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LARGE BMO SPACES VS INTERPOLATION

JOSE M. CONDE-ALONSO, TAO MEI AND JAVIER PARCET

We introduce a class of BMO spaces which interpolate with L p and are sufficiently large to serve as
endpoints for new singular integral operators. More precisely, let (�,6,µ) be a σ -finite measure space.
Consider two filtrations of 6 by successive refinement of two atomic σ -algebras 6a and 6b having trivial
intersection. Construct the corresponding truncated martingale BMO spaces. Then, the intersection
seminorm only leaves out constants and we provide a quite flexible condition on (6a, 6b) so that the
resulting space interpolates with L p in the expected way. In the presence of a metric d , we obtain endpoint
estimates for Calderón–Zygmund operators on (�,µ, d) under additional conditions on (6a, 6b). These
are weak forms of the “isoperimetric” and the “locally doubling” properties of Carbonaro, Mauceri and
Meda which admit less concentration at the boundary. Examples of particular interest include densities
of the form e±|x |

α
for any α > 0 or (1+ |x |β)−1 for any β & n3/2. A (limited) comparison with Tolsa’s

RBMO is also possible. On the other hand, a more intrinsic formulation yields a Calderón–Zygmund
theory adapted to regular filtrations over (6a, 6b) without using a metric. This generalizes well-known
estimates for perfect dyadic and Haar shift operators. In contrast to previous approaches, ours extends
to matrix-valued functions (via recent results from noncommutative martingale theory) for which only
limited results are known and no satisfactory nondoubling theory exists so far.

Introduction

A BMO space is a set of functions that enjoy bounded mean oscillation in a certain sense. Both “mean”
and “oscillation” can be measured in many different ways. Most frequently, we find BMO spaces refer
to averages over balls in a metric measure space. In other notable scenarios, we may replace these
averages by conditional expectations with respect to a martingale filtration, or even by the action of a
nicely behaved semigroup of operators. These more abstract formulations are known to be very useful
given the lack of appropriate metrics. The relation between metric and martingale BMO spaces is well
understood for doubling spaces, that is, when the measure of a ball in the given metric is comparable
with the measure of its concentric dilations up to constants depending on the dilation factor but not on the
chosen ball. Indeed, in this case the metric BMO is equivalent to a finite intersection of martingale BMO
spaces constructed out of dyadic two-sided filtrations of atomic σ -algebras whose atoms look like balls;
see [Conde 2013; Garnett and Jones 1982; Hytönen and Kairema 2012; Mei 2003]. What is more relevant,
however, is that any of these martingale BMO spaces satisfies the following fundamental properties:

(i) Interpolation endpoint for the L p scale.
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(ii) John–Nirenberg inequalities and H1–BMO duality.

(iii) CZ extrapolation: L2-boundedness⇒ L∞→ BMO boundedness.

Hence, these spaces yield at least as many endpoint estimates as the metric BMO.
The main goal of this paper is to construct BMO spaces satisfying the properties stated above for a

larger class of measures, and to explore the implications of this construction to provide new endpoint
estimates. The first attempts in this direction [Mateu et al. 2000; Nazarov et al. 2002] culminated in the
work of Tolsa [2001] on so-called RBMO spaces. These spaces enjoy the above-mentioned properties
for measures of polynomial growth. There are, however, a couple of open questions concerning Tolsa’s
construction. In the first place, Calderón–Zygmund extrapolation holds under a Lipschitz kernel condition
instead of the more flexible Hörmander condition. Second, only interpolation of operators, has been
studied but it seems to be unknown whether these spaces interpolate with the L p scale. These two
problems were solved by Carbonaro, Mauceri and Meda [Carbonaro et al. 2009; 2010] for a different
class of measures, based on similar results for the Gaussian measure on Euclidean spaces [Mauceri and
Meda 2007]. The properties they imposed lead to locally doubling measures with certain concentration
behavior at the boundary. In both cases — up to equivalence in the norm and additional conditions — only
doubling balls are used to measure the mean oscillation of the function.

We present an alternative approach to these questions. Martingale BMO spaces always satisfy conditions
(i) and (ii) above, with independence of the existence of a metric in the underlying measure space. The
third property however requires additional structure on our BMO spaces. Indeed, assume for a moment that
we work with a two-sided filtration (6k)k∈Z of atomic σ -subalgebras of 6 with corresponding conditional
expectations E6k . If 5 denotes the union of atoms in our filtration, the corresponding martingale BMO
norm is given by

‖ f ‖BMO = sup
k∈Z

∥∥E6k | f −E6k−1 f |2
∥∥1/2
∞
,

which is larger than the function BMO norm

sup
A∈5

(
1

µ(A)

∫
A

∣∣∣∣ f (w)−
1

µ(A)

∫
A

f dµ
∣∣∣∣2 dµ(w)

)1
2

.

Thus, if we admit from [Carbonaro et al. 2009; Tolsa 2001] that extrapolation for (nonlocal) Calderón–
Zygmund operators imposes that our atoms be doubling — i.e., contained in a doubling ball of comparable
measure or a union of at most C0 sets of this kind; see below — we immediately find obstructions to
constructing filtrations satisfying this assumption for nondoubling spaces. We propose to consider a sort
of intersection of two large BMO spaces as follows. Consider a σ -finite measure space (�,6,µ) and
two atomic σ -algebras 6a, 6b of measurable sets in 6 satisfying 6a ∩6b = {�,∅}. Write BMO j for
any martingale BMO space over a filtration (6 jk)k≥1 with 6 j1 =6 j ; then the seminorm

‖ f ‖BMO6ab (�)
=max{‖ f −E6a f ‖BMOa, ‖ f −E6b f ‖BMOb}
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vanishes on constant functions precisely when 6a ∩6b is trivial. Let

BMO6ab(�)= { f ∈ L1
loc(�) | ‖ f ‖BMO6ab (�)

<∞}/C.

This settles a model of “large BMO spaces” which easily satisfy property (ii) and leave some room for
property (iii). The problem reduces then to identify conditions on the pair (6a, 6b) so that BMO6ab(�)

interpolates with the L p scale. A standard argument shows that this is the case when

‖ f ‖L◦p(�) := inf
k∈C
‖ f − k‖p ∼max{‖ f −E6a f ‖p, ‖ f −E6b f ‖p} =: ‖ f ‖L p

6ab
(�)

for 2≤ p <∞, where

L◦p(�)= L p(�,6,µ)/C,

L p
6ab
(�)= { f ∈ L1

loc(�) | ‖ f ‖L p
6ab
(�) <∞}/C

= L p(�,6,µ)/6a ∧ L p(�,6,µ)/6b.

Here, L p(�,6,µ)/6i denotes the quotient space of L p(�,6,µ) by the subspace of 6i -measurable
functions. More precisely, we have an isomorphism L◦p(�) ' L p

6ab
(�). It should be mentioned that

this isomorphism fails in general, even for the Lebesgue measure in Rn and many “natural” choices of
pairs (6a, 6b). Recall that L◦p(�)= L p(�) for infinite measures. Note also that we use ∧ and not ∩ since
this space is not really an intersection; we shall also write BMO6ab(�)=BMOa(�)/6a ∧BMOb(�)/6b.
To formulate a sufficient condition on (6a, 6b) for L◦p(�)' L p

6ab
(�), let 5 j be the set of atoms in 6 j .

When µ(�) <∞ we shall consider two distinguished atoms (A0, B0) ∈5a×5b, while for µ not finite
we take A0 = B0 =∅ for notation consistency. Given (A, B) ∈5a×5b, set

RA = {B ′ ∈5b | µ(A∩ B ′) > 0} and RB = {A′ ∈5a | µ(A′ ∩ B) > 0}.

We will write |RA| and |RB | for the cardinality of these sets. The following is the main result of this
paper, where we establish a condition on (6a, 6b) which suffices to make intersections and quotients
commute in L p as described above. We will say that (6a, 6b) is an admissible covering of (�,6,µ)
when 6a ∩6b = {�,∅} and

min
{

sup
A∈5a\{A0}

∑
B∈RA

|RB |
µ(A∩ B)2

µ(A)µ(B)
, sup

B∈5b\{B0}

∑
A∈RB

|RA|
µ(A∩ B)2

µ(A)µ(B)

}
< 1.

Theorem A. Let (�,6,µ) be a σ -finite measure space equipped with an admissible covering (6a, 6b).
Then, for each 2≤ p <∞, there exists a constant cp, depending only on p and the admissible covering,
such that

L◦p(�)'cp L p
6ab
(�).

Moreover, we have the desired complex interpolation result,

[BMO6ab(�), L◦1(�)]1/q 'cq L◦q(�) (1< q <∞),

with BMO6ab(�) defined as above for any two martingale BMO spaces over (6a, 6b).
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The first assertion fails for p = 1,∞. On the other hand, both the John–Nirenberg inequalities and
H1–BMO duality are easily formulated for these spaces. Therefore, we shall focus in what follows on
condition (iii). Calderón–Zygmund extrapolation means that under a certain mild smoothness condition on
the kernel, L2-boundedness yields L p-boundedness for 1< p <∞. As usual, we handle it by providing
an endpoint estimate for interpolation. Let d be a metric on � and denote by αB the α-dilation of a ball B.
We impose the standard Hörmander kernel condition

sup
Bd-ball

sup
z1,z2∈B

∫
�\αB
|k(z1, x)− k(z2, x)| + |k(x, z1)− k(x, z2)| dµ(x) <∞.

Define a CZO on (�,µ, d) as any linear map T satisfying the following properties:

• T is well-defined and bounded on L2(�).

• The kernel representation for any f ∈ Cc(�),

T f (x)=
∫
�

k(x, y) f (y) dµ(y) holds for x /∈ supp f

and some kernel k :�×� \1→ C satisfying the Hörmander condition.

Given C0 > 0, a 6-measurable set A will be called (C0, α, β)-doubling when it is the union of at most C0

sets which are contained in (α, β)-doubling balls — balls B such that µ(αB)≤ βµ(B)— of comparable
measure up to the constant C0. Recall that a filtration (6k)k≥1 is called regular if Ek f . Ek−1 f for
all k > 1 and all f ≥ 0.

Theorem B1. Let (6a, 6b) be an admissible covering of (�,6,µ). Assume that (�,6,µ) admits
regular filtrations (6 jk)k≥1 by successive refinement of 6 j1 =6 j for j = a, b and that each atom in 6 jk

is (C0, α, β)-doubling for certain absolute constants C0, α, β > 0. Construct the spaces BMO6ab(�)

which are defined over these filtrations. Then, every Calderón–Zygmund operator extends to a bounded
map L∞(�)→ BMO6ab(�), and L p(�)→ L p(�) for 1< p <∞.

A few illustrations of Theorem B1 are the following:

• Doubling case: Theorem B1 recovers Calderón–Zygmund extrapolation on homogeneous spaces
(�,µ, d). We shall construct explicit pairs (6a, 6b) and martingale filtrations satisfying our assumptions.

• Polynomial growth: Given any (�,µ, d) with polynomial growth, it is not difficult to construct atomic
σ -algebras composed uniquely of doubling atoms, even giving admissible coverings. Under the existence
of filtrations based on (6a, 6b) and composed of doubling atoms — regular or not — we may prove that
Tolsa’s RBMO sits inside our BMO6ab(�). This condition seems, unfortunately, a restrictive limit in
Theorem B1. However, it can be checked in some concrete scenarios, like for

dµ(x)=
dx

1+ |x |β
with β & n3/2

in Rn equipped with the Euclidean metric. Note that µ is doubling for β < n. The key advantage over
Tolsa’s approach is that we only need to impose Hörmander kernel smoothness, instead of stronger
Lipschitz conditions. This was also achieved by [Carbonaro et al. 2009; 2010] for another family of
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measures (see below) but not for the measures considered above, since they are drastically less concentrated
at the boundary for any β.

• Concentration at the boundary: Carbonaro et al. [2009; 2010] proved that when (�,µ, d) is locally
doubling and the measure concentrates at the boundary of open sets in a certain sense — together with a
purely metric condition that does not play any role here — a BMO space satisfying (i), (ii) and (iii) is
possible. Their main examples in Rn with a weighted Euclidean metric were dµ(x)= e±|x |

α

dx and α > 1.
The exponentially decreasing ones behave in some sense like the Gaussian measure, which was studied
a few years before by Mauceri and Meda. It is of polynomial growth, so that the kernel smoothness
condition was the main advantage with respect to Tolsa’s approach. The exponentially increasing ones
are not of polynomial growth. In this paper we shall remove their condition α > 1.

In the literature, we find other families of operators — with no need of a metric in the underlying
space — which are close to CZOs in spirit. Martingale transforms are the simplest ones, but are local and
much easier to bound. Nonlocal models include the so-called perfect dyadic CZOs and, most notably,
Haar shift operators, which include prominent examples like the discrete Hilbert transform and dyadic
paraproducts. In these cases, the Hörmander kernel condition can be replaced by

sup
Q dyadic cube

sup
z1,z2∈Q

∫
�\Q̂
|k(z1, x)− k(z2, x)| + |k(x, z1)− k(x, z2)| dµ(x) <∞,

where Q̂ denotes the dyadic father of Q. Our BMO spaces allow us to further replace dyadic cubes
in dyadically doubling measure spaces — see [López-Sánchez et al. 2014] for recent progress on more
general measures in this direction — by more general atoms. Namely, assume (6a, 6b) gives an admissible
covering of (�,6,µ). Consider regular filtrations of atomic σ -algebras (6 jk)k≥1 with 6 j1 = 6 j

for j = a, b. Let us write5 jk for the family of atoms in the atomic σ -algebra6 jk and set 5 j =
⋃

k≥15 jk .
Then, consider the following Hörmander-type kernel condition, where the former role of the metric d is
replaced by the shape of our atoms in 5=5a ∪5b:

sup
A∈5

sup
z1,z2∈A

∫
�\ Â
|k(z1, x)− k(z2, x)| + |k(x, z1)− k(x, z2)| dµ(x) <∞.

Again, Â denotes the minimal atom in the filtration of A which contains A properly, unless there is no
such atom, in which case we pick Â = A. If we replace the Hörmander condition by this one, we obtain
another class of “atomic” CZOs, which will be denoted in what follows by ACZO.

Theorem B2. Let (6a, 6b) be an admissible covering of (�,6,µ). Assume in addition that (�,6,µ)
admits regular filtrations (6 jk)k≥1 by successive refinement of 6 j1 = 6 j for j = a, b. Construct the
spaces BMO6ab(�) which are defined over these filtrations. Then, every ACZO extends to a bounded map
L∞(�)→ BMO6ab(�), and L p(�)→ L p(�) for 1< p <∞.

An advantage of Theorem B2 is that our kernel conditions are flexible, since we may carefully choose
(6a, 6b) and the regular filtrations according to the concrete singular integral operator. It is worth
mentioning that every σ -finite (atomless if µ is finite) measure space (�,6,µ) has nontrivial admissible
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coverings. Of course, the regularity of the filtration is a light form of “doublingness” needed to emulate
the classical argument in this setting. We will also provide weaker estimates for pseudolocal operators
when the filtrations are not regular.

In contrast to [Carbonaro et al. 2009; 2010; Mauceri and Meda 2007; Tolsa 2001], our approach extends
to matrix-valued functions, for which only limited results are known and no satisfactory nondoubling
theory exists so far. In fact, this was our original motivation and the necessity of alternative arguments
led to the results presented so far. We will postpone the discussion of the matrix-valued setting to the
last section of this paper, which will allow those readers not familiar with noncommutative L p theory to
isolate these results.

Our results above give some insight on the relation between nondoubling and martingale BMO theories;
see [Conde-Alonso and Parcet 2014; Junge et al. ≥ 2015] for other results along this line. In [Conde-
Alonso and Parcet 2014], we adapt Tolsa’s ideas to give an atomic block description of martingale H1.
Semigroup BMO spaces are used in [Junge et al. ≥ 2015] to construct a Calderón–Zygmund theory that
incorporates noncommutative measure spaces (von Neumann algebras) to the picture.

1. Admissible coverings and BMO spaces

In this section we recall some basic background around martingale BMO spaces and introduce our new
class of BMO spaces. We will study standard properties of this class, like the existence of admissible
coverings, John–Nirenberg inequalities and H1–BMO duality. The proof of Theorem A is more technical
and will be postponed to Section 2.

Martingale BMO spaces. Let (�,6,µ) be a σ -finite measure space and consider a filtration (6k)k≥1

of 6. In other words, we have 6k ⊂6k+1 and the union of the spaces L∞(�,6k, µ) is weak-∗ dense in
L∞(�,6,µ). Let E6k denote the conditional expectation onto6k-measurable functions. Then, define the
martingale BMO space associated to this filtration as the space of locally integrable functions f :�→ C

whose BMO norm,

‖ f ‖BMO = sup
k≥1

∥∥(E6k | f −E6k−1 f |2)1/2
∥∥
∞
,

is finite, where we use the convention E60 f = 0; see [Garsia 1973]. Another expression for the norm is

‖ f ‖BMO = sup
k≥1

∥∥∥∥|d fk |
2
+

∑
n>k

E6k |d fn|
2
∥∥∥∥ 1

2

∞

∼
[
sup
k≥1

∥∥(E6k | f −E6k f |2)1/2
∥∥
∞
+‖E61 f ‖∞

]
+ sup

k>1
‖d fk‖∞,

where d fk =1k f = E6k f −E6k−1 f . According to [Janson and Jones 1982], [BMO, L1(�)]1/p ' L p(�)

for any filtration we pick. The bracketed term in the right-hand side above is called the martingale bmo
norm of f , and it is closer to the standard expressions to measure the mean oscillation of a function.
Namely, if the σ -algebras 6k are atomic and if5k denotes the atoms in 6k and 5=

⋃
k≥15k , we deduce
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that

‖ f ‖bmo = sup
k≥1

∥∥(E6k | f −E6k f |2)1/2
∥∥
∞
+‖E61 f ‖∞

= sup
A∈5

(
1

µ(A)

∫
A

∣∣∣∣ f (w)−
1

µ(A)

∫
A

f dµ
∣∣∣∣2 dµ(w)

)1
2

+ sup
A∈51

∣∣∣∣ 1
µ(A)

∫
A

f dµ
∣∣∣∣.

Of course, using a selected family of atoms makes L p-interpolation fail in general for bmo. The extra
term in BMO corrects this. This should be compared with the extra condition in the definition of Tolsa’s
RBMO. On the other hand, bmo spaces have good interpolation properties with little Hardy spaces hp.
Namely, according to [Bekjan et al. 2010] we have [bmo, h1]1/p ' hp for any filtration, where hp is the
closure of the space of finite martingales in L p with respect to the norm

‖ f ‖hp =

∥∥∥∥(∑
k≥1

E6k−1 |d fk |
2
)1

2
∥∥∥∥

p
;

this time the convention is E60 |d f1|
2
=|E61 f |2. In contrast to other BMO spaces seminorms, paradoxically,

we will need to quotient out certain spaces. Note that, for 61-measurable functions, the norms above
coincide with the L∞ norm

‖E61 f ‖BMO = ‖E61 f ‖bmo = ‖E61 f ‖L∞(�).

If we define the seminorms
‖ f ‖◦bmo = ‖ f −E61 f ‖bmo,

‖ f ‖◦BMO = ‖ f −E61 f ‖BMO,

we obtain complemented subspaces BMO61 = J61(BMO) using the projection J61 = id−E61 . Indeed,
it is a simple exercise using Jensen’s conditional inequality |E61 f |2 ≤ E61 | f |

2; details are left to the
reader. Since J61 is also bounded on hp and L p, the previous interpolation results imply the following
isomorphisms for 1< p <∞: [

J61(bmo), J61(h1(�))
]

1/p ' J61(hp(�)),[
J61(BMO), J61(L1(�))

]
1/p ' J61(L p(�)).

Note that J61(L p(�))' L p(�,6,µ)/61 in the terminology of the introduction.

Remark 1.1. It is worth mentioning that the Janson–Jones interpolation theorem [1982] holds for arbitrary
filtrations. In particular, we could replace (6k)k≥1 by (6k)k≥N for some large N, and the latter BMO
comes equipped with the norm

sup
k≥N

∥∥(E6k | f −E6k f |2)1/2
∥∥
∞
+‖E6N f ‖∞+ sup

k>N
‖d fk‖∞.

When N is large enough, the middle term dominates the others and we get spaces which are closer
and closer to L∞(�). In contrast, when we quotient out the first σ -algebra by using the J -projections,
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it follows from the interpolation identities above that the starting σ -algebra significantly affects the
interpolated space. This justifies, in part, our need to intersect two such spaces in this paper.

BMO spaces for admissible coverings. Let (�,6,µ) be a σ -finite measure space and consider two
atomic σ -algebras 6a, 6b of measurable sets in 6. Let 5 j be the set of atoms in 6 j for j = a, b. When
µ(�) < ∞, we shall consider two distinguished atoms (A0, B0) ∈ 5a ×5b. If µ is not finite, take
A0 = B0 =∅. Given A ∈5a, set

RA = {B ′ ∈5b | µ(A∩ B ′) > 0}.

Define RB for B ∈5b similarly. The pair (6a, 6b) is called an admissible covering of (�,6,µ) when
6a ∩6b = {�,∅} and

min
{

sup
A∈5a\{A0}

∑
B∈RA

|RB |
µ(A∩ B)2

µ(A)µ(B)
, sup

B∈5b\{B0}

∑
A∈RB

|RA|
µ(A∩ B)2

µ(A)µ(B)

}
< 1.

One can view the condition above as a weak version of the concentration of measure near the boundary that
appeared in [Carbonaro et al. 2009]. In particular, it is not a geometric notion, but only a measure-theoretic
one (see Remark 3.3 for more details). Now, consider any pair of filtrations (6 jk)k≥1 with 6 j1 = 6 j

for j = a, b, and construct the corresponding martingale BMO spaces BMOa and BMOb. As in the
previous subsection, we quotient out the 6 j -measurable functions and set, as we did in the introduction,

BMO6 j (�)= J6 j (BMO j ),

BMO6ab(�)= BMO6a(�)∧BMO6b(�)= { f ∈ L1
loc(�) | ‖ f ‖BMO6ab (�)

<∞}/C

In the following, we construct admissible coverings for σ -finite measure spaces. The procedure we
employ is quite general. In concrete scenarios, other admissible coverings can be constructed enjoying
additional properties as required in Theorems B1 and B2; these examples will be given later in this paper.

Remark 1.2. The classical BMO on Euclidean spaces can be decomposed as an intersection of finitely
many martingale BMO spaces, the number of which depends on the dimension [Conde 2013; Garnett
and Jones 1982; Mei 2003]. In contrast, we just consider “intersections” of two martingale BMOs.
Note this makes our spaces larger and still amenable for interpolation, which gives some extra room to
obtain endpoint estimates for singular integral operators. The main reason why this is possible is that our
approach just relies on measure-theoretic properties and does not rely on the geometry of the underlying
space, as will become clear in the sequel.

Lemma 1.3. Let (�,6,µ) be a σ -finite measure space. Then:

(i) If µ(�)=∞, it admits an admissible covering.

(ii) If µ(�) <∞ and µ is atomless, it admits an admissible covering.

Proof. If µ(�)=∞, pick A0 = Ã0 = B0 = B̃0 =∅,

A j = Ã j \ Ã j−1 and B j = B̃ j \ B̃ j−1,
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where ∅ 6= Ã1  B̃1  Ã2  B̃2  Ã3  · · · are 6-measurable sets chosen so that

min
{
µ(B̃ j \ B̃ j−1)

µ( Ã j )
,
µ( Ã j+1 \ Ã j )

µ(B̃ j )

}
> λ > 4 for all j ≥ 1.

It is at this point that we have used that µ(�) =∞. Let 6a be the atomic σ -algebra generated by the
atoms (A j ) j≥1. Similarly, define 6b = σ 〈B j : j ≥ 1〉. It is clear by construction that

6a ∩6b = {�,∅}.

On the other hand, |RB | = 2 for every atom B in 6b. Therefore, it remains to show that

sup
j≥1

[
µ(A j ∩ B j−1)

2

µ(A j )µ(B j−1)
+
µ(A j ∩ B j )

2

µ(A j )µ(B j )

]
<

1
2
.

Note that the first summand above vanishes for j = 1. The rest of terms are smaller than 1/λ, according
to our conditions, so that λ > 4 suffices. When µ(�) < ∞ we may assume that µ(�) = 1, since
renormalization does not affect our definition of admissible covering. We use again a “corona-type
partition”

∅ 6= Ã0  B̃0  Ã1  B̃1  Ã2  · · ·

satisfying µ( Ã0)= 1− ζ , µ(B̃0 \ Ã0)= ζ(1− ζ ) and the relations

µ( Ã j+1 \ B̃ j )= ζµ(B̃ j \ Ã j ) and µ(B̃ j+1 \ Ã j+1)= ζµ( Ã j+1 \ B̃ j ) for j ≥ 0.

This is where we use the fact that µ has no atoms. Define A0 = Ã0, B0 = B̃0, A j = Ã j \ Ã j−1 and
B j = B̃ j \ B̃ j−1 for j ≥ 1. The σ -algebras 6a and 6b are the ones generated by (A j ) j≥0 and (B j ) j≥0,
respectively. In order to show that �=

⋃
j≥0 A j =

⋃
j≥0 B j , let us prove that we have∑

j≥0

µ(A j )=
∑
j≥0

µ(B j )= 1.

Indeed, if j ≥ 2 we have

µ(A j )= µ( Ã j \ Ã j−1)

= (1+ ζ )µ(B̃ j−1 \ Ã j−1)= ζ(1+ ζ )µ( Ã j−1 \ B̃ j−2)

= ζ(1+ ζ )
[
µ( Ã j−1 \ Ã j−2)−

1
ζ
µ( Ã j−1 \ B̃ j−2)

]
= ζ 2µ(A j−1).

Therefore, since µ(A0)= 1− ζ and µ(A1)= ζ(1− ζ 2), we deduce immediately that
∑

j≥0 µ(A j )= 1.
The sum

∑
j µ(B j ) also equals 1 since the two families are nested. The condition 6a ∩6b =∅ follows

again by construction. Finally, since |RB | = 2 for all atoms B = B j , it suffices one more time to prove
that

sup
j≥1

[
µ(A j ∩ B j−1)

2

µ(A j )µ(B j−1)
+
µ(A j ∩ B j )

2

µ(A j )µ(B j )

]
<

1
2
.
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According to our construction, the left-hand side can be majorized by

µ(A j ∩ B j−1)
2

µ(A j )µ(B j−1)
+
µ(A j ∩ B j )

2

µ(A j )µ(B j )
≤
µ(B̃ j−1 \ Ã j−1)

µ(B j−1)
+
µ( Ã j \ B̃ j−1)

µ(A j )
.

On the other hand, arguing as before, we may obtain the identities

µ(A j )= ζ
2( j−1)(ζ − ζ 3), µ( Ã j \ B̃ j−1)= ζ

2 j (1− ζ ),

µ(B j−1)= ζ
2( j−1)(1− ζ 2), µ(B̃ j−1 \ Ã j−1)= ζ

2( j−1)(ζ − ζ 2).

This gives a bound 2ζ/(1+ ζ ). It suffices for ζ < 1
3 . The proof is complete. �

Remark 1.4. All fully supported probability measures on Rn are nondoubling. In fact, this also holds
for probability measures supported on unbounded sets. In particular, we hope Lemma 1.3 together with
Theorems B1 and B2 might open a door to further insight into Calderón–Zygmund theory for these
measures.

John–Nirenberg inequalities, atomic H1 and duality. We now transfer some well-known properties of
martingale BMO spaces to our new class of spaces. The analogue of John–Nirenberg inequalities [1961]
for martingale BMO spaces can be stated as follows:

sup
k≥1

sup
A∈6k

1
µ(A)

µ
(

A∩ {| f −E6k−1 f |> λ}
)
. exp

(
−

cλ
‖ f ‖BMO

)
for all λ > 0,

where the martingale BMO is constructed over the filtration (6k)k≥1 and we use the convention E60 f = 0.
The proof can be found in [Garsia 1973]. An important consequence of this inequality is the p-invariance
of the BMO norm. To be more precise, the martingale BMO norm admits the equivalent expressions, for
any 0< p <∞,

‖ f ‖BMO ∼ sup
k≥1

∥∥(E6k | f −E6k−1 f |p)1/p
∥∥
∞
.

If we replace f by J61 f = f − E61 f in both inequalities, we immediately obtain the corresponding
analogues for the BMO spaces which quotient out61-measurable functions, introduced above. Namely, the
only difference is that we should read John–Nirenberg inequalities under the convention that E60 f =E61 f ,
and the BMO norm is given by ‖ · ‖◦BMO instead. If we intersect two of these BMO spaces, we get John–
Nirenberg-type inequalities for our spaces BMO6ab(�) associated to an admissible covering (6a, 6b) by
taking again E60 f = E61 f :

‖ f ‖BMO6ab (�)
∼ max

j=a,b
sup
k≥1

∥∥(E6 jk | f −E6 j (k−1) f |p)1/p
∥∥
∞
,

sup
j=a,b

sup
k≥1

A∈6 jk

1
µ(A)

µ
(

A∩ {| f −E6 j (k−1) f |> λ}
)
. exp

(
−

cλ
‖ f ‖BMO6ab (�)

)
.

Let us now consider H1–BMO duality in our context. In the literature we find several equivalent
descriptions of martingale H1 spaces, via Doob’s maximal function, martingale square function or
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conditional square function. Namely, H1 can be defined as the closure of the space of finite L1 martingales
with respect to any of the norms

∥∥sup
k≥1
|E6k f |

∥∥
1 ∼

∥∥∥∥(∑
k≥1

|d fk |
2
)1

2
∥∥∥∥

1
∼

∑
k≥1

‖d fk‖1+

∥∥∥∥(∑
k≥1

E6k−1 |d fk |
2
)1

2
∥∥∥∥

1
.

We refer to [Davis 1970] for the equivalences above and to [Garsia 1973] for the duality theorem, which
claims that H∗1 ' BMO, a martingale analogue of the Fefferman–Stein duality theorem. Let us now
consider atomic descriptions of these spaces. The term “atom” unfortunately appears here in several
settings — σ -algebras, measures and Hardy spaces — with different meanings, but it will be clear which
one is used from the context. Atomic descriptions are not possible for arbitrary H1 — see [Conde-Alonso
and Parcet 2014] for an “atomic block” description both in the commutative and noncommutative settings —
but there are such results for h1 (defined above). A 6-measurable function a ∈ L2(�) is called an atom
when there exists k ≥ 1 and A ∈6k with

supp(a)⊂ A, E6k (a)= 0, ‖a‖2 ≤ µ(A)−1/2.

The atomic h1 is defined as the space of functions of the form f =
∑

j λ j a j with the a j atoms. The norm
is the infimum of

∑
j |λ j | over all such possible expressions for the function f . This space is isomorphic

to h1; see [Garsia 1973]. In particular, it is also isomorphic to H1 when the filtration is regular. This will
be enough for our purposes, since we will only use H1–BMO duality for regular filtrations. Now, given
two filtrations (6 jk)k≥1 with 6 j1 =6 j for j = a, b, let H1 j be the corresponding H1 spaces. Define

H1
6ab
(�)=

{
f ∈ L1(�)

∣∣ ‖ f ‖H1 = inf
f= f1+ f2

E6a f1=E6b f2=0

‖ f1‖H1a +‖ f2‖H1b <∞
}
.

Then, all the results above apply. In particular, we have

H1
6ab
(�)∗ ' BMO6ab(�).

2. Interpolation: proof of Theorem A

Proof of Theorem A. The argument is a bit lengthy, so we have divided it into several steps. We will
assume that µ is a finite measure on �— normalized so that µ(�)= 1 — since this case is more technical.
The slight modifications needed for the nonfinite case will be explained in the last step of the proof.

Step 1: Intersection of quotients. Let us first show that the interpolation result follows from the first
assertion of Theorem A. Namely, given an admissible covering (6a, 6b) of (�,6,µ) and filtrations
(6 jk)k≥1 with 6 j1 =6 j for j = a, b, let BMO j be the corresponding martingale BMO spaces. It is clear
that

‖ f ‖L◦q (�) = ‖ f ‖[L◦∞(�),L◦1(�)]1/q & ‖ f ‖[BMO6ab (�),L
◦

1(�)]1/q

≥ max
j=a,b
‖ f −E6 j f ‖[J6 j (BMO j ),J6 j (L1(�))]1/q

' max
j=a,b
‖ f −E6 j f ‖Lq

6j
(�) = ‖ f ‖Lq

6ab
(�).
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For q ≥ 2, this implies
L◦q(�)⊂ [BMO6ab(�), L◦1(�)]1/q ⊂ Lq

6ab
(�).

Thus, the result follows from the isomorphism L◦q(�)' Lq
6ab
(�). The interpolation result for 1< q < 2

follows from this and the well-known reiteration theorem [Bergh and Löfström 1976].

Step 2: Reduction to strict contractions. The rest of the proof will be devoted to justify the first
assertion of Theorem A. We claim that such an isomorphism holds whenever we can find a constant
0< cp(6ab) < 1 such that, for every mean-zero function f ∈ L p(�),

min{‖E6aE6b f ‖p, ‖E6bE6a f ‖p} ≤ cp(6ab)‖ f ‖p. (2-1)

Indeed, if Eφ =
∫
�
φ dµ, we first observe that

‖φ‖L◦p(�) ∼ ‖φ−Eφ‖p ∼ inf
k∈C
‖φ− k‖p,

‖φ‖J6 j (L p(�)) ∼ ‖φ−E6 jφ‖p ∼ inf
ϕ 6 j -measurable

‖φ−ϕ‖p.

Therefore, our goal in what follows is to show that

‖φ−Eφ‖p ∼ ‖φ−E6aφ‖p +‖φ−E6bφ‖p for every φ ∈ L p(�).

The lower estimate is trivial. For the upper estimate, we shall use (2-1). Assume that the minimum above
is attained at the first term (say) and let f = φ−Eφ be a mean-zero function. We then find

‖E6aE6b f ‖p ≤ cp(6ab)‖ f ‖p ≤ cp(6ab)
[
‖ f −E6a f ‖p +‖E6a( f −E6b f )‖p +‖E6aE6b f ‖p

]
,

which implies

‖E6aE6b f ‖p ≤
cp(6ab)

1− cp(6ab)
[‖φ−E6aφ‖p +‖φ−E6bφ‖p].

This inequality is all we need, since the upper estimate follows from it:

‖φ−Eφ‖p ≤ ‖E6aφ−Eφ‖p +‖φ−E6aφ‖p ≤ ‖E6aE6b f ‖p +‖E6a(φ−E6bφ)‖p +‖φ−E6aφ‖p

≤
1

1− cp(6ab)
[‖φ−E6aφ‖p +‖φ−E6bφ‖p].

Step 3: The case p = 2. Recall that we are assuming for the moment that µ(�)= 1, and in that case
we may consider two distinguished atoms (A0, B0) ∈6a×6b. In accordance with the previous point, it
suffices to show that

min{‖E6aE6b f ‖2, ‖E6bE6a f ‖2} ≤ c2(6ab)‖ f ‖2

for some 0 < c2(6ab) < 1 and every mean-zero f ∈ L2(�). We claim that this estimate follows if the
same inequality holds for 6 j -measurable functions which vanish on the corresponding distinguished
atom. More precisely, it suffices to prove that one of the following conditions holds:

• ‖E6aφb‖2 ≤ c2(6ab)‖φb‖2 for φb 6b-measurable with φb(B0)= 0;

• ‖E6bφa‖2 ≤ c2(6ab)‖φa‖2 for φa 6a-measurable with φa(A0)= 0.
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Indeed, assume the first condition holds and let φb ∈ L2(�,6b, µ) be mean-zero. Then

‖φb‖
2
2 = ‖φb−φb(B0)‖

2
2− |φb(B0)|

2,

‖E6aφb‖
2
2 = ‖E6a(φb−φb(B0))‖

2
2− |φb(B0)|

2.

Subtracting and using the first condition, we get

‖φb‖
2
2−‖E6aφb‖

2
2 ≥ (1− c2(6ab))‖φb−φb(B0)‖

2
2 ≥ (1− c2(6ab))‖φb‖

2
2.

Here, φb(B0) denotes the constant value of φb on B0. Rearranging, we get ‖E6aφb‖2 ≤ c2(6ab)‖φb‖2.
Therefore, given any mean-zero f ∈ L2(�), we may define φb = E6b f and deduce that ‖E6aE6b f ‖2 ≤
c2(6ab)‖ f ‖2, as desired. Alternatively, if we use the second condition above, the roles of 6a and 6b are
switched and we obtain the other sufficient inequality which is implicit in the minimum above. Thus we
have reduced the proof to justify one of the two conditions above. It is at this point where our definition
of admissible pair comes into play. Namely, we know that

min
{

sup
A∈5a\{A0}

∑
B∈RA

|RB |
µ(A∩ B)2

µ(A)µ(B)
, sup

B∈5b\{B0}

∑
A∈RB

|RA|
µ(A∩ B)2

µ(A)µ(B)

}
= c(6ab)

for some 0< c(6ab) < 1. Let us assume (say) that the minimum above is attained by the first term and
let φa be a 6a-measurable function in L2(�) that vanishes on A0. Then, if we write φa =

∑
A 6=A0

αAχA,
we have the estimate

‖E6bφa‖
2
2 =

∑
A,A′ 6=A0

αAαA′
∑

B∈RA∩RA′

µ(A∩ B)
µ(B)1/2

µ(A′ ∩ B)
µ(B)1/2

≤

∑
A,A′ 6=A0

1
2

∑
B∈RA∩RA′

(
|αA|

2µ(A∩ B)2

µ(B)
+ |αA′ |

2µ(A
′
∩ B)2

µ(B)

)

=

∑
A 6=A0

|αA|
2µ(A)

∑
A′ 6=A0

RA∩RA′ 6=∅

∑
B∈RA∩RA′

µ(A∩ B)2

µ(A)µ(B)

=

∑
A 6=A0

|αA|
2µ(A)

∑
B∈RA

|RB |
µ(A∩ B)2

µ(A)µ(B)
≤ c(6ab)

∑
A 6=A0

|αA|
2µ(A).

The right-hand side equals c(6ab)‖φa‖
2
2, so we obtain the second condition. The first one follows when

the minimum in our definition of admissible covering is attained by the second term. This proves that
the first assertion of Theorem A holds for finite measures and p = 2. The case p > 2 requires some
preliminaries.

Step 4: A mass absorption principle. Let us consider a particular ordering of the atoms in 6a and 6b.
According to our assumption 6a ∩6b = {�,∅}, we may order 5a so that 5a = {A1, A2, . . .} and, for
each m ≥ 0, there exists B ∈5b such that µ(Am+1 ∩ B) and µ

(⋃
s≤m As ∩ B

)
are both strictly positive.
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Similarly, we may order 5b satisfying the symmetric condition. Define the atomic σ -algebras

6a(m)= σ
〈 m⋃

s=0

As, {As}s≥m+1

〉
,

6b(m)= σ
〈 m⋃

s=0

Bs, {Bs}s≥m+1

〉
.

In this step we will prove that

‖ f ‖L p
6ab
(�) ' ‖ f −E6a(m) f ‖L p(�)+‖ f −E6b(m) f ‖L p(�) (2-2)

for any m ≥ 1 and 2< p <∞. The constants may depend on m, p and the covering (6a, 6b). Indeed,
since the result is trivial for m= 0, we will proceed by induction and assume that the result holds for m−1.
Moreover, the upper estimate is straightforward and by symmetry it suffices to show that

‖ f −E6a(m) f ‖p . ‖ f −E6a(m−1) f ‖p +‖ f −E6b f ‖p.

Taking A0(m) =
⋃

s≤m As , let f = f χA0(m) + f χ�\A0(m) = f1 + f2. Since it is clear that E6a(m) f2 =

E6a(m−1) f2, we may concentrate only on f1. The left-hand side for f1 can be written as

‖ f1−E6a(m) f1‖p = ‖χA0(m)( f −E6a(m) f )‖p = ‖ f ‖L◦p(A0(m)) ∼ sup
‖g‖L p′ (A0(m))≤1

g mean-zero

∣∣∣∣∫
A0(m)

f g dµ
∣∣∣∣.

Approximating the right-hand side up to ε > 0 by some mean-zero g0 in the unit ball of L p′(A0(m)),
let B be an atom in 6b satisfying that µ(A0(m− 1)∩ B) and µ(Am ∩ B) are strictly positive. Recall that
this can be done by the specific enumeration of atoms we picked. Then, define

g1 = χAm g0−
χAm∩B

µ(Am ∩ B)

∫
Am

g0 dµ,

g2 = χA0(m−1)g0−
χA0(m−1)∩B

µ(A0(m− 1)∩ B)

∫
A0(m−1)

g0 dµ,

g3 =
χA0(m−1)∩B

µ(A0(m− 1)∩ B)

∫
A0(m−1)

g0 dµ+
χAm∩B

µ(Am ∩ B)

∫
Am

g0 dµ.

Obviously, g0 = g1+ g2+ g3 and each g j is mean-zero. Moreover, we have

‖g1‖L p′ (A0(m)) ≤ ‖χAm g0‖L p′ (A0(m))+

∥∥∥∥ χAm∩B

µ(Am ∩ B)

∫
Am

g0 dµ
∥∥∥∥

L p′ (A0(m))

≤

(
1+

µ(Am)
1/p

µ(Am ∩ B)1/p

)
‖g0‖L p′ (A0(m)) . ‖g0‖L p′ (A0(m)) ≤ 1.
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Similar computations apply to g2 and g3. In summary, we obtain the estimate below, where we write fQ

to denote the average of f over a given measurable set Q:

‖ f1−E6a(m) f1‖p ∼

∣∣∣∣∫
A0(m)

f g0 dµ
∣∣∣∣

≤

∣∣∣∣∫
Am

( f − f Am )g1 dµ
∣∣∣∣+ ∣∣∣∣∫

A0(m−1)
( f − f A0(m−1))g2 dµ

∣∣∣∣+ ∣∣∣∣∫
B
( f − fB)g3 dµ

∣∣∣∣
. ‖χAm ( f − f Am )‖p +‖χA0(m−1)( f − f A0(m−1))‖p +‖χB( f − fB)‖p

. ‖ f −E6a(m−1) f ‖p +‖ f −E6b f ‖p.

This completes the proof of the norm equivalence (2-2).

Step 5: The case p > 2. We now complete the proof of Theorem A for probability measures. According
to (2-2), it suffices to show that there exists 0 < cp(6ab) < 1 and m = m(p) ≥ 1 such that, for any
mean-zero function f ∈ L p(�),

min{‖E6a(m)E6b(m) f ‖p, ‖E6b(m)E6a(m) f ‖p} ≤ cp(6ab)‖ f ‖p.

Pick m = m(p) as the smallest possible value of m satisfying

min
{
µ(A0(m)), µ(B0(m))

}
>max

{(
2 · 4−p

1− 2 · 4−p

) 1
p−1

, (1− 4−p)1/p
}

and ε = ε(p) > 0 small enough so that

(1− 2 · 4−p)1/2 ≤ (1− 4−p)1/(2p)(1− ε3)1/2− ε3/2.

Since L p(�)⊂ L2(�), we know from Step 3 that f always satisfies the above inequality for p=2. Assume
that the minimum for p = 2 is attained (say) at the first term, so that ‖E6a(m)E6b(m) f ‖2 ≤ c2(6ab)‖ f ‖2.
Recall that E f =

∫
�

f dµ. When

E(|E6b(m) f |p/2)2 < (1− ε3)‖E6b(m) f ‖p
p,

we proceed as follows:

‖E6a(m)E6b(m) f ‖p
p ≤ ‖E6a(m)|E6b(m) f |p/2‖22− (E|E6b(m) f |p/2)2+ (E|E6b(m) f |p/2)2

= ‖E6a(m)(|E6b(m) f |p/2−E|E6b(m) f |p/2)‖22+ (E|E6b(m) f |p/2)2

≤ c2
2(6ab)‖|E6b(m) f |p/2−E|E6b(m) f |p/2‖22+ (E|E6b(m) f |p/2)2

≤
[
c2

2(6ab)+ (1− c2
2(6ab))(1− ε3)

]
‖ f ‖p

p = cp
p(6ab)‖ f ‖p

p.

If E(|E6b(m) f |p/2)2 ≥ (1− ε3)‖E6b(m) f ‖p
p, then one can easily show that∥∥|E6b(m) f |p/2−E|E6b(m) f |p/2

∥∥2
2 ≤ ε

3
‖E6b(m) f ‖p

p.
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Now, decomposing E6b(m) f = E6b(m) f (B0(m))χB0(m)+E6b(m) f χ�\B0(m), we get√
µ(B0(m))|E6b(m) f (B0(m))|p = ‖|E6b(m) f |p/2χB0(m)‖2

≥ ‖E|E6b(m) f |p/2χB0(m)‖2−‖|E6b(m) f |p/2−E|E6b(m) f |p/2‖2

≥ µ(B0(m))1/2E|E6b(m) f |p/2− ε3/2
‖E6b(m) f ‖p/2

p

≥ [(1− 4−p)1/(2p)(1− ε3)1/2− ε3/2
]‖E6b(m) f ‖p/2

p

≥ (1− 2 · 4−p)1/2‖E6b(m) f ‖p/2
p .

This also implies

‖E6b(m) f χ�\B0(m)‖
p
p ≤ 2 · 4−p

‖E6b(m) f ‖p
p.

On the other hand, since f is mean-zero we have

E6b(m) f (B0(m))µ(B0(m))+E(E6b(m) f χ�\B0(m))= 0.

Rearranging and raising to the power p then gives

µ(B0(m))p
|E6b(m) f (B0(m))|p ≤ ‖E6b(m) f χ�\B0(m)‖

p
p ≤ 2 · 4−p

‖E6b(m) f ‖p
p.

Finally, combining our two estimates so far for µ(B0(m)), we obtain

µ(B0(m))≤
(

2 · 4−p

1− 2 · 4−p

) 1
p−1

,

which contradicts our choice of m = m(p). This shows that E(|E6b(m) f |p/2)2 cannot be larger than
(1− ε3)‖E6b(m) f ‖p

p and completes the proof in the case the minimum for p = 2 is attained at the first
term. When the minimum is attained at the second term, a symmetric argument applies.

Step 6: The nonfinite case. When µ(�)=∞ the proof of Theorem A is a bit simpler. In the first place,
note that L◦p(�)= L p(�) in this case. In particular, the goal is to show that

Lq(�)' [BMO6ab(�), L1(�)]1/q ,

L p(�)' L p(�,6,µ)/6a ∧ L p(�,6,µ)/6b.

Since L∞(�) ⊂ BMO6ab(�), our argument in Step 1 can be easily adapted and interpolation follows
from the second isomorphism above. To prove it, we follow essentially the same argument as for finite
measures. Indeed, arguing as in Step 2, we see that it suffices to show that

min{‖E6aE6b f ‖p, ‖E6bE6a f ‖p} ≤ cp(6ab)‖ f ‖p

for some constant 0< cp(6ab) < 1 and every function f ∈ L p(�). The only difference is that here it must
hold for every f , not just mean-zero elements as in the finite case. The case p = 2 is proved following
Step 3. The fact that we do not assume f to be mean-zero — or ultimately to vanish at A0 or B0 — is
compensated by our definition of admissible coverings, which does not consider distinguished atoms
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for infinite measures. Finally, once we know the case p = 2 holds — for arbitrary functions, not only
mean-zero ones — we conclude that

‖E6aE6b f ‖p
p ≤ ‖E6aE6b | f |

p/2
‖

2
2 ≤ c2

2(6ab)‖| f |p/2‖22 ≤ cp
p(6ab)‖ f ‖p

p

or a similar estimate for E6bE6a f . The proof of Theorem A is now complete. �

3. Calderón–Zygmund operators, I

Let (�,6,µ) be a measure space and consider a metric d on �. Assume that µ is σ -finite with respect
to the metric topology. In this section we will be interested in Calderón–Zygmund operators on the metric
measure space (�,µ, d), as defined in the introduction. More precisely, we prove Theorem B1 below
and, after that, we shall illustrate this result with a few constructions of admissible coverings.

Proof of Theorem B1. Our definition of CZO includes a symmetric Hörmander kernel condition. This
implies that the class of Calderón–Zygmund operators is closed under taking adjoints. In particular, the
L p-boundedness for 1 < p < 2 can be deduced by duality from the case p > 2. On the other hand,
according to Theorem A, the latter follows by interpolation if we can prove that any CZO extends
to a bounded map L∞(�) → BMO6ab(�). Indeed, since T is L2-bounded, Theorem A yields that
T : L p(�)→ L◦p(�). This is enough when the measure µ is infinite, since in that case L p(�)= L◦p(�).
When µ is finite we use L2-boundedness once again together with Hölder’s inequality to deduce that

‖T f ‖p ≤ ‖T f −ET f ‖p +µ(�)
1/p
|ET f |. ‖ f ‖p +µ(�)

1/p−1/2
‖ f ‖2 . ‖ f ‖p.

This completes the proof of our claim. Let us then prove the L∞→BMO estimate. Consider an auxiliary
BMO space which arises by averaging over the family of doubling balls in (�,6,µ),

‖ f ‖DBMO = sup
Bd-ball
doubling

(
1

µ(B)

∫
B

∣∣∣∣ f (w)−
1

µ(B)

∫
B

f dµ
∣∣∣∣2 dµ(w)

)1
2

.

Following the standard argument, it is easily checked that

T : L∞(�)→ DBMO.

Indeed, in the first place we may observe as usual that we have the equivalence

‖ f ‖DBMO ∼ sup
Bd-ball
doubling

inf
kB∈C

(
1

µ(B)

∫
B
| f (w)− kB|

2 dµ(w)
)1

2

.

Second, we decompose f = f χαB+ f χ�\αB = φ1B+φ2B and pick the constant kB to be the average of
Tφ2B over B. Then, we may estimate the norm of T f in DBMO by using the L2-boundedness of T for
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Tφ1B and the Hörmander kernel condition for Tφ2B. More precisely, we get

‖T f ‖DBMO ≤ sup
Bd-ball
doubling

(
1

µ(B)

∫
B

∣∣∣∣T ( f χαB)(w)

∣∣∣∣2 dµ(w)
)1

2

+

(
1

µ(B)

∫
B

∣∣∣∣T ( f χ�\αB)(w)−
1

µ(B)

∫
B

T ( f χ�\αB) dµ
∣∣∣∣2 dµ(w)

)1
2

.

Since we just use (α, β)-doubling balls, the first term is dominated by(
µ(αB)
µ(B)

)1
2

‖T ‖2→2‖ f ‖∞ . ‖ f ‖∞.

On the other hand, using the kernel representation of T we may write

T ( f χ�\αB)(w)−
1

µ(B)

∫
B

T ( f χ�\αB) dµ=
1

µ(B)

∫
B

∫
�\αB

(k(w, ζ )− k(ξ, ζ )) f (ζ ) dµ(ζ ) dµ(ξ)

for w ∈ B. In particular, the last term above can be majorized by ‖ f ‖∞ using the Hörmander condition
for k. This proves the L∞(�)→ DBMO boundedness of our CZO. Therefore, it suffices to show that
DBMO⊂ BMO6ab(�). This follows from the chain of inclusions

DBMO⊂ bmo6a ∧ bmo6b ⊂ BMO6a ∧BMO6b = BMO6ab(�).

Let us recall in passing the terminology we are using, namely

bmo6 j = J6 j (bmo j ) and BMO6 j = J6 j (BMO j )

for j = a, b. Here, bmo j and BMO j are the martingale bmo and BMO spaces constructed over the
filtrations (6 jk)k≥1 described in the statement of Theorem B1. If 5 j denotes the atoms in such a filtration,
the norm in bmo6 j is given by

‖ f ‖bmo6 j
= sup

k≥1
‖E6 jk | f −E6 jk f |2‖1/2

∞
= sup

A∈5 j

(
1

µ(A)

∫
A

∣∣∣∣ f (w)−
1

µ(A)

∫
A

f dµ
∣∣∣∣2 dµ(w)

)1
2

.

Now, since we assume that all atoms in 5=5a∪5b are doubling, the seminorm above is majorized (up
to absolute constants) by the seminorm in DBMO. As this holds for both j = a, b, we have proved the
first inclusion. Now, for the second inclusion, we recall the seminorm in BMO6 j ,

‖ f ‖BMO6 j
= sup

k≥1
‖E6 jk | f −E6 jk−1 f |2‖1/2

∞
,

where E6 j0 f = E6 j1 f since we quotient out 6 j1-measurable functions. Note also that we are requiring
the filtrations (6 jk)k≥1 to be regular. In other words, there exist absolute constants c j > 0 such that
E6 jk | f | ≤ c jE6 jk−1 | f | for j = a, b and k ≥ 1. This yields the inequality

‖ f ‖BMO6 j
≤ c j‖ f ‖bmo6 j

.

Thus, BMO6ab(�)' bmo6a ∧ bmo6b for regular filtrations, and we are done. �
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Remark 3.1. Under the same assumptions, every CZO extends to a bounded map

H1
6ab
(�)→ L1(�).

Indeed, this follows at once by duality and Theorem B1. Alternatively, since we need to work with
regular filtrations, we may use the atomic description of H1

6ab
(�) given in Section 1, from which an easy

argument arises; details are left to the reader.

In the following subsections we shall illustrate Theorem B1 with a few examples.

Doubling case. Admissible coverings fulfilling the assumptions in Theorem B1 can always be constructed
on every doubling space, so that Calderón–Zygmund extrapolation for homogeneous spaces appears as a
particular application of our approach. For clarity of the exposition, we shall just indicate how to construct
such admissible coverings in R2 with the Lebesgue measure m and the Euclidean metric, although a
similar construction works in the general case. Let us pick Q0 =

[
−

1
2 ,

1
2

]
×
[
−

1
2 ,

1
2

]
, the unit cube, and

set Qs = 3s Q0 for s ≥ 1. Consider the σ -algebras

6a = σ 〈As | s ≥ 1〉 and 6b = σ 〈Bs | s ≥ 1〉,

where (A1, B1)= (Q0, Q1) and (As, Bs)= (Q2s−2 \ Q2s−4, Q2s−1 \ Q2s−3) for s ≥ 2. Then it follows
from the proof of Lemma 1.3 that (6a, 6b) is an admissible covering of the Euclidean space (R2,m).

Next, we define the filtrations (6 jk)k≥1 with6 j1=6 j for j=a, b. Except for A1 and B1 — which are or-
dinary cubes — the atoms As and Bs (s≥2) are punctured cubes in which we remove a concentric cube with
side-length 1

9 times the side-length of the larger one. To define6 j2 for j = a, b, we break each As , Bs into a
disjoint union of 80 equal cubes of side-length 1

9 times the side-length of the original punctured cube — i.e.,
all except for the one in the center — unless s=1, in which case we also pick the center and get 81 subcubes
(see Figure 1). The next generations are simpler. Indeed, since all our atoms in 6 j2 are already cubes, we
perform dyadic partitions in each of them to provide the next generations of our filtration. This procedure
completely defines two filtrations respectively based on6a and6b. It remains to check that these filtrations
are regular and the atoms are doubling. The regularity constant is dominated uniformly by 81 when
(k−1, k)= (1, 2) and by 4 otherwise. On the other hand, our atoms for k = 1 are punctured cubes which
are comparable to the corresponding unpunctured ones, which in turn are doubling with constant 4. This
proves that all conditions in Theorem B1 are satisfied. In the general case, we just need to use Christ dyadic
cubes [1990] and adapt our choice according to the finiteness or nonfiniteness of µ as we did in Lemma 1.3.

Polynomial growth. Assume that we have (�,µ, d) of k-th degree polynomial growth with µ(�)=∞.
The associated RBMO norm can be defined as follows:

‖ f ‖RBMO =max
{
‖ f ‖DBMO, sup

B⊂B′
B,B′d-balls

doubling

∣∣∣∣ 1
µ(B)

∫
B

f dµ−
1

µ(B′)

∫
B′

f dµ
∣∣∣∣ / KB,B′

}
,

with 1≤ KB,B′=1+
∑

2 j B⊂B′ µ(2
j B)/r(2 j B)k . For such measures, we may easily construct an admissible

covering of (�,µ) composed of doubling atoms. Indeed, the construction above can easily be modified
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Bs

As

Figure 1. The admissible covering and the second generation of one of the filtrations.

using the existence of arbitrarily large doubling cubes centered at almost every point in the support of µ;
see [Tolsa 2001] for details. The main difficulty relies in the construction of filtrations (6 jk)k≥1 satisfying
the assumptions in Theorem B1. Note that, whenever that holds, we find

RBMO⊂ DBMO⊂ BMO6ab(�).

In particular, we deduce that [RBMO, L1(�)]1/q ' Lq(�) when this happens. As far as we know, such
interpolation identities are new since Tolsa [2001] studied interpolation of operators. Unfortunately,
the construction of such filtrations seems to be a difficult task in the general case. For instance, the
corona-type construction described above finds some obstructions when the measure µ is supported in
Cantor-like sets. Nevertheless, we may construct these filtrations in some other cases. Let us consider the
following family of measures on Rn equipped with the Euclidean distance

dµβ(x)=
dx

1+ |x |β
.

These measures are nondoubling only for β > n. We will construct an admissible covering for β & n3/2

satisfying the hypotheses of Theorem B1 when d is the Euclidean metric in Rn . We will work with the
equivalent measure

dνβ(x)=min{1, |x |−β} dx

for convenience. Note that this does not affect the conclusions in Theorem B1.
Pick Q0 = [−λ, λ]

n with λ > 1 to be fixed, and set Qs = 2s Q0. Consider the σ -algebras 6a = σ 〈As |

s ≥ 1〉 and 6b= σ 〈Bs | s ≥ 1〉, where (A0, B0)= (Q0, Q1) and (As, Bs)= (Q2s \Q2s−2, Q2s+1 \Q2s−1)

for any s ≥ 1. We clearly have 6a ∩6b = {R
n,∅} and max{|RA|, |RB |} ≤ 2 for (A, B) ∈5a×5b, by
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S1 R1

S2 S3

R2
= R3

As \ Bs

As ∩ Bs

Figure 2. There is a cube R j for each cube S j .

construction of (6a, 6b). Thus, it suffices to show that

sup
(A,B)∈5a×5b

A 6=A0

νβ(A∩ B)2

νβ(A)νβ(B)
<

1
2
.

We will prove, in fact, the apparently stronger inequalities

sup
s≥1

νβ(As ∩ Bs−1)

νβ(Bs−1)
<

1
2

and sup
s≥1

νβ(As ∩ Bs)

νβ(As)
<

1
2
.

By symmetry of the argument, we just prove the second inequality above. Denote by L the side length of
the smallest cube Q2s containing As . Then we have that A∩ B can be decomposed into Cn = 8n

− 4n

cubes S j , each of which satisfies that S j = R j +aS j for some cube R j = R j (S j )⊂ As \ Bs of side length
equal to L/8 and such that the angle between any point in R j and aS j is smaller than π/3. We can also
impose that |aS j | ≥ L/8; see Figure 2. This implies that, for each x in R j , we have

|x + aS j | ≥ |x | + |aS j | cos^(x, aS j )≥ |x | +
1
2 |aS j |.

Since As ⊂ Rn
\B1(0) for s ≥ 1, we have

νβ(As ∩ Bs)=

∫
As∩Bs

|x |−β dx =
Cn∑
j=1

∫
S j

|x |−β dx

=

Cn∑
j=1

∫
R j

|x + aS j |
−β dx ≤

Cn∑
j=1

∫
R j

(
|x | + 1

2 |aS j |
)−β dx .
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Using that |x | ≤
√

nL/2 for x ∈ As and |aS j | ≥ L/8,

1
νβ(R j )

∫
R j

(
|x | + 1

2 |aS j |
)−β dx ≤ sup

x∈R j

(
|x | + 1

2 |aS j |
)−β

|x |−β
≤

( √
n

√
n+ 1

8

)β
.

Therefore, we obtain

νβ(As ∩ Bs)

νβ(As)
≤ Cn

( √
n

√
n+ 1

8

)β
≤ 8n

( √
n

√
n+ 1

8

)β
<

1
2

for β & n3/2.

A similar argument shows that
νβ(As ∩ Bs−1)

νβ(Bs−1)
<

1
2

for β & n3/2 and s ≥ 2, whereas the same estimate holds for s = 1 as a consequence of the fact that B0

contains [−λ, λ]n for λ > 1 large enough. This completes the construction of an admissible covering. It
remains to construct filtrations (6 jk)k≥1 for j = a, b, that are regular and composed of doubling atoms.
Recall that we set 6 j1 =6 j and define 6 j2 by splitting each atom in 6 j into a disjoint union of cubes.
Namely, for j = a we keep A0 and divide As into the cubes R j , S j in Figure 2. We proceed similarly
for j = b. Once we have defined 6 j2, we construct 6 jk by dyadic splitting of the cubes in 6 j (k−1). Note
that the atoms in 6 j1 \ {A0, B0} split at most into 8n cubes K centered at cK which are away from the
origin. Thus

νβ(2K )=
∫

2K
|x |−β dx . |2K ||cK |

−β . |K ||cK |
−β .

∫
K
|x |−β dx = νβ(K ).

It easily follows from this that all the atoms in 6 jk are doubling up to absolute constants independent
of k ≥ 1 and that both filtrations are regular. This shows that Theorem B1 applies to (Rn, µβ) with the
Euclidean metric.

Remark 3.2. A few comments are in order:

(i) In the light of the example above, one could wonder what happens with the positive powers dµγ (x)=
|x |γ dx for γ > 0, but it is straightforward to show that these measures are doubling, so that we can handle
them following the construction of the previous section (see p. 731).

(ii) Our proof of Theorem B1 relies crucially on the embedding of the space DBMO in BMO6ab(�)

under suitable conditions. When the metric measure space (�,µ, d) is of polynomial growth, we know
from [Tolsa 2001] that CZOs are L∞→RBMO bounded. Since RBMO⊂DBMO, it is natural to wonder
if we have

RBMO⊂ BMO6ab(�)

under weaker assumptions than in Theorem B1. It turns out that this is the case when there exists filtrations
composed of doubling atoms, no matter whether they are regular or not. Indeed, noticing that RBMO can be
described as a subspace of DBMO with an additional condition, it is this crucial extra condition introduced
by Tolsa that allows an embedding into BMO6ab(�) and not into bmo6ab(�) for nonregular filtrations.
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Concentration at the boundary. Let

dµ±α(x)= e±|x |
α

dx

on Rn equipped with the Euclidean metric. Carbonaro et al. [2009; 2010] proved that these measures
satisfy their concentration condition when α > 1. In this subsection we shall prove that our hypotheses in
Theorem B1 hold for any α > 0, hence extending their results for measures with less concentration at the
boundary. Let us start with the probability measure µ−α . Pick K = K (n, α) > 0, a large constant of the
form 2k for some k ≥ 1 to be fixed below. Denote by D(Rn) the standard filtration of dyadic cubes in Rn .
We consider the distinguished atom A0 = [−K , K ]n . The other atoms As ∈5a for s ≥ 1 are chosen to be
the cubes in D(Rn

\ A0) which are maximal under the following constraint on the side-length `(As) in
terms of the modulus of its center cAs :

5a = {A0} ∪
{

As maximal in D(Rn
\ A0) | `(As)≤ K |cAs |

1−α, s ≥ 1
}
.

Before defining5b, we also need another dyadic filtration D′(Rn) satisfying some specific properties which
we now detail. Given cubes (A, B) ∈ D(Rn)× D′(Rn) of comparable size — 2−k0 ≤ `(A)/`(B) ≤ 2k0

for some absolute constant k0 — with nonempty intersection, there exists a parallelepiped R ⊂ A4B such
that:

(1) R is “substantially closer” than A∩ B to the origin;

(2) there exists a = a(R) ∈ Rn such that A∩ B ⊂
⋃N

j=1 R+ ja;

(3) |a| ≥ 1
N max{`(A), `(B)} and |x + ja| ≥ |x | + 1

2 |a| for every x ∈ R.

Let A1 be the cube in 5a \ {A0} whose center is the closest to the origin. Let L = `(A1) and pick
B0 = A0 +

1
3 Led with ed = (1, 1, . . . , 1). Then, the dyadic filtration D′(Rn) is defined as one of the

shifted dyadic filtrations in [Conde 2013] with the initial cube being B0. The fact that the properties
above hold follows ultimately from the “good separation” between D(Rn) and D′(Rn). Here we pick K
large enough so that the estimate µ−α

( 1
2 A0

)
> (1− ε)µ−α(Rn) holds. In particular, we get

µ−α(A0 ∩ B0)

µ−α(Rn)
> 1− ε

for some small ε > 0 to be fixed. The family 5b is defined similarly by

5b = {B0} ∪
{

Bs maximal in D′(Rn
\ B0) | `(Bs)≤ K |cBs |

1−α, s ≥ 1
}
.

Set 6 j = σ(5 j ) for j = a, b and observe that 6a ∩6b = {R
n,∅} by construction. Therefore, to prove

that (6a, 6b) yields an admissible covering we only need to check that we have

sup
A∈5a\{A0}

∑
B∈RA

|RB |
µ−α(A∩ B)2

µ−α(A)µ−α(B)
< 1.

According to our definition of As , it is a simple exercise to check that we have `(As)≥
1
3 K |cAs |

1−α for
all s ≥ 1 but for a finite number (independent of K ) of cubes close to the origin. The same argument
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-·x a

A

B

R R+ a R+ 2a

Figure 3. A∩ B is covered by at most N a-translates of R; R is “substantially closer” to
the origin than A∩ B; a is parallel to a coordinate axis for cubes A, B in a sector around
that axis. In particular, x and a are “close” to being parallel, so that |x+ ja| ≥ |x |+ 1

2 |a|.

holds for atoms in 5b. In particular, we have |RA|, |RB | ≤ Cn for all (A, B) ∈5a×5b. Therefore, when
B = B0 we obtain

|RB |
µ−α(A∩ B)2

µ−α(A)µ−α(B)
≤ Cn

µ−α(A∩ B)
µ−α(B)

< Cn
ε

1− ε
<

1
2

for ε < 1
3 C−1

n . Otherwise, when B 6= B0, we obtain

µ−α(A∩ B)
µ−α(R)

=
1

µ−α(R)

∫
A∩B

e−|x |
α

dx

≤

N∑
j=1

1
µ−α(R)

∫
R

e−|x+ ja|α dx

≤
N

µ−α(R)

∫
R

e−(|x |+|a|/2)
α

dx ≤ N sup
x∈R

e−(|x |+|a|/2)
α
+|x |α .

If α = 1, we get an estimate Ne−|a|/2 ≥ Ne−C′n K . For other values of α > 0, a straightforward application
of the mean value theorem gives(

|x | + 1
2 |a|

)α
− |x |α ≥

α

18
K |cA|

1−α
|x |α−1

≥ C′n K

since |x | ∼ |cA|. Hence we get, for A 6= A0,∑
B∈RA

|RB |
µ−α(A∩ B)2

µ−α(A)µ−α(B)
<

1
2
+C2

n sup
B 6=B0

µ−α(A∩ B)2

µ−α(A)µ−α(B)
≤

1
2
+C2

nNe−C′n K < 1,
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picking K = K (n, α) large enough. This shows that we have an admissible covering. Note that our choice
of cubes for α > 1 is a family which becomes smaller and smaller when we get away from the origin.
This is in the spirit of the Mauceri–Meda [2007] construction for the Gaussian measure. In contrast,
when α < 1 we pick larger and larger cubes as we get away from the origin. This construction seems not
to be useful in [Carbonaro et al. 2009; 2010], since we may not use the locally doubling property for
arbitrarily large cubes. Let us complete the proof by showing that the other hypotheses in Theorem B1
hold. Our choice of filtrations (6 jk)k≥1 for j = a, b is by dyadic splitting of the cubes in 5a and 5b,
respectively. The regularity of such filtrations will follow from the fact that every atom in (6 jk)k≥1 is
(3, β)-doubling for some absolute constant β, and this suffices to complete the proof. If Q is any subcube
of A0 ∪ B0, there are dimensional constants kn and Kn such that

kn|Q| ≤
∫

Q
e−|x |

α

dx ≤ Kn|Q|,

and hence Q is trivially (3, β)-doubling. Otherwise, we compute

µ−α(3Q)
µ−α(Q)

≤
|3Q|
|Q|

sup
x∈3Q

e−|x |
α

sup
x∈Q

e|x |
α

≤ 3n exp
((
|xQ | +

1
2

√
n`(Q)

)α
−
(
|xQ | −

3
2

√
n`(Q)

)α)
≤ β

for some absolute constant β > 0, using the mean value theorem one more time.

Remark 3.3. A few comments are in order:

(i) Given α > 0 and by minor modifications in the above arguments, we may also produce an admissible
covering for (Rn, e|x |

α

dx) which satisfies the hypotheses of Theorem B1 with respect to the Euclidean
metric.

(ii) In this paper we ∧-intersect two truncated martingale BMO spaces, but our results also hold for
finite ∧-intersections; details are simple and not very relevant. The Mauceri–Meda BMO space for the
Gaussian measure [2007] can be described as such a finite intersection of BMO spaces using a construction
similar to the one above for µ−2 but intersecting n + 1 BMO spaces instead of 2. Namely, one uses
as many filtrations as needed to cover all cubes in Rn with dyadic cubes of comparable size; see, for
instance, [Conde 2013] for the optimal choice. This establishes an inclusion of their BMO space into
our 2-intersection BMO6ab associated to µ−2, which still interpolates and is strictly larger. The latter
assertion can be proved following the argument which shows that classical BMO is strictly contained in
dyadic BMO.

(iii) A geometric interpretation of our definition of admissible covering could be that we still impose
certain concentration at the boundary, but much less than [Carbonaro et al. 2009; 2010]. In support of
this, let us consider an admissible covering (6a, 6b). Let A be a finite family in 5a \ {A0} and let RA be
the union

⋃
A∈A RA. If we consider the set RA as a measurable set and interpret RA \A as the region

“close to the boundary”, then we can prove that

µ(RA)≤
1

1− c(6ab)
µ(RA \A)
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or, equivalently, µ(A)≤ c(6ab)µ(RA). Indeed, we have

µ(A)=
∑
A∈A

∑
B∈RA

µ(A∩ B)

≤ c(6ab)
1/2
∑
A∈A

µ(A)1/2
( ∑

B∈RA

µ(B)
|RB |

)1
2

≤ c(6ab)
1/2µ(A)1/2

(∑
A∈A

∑
B∈RA

µ(B)
|RB |

)1
2

≤ (c(6ab)µ(A)µ(RA))
1/2.

(iv) In the case of the Gaussian measure on Rn , Mauceri, Meda and Sjögren [Mauceri et al. 2012] proved
that Ri , Si , the Riesz transforms associated with the Ornstein–Uhlenbeck semigroups, are bounded from
L∞ to Mauceri–Meda BMO spaces, but their adjoint operators R∗i , S∗i are not when n ≥ 2. As explained
in (ii), our BMO spaces are strictly larger than Mauceri and Meda’s if the σ -algebras 6a , 6b are picked
as in the beginning of this subsection. Therefore, the Riesz transforms Ri , Si studied in [Mauceri et al.
2012] are bounded from L∞ to our BMO spaces as well. Pierre Portal [2014] introduced a different
type of Hardy spaces using truncated maximal functions and square functions. He proved that the Riesz
transforms Ri , Si and their adjoint operators R∗i , S∗i are all bounded from his H1 space to L1 [Portal 2014,
Theorem 6.1]. It is interesting to determine whether R∗i , S∗i are L∞-BMO bounded for our BMO spaces
with carefully picked 6a , 6b.

4. Calderón–Zygmund operators, II

In this section we will study the class of atomic Calderón–Zygmund operators (ACZO) defined in the
introduction over a given measure space (�,6,µ). More precisely, we shall prove Theorem B2 and
illustrate it with a few constructions of dyadic operators satisfying its hypotheses.

Proof of Theorem B2. Following the same argument as in the proof of Theorem B1, we can use
duality and our interpolation result in Theorem A to reduce the L p-boundedness in the assertion to the
L∞(�)→ BMO6ab(�) boundedness of our ACZO. This is however standard. Indeed, since the filtration
is regular we know that BMO6ab(�)' bmo6ab(�). Up to absolute constants, the norm in the latter space
is given by

‖T f ‖bmo6ab (�)
= sup

Q∈5
inf

kQ∈C

(
1

µ(Q)

∫
Q
| f (w)− kQ |

2 dµ(ω)
)1

2

,

where 5=5a ∪5b is the set of atoms in any of the two filtrations. Decompose

f = f χQ̂ + f χ
�\Q̂ = f1+ f2.

As usual, we pick kQ = (T f2)Q . Then, we control the term for T f1 using the L2-boundedness of T and
the regularity of the filtrations. The term T f2 − kQ is dominated by means of the Hörmander kernel
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condition given in the definition of ACZO. Namely,(
1

µ(Q)

∫
Q
|T f1(ω)|

2 dµ(ω)
)1

2

≤ ‖T ‖2→2

√
µ(Q̂)
µ(Q)

‖ f ‖∞ . ‖ f ‖∞

by regularity of the filtrations. On the other hand(
1

µ(Q)

∫
Q
|T f2(ω)− (T f2)Q |

2 dµ(ω)
)1

2

≤

(
1

µ(Q)2

∫
Q

∫
Q

[ ∫
�\Q̂
|K (z1, x)− K (z2, x)| dµ(x)

]2

dµ(z1) dµ(z2)

)1
2

‖ f ‖∞,

which is dominated by ‖ f ‖∞ according to the Hörmander condition for ACZOs. �

Remark 4.1. As mentioned in the introduction, standard prototypes of atomic Calderón–Zygmund
operators include martingale transforms, perfect dyadic CZOs and Haar shift operators. These are usually
defined on the Euclidean space Rn equipped with a dyadic filtration. Nevertheless, the exact same
arguments apply on any dyadically doubling measure space or even for any measure space equipped with
a two-sided regular filtration. López-Sánchez et al. [2014] have studied those nondoubling measure spaces
for which Haar shift operators satisfy weak type-(1, 1) estimates. Theorem B2 provides a tool to produce
nondoubling measure spaces over which Haar shifts, or more general atomic CZOs, are L∞→ BMO
bounded. In the case of martingale transforms, Haar shift operators and perfect dyadic CZOs in (Rn, µ),
all of them satisfy the Hörmander-like condition

sup
Q∈D(Rn)

sup
z1,z2∈Q

∫
Rn\Q̂
|k(z1, x)− k(z2, x)| + |k(x, z1)− k(x, z2)| dµ(x) <∞.

This means that these operators are ACZOs satisfying Theorem B2 as long as we can find an admissible
covering (6a, 6b) and regular filtrations over it such that all the atoms are cubes in D(Rn) or suitable
unions of those. If we review our examples in Section 3, this is not the case for our construction for
dµ±α(x)= e±|x |

α

dx . It is however quite simple to adapt our construction for

dµβ(x)=
dx

1+ |x |β

so that it satisfies the hypotheses of Theorem B2. In particular, the Haar shift operators defined on (Rn, µβ)

are L∞(Rn)→ BMO6ab(R
n) bounded. It remains open to decide whether an admissible covering exists

on the exponential measure spaces (Rn, µ±α) using only atoms associated to one and not two dyadic
systems.

5. Matrix-valued forms of our results

In this section, we extend our main results to the context of operator-valued functions. Noncommutative
forms of Calderón–Zygmund theory have been recently studied in [Junge et al. ≥ 2015; Mei and Parcet
2009; Parcet 2009; Mei 2007]. There are however no specific results in the context of nondoubling metric
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measure spaces. Unfortunately, it seems difficult to extend the approach of [Tolsa 2001] or [Mauceri
and Meda 2007] to the operator-valued or even the noncommutative setting, since their interpolation
results rest on good-λ inequalities which do not have a noncommutative analogue so far. On the other
hand, the semicommutative approach in [Parcet 2009] is valid for doubling spaces, but again presents
serious obstacles to be extended to the nondoubling setting. The crucial aspect of our approach is that it
ultimately rests on martingale inequalities that have been successfully transferred to the noncommutative
setting. Namely, after Pixier and Xu’s [1997] seminal contribution on Burkholder–Gundy inequalities
for noncommutative martingales, we find analogues of Doob’s maximal inequalities, Gundy, Davis and
atomic decompositions, Burkholder conditional square functions, John–Nirenberg inequalities, L p/BMO
interpolation results; see [Hong and Mei 2012; Junge 2002; Junge and Mei 2010; Junge and Musat 2007;
Junge and Perrin 2014; Junge and Xu 2003; Mei 2007; Musat 2003; Parcet and Randrianantoanina 2006;
Perrin 2009] and the references therein.

Let us briefly introduce the framework for our results in this section; we refer to [Parcet 2009, Section 1]
for a rather complete review of the necessary background adapted to our necessities. We also refer the
reader to Pisier and Xu’s survey [2003] for more on noncommutative L p theory. Let (�,6,µ) be a
σ -finite measure space and consider any pair (M, τ ) given by a von Neumann algebra M equipped with
a normal, semifinite, faithful trace τ . This is sometimes called a noncommutative measure space. We will
write (R, ϕ) to denote the von Neumann algebra generated by essentially bounded functions f :�→M
equipped with the trace

ϕ( f )=
∫
�

τ( f (ω)) dµ(ω).

R is the von Neumann algebra tensor product R= L∞(�)⊗M and we may consider the corresponding
noncommutative spaces L p(R, ϕ). This semicommutative model is the context where we intend to
generalize our main results. Apart from its own interest as an operator-valued model, it constitutes a first
step towards further results for more general von Neumann algebras. In particular, as [Junge et al. 2014]
demonstrates, certain fully noncommutative questions can be reduced to the semicommutative setting.
Readers not familiar with von Neumann algebra theory are encouraged to read this section restricting their
attention to matrix-valued functions. In other words, replace M by the algebra Mm of m×m matrices
and τ by the standard trace tr. The difficulties are similar in this case to in the general setting, as long
as we provide results with constants independent of m. We also refer to [Parcet 2009] for a comparison
between this model and the vector-valued setting, which differs substantially in the endpoint estimates.

The BMO spaces. First we review the definitions and results in Section 1 for the semicommutative setting
described above. Given a filtration (6k)k≥1 of (�,6,µ), we consider the conditional expectations

f 7→ E6k ⊗ idM( f ) ∈R for f ∈R,

still denoted by E6k . The martingale bmo and BMO norms are

‖ f ‖bmo =max{‖ f ‖bmoc, ‖ f ∗‖bmoc},

‖ f ‖BMO =max{‖ f ‖BMOc, ‖ f ∗‖BMOc},
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where the column norms are defined as in the commutative case, taking into account that we use |x |2= x∗x
for any operator x on a Hilbert space. The interpolation result [BMO, L1(R)]1/p ' L p(R) was proved
by Musat [2003] for any semifinite von Neumann algebra R. This is the noncommutative analogue of the
Janson–Jones interpolation theorem. If we set ‖ f ‖hr

p
= ‖ f ∗‖hc

p
, where the norm in hc

p is defined as in the
commutative case, then the noncommutative Hardy spaces have the form

hp =

{
hr

p + hc
p if 1≤ p ≤ 2,

hr
p ∩ hc

p if 2≤ p ≤∞.

This combination of row and column square functions is known to be the right one for L p inequalities, as
was discovered for the first time with the noncommutative Khintchine inequalities [Lust-Piquard 1986;
Lust-Piquard and Pisier 1991]. The interpolation result [bmo, h1]1/p ' hp was proved in [Bekjan et al.
2010] for noncommutative martingales. As in the commutative case, the projections J61 = id−E61 are
bounded on bmo, BMO, L p and hp, so that we will be working with these complemented subspaces
which enjoy the same interpolation and duality properties as the original spaces. Note that the identity

‖ f ‖J61 (bmoc) = sup
k≥1

∥∥(E6k | f −E6k f |2)1/2
∥∥
M

= sup
A∈5

∥∥∥∥( 1
µ(A)

∫
A

∣∣∣∣ f (w)−
1

µ(A)

∫
A

f dµ
∣∣∣∣2 dµ(w)

)1
2
∥∥∥∥
M

still holds and we have J61(bmo)' J61(BMO) for regular filtrations. Consider an admissible covering
(6a, 6b) of (�,6,µ) and any pair of filtrations (6 jk)k≥1 with 6 j1 =6 j for j = a, b. Denote by BMOa

and BMOb the BMO spaces associated to these filtrations in the semicommutative algebra R and set

BMO6 j (R)= J6 j (BMO j ) and BMO6ab(R)= BMO6a(R)∧BMO6b(R).

The John–Nirenberg inequalities, atomic descriptions of H1 and duality results have also been transferred
to the context of noncommutative martingales [Bekjan et al. 2010; Hong and Mei 2012; Junge and Musat
2007; Pisier and Xu 1997] and we will not review these results here, since they will not play a crucial role.

The interpolation theorem. Let us now state the analogue of Theorem A in the operator-valued setting. As
usual, we will write L◦p(R) for the subspace of mean-zero elements with respect to µ. In the terminology
we use for admissible coverings,

L◦p(R)' J6a∩6b(L p(R)).

Theorem 5.1. Let (6a, 6b) be an admissible covering in (�,6,µ) and consider the semicommutative
space R= L∞(�)⊗M. Then, for each 2≤ p <∞, there exists a constant cp ≥ 1 such that

L◦p(R)'cp J6a(L p(R))∧ J6b(L p(R)).

In particular, we have by complex interpolation that

[BMO6ab(R), L◦1(R)]1/q 'cq L◦q(R) (1< q <∞),

with BMO6ab(R) constructed with any two filtrations over (6a, 6b).
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Sketch of the proof. Thanks to the close connection with martingales, the proof is entirely parallel to the
one given in the classical case. Indeed, combining standard facts from noncommutative L p theory with
the martingale results reviewed in the previous subsection, it is a simple exercise to adapt our proof of
Theorem A to the present case. The only subtle point is the inequality

‖E6aE6b f ‖p
p ≤ ‖E6a |E6a f |p/2‖22,

which is used in the last two steps of our argument. Namely, in the classical case this is due to
the conditional Jensen’s inequality φ(E6k f ) ≤ E6kφ( f ) for convex functions φ. In contrast, its non-
commutative form does not hold for all p ≥ 2, since we need the operator-convexity of the function
φ(x)= |x |β for β = p/2 and x not necessarily positive. This is the case for β ≥ 2, or equivalently p ≥ 4,
but it fails for 2 ≤ p < 4. Note however that the ultimate goal in Steps 5 and 6 is to show that
‖E6aE6b f ‖p ≤ cp(6ab)‖ f ‖p for some 0< cp(6ab) < 1. To prove it, we observe that

E6a(g
∗

1 g2)= ξk(g1)
∗ξk(g2),

E6aE6b( f ∗1 f2)= ωk( f1)
∗ωk( f2)

for certain right Rk-module maps ξk , ωk : Lq(R)→ Cq(Lq(R)) with Rk = E6k (R). This follows from
standard factorization properties of completely positive unital maps in terms of Hilbert modules; see, for
instance, [Junge 2002]. Let us consider the polar decompositions f = u| f | and g = v|g| of g = E6b f .
Then we can factorize E6aE6b f in two ways:

E6a g = E6a(v|g|
1/2
|g|1/2)= ξk(|g|1/2v∗)∗ξk(|g|1/2),

E6aE6b f = E6aE6b(u| f |
1/2
| f |1/2)= ωk(| f |1/2u∗)∗ωk(| f |1/2).

This yields the estimates

‖E6aE6b f ‖p ≤ ‖ξk(|g|1/2v∗)‖2p‖ξk(|g|1/2)‖2p

≤ ‖ξk(|g|1/2v∗)∗ξk(|g|1/2v∗)‖1/2p ‖ξk(|g|1/2)∗ξk(|g|1/2)‖1/2p

= ‖E6a(v|g|v
∗)‖1/2p ‖E6a(|g|)‖

1/2
p ≤ ‖ f ‖1/2p ‖E6a |E6b f |p/2‖1/p

2 ,

and
‖E6aE6b f ‖p ≤ ‖ωk(| f |1/2u∗)‖2p‖ωk(| f |1/2)‖2p

≤ ‖ωk(| f |1/2u∗)∗ωk(| f |1/2u∗)‖1/2p ‖ωk(| f |1/2)∗ωk(| f |1/2)‖1/2p

= ‖E6aE6b(u| f |u
∗)‖1/2p ‖E6aE6b(| f |)‖

1/2
p ≤ ‖ f ‖1/2p ‖E6aE6b | f |

p/2
‖

1/p
2 .

The last inequality in both estimates follows from the Kadison–Schwarz inequality for operator-convex
functions, since φ(x)= xβ is operator-convex on R+ for β ≥ 1. The first estimate is the right one to use
in Step 5 and the second one in Step 6. �

The Calderón–Zygmund operators. We now consider Calderón–Zygmund operators in semicommutative
algebras associated to operator-valued kernels. Our construction is standard; we refer to [Duoandikoetxea
2001; Junge et al. 2014; Rubio de Francia et al. 1986] for further details. Let us write L0(M) for the
∗-algebra of τ -measurable operators affiliated with M and consider kernels k : (�×�)\1→L(L0(M))
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defined away from the diagonal 1 of �×� and which take values in linear maps on τ -measurable
operators. If d is a metric in �, the standard Hörmander kernel condition takes the same form in this
setting when we replace the absolute value by the norm in the algebra B(M) of bounded linear operators
acting on M:

sup
Bd-ball
z1,z2∈B

∫
�\αB
‖k(z1, x)− k(z2, x)‖B(M)+‖k(x, z1)− k(x, z2)‖B(M) dµ(x) <∞.

Define a CZO in (R, ϕ, d) as any linear map T satisfying the following properties:

• T is bounded on L∞(M; Lr
2(�)),∥∥∥∥(∫

�

T f (x)T f (x)∗ dµ(x)
)1

2
∥∥∥∥
M
.

∥∥∥∥(∫
�

f (x) f (x)∗ dµ(x)
)1

2
∥∥∥∥
M
.

• T is bounded on L∞(M; Lc
2(�)),∥∥∥∥(∫

�

T f (x)∗T f (x) dµ(x)
)1

2
∥∥∥∥
M
.

∥∥∥∥(∫
�

f (x)∗ f (x) dµ(x)
)1

2
∥∥∥∥
M
.

• The kernel representation

T f (x)=
∫
�

k(x, y)( f (y)) dµ(y) holds for x /∈ supp
�

f

and some kernel k : (�×�) \1→ C satisfying the Hörmander condition.

The first two conditions replace the usual L2-boundedness; see [Junge et al. 2014] for explanations.

Theorem 5.2. Let (6a, 6b) be an admissible covering of (�,6,µ). Assume that 6 admits regular
filtrations (6 jk)k≥1 by successive refinement of 6 j1 = 6 j for j = a, b and that each atom in 6 jk

is a (C0, α, β)-doubling set for certain absolute constants C0, α, β > 0. Let BMO6ab(R) denote the
∧-intersection of the BMO spaces defined over these filtrations. Then, every CZO extends to a bounded
map:

(i) H1
6ab
(R)→ L1(R);

(ii) L∞(R)→ BMO6ab(R);

(iii) L◦p(R)→ L◦p(R) for 1< p <∞.

Moreover, if T is L2(R)-bounded then T : L p(R)→ L p(R) for all 1< p <∞.

Proof. According to Theorem 5.1 (interpolation) and the semicommutative form of Remark 3.1 (duality), it
turns out that L∞(R)→BMO6ab(R) boundedness automatically implies H1

6ab
(R)→ L1(R) boundedness,

as well as L◦p(R)→ L◦p(R) boundedness. Moreover, if T is also L2-bounded we may reproduce the
argument given in the proof of Theorem B1 to obtain L p-boundedness for all 1< p <∞. Let us then
focus on the L∞→ BMO boundedness. Define

DBMO= DBMOr ∩DBMOc
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with ‖ f ‖DBMOr = ‖ f ∗‖DBMOc and

‖ f ‖DBMOc = sup
B ball

d-doubling

∥∥∥∥( 1
µ(B)

∫
B

∣∣∣∣ f (w)−
1

µ(B)

∫
B

f dµ
∣∣∣∣2 dµ(w)

)1
2
∥∥∥∥
M
.

As usual, we write |x |2 for x∗x . The assertion follows from

L∞(R)
T
−→DBMO id

−→ bmo6ab(R)' BMO6ab(R).

The boundedness of the chain above can be justified as in the proof of Theorem B1. Indeed, the analogies in
the argument lead us to apply the new conditions which appear in our definition of semicommutative CZO;
see [Junge et al. 2014]. �

Remark 5.3. Theorem B2 also admits a straightforward generalization to the semicommutative setting.
Again, our use of martingale techniques makes the proof entirely analogous, so that we think it would be
too repetitive to include it here.
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