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INVERSE SCATTERING WITH PARTIAL DATA
ON ASYMPTOTICALLY HYPERBOLIC MANIFOLDS

RAPHAEL HORA AND ANTÔNIO SÁ BARRETO

We prove a local support theorem for the radiation fields on asymptotically hyperbolic manifolds and
use it to show that the scattering operator restricted to an open subset of the boundary of the manifold
determines the manifold and the metric modulo isometries that are equal to the identity on the open subset
where the scattering operator is known.

1. Introduction

We recall that the ball model of the hyperbolic space Hn+1 is given by

Bn+1
= {z ∈ Rn+1

: |z|< 1} equipped with the metric g =
4 dz2

(1− |z|2)2
.

It is well known that (Bn+1, g) is a complete manifold with constant curvature −1. On the other hand,
(Bn+1, (1− |z|2)2g) is the interior of a compact Riemannian manifold with boundary. This structure can
be generalized by replacing Bn+1 with the interior of a C∞ compact manifold X , with boundary ∂X , of
dimension n+ 1 and replacing 1− |z|2 with a function ρ ∈ C∞(X) which defines ∂X ; that is, ρ > 0 in
the interior of X , {ρ = 0} = ∂X , and dρ 6= 0 at ∂X . Such a function ρ will be called a boundary-defining
function. We will denote the interior of X by X̊ . If g is a Riemannian metric on X̊ such that

ρ2g = H (1-1)

is C∞ and nondegenerate up to ∂X then, according to [Mazzeo and Melrose 1987], g is complete and its
sectional curvatures approach −|dρ|2H as ρ ↓ 0. In particular, when

|dρ|H2 = 1 at ∂X, (1-2)

the sectional curvatures converge to −1 at the boundary. A Riemannian manifold (X̊ , g), where X is a
compact C∞ manifold with boundary and where (1-1) and (1-2) hold, is said to be an asymptotically
hyperbolic manifold (AHM). Any compact C∞ Riemannian manifold with boundary X can be equipped
with such a metric.

We will study certain properties of the asymptotic behavior of solutions to the Cauchy problem for the
wave equation on (X̊ , g). In particular, we will study the Friedlander radiation fields on AHM, and show
that the support of the radiation fields restricted to an open subset of ∂X controls the support of the initial
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data of the Cauchy problem for the wave equation. Such theorems are usually called support theorems;
see, for example, [Helgason 1999]. When X̊ =Hn+1, the radiation fields are given by the Lax–Phillips
transform which involves the horocyclic Radon transform, and our support theorem generalizes the results
of [Lax and Phillips 1982] to this setting.

We will use this result and adapt the boundary control theory of [Belishev 1987; Belishev and Kurylev
1992; Tataru 1995; 1999], and a refinement of the results of [Belishev and Kurylev 1992] due to Kurylev
and Lassas [2002] and Katchalov, Kurylev and Lassas [Katchalov et al. 2001], to prove that the scattering
operator restricted to a nonempty open set 0 ⊂ ∂X determines (X, g) modulo isometries that are equal to
the identity on 0. There is a very large body of work on scattering and inverse scattering for Schrödinger
operators, obstacle problems, etc., however much less is known about inverse scattering on manifolds. It
was proved in [Sá Barreto 2005] that the scattering operator on the entire boundary of an AHM (X, g)
determines the manifold and the metric modulo isometries that are the identity at ∂X . Guillarmou and Sá
Barreto [2008] extended the result of [Sá Barreto 2005] to asymptotically complex hyperbolic manifolds.
Isozaki, Kurylev and Lassas [Isozaki et al. 2010; 2013] studied the case of manifolds of cylindrical ends
and asymptotically hyperbolic orbifolds; see also their survey paper [Isozaki et al. 2014]. One should
also mention the book by Isozaki and Kurylev [2014], where they discuss spectral theory and inverse
problems on AHM. If an AHM manifold is also Einstein, Guillarmou and Sá Barreto [2009] showed that
the scattering matrix at one energy determines the manifold.

2. Preliminaries and statements of the results

We begin by recalling the definition of the radiation fields and the scattering operator. Let u(t, z) satisfy
the wave equation (

D2
t −1g −

1
4 n2)u = 0 on R±× X̊ ,

u(0, z)= f1, Dt u(0, z)= f2, f1, f2 ∈ C∞0 (X̊).
(2-1)

The spectrum of the Laplacian 1g, denoted by σ(1g), was studied by [Mazzeo 1988; 1991; Mazzeo
and Melrose 1987] and more recently by Bouclet [2013]. They showed that σ(1g)= σpp(1g)∪σac(1g),
where σpp(1g) is the finite point spectrum, σac(1g) is the absolutely continuous spectrum and

σac(1g)=
[ 1

4 n2,∞
)
, σpp(1g)⊂

(
0, 1

4 n2). (2-2)

The role of the factor n2/4 in (2-1) is to shift the continuous spectrum of 1g to [0,∞).
Equation (2-1) has a conserved energy given by

E(u, ∂t u)(t)=
∫

X

(
|du(t)|2− 1

4 n2
|u(t)|2+ |∂t u(t)|2

)
d volg,

E(u, ∂t u)(0)= E( f1, f2)=

∫
X

(
|d f1|

2
−

1
4 n2
[t]| f1|

2
+ | f2|

2) d volg .

(2-3)

However, E( f1, f2) is a nonnegative quadratic form only when projected onto L2
ac(X). As in [Sá Barreto

2005], we define the energy space

HE(X)= {( f1, f2) : f1, f2 ∈ L2(X), d f1 ∈ L2(X) and E( f1, f2) <∞}
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and, if {φ j : 1≤ j ≤ N } are the eigenfunctions of 1g, we define the projector

Pac : L2(X)→ L2
ac(X), f 7→ f −

N∑
j=1

〈 f, φ j 〉φ j ,

and the space Eac(X)= Pac(HE(X)).
The wave group induces a strongly continuous group of unitary operators,

U (t) : Eac(X)→ Eac(X), ( f1, f2) 7→ (u(t), ∂t u(t)).

Next we recall the definition of the forward and backward radiation fields from [Sá Barreto 2005]. We
will work with a specific boundary defining function and, since our definition will depend on this choice,
we will recall the construction from [Graham 2000]. Since any two defining functions of ∂X , ρ and ρ̃,
satisfy ρ = eωρ̃ with ω ∈ C∞(X), if H = ρ2g and H̃ = ρ̃2g then H |∂X = e2ω(0,y) H̃ |∂X . Hence, ρ2g|∂X

determines a conformal class of metrics on ∂X . We have H = ρ2g = e2ωρ̃2g, and so H = e2ω H̃ . Since
dρ = eω(ρ̃dω+ dρ̃), we have

|dρ|2H = |dρ̃+ ρ̃dω|2
H̃
= |dρ̃|2

H̃
+ ρ̃2
|dω|2

H̃
+ 2ρ̃(∇H̃ ρ̃)ω.

Hence,

|dx |H = 1 if and only if 2(∇H̃ ρ̃)ω+ ρ̃|dω|
2
H̃
=

1
ρ̃
(1− |dρ̃|2

H̃
), ω|∂X = 0.

Since, by assumption, |dρ̃|H̃ = 1 at ∂X , this is a noncharacteristic ODE, and hence it has a solution in a
neighborhood of ∂X . Notice that the function ρ is in principle defined only on a collar neighborhood of
∂X , but it can be extended to the whole manifold as a boundary-defining function.

The boundary-defining function ρ gives an identification between [0, ε)×∂X and a collar neighborhood
U of ∂X ,

9 : [0, ε)× ∂X→U ⊂ X, (x, y) 7→ exp(x∇Hρ)(y),

where exp(x∇Hρ)(y) just means that one follows the integral curve of ∇Hρ starting at y for x units of
time. In this case,

9∗g =
dx2

x2 +
h(x)
x2 on (0, ε)× ∂X, h(0)= H |∂X ,

9 = Id on ∂X,
(2-4)

where h(x) is a C∞ family of metrics ∂X for x ∈ [0, ε). From now on we will use this identification
U ∼ [0, ε)x × ∂X .

In the coordinates (2-4), for fixed y ∈ ∂X the curve γ (s)= (s, y) is a geodesic for the metric g, the
distance between (x, y) and (x ′, y), x < x ′, is log(x ′/x), and if time t is the arc-length parameter then
t = log x ′− log x . So, to analyze global properties of u(t, z) in space and time, it is convenient to work
with an exponential compactification of R 3 t , and we choose a function T such that {T = 0} = {t = 0},
T = 1− e−t if t > 1, and T =−1+ et if t <−1. Let Y = [−1, 1] × X be the compactified space; see
Figure 1. The light cones will converge to the corners of the manifold Y and to separate them one blows
up the intersection of ∂X with {T =−1} and {T = 1}. This gives a manifold with corners Ỹ , pictured in
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light cones

{T = 1} = {t =∞}

{T = 0} = {t = 0}

{T =−1} = {t =−∞}

ϒ+

ϒ−

F+

F−

Supp u

Supp u

f1 = f2 = 0

u
=

0 Supp{ f1, f2}

Figure 1. The manifold Y = [−1, 1]× X , and Ỹ , its blow-up along ∂X×{T =±1}. All
the light cones intersect at {x = 0, T =±1} in Y , but in Ỹ they are separated at the faces
F+ and F−.

Figure 1. In local coordinates, the blow-up is the equivalent of introducing polar coordinates x = r cos θ ,
T ± 1= r sin θ .

It was proved in [Sá Barreto 2005] that, if ( f1, f2) ∈ C∞0 (X), the solution u to the wave equation
(2-1) is in C∞(Ỹ \ (ϒ+ ∪ϒ−)) (see Figure 1 for the definition of ϒ±). The analysis of the behavior of
u(t, z) on the faces ϒ± give, among other things, information about the local energy decay, and will
not be studied here. A similar discussion about the asymptotic solutions of the wave equation on de
Sitter–Schwarzschild space, including the pictures, can be found in [Melrose et al. 2014a; 2014b]; see
also [Vasy 2013].

Following Friedlander [1980; 2001], one defines the forward and backward radiation fields of u as

R+( f1, f2)= x−n/2∂t u|F+\ϒ+,

R−( f1, f2)= x−n/2∂t u|F−\ϒ− .

If we use projective coordinates x and τ+ = x/(1−T ), valid near F+ \ϒ+, and τ− = x/(1+T ), valid
near F− \ϒ−, and set s+ = log τ+ and s− =− log τ−, then, for ( f1, f2) ∈C∞0 (X̊)×C∞0 (X̊), the solution
u(t, z) to (2-1), with z = (x, y), satisfies

V+(x, s+, y)= x−n/2u(s+− log x, x, y) ∈ C∞([0, ε)x ×Rs+ × ∂X)

V−(x, s, y)= x−n/2u(s−+ log x, x, y) ∈ C∞([0, ε)x ×Rs− × ∂X).
(2-5)

In these coordinates, the forward and backward radiation fields can be expressed as

R+ : C∞0 (X̊)×C∞0 (X̊)→ C∞(R× ∂X), R+( f1, f2)(s+, y)= Ds+V+(0, s+, y),

R− : C∞0 (X̊)×C∞0 (X̊)→ C∞(R× ∂X), R−( f1, f2)(s−, y)= Ds−V−(0, s−, y).
(2-6)
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It was shown in [Sá Barreto 2005] that R± extend to unitary operators

R± : Eac(X)→ L2(R× ∂X), ( f1, f2) 7→R±( f1, f2), (2-7)

where the measure on ∂X is the one induced by the metric h0 defined in (2-4).
It follows from the definitions that R± are translation representations of the wave group as in the

Lax–Phillips theory [1989], i.e.,

R±(U (T )( f1, f2))(s, y)=R±( f1, f2)(s+ T, y). (2-8)

One can define the scattering operator

S : L2(R× ∂X)→ L2(R× ∂X), S=R+ ◦R−1
−
, (2-9)

which is unitary in L2(∂X ×R) and, in view of (2-8), commutes with translations in the s variable.
The scattering matrix A(λ) is defined by conjugating S with the Fourier transform in the s variable:

A(λ)= F ◦S ◦F−1, F f (λ)=
∫

R

e−iλs f (s) ds. (2-10)

In particular, S determines A(λ), λ ∈ R and vice versa. It was proved in [Joshi and Sá Barreto 2000] that
A(λ) continues meromorphically to C \ D, where D is a discrete subset of C.

As discussed above, the distance between (x, y) and (x ′, y), x < x ′ < ε, is log(x ′/x). The finite speed
of propagation for the wave equation implies that the solution u(t, z) of (2-1) satisfies u(t, z) = 0 if
t < dg(z,Supp( f1, f2)). In particular, if f1(x ′, y) = f2(x ′, y) = 0 for all x ′ < ρ, then u(t, x) = 0 for
x < x ′ < ρ and t < log(x ′/x). This implies that V+(s, x, y) = x−n/2∂t u(s − log x, x, y) = 0 provided
x < x ′ < ρ and s = t + log x < log x ′ < log ρ. This shows that, if f1(x ′, y) = f2(x ′, y) = 0 in x ′ ≤ ρ,
then R+( f1, f2)(s, y)= 0 for s ≤ log ρ. The converse of this statement for initial data of the type (0, f )
was proved in [Sá Barreto 2005]: if f ∈ L2

ac(X) and R+(0, f )(s, y)= 0 for s ≤ log ρ� 0 and y ∈ ∂X ,
then f (x, y)= 0 in x ≤ ρ. Due to possible cancelations, one cannot expect the converse to be true for an
arbitrary pair ( f1, f2). In this paper we prove the following refinement of this result:

Theorem 2.1. Let 0 ⊂ ∂X be a nonempty open subset, let f ∈ L2
ac(X) and let s0 ∈ R. Let ε > 0 be such

that (2-4) holds in (0, ε)×∂X , and let ε=min{ε, es0}. Then R+(0, f )(s, y)= 0 in {s < s0, y ∈ 0} if and
only if , for every z = (x, y) ∈ (0, ε)=Uε,

dg(z,Supp f ) > log es0

x
, (2-11)

where dg denotes the distance function with respect to the metric g and Supp f denotes the support of f .
Another way of stating (2-11) is to say that f = 0 on the set

Ds0(0)=
{

z ∈ X : ∃q = (x, y) ∈Uε, dg(z, q) < log es0

x

}
=

⋃
(x,y)∈Uε

B
(
(x, y), log es0

x

)
, (2-12)

where B(p, r) denotes the open ball of radius r centered at p with respect to the metric g.
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If 0 = ∂X and ε = es0 then, for any z = (α, y) with α < es0 , pick q = (x, y) with x < α < es0 . Then
dg((α, y), (x, y))= log(α/x) < log(es0/x). Therefore, {(α, y) : α < es0, y ∈ ∂X} ⊂Ds0(∂X), and hence
Theorem 2.1 shows that, if f ∈ L2

ac(X) and R+(0, f )(s, y)= 0 for s ≤ s0 and y ∈ ∂X , then f (x, y)= 0
for x< es0 . This particular case of Theorem 2.1, when 0= ∂X and ε= es0 was proved in [Sá Barreto 2005].

Lax and Phillips [1982] proved Theorem 2.1 for the case when (X, g) is the hyperbolic space. In that
case the radiation field is given in terms of the horocyclic Radon transform, and their result says that,
if the integral of f over all horospheres tangent to points (0, y) with y ∈ 0 and radii less than or equal
to 1

2 es0 is equal to zero, then f = 0 in the region given by the union of these horocycles. It is useful to
explain what the set Ds0(0) is when (X, g) is the hyperbolic space, and verify that Theorem 2.1 implies
the result of Lax and Phillips. It is easier to do the computations for the half-space model of hyperbolic
space, which is given by

Hn+1
= {(x, y) : x > 0, y ∈ Rn

} with the metric g =
dx2
+ dy2

x2 .

The distance function between z = (x, y) and w = (α, y′) satisfies

cosh dg(z, w)=
x2
+α2
+ |y− y′|2

2xα
.

Since dg(z, z′)≤ log(es0/α), we obtain(
x − 1

2 es0(1+α2e−2s0)
)2
+ |y− y′|2 ≤ 1

4 e2s0(1+α2e−2s0)2−α2
=

1
4 e2s0(1−α2e−2s0)2,

which corresponds to a ball D(α) centered at
( 1

2 es0(1 + α2e−2s0), y′
)

and radius 1
2 es0(1 − α2e−2s0).

Since α < es0 , we have D(α)⊂ D(0), as shown in Figure 2. This ball is tangent to the plane x = es0 at
the point (es0, y′). When α = 0, the ball D(0) has center

( 1
2 es0, y′

)
and radius 1

2 es0 and is also tangent to
the plane {x = 0}. The boundary of D(0) is called a horosphere since it is orthogonal to the geodesics
emanating from the point (0, y′). When α = es0 , D(es0)= (es0, y′). The set Ds0(0) consists of the union

�

�

�

D(0)

D(α)

(es0 , y′)

( 1
2 es0 , y′

)

(0, y′) ∈ 0

horospheres

geodesics

Figure 2. The horospheres tangent at (0, y′) and the balls D(α).
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� � � �

� �

es0

0 0

Ds0(0)

Figure 3. The set Ds0(0) when (X, g) is the hyperbolic space is given by the union of
horospheres tangent to points on 0 and radii less than or equal to 1

2 es0 .

of horospheres with radii less than or equal to 1
2 es0 tangent to points (0, y′) with y′ ∈ 0; see Figure 3.

Theorem 2.1 can be explained in terms of the sojourn time along a geodesic. In this setting, the sojourn
time plays the role of the distance function to the boundary of X and is closely related to the Busemann
function used in differential geometry. Let γ (t) be a geodesic, parametrized by the arc length, passing
through z = γ (0) and such that γ (t)→ y ∈ ∂X as t→∞. We define

s(z, γ )= lim
t→∞

(
t + log x(γ (t))

)
.

The relationship between the sojourn times and the radiation fields for nontrapping asymptotically
hyperbolic manifolds was studied in [Sá Barreto and Wunsch 2005]. We have the following consequence
of Theorem 2.1:

Corollary 2.2. Let f and 0 ⊂ ∂X satisfy the hypotheses of Theorem 2.1; then f = 0 on the set of points
z ∈ X̊ such that there exists a geodesic γ (t), parametrized by the arc length, with γ (0)= z, γ (t)→ y ∈ 0
as t→∞, and s(z, γ ) < s0.

Proof. Suppose there exists a geodesic γ (t), parametrized by the arc length t , such that γ (0) = z,
limt→∞ γ (t)= y and

lim
t→∞

(
t + log x(γ (t))

)
= s < s0.

Since t is the arc-length parameter, d
(
z,
(
x(γ (t)), y

))
≤ t and s < s0, there exists T > 0 such that, for

t > T , γ (t) ∈U ∼ [0, ε)× ∂X where the coordinates (2-4) are valid and t + log x(γ (t)) < s0. Therefore,
if t > T ,

d
(
z, (x(t), y)

)
≤ t < s0− log x(γ (t))= log es0

x(γ (t))
.

Hence z ∈ Ds0(0). �

Theorem 2.1 says that the support of the radiation field R+(0, f ) controls the support of the initial
data (0, f ). We will use this result to adapt the boundary control method of [Belishev 1987; Belishev and
Kurylev 1992; Kurylev and Lassas 2002; Katchalov et al. 2001] to study the inverse scattering problem
with partial data.

Let 0 ⊂ ∂X be an open subset and let S denote the scattering operator as in (2-9). We define the
restriction of S to R×0 as

S0 : L2(R×0)→ L2(R×0), F 7→ (SF)|0. (2-13)
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In other words, one starts with an F ∈ L2(R× 0), finds the solution of the wave equation that has
backward radiation field equal to F , then finds the corresponding forward radiation field, and restricts it
to the subset R×0. We study the problem of determining (X, g) from S0. Recall that our definition
of S depends on the choice of the product structure (2-4). In fact, the method used in [Graham 2000]
and discussed above to construct the diffeomorphism (2-4) can also be used to show that, given two
AHM (X j , g j ), j = 1, 2, there exists ε > 0 such that (2-14) holds for both metrics. Recall that x is just
the time through which one flows along the integral curves of ∇Hρ. One can take ε to the smallest one
that works for both metrics, and one finds that there exist collar neighborhoods U j ⊂ X j of ∂X j and
C∞ diffeomorphisms

9 j : (0, ε)× ∂X j →U j

such that

9∗j g j =
dx2

x2 +
h j (x)

x2 in (0, ε)× ∂X j , h j (0)= h j0, j = 1, 2, (2-14)

where h j (x) is a C∞ family of metrics on ∂X j for x ∈ [0, ε), and 9 j = Id on ∂X j . In particular, if there
exists an open set 0 ⊂ ∂X1 ∩ ∂X2, as manifolds, then (2-14) holds on (0, ε)× 0, and h j (x) are C∞

families of metrics on 0. We prove the following:

Theorem 2.3. Let (X1, g1) and (X2, g2) be connected, asymptotically hyperbolic manifolds and suppose
there exists an nonempty open set 0 ⊂ ∂X1 ∩ ∂X2 (as manifolds). Let x be such that (2-14) holds on a
collar neighborhood of ∂X j for j = 1, 2. Suppose that h1(0) = h2(0) on 0. Let S j,0, j = 1, 2, be the
corresponding scattering operators restricted to 0, and suppose that S1,0 = S2,0 . Then there exists a C∞

diffeomorphism

9 : X1→ X2 such that 9 = Id on 0 and 9∗g2 = g1. (2-15)

Since we only know S on part of the boundary, we can only expect to recover information on the
connected components of (X, g) that contain 0, so we assume that X is connected. This result guarantees
that the scattering operator restricted to 0 determines (X, g), including its topology and C∞ structure,
modulo isometries that are equal to the identity on 0.

Theorem 2.3, and the method we use to prove it, are related to the question of reconstructing a compact
Riemannian manifold with boundary from the Dirichlet-to-Neumann map (DTNM) for the wave equation.
One may think of the scattering operator as the DTNM on the boundary at infinity. Belishev and Kurylev
[1992] showed that the DTNM for the wave equation determines a compact manifold and its Riemannian
metric using the boundary control method and a unique continuation result later proved by Tataru [1995;
1999]. Different proofs, which also rely on the result of Tataru, were given in [Katchalov et al. 2001].
This result of Tataru will be important in the proof of Theorem 2.1. The reconstruction of a compact
manifold in the case where the Dirichlet-to-Neumann map is only known on part of the boundary was
carried out by Kurylev and Lassas [2000] using a modification of the boundary control method; see also
Section 4.4 of [Katchalov et al. 2001]. We will adapt the boundary control methods to this setting by
using the radiation fields.
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3. The proof of Theorem 2.1

The sufficiency of condition (2-11) in Theorem 2.1 is just a consequence of the finite speed of propagation
for the wave equation.

Lemma 3.1. Let f ∈ L2
ac(X) be such that dg(z,Supp f ) > log(es0/x) for all z = (x, y) ∈ (0, ε)× 0.

Then R+(0, f )(s, y)= 0 if s ≤ s0 and y ∈ 0.

Proof. Let u(t, z) satisfy the wave equation (2-1) with initial data (0, f ). The finite speed of propagation
for solutions of the wave equation guarantees that u(t, z)= 0 if 0≤ t < dg(z,Supp f ). In particular, if
z= (x, y) with x <ε, y ∈0, then u(t, x, y)= 0 if 0≤ t ≤ s0− log x < dg(z,Supp f ). Since s = t+ log x ,
we have that V+(x, s, y)= x−n/2u(s− log x, x, y)= 0 provided log x ≤ s ≤ s0, x <ε, y ∈0. This implies
that R+(0, f )(s, y)= 0 if s ≤ s0 and y ∈ 0. �

We will first outline the proof of the converse, which is based on unique continuation arguments. We
state three propositions, and indicate how to use them to prove the converse of Theorem 2.1. We will
finish the proof of Theorem 2.1 at the end of the section, after we have proved the three propositions.

In the region where (2-4) holds, the Cauchy problem (2-1), with initial data (0, f ) translates into the
following initial value problem for V+(x, s, y)= x−n/2u(s+ log x, x, y):

PV+(x, s, y)= 0 in log x < s, x < ε, y ∈ ∂X,

V+(x, log x, y)= 0, Ds V+(x, log x, y)= x−n/2 f (x, y), x < ε, y ∈ ∂X,
(3-1)

where

P =−x−n/2−1(D2
t −1−

1
4 n2)xn/2

= ∂x(2∂s + x∂x)− x1h + A∂s + Ax∂x +
1
2 n A. (3-2)

Here, 1h is the (positive) Laplace operator on ∂X corresponding to the metric h(x), in local y coordinates,

1h =−
1
√
θ
∂yi (
√
θ hi j∂y j ),

where h = (hi j (x, y)), h−1
= (hi j (x, y)), θ = det(hi j ) and A =

1
√
θ
∂x
√
θ.

(3-3)

In the first proposition, we are interested in the behavior of V+(x, s, y) for x near {x = 0} and {s=−∞}.
As in [Sá Barreto 2005], we work in the compactified space Ỹ — see Figure 1 — and set

µ= e−s−/2 and ν = es+/2. (3-4)

This implies that s= 2 log ν and x =µν. Notice that µ=
√
τ+ and ν=

√
τ− and that, in these coordinates,

the lateral face 6 of Ỹ is given by 6 = {τ+ = τ− = 0} = {µ = ν = 0}, and one may think of this as
collapsing the lateral face 6, as shown in Figure 4.

In coordinates (µ, ν, y), the operator P defined in (3-2) has the form

P̃ = ∂µ∂ν −µν1h +
1
2 A(µ∂µ+ ν∂ν)+ 1

2 n A, (3-5)
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ϒ+

ϒ−

F
−
=
{ν
=

0}

6

F+
=
{µ
=

0}

{t = 0} = {µ= ν}

Figure 4. A compactification of Rt × X with the face 6 collapsed.

where h = h(µν), A = A(µν, y). If

W (µ, ν, y)= V+(µν, 2 log ν, y)= (µν)−n/2u
(

log ν
µ
,µν, y

)
, (3-6)

the Cauchy problem (3-1) becomes

P̃W = 0, µ, ν ∈ (0, ε), y ∈ ∂X,

W (µ,µ, y)= 0, ∂µW (µ,µ, y)=−µ−1−n f (µ2, y).
(3-7)

The fact that the initial data is of the form (0, f ) implies that the solution u(t, z) to (2-1) satisfies
u(t, z)=−u(−t, z), and this implies that W (µ, ν, y)=−W (ν, µ, y).

Proposition 3.2. Let f ∈ L2
ac(X) be such that R+(0, f )(s, y)= 0 in {s < s0}×0. Let u satisfy the initial

value problem for the wave equation (2-1) with initial data (0, f ), and let W (µ, ν, y) be defined as in (3-6).
Then, in the sense of distributions ∂k

µW (µ, ν, y)|{µ=0} = 0 in [0, es0/2)×0 and ∂k
νW (µ, ν, y)|{ν=0} = 0 in

[0, es0/2)×0 for k = 0, 1, . . . . Moreover, for every p ∈ 0 there exists δ > 0 such that W (µ, ν, y)= 0 if
0< µ< δ, 0< ν < δ and |y− p|< δ. (See Figure 5.)

�

�

W = 0

W
=

0

P̃W = 0

P̃W = 0

W
=

0

ν

µ

es0/2

es0/2

Figure 5. Unique continuation from infinity: if R+(0, f )(s, y)= 0 for s ≤ s0 and a.e.
y ∈ 0 then, for every p ∈ 0, there exists δ > 0 such that W (µ, ν, y) = 0 in the region
shown provided that |y− p|< δ.
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PV = 0

x

s

x

s

s = log x s = log x

es1

s0 s0

es1β

Figure 6. If PV = 0, and V = 0 in the dark region on the left, then V = 0 in
the dark region on the right. This establishes unique continuation across the wedge
{log x < s < s1, x < δ, |y− p|< δ} ∪ {x ≤ 0, s < s0, |y− p|< δ}.

Next we need to show that we can increase the size of the neighborhood where V+ = 0, and to do this
we will use an iteration scheme involving the next two propositions. We will again use variables (x, s, y),
and this time we will apply Hörmander’s unique continuation theorem [1994b, Theorem 28.2.3], to prove:

Proposition 3.3. Let V (x, s, y) ∈ H 1
loc in the region |x |< ε, y ∈ 0 and s ∈ R, satisfy PV = 0, where P

is given by (3-2). Let s1 < s0, δ > 0 and p ∈ 0 and suppose that

V (x, s, y)= 0 on {x ∈ (−ε, 0], s < s0, y ∈ 0} ∪ {log x < s < s1, x < δ, |y− p|< δ}.

Then there exists β ∈ (0, δ) such that V (x, s, y)= 0 if x < β, |y− p|< β and log x < s < s1+
1
4(s0− s1).

(Figure 6 illustrates the result.)

We know from Proposition 3.2 that V+(x, s, y) = 0 for x < δ, |y − y0| < δ and log x ≤ s ≤ log δ.
We set s1 = log δ. Proposition 3.3 shows that V+(s, x, y) = 0 in x < β < δ, |y − y0| < β < δ and
s < s1+

1
4(s0− s1). In other words, V+(x, s, y)= 0 in a larger interval in the s variable at the expense of

shrinking the neighborhood of {x = 0, y = p}.
The second piece of the scheme is a consequence of a result of Tataru [1995; 1999], and it shows that,

while the neighborhood of p might shrink, the neighborhood of x = 0 in fact does not. Figure 7 illustrates
the result.

Proposition 3.4. Let u(t, z) satisfy (2-1) with initial data f1 = 0, f2 = f ∈ L2(X). Let V+(x, s, y) =
x−n/2u(s − log x, x, y). Let p ∈ 0, and suppose that there exist s2 ∈ R, γ > 0 and δ > 0 such that
V+(x, s, y)= 0 if 0< x <γ , log x < s < s2 and |y− p|< δ. Then u(t, z)= 0 if there is (x, y) with x <γ
and |y − p| < δ such that |t | + dg(z, (x, y)) < log(es2/x), where dg is the distance with respect to the
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x

s

PV = 0

x

s s = log x s = log x
s2 s2

γ

log γ log γ

s∗

Figure 7. If PV = 0 and V = 0 in the dark region on the left, then V = 0 in the dark
region on the right.

metric g. In particular, if s∗ < s2 is such that coordinates (2-4) holds for x < es∗ , then

V+(x, s, y)= 0 if |y− p|< δ, 0< x < es∗ and log x < s < s2. (3-8)

The idea is to iterate Propositions 3.3 and 3.4 to prove Theorem 2.1. We know from Proposition 3.2
that for any p ∈ 0 there exists δ > 0 such that

V+(x, s, y)= 0 if x < δ, log x < s < log δ, |y− p|< δ.

Moreover, V+(x, s, y)= 0 if x < 0, s < s0 and y ∈ 0. Applying Proposition 3.3 with s1 = log δ, we find
that there exists β1 < δ such that

V+(x, s, y)= 0 provided x < β1, |y− p|< β1 and log x < s < log δ+ 1
4(s0− log δ).

Then Proposition 3.4 guarantees that there exists s∗� 0 independent of p such that

V+(x, s, y)= 0 if x < es∗, |y− p|< β1, s < s2 = log δ+ 1
4(s0− log δ).

The main point is that, while the neighborhood of p shrinks from one step to the next, the neighborhood
of x = 0 stays the same. Since p ∈ 0 is arbitrary, it follows that in fact

V+(x, s, y)= 0 if x < es∗, y ∈ 0, s < s2 = log δ+ 1
4(s0− log δ). (3-9)

After using this argument n times, we find that

V+(x, s, y)= 0 if x < es∗, y ∈ 0, s < sn = sn−1+
1
4(s0− sn−1).

The sequence {sn = sn−1+
1
4(s0− sn−1)} is monotone and bounded by s0. So it has a limit which is

obviously equal to s0. This implies that

V+(x, s, y)= 0 if x < es∗, y ∈ 0, s < s0. (3-10)
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This does not quite yet prove Theorem 2.1, and the proof will be completed after the proof of
Proposition 3.4. Now we will prove the three propositions above.

Proof of Proposition 3.2. First we claim that, without loss of generality, we may assume that f ∈ L2
ac(X)∩

C∞(X̊). To do this we need to characterize the range R+(0, f ), f ∈ L2
ac(X). Notice that the solution u(t, z)

of (2-1) with data (0, f ) satisfies u(−t, z)=−u(t, z), and hence V+(s, x, y)= x−n/2u(s− log x, x, y)
and V−(s, x, y)= x−n/2u(s+ log x, x, y) satisfy

V+(x,−s, y)= x−n/2u(−s− log x, x, y)=−V−(x, s, y). (3-11)

In particular, we have

R+(0, f )(−s, y)=−(∂s V+)(0,−s, y)= ∂s V−(0, s, y)=R−(0, f )(s, y).

Similarly,

R+(h, 0)(−s, y)=−R−(h, 0)(s, y).

So, if F =R+(h, f ) satisfies F∗(s, y)= F(−s, y), then

F∗(s, y)=−R−(h, 0)(s, y)+R−(0, f )(s, y).

We apply S=R+R−1
− to this identity and obtain

SF∗ =−R+(h, 0)+R+(0, f ),

and we conclude that
1
2(SF∗+ F)=R+(0, f ),
1
2(SF∗− F)=R+(h, 0).

(3-12)

Hence, SF∗ = F∗ if and only if R+(h, 0)= 0, and thus h = 0. Similarly, SF∗ =−F if and only if
R+(0, f )= 0 and hence f = 0. Therefore, we conclude that

{F ∈ L2(R× ∂X) : SF∗ = F} = {R+(0, f ) : f ∈ L2
ac(X)},

{F ∈ L2(R× ∂X) : SF∗ =−F} = {R+(h, 0) : (h, 0) ∈ Eac(X)}.
(3-13)

The same argument applied to the backward radiation field shows that

{F ∈ L2(R× ∂X) : F∗ = SF} = {R−(0, f ) : f ∈ L2
ac(X)},

{F ∈ L2(R× ∂X) : F∗ =−SF} = {R−(h, 0) : (h, 0) ∈ Eac(X)}.
(3-14)

Since R+(0, f )(s, y)=0 in {s< s0}×0, we may take the convolution of R+(0, f )withψδ(s)∈C∞0 (R)
even and supported in (−δ, δ), with

∫
ψδ(s) ds = 1. If F(s, y) = R+(0, f )(s, y) and F(s, y) = 0 for

s ≤ s0, and

Hδ(s, y)= ψδ ∗ F(s, y)=
∫

R

ψδ(s− s ′)F(s ′, y) ds ′,
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then Hδ(s, y)= 0 if s ≤ s0− δ and, since ψδ is even,

H∗δ (s, y)= Hδ(−s, y)=
∫

R

ψδ(−s− s ′)F(s ′, y) ds ′ =
∫

R

ψδ(s+ s ′)F(s ′, y) ds ′

=

∫
R

ψδ(s− s ′)F(−s ′, y) ds ′ = ψδ ∗ F∗.

But the scattering operator commutes with translations in s, and hence it commutes with convolutions
in the variable s. Therefore, in view of (3-13),

SH∗δ = ψδ ∗SF∗ = ψδ ∗ F = Hδ.

We then use (3-13) to show that there exists fδ ∈ L2
ac(X) such that Hδ = R+(0, fδ). Since R+ is

unitary, ‖F − Hδ‖L2(R×∂X) = ‖ f − fδ‖L2(X), and hence ‖ fδ − f ‖L2(X)→ 0 as δ→ 0. Moreover, since
∂2

s R+(0, f )=R+(0, (1− n2/4) f ), it follows that, for every k ≥ 0,

∂2k
s Hδ(s, y)=R+

(
0,
(
1− 1

4 n2)k fδ
)
∈ L2(R× ∂X),

and thus (1− n2/4)k fδ ∈ L2(X) for all k ≥ 0, using that R+ is unitary. Therefore, by elliptic regularity,
fδ ∈ C∞(X̊). If one proves Theorem 2.1 for f ∈ C∞(X̊)∩ L2

ac(X), then we conclude that fδ(z)= 0 for
z ∈ Ds0−δ(0). But, since fδ→ f as δ→ 0, it follows that f (z)= 0 in Ds0(0).

Next we will show that, if R(0, f )(s, y) = 0 in {s < s0} × 0, then in the sense of distributions W
vanishes to infinite order at {µ= 0, ν < es0/2}×0∪{ν = 0, µ < es0/2}×0. Recall that we are assuming
that f ∈ C∞(X̊), so the solution W to (3-7) is C∞ in the region {µ > 0, ν > 0}. The issue here is the
behavior of W at {µ= 0} ∪ {ν = 0}.

Notice that, if F(µ, y)= µ−1−n f (µ2, y), then∫ ε

0

∫
∂X
µ|F(µ, y)|2θ

1
2 (µ2, y) dy dµ= 1

2

∫ ε2

0

∫
∂X
| f (x, y)|2x−n−1θ

1
2 (x, y) dy dx ≤ 1

2‖ f ‖2L2(X). (3-15)

We know from Theorem 2.1 of [Sá Barreto 2005] that, if f ∈ C∞0 (X̊) ∩ L2
ac(X), then W has a

C∞ extension up to {µ= 0}∪{ν = 0} and, since ∂s =
1
2(ν∂ν−µ∂µ), then, provided f ∈C∞0 (X̊)∩L2

ac(X),

R+(0, f )(2 log ν, y)= 1
2 [(ν∂ν −µ∂µ)W (µ, ν, y)]

∣∣
µ=0 =

1
2ν∂νW (0, ν, y), (3-16)

and we want to show that this restriction makes sense for f ∈ L2
ac(X). We will work in the region {ν ≥µ},

but since the solution to (3-7) is odd under the change (µ, ν) 7→ (ν, µ), the same holds for the backward
radiation field in the region {ν ≤ µ}.

Again, we assume that f ∈ C∞0 (X̊)∩ L2
ac(X), and W satisfies (3-7). If one multiplies the equation

P̃W = 0 by ν∂νW −µ∂µW , one obtains the identity

1
2
√

h(µν, y)
∂µ
[(
ν|∂νW |2+µ2ν|dh(µν)W |2

)√
h
]
−

1
2
√

h(µν, y)
∂ν
[(
µ|∂µW |2+ ν2µ|dh(µν)W |2

)√
h
]

+µνδh(µν)((ν∂νW −µ∂µW )dh(µν)V )+ Q(W, µ∂µW, ν∂νW, µν∂y j W )= 0,
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µ

ν

µ0

T

Figure 8. The region of integration in (3-17).

where δh(µν) is the divergence operator on the section ∂X dual to dh(µν) with respect to the met-
ric h(µν), and Q is a quadratic form. One then integrates this identity in the region �µ0,T × ∂X ,
where �µ0,T = {µ0 ≤ µ≤ ν, µ≤ ν ≤ T } is pictured in Figure 8, uses the divergence theorem and then
the analogue of Gronwall’s inequality, to arrive at the following inequality: for 0≤µ0 ≤ T , T ∈ (0, es0/2),
with T small enough that coordinates (2-4) hold for x = µν, there exists C > 0 which does not depend
on f or W such that∫ T

µ0

∫
∂X

[
(|W |2+µ|∂µW |2+µν2

|dh(µν)W |2)
√
θ(µν)

]∣∣
ν=T dy dµ

+

∫ T

µ0

∫
∂X

[
(|W |2+ ν|∂νW |2+µ2ν|dh(µν)W |2)

√
θ(µν)

]∣∣
µ=µ0

dy dν ≤ C‖ f ‖2L2(X). (3-17)

We refer the reader to the proof of Lemma 4.1 of [Sá Barreto 2005] for the details. In fact, this follows
from equations (4.11), (4.14) and (4.15) of [Sá Barreto 2005], and (3-15) above.

We let

I (W, µ0, T )=
∫ T

µ0

∫
∂X

[
(|W |2+ ν|∂νW |2+µ2ν|dh(µν)W |2)

√
θ(µν)

]∣∣
µ=µ0

dy dν.

If f ∈ L2
ac(X) and if we take a sequence f j ∈ C∞0 (X̊)∩ L2

ac(X) with ‖ f − f j‖L2(X)→ 0, (3-17) shows
that, for fixed µ0 ∈ [0, T ],

I (W j −Wk, µ0, T )≤ C‖ f j − fk‖
2
L2(X),

and in particular, if µ0 ∈ [0, T ] and W is a solution of (3-7) with f ∈ L2
ac(X), then, for µ0 ∈ [0, T ], the

integral ∫ T

µ0

∫
∂X
ν|∂νW (µ0, ν, y)|2

√
θ(µ0ν, y) dν dy ≤ C‖ f ‖2L2(X) (3-18)

is well defined uniformly up to µ0 = 0. Since the radiation field is unitary, then in the sense of (3-18) the
restriction ν∂νW (µ0, ν, y)|{µ0=0} is well defined, and hence (3-16) holds for f ∈ L2

ac(X).
As was done in [Sá Barreto 2005], it is convenient to get rid of the term A(µ∂µ+ ν∂ν) in (3-5), by

conjugating the operator by θ−1/4. Since 1h is the positive Laplacian, we find that, in local coordinates
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near a point p ∈ 0,

Q̃ = θ1/4 P̃θ−1/4
= ∂µ∂ν +µν

∑
i, j

hi j (µν, y)∂yi ∂y j +µν
∑

j

B j (µν, y)∂y j +C(µν, y), (3-19)

where C(µν, y) and B j (µν, y) are C∞, and h−1
= (hi j ) is the matrix associated with the metric h. Let

W̃ =θ1/4W ; then Q̃W̃ =0. For φ(y)∈C∞0 (U ), where U b0 is such that (3-19) holds in [0, ε]×[0, ε]×U ,
let

G(µ, ν)=
∫
∂X

W̃ (µ, ν, y)φ(y) dy. (3-20)

Notice that this is consistent with the conjugation of P̃ by θ1/4, and the factor θ1/2 is no longer present in
the L2 product. Let

Z(µν, y, Dy)= Q̃− ∂µ∂ν = µν
∑
i, j

hi j (µν, y)∂yi ∂y j +µν
∑

j

B j (µν, y)∂y j +C(µν, y),

and let Z∗(µν, y, Dy) denote its adjoint with respect to the L2(∂X) product defined by (3-20); then

∂µ∂νG(µ, ν)=
∫
∂X

W̃ (µ, ν, y)Z∗(µν, y, Dy)φ(y) dy (3-21)

It follows from (3-17) that there exists C > 0 such that∫ T

0
|∂µ∂νG(µ, T )|2 dµ≤ C

(∑
|α|≤2

sup |∂αy φ|
)2

‖ f ‖2L2(X),∫ T

µ0

|∂µ∂νG(µ0, ν)|
2 dν ≤ C

(∑
|α|≤2

sup |∂αy φ|
)2

‖ f ‖2L2(X) for µ0 ∈ (0, T ].

(3-22)

Let us write K =
(∑
|α|≤2 sup |∂αy φ|

)
‖ f ‖L2(X). Therefore, if δ < µ < ε,

|∂νG(µ, ν)− ∂νG(δ, ν)| =
∣∣∣∣∫ µ

δ

∂s∂νG(s, ν) ds
∣∣∣∣≤ C K (µ− δ)1/2.

Hence, for ν > 0,
lim sup
δ→0

|∂νG(δ, ν)| ≤ lim inf
µ→0

|∂νG(µ, ν)|,

so limµ→0 |∂νG(µ, ν)| exists. On the other hand, R+(0, f )(s, y)= 0 for y ∈ 0 and s ≤ s0, so according
to (3-16) it follows that

∂νG(0, ν)= 0, ν ∈ (0, T ).

Now we use (3-22) to show that, if 0≤ µ≤ ν ≤ T , then there exists C > 0 such that

|∂νG(µ, ν)| =
∣∣∣∣∫ µ

0
∂s∂νG(s, ν) ds

∣∣∣∣≤ µ1/2
(∫ µ

0
|∂s∂νG(s, ν)|2 ds

)1
2

≤ µ1/2
(∫ ν

0
|∂s∂νG(s, ν)|2 ds

)1
2
≤ C Kµ1/2. (3-23)
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Since W (µ,µ, y)= 0, we have, for µ≤ ν ≤ T ,

|G(µ, ν)| =
∣∣∣∣∫ ν

µ

∂s G(µ, s) ds
∣∣∣∣≤ C Kµ1/2(ν−µ). (3-24)

This shows that, for every φ ∈ C∞0 (U ),∣∣∣∣∫
∂X

W̃ (µ, ν, y)φ(y) dy
∣∣∣∣≤ C Kµ1/2,∣∣∣∣∫

∂X
∂νW̃ (µ, ν, y)φ(y) dy

∣∣∣∣≤ C Kµ1/2.

Since C∞0 (R
2)×C∞0 (U ) spans C∞0 (R

2
×U ), it follows that for any ψ(µ, ν, y), with µ, ν ∈ [0, T ],∣∣∣∣∫

∂X
W̃ (µ, ν, y)ψ(µ, ν, y) dy

∣∣∣∣≤ C
(∑
|α|≤2

sup |∂αyψ |
)
‖ f ‖L2(X)µ

1/2,

∣∣∣∣∫
∂X
∂νW̃ (µ, ν, y)ψ(µ, ν, y) dy

∣∣∣∣≤ C
(∑
|α|≤2

sup |∂αyψ |
)
‖ f ‖L2(X)µ

1/2.

(3-25)

Now we differentiate (3-21) with respect to ∂ν . We have, for µ, ν ∈ [0, T ],

∂ν∂µ∂νG(µ, ν)=
∫
∂X

[
∂νW̃ (µ, ν, y)Z∗(µν, y, Dy)φ(y)+ W̃ (µ, ν, y)∂νZ∗(µν, y, Dy))φ(y)

]
dy,

we apply (3-25) to ψ(µ, ν, y) = Z∗(µν, y, Dy)φ(y) and ψ(µ, ν, y) = ∂νZ∗(µν, y, Dy)φ(y), and we
conclude that

|∂µ∂
2
νG(µ, ν, y)| ≤ C

(∑
|α|≤4

| sup ∂αy φ|
)
‖ f ‖L2(X)µ

1/2

Let us denote KN (φ)=
(∑
|α|≤N | sup ∂αy φ|

)
‖ f ‖L2(X). Since W̃ (µ,µ, y)= 0, we have ∂µ∂νG(µ,µ)= 0,

and so

|∂µ∂νG(µ, ν)| =
∣∣∣∣∫ ν

µ

∂µ∂
2
s G(µ, s) ds

∣∣∣∣≤ K4(φ)µ
1/2. (3-26)

On the other hand, since W (µ,µ, y)=0, it follows that (∂µW )(µ,µ, y)=−(∂νW )(µ,µ, y). In particular,
when ν = µ, we have

|∂µG(µ,µ)| ≤ C K2(φ)µ
1/2

and, since

∂µG(µ, ν)= (∂µG)(µ,µ)+
∫ ν

µ

∂s∂µG(µ, s) ds,

we have
|∂µG(µ, ν)| ≤ C(K2(φ)+ K4(φ))µ

1/2. (3-27)

Proceeding as above, since ∂νG(0, ν)= 0, it follows from (3-26) that |∂νG(µ, ν)| ≤ C K4(φ)µ
3/2 and,

since G(µ,µ)= 0, we have |G(µ, ν)| ≤ C K4(φ)µ
3/2 and |∂µ∂2

νG(µ, ν)| ≤ C K6(φ)µ
3/2. Iterating this
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argument, and using the symmetry of W , we get that, for k ≥ 0,

∂k
µG(0, ν)= 0, ∂k

νG(µ, 0)= 0, |(∂µG)(µ,µ)| = |(∂νG)(µ,µ)| ≤ Cµk . (3-28)

This shows that, in the sense of distributions, W̃ (µ, ν, y) vanishes to infinite order at

{µ= 0, ν < T }×0 ∪ {ν = 0, µ < T }×0,

where T has been chosen to be small enough that (2-4) holds for x = µν < ε. But this argument can be
used finitely many times to show this holds for any T ∈ (0, es0/2). In particular this shows that in the
sense of distributions W̃ can be extended across the wedge {µ= 0} ∪ {ν = 0} so that

Q̃W̃ = 0 in (−es0/2, es0/2)× (−es0/2, es0/2)×0 = O,

W̃ = 0 in {µ < 0, 0≤ ν < es0/2}×0 ∪ {ν < 0, 0≤ µ < es0/2}×0.
(3-29)

From (3-17) we know more about the regularity of W̃ . We also know that

W̃ ∈ C∞
(
O \ ({µ= 0, ν ≥ 0} ∪ {ν = 0, µ≥ 0})

)
,

and in fact Hörmander’s propagation of singularities theorem implies that

W F(W̃ )⊂ {µ= 0, ν ≥ 0, ξ1 = ξ2 = 0} ∪ {ν = 0, µ≥ 0, ξ1 = ξ2 = 0}, (3-30)

where ξ1 and ξ2 are dual to µ and ν respectively. If this were not true, singularities would propagate into
the region where we know W̃ is C∞. Indeed, the principal symbol of Q̃ is

q =−ξ1ξ2−µνh(µν, y, η),

and hence its bicharacteristics satisfy

µ̇=−ξ2, µ(0)= µ0, ν̇ =−ξ1, ν(0)= ν0,

ξ̇1 = ν(h+µν(∂x h)), ξ1(0)= ξ10, ξ̇2 = µ(h+µν(∂x h)), ξ2(0)= ξ20,

ẏ j =−µν∂η j h, y j (0)= y j0, η̇ j = µν∂y j h, η j (0)= η j0.

Therefore, the bicharacteristics over µ= 0 satisfy µ= 0, ξ2 = 0, y = y0 and η = η0 and

ν̇ =−ξ1, ν(0)= ν0, ν0 ≥ 0, ξ̇1 = νh(0, y0, η0), ξ1(0)= ξ10,

and hence, if we denote h0 = h(0, y0, η0),

ν(t)= ν0 cos(t
√

h0)−
ξ10
√

h0
sin(t

√
h0), ξ1(t)= ξ10 cos(t

√
h0)+ ν0

√
h0 sin(t

√
h0).

If (0, ν0, y0, ξ10, 0, η0) ∈ W F(W̃ ) with ν0 ≥ 0 and ξ10 > 0, then ν(T ) = −(ν0 + ξ1)/
√

2 < 0 for
T = 3π/(4

√
h0), and so the point(

0,− 1
√

2
(ν0+ ξ10), y0,

1
√

2
(−ξ10+ h0ν0), 0, η0

)
lies in W F(W̃ ). On the other hand, if ξ10 < 0, take T = 5π/(4

√
h0) and so
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0, 1
√

2
(−ν0+ ξ10), y0,−

1
√

2
(ξ10+ h0ν0), 0, η0

)
∈W F(W̃ ).

But this is not possible, since W̃ ∈ C∞ in {ν < 0}. The same analysis applies to {ν = 0, µ≥ 0}.
The next step is to prove the following unique continuation result:

Lemma 3.5. Let 0 ⊂ ∂X be open and not empty. Let W (µ, ν, y) satisfy (3-17), and let W̃ = θ1/4W
satisfy (3-29). Then for any p ∈ 0 there exists δ > 0 such that W̃ (µ, ν, y)= 0 provided |µ|< δ, |ν|< δ
and |y− p|< δ.

Proof. It is not clear that this result is a consequence of Theorem 1.1.2 of [Alinhac 1984], but (3-31)
below is similar to the estimates in Section 4.1 of [Alinhac 1984]. As usual, the proof of this result
is based on a Carleman estimate. However, we need to be quite careful when applying the Carleman
estimate, which is proved for C∞0 functions, to W̃ . In general, one would have to cut off and mollify W̃
and then apply Friedrich’s lemma; see for example the proof of [Hörmander 1994b, Theorem 28.3.4].
This usually requires the solution to be in H 1

loc. However, here the regularity for W̃ is given by (3-17),
which is not quite H 1

loc near {µ= 0} or {ν = 0}. We will avoid cutting W̃ in the variables (µ, ν), as the
commutator of Q̃ with the cut-off function would produce terms in ∂µW and ∂νW , which we cannot
yet control. However cut offs in the y do not offer any problem, since the commutator of Q̃ with a
cut-off function in y only would produce terms like µν∂y j W̃ , which can be controlled by (3-17). We will
prove the following Carleman inequality, which will be used to prove the stated unique continuation from
infinity, and will also be used to improve the regularity of W̃ .

Lemma 3.6. Let p ∈ 0, and let Q̃ be the operator defined in (3-19). For 0< ν0 ≤ es0/2, let

�ε = {(µ, ν, y) : |µ|< ε, |ν| ≤ ν0, |y− p|< 2ε}, 61,ε =
{
ν = ν0, 0≤ µ≤ 1

2ε, |y− p|< 2ε
}
,

�+ε = {(µ, ν, y) ∈�ε : µ≥ 0, ν ≥ 0}, 62,ε =
{
µ= 1

2ε, 0≤ ν ≤ ν0, |y− p|< 2ε
}
.

Let C0 = sup�ε |C |, where C is the zeroth order term of Q̃. Let γ > 0 be such that γC2
0ν

3
0 is small enough,

and let ϕa(µ, ν, y)= µ+ γ ν+ 1
2aγ |y− p|2, where a = 0 or a = 1. Then there exist ε0 > 0, M > 0 such

that if 0< ε < ε0 and k ≥ 1
4 , then the following estimate holds for all v(µ, ν, y) ∈ C∞(�ε) supported in

{(µ, ν, y) : µ≥ 0, ν ≥ 0, |y− p| ≤ ε}:

M‖ϕ−k Q̃v‖+Mk
∫
61,ε

[µνϕ−1
|∇yϕ

−kv|2+ k2ϕ−3−2k
|v|2] dµ dy

+Mk
∫
62,ε

[µνϕ−1
|∇yϕ

−kv|2+ k2ϕ−3−2k
|v|2] dν dy

≥ k3
‖ϕ−k−2v‖2+ k2

‖ϕ−1∂µϕ
−kv‖2+ k2

‖ϕ−1∂νϕ
−kv‖2+ k‖(µ+ γ ν)1/2ϕ−1/2

∇yϕ
−kv‖2, (3-31)

where ‖v‖2 =
∫
�+ε
|v|2 dµ dν dy.

Proof. The estimate with a = 0 was proved in [Sá Barreto 2005]. We are doing it again here for the
convenience of the reader, and we will use it to improve the regularity of W̃ . But this estimate with a = 0
is not strong enough to prove the unique continuation result, for which we need the estimate with a = 1.
We will use ϕ = ϕa in the proof to simplify the already heavy notation.
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Without loss of generality, we assume that p = 0 and that v is real-valued. We know from (3-19) that

Q̃(µ, ν, y, ∂µ, ∂ν, ∂y)= ∂µ∂ν +µν

n∑
i, j=1

hi j (µν, y)∂yi ∂y j +µν

n∑
j=1

B j (µν, y)∂y j +C(µν, y).

As usual, we define Q̃k = ϕ
−k Q̃ϕk and, since ∂µϕ = 1, ∂νϕ = γ and ∂y jϕ = aγ y j , we have

Q̃k = ϕ
−k Q̃ϕk

= Q̃(µ, ν, y, ∂µ+ kϕ−1, ∂ν + kγ ϕ−1, ∂y + kaγ yϕ−1),

and we write
Q̃k = Qk + kL,

with

L= ϕ−1(∂ν + γ ∂µ),

Qk = ∂µ∂ν + γ (k2
− k)ϕ−2

+µνhi j (µν, y)(∂yi + kaγ yiϕ
−1)(∂y j + kaγ y jϕ

−1)

+µνB j (∂y j + kaγ y jϕ
−1)+C,

where we used the notation
n∑

i j=1
Ai j Bi j = Ai j Bi j and D j E j =

∑n
j=1 D j E j to indicate sums over repeated

indices. Therefore,
‖Q̃kv‖

2
= ‖Qkv‖

2
+ k2
‖Lv‖2+ 2k〈Qkv,Lv〉, (3-32)

where
〈u, v〉 =

∫
�+ε

uv dy dµ dν and ‖v‖2 = 〈v, v〉.

The first term of (3-32) is positive and we will compute k2
‖Lv‖2+ 2k〈Qkv,Lv〉. Since v is supported

in {µ≥ 0, ν ≥ 0}, we will assume that µ≥ 0 and ν ≥ 0 in the computations below. We will also use M
for a generic constant. The first term of 〈Qkv,Lv〉 is

〈∂µ∂νv, ϕ
−1(∂ν + γ ∂µ)v〉

=
1
2

∫
�+ε

ϕ−1(∂µ(∂νv)
2
+ γ ∂ν(∂µv)

2) dy dµ dν

=
1
2

∫
�+ε

(∂µ(ϕ
−1(∂νv)

2)+ ∂ν(γ ϕ
−1∂µv)

2) dy dµ dν+ 1
2

∫
�+ε

ϕ−2(γ 2(∂µv)
2
+ (∂νv)

2) dy dµ dν

≥
1
2(γ

2
‖ϕ−1∂µv‖

2
+‖ϕ−1∂νv‖

2). (3-33)

Here we used that v and all its derivatives vanish at {µ= 0} ∪ {ν = 0}, and the boundary terms in 6 j,ε,
j = 1, 2 are nonnegative. The next term is

γ (k2
− k)〈ϕ−2v, ϕ−1(γ ∂µ+ ∂ν)v〉

=
1
2γ (k

2
− k)

∫
�+ε

ϕ−3(γ ∂µ+ ∂ν)v
2 dy dµ dν

=
1
2γ (k

2
− k)

∫
�+ε

(γ ∂µ+ ∂ν)(ϕ
−3v2) dy dµ dν+ 3γ 2(k2

− k)
∫
�+ε

ϕ−4
|v|2 dµ dy

=
1
2γ (k

2
− k)

∫
61,ε

ϕ−3v2 dµ dy+ 1
2γ

2(k2
− k)

∫
62,ε

ϕ−3v2 dν dy+ 3γ 2(k2
− k)‖ϕ−2v‖2. (3-34)
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Since we want to prove (3-31) for all k ≥ 1
4 , we need to get rid of the negative term −3kγ 2

‖ϕ−2v‖2

in (3-34). To do this we use the term ‖ϕ−1∂νv‖
2 from (3-33). Notice that ϕ−1∂νv = ∂ν(ϕ

−1v)+ γ ϕ−2v,
and hence

(ϕ−1∂νv)
2
≥ γ 2ϕ−4v2

+ 2γ ϕ−2v∂ν(ϕ
−1v)= γ 2ϕ−4v2

+ γ ϕ−1∂ν(ϕ
−1v)2.

Therefore,

‖ϕ−1∂νv‖
2
≥ 2γ 2

‖ϕ−2v2
‖

2,

and so

3γ 2(k2
− k)‖ϕ−2v‖2+ 7

16‖ϕ
−1∂νv‖

2
≥ 3γ 2(k2

− k+ 7
24

)
‖ϕ−2v‖2 ≥ 3

8 k2γ 2
‖ϕ−2v‖2.

Hence, the first two terms satisfy

〈∂µ∂νv, ϕ
−1(∂ν + γ ∂ν)v〉+ (k2

− k)〈ϕ−2v, ϕ−1(γ ∂µ+ ∂ν)v〉

≥
1
2γ

2
‖ϕ−1∂µv‖

2
+

1
16‖ϕ

−1∂νv‖
2
+

3
8 k2γ 2

‖ϕ−2v‖2

+
1
2(k

2
− k)

∫
61,ε

ϕ−3v2 dµ dy+ 1
2γ

2(k2
− k)

∫
62,ε

ϕ−3v2 dν dy. (3-35)

To estimate the third term, we integrate by parts in y j , recalling that v is compactly supported in the
y variable in the interior of �+ε . We use that hi j is symmetric to write it as

〈µνhi j (∂yi + kaγ yiϕ
−1)(∂y j + kaγ y jϕ

−1)v,Lv〉

=
1
2

∫
�+ε

µνhi j
[(∂yi + kaγ yiϕ

−1)(∂y j + kaγ y jϕ
−1)v]Lv dy dµ dν

+
1
2

∫
�+ε

µνhi j
[(∂y j + kay jϕ

−1)(∂yi + kaγ yiϕ
−1)v]Lv dy dµ dν = I + II,

where

I =−1
2

∫
�+ε

µνhi j (∂y jv+ kaγ y jϕ
−1v)[(∂yi − kaγ yiϕ

−1)Lv] dy dµ dν

−
1
2

∫
�+ε

µνhi j (∂yiv+ kaγ yiϕ
−1v)[(∂y j − kaγ y jϕ

−1)Lv] dy dµ dν,

II =−
∫
�+ε

[∂yi (µνhi j )](∂y jv+ kaγ y jϕ
−1v)Lv dy dµ dν.

We can bound II from below by using that

∂yi (µνhi j )(∂y jv+ kaγ y jϕ
−1v)Lv ≥−M(µν)3/4|∂y jv+ kaγ y jϕ

−1v| (µν)1/4|Lv|

≥ −M
(
(µν)3/2|∇yv|

2
+ k2a2γ 2(µν)3/2|y|2ϕ−2v2

+ (µν)1/2|Lv|2
)
.

Hence,

II ≥−M
(
‖(µν)3/4∇yv‖

2
+ γ 2k2a2

‖(µν)3/4|y|ϕ−1v‖2+‖(µν)1/4Lv‖2
)
. (3-36)

Using that

(∂yi − kaγ yiϕ
−1)Lv = L(∂yi − kaγ yiϕ

−1)v− aγ y jϕ
−1Lv− 2kaγ 2 yiϕ

−3v,
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we write I = I1+ I2, where

I1 =−
1
2

∫
�+ε

µνhi j (∂y jv+ kaγ y jϕ
−1v)[L(∂yiv− kaγ yiϕ

−1v)] dy dµ dν

−
1
2

∫
�+ε

µνhi j (∂yiv+ kaγ yiϕ
−1v)[L(∂y jv− kaγ y jϕ

−1v)] dy dµ dν

I2 = a
∫
�+ε

µνhi j (∂y jv+ kaγ y jϕ
−1v)(γ yiϕ

−1Lv+ 2kγ 2 yiϕ
−3v) dy dµ dν.

(3-37)

To bound the term I2 from below, we write

µνhi j (∂y jv+ kaγ y jϕ
−1v)(γ yiϕ

−1Lv+ 2kγ 2 yiϕ
−3v)

≥ −M |y|1/2µνϕ−1(|∂yiv| + kaγ |y|ϕ−1
|v|)|y|1/2(γ |Lv| + kaγ 2ϕ−2

|v|)

≥−M
(
|y|(µν)2ϕ−2

|∇yv|
2
+ γ 2
|y|(Lv)2+ k2a2γ 2

|y|3(µν)2ϕ−4
|v|2+ k2a2γ 4

|y|ϕ−4
|v|2

)
.

Therefore,

I2 ≥−Ma
(
‖|y|1/2µνϕ−1

∇yv‖
2
+ γ 2
‖|y|1/2Lv‖2+ k2a2γ 2

‖|y|3/2µνϕ−2v‖2+ k2a2γ 4
‖|y|1/2ϕ−2v‖2

)
(3-38)

Next we consider the term I1. Since L= ϕ−1(∂µ+ ∂ν), integrating by parts in µ and ν we conclude
that the term I1 satisfies

I1 =−
1
2

∫
�+ε

µνhi j L
[
(∂y jv+ kaγ y jϕ

−1v)(∂yiv− kaγ yiϕ
−1v)

]
dy dµ dν

=−
1
2

∫
�+ε

(γ ∂µ+ ∂ν)
[
(µνϕ−1hi j )(∂y jv+ kaγ y jϕ

−1v)(∂yiv− kaγ yiϕ
−1v)

]
dy dµ dν

+
1
2

∫
�+ε

[
(γ ∂µ+ ∂ν)(µνϕ

−1hi j )
]
(∂y jv+ kaγ y jϕ

−1v)(∂yiv− kaγ yiϕ
−1v) dy dµ dν

=−
1
2

∫
61,ε

µνϕ−1hi j ((∂yi + kaγ y jϕ
−1)v)((∂y j − kaγ y jϕ

−1)v) dµ dy

−
γ

2

∫
62,ε

µνϕ−1hi j ((∂yi + kaγ y jϕ
−1)v)((∂y j − kaγ y jϕ

−1)v) dν dy

+
1
2

∫
�+ε

[
(γ ∂µ+ ∂ν)(µνϕ

−1hi j )
]
(∂y jv+ kaγ y jϕ

−1v)(∂yiv− kaγ yiϕ
−1v) dy dµ dν.

Notice that

(γ ∂µ+ ∂ν)(µνhi j (µν, y)ϕ−1)=
[
(γ ν+µ)ϕ−1

− 2γµνϕ−2]hi j
+ (µ+ γ ν)µνϕ−1(∂x hi j )

= ϕ−2[((µ+ γ ν)(µ+ γ ν+ 1
2aγ |y|2

)
− 2γµν

)
hi j (µν, y)

+µν(µ+ γ ν)
(
µ+ γ ν+ 1

2aγ |y|2
)
(∂x hi j )(µν, y)

]
= ϕ−2[(µ2

+ γ 2ν2
+

1
2aγ (µ+ γ ν)|y|2

)
hi j (µν, y)

+µν(µ+ γ ν)
(
µ+ γ ν+ 1

2aγ |y|2
)
(∂x hi j )(µν, y)

]
. (3-39)
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Hence,

|(γ ∂µ+ ∂ν)(µνhi j (µν, y)ϕ−1)| ≤ Mϕ−1(µ+ γ ν). (3-40)

On the other hand, since hi j is positive definite, we know that there exists M > 0 such that

hi j Wi W j ≥ M |W |2, W ∈ Rn, (3-41)

We conclude from (3-39), (3-40), (3-41) and the symmetry of hi j that, for ε small enough, there exists
M such that

[(∂µ+ ∂ν)(µνhi jϕ−1)](∂y jv+ kaγ y jϕ
−1v)(∂y jv− kaγ y jϕ

−1v)

= [(∂µ+ ∂ν)(µνhi jϕ−1)](∂yiv∂y jv− k2a2γ 2 yi y jϕ
−2v2)

≥ M(µ+ γ ν)ϕ−1
|∇yv|

2
−Mk2a2(µ+ γ ν)γ 2

|y|2ϕ−3
|v|2. (3-42)

Hence, for ε small enough,

I1 ≥ M‖ϕ−1/2(µ+ γ ν)1/2∇yv‖
2
−Mk2a2γ 2

‖|y|(µ+ γ ν)1/2ϕ−3/2v‖2

−M
∫
61,ε

µν(ϕ−1
|∇yv|

2
+ k2a2ϕ−3

|y|2v2) dµ dy

−M
∫
62,ε

µν(ϕ−1
|∇yv|

2
+ k2a2ϕ−3

|y|2v2) dν dy. (3-43)

We write the last term of 〈Qkv,Lv〉 as

〈µνB j (∂y j + kaγ y jϕ
−1)v+Cv,Lv〉

= 〈µνϕ−1/2B j (∂y j + kaγ y jϕ
−1)v+ϕ−1/2Cv, ϕ1/2Lv〉

≥ −‖ϕ1/2Lv‖2−‖Cϕ−1/2v‖2−Mk2a2γ 2
‖|y|µνϕ−3/2v‖2−M‖(µν)ϕ−1/2

∇yv‖
2, (3-44)

Therefore, provided ε0 is small enough, we deduce from equations (3-35), (3-36), (3-38), (3-43) and
(3-44) that

k2
‖Lv‖2+ 2k〈Qkv,Lv〉 +Mk

∫
61,ε

(µνϕ−1
|∇yv|

2
+ k2ϕ−3v2) dµ dy

+Mk
∫
62,ε

(µνϕ−1
|∇yv|

2
+ k2ϕ−3v2) dν dy

≥
1
2 kγ 2
‖ϕ−1∂µv‖

2
+

1
16 k‖ϕ−1∂νv‖

2
+

∫
�+ε

(k2
− k M F1(µ, ν, y))|Lv|2 dµ dν dy

+ k
∫
�+ε

|∇yv|
2(M1(µ+ γ ν)ϕ

−1
−M F2(µ, ν, y)) dµ dν dy

+ k
∫
�+ε

k2γ 4ϕ−4v2( 3
8 −M F3(µ, ν, y)

)
dµ dν dy− k

∫
�+ε

|C |ϕ−1v2 dµ dν dy, (3-45)
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where

F1(µ, ν, y)= (µν)1/2+ γ 2
|y| +ϕ,

F2(µ, ν, y)= (µν)3/2+ |y|(µν)2ϕ−2
+ (µν)2ϕ−1,

F3(µ, ν, y)= (µν)3/2|y|2ϕ2
+ |y|3(µν)2+ γ 2

|y| + |y|2(µ+ γ ν)ϕ+ |y|2(µν)2ϕ.

The term involving C is the most problematic. Recall that ϕ = µ+ γ ν+ 1
2aγ |y|2 and, since |µ| ≤ ε,

|y| ≤ ε and ν ≤ ν0, it follows that ϕ ≤ ε+ γ ν0+
1
2aγ ε2. Therefore, if C0 = sup�ε |C |,

3
8 k2γ 2ϕ−4

− |C |2ϕ−1
≥ ϕ−4( 3

8 k2γ 2
−C2

0ϕ
3)
≥ ϕ−4( 3

8 k2γ 2
− 9C2

0
(
ε3
+ γ 3ν3

0 +
1
8aγ 3ε6)).

If one picks γ such that 9γC2
0ν

3
0 <

3
256 , then

3
8 k2
− 9γC2

0ν
3
0 ≥

3
16 k2 for all k ≥ 1

4 ,

and therefore

3
8 k2γ 2ϕ−4

− |C |2ϕ−1
≥ ϕ−4( 3

16 k2γ 2
− 9C2

0
(
ε3
+

1
8aγ 3ε6)) for all k ≥ 1

4 .

Notice also that µ≤ ϕ, and hence the coefficient of |∇v|2 in (3-45) satisfies

M1(µ+ γ ν)ϕ
−1
−M((µν)3/2+ |y|(µν)2ϕ−2

+ (µν)2ϕ−1)

≥ ϕ−1(M1(µ+ γ ν)−M |((µν)3/2ϕ+ |y|µν2
+ (µν)2)

)
≥

1
2 M1(µ+ γ ν)ϕ

−1 for ε0 small enough.

One can then pick ε0, such that for every ε ∈ (0, ε0),

k2
‖Lv‖2+ 2k〈Qkv,Lv〉 +Mk

∫
61,ε

(µνϕ−1
|∇yv|

2
+ k2ϕ−3v2) dµ dy

+Mk
∫
62,ε

(µνϕ−1
|∇yv|

2
+ k2ϕ−3v2) dν dy

≥ M
(
k‖(µ+ γ ν)1/2ϕ−1/2

∇yv‖
2
+ k2
‖Lv‖2+ k‖ϕ−1∂µv‖

2
+ k‖ϕ−1∂νv‖

2
+ k3γ 2

‖ϕ−2v‖2
)
,

This ends the proof of Lemma 3.6. �

Next we want to use (3-31) to prove Lemma 3.5. Let χ ∈ C∞0
(
{|y| < ε/4}

)
, χ = 1 on {|y| ≤ ε/8}.

Let V (µ, ν, y)= χ(y)W̃ (µ, ν, y). We choose ψ(y) to be a C∞0 function supported in {|y|< ε/4} with∫
ψ(y) dy = 1, and define ψδ(y)= (δ)−nψ(y/δ), δ > 0. Then, for δ small enough,

Vδ = ψδ ∗′ V ∈ C∞0 (�2ε) is supported in
{
µ≥ 0, ν ≥ 0, |y| ≤ 1

2ε
}
.

where ∗′ denotes convolution in the y variable. To see that, let ζ(µ, ν) ∈ C∞0 ; then the Fourier trans-
form ζ̂V δ satisfies

ζ̂V δ(ξ1, ξ2, η)= ψ̂(δη)(ζ̂V )(ξ1, ξ2, η),

which in view of (3-30) is rapidly decaying in any conic neighborhood of a point (ξ10, ξ20, η0) 6= 0. Hence
Vδ ∈ C∞, and (3-31) holds for Vδ. Now we would like to take the limit of (3-31) for Vδ as δ→ 0.
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Notice that ϕ ≥ ε on 62,ε and ϕ ≥ γ ν0 on 61ε and, in view of (3-17),∫
61,ε

[µν|∇yϕ
−k W̃ |2+ k2

|ϕ−2−k W̃ |2] dµ dy < M(γ ν0)
−k,∫

62,ε

[µν|∇yϕ
−k W̃ |2+ k2

|ϕ−2−k W̃ |2] dν dy < Mε−k,

(3-46)

and these terms in (3-31) do not offer any problem when passing to the limit.
One cannot use (3-31) with a = 0 to prove Lemma 3.5, however we will use it here to show that

(µ+ γ ν)−k
∇V, (µ+ γ ν)−k−1∂νV, (µ+ γ ν)−k−1∂µV,

(µ+ γ ν)−k−2V ∈ L2(�ε) with k ≥ 1
4 . (3-47)

For now, we take a= 0 and ϕ=µ+γ ν. We know from (3-17) that W̃ , [µν(µ+γ ν)]1/2∇y W̃ ∈ L2(�ε).
Since µγ ν ≤ 1

2(µ+ γ ν)
2, it follows that γ (µ+ γ ν)−1(µν)2 ≤ (µ+ γ ν)µν, and hence one can apply

Friedrich’s lemma — see, for example, Lemma 17.1.5 of [Hörmander 1994a] — to show that

lim
δ→0

∥∥(µ+ γ ν)−1/4µν[(hi j∂yi ∂y j +B j∂y j )ψδ ∗
′ V −ψδ ∗′ (hi j∂yi ∂y j +B j∂y j V )]

∥∥= 0 (3-48)

We also know from (3-17) that, for fixed T > 0, µ1/2∂µW̃ (µ, T, y) ∈ L2([0, T ]× ∂X). Hence the same
holds for V and for Vδ for all δ > 0. One can easily show that

µ(∂µVδ)2 ≥ 1
4µ
−1(logµ)−2V 2

δ − ∂µ((− logµ)−1V 2
δ ).

Since Vδ vanishes to infinite order at µ= 0, if we integrate the above on
[
0, 1

2ε
]
× ∂X we obtain∫

∂X

(
log 2

ε

)−1
Vδ
( 1

2ε, T, y
)

dy+
∫ T

0

∫
∂X
µ(∂µVδ)2 dy dµ≥

∫ T

0

∫
∂X
µ−1(logµ)−2V 2

δ dy dµ. (3-49)

Since, in view of (3-17), the left-hand side is finite for V , if one applies (3-49) to Vδ − Vδ′ it follows that
Vδ is a Cauchy sequence in the norm given by the right-hand side of (3-49). So it converges and, since Vδ
converges weakly to V , we conclude that µ−1/2

|logµ|−1V ∈ L2(�ε), and in particular

(µ+ ν)−1/4V ∈ L2(�ε). (3-50)

Since Q̃ is given by (3-19), it follows from (3-48) and (3-50) that

lim
δ→0

∥∥(µ+ ν)−1/4(Q̃(ψδ ∗′ V )−ψδ ∗′ (Q̃V ))
∥∥= 0. (3-51)

Since Q̃W̃ = 0, it follows that

Q̃V = Q̃(χ(y)W̃ )= µνhi j (W̃∂yi ∂y jχ + 2∂yiχ∂y j W̃ )+µν(B j∂y jχ)W̃ .

So we conclude that, in view of (3-17), (µ+ ν)−1/4 Q̃V ∈ L2(�ε) and hence

lim
δ→0
‖(µ+ γ ν)−k Q̃Vδ‖L2(�ε) = ‖(µ+ γ ν)

−k Q̃V ‖<∞, k = 1
4 . (3-52)
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Therefore (3-31), with a = 0 and k = 1
4 , holds for V in place of Vδ, and in particular we conclude that

(3-47) holds for k = 1
4 (notice that in this case (µ+ γ ν)ϕ−1

= 1). We then apply the argument used
above to show that (3-31) holds for k = 1

4 + 1, and hence (3-47) holds for k = 1
4 + 1, and by induction

and interpolation, this shows that (3-47) holds for all k ≥ 1
4 .

Now we use the same argument with ϕ = ϕ1 = µ+ γ ν+
1
2γ |y|

2. Notice that in this case ϕ ≥ µ+ γ ν
and we have from (3-47) that

ϕ−k
∇y V, ϕ−k−1∂νV, ϕ−k−1∂µV, ϕ−k−2V ∈ L2(�ε), k ≥ 1

4 . (3-53)

Since ϕ depends on y, it is not clear how to apply Friedrich’s lemma in the bootstrapping argument above
to prove (3-53), as one would have to analyze the commutator of the convolution and the weight, which
is of course singular. But, given (3-53), Friedrich’s lemma can be easily applied and we conclude that
(3-31) holds for V and ϕ = ϕ1. In particular we conclude from (3-46) that, for ε small enough,

Mk3ε−k
+C‖ϕ−k Q̃χ(y)W̃‖2 ≥ k3

‖ϕ−2−kχ(y)W̃‖2. (3-54)

Now we really use the power of (3-31) with a = 1: since Q̃W̃ = 0, and χ = 1 for |y| ≤ 1
8ε,

Q̃(χ(y)W̃ ) = [Q̃, χ(y)]W̃ is supported in |y| ≥ 1
8ε, and hence ϕ ≥ λε2 on the support of Q̃V , where

λ= 1
128γ . We deduce from (3-54) that, for ε small enough, there exists C = C(W̃ ) > 0 such that

C(λε2)−2k
≥ ‖ϕ−2−kχ(y)W̃‖2.

Hence, ∥∥∥∥( ϕ

λε2

)−k

χ(y)W̃
∥∥∥∥≤ C, k > 1,

and therefore W̃ (µ, ν, y) = 0 if ϕ ≤ λε2, and in particular W̃ = 0 if 0 ≤ µ ≤ 1
3λε

2, 0 ≤ γ ν ≤ 1
3λε

2

and γ |y|2 ≤ 1
3λε

2. This ends the proof of Lemma 3.5, and consequently the proof of Proposition 3.2. �

Notice that since ν0 ∈ (0, es0/2) is arbitrary, this result also establishes regularity for W̃ , and in particular
it shows that W̃ ∈ H 1

loc.

Proof of Proposition 3.3. We will use Hörmander’s unique continuation theorem, and we will find a
function whose level surfaces are strictly pseudoconvex. The key point here is that the coefficients of
the operator P defined in (3-2) do not depend on s, and hence P is invariant under translations in the
variable s. Let

ϕ(x, s, y)=−x − κ(s− s1)− |y− p|2, where κ > 0 small will be chosen later.

Since, for |y− p| < δ, V = 0 if x ∈ (−ε, 0] and s < s0, or if x < δ and log x < s < s1, we have — see
Figure 6 —

V (x, s, y)= 0 if ϕ > 0, −ε < x < δ, and |y− p|< δ. (3-55)

The principal symbol of the operator P is

p =−2σξ − xξ 2
− xh(x, y, η), (3-56)
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where (ξ, σ, η) are the dual variables to (x, s, y). Since ∇ϕ(x, s, y)= (−1,−κ,−2(y− p)), we have

p(x, s, y,∇ϕ(x, s, y))=−2κ − x
(
1+ h(x, y, 2(y− p))

)
. (3-57)

If |y − p| < β is small enough and x > −κ , then x
(
1 + h(x, y, 2(y − p))

)
> − 3

2κ , and hence
p(x, s, y,∇ϕ) <−1

2κ . Therefore ϕ is not characteristic at (x, s, y) if x >−κ and |y− p|< β, for small
enough β.

The Hamilton vector field of p is

Hp =−2ξ∂s − 2(σ + xξ)∂x − x Hh + (ξ
2
+ h+ x∂x h)∂ξ , (3-58)

where Hh denotes the Hamilton vector field of h(x, y, η) in the variables (y, η). Hence,

(Hpϕ)(x, s, y, ξ, σ, η)= 2(σ + xξ)+ 2κξ + x Hh|y− p|2 and

(H 2
pϕ)(x, s, y, ξ, σ, η)

=−2(σ + xξ)(2ξ + Hh|y− p|2+ x∂x Hh|y− p|2)− (x Hh)
2
|y− p|2+ 2(κ + x)(ξ 2

+ h+ x∂x h).

If Hpϕ = 0, it follows that

H 2
pϕ(x, s, y, ξ, σ, η)= 2(x + 3κ)ξ 2

+ 2ξ((x + κ)Hh|y− p|2+ κx∂x Hh|y− p|2)+ 2(κ + x)(h+ x∂x h)

+ x((Hh|y− p|2)2+ x Hh|y− p|2∂x Hh|y− p|2− x H 2
h |y− p|2).

If |y− p|< β is small enough, there exists C > 0 depending on h only such that

|Hp|y− p|2| ≤ Cβ|η| and |∂x Hp|y− p|2| ≤ Cβ|η|.

If we impose that−1
2κ < x<β, it follows that there exists ε0>0 depending on h such that, if β, κ ∈ (0, ε0)

are small, then there exists C > 0 such that

h+ x∂x h ≥ C |η|2,

and hence

H 2
pϕ(x, s, p, ξ, σ, η)≥ κC(ξ 2

−β|ξ ||η| + |η|2)

≥ Cκ(ξ 2
+ |η|2) if − 1

2κ < x < β, |y− p|< β and κ, δ ∈ (0, ε0).

So we conclude that there exists ε0 > 0 depending on h such that

p(x, s, y, ξ, σ, η)= Hpϕ(x, s, y, ξ, σ, η)= 0 H⇒ H 2
pϕ(x, s, y, ξ, σ, η) > 0

if (ξ, σ, η) 6= 0, −1
2κ < x < β, |y− p|< β, κ, β ∈ (0, ε0). (3-59)

Since P is of second order, we deduce from (3-57) and (3-59) that the level surfaces of ϕ are strictly
pseudoconvex in the region

−
1
2κ < x < β, |y− p|< β provided κ, β ∈ (0, ε0); (3-60)
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see for example the first paragraph of Section 28.4 of [Hörmander 1994b]. As mentioned above, the fact
that the coefficients of P do not depend on s imply that the conditions in (3-60) do not depend on s. Now
we appeal to Theorem 28.2.3 and Proposition 28.3.3 of [Hörmander 1994b] and conclude that, if

Y =
{
−

1
4κ < x < 1

2β, |y− p|< 1
√

2
β, |s− s1|< s0− s1

}
,

then there exist C > 0, τ0 > 0 and λ > 0 large such that, if ψ = eλϕ ,

C‖eτψ Pv‖2 ≥ τ 2
‖eτψv‖2+ τ‖eτψv‖2H1 for all v ∈ C∞0 (Y ) and τ ≥ τ0 > 0. (3-61)

Let θ ∈ C∞0 (Y ) with θ = 1 if − 1
8κ < x < 1

4β, |y− p|< 1
2β and |s− s1|<

3
4(s0− s1). Since PV = 0, it

follows that
P(θV )= [P, θ]V .

But, for (x, s, y) ∈ Y , V (x, s, y) is supported in the region x > 0, s > s1, so we conclude that

P(θ(x, s, y)V ) is supported in (x, s, y) ∈ Y, x ≥ 1
4β, or s− s1 ≥

3
4(s0− s1), or |y− p| ≥ 1

2β.

Therefore, by the definition of ϕ we have

ϕ(x, s, y)≤−min
{1

4β,
1
4 3κ(s0− s1),

1
4β

2} on the support of P(θV ). (3-62)

Pick κ small so that min
{1

4β,
3
4κ(s0− s1),

1
4β

2
}
=

3
4κ(s0− s1)= γ . We deduce from (3-61) and (3-62)

that
τ 2
‖eτ(e

λϕ
−e−λγ )θV ‖2 ≤ C, τ > τ0.

We remark that, due to Friedrich’s lemma, one can apply (3-61) to θV even though V is not C∞; see
[Hörmander 1994b]. Therefore, θV = 0 if eλϕ − e−λγ > 0, so θV = 0 if ϕ >−γ . So we deduce that

θV (x, s, y)= 0 provided κ(s− s1) <
1
3γ, 0< x < 1

3γ |y− p|2 < 1
3γ.

In particular,

V (x, s, y)= 0 provided s < s1+
1
4(s0− s1), 0< x < 1

3γ, |y− p|2 < 1
3γ. (3-63)

This concludes the proof of Proposition 3.3. �

Proof of Proposition 3.4. The key point in the proof is the following consequence of Tataru’s theorem
[1995; 1999]; see also [Hörmander 1997; Robbiano and Zuily 1998]. Let � be a C∞ manifold equipped
with a C∞ Riemannian metric g. Let L be a first-order C∞ operator that does not depend on t . If u(t, z)
is a C∞ function that satisfies

(D2
t −1g + L(z, Dz))u = 0 in (−T̃ , T̃ )×�,

u(t, z)= 0 in a neighborhood of {z0}× (−T, T ), T < T̃ ,

then
u(t, z)= 0 if |t | + dg(z, z0) < T, (3-64)

where dg is the distance measured with respect to the metric g.
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Since the initial data of (2-1) is (0, f ), u(t, z)=−u(−t, z). If 0< x <γ , log x < s< s1, and |y− p|<δ,
it follows from the definition of V+ that

u(t, x, y)= 0 if 0< x < γ, |y− p|< δ and |t | ≤ s2− log x = log es2

x
.

Applying (3-64) with z0 = (x, y), we obtain

u(t, z)= 0 provided |t | + dg(z; (x, y)) < log es2

x
with 0< x < δ, |y− p|< δ.

If z = (α, y) with es∗ > α > x , dg((x, y); (α, y))= log(α/x), it follows from (3-64) that

u(t, (α, y))= 0 if t + log α
x
< log es2

x
.

In particular this guarantees that u(t, α, y)= 0 if 0< t < log(es2/α) and, since s = t + logα, we have
V+(α, s, y)= 0 if α < es∗ , log x < s < s2 and |y− p|< δ. This ends the proof of Proposition 3.4. �

Proof of Theorem 2.1. As promised at the beginning of the section, we shall now finish the proof
of Theorem 2.1. We start with (3-10), which says that V+(x, s, y) = x−n/2u(s − log x, x, y) satisfies
V+(x, s, y)= 0 if y ∈ 0, x < es∗ and log x < s < s < s0.

Now we recall that V+(x, s, y) = x−n/2u(s − log x, x, y) and so, if w = (α, p) with 0 < α < es∗

and p ∈ 0, then the solution u(t, z) vanishes in a neighborhood of {w} × (0, log(es0/α)). Again we
use that the data is of the form (0, f ), and hence u(−t, z) = −u(t, z). So in fact u(t, z) vanishes in a
neighborhood of {w}× (− log(es0/α), log(es0/α)). Therefore, by (3-64),

u(t, z)= ∂t u(t, z)= 0 if |t | + dg(z, w) < log es0

α
.

In particular, when t = 0 we find that ∂t u(0, z) = f (z) = 0 provided dg(z, w) < log(es0/α), and this
concludes the proof of Theorem 2.1. �

Final remarks. The following result will be useful in the next section:

Corollary 3.7. Let (X, g) be a connected AHM and let 0 ⊂ ∂X be open, 0 6= ∅. If f ∈ L2
ac(X) and

R+(0, f )(s, y)= 0 in R×0, then f = 0. Similarly, if (h, 0) ∈ Eac(X) and R+(h, 0)(s, y)= 0 in R×0,
then h = 0.

Proof. If R+(0, f )(s, y) = 0 in R× 0, then f (z) = 0 if z ∈ Ds0(0) for every s0. Since the distance
between any two points in the interior of X is finite, it follows that f = 0.

Suppose F =R+(h, 0)(s, y)= 0 in R×0. As in the proof of Proposition 3.2, by taking the convolution
of F with φ∈C∞0 (R), even, we may assume that (1g−n2/4)kh∈ L2

ac(X) for every k≥0. Let u(t, z) satisfy
(2-1) with initial data (h, 0) and let V = ∂t u. Then V satisfies (2-1) with initial data (0, (1g − n2/4)h)
and R+(0, (1g−n2/4)h)(s, y)= 0 in R×0. But, as we have shown, this implies that (1g−n2/4)h = 0.
Since (h, 0) ∈ Eac(X), this implies that h = 0. �

One should remark that this result can be proved by applying a result of Mazzeo [1991]; see also [Vasy
and Wunsch 2005]. The solution to (2-1) with initial data (0, f ) is odd and, since R+(0, f )(s, y)= 0
for s ∈ R, y ∈ 0, it follows that R−(0, f )(s, y)= 0 for s ∈ R, y ∈ 0. Taking the Fourier transform in t ,
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we find that (
1g − λ

2
−

1
4 n2)û(λ, z)= 0

and, using that R+(0, f )(s, y)=R−(0, f )(s, y)= 0, one deduces that û(λ, z) vanishes to infinite order
at 0, using a formal power series argument as in the proof of Proposition 3.4 of [Graham and Zworski
2003]. Theorem 14 of [Mazzeo 1991] implies that û = 0 and hence u = 0. In particular, f = 0.

4. The control space

As we saw in (3-13) and (3-14), the ranges of the forward and backward radiation fields

R±(0, L2
ac(X))= {R±(0, f ) : f ∈ L2

ac(X)}

are closed subspaces of L2(R×∂X) and are characterized by the scattering operator. Moreover, since R±
are unitary, ‖R±(0, f )‖L2(R×∂X) = ‖ f ‖L2(X). The main goal of this section is to show that the ranges
{R±(0, f )|R×0} are determined by the restriction of the scattering operator to 0, as defined in (2-13).
Throughout the remainder of the paper we shall write

L2(R×0)= {F |R×0 : F ∈ L2(R× ∂X)}.

The key observation is:

Lemma 4.1. If F =R+(h, f ) ∈ L2(R×0), then

‖ f ‖L2(X) =
〈
F, 1

2(F + S0F∗)
〉
,

and in particular ‖ f ‖L2(X) is determined by S0F.

Proof. If F(s, y)=R+(h, f ) ∈ L2(R×0), so in particular F is supported in R×0 then, according to
(3-12) and the fact that R+ is unitary,〈

F, 1
2(F +S0F∗)

〉
=
〈
F, 1

2(F + (SF∗)|R×0)
〉
=
〈
F, 1

2(F +SF∗)
〉

= 〈R+(h, f ),R+(0, f )〉 = ‖ f ‖2L2(X). �

This suggests that
Cn
+

(
R+(0, f )|R×0

)
= ‖ f ‖L2(X)

defines a norm on the space {R+(0, f )|R×0 : f ∈ L2
ac(X)}. We shall prove that it does and, moreover, the

norm is determined by S0.

Theorem 4.2. Let 0 ⊂ ∂X be a nonempty open subset such that ∂X \0 does not have empty interior. The
space

M(0)± = {R±(0, f )|R×0 : f ∈ L2
ac(X)},

equipped with norm Cn
±

defined by

Cn
±
(R±(0, f )|R×0)= ‖ f ‖L2(X), (4-1)

is a Hilbert space determined by S0.
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Proof. We shall work with the forward radiation field. The proof of the result for R− is identical. Since
R+ is linear, the triangle inequality for the L2(X)-norm implies that Cn

+
is a norm, and that〈

R+(0, f )|R×0,R+(0, h)|R×0
〉
Cn
+

= 〈 f, h〉L2(X)

is an inner product. Since R+ is continuous and L2
ac(X) is complete, it follows that (M(0)+,Cn

+
) is a

Hilbert space. We need to show that it is determined by S0 . We recall from (3-12) that if F =R+( f, h)
then

1
2(F +SF∗)|R×0 =R+(0, h)|R×0. (4-2)

So, if F ∈ L2(R×0), then F∗ ∈ L2(R×0) and hence (F +SF∗)|R×0 = F +S0F∗. We shall let

L : L2(R×0)→ L2(R×0)

F 7→ 1
2(F +S0F∗).

(4-3)

Since S is unitary, it follows that ‖L‖ ≤ 1. Since R+ is unitary, given F ∈ L2(R× 0) there exists
( f, h) ∈ Eac(X) such that R+( f, h)= F . We can say the following about such initial data:

Lemma 4.3. Let 0 ⊂ ∂X be a nonempty open subset such that ∂X \ 0 contains an open set O, and
let h ∈ L2

ac(X). Then there exists at most one f such that ( f, 0) ∈ Eac(X) and R+( f, h) is supported
in R×0. Moreover, the set

C(0)= {h ∈ L2
ac(X) : there exists ( f, 0) ∈ Eac(X) such that R+( f, h)(s, y)= 0, y ∈ ∂X \0}

is dense in L2
ac(X).

Proof. First, if R+( f1, h) and R+( f2, h) are supported in R×0, then R+( f1− f2, 0) is supported in
R×0, but this implies that R+( f1− f2, 0)= 0 in R×O, and so Corollary 3.7 implies that f1 = f2.

If v∈ L2
ac(X) is such that 〈v, h〉L2(X)=0 for all h∈C(0) then, since R+ is unitary, for all ( f, 0)∈Eac(X),

〈v, h〉L2(X) = 〈R+(0, v),R+( f, h)〉L2(R×∂X)

Since h ∈ C(0) is arbitrary, it follows that

〈R+(0, v), F〉L2(R×∂X) = 0 for all F ∈ L2(R×0).

Hence R+(0, v)= 0 on R×0 and, by Corollary 3.7, v = 0. �

Lemma 4.4. If 0⊂ ∂X is open, nonempty and ∂X \0 contains an open subset, then the map L is injective
and has dense range.

Proof. If F =R+( f, h) ∈ L2(R×0), then LF =R+(0, h)|R×0 . If LF = 0 then R+(0, h)= 0 on R×0.
It follows from Corollary 3.7 that h = 0, and hence F = R( f, 0). Since there exists an open subset
O ⊂ (∂X \0), and F is supported in R×0, it follows that F = R+( f, 0) = 0 in R× O, and again by
Corollary 3.7, f = 0 and so F = 0.



544 RAPHAEL HORA AND ANTÔNIO SÁ BARRETO

Now we prove that its range is dense. Let H ∈ L2(R×0) be orthogonal to the range of L. Suppose
that H =R+(h1, h2), with (h1, h2) ∈ Eac(X). Then for every F =R+( f, h) ∈ L2(R×0), h ∈ C(0),

0= 〈H, (F +SF∗)|R×0〉L2(R×0) = 〈H, F +SF∗〉L2(R×0) = 〈H,R+(0, h)〉L2(R×∂X)

= 〈R+(h1, h2),R+(0, h)〉L2(R×∂X)

= 〈h2, h〉L2(X).

Since C(0) is dense in L2
ac(X), h2 = 0. Hence H =R+(h1, 0)= 0 on R×O, and so H = 0. �

We shall let

F+(0)= L(L2(R×0))= {R+(0, f )|R×0 : f ∈ C(0)}, (4-4)

and equip F+(0) with the norm given by Lemma 4.1,

Cn
+
(R+(0, f ))= ‖ f ‖L2(X).

Thus (F+(0),Cn
+
) is a normed vector space and, since C(0) is dense in L2(X), F+(0) is dense in

(M+(0),Cn
+
). Hence (M+(0),Cn

+
) is the completion of (F+(0),Cn

+
) into a Hilbert space, and therefore

it is determined by S0 . Notice that the completion of F+(0) with the L2(R×0)-norm is L2(R×0). But

‖R+(0, h)|(R×0)‖L2(R×0) ≤ ‖h‖L2(X),

so Cn
+

is a stronger norm and (M+(0),Cn
+
) is a smaller space. This ends the proof of Theorem 4.2. �

5. Proof of Theorem 2.3

The operators S j,0 , j = 1, 2 were defined in terms of boundary-defining functions for which (2-14) holds
for both g1 and g2 in U j ∼ [0, ε)× ∂X j . In particular,

9∗j g j =
dx2

x2 +
h j (x)

x2 on (0, ε)×0, h1(0)= h2(0)= h0 on 0. (5-1)

Our first step will be to prove that there exists ε > 0 such that the tensors h1(x) and h2(x) are equal
on [0, ε)×0. Once this is done, if 9 j : [0, ε)× ∂X j → U j , j = 1, 2, are the maps that satisfy (2-14),
and if W1,ε =91([0, ε)×0), W2,ε =92,ε([0, ε)×0), then

9∗1 (g1|W1,ε)=9
∗

2 (g2|W2,ε) on [0, ε)×0. (5-2)

Since 9 j = Id on 0, j = 1, 2, this implies that

9ε =92 ◦9
−1
1 :W1,ε 7→W2,ε, (92 ◦91)

−1g2 = g1, 9ε = Id on 0 (5-3)

gives an isometry between neighborhoods of 0.
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The local diffeomorphism. We will prove that, if h j (x) are such that (5-1) holds, then h1(x) = h2(x)
on [0, ε)×0, and hence this gives the map 9ε defined in (5-3). Our first step in this construction will be:

Proposition 5.1. Let (X1, g1), (X2, g2) and 0 satisfy the hypotheses of Theorem 2.3, and denote by
R j,±(s, y, x ′, y′) the Schwartz kernels of R j,± acting on (0, f ). Then there exists ε > 0 such that (2-14)
holds on [0, ε)× ∂X j , j = 1, 2, and

h1(x, y, dy)= h2(x, y, dy) if x ∈ [0, ε), y ∈ 0,

R1,±(s, y, x ′, y′)=R2,±(s, y, x ′, y′) if y, y′ ∈ 0, x ′ < ε.
(5-4)

Proof. The proof of Proposition 5.1 is an adaptation of the boundary control method of [Belishev 1987;
Belishev and Kurylev 1992] to this setting. By working on an open subset of 0 if necessary, we may
assume that ∂X \0 does not have empty interior. As in [Sá Barreto 2005], pick x1 < ε and consider the
spaces

M+x1
(0)= {F ∈M+(0) : F(s, y)= 0, s ≤ log x1},

M−x1
(0)= {F ∈M−(0) : F(s, y)= 0, s ≥− log x1},

and let
P+x1
:M+(0)→M+x1

(0) and P−x1
:M−(0)→M−x1

(0) (5-5)

denote the respective orthogonal projections with respect to the norms Cn
±

defined in (4-1). Since
M±(0) and M±x1

(0) are determined by S0, the projections P±x1
are also determined by S0. Notice that

(P+x1
F)(s, y) is not necessarily equal to H(s − log x1)F(s, y), where H is the Heaviside function, as

H(s− log x1)F(s, y) may not be in M+(0).
In view of finite speed of propagation and Theorem 2.1,

M+x1
(0)= {R+(0, h)|R×0 : h ∈ L2

ac(X), h(z)= 0, z ∈ Dlog x1(0)},

M−x1
(0)= {R−(0, h)|R×0 : h ∈ L2

ac(X), h(z)= 0, z ∈ Dlog x1(0)}.

As in [Sá Barreto 2005], the key to proving Proposition 5.1 is to understand the effect of the projec-
tors P±x1

on the initial data. First we deal with the case where 1g j , j = 1, 2, have no eigenvalues. In this
case, L2(X j )= L2

ac(X j ).

Lemma 5.2. Let (X, g) be an asymptotic hyperbolic manifold such that 1g has no eigenvalues. Let x be
such that (2-4) holds in (0, ε)×∂X. For x1∈ (0, ε), let P+x1

denote the orthogonal projector defined in (5-5).
Let χx1 be the characteristic function of the set Xx1 = X \Dlog x1(0). Then, for every f ∈ L2

ac(X)= L2(X),

P+x1
(R+(0, f )|R×0)=R+(0, χx1 f )|R×0.

Proof. Since P+x1
is a projector, there exists fx1 ∈ L2(X) such that

P+x1
(R+(0, f )|R×0)=R+(0, fx1)|R×0

and, for every h ∈ L2(X) supported in Xx1 ,〈
R+(0, fx1)|R×0,R+(0, h)|R×0

〉
Cn
+

= 〈 fx1, h〉L2(X) = 〈 f, h〉L2(X).
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Hence fx1 = χx1 f . �

Next we will analyze the singularities R+(0, χx1 f ) at {s= log x1} and, as in the proof of Proposition 3.2,
we may assume that f is C∞. In the case where 0=∂X , χx1 is the characteristic function of the set {x≥ x1}

and the singularities of R+(0, χx1 f ) can be computed using the plane wave expansion of the solution to
the Cauchy problem

PV = 0, V |s=log x = 0 and ∂s V |s=log x = f (x, y)χx1, (5-6)

where P is the operator defined in (3-2). In this case, one just writes

V (x, s, y)= V+(x, s, y)+ V−(x, s, y), where

V+(x, s, y)∼
∞∑
j=1

v+j (x, y)(s− log x1)
j
+ and V−(x, s, y)∼

∞∑
j=1

v−j (x, y)(2 log x − x1− s) j
+,

where s = log x1 and s = 2 log x+ log x1 correspond to the forward and backward waves emanating from
{x = x1, s = log x}. One then computes the coefficients of the expansion by using a series of transport
equations. The wave V−(x, s, y) goes towards the interior and will hit {x = 0} for s > log x1, but the
wave V+(x, s, y) will intersect {x = 0} at s = log x1. The first coefficient in the expansion of V+(x, s, y)
is given by v+1 (x, y)= 1

2(|h|
1/4(x1, y)/|h|1/4(x, y))x−n/2−1

1 f (x1, y). Since (3-16) is well defined for L2
ac

initial data, R+(0, χx1 f )= ∂s V (x, s, y)|{x=0}, and hence near {s = log x1} one has an expansion

R+(0, χx1 f )∼ 1
2
|h|1/4(x1, y)
|h|1/4(0, y)

x−n/2−1
1 f (x1, y)(s− log x1)

0
+
+

∞∑
j=1

v j (0, y)+(s− log x1)
j
+. (5-7)

We refer the reader to the proof of Lemma 8.9 of [Sá Barreto 2005] for details.
In the case studied here, when 0 6= ∂X , this is not so clear since χx1 is the characteristic function of

Xx1 = X \Dlog x1(0), which is a more complicated set. However, if x1 is small enough, the boundary of Xx1

contains 0x1 = {(x1, y) : y ∈0}. We will show that the singularities of R+(0, χx1 f ) at {s = log x1, y ∈0}
can be computed as in the previous case. The singularities of χx1 f lie on the set

∂Dlog x1 = {z ∈ X̊ : there exists (x̄, ȳ) ∈Uε such that dg(z, (x̄, ȳ))= log x1− log x̄}

Since X̊ is complete, there exists a geodesic γ joining z ∈ ∂Dlog x1 and (x̄, ȳ) such that

γ (0)= z, γ (t̄)= (x̄, ȳ) and t̄ = dg(z, (x̄, ȳ)).

One can think of this in terms of the wave equation with γ being the projection of a null bicharacteristic
of p = 1

2(τ
2
− x2ξ 2

− x2h(x, y, η)) in {p = 0, τ = 1} starting at z and going to (x̄, ȳ). If one then sets
s = t + log x it follows that, along this bicharacteristic, s = t + log x(γ (t)). Hence, at t̂ , s(t̄)= log x1. In
these coordinates (we are using ξ by abuse of notation but we should use ξ̃ , where ξ̃ = ξ − τ/x),

{p = 0, τ = 1} =
{

p = σξ + 1
2 xξ 2
+

1
2 xh(x, y, η)= 0, σ = 1

}
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and we have that, for 1+ xξ 6= 0,

ds
dx
=

ξ

1+ xξ
,

dξ
dx
=−

ξ 2
+ h+ x∂x h
2(1+ xξ)

,
dη
dx
=−

x∂yh
2(1+ xξ)

,
dy
dx
=−

x∂ηh
2(1+ xξ)

.

So, unless ξ = η = 0, ds/dx 6= 0. But, if ξ = η = 0 at a point then, by uniqueness, ξ = η = 0 along
the curve. In the latter case s = log x1, y = ȳ ∈ 0 along the curve. If ξ 6= 0, the geodesic will reach
{x = 0} for s 6= log x1. So we conclude that (5-7) holds for y ∈ 01, where 01 is a compact subset of 0.
The precise propagation of singularities is given by:

Lemma 5.3. Let x be a defining function of ∂X such that (2-4) holds. Let M+(0) 3 F =R+(0, f )|R×0
with f smooth. Let2(x1, s, y)= 1

2 x−n/2−1
1 f (x1, y)(|h|1/4(x1, y)/|h|1/4(0, y))(s− log x1)

0
+

. There exists
ε > 0 such that, for any x1 ∈ (0, ε),

P+x1
F(s, y)−2(x1, s, y) ∈ H 1

loc(R×0). (5-8)

Since P+x1
and M+(0) are determined by S0 in view of (5-8), 2(x1, s, y) is determined by S0 provided

x1 ∈ (0, ε) and y ∈0. By assumption in Theorem 2.3, h0,1= h0,2 on 0. Therefore, |h1|(0, y)= |h2|(0, y),
y ∈ 0 and, since F =R+(0, f )|R×0 in Lemma 5.3, we obtain the following result:

Corollary 5.4. Let (X1, g1) and (X2, g2) be asymptotically hyperbolic manifolds satisfying the hypothesis
of Theorem 2.3. Moreover, assume that 1g j , j = 1, 2, have no eigenvalues. Let R j,±, j = 1, 2, denote the
corresponding forward or backward radiation fields defined in coordinates in which (2-4) holds. Then
there exists an ε > 0 such that, for (x, y) ∈ [0, ε)×0,

|h1|
1/4(x, y)R−1

1,−F(x, y)= |h2|
1/4(x, y)R−1

2,−F(x, y) for all F ∈M−(0),

|h1|
1/4(x, y)R−1

1,+F(x, y)= |h2|
1/4(x, y)R−1

2,+F(x, y) for all F ∈M+(0).
(5-9)

Proposition 5.1 easily follows from this result. Indeed, since

R−1
j,−

(
∂2

∂s2 F
)
=
(
1g j −

1
4 n2)R−1

j,−F, (5-10)

if we apply Corollary 5.4 to ∂2
s F we obtain

|h1|
1/4(x, y)

(
1g1 −

1
4 n2)R−1

1,−F(x, y)= |h2|
1/4(x, y)

(
1g2 −

1
4 n2)R−1

2,−F(x, y). (5-11)

If R−1
1,−F = (0, f ), where F ∈M(0)− is arbitrary and the metrics have no eigenvalues, equations (5-9)

and (5-11) give

|h1|
1/4(x, y)

(
1g1 −

1
4 n2) f (x, y)= |h2|

1/4(x, y)
(
1g2 −

1
4 n2) |h1|

1/4(x, y)
|h2|1/4(x, y)

f (x, y) (5-12)

for all f ∈ C∞0 ((0, ε)× 0) ∩ L2
ac(X). Therefore the operators on both sides of (5-12) are equal. In

particular, the coefficients of the principal parts of 1g1 are equal to those of 1g2 , and hence the tensors
h1 and h2 from (2-4) are equal. This proves that

R−1
1,−(s, y, x ′, y′)=R−1

2,−(s, y, x ′, y′), y, y′ ∈ 0, x ′ ∈ [0, ε),

h1(x, y, dy)= h2(x, y, dy), y ∈ 0, x ∈ [0, ε),
(5-13)
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and of course the same holds for the forward radiation field. Since R± are unitary, R−1
± =R∗

±
, and hence

this determines the kernel of R±. This proves Proposition 5.1 in the case of no eigenvalues.
Now we remove the assumption that there are no eigenvalues. We need to show that, if S1,0 = S2,0,

then the eigenvalues of 1g1 and 1g2 are equal, and the eigenfunctions can be reordered in such a way
that their traces are equal on 0. In fact they agree to infinite order at 0. To show that, we need to appeal
to the stationary version of scattering theory, and we have to recall the relationship between the scattering
operator, the scattering matrix and the resolvent from [Sá Barreto 2005]. It was shown in [Joshi and
Sá Barreto 2000] that A(λ), defined in (2-10), continues meromorphically to C\D, where D is a discrete
set. The eigenvalues of 1g correspond to poles of A(λ) on the negative imaginary axis. Proposition 3.6
of [Graham and Zworski 2003] states that, if λ0 ∈ iR− is such that 1

4 n2
+λ2

0 is an eigenvalue of 1g, then
the scattering matrix A(λ) has a pole at λ0 and its residue is given by

Resλ0 A(λ)=
{
5λ0 if − iλ0 6∈

1
2 N,

5λ0 − Pl if − iλ0 =
1
2 l, l ∈ N,

(5-14)

where Pl is a differential operator whose coefficients depend on derivatives of the tensor h at ∂X , and the
Schwartz kernel of 5λ0 is

K (5λ0)(y, y′)=−2iλ0

N0∑
j=1

φ0
j ⊗φ

0
j (y, y′), (5-15)

where N0 is the multiplicity of the eigenvalue 1
4 n2
+ λ2

0, the φ j , 1 ≤ j ≤ N0, are the corresponding
orthonormalized eigenfunctions and φ0

j (y) is defined by

φ0
j (y)= x−n/2−λ0φ j (x, y)|x=0. (5-16)

Since A1,0 = A2,0, λ ∈ R \ 0, it follows from Theorem 1.2 of [Joshi and Sá Barreto 2000] that,
in coordinates where (2-14) is satisfied, all derivatives of h1 and h2 agree at x = 0 on 0. Therefore
the operators Pl, j in (5-14) corresponding to (X j , g j ) are the same in 0. Then (5-14), (5-15), and the
meromorphic continuation of the scattering matrix show that 1g1 and 1g2 have the same eigenvalues with
the same multiplicity. Moreover, (5-15) implies that if φ j and ψ j , 1≤ j ≤ N0, are orthonormal sets of
eigenfunctions of 1g1 and 1g2 , respectively, corresponding to the eigenvalue 1

4 n2
+ λ2

0, then there exists
a constant orthogonal (N0× N0)-matrix A such that 80

∣∣
0
= A90

∣∣
0

, where (80)T = (φ0
1, φ

0
2, . . . , φ

0
N0
)

and (90)T = (ψ0
1 , ψ

0
2 , . . . , ψ

0
N0
). So, by redefining one set of eigenfunctions from, let us say, 9 to A9,

where 9T
= (ψ1, ψ2, . . . , ψN0), we may assume that

φ0
j (y)= ψ

0
j (y), y ∈ 0, j = 1, 2, . . . , N0. (5-17)

Note that this does not change the orthonormality of the eigenfunctions in X2 because A is orthogonal.
Denote the eigenvalues of 1g1 and 1g2 , which we know are equal, by

µ j =
1
4 n2
+ λ2

j , λ j ∈ iR−, 1≤ j ≤ N . (5-18)

They are also ordered so that µ1 ≤ µ2 ≤ · · · ≤ µN .
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Again, we use that the singularities of χx1 f at 0x1 produce the singularities of R+(0, χx1 f ) at
{s = log x1, y ∈ 0} and expand the solution to (2-1) with initial data, (0, χx1 f ). However, in this
case L2(X) 6= L2

ac(X) and hence Lemma 5.2 is not valid, and we have to replace it by the following:

Lemma 5.5. Let (X, g) be an asymptotic hyperbolic manifold and let φ j , 1 ≤ j ≤ N , denote the
orthonormal set of eigenfunctions of 1g. Let x be such that (2-4) holds in (0, ε)× ∂X. For x1 ∈ (0, ε),
let P+x1

denote the orthogonal projector defined in (5-5). Let χx1 be the characteristic function of the set
Xx1 = X \Dlog x1(0). There exists ε0 such that, if ε < ε0, then for every f ∈ L2

ac(X) there exists α(x1, f ),
which is a linear function of f , such that

P+x1
(R+(0, f )|R×0)=R+

(
0, χx1

(
f −

N∑
j=1

αj (x1, f )φ j

))∣∣∣∣
R×0

.

Proof. Let h ∈ L2
ac(X) be supported in Xx1 . This means that 〈h, χx1φ j 〉= 0 for 1≤ j ≤ N . Then, since P+x1

is a projector, there exists fx1 ∈ L2
ac(X), supported in Xx1 , such that P+x1

(R+(0, f )|R×0)=R+(0, fx1)|R×0

and, for every h ∈ L2
ac(X) supported in Xx1 ,〈
R+(0, fx1)|R×0,R+(0, h)|R×0

〉
Cn
+

= 〈 fx1, h〉L2(X) = 〈 f, h〉L2(X).

Hence 〈( fx1 − f ), h〉 = 0 for all h ∈ C∞0 (X) ∩ L2
ac(X) supported in Xx1 . We claim that there exist

αj = αj (x1, f ) ∈ C such that

fx1 −χx1 f −χx1

N∑
j=1

αjφ j = 0 for x1 small enough.

If such a formula were to hold, since 〈 fx1, χx1φ j 〉 = 0 one would have to have

〈 f, χx1φk〉L2(X) =

N∑
j=1

αj 〈χx1φ j , χx1φk〉L2(X).

This gives a linear system of equations

Mα = F, αT
= (α1, . . . , αN ), FT

= (F1(x1), . . . , FN (x1)),

M jk(x1)= 〈χx1φ j , χx1φk〉L2(X), Fk(x1)= 〈 f, χx1φk〉L2(X).

Since the eigenfunctions are orthonormal, for x1= 0 we have M jk(0)= δ jk . Therefore, there exists ε0> 0,
which depends on the matrix M , and hence only on the eigenfunctions and not on f , such that the
system has a solution if x1 < ε0. Notice that, since f ∈ L2

ac(X), for x1 = 0 we have Fk(0) = 0, and
hence α(0, f )= 0.

With this choice of αj , the function

G = fx1 −χx1 f −χx1

N∑
j=1

αjφ j

is supported in Xx1 and 〈G, φ j 〉L2(X) = 0, so G ∈ L2
ac(X). But at the same time 〈F, h〉L2(X) = 0 for all

h ∈ L2
ac(X) supported in Xx1 . Therefore 〈G,G〉L2(X) = 0, and so G = 0. �
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As in [Sá Barreto 2005], we shall denote

T (x1) f =
∑

j

αj (x1, f )φ j .

Since α(0, f )= 0, T (0)= 0. Therefore one can pick ε small so that

‖T (x1)‖<
1
2 for x1 < ε. (5-19)

In this case, Lemma 5.3 and Corollary 5.4 have to be substituted by:

Lemma 5.6. Let (X, g) be an asymptotically hyperbolic manifold, and let x be a defining function of ∂X
such that (2-4) holds. Let φ j , 1 ≤ j ≤ N , denote the eigenfunctions of 1g and let T (x1) be defined as
above. Let F ∈M+(0), F =R+(0, f )|R×0 with f smooth and let

4(x1, s, y)= 1
2 x−n/2−1

1
|h|1/4(x1, y)
|h|1/4(0, y)

[
(Id−T (x1)) f

]
(x1, y)(s− log x1)

0
+
.

There exists ε > 0 such that, for any x1 ∈ (0, ε),

P+x1
F(s, y)−4(x1, s, y) ∈ H 1

loc(R×0). (5-20)

Corollary 5.7. Let (X1, g1) and (X2, g2) be asymptotically hyperbolic manifolds satisfying the hypothesis
of Theorem 2.3. Let R j,±, j = 1, 2, denote the corresponding forward or backward radiation fields defined
in coordinates in which (2-4) holds. Then there exists an ε > 0 such that, for (x, y) ∈ (0, ε)×0,

|h1|
1/4(x, y)(Id−T1(x))R−1

1,−F(x, y)= |h2|
1/4(x, y)(Id−T2(x))R−1

2,−F(x, y) for all F ∈M−(0),

|h1|
1/4(x, y)(Id−T1(x))R−1

1,+F(x, y)= |h2|
1/4(x, y)(Id−T2(x))R−1

2,+F(x, y) for all F ∈M+(0).
(5-21)

We write R−1
j,−F(x, y)= f j (x, y), and pick ε small so that (5-19) holds. We apply (5-21) to f1 and f2

and to
(
1g1 −

1
4 n2

)
f1 and

(
1g2 −

1
4 n2

)
f2 for (x, y) ∈ [0, ε)×0 and find that

|h1(x)|1/4(Id−T1(x)) f1 = |h2(x)|1/4(Id−T2(x)) f2,

|h1(x)|1/4(Id−T1(x))
(
1g1 −

1
4 n2) f1(x, y)= |h2(x)|1/4(Id−T2(x))

(
1g2 −

1
4 n2) f2(x, y).

(5-22)

Therefore,

f2(x, y)= (Id−T2(x))−1 |h1|
1/4

|h2|1/4
(Id−T1(x)) f1(x, y)=

|h1|
1/4

|h2|1/4
f1(x, y)+ K (x) f1(x, y),

where K is a compact operator. If one substitutes this into the second equation in (5-22), one obtains

|h1|
1/4(Id−T1)

(
1g1 −

1
4 n2) f1 = |h2|

1/4(Id−T2)
(
1g2 −

1
4 n2)( |h1|

1/4

|h2|1/4
f1+ K f1

)
Hence, (

1g1 −
1
4 n2) f1(x, y)−

|h2|
1/4

|h1|1/4

(
1g2 −

1
4 n2)( |h1|

1/4

|h2|1/4
f1

)
(x, y)= (K f1)(x, y),
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where K is a compact operator. Since the operator on the left-hand side is a differential operator, and the
operator on the right-hand side is compact, they both must be equal to zero. As above, we conclude that
in coordinates (x, y), the coefficients of the operators 1g1 are equal to those of 1g2 . Hence, we must
have h1(x, y, dy)= h2(x, y, dy).

We still have to show that (5-4) holds in the case where eigenvalues exist. Let F ∈ M+(0), and
let f j =R−1

j,+F . Let v j satisfy (2-1) with initial data (0, f j ). Let V j (x, s, y)= x−n/2v j (s− log x, x, y).
Since R+(0, f j )= F , we have ∂s V j (0, s, y)= F . Since1g1 =1g2 in (0, ε)×0, for P as defined in (3-2),

P(V1− V2)= 0 in log x < s, x < ε, y ∈ 0

(V1− V2)(x, log x, y)= 0, ∂s(V1− V2)(x, log x, y)= f1(x, y)− f2(x, y) on x < ε, y ∈ 0,

∂s(V1− V2)(0, s, y)= 0, y ∈ 0, s ∈ R.

(5-23)

Now we apply Propositions 3.2, 3.3 and 3.4 as in the proof of Theorem 2.1, to conclude that there exists s∗

such that

V1(x, s, y)= V2(x, s, y) provided x < es∗, y ∈ 0, s ∈ R.

We then apply Tataru’s theorem, as in the argument used in the final step of the proof of Theorem 2.1, to
conclude that f1(z)− f2(z)= 0 for every z ∈ (0, ε)×0 such that there exists (x, y) ∈ (0, es∗)×0 with
d(z, (x, y)) < es/x . In particular this shows that f1 = f2 in (0, ε)×0. One cannot say that f1 = f2 on
X since (5-23) only holds on (0, ε)×0. Since F is arbitrary, (5-4) follows. �

Since h1(x)= h2(x) on [0, ε)×0, this finishes the construction of the map 9ε defined in (5-3). We
will use both equalities in (5-4) to extend 9ε to a global diffeomorphism 9 : X1→ X2 satisfying (2-15).

The construction of the global diffeomorphism. First we need to show that if the eigenfunctions are
reordered such that (5-17) holds, then in fact φ j,1(x, y)= φ j,2(x, y) on (0, ε)×0. To prove this we have
to appeal again to the stationary scattering theory. We know from [Joshi and Sá Barreto 2000] that the
operator

E+(λ)ψ(λ, y)= ̂R+(0, ψ)(λ, y)=
∫

R

e−iλsR+(0, f )(s, y) ds,

continues meromorphically to C \ D, where D is a discrete subset. Since their Schwartz kernels satisfy
E1(λ, y′, x, y)= E2(λ, y′, x, y) for x ∈ [0, ε) and y, y′ ∈ 0, λ ∈ R, this equality must remain for C \ D.

We also know from equation (3.15) of [Graham and Zworski 2003] that 1
4 n2
+ λ2

0 is an eigenvalue of
1g if and only if λ0 ∈ iR− is a pole of E(λ, y, z), with the same multiplicity, and its residue is given by

1
2iλ0

K∑
k=1

φ0
k (y)φk(z), y ∈ ∂X, z ∈ X, (5-24)

where φ0
k (y) is defined in (5-16) and K is the multiplicity of the eigenvalue. We know from (5-17) and

(5-18) that the eigenvalues and the traces of the eigenfunctions are equal. So if φ( j)
k (x ′, y′) j = 1, 2,
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1≤ k ≤ K , denote the eigenfunctions, we must have

K∑
k=1

(φ
(1)
k (x ′, y′)−φ(2)k (x ′, y′))φ0

k (y)= 0, x ′ ∈ [0, ε), y, y′ ∈ 0.

Since the points (x ′, y′), x ′ ∈ [0, ε) and y, y′ ∈ 0 are arbitrary and can be independently chosen, we must
have

φ
(1)
k (x ′, y′)= φ(2)k (x ′, y′) for all x ′ ∈ [0, ε), y′ ∈ 0. (5-25)

We know that the Schwartz kernels of the radiation fields R j,±, j = 1, 2, acting on data (0, f ), and the
metric tensors h j (x, y, dy), j = 1, 2, satisfy (5-4). However, if φ ∈C∞0 ((0, ε)×0) and (φ, 0)∈ Eac(X j ),
then

∂sR j,±(φ, 0)(s, y)=R j,±
(
0,
(
1g j −

1
4 n2)φ)(s, y).

Since φ is compactly supported, R+
(
0,
(
1g j −

1
4 n2

)
φ
)
(s, y)= 0 for s� 0. So,

R j,+(φ, ψ)=R j,+(0, ψ)+
∫ s

−∞

R j,+
(
0,
(
1g j −

1
4 n2)φ)(τ, y) dτ,

R j,−(φ, ψ)=R j,−(0, ψ)+
∫
∞

s
R j,−

(
0,
(
1g j −

1
4 n2)φ)(τ, y) dτ,

provided (φ, ψ) ∈ (C∞0 ((0, ε)× 0)× C∞0 ((0, ε)× 0)) ∩ Eac(X j ). Since we know from (5-13) that
1g1 =1g2 on [0, ε)×0, and we also know from (5-25) that

A((0, ε)×0) .=
(
C∞0 ((0, ε)×0)×C∞0 ((0, ε)×0)

)
∩ Eac(X1)

=
(
C∞0 ((0, ε)×0)×C∞0 ((0, ε)×0)

)
∩ Eac(X2),

we deduce that

R1,±(φ, ψ)(s, y)=R2,±(φ, ψ)(s, y), (s, y) ∈ R×0, (φ,ψ) ∈A((0, ε)×0). (5-26)

But R± are unitary operators, and so their inverses are equal to their adjoints, and we deduce from
(5-26) that the Schwartz kernels of the full operators R j,± acting on A((0, ε)×0) are determined by the
scattering operator S0 . We conclude that if F ∈ L2(R×0), and if R−1

j,±

∣∣
0
: L2(R×0)→ Eac(X1)|(0,ε)×0 ,

j = 1, 2, is given by

F(s, y) 7→ (φ j , ψ j )= (u j (0), ∂t u j (0))
∣∣
(0,ε)×0 ,

then (φ1, ψ1) = (φ2, ψ2). Here u j (t, z) denotes the solution to the Cauchy problems for the wave
equation (2-1) for the metric g j . But, on the other hand, R j,± are translation representations of the wave
group, and therefore

R−1
j,+

∣∣
0

F(s+ t)= (u j (t), ∂t u(t)),

where u j (t) satisfies (2-1) with initial data (φ, ψ) = R−1
j,±

∣∣
0
∈ A((0, ε) × 0). We conclude that, if

u j (t, z) solves (2-1) for the metric g j , with initial data supported in (0, ε)×0, then u1(t, z)= u2(t, z),
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provided z ∈ (0, ε)×0. This implies that, if U j (t, z, z′) is the forward fundamental solution of the Cauchy
problem for the wave equation in (X j , g j ), then

U1(t, z, z′)=U2(t, z, z′), z, z′ ∈ (0, ε)×0, t > 0. (5-27)

By Duhamel’s principle, if(
D2

t −1g j −
1
4 n2)Ũ j (t, t ′, z, z′)= δ(x, y)δ(t − t ′) in X j ×R,

Ũ j (0)= ∂tŨ j (0)= 0,
(5-28)

then

Ũ1(t, t ′z, z′)= Ũ2(t, t ′, z, z′), t, t ′ ∈ R+, z, z′ ∈ (0, ε)×0. (5-29)

So we have reduced the extension of the diffeomorphism to the following:

Proposition 5.8. Let (X1, g1) and (X2, g2) be AHM such that:

(A) There exists a nonempty open subset 0 ⊂ ∂X1∩ ∂X2 as manifolds and an open subset O∼ 0× (0, ε)
such that O⊂ X̊1 ∩ X̊2 as manifolds.

(B) The metric tensors g j , j = 1, 2, satisfy g1 = g2 on O.

(C) If Ũ j (t, t ′, z, z′), j = 1, 2 is the forward fundamental solution of the wave equation in (X j , g j ),
j = 1, 2, defined in (5-28), then U1(t, t ′, z, z′)=U2(t, t ′, z, z′) for t , t ′ ∈ R+ and z, z′ ∈ O.

Then there exists

9 : X1→ X2 such that 9∗g2 = g1 and 9 = Id in O. (5-30)

This is similar to the inverse boundary value problem with data on part of the boundary, studied
for example in [Katchalov et al. 2001; Kurylev and Lassas 2000], except that we are not dealing with
boundary control but control from an open set in the interior. A somewhat similar problem for closed
manifolds was studied in [Krupchyk et al. 2008]. Lassas and Oksanen [2014] also dealt with a problem of
this nature. This is also related to the problem studied by Lassas, Taylor and Uhlmann on complete real
analytic manifolds without boundary M j , j = 1, 2, where the Green functions for the Laplace operator
agree on U ×U , with U ⊂ M1 ∩M2; see Theorem 4.1 of [Lassas et al. 2003]. The difference here is that
we do not have real analyticity of the manifolds, but we are dealing with the wave equation instead of the
Laplace equation.

Proof. We adapt the proof of Theorem 4.33 in [Katchalov et al. 2001]. Instead of working with X1 and
X2, we will fix X = X1 and reconstruct (X, g) = (X1, g1) from (A), (B) and (C). Of course, we are
reconstructing (X2, g2) as well. First of all, we observe that an AHM has a uniform radius of injectivity
for the geodesic flow. In other words, there exists a ρ0 > 0 such that, if Sp X = {v ∈ Tp X : ‖v‖g = 1}, the
map

expp : [0, ρ0)× Sp X→ X, (t, v) 7→ expp(tv),
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is well defined for all p ∈ X . We pick a point p ∈ O and let ρ ∈ (0, ρ0) be such that the geodesic ball
B(p, ρ)⊂ O. Let f (t, z) ∈ C∞0 (R× B(p, ρ)), f (t, z)= 0 for t < 0, and let u f (t, z) be the solution to(

D2
t −1g −

1
4 n2)u f (t, z)= f (t, z) in R× X,

u f (0)= ∂t u f (0)= 0.
(5-31)

From the hypothesis (C) above, we know u f (t, z) for z ∈ B(p, ρ), t > 0. We then define the map

B(T ) : C∞0 ((0, T )× B(p, ρ))→ C∞((0, T )× B(p, ρ)), f 7→ u f
∣∣
(0,T )×B(p,ρ) . (5-32)

For T > 0 we will work with the space of functions

C0 = C0(p, ρ, T ) .= {φ ∈ C∞0 ((0, T ]× B(p, ρ)) : φ(T )= 0},

and the quotient space

C= C(p, ρ, T ) .= C0
/(

D2
t −1g −

1
4 n2)C0.

In other words,

C= {[ψ] : ψ ∈ C0}, where [ψ] =
{
φ ∈ C0 : there is ζ ∈ C0 such that φ = ψ +

(
D2

t −1g −
1
4 n2)ζ}.

Since we know g in O, the space C is determined by hypotheses (A), (B) and (C).
For φ ∈ C, let uφ be the solution to (5-31) in R× X . We define the map

CT : C→ C∞0 (X), φ 7→ uφ(T, z).

The formal adjoint of this map is given by

C∗T : {w ∈ C∞0 ({z ∈ X : dg(z, B(p, ρ)) < T })} → C, w 7→ v|(0,T )×B(p,ρ),

where v is the solution to the Cauchy problem(
D2

t −1g −
1
4 n2)v(t, z)= 0 in {t < T }× X,

v(T, z)= 0, ∂tv(T, z)= w.
(5-33)

As in the boundary control method, we define

ST = C∗T CT : C→ C.

The next step is to prove a Blagovestchenskii-type identity to show that ST is determined by the map B(2T ),
which the map defined in (5-32) but in the time interval (0, 2T ), and hence is determined from (A), (B)
and (C). Let φ(t, z), ψ(t, z) ∈ C and let uφ(t, z), uψ(t, z) be the solutions to (5-31), with left-hand side
φ and ψ respectively. Let

W (s, t)=
∫

X
uφ(t, z)uψ(s, z) d volg(z).
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Notice that this integration is defined over the entire manifold. But, after integrating by parts, we obtain

(∂2
t − ∂

2
s )W (s, t)=

∫
X
(φ(t, z)uψ(s, z)− uφ(t, z)ψ(s, z)) d volg(z)

=

∫
X
[φ(t, z)B(T )ψ(s, z)−ψ(s, z)B(T )φ(t, z)] d volg(z),

W (0, t)= ∂s W (0, t)= 0, W (s, 0)= ∂t W (s, 0)= 0,

and, since φ and ψ are supported in (0, T )× B(p, ρ), the last integration is restricted to B(p, ρ). We can
find W (T, T ) explicitly in terms of d’Alembert’s formula, but we need to extend φ and ψ to the interval
(0, 2T ). As in [Belishev and Kurylev 1992], we define φ̃ and ψ̃ to be the odd extensions of φ and ψ
across t = T , in other words

φ̃(t)=
{
φ(t) if t ∈ (0, T ),
−φ(2T − t) if t ∈ (T, 2T ),

and similarly for ψ̃ . This gives

W (T, T )=
∫ T

0

∫ 2T−t

t

(∫
X

(
φ̃(t, z)B(2T )(ψ̃)(s, z)−B(2T )(φ̃)(t, z)ψ̃(s, z)

)
d volg(z)

)
ds dt

Since ψ̃(s, z) is odd with respect to s = T , it follows that

W j (T, T )=
∫ T

0

∫ 2T−t

t

∫
φ̃(t, z)B(2T )(ψ̃)(s, z) d volg(z) ds dt

=

∫ T

0

∫
X
φ(t, z)

(∫ 2T−t

t
B(2T )ψ̃(s, z) ds

)
d volg(z) dt.

On the other hand, since

W (T, T )= 〈CTφ,CTψ〉 = 〈φ,C∗T CTψ〉,

it follows that

C∗T CTψ(t, z)=
∫ 2T−t

t
B(2T )ψ̃(s, z) ds.

Now we define the following inner product in the space C:

〈φ,ψ〉C = 〈uφ(T, z), uψ(T, z)〉L2(X).

As shown above, this is determined by the map B. We need to show that this is a nondegenerate inner
product. First we show that the range {uφ(T ) : φ ∈ C} is dense in the space

L2({z ∈ X j : d(z, B(p, ρ))≤ T
})
=
{
u ∈ L2(X j ) : Supp(u)⊂ {z : d(z, B(p, ρ))≤ T }

}
.

Suppose that w ∈ L2({z ∈ X j : d(z, B(p, ρ))≤ T }) is such that

〈w, uφ(T )〉 = 0 for all φ ∈ C.
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Let v satisfy (5-33) and let uφ satisfy (5-31) with right-hand side equal to φ. Integrating the identity

v
(
D2

t −1g −
1
4 n2)uφ − uφ

(
D2

t −1g −
1
4 n2)v = v(t, z)φ(t, z)

in the domain of influence of φ and w, we find that∫
B(p,ρ)×(0,T )

v(t, z)φ(t, z) dt d volg(z)= 0 for all φ ∈ C. (5-34)

But, again using the fact that v satisfies (5-33), we see that∫
B(p,ρ)×(0,T )

v(t, z)
(
D2

t −1g −
1
4 n2)φ(t, z) dt d volg(z)= 0 for all φ ∈ C0.

This means that (5-34) is satisfied for every φ ∈ C0, and hence v(t, z) = 0 in (0, T )× B(p, ρ). Now
the odd extension ṽ(t, z) of v(t, z) across t = T satisfies (5-33) in (0, 2T )×{z : d(z, B(p, ρ)) < T + ρ}
and ṽ(t, z) = 0 in (0, 2T )× B(p, ρ). An application of Tataru’s theorem implies that ṽ(t, z) = 0 if
|t |+d(z, B(p, ρ))≤ T for any q ∈ B(p, ρ). In particular, this implies that w(z)= ∂tv(T, z)= 0 provided
d(z, B(p, ρ))≤ T , and hence w = 0.

Now suppose that φ ∈ C is such that 〈φ,ψ〉C = 0 for every ψ ∈ C. From the previous discussion, it
follows that uφ(T )= 0. Then

ũ(t, z)=
{

uφ(t, z) if t < T,
−uφ(2T − t, z) if t > T

satisfies (
D2

t −1g −
1
4 n2)ũ = φ̃ in R× X j

ũ = 0 in R×{z : d(z, B(p, ρ)) > T }.

Again, Tataru’s theorem and finite speed of propagation implies that uφ ∈ C∞0 ((0, T ] × B(p, ρ)) and
uφ(T )= 0. This of course means that uφ ∈ C0, and hence [φ] = 0.

Next we define C as the Hilbert space given by the closure of C with the norm given by the inner
product 〈φ,ψ〉C, and set up a scheme which is very similar to the one used in the proof of Lemma 5.3,
which is of course similar to the arguments used in [Belishev and Kurylev 1992; Katchalov et al. 2001].
For τ ∈ (0, T ) define

Cτ = {φ ∈ C : φ(t, z)= 0, t < τ },

and let
Pτ : C→ Cτ

be the orthogonal projection to Cτ . Then, using propagation of singularities (and here we do not have to
project onto the continuous spectrum), and that the choices for t = 0 and t = T are arbitrary, we recover
the metric tensor g and the fundamental solution of wave equation in B(p, r), where r = r(p) is the
radius of injectivity of expp. In other words, we recover

g(z), z ∈ B(p, r) and Ũ (t, t ′, z, z′), t, t ′ ∈ R, z, z′ ∈ B(p, r), r = r(p).
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We repeat the process for every p ∈ O, and we would like to define M =
⋃

p∈O B(p, r(p)). However,
we have to make sure the inclusion map ı :M ↪→ X is injective, which would guarantee that ı(M) is an
open embedded submanifold of X . Therefore we need to identify the points that are in B(p, r(p)) and
B(q, r(q)). In Section 4.4.9 of [Katchalov et al. 2001], since they are working on a compact manifold,
they use the family of eigenfunctions to do that. Here the precise analogue is to use Ũ (t, t ′, z, z′),
and we shall say that z ∈ B(p, r(p)), and w ∈ B(q, r(q)) are equivalent, and we denote z ≡ w if
Ũ (t, t ′, z, z′) = Ũ (t, t ′, w, z′) for all t , t ′ > 0 and z′ ∈ O. In this case, the points z and w correspond
to the same point in X . This is the equivalent of saying that uφ(t, z) = uφ(t, w) for all t ∈ R and for
all φ ∈ C∞0 (R×O). We also use the same identification for points in O and B(p, r(p)), p ∈ O. With this
identification, we set O1 =

(⋃
p∈O B(p, r(p))

)
∪O.

We have constructed an open C∞ submanifold O1 ⊂ X such that O= O0 ⊂ O1 and such that hypotheses
(A), (B) and (C) are satisfied for O1. Now we repeat the process for O1. Thus we obtain a sequence of
C∞ open submanifolds O j ⊂ X satisfying O j ⊂ O j+1 ⊂ X , j = 0, 1, . . . , and satisfying the hypotheses
(A), (B) and (C) above. As in Section 4.4.9 of [Katchalov et al. 2001], we claim that for any compact
subset K ⊂ X there exists J ∈N such that K ⊂ OJ . To see that, we observe that, since (X, g) is complete,
there exists M > 0 such that, for any p ∈ K , δ < ε and 0′ b 0, dg(p, 0′× {δ}) ≤ M . We also assume
that δ < δ0, where δ0 is the radius of injectivity of X . Since X is complete, given a point p ∈ K there
is a geodesic µ(s), parametrized by the arc length 0 ≤ s ≤ L ≤ M , joining p to a point z ∈ 0′ × δ.
Let x0 = z and xk = µ(kδ), with k = 0, 1, . . . , [L/δ] = J . By definition x0 = z ∈ 0 × {δ} ⊂ O = Õ0.
Suppose that xk ∈ Õk ; then there exists ρ > 0 such that B(xk, ρ)⊂ Ok but, since δ is less than the radius
of injectivity, B(xk, δ)⊂ Ok+1 and, since s is the arc length, in particular xk+1 ∈ Ok+1. By induction it
follows that p ∈ OJ+1 ⊂ O[M/δ].

This shows that we can reconstruct (X̊ , g) from (A), (B) and (C). But we know a priori that (X, g) is
an AHM, and so X̊ can be compactified into a C∞ with boundary, and there exists a defining function
x of ∂X for which (2-4) holds. The construction of the function x shows that the compactification is
uniquely defined modulo diffeomorphisms that are equal to the identity in O. �
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