range 3< p < 5, a different rigidity argument is available, based on the “channels of energy” method
developed by Duyckaerts, Kenig, and Merle [2013; 2014]. For an implementation of this strategy for the
range p ∈ (3, 5), see [Shen 2012].

We also note that the virial identities and the argument in this section also readily extend to the nonradial
setting.

The proof of Proposition 6.1 will now follow by applying the above lemma to our precompact trajectory
Eu(t) in order to show that the energy must be nonpositive. One concludes the proof by noting that a
solution to the defocusing equation with nonpositive energy must be identically zero. In the case of
the focusing equation, we recall Proposition 2.6, which says that a solution with nonpositive energy
must either be identically zero or blow up in both time directions, and the latter is impossible under the
hypothesis of Proposition 6.1.

Proof of Proposition 6.1. Fix η > 0. We will show that for Eu(t) as in Proposition 6.1, we have

E(Eu)≤ Cη (6-4)

for a fixed constant C which is independent of η. First, note that since {Eu(t) | t ∈ R} is precompact in
(Ḣ 1/2

× Ḣ−1/2)∩ (Ḣ 1
× L2)(R3), we can find R0 = R0(η) such that for all R ≥ R0 and for all t ∈ R, we

have ∫
∞

R
(u2

t (t)+ u2
r (t))r

2 dr ≤ η. (6-5)

Moreover, due to the embeddings Ḣ 1/2
∩ Ḣ 1 ↪→ Ḣ 3/4 ↪→ L4, we can choose R0(η) large enough that we

also have ∫
∞

R
u4(t)r2 dr ≤ η (6-6)
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for all R ≥ R0 and for all t ∈ R. Finally, we note that for any R > 0 and for any smooth radial function in
Ḣ 1(R3), we have ∫

∞

R
f 2(r) dr + R f 2(R)=−

∫
∞

R
fr (r) f (r)r dr,

which can be obtained by integrating by parts. This implies that∫
∞

R
f 2(r) dr ≤

∫
∞

R
f 2
r (r)r

2 dr.

Therefore, for our precompact trajectory Eu(t), we can use (6-5) to obtain∫
∞

R
u2(t, r) dr ≤ η (6-7)

for all R ≥ R0(η) and for all t ∈ R. Letting R ≥ R0(η), we can apply these estimates to the last three
terms on the right side of (6-3):〈∫

∞

0
(1−χR)

(
1
2

u2
t +

1
2

u2
r ±

1
4

u4
)

r2 dr
〉
≤ Cη,〈∫

∞

0

(
1
2

u2
t +

1
2

u2
r ±

1
4

u4
)

rχ ′Rr2 dr
〉
≤ C

∫ 2R

R

(
1
2

u2
t +

1
2

u2
r +

1
4

u4
)

r2 dr ≤ Cη,〈∫
∞

0
uurrχ ′Rr dr

〉
≤

(∫ 2R

R
u2

r r2 dr
)1/2 (∫ 2R

R
u2 dr

)1/2

≤ Cη.

Inserting the above estimates into (6-3) and averaging in time from 0 to T , we obtain the estimate

E(Eu)≤ Cη+
1
T

∣∣〈ut(T ) | χR(u(T )+ rur (T ))
〉∣∣+ 1

T

∣∣〈ut(0) | χR(u(0)+ rur (0))
〉∣∣. (6-8)

Now, set R = T above with T large enough that T � R0(η). We have

E(Eu)≤ Cη+C
1
T

∫ T

0
|ut(T )||u(T )|r2 dr +C

1
T

∫ T

0
|ut(0)||u(0)|r2 dr

+C
1
T

∫ T

0
|ut(T )||ur (T )|r3 dr +C

1
T

∫ T

0
|ut(0)||ur (0)|r3 dr. (6-9)

We estimate the second and third terms on the right side of (6-9) by

1
T

∫ T

0
|ut ||u|r2 dr ≤

1
T

(∫ T

0
u2

t r2 dr
)1/2 (∫ T

0
|u|3r2 dr

)1/3 (∫ T

0
r2 dr

)1/6

≤ C
1

T 1/2 ‖ut‖L2‖u‖Ḣ1/2 → 0 as T →∞,

where in the last line we have used the embedding Ḣ 1/2 ↪→ L3, the fact that the critical element Eu(t)
satisfies supt∈R ‖u(t)‖Ḣ

1
2
. 1, and supt∈R ‖ut‖L2 . 1. To estimate the fourth and fifth terms in (6-9), we
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note that for T � R(η) we have

1
T

∫ T

0
|ut ||ur |r3 dr ≤

1
T

∫ R(η)

0
|ut ||ur |r3 dr +

1
T

∫ T

R(η)
|ut ||ur |r3 dr

≤
R(η)

T
‖ut‖L2‖u‖Ḣ1 +

(∫ T

R(η)
u2

t r2 dr
)1/2 (∫ T

R(η)
u2

r r2 dr
)1/2

= η+ O(T−1) as T →∞.

Thus, letting T →∞ in (6-9), we obtain

E(Eu)≤ Cη,

as desired. Since this holds for all η > 0, we can conclude that

E(Eu)≤ 0. (6-10)

In the case that Eu(t) is a solution to the defocusing equation, we are done, as we can conclude from (6-10)
that Eu(t) ≡ 0. In the case that Eu(t) is a solution to the focusing equation, we note that (6-10) together
with Proposition 2.6 implies that either Eu(t)≡ 0 or Eu(t) blows up in finite time in both time directions.
However, the latter case is impossible, as we have assumed that Eu(t) is global in time. This completes the
proof of Proposition 6.1. �

7. Proof of Theorem 1.1

We provide a brief summary of the proof of Theorem 1.1, which is now complete. We argue by
contradiction. If Theorem 1.1 were false, we could, by Proposition 3.1, find a critical element, i.e., a
nonzero solution Eu(t) to (1-4) with the compactness property in Ḣ 1/2

× Ḣ−1/2 on an open interval I 3 0
with scale N (t). By the remarks following the statement of Proposition 3.1, we can reduce to the case
I = (T−,∞) and N (t)≤ 1 for t ∈ [0,∞). By (4-1), we then have

‖Eu(t)‖Ḣ1×L2 . N (t)1/2 for t ∈ [0,∞).

Then, since we are assuming Eu(t) is nonzero, by Section 5A, we can conclude that N (t) ≡ 1 for all
t ∈ [0,∞). We can then ensure that Eu(t) is global in time for all t ∈ R, and by Proposition 5.2, we know
that Eu(t) has a precompact trajectory in Ḣ 1/2

× Ḣ−1/2
∩ Ḣ 1

× L2. But then Proposition 6.1 shows that
Eu(t)≡ 0, which is a contradiction.
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