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We study the long-time dynamics of complex-valued modified Korteweg–de Vries (mKdV) solitons,
which are distinguished because they blow up in finite time. We establish stability properties at the H 1

level of regularity, uniformly away from each blow-up point. These new properties are used to prove that
mKdV breathers are H 1-stable, improving our previous result [Comm. Math. Phys. 324:1 (2013) 233–
262], where we only proved H 2-stability. The main new ingredient of the proof is the use of a Bäcklund
transformation which relates the behavior of breathers, complex-valued solitons and small real-valued
solutions of the mKdV equation. We also prove that negative energy breathers are asymptotically stable.
Since we do not use any method relying on the inverse scattering transform, our proof works even under
L2(R) perturbations, provided a corresponding local well-posedness theory is available.
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1. Introduction

Consider the modified Korteweg–de Vries (mKdV) equation on the real line

ut + (uxx + u3)x = 0, (1-1)

where u = u(t, x) is a complex-valued function and (t, x) ∈ R2. Note that (1-1) is not U (1)-invariant.
In the case of real-valued initial data, the associated Cauchy problem for (1-1) is globally well posed
for initial data in H s(R) for any s > 1

4 ; see Kenig, Ponce and Vega [Kenig et al. 1993], and Colliander,
Keel, Staffilani, Takaoka and Tao [Colliander et al. 2003]. Additionally, the (real-valued) flow map is not
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uniformly continuous if s < 1
4 [Kenig et al. 2001].1 In order to prove this last result, Kenig, Ponce and

Vega considered a very particular class of solutions of (1-1) called breathers, discovered by Wadati [1973].

Definition 1.1 (see, e.g., [Wadati 1973; Lamb 1980]). Let α, β > 0 and x1, x2 ∈ R be fixed parameters.
The mKdV breather is a smooth solution of (1-1) given explicitly by the formula

B = B(t, x;α, β, x1, x2) := 2
√

2∂x

[
arctan

β sin(αy1)

α cosh(βy2)

]
,

=
2
√

2αβ(α cos(αy1) cosh(βy2)−β sin(αy1) sinh(βy2))

α2 cosh2(βy2)+β2 sin2(αy1)
, (1-2)

where

y1 := x + δt + x1, y2 := x + γ t + x2, (1-3)

and

δ := α2
− 3β2, γ := 3α2

−β2. (1-4)

Breathers are oscillatory bound states. They are periodic in time (after a suitable space shift) and
localized in space. The parameters α and β are scaling parameters, x1, x2 are shifts, and −γ represents
the velocity of a breather. As we will see later, the main difference between solitons2 and breathers is
given at the level of the oscillatory scaling α, which is not present in the case of solitons. For a detailed
account of the physics of breathers, see, e.g., [Lamb 1980; Ablowitz and Clarkson 1991; Aubry 1997;
Alejo 2012; Alejo and Muñoz 2013] and references therein.

Numerical computations (see Gorria, Alejo and Vega [Gorria et al. 2013]) showed that breathers are
numerically stable. Next, in [Alejo and Muñoz 2013] we constructed a Lyapunov functional that controls
the dynamics of H 2 perturbations of (1-2). The purpose of this paper is to improve this previous result
and show that mKdV breathers are indeed H 1-stable, i.e., stable in the energy space.

Theorem 1.2. Let α, β > 0 be fixed scalings. There exist parameters η0, A0, depending on α and β only,
such that the following holds: Consider u0 ∈ H 1(R), and assume that there exists η ∈ (0, η0) such that

‖u0− B(0, · ;α, β, 0, 0)‖H1(R) ≤ η. (1-5)

Then there exist functions x1(t), x2(t) ∈ R such that the solution u(t) of the Cauchy problem for the mKdV
equation (1-1) with initial data u0 satisfies

sup
t∈R

‖u(t)− B(t, · ;α, β, x1(t), x2(t))‖H1(R) ≤ A0η, (1-6)

sup
t∈R

|x ′1(t)| + |x
′

2(t)| ≤ C A0η, (1-7)

for some constant C > 0.

1However, one can construct a solution in L2; see [Christ et al. 2012].
2See (1-8).
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The initial condition (1-5) can be replaced by any initial breather profile of the form B(t0;α, β, x0
1 , x0

2)

with t0, x0
1 , x0

2 ∈ R, thanks to the invariance of the equation under translations in time and space.3

Moreover, using the Miura transform [Miura et al. 1968], one can prove a natural stability property in
L2(R;C) for an associated complex-valued KdV breather.

One can also use the scaling invariance of the equation, u(t, x) 7→ λu(λ3t, λx), to reduce the problem
to the case where α equals 1 and β > 0 is arbitrary, but for symmetry reasons we shall not follow this
approach.4

Additionally, from the proof, the shifts x1(t) and x2(t) in Theorem 1.2 can be described almost
explicitly5, which is a substantial improvement with respect to [Alejo and Muñoz 2013], where no exact
control on the shift parameters was given. We obtain such a control with no additional decay assumptions
on the initial data other than being in H 1(R).

Theorem 1.2 places breathers as stable objects at the same level of regularity as mKdV solitons, even
if they are very different in nature. To be more precise, a (real-valued) soliton is a solution of (1-1) of the
form

u(t, x)= Qc(x − ct), Qc(s) :=
√

cQ(
√

cs), c > 0, (1-8)

with

Q(s) :=

√
2

cosh(s)
= 2
√

2∂s[arctan(es)],

and where Qc > 0 satisfies the nonlinear ODE

Q′′c − cQc+ Q3
c = 0, Qc ∈ H 1(R). (1-9)

We recall that solitons are H 1-stable (Benjamin [1972], Bona, Souganidis and Strauss [Bona et al. 1987]).
See also the works by Grillakis, Shatah and Strauss [Grillakis et al. 1987] and Weinstein [1986] for the
nonlinear Schrödinger case.

Even more surprising is the fact that Theorem 1.2 will arise as a consequence of a suitable stability
property of the zero solution and of complex-valued mKdV solitons, which are singular solutions.

A complex-valued soliton is a solution of the form (1-8) of (1-1) with a complex-valued scaling and
velocity, i.e.,

u(t, x) := Qc(x − ct),
√

c := β + iα, α, β > 0; (1-10)

see Definition 2.1 for a precise interpretation. In Lemma 2.2 we give a detailed description of the singular
nature of (1-10). On the other hand, very little is known about mKdV (1-1) when the initial data is
complex-valued. For instance, it is known that it has finite-time blow-up solutions, the most important

3Indeed, if u(t, x) solves (1-1), then, for any t0, x0 ∈ R and c > 0, u(t − t0, x − x0), c1/2u(c3/2t, c1/2x), u(−t,−x) and
−u(t, x) are solutions of (1-1).

4For example, if (1-6) holds, then v0(y) := u0(y/α)/α satisfies

α

∫
R

(
v0− B

(
0, · ; 1,

β

α
, 0, 0

))2
=

∫
R
(u0− B(0, · ;α, β, 0, 0))2 ≤ η2.

5See (7-9).
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examples being the complex solitons themselves; see, e.g., Bona, Vento and Weissler [Bona et al. 2013]
and references therein for more details. According to [Bona et al. 2013], blow-up in the complex-valued
case can be understood as the intersection with the real line x ∈ R of a curve of poles of the solution after
being extended to the complex plane (i.e., now x is replaced by z ∈ C). Blow-up in this case seems to
have better properties than the corresponding critical blow-up described by Martel and Merle [2002].

Let H 1(R;C) denote the standard Sobolev space of complex-valued functions f (x) ∈ C, x ∈ R. In
this paper we prove the following stability property for solitons, far away from each blow-up time:

Theorem 1.3. There exists an open set of initial data in H 1(R;C) for which the mKdV complex solitons
are well-defined and stable in H 1(R;C) for all times uniformly separated from a countable sequence of
finite blow-up times with no limit points. Moreover, one can define a mass and an energy, both invariant
for all time.

We cannot prove an all-time stability result using the H 1(R;C)-norm because even complex solitons
leave that space at each blow-up time, and several computations in this paper break down. However, the
previous result states that the Cauchy problem is almost globally well-posed around a soliton, and the
solution can be continued after (or before) every blow-up time. The novelty with respect to the local
Cauchy theory [Kenig et al. 1993] is that now it is possible to define an almost global solution instead of
defining a local solution on each subinterval of time defined by two blow-up points, because from the
proof we will recognize that the behavior before and after the blow-up time are deeply linked. From this
property, the existence and invariance of uniquely well-defined mass and energy will be quite natural. For
this particular problem, we answer positively the questions about existence, uniqueness and regularity
after blow-up posed by Merle [1992]. See Theorem 4.5 and its corollaries for a more detailed statement.

Lastly, we prove that breathers behaving as standard solitons are asymptotically stable in the energy
space. For previous results for the soliton and multisoliton case, see Pego and Weinstein [1994] and
Martel and Merle [2005].

Theorem 1.4. Under the hypotheses of Theorem 1.2, there exists c0 > 0 depending on η, with c0(η)→ 0
as η→ 0, such that the following holds: There exist β∗ and α∗ (depending on η) close enough to β and α,
respectively, for which

lim
t→+∞

‖u(t)− B(t; · , α∗, β∗, x1(t), x2(t))‖H1(x≥c0t) = 0. (1-11)

In particular, the asymptotic of u(t) has new and explicit velocity parameters δ∗ = (α∗)2− 3(β∗)2 and
γ ∗ = 3(α∗)2− (β∗)2 at the leading order.

The previous result is more interesting when γ < 0; see (1-4). In this case, the breather has negative
energy (see [Alejo and Muñoz 2013, p. 9]) and it moves rightwards in space (the so-called physically
relevant region). We recall that working in the energy space implies that small solitons moving to the
right in a very slow fashion are allowed (the condition c0 > 0 is essential; see, e.g., [Martel and Merle
2005]). Indeed, there are explicit solutions of (1-1) composed of one breather and one very small soliton
moving rightwards, which contradicts any sort of global asymptotic stability result in the energy space
[Lamb 1980]. Additionally, we cannot ensure that the left portion of the real line {x < 0} corresponds to
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radiation only. Following [Lamb 1980], it is possible to construct a solution to (1-1) composed of two
breathers, one very small with respect to the other one, the latter with positive velocity and the former
with small but still negative velocity (just take the corresponding scaling parameters α and β both small
so that −γ < 0). Such a solution has no radiation at infinity. Of course, working in a neighborhood of the
breather using weighted spaces rules out such small perturbations.

The mechanism under which α∗ and β∗ are chosen is very natural and reflects the power and simplicity
of the arguments of the proof: under different scaling parameters, it was impossible to describe the
dynamics as in Theorem 1.2. We do indeed have two linked results: in some sense Theorem 1.2 is a
consequence of Theorem 1.4 and vice versa.

It is also important to emphasize that (1-1) is a well-known completely integrable model [Miura et al.
1968; Ablowitz and Clarkson 1991; Lamb 1980; Lax 1968; Schuur 1986], with infinitely many conserved
quantities and a suitable Lax pair formulation. The inverse scattering theory has been applied in [Schuur
1986] to describe the evolution of rapidly decaying initial data, by purely algebraic methods. Solutions are
shown to decompose into a very particular set of solutions: solitons, breathers and radiation. Moreover, as
a consequence of the integrability property, these nonlinear modes interact elastically during the dynamics,
and no dispersive effects are present at infinity. In particular, even more complex solutions are present,
such as multisolitons (explicit solutions describing the interaction of several solitons [Hirota 1972]).
Multisolitons for mKdV and several integrable models of Korteweg–de Vries-type are stable in H 1; see
Maddocks and Sachs [1993] for the KdV case and in a more general setting see Martel, Merle and Tsai
[Martel et al. 2002].

However, the proof of Theorem 1.2 does not involve any method relying on the inverse scattering
transform [Miura et al. 1968; Schuur 1986], nor the steepest descent machinery [Deift and Zhou 1993],6

which allows us to work in the very large energy space H 1(R). Note that if the inverse scattering methods
are allowed, one could describe the dynamics of very general initial data with more detail. But if this is
the case, additional decay and/or spectral assumptions are always needed, and, except with well-prepared
initial data, such conditions are difficult to verify. We claim that our proof works even if the initial data is
in L2(R) provided mKdV is locally well-posed at that level of regularity, which remains a very difficult
open problem.

Comparing with [Alejo and Muñoz 2013], where we have proved that mKdV breathers are H 2-stable,
now we are not allowed to use the third conservation law associated to mKdV,7

F[u](t)= 1
2

∫
R

u2
xx(t, x) dx − 5

2

∫
R

u2u2
x(t, x) dx + 1

4

∫
R

u6(t, x) dx,

nor the elliptic equation satisfied by any breather profile,

B(4x)− 2(β2
−α2)(Bxx + B3)+ (α2

+β2)2 B+ 5B B2
x + 5B2 Bxx +

3
2 B5
= 0

6Note that Deift and Zhou [1993] consider the defocusing mKdV equation, which has no smooth solitons or breathers.
7See (4-13) and (4-14) for the other two low-regularity conserved quantities.
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since the dynamics is no longer in H 2. Moreover, since breathers are bound states, there is no associated
decoupling in the dynamics as time evolves as in [Martel et al. 2002], which makes the proof of the H 1

case even more difficult. We need a different method of proof.

We follow a method of proof that is in the spirit of the seminal work by Merle and Vega [2003] (see also
Alejo, Muñoz and Vega [Alejo et al. 2013]), where the L2-stability of KdV solitons has been proved. In
those cases, the use of the Miura and Gardner transformations were the new ingredients to prove stability
where the standard energy is missing. Recently, the Miura transformation has been studied at very low
regularity by Buckmaster and Koch [2014]; using this information, they showed that KdV solitons are
orbitally stable under H−1 perturbations leading to a H n

∩ H−3/4 solution, where n ≥−1 is an integer.

More precisely, we will make use of the Bäcklund transformation [Lamb 1980, p. 257] associated to
mKdV to obtain new conserved quantities, additional to the mass and energy. Mizumachi and Pelinovsky
[2012] and Hoffmann and Wayne [2013] described a similar approach for the NLS and sine-Gordon
equations and their corresponding one-solitons. However, unlike those previous works, and in order to
control any breather, we use the Bäcklund transformation twice: one to control an associated complex-
valued mKdV soliton, and a second one to get almost complete control of the breather.

Indeed, solving the Bäcklund transformation in the vicinity of a breather leads (formally) to the
emergence of complex-valued mKdV solitons, which blow up in finite time. A difficult problem arises at
the level of the Cauchy theory, and any attempt to prove stability must face the ill-posedness behavior
of the complex-valued mKdV equation (1-1). However, after a new use of the Bäcklund transformation
around the complex soliton we end up with a small, real-valued H 1(R) solution of mKdV which is stable
for all time. The fact that a second application of the Bäcklund transformation leads to a real-valued
solution is not trivial and is a consequence of a deep property called the permutability theorem [Lamb
1980]. Roughly speaking, that result states that the order under which we perform two inversions of the
Bäcklund transformation does not matter. After some work we are able to give a rigorous proof of the
following fact: we can invert a breather using Bäcklund towards two particularly well-chosen complex
solitons first, and then invert once again to obtain two small solutions — say a and b — and the final result
must be the same. Even better, one can show that a has to be the conjugate of b, which gives the real
character of the solution. Now, the dynamics is real-valued and simple. We use the Kenig–Ponce–Vega
theory [Kenig et al. 1993] to evolve the system to any given time. Using this trick we avoid dealing with
the blow-up times of the complex soliton — for a while — and at the same time we prove a new stability
result for them.

However, unlike [Mizumachi and Pelinovsky 2012; Hoffman and Wayne 2013], we cannot invert the
Bäcklund transformation at any given time, and in fact each blow-up time of the complex-valued mKdV
soliton is a dangerous obstacle for the breather stability. In order to extend the stability property up to the
blow-up times we discard the method involving the Bäcklund transformation. Instead we run a bootstrap
argument starting from a fixed time very close to each singular point, using the fact that the real-valued
mKdV dynamics is continuous in time. Finally, using energy methods related to the stability of single
solitons we are able to extend the uniform bounds in time to any singularity point, with a universal
constant A0 as in Theorem 1.2.
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From the proof it will be evident that, even if there is no global well-posedness theory (with uniform
bounds in time) below H s , s< 1

4 , one can prove stability of breathers in spaces of the form H 1
∩H s , s< 1

4 ,
following the ideas of Buckmaster and Koch [2014]. We thank Professor Herbert Koch for mentioning to
us this interesting property.

Our results apply without significant modifications to the case of the sine-Gordon (SG) equation in
Rt ×Rx ,

ut t − uxx + sin u = 0, (u, ut)(t, x) ∈ R2, (1-12)

and its corresponding breather [Lamb 1980, p. 149]. See [Birnir et al. 1994; Denzler 1993; Soffer and
Weinstein 1999] for related results. Note that SG is globally well-posed in L2

× H−1; then we have that
breathers are stable under small perturbations in that space. Since the proofs are very similar, and in order
to avoid repetition, we skip the details.

Moreover, following our proof it is possible to give a new proof of the global H 1-stability of two-solitons,
first proved in [Martel et al. 2002].

We also claim that k-breathers (k ≥ 2), namely solutions composed of k different breathers, are
H 1-stable. Following the proof of Theorem 1.2, one can show by induction that a k-breather can be
obtained from a (k−1)-breather after two Bäcklund transformations using a fixed set of complex conjugate
parameters, as in Lemmas 2.4 and 5.1. After proving this identity, the rest of the proof adapts with no
deep modifications.

This paper is organized as follows: In Section 2 we introduce the complex-valued soliton profiles.
Section 3 is devoted to the study of the mKdV Bäcklund transformation in the vicinity of a given complex-
valued mKdV solution. In Section 4 we apply the previous results to prove Theorem 1.3 (see Theorem 4.5).
Section 5 deals with the relation between complex soliton profiles and breathers. In Section 6 we apply
the results from Section 3 to the case of a perturbation of a breather solution. Finally, in Sections 7 and 8
we prove Theorems 1.2 and 1.4.

2. Complex-valued mKdV soliton profiles

Definition 2.1. Consider parameters α, β > 0, x1, x2 ∈ R. We introduce the localized profile

Q̃ = Q̃(x;α, β, x1, x2),

defined as

Q̃ := 2
√

2 arctan
(
eβy2+iαy1

)
, (2-1)

where y1 and y2 are (re)defined as

y1 := x + x1, y2 := x + x2. (2-2)

Note that

lim
x→−∞

Q̃(x)= 0. (2-3)
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We define the complex-valued soliton profile as follows:

Q := ∂x Q̃

=
2
√

2(β + iα)eβy2+iαy1

1+ e2(βy2+iαy1)
(2-4)

=
√

2
β cosh(βy2) cos(αy1)+α sinh(βy2) sin(αy1)

cosh2(βy2)− sin2(αy1)

+ i
√

2
α cosh(βy2) cos(αy1)−β sinh(βy2) sin(αy1)

cosh2(βy2)− sin2(αy1)
. (2-5)

Finally, we write
Q̃t := −(β + iα)2 Q, (2-6)

and
Q̃1 := ∂x1 Q̃, Q̃2 := ∂x2 Q̃. (2-7)

Note that Q is complex-valued and is pointwise convergent to the soliton Qβ2 as α→ 0. A second
condition satisfied by Q̃ and Q is the following periodicity property: for all k ∈ Z,{

Q̃(x;α, β, x1+ kπ/α, x2)= (−1)k Q̃(x;α, β, x1, x2),

Q(x;α, β, x1+ kπ/α, x2)= (−1)k Q(x;α, β, x1, x2).
(2-8)

We remark that, in what follows, Q̃ and Q may blow up in finite time.

Lemma 2.2. Consider the complex-valued soliton profile defined in (2-1)–(2-5). Assume that, for x2 fixed
and some k ∈ Z,

x1 = x2+
π

α

(
k+ 1

2

)
. (2-9)

Then Q̃ and Q cannot be defined at x =−x2. Moreover, if x1 = x2 = 0, then Q( · ;α, β, 0, 0) ∈ H 1(R;C).

Remark. We emphasize that, given x2 fixed, the set of points x1 of the form (2-9) for some k ∈ Z is a
countable set of real numbers with no limit points.

Remark. The complex-valued function arctan z (leading to the definition of Q̃) has two branches of
discontinuities of the form im with m ∈ R, |m| ≥ 1, appearing from the standard branch of the complex
logarithm function Re z < 0, Im z = 0. Such discontinuities may induce singularities on the function Q.
Fortunately, both Q and functions of the type sine and cosine of arguments of the form Q̃ are smooth
except on the points determined by Lemma 2.2. Throughout this paper we shall work with functions of
the latest form instead of the original Q̃.

Proof. Fix x2 ∈ R. If (2-9) is satisfied for some k ∈ Z, we have that, at x =−x2,

y1 = x + x1 =
π

α

(
k+ 1

2

)
, y2 = x + x2 = 0,

and
sinh(βy2)= 0, cos(αy1)= 0. (2-10)
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Therefore, under (2-9), we have from (2-1) and (2-5) that Q̃ and Q cannot be defined at x =−x2. Finally,
if x1 = x2 = 0, we have

k+ 1
2 = 0, k ∈ Z,

which is impossible. �

Lemma 2.3. Fix α, β > 0 and x1, x2 ∈ R such that (2-9) is not satisfied. Then we have

Qxx − (β + iα)2 Q+ Q3
= 0 for all x ∈ R, (2-11)

and
Q2

x − (β + iα)2 Q2
+

1
2 Q4
= 0 for all x ∈ R. (2-12)

Moreover, the previous identities can be extended to any x1, x2 ∈ R by continuity.

Proof. This is direct from the definition. �

Assume that (2-9) does not hold. Consider the sine and cosine functions applied to complex numbers.
We have, from (2-1) and (2-4),

sin
Q̃
√

2
= sin(2 arctan eβy2+iαy1)

= 2eβy2+iαy1 cos2(arctan eβy2+iαy1)

=
2eβy2+iαy1

1+ e2(βy2+iαy1)
=

1
β + iα

Q
√

2
. (2-13)

Similarly, from this identity we have

Qx − (β + iα) cos
(

Q̃
√

2

)
Q = 0, (2-14)

so that, from (2-6) and (2-12),

Q̃t + (β + iα)
[

Qx cos
Q̃
√

2
+

Q2
√

2
sin

Q̃
√

2

]
=−(β + iα)2 Q+ Q2

x Q−1
+

1
2 Q3
= 0.

So far, we have proved the following result:

Lemma 2.4. Let Q be a complex-valued soliton profile with scaling parameters α, β > 0 and shifts
x1, x2 ∈ R such that (2-9) is not satisfied. Then we have

Q
√

2
− (β + iα) sin

Q̃
√

2
≡ 0, (2-15)

and

Q̃t + (β + iα)
[

Qx cos
Q̃
√

2
+

Q2
√

2
sin

Q̃
√

2

]
≡ 0, (2-16)

where sin z and cos z are defined on the complex plane in the usual sense.

We finish this section with a simple computational lemma.
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Lemma 2.5. Fix x1, x2 such that (2-9) is not satisfied. Then, for all α, β > 0 we have

N :=
1
2

∫ x

−∞

Q2
=

2(β + iα)e2(βy2+iαy1)

1+ e2(βy2+iαy1)
, (2-17)

and
1
2

∫
R

Q2
= 2(β + iα), (2-18)

no matter what x1, x2 are. Finally, if we let L1 := log(1+ e2(βx2+iαx1)),∫ x

0
N= log(1+ e2(βy2+iαy1))− L1. (2-19)

Note that the previous formula is well-defined, since x1 and x2 do not satisfy (2-9).

Proof. It is not difficult to check that (2-17) is satisfied. Note that

lim
x→−∞

∣∣∣∣2(β + iα)e2(βy2+iαy1)

1+ e2(βy2+iαy1)

∣∣∣∣= 0.

Identity (2-18) is a consequence of the fact that

lim
x→+∞

2(β + iα)e2(βy2+iαy1)

1+ e2(βy2+iαy1)
= 2(β + iα).

Finally, (2-19) is easy to check. �

3. Bäcklund transformation for mKdV

Lemma 2.4 is a consequence of a deeper result. In what follows, we fix a primitive f̃ of f , i.e.,

f̃x := f, (3-1)

where f is assumed only to be in L2(R). Notice that, even if f = f (t, x) is a solution of mKdV, a
corresponding term f̃ (t, x) may be unbounded in space.

Definition 3.1 (see, e.g., [Lamb 1980]). Let

(ua, ub, va, vb,m) ∈ H 1(R;C)2× H−1(R;C)2×C.

We set
G := (G1,G2), G = G(ua, ub, va, vb,m),

where

G1(ua, ub, va, vb,m) :=
ua − ub
√

2
−m sin

ũa + ũb
√

2
, (3-2)

and

G2(ua, ub, va, vb,m) := va − vb+m
[
((ua)x + (ub)x) cos

ũa + ũb
√

2
+

u2
a + u2

b
√

2
sin

ũa + ũb
√

2

]
. (3-3)

For the moment we do not specify the range of G(ua, ub, va, vb,m) for data (ua, ub, va, vb,m) in
H 1(R;C)2× H−1(R;C)2×C. However, thanks to Lemma 2.4, we have the following result:
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Lemma 3.2. Assume that x1 and x2 do not satisfy (2-9). Then

G(Q, 0, Q̃t , 0, β + iα)≡ (0, 0).

The previous identity can be extended by zero to the case where x1 and x2 satisfy (2-9), in such a form
that G(Q, 0, Q̃t , 0, β+iα), as a function of (x1, x2)∈R2, is now well-defined and continuous everywhere.

In what follows we consider the invertibility of the Bäcklund transformation on complex-valued
functions. See [Hoffman and Wayne 2013] for the statement involving the real-valued solitons in the
sine-Gordon case and [Mizumachi and Pelinovsky 2012] for the case of nonlinear Schrödinger solitons.

Proposition 3.3. Let X0
:= (u0

a, u0
b, v

0
a, v

0
b,m0) ∈ H 1(R;C)2× H−1(R;C)2×C be such that

Re m0 > 0, (3-4)

G(X0)= (0, 0), (3-5)

sin
ũ0

a + ũ0
b

√
2
∈ H 1(R;C), (3-6)

and lim
−∞

(ũ0
a + ũ0

b)= 0, lim
+∞

(ũ0
a + ũ0

b)=
√

2π. (3-7)

Assume additionally that the ODE

µ0
x −m0 cos

(
ũ0

a + ũ0
b

√
2

)
µ0
= 0, (3-8)

has a smooth solution µ0
= µ0(x) ∈ C satisfying

µ0
∈ H 1(R;C), |µ0(x)|> 0,

∣∣∣∣µ0
x(x)
µ0(x)

∣∣∣∣≤ C, (3-9)

and
∫

R

sin
(

ũ0
a + ũ0

b
√

2

)
µ0
6= 0. (3-10)

Then there exist ν0 > 0 and C > 0 such that the following is satisfied: For any 0 < ν < ν0 and any
(ua, va) ∈ H 1(R;C)× H−1(R;C) satisfying

‖ua − u0
a‖H1(R;C) < ν, (3-11)

G is well-defined in a neighborhood of X0 and there exists an unique (ub, vb,m) defined in an open subset
of H 1(R,C)× H−1(R;C)×C such that

G(ua, ub, va, vb,m)≡ (0, 0), (3-12)

‖ũa + ũb− ũ0
a − ũ0

b‖H2(R;C) ≤ Cν, (3-13)

‖ub− u0
b‖H1(R;C)+ |m−m0

|< Cν, (3-14)

sin
ũa + ũb
√

2
∈ H 1(R;C), (3-15)

and lim
−∞
(ũa + ũb)= 0, lim

+∞
(ũa + ũb)=

√
2π. (3-16)
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Proof. Given ua , ub, m and va well-defined, vb is uniquely defined from (3-3). We solve for ub and m
now. We will use the implicit function theorem.

We make a change of variables in order to specify a suitable range for G and to be able to prove (3-16).
Define

uc := ua + ub− u0
c, u0

c := u0
a + u0

b ∈ H 1(R;C), (3-17)

and similarly for ũc and ũ0
c :

(ũc)x = uc, (ũ0
c)x = u0

c .

In what follows, we will look for a suitable ũc with decay, and then we find ub. Indeed, note that given
uc and ua , ub can be easily obtained. Then, with a slight abuse of notation, we consider G defined as
follows:

G = (G1,G2), G = G(ua, ũc, va, vb,m),

and
G : H 1(R;C)× H 2(R;C)× H−1(R;C)2×C−→ H 1(R;C)× H−1(R;C)

(ua, ũc, va, vb,m) 7−→ G(ua, ũc, va, vb,m),

where, from (3-2),

G1(ua, ũc, va, vb,m) :=
2ua − u0

c − uc
√

2
−m sin

ũ0
c + ũc
√

2
, (3-18)

and, from (3-3),

G2(ua, ũc, va, vb,m)

:= va − vb+m
[
(u0

c + uc)x cos
ũ0

c + ũc
√

2
+

u2
a + (u

0
c + uc− ua)

2
√

2
sin

ũ0
c + ũc
√

2

]
. (3-19)

Clearly G as in (3-18)–(3-19) defines a C1 functional in a small neighborhood of X1 given by

X1
:= (u0

a, 0, v0
a, v

0
b,m0) ∈ H 1(R;C)× H 2(R;C)× H−1(R;C)2×C, (3-20)

where G is well-defined according to (3-6). Let us apply the implicit function theorem at this point. By
(3-18) we have to show that

uc+m0 cos
(

ũ0
c
√

2

)
ũc = f −m sin

ũ0
c
√

2

has a unique solution (ũc,m) such that ũc ∈ H 2(R;C) for any f ∈ H 1(R;C) with linear bounds. From
(3-7), we have

lim
x→±∞

cos
ũ0

c
√

2
=∓1, (3-21)

so that we can assume

µ0(x)= exp
(

m0
∫ x

0
cos

ũ0
c
√

2

)
.
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Note that µ0 decays exponentially in space as x→±∞. We have

µ0uc+ (µ
0)x ũc = µ

0
[

f −m sin
ũ0

c
√

2

]
.

Using (3-10), we choose m ∈ C such that∫
R

µ0
[

f −m sin
ũ0

c
√

2

]
= 0, (3-22)

so that
|m| ≤ C‖ f ‖L2(R;C)

with C > 0 depending on the quantity
∣∣∫

R
µ0 sin(ũ0

c/
√

2)
∣∣ 6= 0 and ‖µ0

‖L2(R;C).8 We get

ũc =
1
µ0

∫ x

−∞

µ0
[

f −m sin
ũ0

c
√

2

]
. (3-23)

Finally, note that we have uc ∈ H 1(R;C). Indeed, first of all, thanks to (3-22), (3-8) and (3-21),

lim
x→±∞

ũc = lim
x→±∞

µ0

µ0
x

[
f −m sin

ũ0
c
√

2

]
= 0.

If s ≤ x �−1, from (3-21) we get∣∣∣∣µ0(s)
µ0(x)

∣∣∣∣= ∣∣∣∣exp
(
−m0

∫ x

s
cos

ũ0
c
√

2

)∣∣∣∣≤ Ce−Re m0(x−s),

so that we have, for x < 0 and large,9

|ũc(x)| ≤ C
∫ x

−∞

e−(Re m0)(x−s)
∣∣∣∣ f (s)−m sin

ũ0
c(s)
√

2

∣∣∣∣ ds

≤ C1(−∞,x]e−(Re m0)( · ) ?

∣∣∣∣ f −m sin
ũ0

c
√

2

∣∣∣∣, Re m0 > 0.

A similar result holds for x > 0 large, after using (3-22). Therefore, from Young’s inequality,

‖ũc‖L2(R;C) ≤ C
∥∥∥∥ f −m sin

ũ0
c
√

2

∥∥∥∥
L2(R;C)

≤ C‖ f ‖L2(R;C), (3-24)

as desired. On the other hand,

(ũc)x =

[
f −m sin

ũ0
c
√

2

]
−

µ0
x

(µ0)2

∫ x

−∞

µ0
[

f −m sin
ũ0

c
√

2

]
.

Since µ0
x/µ

0 is bounded (see (3-9)), we have ũc ∈ H 1(R;C). Finally, it is easy to see that ũc ∈ H 2(R;C).
Note that the constant involving the boundedness of the linear operator f 7→ ũc depends on the H 1-norm
of µ0, which blows up if (2-9) is satisfied.

8Note that ‖µ0
‖L2(R;C) blows up as (2-9) is attained.

9Here the symbol ? denotes convolution.
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It turns out that we can apply the implicit function theorem to the operator G described in (3-18)–(3-19),
so that (3-12) is satisfied, provided (3-11) holds.

First of all, note that (3-15) and (3-16) follow from ũc ∈ H 2(R;C).
On the other hand, the estimate (3-13) is equivalent to

‖ũc‖H2(R;C) ≤ Cν.

We will obtain this estimate using the almost linear character of the operator G around the point X1.
Since ũc satisfies (3-18), we have

2ua − (ũc)x
√

2
−m sin

ũ0
c + ũc
√

2
= 0.

Recall that ũc depends on ua . Near u0
a , one has

∂t ũc[u0
a + th]

∣∣
t=0 = w[h] + O(h2),

where w = w[h] solves the derivative equation

wx +m0 cos
(

ũ0
c
√

2

)
w =−2h−m[h] sin

ũ0
c
√

2
.

Here m[h] is a constant that makes the right-hand side integrable, just as in (3-23). From (3-11) we know
that ‖ua−u0

a‖H1(R;C) < ν. We shall use h := ua−u0
a . Following the computations after (3-23), we obtain

the desired conclusion (see, e.g., (3-24)). We conclude that the L2 norm of ũc is bounded by Cν. For the
derivatives of ũc, the proof is very similar. �

Later we will need a second invertibility theorem. This time we assume that m is fixed, ub ∼ u0
b is

known and we look for ua ∼ u0
a . Note that the positive sign in front of (3-2) will be essential for the

proof, otherwise we cannot take m fixed.

Proposition 3.4. Let X0
= (u0

a, u0
b, v

0
a, v

0
b,m0) ∈ H 1(R;C)2× H−1(R,C)×C be such that (3-4), (3-5),

(3-6) and (3-7) are satisfied. Assume additionally that the ODE

(µ1)x +m cos
(

ũ0
a + ũ0

b
√

2

)
µ1
= 0 (3-25)

has a smooth solution µ1
= µ1(x) ∈ C satisfying

|µ1(x)|> 0,
∣∣∣∣µ1

x(x)
µ1(x)

∣∣∣∣≤ C,
1
µ1 ∈ H 1(R;C), (3-26)

and G is smooth in a small neighborhood of X0. Then there exists ν1 > 0 and a fixed constant C > 0 such
that for all 0< ν < ν1 the following is satisfied: for any (ub, vb,m) ∈ H 1(R;C)× H−1(R;C)×C such
that

‖ub− u0
b‖H1(R;C)+ |m−m0

|< ν, (3-27)
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G is well-defined and there exist unique (ua, va) ∈ H 1(R,C)× H−1(R;C) such that

G(ua, ub, va, vb,m)≡ (0, 0),∫
R

(ua − ub)

(
1
µ1

)
x
= 0. (3-28)

‖ũa + ũb− ũ0
a − ũ0

b‖H2(R;C) ≤ Cν, (3-29)

lim
−∞
(ũa + ũb)= 0, lim

+∞
(ũa + ũb)=

√
2π, (3-30)

and ‖ua − u0
a‖H1(R;C) < Cν. (3-31)

Proof. Given ua , ub and vb well-defined, va is uniquely defined from (3-3). We solve for ua now.
We follow the ideas of the proof of Proposition 3.3. However, this time we consider G defined in the

opposite sense: using (3-17),

G = (G3,G4), G = G(ũc, ub, va, vb,m),

G : H 2(R;C)× H 1(R;C)× H−1(R;C)2×C−→ H 1(R;C)× H−1(R;C)

(ũc, ub, va, vb,m) 7−→ G(ũc, ub, va, vb,m)

with ∫
R

(ũc)x

(
1
µ1

)
x
= 0, (3-32)

where, from (3-2),

G3(ũc, ub, va, vb,m) :=
u0

c + uc− 2ub
√

2
−m sin

ũ0
c + ũc
√

2
, (3-33)

and, from (3-3),

G4(ũc, ub, va, vb,m)

:= va − vb+m
[
(u0

c + uc)x cos
ũ0

c + ũc
√

2
+
(u0

c + uc− ub)
2
+ u2

b
√

2
sin

ũ0
c + ũc
√

2

]
. (3-34)

Clearly G as in (3-33)–(3-34) defines a C1 functional in a small neighborhood of X2 given by

X2
:= (0, u0

b, v
0
a, v

0
b,m0) ∈ H 2(R;C)× H 1(R;C)× H−1(R;C)2×C, (3-35)

where G is well-defined according to (3-6) and G(X2)= (0, 0).
Fix m close enough to m0. Now we have to show that

uc−m cos
(

ũ0
c
√

2

)
ũc = f (3-36)

has a unique solution ũc such that uc ∈ H 2(R;C) for any f ∈ H 1(R;C). Indeed, consider µ1 given by
(3-25). It is not difficult to check that (see conditions (3-4), (3-27) and (3-7))

Re m > 0, lim
±∞

cos
ũ0

c
√

2
=∓1, and µ1

= exp
(
−m

∫ x

0
cos

ũ0
c
√

2

)
. (3-37)
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Note that, by (3-37) and (3-4), |µ1(x)| is exponentially growing in space as x→±∞. From (3-36),

(µ1ũc)x = µ
1 f,

so that, thanks to (3-26),

ũc =
1
µ1µ

1(0)ũc(0)+
1
µ1

∫ x

0
µ1 f.

Clearly lim±∞ ũc = 0 for f ∈ H 1(R;C). In order to ensure uniqueness, we seek ũc satisfying∫
R

uc

(
1
µ1

)
x
= 0,

which is nothing but (3-32) and (3-28), which is justified by (3-26). Let us show that ũc ∈ L2(R;C). We
have, for x > 0 large,

|ũc(x)| ≤ C
∫ x

0
e−(Re m)(x−s)

| f (s)| ds = Ce−(Re m)( · ) ? | f |, Re m > 0.

A similar estimate can be established if x < 0. Therefore, using Young’s inequality,

‖ũc‖L2(R;C) ≤ C‖ f ‖L2(R;C),

as desired. Now we check that uc ∈ H 1(R;C). Indeed, we have

uc = f −
µ1

x

(µ1)2

∫ x

0
µ1 f.

Since µ1
x/µ

1 is bounded, we have proven that uc ∈ L2(R;C). A new iteration proves that uc ∈ H 1(R;C).
Estimates (3-29)–(3-31) are consequences of the implicit function theorem and can be proved as in the
previous proposition. The proof is complete. �

We finish this section by pointing out the role played by the Bäcklund transformation in the mKdV
dynamics. We recall the following standard result:

Theorem 3.5. Let m ∈ C be a fixed parameter, and I ⊂ R an open time interval. Assume that
ub ∈ C(I ; H 1(R;C)) solves (1-1), i.e.,

(ub)t + ((ub)xx + u3
b)x = 0, (3-38)

in the H 1-sense. Assume, moreover that ub is close to u0
b and that (3-25) and (3-26) hold. Define

vb := −((ub)xx + u3
b) as a distribution in H−1(R;C). Then, for each t ∈ I , the corresponding solution

(ua(t), va(t)) of G1 = G2 = 0 for m fixed, obtained in the space H 1(R;C)× H−1(R;C), satisfies the
following:

(1) ua ∈ C(I ; H 1(R;C));

(2) (ua)t := (va)x is well-defined in H−2(R;C); and

(3) ua solves (1-1) in the H 1-sense.
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Proof. The first step is an easy consequence of the continuous character of the solution map given by the
implicit function theorem. By density we can assume ub(t) ∈ H 3(R;C). From (3-2) we have

(ua)x − (ub)x = m cos
(

ũa + ũb
√

2

)
(ua + ub), (3-39)

and

(ua)xx − (ub)xx = m cos
(

ũa + ũb
√

2

)
((ua)x + (ub)x)−

m
√

2
sin
(

ũa + ũb
√

2

)
(ua + ub)

2.

Therefore, from (3-3) and (3-2),

va − vb =−((ua)xx − (ub)xx)−
m
√

2
sin
(

ũa + ũb
√

2

)
[(ua + ub)

2
+ (u2

a + u2
b)]

= −((ua)xx − (ub)xx)− (ua − ub)(u2
a + uaub+ u2

b)

=−((ua)xx + u3
a)− ((ub)xx + u3

b).

We have from (3-38) that (vb)x + ((ub)xx + u3
b)x = 0. Therefore,

(va)x + ((ua)xx + u3
a)x = 0. (3-40)

Finally, if (ua)t = (va)x , we have that ua solves (1-1). In order to prove this result, we compute the time
derivative in (3-2): we get

(ua)t − (ub)t = m cos
(

ũa + ũb
√

2

)
((ũa)t + (ũb)t). (3-41)

Note that, given ub, the solution ua is uniquely defined, thanks to the implicit function theorem. Addi-
tionally, from (3-3),

(va)x − (vb)x +m
[
((ua)xx + (ub)xx) cos

ũa + ũb
√

2
−

1
√

2
((ua)x + (ub)x)(ua + ub) sin

ũa + ũb
√

2

+
√

2(ua(ua)x + ub(ub)x) sin
ũa + ũb
√

2
+
(u2

a + u2
b)

2
(ua + ub) cos

ũa + ũb
√

2

]
= 0.

We use (3-2) and (3-3) in the previous identity, and get

(va)x − (vb)x +

[
m((ua)xx + (ub)xx) cos

ũa + ũb
√

2
+ (u2

a − uaub+ u2
b)((ua)x − (ub)x)

]
= 0.

Finally, we use (3-39) to obtain

(va)x − (vb)x +m cos
(

ũa + ũb
√

2

)
((ua)xx + u3

a + (ub)xx + u3
b)= 0,

so (3-38) and (3-40) imply

(va)x − (vb)x = m cos
(

ũa + ũb
√

2

)
(va + vb),

so that from (3-41) and the uniqueness we are done. �
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4. Dynamics of complex-valued mKdV solitons

In what follows we will apply the results from the previous section in a neighborhood of the complex
soliton at time zero. Define (cf. (2-1)),

Q̃0
:= Q̃(x;α, β, 0, 0), (4-1)

and similarly for Q0 and Q̃0
t . Recall that, by Lemma 2.2, the complex soliton Q0 is well-defined

everywhere if (2-9) is not satisfied. Finally, given any

z̃0
b ∈ Ḣ 1(R;C),

we define z0
b by the identity (see (3-1), for instance)

z0
b := (z̃

0
b)x ,

and, in term of distributions,

w0
b := −((z

0
b)xx + (z0

b)
3) ∈ H−1(R;C).

Lemma 4.1. There exists ν0 > 0 and C > 0 such that, for all 0 < ν < ν0, the following holds. For all
z0

b ∈ H 1(R;C) satisfying

‖z0
b‖H1(R;C) < ν, (4-2)

there exist unique y0
a ∈ H 1(R,C), y1

a ∈ H−1(R,C) and m ∈ C of the form

y0
a(x)= y0

a [z
0
b](x), y1

a(x)= y1
a [z

0
b, w

0
b](x), m := β + iα+ q0 (4-3)

such that

‖y0
a‖H1(R;C)+ |q

0
| ≤ Cν, z̃0

a + ỹ0
a ∈ H 2(R;C),

and G(Q0
+ z0

b, y0
a , Q̃0

t +w
0
b, y1

a ,m)≡ (0, 0). (4-4)

Note that both z̃0
a and ỹ0

a may be unbounded functions, but the sum is bounded on R.

Proof. Let Q0 be the soliton profile with parameters β, α and x1 = x2 = 0 (cf. (4-1)). We apply
Proposition 3.3 with

u0
a := Q0, u0

b := 0, v0
a := Q̃0

t , v0
b := 0 and m0

:= β + iα.

Clearly ũ0
a + ũ0

b = Q̃0 satisfies (3-6)–(3-7). From (2-15) we have

(Q0)x − (β + iα) cos
(

Q̃0
√

2

)
Q0
= 0, Q0(−∞)= 0, (4-5)

so that we have (cf. (3-8)–(3-9))

µ0
= Q0.
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Clearly Q0 is never zero. Moreover, |(Q0)−1 Q0
x | is bounded on R. Now we prove that∫

R

sin
(

Q̃0
√

2

)
Q0
6= 0.

From (2-15) and (2-18),∫
R

sin
(

Q̃0
√

2

)
Q0
=

1
√

2(β + iα)

∫
R

(Q0)2 =
4(β + iα)
√

2(β + iα)
= 2
√

2. �

Before continuing, we need some definitions. We write

α∗ := α+ Im q0, β∗ := β +Re q0, (4-6)

so that m in (4-3) satisfies
m = β + iα+ q0

= β∗+ iα∗.

Since q0 is small, we have that β∗ and α∗ are positive quantities. Similarly, define

δ∗ := (α∗)2− 3(β∗)2, γ ∗ := 3(α∗)2− (β∗)2, (4-7)

and compare with (1-4).
Consider the kink profile Q̃ introduced in (2-1). We consider, for all t ∈ R, the complex (kink) profile

Q̃∗(t, x) := Q̃(x;α∗, β∗, δ∗t + x1, γ
∗t + x2), (4-8)

with δ∗ and γ ∗ defined in (4-7), x1 and x2 possibly depending on time, and

Q∗(t, x) := ∂x Q̃∗(t, x). (4-9)

It is not difficult to see that (see, e.g., (1-10))

Q∗(t, x)= Qc(x − ct − x̂),
√

c = β∗+ iα∗, x̂ ∈ C,

which is a complex-valued solution of mKdV (1-1). Technically, the complex soliton Q∗(t) has velocity
−γ ∗ = (β∗)2 − 3(α∗)2, a quantity that is always smaller than the corresponding speed (β∗)2 of the
associated real-valued soliton Q(β∗)2 obtained by sending α∗ to zero. Finally, as in (2-6) we define

Q̃∗t (t, x) := −(β∗+ iα∗)2 Q∗(t, x).

Lemma 4.2. Fix α, β > 0. Assume that x1, x2 are time-dependent functions such that

|x ′1(t)| + |x
′

2(t)| � |δ
∗
− γ ∗| = 2((α∗)2+ (β∗)2). (4-10)

Then there exists a sequence of times tk ∈ R, k ∈ Z such that (2-9) is satisfied. In particular, (tk) is a
sequence with no limit points.

Proof. Note that (2-9) now reads

(δ∗− γ ∗)tk + (x1− x2)(tk)=
π

α∗

(
k+ 1

2

)
.
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By (4-7), δ∗ − γ ∗ = −2((α∗)2 + (β∗)2) 6= 0, and using (4-10) and the mean and intermediate value
theorems applied to the smooth function

f (t) := (δ∗− γ ∗)t + (x1− x2)(t),

at each value π

α∗

(
k+ 1

2

)
, k ∈ Z, we see that f satisfies

f ′(t)=−2((α∗)2+ (β∗)2)+ (x ′1− x ′2)(t)∼−2((α∗)2+ (β∗)2). �

We conclude that Q̃∗ and Q∗ defined in (4-8) and (4-9) are well-defined except for an isolated sequence
of times tk . We impose now the condition

t ∈ R satisfies t 6= tk for all k ∈ Z. (4-11)

In what follows we will solve the Cauchy problem associated to mKdV with suitable initial data.
Indeed, we will assume that

y0
a is a real-valued function and y0

a ∈ H 1(R). (4-12)

We will need the following:10

Theorem 4.3 ([Kenig et al. 1993]). For any y0
a ∈H 1(R), there exists a unique11 solution ya ∈C(R, H 1(R))

with initial data ya(0)= y0
a ∈ H 1(R) to mKdV , and

sup
t∈R

‖ya(t)‖H1(R) ≤ C‖y0
a‖H1(R)

with C > 0 independent of time. Moreover, the mass

M[ya](t) :=
1
2

∫
R

y2
a(t, x) dx = M[y0

a ] (4-13)

and energy

E[ya](t) :=
1
2

∫
R

(ya)
2
x(t, x) dx − 1

4

∫
R

(ya)
4(t, x) dx = E[y0

a ] (4-14)

are conserved quantities.

Let ya ∈ C(R, H 1(R)) denote the corresponding solution for mKdV with initial data y0
a . Since

‖y0
a‖H1 ≤ Cη, we have, for a (possibly different) constant C > 0,

sup
t∈R

‖ya(t)‖H1(R) ≤ Cη. (4-15)

In particular, we can define, for all t ∈ R,

ỹa(t) :=
∫ x

0
ya(t, s) ds,

and
(ỹa)t(t) := −((ya)xx(t)+ y3

a(t)) ∈ H−1(R) (4-16)

10We recall that this result is consequence of the local Cauchy theory and the conservation of mass and energy (4-13)–(4-14).
11In a certain sense; see [Kenig et al. 1993].
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because ya(t) ∈ L p(R) for all p ≥ 2.

Lemma 4.4. Assume that a time t ∈R and y0
a are such that (4-11) and (4-12) hold. Then there are unique

zb = zb(t) ∈ H 1(R;C) and wb = wb(t) ∈ H−1(R;C) such that, for all t 6= tk ,

z̃b+ ỹa ∈ H 2(R;C), (4-17)

1
√

2
(Q∗+ zb− ya)= (β + iα+ q0) sin

Q̃∗+ z̃b+ ỹa
√

2
, (4-18)

where Q̃ and Q are defined in (4-8) and (4-9). Moreover, we have

0= Q̃∗t +wb− (ỹa)t + (β + iα+ q0)

[
(Q∗x + (zb)x + (ya)x) cos

Q̃∗+ z̃b+ ỹa
√

2

+
(Q∗+ zb)

2
+ y2

a
√

2
sin

Q̃∗+ z̃b+ ỹa
√

2

]
, (4-19)

and, for all t 6= tk ,
‖zb(t)‖H1(R;C) < Cν (4-20)

with C uniformly bounded provided t is uniformly far from each tk .

Proof. We will use Proposition 3.4. For that it is enough to recall that, from (2-15) and (2-16), and for
all t 6= tk ,12

1
√

2
Q∗ = (β + iα+ q0) sin

Q̃∗
√

2
(4-21)

and

Q̃∗t + (β + iα+ q0)

[
Q∗x cos

Q̃∗
√

2
+
(Q∗)2
√

2
sin

Q̃∗
√

2

]
= 0,

so that we can apply Proposition 3.4 at X0
= (Q∗, 0, Q̃∗t , 0,m), where, by, (4-21) we have m= (β+iα+q0).

It is not difficult to see that the function µ1 in (3-25) is given by

µ1
= (Q∗)−1,

and (3-26) is satisfied. Note that we require the estimate (4-15) in order to obtain (4-18)–(4-19). Finally,
(4-20) is a direct consequence of (3-31). �

Remark. Since, from (4-4), we get

1
√

2
(Q0
+ z0

b− y0
a)= (β + iα+ q0) sin

Q̃0
+ z̃0

b+ ỹ0
a

√
2

,

we have that (4-18) implies by uniqueness that

(Q∗+ zb− ya)(t = 0)= Q0
+ z0

b− y0
a ,

12It is interesting to note that the shifts x1, x2 on Q∗(t, x) cannot be modified, otherwise there is no continuity at t = 0.
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i.e.,
(Q∗+ zb)(t = 0)= Q0

+ z0
b.

We are ready to prove a detailed version of Theorem 1.3, a result on complex-valued solitons.

Theorem 4.5. There exists ν0 > 0 such that for all 0< ν < ν0 the following holds: Consider the initial
data u0

b := Q0
+ z0

b ∈ H 1(R;C), where

‖z0
b‖H1(R;C) < ν.

Assume in addition that the corresponding function y0
a given by Lemma 4.1 is real-valued and belongs

to H 1(R). Fix ε0 > 0. Then, for all t such that |t − tk | ≥ ε0, with tk defined in Lemma 4.2, the function
ub := Q∗+ zb, with zb introduced in Lemma 4.4, is an H 1 complex-valued solution of mKdV , it satisfies
(ub)t = (Q∗+ zb)t = (Q̃∗t +wb)x and

sup
|t−tk |≥ε0

‖ub(t)− Q∗(t)‖H1(R;C) ≤ Cε0ν. (4-22)

Remark. The quantity ε0 > 0 is just an auxiliary parameter and it can be made as small as required;
however, the constant Cε0 in (4-22) becomes singular as ε0 approaches zero.

Remark. In Corollary 6.5 we will prove that there is an open set in H 1(R;C) leading to y0
a being

real-valued. The openness of this set will be a consequence of the implicit function theorem.

Proof. We apply Lemma 4.1. Assuming (4-12) we have y0
a real-valued, so that there is an mKdV

dynamics ya(t) constructed in Theorem 4.3. Lastly, we apply Lemma 4.4 to obtain the dynamical function
Q∗(t)+ zb(t). Theorem 3.5 gives the conclusion. �

Now we will prove that the mass and energy,

1
2

∫
R

u2
b(t) and 1

2

∫
R

(ub)
2
x(t)−

1
4

∫
R

u4
b(t), (4-23)

remain conserved for all time without using the mKdV equation (1-1), only the Bäcklund transformation
(4-18). The fact that z̃b+ ỹa is in H 1(R;C) will be essential for the proof.

Corollary 4.6. Assume that t 6= tk for all k ∈ Z. Then the quantity

1
2

∫
R

(Q∗+ zb)
2(t) (4-24)

is well-defined and independent of time, and

1
2

∫
R

(Q∗+ zb)
2(t)= 1

2

∫
R

(y0
a)

2
+ 2(β + iα+ q0). (4-25)

Moreover, (4-25) can be extended in a continuous form to every t ∈ R.

Proof. Using (4-18) and multiplying each side by (1/
√

2)(Q∗+ zb+ ya), we obtain

1
2(Q

∗
+ zb− ya)(Q∗+ zb+ ya)=−(β + iα+ q0)

[
cos

Q̃∗+ z̃b+ ỹa
√

2

]
x
.
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Using (2-15) and (2-14),

cos
Q̃∗+ z̃b+ ỹa
√

2
= cos

Q̃∗
√

2
cos

z̃b+ ỹa
√

2
− sin

Q̃∗
√

2
sin

z̃b+ ỹa
√

2

=
1

(β∗+ iα∗)

[
Q∗x
Q∗

cos
z̃b+ ỹa
√

2
−

Q∗
√

2
sin

z̃b+ ỹa
√

2

]
. (4-26)

We integrate on R to obtain

1
2

∫
R

(Q∗+ zb− ya)(Q∗+ zb+ ya)=−(β + iα+ q0) cos
Q̃∗+ z̃b+ ỹa
√

2

∣∣∣∣∞
−∞

.

Since lim±∞ Q∗ = 0, lim±∞ Q∗x/Q∗ =∓(β∗+ iα∗) (see (2-4)) and lim±∞(z̃b+ ỹa)= 0, we get (4-24)–
(4-25), because the mass of ya(t) is conserved. �

Corollary 4.7. Assume that t 6= tk for all k ∈ Z. Then the quantity

E[Q∗+ zb](t) :=
1
2

∫
R

(Q∗+ zb)
2
x(t)−

1
4

∫
R

(Q∗+ zb)
4(t) (4-27)

is well-defined and independent of time. Moreover, it satisfies

1
2

∫
R

(Q∗+ zb)
2
x(t)−

1
4

∫
R

(Q∗+ zb)
4(t)= E[y0

a ] −
2
3(β
∗
+ iα∗)3.

Finally, this quantity can be extended in a continuous way to every t ∈ R.

Proof. Let m = (β + iα+ q0). From (4-18) we have

(Q∗+ zb)x − (ya)x = m cos
(

Q̃∗+ z̃b+ ỹa
√

2

)
(Q∗+ zb+ ya). (4-28)

Multiplying by (Q∗+ zb)x + (ya)x , we get

(Q∗+ zb)
2
x − (ya)

2
x = m cos

(
Q̃∗+ z̃b+ ỹa
√

2

)
(Q∗+ zb+ ya)(Q∗+ zb+ ya)x

= m cos
(

Q̃∗+ z̃b+ ỹa
√

2

)[
(Q∗+ zb)(Q∗+ zb)x + ya(ya)x

+ya(Q∗+ zb)x + (Q∗+ zb)(ya)x
]
. (4-29)

On the other hand, we multiply (4-28) by ya and (Q∗+ zb) to obtain

ya(Q∗+ zb)x − ya(ya)x = m cos
(

Q̃∗+ z̃b+ ỹa
√

2

)
(Q∗+ zb+ ya)ya,

and

(Q∗+ zb)(Q∗+ zb)x − (Q∗+ zb)(ya)x = m cos
(

Q̃∗+ z̃b+ ỹa
√

2

)
(Q∗+ zb+ ya)(Q∗+ zb).
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If we subtract the latter from the former we get

ya(Q∗+ zb)x + (Q∗+ zb)(ya)x

= (Q∗+ zb)(Q∗+ zb)x + ya(ya)x +m cos
(

Q̃∗+ z̃b+ ỹa
√

2

)
[y2

a − (Q
∗
+ zb)

2
]. (4-30)

Substituting (4-30) into (4-29),

(Q∗+ zb)
2
x − (ya)

2
x

= m cos
(

Q̃∗+ z̃b+ ỹa
√

2

)
[(Q∗+ zb)

2
+ y2

a ]x +m2 cos2
(

Q̃∗+ z̃b+ ỹa
√

2

)
[y2

a − (Q
∗
+ zb)

2
]. (4-31)

Finally, we use (4-18) once again. We multiply by (Q∗+ zb+ ya):

1
√

2
[(Q∗+ zb)

2
− y2

a ] = m sin
(

Q̃∗+ z̃b+ ỹa
√

2

)
(Q∗+ zb+ ya).

Substituting in (4-31) we finally arrive to the identity

(Q∗+ zb)
2
x − (ya)

2
x = m cos

(
Q̃∗+ z̃b+ ỹa
√

2

)
[(Q∗+ zb)

2
+ y2

a ]x

−m3
√

2 cos2
(

Q̃∗+ z̃b+ ỹa
√

2

)
sin
(

Q̃∗+ z̃b+ ỹa
√

2

)
(Q∗+ zb+ ya).

The last term on the right-hand side above can be recognized as a total derivative. After integration and
using (4-26), we obtain∫

R

[(Q∗+ zb)
2
x − (ya)

2
x ] = m

∫
R

cos
(

Q̃∗+ z̃b+ ỹa
√

2

)
[(Q∗+ zb)

2
+ y2

a ]x +
2
3

m3 cos3
(

Q̃∗+ z̃b+ ỹa
√

2

)∣∣∣∣+∞
−∞

=
m
√

2

∫
R

sin
(

Q̃∗+ z̃b+ ỹa
√

2

)
(Q∗+ zb+ ya)[(Q∗+ zb)

2
+ y2

a ] −
4
3

m3

=
1
2

∫
R

[(Q∗+ zb)
2
− y2

a ][(Q
∗
+ zb)

2
+ y2

a ] −
4
3

m3

=
1
2

∫
R

[(Q∗+ zb)
4
− y4

a ] −
4
3

m3.

Finally,
1
2

∫
R

(Q∗+ zb)
2
x −

1
4

∫
R

(Q∗+ zb)
4
=

1
2

∫
R

(ya)
2
x −

1
4

∫
R

y4
a −

2
3
(β + iα+ q0)3.

Since the right-hand side above is conserved for all time, we have proved (4-27). �

5. Complex solitons versus breathers

We introduce now the notion of breather profile. Given parameters x1, x2 ∈ R and α, β > 0, we consider
y1 and y2 defined in (2-2). Let B̃ be the localized profile

B̃ = B̃(x;α, β, x1, x2) := 2
√

2 arctan
β sin(αy1)

α cosh(βy2)
, (5-1)
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and, with a slight abuse of notation, we redefine

B := B̃x . (5-2)

Note that
B̃(−∞)= B̃(+∞)= 0 (5-3)

and, for k ∈ Z, {
B̃(x;α, β, x1+ kπ/α, x2)= (−1)k B̃(x;α, β, x1, x2),

B(x;α, β, x1+ kπ/α, x2)= (−1)k B(x;α, β, x1, x2).
(5-4)

Now we introduce the directions associated to the shifts x1 and x2. Given a breather profile of parameters
α, β, x1 and x2, we define

B1 = B1(x;α, β, x1, x2) := ∂x1 B, (5-5)

B2 = B2(x;α, β, x1, x2) := ∂x2 B (5-6)

and, for δ and γ defined in (1-4),
B̃t := δB1+ γ B2. (5-7)

We also have
B̃t + Bxx + B3

= 0; (5-8)

see [Alejo and Muñoz 2013] for a proof of this identity.
If x1 or x2 are time-dependent variables, we assume that the associated B j corresponds to the partial

derivative with respect to the time-independent variable x j , evaluated at x j (t).
In this section we will prove that there is a deep interplay between complex solitons and breather

profiles. We start with the following identities:

Lemma 5.1. Let (B, Q) be a pair breather-soliton profiles with scaling parameters α, β > 0 and shifts
x1, x2 ∈ R. Assume that (2-9) is not satisfied. Then we have

B− Q
√

2
− (β − iα) sin

B̃+ Q̃
√

2
≡ 0, (5-9)

and B̃t − Q̃t + (β − iα)
[
(Bx + Qx) cos

B̃+ Q̃
√

2
+

B2
+ Q2
√

2
sin

B̃+ Q̃
√

2

]
≡ 0. (5-10)

Proof. Let us assume (5-9) and prove (5-10). We have from (2-6) and (2-11) that

Q̃t =−(β + iα)2 Q =−(Qxx + Q3).

Using (5-9), we have

Bx − Qx − (β − iα)(B+ Q) cos
B̃+ Q̃
√

2
= 0,

and

Bxx − Qxx − (β − iα)(Bx + Qx) cos
B̃+ Q̃
√

2
+ (β − iα)

(B+ Q)2
√

2
sin

B̃+ Q̃
√

2
= 0,
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so that, using (5-9) and (5-8) once again,

B̃t − Q̃t + (β − iα)
[
(Bx + Qx) cos

B̃+ Q̃
√

2
+

B2
+ Q2
√

2
sin

B̃+ Q̃
√

2

]
=−(Bxx + B3)+ Qxx + Q3

+

[
Bxx − Qxx + (β − iα)

(B+ Q)2
√

2
sin

B̃+ Q̃
√

2

]
+ (β − iα)

B2
+ Q2
√

2
sin

B̃+ Q̃
√

2

= Q3
− B3

+
√

2(β − iα)(B2
+ Q2

+ B Q) sin
B̃+ Q̃
√

2
= Q3

− B3
+ (B2

+ Q2
+ B Q)(B− Q)= 0.

The proof of (5-9) is a tedious but straightforward computation which deeply exploits the nature of the
breather and soliton profiles. For the proof of this result, see the Appendix. �

Corollary 5.2. Under the assumptions of Lemma 5.1, for any x ∈ R one has

B− Q
√

2
− (β + iα) sin

B̃+ ˜Q
√

2
≡ 0 in R,

where Q is the complex-valued soliton with parameters β and −α.

In order to prove some results in the next section, we need several additional identities.

Corollary 5.3. Under the assumptions of Lemma 5.1, for any x ∈ R one has

cos
B̃+ Q̃
√

2
= 1−

1
2(β − iα)

∫ x

−∞

(B2
− Q2) and lim

x→±∞
cos
(

B̃+ Q̃
√

2

)
(x)=∓1.

Remark. Note that both limits above make sense since, from (2-15) and (2-14), we have, for all x ,

cos
B̃+ Q̃
√

2
= cos

B̃
√

2
cos

Q̃
√

2
− sin

B̃
√

2
sin

Q̃
√

2

=
1

β + iα

[
Qx

Q
cos

B̃
√

2
−

Q
√

2
sin

B̃
√

2

]
.

In particular,

lim
±∞

cos
B̃+ Q̃
√

2
=

1
β + iα

×∓(β + iα)=∓1.

Proof. We multiply by (1/
√

2)(B+ Q) in (5-9). We get

1
2
(B2
− Q2)− (β − iα) sin

B̃+ Q̃
√

2
×

1
√

2
(B+ Q)= 0,

i.e.,
1
2
(B2
− Q2)+ (β − iα)∂x cos

B̃+ Q̃
√

2
= 0.
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From (2-1) and (5-1), one has

lim
x→−∞

cos
B̃+ Q̃
√

2
= 1.

Therefore, after integration,

1
2

∫ x

−∞

(B2
− Q2)+ (β − iα)

[
cos

B̃+ Q̃
√

2
− 1

]
= 0,

as desired. �

Lemma 5.4. M := 2β
[

1+
α(β sin(2αy1)+α sinh(2βy2))

α2+β2−β2 cos(2αy1)+α2 cosh(2βy2)

]
.

Proof. See, e.g., [Alejo and Muñoz 2013]. �

The following result is not difficult to prove:

Corollary 5.5. We have∫ x

0
M= 2βx + log(α2

+β2
−β2 cos(2αy1)+α

2 cosh(2βy2))− L0, (5-11)

where
L0 := log(α2

+β2
−β2 cos(2αx1)+α

2 cosh(2βx2)).

Corollary 5.6. Under the assumptions of Lemma 5.1, we have

−(β − iα)
∫ x

0
cos

B̃+ Q̃
√

2
= (β + iα)x + log(α2

+β2
−β2 cos(2αy1)+α

2 cosh(2βy2))− log(1+ e2βy2+2iαy1)− L0+ L1,

with L0 and L1 as defined in (5-11) and (2-19).

Proof. We have, from Corollaries 5.3 and 5.5 and (2-19),∫ x

0
cos

B̃+ Q̃
√

2

= x −
1

β − iα

∫ x

0
(M−N)

= x −
1

β − iα
[2βx + log(α2

+β2
−β2 cos(2αy1)+α

2 cosh(2βy2))− log(1+ e2(βy2+iαy1))− L0+ L1]

= −
1

β − iα

[
(β + iα)x + log(α2

+β2
−β2 cos(2αy1)+α

2 cosh(2βy2))

− log(1+ e2(βy2+iαy1))− L0+ L1
]
,

as desired. �

Corollary 5.7. Assume that x1, x2 ∈ R do not satisfy (2-9). Consider the function

µ(x;α, β, x1, x2) := 2
√

2α2β2 cosh(βy2) cos(αy1)+ i sinh(βy2) sin(αy1)

α2 cosh2(βy2)+β2 sin2(αy1)
= β B̃1− iα B̃2. (5-12)
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Then we have

lim
x→±∞

µ(x)= 0 (5-13)

and µx = (β − iα) cos
(

B̃+ Q̃
√

2

)
µ. (5-14)

Proof. Identity (5-13) is trivial. Let us prove (5-14). First of all, note that (cf. (2-7))

β Q̃1− iα Q̃2 ≡ 0. (5-15)

On the other hand, from (5-9) we have

(B̃1− Q̃1)x − (β − iα) cos
(

B̃+ Q̃
√

2

)
(B̃1+ Q̃1)= 0.

Similarly,

(B̃2− Q̃2)x − (β − iα) cos
(

B̃+ Q̃
√

2

)
(B̃2+ Q̃2)= 0.

We then have

µx = (β B̃1− iα B̃2)x

= (β − iα) cos
(

B̃+ Q̃
√

2

)
µ+ (β Q̃1− iα Q̃2)x + (β − iα) cos

(
B̃+ Q̃
√

2

)
(β Q̃1− iα Q̃2)

= (β − iα) cos
(

B̃+ Q̃
√

2

)
µ.

The proof is complete. �

Lemma 5.8. Assume that (2-9) does not hold. Then µ defined in (5-12) has no zeroes, i.e., |µ(x)|> 0 for
all x ∈ R.

Proof. From (5-12) we have µ(x)= 0 if and only if cos(βy1)= 0 and sinh(αy2)= 0, i.e., from (2-10) we
have that (2-9) is satisfied. �

Now we consider the opposite case, where the sign in front of (5-14) is negative. We finish this section
with the following result:

Lemma 5.9. Assume that (2-9) does not hold. Then

µ1(x;α, β, x1, x2) :=
1
µ
(x;α, β, x1, x2),

with µ as defined in (5-12), is well-defined, has no zeroes and satisfies

lim
x→±∞

|µ1(x)| = +∞ and µ1
x =−(β − iα) cos

(
B̃+ Q̃
√

2

)
µ1.

Proof. This is a direct consequence of Corollary 5.7 and Lemma 5.8. �
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6. Double Bäcklund transformation for mKdV

Assume that x1 and x2 do not satisfy (2-9). Consider the breather and soliton profiles B and Q defined in
(5-2) and (2-5), which are well-defined by Lemma 2.2. From Lemma 5.1, we have the following result:

Lemma 6.1. We have, for all x ∈ R,

G(B, Q, B̃t , Q̃t , β − iα)= (0, 0).

Note that the previous identity can be extended by zero to the case where x1 and x2 satisfy (2-9), in
such a form that now G(B, Q, B̃t , Q̃t , β − iα) as a function of x1 and x2 is well-defined and continuous
everywhere in R2 (and identically zero).

Define (cf. (5-1)–(5-7)),
B̃0(x;α, β) := B̃(x;α, β, 0, 0),
B̃0

t (x;α, β) := δ B̃1(x;α, β, 0, 0)+ γ B̃2(x;α, β, 0, 0),
B0(x;α, β) := ∂x B̃(x;α, β, 0, 0).

(6-1)

Finally, for z0
a ∈ H 1(R) we define

ω0
a := −((z

0
a)xx + (z0

a)
3) ∈ H−1(R). (6-2)

We will use Lemma 6.1 and apply Propositions 3.3 and 3.4 in a neighborhood of the complex soliton and
the breather at time zero. Recall that, by Lemma 2.2, the complex soliton Q0 is everywhere well-defined
since (2-9) is not satisfied.

Lemma 6.2. There exists η0 > 0 and a constant C > 0 such that, for all 0< η < η0, the following holds:
Assume that z0

a ∈ H 1(R) satisfies

‖z0
a‖H1(R) < η, ω0

a defined by (6-2).

Then there exist unique z0
b ∈ H 1(R,C), ω0

b ∈ H−1(R;C) and m1 ∈ C of the form

z0
b(x)= z0

b[z
0
a](x), ω0

b(x)= ω
0
b[z

0
a, ω

0
a](x), m1 = m1[z0

a] := β − iα+ p0

such that

‖z0
b‖H1(R;C)+ |p

0
| ≤ Cη,

z̃a + z̃b ∈ H 2(R;C),

and G(B0
+ z0

a, Q0
+ z0

b, B̃0
t +ω

0
a, Q̃0

t +ω
0
b,m1)≡ (0, 0).

Proof. Let Q0 and B0 be the soliton and breather profiles defined in (4-1) and (6-1). We will apply
Proposition 3.3 with

u0
a := B0, u0

b := Q0, v0
a := B̃0

t , v0
b := Q̃0

t , m0
:= β + iα.
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Clearly Re m0
= β > 0, so that (3-4) is satisfied. On the other hand, (3-5) is a consequence of Lemma 6.1.

From (5-9), condition (3-6) reads

sin
B̃0
+ Q̃0
√

2
=
(B0
− Q0)

√
2(β − iα)

∈ H 1(R;C).

Condition (3-7) is clearly satisfied (see (2-3) and (5-3)). From Corollary 5.7 we have

µ0
= β(B̃1)

0
− iα(B̃2)

0.

Note that, from Lemmas 2.2 and 5.8, µ0 has no zeroes in the complex plane and it is exponentially
decreasing in space. Finally, let us show that∫

R

µ0 sin
B̃0
+ Q̃0
√

2
=

4iαβ
β − iα

.

First of all, we have from (5-15) that

[β(B̃1)
0
− iα(B̃2)

0
] sin

B̃0
+ Q̃0
√

2

= [β(B̃1+ Q̃1)
0
− iα(B̃2+ Q̃2)

0
] sin

B̃0
+ Q̃0
√

2
+ [−β(Q̃1)

0
+ iα(Q̃2)

0
] sin

B̃0
+ Q̃0
√

2
.

Consequently,

[β(B̃1)
0
− iα(B̃2)

0
] sin

B̃0
+ Q̃0
√

2
=−
√

2β∂x1

[
cos

B̃+ Q̃
√

2

]∣∣∣∣0+ iα
√

2∂x2

[
cos

B̃+ Q̃
√

2

]∣∣∣∣0.
Therefore, if R1, R2 > 0 are independent of x1 and x2,∫ R1

−R2

µ0 sin
B̃0
+ Q̃0
√

2
=
√

2
∫ R1

−R2

{
−β∂x1

[
cos

B̃+ Q̃
√

2

]∣∣∣∣0+ iα∂x2

[
cos

B̃+ Q̃
√

2

]∣∣∣∣0}
=
√

2
{
−β∂x1

∫ R1

−R2

cos
B̃+ Q̃
√

2
+ iα∂x2

∫ R1

−R2

cos
B̃+ Q̃
√

2

}∣∣∣∣0.
Now we use Corollary 5.6: we have

∂x1

∫ R1

−R2

cos
B̃+ Q̃
√

2
=−

1
β − iα

[
2iαe2βy2+2iαy1

1+ e2βy2+2iαy1
−

2αβ2 sin(2αy1)

α2+β2−β2 cos(2αy1)+α2 cosh(2βy2)

]∣∣∣∣R2

−R1

.

We have that

lim
R1,R2→∞

∂x1

∫ R1

−R2

cos
B̃+ Q̃
√

2
=−

2iα
β − iα

.

Similarly,

∂x2

∫ R1

−R2

cos
B̃+ Q̃
√

2
=−

1
β − iα

[
2βe2βy2+2iαy1

1+ e2βy2+2iαy1
−

2α2β sinh(2βy2)

α2+β2−β2 cos(2αy1)+α2 cosh(2βy2)

]∣∣∣∣R2

−R1
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and

lim
R1,R2→∞

∂x2

∫ R1

−R2

cos
B̃+ Q̃
√

2
=−

2β − 4β
β − iα

=
2β

β − iα
.

Adding the previous identities, we finally obtain∫
R

µ0 sin
B̃0
+ Q̃0
√

2
=

[
2iαβ
β − iα

+
2iαβ
β − iα

]
=

4iαβ
β − iα

6= 0.

After applying Proposition 3.3, we are done. �

Now we address the following very important question: is the y0
a given in Lemma 4.1 real-valued for

all x ∈ R? In general, it seems that the answer is negative; however, if z0
a in Lemma 6.2 is real-valued,

and z0
b from Lemma 6.2 satisfies (4-2), then the corresponding function y0

a given in Lemma 4.1 is also
real-valued. This property is a consequence of a deep result called the permutability theorem, which we
explain below.

First of all, from Lemma 6.2 we have

1
√

2
(B0
+ z0

a − Q0
− z0

b)= (β − iα+ p0) sin
B̃0
+ z̃0

a + Q̃0
+ z̃0

b
√

2
(6-3)

for some small p0
∈ C, and

sin
B̃0
+ z̃0

a + Q̃0
+ z̃0

b
√

2
∈ H 1(R;C). (6-4)

Now, by taking η0 smaller if necessary, such that Cη < ν0 for all 0< η < η0, Lemma 4.1 also applies.
We get

1
√

2
(Q0
+ z0

b− y0
a)= (β + iα+ q0) sin

Q̃0
+ z̃0

b+ ỹ0
a

√
2

, (6-5)

for some small q0.
We need some auxiliary notation. Define

β∗ := β +Re p0, α∗ := α− Im p0,

so that (compare with (4-6))
β − iα+ p0

= β∗− iα∗.

We also consider
Q̃0
∗
:= Q̃( · ; −α∗, β∗, 0, 0), Q0

∗
:= Q( · ; −α∗, β∗, 0, 0).

Note that, since p0 is small, we have that Q0
∗

and Q0 share the same properties, i.e., they are close enough.
Indeed,

‖Q0
∗
− Q0

‖H1(R;C) ≤ Cη. (6-6)

Moreover, thanks to Lemma 2.4 applied to Q0
∗
,

1
√

2
Q0
∗
= (β − iα+ p0) sin

Q̃0
∗
√

2
.
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Consequently, applying Proposition 3.4 starting at y0
a and using (6-6), we can define z0

d via the identity

1
√

2
(Q0
+ z0

d − y0
a)= (β − iα+ p0) sin

˜Q0
+ z̃0

d + ỹ0
a

√
2

. (6-7)

Similarly, using (4-6) and (6-1) we define

(B̃0)∗ := B̃0( · ;α∗, β∗), (B0)∗ := B( · ;α∗, β∗), (6-8)

so that from Lemma 5.1 we have

1
√

2
((B0)∗− (Q0)∗)= (β∗− iα∗) sin

(B̃0)∗+ (Q̃0)∗
√

2
,

and applying Corollary 5.2 we get

1
√

2
((B0)∗− (Q0)∗)= (β + iα+ q0) sin

(B̃0)∗+ (Q̃0)∗
√

2
.

Using that

‖(B0)∗− B0
‖H1(R) ≤ Cη, ‖(Q0)∗− Q0

‖H1(R;C) ≤ Cη,

we can use Proposition 3.4 to obtain

1
√

2
(B0
+ z0

c − Q0
− z0

d)= (β + iα+ q0) sin
B̃0
+ z̃0

c +
˜Q0
+ z̃0

d
√

2
(6-9)

for some z0
c small. Note that the coefficients (β − iα+ p0) and (β + iα+ q0) were left fixed this time.

Note additionally that z0
d and z0

c are bounded functions. Now we can state a permutability theorem [Lamb
1980, p. 246]. This is part of a more general result, standard in the mathematical physics literature; see
[Wahlquist and Estabrook 1973] for a formal proof in the Korteweg–de Vries (KdV) case.

Theorem 6.3 (permutability theorem). We have

z̃0
c ≡ z̃0

a. (6-10)

In particular, z0
c is an H 1 real-valued function.

Proof. Define

u0 := y0
a , u1 := Q0

+ z0
b, u2 := Q0

+ z0
d , (6-11)

u12 := B0
+ z0

a, u21 := B0
+ z0

c, (6-12)

and κ1 := β + iα+ q0, κ2 := β − iα+ p0. (6-13)
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Since p0 and q0 are small quantities, we have κ1 6= κ2, and both are nonzero complex numbers. Equations
(6-5), (6-3), (6-7) and (6-9) now read

u1− u0
√

2
= κ1 sin

ũ1+ ũ0
√

2
, (6-14)

u12− u1
√

2
= κ2 sin

ũ12+ ũ1
√

2
, (6-15)

u2− u0
√

2
= κ2 sin

ũ2+ ũ0
√

2
,

u21− u2
√

2
= κ1 sin

ũ21+ ũ2
√

2
.

Note that u1 and u2 are obtained via the implicit function theorem and therefore there is an associated
uniqueness property for solutions obtained in a small neighborhood of the breather. The idea is to prove
that ũ21 ≡ ũ12. Define ũ3 via the identity

ũ3− ũ1

2
√

2
=− arctan

[
κ1− κ2

κ1+ κ2
tan

ũ12− ũ0

2
√

2

]
. (6-16)

Whenever u1 = Q0, u12 = B0, u0 = 0, κ1 = β + iα and κ2 = β − iα, we get from (1-2) that

ũ3− Q̃0

2
√

2
=− arctan

[
i
α

β
tan

B̃0

2
√

2

]
=− arctan

(
i

sin(αx)
cosh(βx)

)
=− arctan

eiαx
− e−iαx

eβx + e−βx .

Therefore, using (2-1),

ũ3 = 2
√

2 arctan(e(β+iα)x)− 2
√

2 arctan
eiαx
− e−iαx

eβx + e−βx

= 2
√

2 arctan
e(β+iα)x

− (eiαx
− e−iαx)/(eβx

+ e−βx)

1+ e(β+iα)x(eiαx − e−iαx)/(eβx + e−βx)

= 2
√

2 arctan(e(β−iα)x)

= Q̃0.

Consequently, under the smallness assumptions in (6-11)–(6-13) (the open character of these sets is
essential) we have that ũ3 is still well-defined on the real line with values in the complex plane, and it is
close to ˜Q0, as well as to ũ2.

Let us find an equation for ũ3. As usual, define u3 := (ũ3)x . We claim that

u3− u0
√

2
= κ2 sin

ũ3+ ũ0
√

2
; (6-17)

in other words, ũ3 ≡ ũ2. Similarly, if ũ4 solves

ũ2− ũ4

2
√

2
=− arctan

[
κ1− κ2

κ1+ κ2
tan

ũ21− ũ0

2
√

2

]
, (6-18)
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then
u4− u0
√

2
= κ1 sin

ũ4+ ũ0
√

2
,

which implies ũ4 ≡ ũ1. Finally, from (6-16) and (6-18) we have ũ12 ≡ ũ21, which proves (6-10). Even
better, we have13

tan
ũ12− ũ0

2
√

2
=−

κ1+ κ2

κ1− κ2
tan

ũ2− ũ1

2
√

2
. (6-19)

Now let us prove (6-17). First of all, denote

` :=
κ1+ κ2

κ1− κ2
. (6-20)

We have, from (6-16),
ũ12− ũ0
√

2
=−2 arctan

[
` tan

ũ3− ũ1

2
√

2

]
,

so that

u12− u0 =
−`(u3− u1) sec2((ũ3− ũ1)/(2

√
2))

1+ `2 tan2((ũ3− ũ1)/(2
√

2))
.

We also check that

sin
ũ12− ũ0
√

2
=
−2` tan((ũ3− ũ1)/(2

√
2))

1+ `2 tan2((ũ3− ũ1)/(2
√

2))
,

and

cos
ũ12− ũ0
√

2
=

1− `2 tan2((ũ3− ũ1)/(2
√

2))

1+ `2 tan2((ũ3− ũ1)/(2
√

2))
.

Substituting in (6-15) and using (6-14) we obtain

−`
u3−u1
√

2
sec2 ũ3− ũ1

2
√

2

=κ1 sin
ũ1+ũ0
√

2

[
1+`2 tan2 ũ3− ũ1

2
√

2

]
+κ2 sin

ũ1+ũ0
√

2

[
1−`2 tan2 ũ3−ũ1

2
√

2

]
−2`κ2 cos

ũ1+ũ0
√

2
tan

ũ3−ũ1

2
√

2
.

Using (6-20) and (6-14), we have

u3− u0−
√

2κ1 sin
ũ1+ ũ0
√

2

=−
√

2 cos2 ũ3− ũ1

2
√

2

[
(κ1− κ2) sin

ũ1+ ũ0
√

2

(
1+ ` tan2 ũ3− ũ1

2
√

2

)
− 2κ2 cos

ũ1+ ũ0
√

2
tan

ũ3− ũ1

2
√

2

]
,

i.e., after some standard trigonometric simplifications,

u3− u0 =
√

2κ2 sin
ũ1+ ũ0
√

2
cos

ũ3− ũ1
√

2
+
√

2κ2 cos
ũ1+ ũ0
√

2
sin

ũ3− ũ1

2
√

2
=
√

2κ2 sin
ũ3+ ũ0
√

2
,

as desired. �

Another consequence of the previous result is the following equivalent result:

13Note that this identity is well-defined at one particular set of functions, then extended by continuity.
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Corollary 6.4. We have

z0
d ≡ z0

b and p0
= q0.

In other words, α∗ = α∗ and β∗ = β∗.

Proof. Note that z0
a ≡ z0

c . From (6-9) we have

1
√

2
(B0
+ z0

a − Q0
− z0

d)= (β − iα+ q0) sin
B̃0
+ z̃0

a + Q̃0
+ z̃0

d
√

2
.

The result follows from (6-3) and the uniqueness of z0
b and p0 as implicit functions of z0

a . �

The key result of this paper is the following surprising property:

Corollary 6.5. The function y0
a is real-valued. Moreover, there is a small ball of data z0

a in H 1(R) for
which the corresponding data z0

b lies in an open set of H 1(R;C).

Proof. The second statement is a consequence of the implicit function theorem. On the other hand, the
first one is consequence of the permutability theorem. First of all, note that

β + iα+ q0 = β − iα+ p0
= β∗− iα∗. (6-21)

Now, from (6-19) we get

tan
B0
+ z0

a − y0
a

2
√

2
=−

β +Re p0

i(α− Im p0)
tan

Q̃0
+ z̃0

b−
˜Q0
− z̃b

0

2
√

2
,

so

tan
B0
+ z0

a − y0
a

2
√

2
=−

β +Re p0

(α− Im p0)
tanh

Im(Q̃0
+ z̃0

b)
√

2
,

from which we have that y0
a(x) is real-valued for all x ∈ R. �

The main advantage of the double Bäcklund transformation is that now the dynamics of y0
a is real-valued.

We apply Theorem 4.5 with the initial data z0
b to get a complex solution of mKdV, ub(t)= Q∗(t)+ zb(t)

defined for all t 6= tk and satisfying (4-22).
Now we reconstruct za(t). As in (6-8), let us define, using (5-1), (4-6) and (4-7),

B̃∗(t, x) := B̃(x;α∗, β∗, δ∗t + x1, γ
∗t + x2) (6-22)

and

B∗(t, x)= ∂x B̃∗(t, x), B̃∗j (t, x) := B̃ j (x;α∗, β∗, x1, x2)
∣∣
x1=δ∗t+x1, x2=γ ∗t+x2

. (6-23)

In other words, we recover the original breather in (1-2) with scaling parameters α∗ and β∗ and shifts x1,
x2, provided they do not depend on time. Finally, as in (5-7) we define

B̃∗t (t, x) := δ B̃∗1 (t, x)+ γ B̃∗2 (t, x).
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Lemma 6.6. Assume that t ∈ R is such that (4-11) holds. Then there are unique za = za(t) ∈ H 1(R;C)

and wa = wa(t) ∈ H−1(R;C) such that

z̃a + z̃b ∈ H 2(R;C), (6-24)

1
√

2
(B∗+ za − Q∗− zb)= (β − iα+ p0) sin

B̃∗+ z̃a + Q̃∗+ z̃b
√

2
, (6-25)

where B̃∗ and B∗ are defined in (6-22) and (6-23). Moreover, we have

0= B̃∗t +wa − Q̃∗t −wb

+ (β − iα+ p0)

[
(B∗x + (za)x + Q∗x + (zb)x) cos

B̃∗+ z̃a + Q̃∗+ z̃b
√

2

+
(B∗+ za)

2
+ (Q∗+ zb)

2
√

2
sin

B̃∗+ z̃a + Q̃∗+ z̃b
√

2

]
(6-26)

and, for all t 6= tk ,
‖za(t)‖H1(R;C) ≤ Cη.

Proof. We apply Proposition 3.4 at the point

X0
:= (B∗, Q∗, B̃∗t , Q̃∗t , β − iα+ p0),

because a slight variation of Lemma 6.1 shows that (compare with (6-21))

G(B∗, Q∗, B̃∗t , Q̃∗t , β − iα+ p0)= (0, 0).

Since p0 is small,
Re(β − iα+ p0) > 0.

On the other hand, (3-6) is a consequence of (6-4). Similarly, from (2-3) we get that (3-7) is satisfied.
Finally, in order to ensure that (3-26) is clearly satisfied, we apply Lemma 5.9: we get

µ1
=

1
µ∗
, where µ∗ := β∗ B̃∗1 − iα∗ B̃∗2 ;

see Corollary 5.7 and (6-23). Then we conclude thanks to Proposition 3.4. �

Corollary 6.7. The function za(t) as defined in (6-25) is real-valued.

Proof. The same proof as in Corollary 6.5 works mutatis mutandis, since now ya(t) is real-valued. �

Proposition 6.8. For all t 6= tk , ua = B∗+ za is an H 1 real-valued solution to mKdV with initial data u0.
Therefore, by uniqueness,14 B∗+ za ≡ u.

Proof. Since ub = Q∗+ zb solves mKdV, we use (6-25)–(6-26) and Theorem 3.5 to conclude. �

14Technically, what we need is a result about unconditional uniqueness, however, from [Kwon and Oh 2012] one can conclude
that such a result is valid for mKdV on the line if we consider data with H1 regularity.
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7. Stability of breathers

We now prove Theorem 1.2. We assume that u0 ∈ H 1(R) satisfies (1-5) for some η small. Let
u ∈ C(R; H 1(R)) be the — unique in a certain sense — associated solution of the Cauchy problem (1-1)
with initial data u(0)= u0. Finally, we recall the conserved quantities of mass (4-13) and energy (4-14).

Proof of Theorem 1.2. Consider ε0 > 0 small but fixed, A0 > 1 and 0< η < η0 small. From Lemmas 6.2
and 6.6 the proof is not difficult, and we follow standard methods; see [Martel et al. 2002] for instance.
Indeed, define the tubular neighborhood

V(A0, η) :=
{
U ∈ H 1(R)

∣∣ inf
x̃1,x̃2∈R

‖U − B( · ;α, β, x̃1, x̃2)‖ ≤ A0η
}
. (7-1)

Note that B represents here the breather profile defined in (5-2). The original breather B(t) from (1-2) can
be recovered using (6-22) as follows (there is a slight abuse of notation here, but it is easily understood):

B(t, x;α, β, x1, x2)= B(x;α, β, δt + x1, γ t + x2).

Clearly u(t) ∈ V(A0, η) for small t > 0. Define the set

Jε0 := {t > 0 | |t − tk |> ε0 for all k ∈ Z}.

We will prove that u(t) is in V(A0, η) for all t ∈ Jε0 provided A0 is chosen large enough.
We argue by reductio ad absurdum. Assume that, for some T0 ∈ Jε0 , we have

inf
x̃1,x̃2∈R

‖u(T0)− B( · ;α, β, x̃1, x̃2)‖H1(R) = A0η, (7-2)

and, for any δ > 0 small, δ < 1
100ε0, if T1 := T0+ δ then

inf
x̃1,x̃2∈R

‖u(T1)− B( · ;α, β, x̃1, x̃2)‖H1(R) > A0η. (7-3)

We also assume that T0 is the first positive time in Jε0 with this property. We will show that, under this
last assumption, after fixing A0 > 1 large enough we will have

u(T0) ∈ V
( 1

2 A0, η
)
, (7-4)

which contradicts (7-2)–(7-3) and therefore proves the result for all positive times far from the points tk .
First of all, by taking η0 > 0 smaller if necessary, and η ∈ (0, η0), we can ensure that there are unique
x1(t), x2(t) ∈ R defined on [0, T0] such that

z(t, x) := u(t, x)− B(x;α, β, δt + x1(t), γ t + x2(t)) (7-5)

satisfies ∫
R

z(t, x)B1(x;α, β, δt + x1(t), γ t + x2(t)) dx = 0, (7-6)

and ∫
R

z(t, x)B2(x;α, β, δt + x1(t), γ t + x2(t)) dx = 0. (7-7)
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The directions B1 and B2 are defined in (5-5)–(5-6) (see [Alejo and Muñoz 2013] for a similar statement
and its proof). Moreover, we have

‖z(0)‖H1(R) . η,

and similar estimates for x1(0) and x2(0), with constants not depending on large A0. Therefore, (2-9) is
not satisfied for x1(0) and x2(0). For the sake of simplicity, we can assume x1(0)= x2(0)= 0, otherwise
we perform a shift in space and time on the solution to set them equal to zero.

Define z0
a := z(0) and apply Lemma 6.2, and then Lemma 4.1 to the corresponding z0

b obtained from
Lemma 6.2. We will obtain a real-valued seed y0

a , small in H 1(R). Note that the constants involved in
each inversion do not depend on A0. In particular, the differences between α and α∗, and β and β∗, are
not dependent on A0:

|α−α∗| + |β −β∗|. η. (7-8)

Next, we let the mKdV equation evolve with initial data y0
a . From Theorem 4.3 we have the bound

(4-15) for the dynamics ya(t). On the other hand, the decomposition (7-6)–(7-7) implies that

|x ′1(t)| + |x
′

2(t)|. A0η, (7-9)

from which the set of points where condition (4-11) is not satisfied is still a countable set of isolated
points (see Lemma 4.2).

Now we are ready to apply Lemmas 4.4 and 6.6 with parameters α∗, β∗ and shifts x1(t) and x2(t) in
(4-8), (4-9) and (6-22)–(6-23). In that sense, we have chosen a unique set of parameters for each fixed
time t , and the mKdV solution that we choose is the same as the original u(t). Indeed, just notice that,
at t = 0, we have, from (4-18) at t = 0 and (6-5),

1
√

2
(Q∗(0)+ zb(0)− y0

a)= (β + iα+ q0) sin
Q̃∗(0)+ z̃b(0)+ ỹ0

a
√

2
,

1
√

2
(Q0
+ z0

b− y0
a)= (β + iα+ q0) sin

Q̃0
+ z̃0

b+ ỹ0
a

√
2

.

Using the uniqueness of the solution obtained by the implicit function theorem in a neighborhood of the
base point, we have

zb(0)= Q0
− Q∗(0)+ z0

b ∼ z0
b. (7-10)

Now we use (6-25) at t = 0 and (6-3):

1
√

2
(B∗(0)+ za(0)− Q∗(0)− zb(0))= (β − iα+ p0) sin

B̃∗(0)+ z̃a(0)+ Q̃∗(0)+ z̃b(0)
√

2
,

and
1
√

2
(B0
+ z0

a − Q0
− z0

b)= (β − iα+ p0) sin
B̃0
+ z̃0

a + Q̃0
+ z̃0

b
√

2
.
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From (7-10), we have

1
√

2
(B∗(0)+ za(0)− Q0

− z0
b)= (β − iα+ p0) sin

B̃∗(0)+ z̃a(0)+ Q̃0
+ z̃0

b
√

2
.

Once again, since B0 and B∗(0) are close, using the uniqueness of the solution obtained via the implicit
function Theorem, we conclude that

B∗(0)+ za(0)= B0
+ z0

a.

Since both initial data are the same, we conclude that the solution obtained via the Bäcklund transformation
is u(t).

Note that the constants involved in the inversions are not dependent on A0. We finally get

sup
|t−tk |≥ε0

‖u(t)− B∗(t)‖H1(R) ≤ C0η, (7-11)

where

B∗(t, x) := B(x;α∗, β∗, δ∗t + x1(t), γ ∗t + x2(t)).

Finally, from (7-8) and after redefining the shift parameters and choosing t = T0, we get the desired
conclusion since, for A0 large enough, we have C0 ≤

1
2 A0 and (7-4) is proved.

Now we deal with the remaining case, t ∼ tk . Fix k ∈ Z. Note that za = u− B∗ satisfies the equation

(za)t + [(za)xx + 3(B∗)2za + 3B∗z2
a + z3

a]x + x ′1(t)B
∗

1 + x ′2(t)B
∗

2 = 0 (7-12)

in the H 1-sense. In what follows, we will prove that, maybe taking ε0 smaller but independent of k, we
have

sup
|t−tk |≤ε0

‖u(t)− B∗(t)‖H1(R) ≤ 4A0η. (7-13)

Since A0 grows with ε0 small, this implies that, after choosing η0 smaller if necessary, such an operation
can be performed without any risk.

In what follows, we assume that there is T ∗ ∈ (tk − ε0, tk + ε0] such that, for all t ∈ [tk − ε0, T ∗],

‖za(t)‖H1(R) ≤ 4A0η, (7-14)

and T ∗ is maximal in the sense of the above definition (i.e., there is no T ∗∗ > T ∗ satisfying the previous
property). If T ∗ = tk + ε0, there is nothing to prove and (7-13) holds.

Assume T ∗ < tk + ε0. Now we consider the quantity

1
2

∫
R

z2
a(t), t ∈ [t0− ε0, T ∗].

We have, from (7-12),

∂t
1
2

∫
R

z2
a(t)=

∫
R

(za)x [3(B∗)2za + 3B∗z2
a + z3

a](t)+ x ′1(t)
∫

R

za(t)B∗1 + x ′2(t)
∫

R

za(t)B∗2 .
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Using (7-14) and (7-9), we have, for some — explicit — fixed constant C > 0 depending only on α, β,
and η0 even smaller if necessary, ∣∣∣∣∂t

1
2

∫
R

z2
a(t)

∣∣∣∣≤ C A2
0η

2.

After integration in time and using (7-11), we have∫
R

z2
a(T
∗)≤

∫
R

z2
a(t0− ε0)+Cε0 A2

0η
2
≤ 1.9A2

0η
2,

if ε0 is small but fixed. A similar estimate can be obtained for ‖(za)x(t)‖H1(R) by proving an estimate of
the form ∣∣∣∣∂t

1
2

∫
R

(za)
2
x(t)

∣∣∣∣≤ C A2
0η

2.

Therefore, estimate (7-14) has been bootstrapped, which implies that T ∗= t0+ε0. Note that the estimates
do not depend on k, but only on the length of the intervals, which is about ε0.15

We conclude that there is Ã0 > 0 fixed such that

sup
t∈R

‖u(t)− B∗(t)‖H1(R) ≤ Ã0η.

Finally, estimates (1-6) and (1-7) are obtained from (7-9), using the fact that α∗ and β∗ are close to α
and β in terms of Cη. The proof is complete. �

Remark. From the proof and the results in [Colliander et al. 2003], it is easy to show that the evolution
of breathers can be estimated in a polynomial form in time for any s > 1

4 , however, in order to make
things simpler, we will not address this issue.

Corollary 7.1. We have, for all t 6= tk ,

1
2

∫
R

(B∗+ za)
2(t)= 1

2

∫
R

(Q∗+ zb)
2(t)+ 2(β∗− iα∗)= M[y0

a ] + 4β∗.

Moreover, this identity can be extended to any t ∈ R.

Proof. In the same way as Corollary 4.6. �

Finally, we recall that γ ∗ = 3(α∗)2− (β∗)2 and E[u] = 1
2

∫
R

u2
x −

1
4

∫
R

u4.

Corollary 7.2. Assume that t 6= tk for all k ∈ Z. Then we have

E[B∗+ za](t)= E[Q∗+ zb](t)− 4
3(β
∗
− iα∗)3 = E[y0

a ] +
4
3β
∗γ ∗.

Finally, this quantity can be extended in a continuous form to every t ∈ R.

Proof. In the same way as Corollary 4.7. �

15Note that an argument involving the uniform continuity of the mKdV flow will not work in this particular case since the
sequence of times (tk) is unbounded.
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8. Asymptotic stability

We finally prove Theorem 1.4. Note that, for some c0 > 0 depending on η > 0,

lim
t→+∞

‖ya(t)‖H1(x≥c0t) = 0. (8-1)

This result can be obtained by adapting the proof for the soliton case in [Martel and Merle 2005]. Indeed,
consider

φ(x) := K
π

arctan(ex/K ), K > 0,

so that

lim
−∞

φ = 0, lim
+∞

φ = 1, φ′′′ ≤
1

K 2φ
′, φ′ > 0 on R. (8-2)

Fix c0, t0 > 0. Consider the quantities

I (t) := 1
2

∫
R

y2
a(t)φ

(
x − c0t0+ 1

2 c0(t0− t)
)
,

J (t) :=
∫

R

[ 1
2(ya)

2
x(t)−

1
4 y4

a(t)+
1
2 y2

a(t)
]
φ
(
x − c0t0+ 1

2 c0(t0− t)
)
.

It is not difficult to see that

I ′(t)=−1
4

c0

∫
R

y2
aφ
′(t)+ 1

2

∫
R

y2
aφ
′′′(t)− 3

2

∫
R

(ya)
2
xφ
′(t)+ 3

4

∫
R

y4
aφ
′(t),

so that, using (8-2), and if c0 > 0 is small (and, depending on η, even smaller if necessary),

I ′(t)≤ 0.

We then have

I (t0)≤ I (0)= 1
2

∫
R

y2
a(0)φ(x − c0t0)

and

lim
t→+∞

I (t)= 0.

A similar result holds for J (t), which proves (8-1).
Note that z̃b+ ỹa ∈ H 2(R;C) (see (4-17)). In what follows, we will prove that this function satisfies

better estimates than ya and zb if x is large.
Fix t 6= tk large with |t − tk | ≥ ε0. We use the notation

z̃c := ỹa + z̃b. (8-3)

From (3-29) we have

‖z̃c(t)‖H2(R;C) ≤ Cν
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with C = C(ε0) independent of time. From the Bäcklund transformation (4-18) we obtain

(z̃c)x − 2ya =
√

2(β + iα+ q0)

[
sin

Q̃∗+ z̃c
√

2
− sin

Q̃∗
√

2

]
=
√

2(β + iα+ q0)

[
sin

Q̃∗
√

2

{
cos

z̃c
√

2
− 1

}
+ sin

z̃c
√

2
cos

Q̃∗
√

2

]
= Q∗

{
cos

z̃c
√

2
− 1

}
+
√

2 sin
(

z̃c
√

2

)
Q∗x
Q∗
.

Assume now that x > c0t/2. Then we have, for some fixed constant c > 0,∣∣∣∣Q∗x
Q∗
+m

∣∣∣∣≤ e−cx , m = β + iα+ q0
= β∗+ iα∗,

and
(z̃c)x +mz̃c = g,

where

g := Q∗
{

cos
z̃c
√

2
− 1

}
+
√

2
{

sin
z̃c
√

2
−

z̃c
√

2

}
Q∗x
Q∗
+ z̃c

{
Q∗x
Q∗
+m

}
+ 2ya.

Solving the previous ODE, we get

z̃c(t, x)= z̃c
(
t, 1

2 c0t
)
e−m(x−c0t/2)

+

∫ x

c0t/2
g(t, s)e−m(x−s) ds,

so that

|z̃c(t, x)|.
∣∣z̃c
(
t, 1

2 c0t
)∣∣e−β∗(x−c0t/2)

+

∫ x

c0t/2
|g(t, s)|e−β

∗(x−s) ds.

From Young’s inequality we get

‖z̃c(t)‖L2(x≥c0t) .
∣∣z̃c
(
t, 1

2 c0t
)∣∣e−β∗c0t/2

+‖g(t)‖L2(x≥c0t)e
−β∗c0t .

Clearly, ∣∣z̃c
(
t, 1

2 c0t
)∣∣. ‖z̃c(t)‖H1(R;C) ≤ Cν, ‖g(t)‖L2(x≥c0t) ≤ Cν2

+Cνe−ct
+ o(1).

Passing to the limit, we obtain that, for all Tn→+∞ with |Tn − tk | ≥ ε0 for all n and k,

lim
n→+∞

‖z̃c(Tn)‖L2(x≥c0Tn) = 0.

A similar result can be obtained for zc and (zc)x . From (8-3), we get

lim
n→+∞

‖zb(Tn)‖H1(x≥c0Tn) = 0. (8-4)

Finally, we repeat the same strategy with (6-25) and (6-24) to obtain

lim
t→+∞

‖za(Tn)‖H1(x≥c0Tn) = 0.

Note that, since the flow map is continuous in time with values in H 1, we can extend the result to any
sequence Tn→+∞ by choosing an ε0 > 0 smaller but still independent of k.



DYNAMICS OF COMPLEX-VALUED MODIFIED KDV SOLITONS 671

Appendix A: Proof of Lemma 5.1

We will use the specific character of the breather and soliton profiles. Since (2-9) does not hold, both Q̃
and Q are well-defined everywhere. We have

sin
B̃+ Q̃
√

2
= sin(2(arctan21+ arctan22)),

where, from (2-1) and (5-1), 22 := eβy2+iαy1 and 21 :=
β sin(αy1)

α cosh(βy2)
. The expression in the previous

display equals

2
[
sin(arctan21) cos(arctan22)+ sin(arctan22) cos(arctan21)]

× [cos(arctan21) cos(arctan22)− sin(arctan21) sin(arctan22)
]

= 2
[
tan(arctan21) cos2(arctan21) cos2(arctan22)− sin2(arctan21) tan(arctan22) cos2(arctan22)

+ cos2(arctan21) tan(arctan22) cos2(arctan22)− sin2(arctan22) tan(arctan21) cos2(arctan21)
]
.

Since sin2(arctan z)= z2

1+z2 and cos2(arctan z)= 1
1+z2 , we have

sin
B̃+ Q̃
√

2
=

2(21−2
2
122+22−2

2
221)

(1+22
1)(1+2

2
2)

. (A-1)

On the other hand,

1
√

2
(B− Q)= 2∂x(arctan21− arctan22)= 2

(
21,x

1+22
1
−

22,x

1+22
2

)
= 2

(1+22
2)21,x − (1+22

1)22,x

(1+22
1)(1+2

2
2)

.

Hence, collecting terms and factoring, from (5-9) we are led to prove that

(1+22
2)21,x − (1+22

1)22,x − (β − iα)(21−2
2
122+22−2

2
221)= 0. (A-2)

Now we perform some computations. We have, from (2-1),

22,x = (β + iα)22, (A-3)

α(β + iα22
1) cosh2(βy2)= β(α cosh2(βy2)+ iβ sin2(αy1)) (A-4)

and

21,x =

(
β sin(αy1)

α cosh(βy2)

)
x
=
αβ cos(αy1) cosh(βy2)−β

2 sin(αy1) sinh(βy2)

α cosh2(βy2)
,

so that

21,x − (β − iα)21 = β

[
αeiαy1 cosh(βy2)−βeβy2 sin(αy1)

α cosh2(βy2)

]
(A-5)

and

[21,x + (β − iα)21]2
2
2 = β

[
αe−iαy1 cosh(βy2)+βe−βy2 sin(αy1)

α cosh2(βy2)

]
e2(βy2+iαy1)

= β22

[
αeβy2 cosh(βy2)+βeiαy1 sin(αy1)

α cosh2(βy2)

]
. (A-6)
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Using (A-3), (A-4), (A-5) and (A-6) we have that the left-hand side of (A-2) is

(1+22
2)21,x − 2(β + iα22

1)22− (β − iα)(1−22
2)21

= [21,x − (β − iα)21] + [21,x + (β − iα)21]2
2
2− 2(β + iα22

1)22

= β

[
αeiαy1 cosh(βy2)−βeβy2 sin(αy1)

α cosh2(βy2)

]
+β22

[
αeβy2 cosh(βy2)+βeiαy1 sin(αy1)− 2α cosh2(βy2)− 2iβ sin2(αy1)

α cosh2(βy2)

]
= β

[
αeiαy1 cosh(βy2)−βeβy2 sin(αy1)

α cosh2(βy2)

]
+β22

[
−αe−βy2 cosh(βy2)+βe−iαy1 sin(αy1)

α cosh2(βy2)

]
= 0,

which proves (A-2).
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