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CLASSIFICATION OF BLOWUP LIMITS FOR SU(3) SINGULAR TODA SYSTEMS

CHANG-SHOU LIN, JUN-CHENG WEI AND LEI ZHANG

For singular SU(3) Toda systems, we prove that the limit of energy concentration is a finite set. In addition,
for fully bubbling solutions we use a Pohozaev identity to prove a uniform estimate. Our results extend
previous results of Jost, Lin and Wang on regular SU(3) Toda systems.

1. Introduction

Systems of elliptic equations in two-dimensional space with exponential nonlinearity are very commonly
observed in physics, geometry, chemistry and biology. In this article we consider the following general
system of equations defined in R2:

1ui +
∑
j∈I

ai j h j eu j = 4πγiδ0 in B1 ⊂ R2 for i ∈ I, (1-1)

where I ={1, . . . , n}, B1 is the unit ball in R2, h1, . . . , hn are smooth functions, A= (ai j )n×n is a constant
matrix, γi > −1 and δ0 is the Dirac mass at 0. If n = 1 and a11 = 1, the system (1-1) is reduced to a
single Liouville equation, which has vast background in conformal geometry and physics. The general
system (1-1) is used for many models in different disciplines of science. If the coefficient matrix A is
nonnegative, symmetric and irreducible, (1-1) is called a Liouville system and is related to models in
the theory of chemotaxis [Childress and Percus 1981; Keller and Segel 1971], in the physics of charged
particle beams [Bennet 1934; Debye and Huckel 1923; Kiessling and Lebowitz 1994] and in the theory
of semiconductors [Mock 1975]; see [Chanillo and Kiessling 1995; Chipot et al. 1997; Lin and Zhang
2010] and the references therein for more applications of Liouville systems. If A is the Cartan matrix

An =



2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0

0 −1 2 −1
. . .

...
...
. . .

. . .
. . .

. . . 0
0 · · · 0 −1 2 −1
0 · · · 0 0 −1 2


,

the system (1-1) is called an SU(n+1) Toda system (which has n equations) and is related to the nonabelian
gauge in Chern–Simons theory; see [Dunne et al. 1991; Dunne 1995; Ganoulis et al. 1982; Leznov
1980; Leznov and Saveliev 1992; Malchiodi and Ndiaye 2007; Malchiodi and Ruiz 2013; Mansfield
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1982; Nolasco and Tarantello 1999; 2000; Yang 1997; 2001] and the references therein. There are also
many works on the relationship between SU(n+ 1) Toda systems and holomorphic curves in CPn , the
flat SU(n+ 1) connection, complete integrability and harmonic sequences; see [Bolton and Woodward
1997; Bolton et al. 1988; Calabi 1953; Chern and Wolfson 1987; Doliwa 1997; Guest 1997; Leznov and
Saveliev 1992; Lin et al. 2012a] for references.

After decades of extensive study, many important questions related to the scalar Liouville equation are
answered and the behavior of blowup solutions is well understood (see [Bartolucci and Tarantello 2002a;
2002b; Bartolucci and Malchiodi 2013; Chen and Lin 2002; 2003] for related discussions). However,
the understanding of blowup solutions to the more general systems (1-1) is far from complete. In recent
years, much progress has been made on more general systems and we only mention a few works related
to the topic of the current article. First, Lin and Zhang [2010; 2011] completed a degree-counting project
for Liouville systems defined on Riemann surfaces. Second, for regular SU(3) Toda systems (which have
two equations), Jost, Lin and Wang [Jost et al. 2006] proved some uniform estimates for fully bubbling
solutions (see Section 4 for the definition) using holonomy theory. Later, Lin, Wei and Zhao [Lin et al.
2012b] improved the estimate of [Jost et al. 2006] to the sharp form using the nondegeneracy of the
global SU(3) solutions, which was established by Lin, Wei and Ye [Lin et al. 2012a] among other things.

In this article we mainly focus on the asymptotic behavior of blowup solutions of (1-1) and the weak
limit of energy concentration for SU(n+ 1) Toda systems. More specifically, let uk

= (uk
1, . . . , uk

n) be a
sequence of solutions

1uk
i +

n∑
j=1

ai j hk
j e

uk
j = 4πγ k

i δ0 in B1, i = 1, . . . , n, (1-2)

with 0 being its only possible blowup point in B1:

max
KbB1\{0}

uk
i ≤ C(K ). (1-3)

Since the right-hand side of (1-2) is a Dirac mass, we define the regular part of uk
i to be

ũk
i (x)= uk

i (x)− 2γ k
i log |x |, x ∈ B1, i = 1, . . . , n. (1-4)

Then uk
= (uk

1, . . . , uk
n) is called a sequence of blowup solutions if maxi maxx∈B1 ũk

i →∞.
We assume that γ k

i → γi >−1, that hk
1, . . . , hk

n are positive smooth functions with a uniform bound
on their C3 norm:

1
C
≤ hk

i ≤ C, ‖hk
i ‖C3(B1) ≤ C in B1, γ k

i → γi >−1 for all i ∈ I ; (1-5)

and we suppose that there is a uniform bound on the oscillation of uk
i on ∂B1 and its energy,

∫
B1

hk
i euk

i :

|uk
i (x)− uk

i (y)| ≤ C for all x, y ∈ ∂B1,

∫
B1

hk
i euk

i ≤ C, i ∈ I, (1-6)

where C is independent of k.
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Note that the oscillation finiteness assumption in (1-6) is natural and generally satisfied in most
applications. The energy bound in (1-6) is also natural for a system or equation defined in two-dimensional
space.

If A = A2, (1-2) describes SU(3) with sources. Our first main theorem is concerned with the energy
limits of solutions to singular SU(3) Toda systems.

Given any δ > 0, uk has no blowup point in B1 \ Bδ (in this article we use B(x, r) to denote a ball
centered at x with radius r and use Br to denote B(0, r)). Thus we are interested in the following limit:

σi = lim
δ→0

lim
k→∞

1
2π

∫
Bδ

hk
i euk

i , i = 1, 2. (1-7)

Since, for each δ > 0,
∫

Bδ
hk

i euk
i is uniformly bounded, the limk→∞ in (1-7) is understood as the limit of a

subsequence of uk . For convenience we don’t distinguish uk and its subsequences in this article.
Let

µi = 1+ γi , i = 1, 2,

and let
0 = {(σ1, σ2) : σ1, σ2 ≥ 0, σ 2

1 − σ1σ2+ σ
2
2 = 2µ1σ1+ 2µ2σ2}

be a quadratic curve in the first quadrant. It is easy to see that 0 is contained in the box[
0, 4

3µ1+
2
3µ2+

4
3

√
µ2

1+µ1µ2+µ
2
2
]
×
[
0, 2

3µ1+
4
3µ2+

4
3

√
µ2

1+µ1µ2+µ
2
2
]
.

In Definition 1.1 below we shall define a finite set on 0. In order to describe the relative positions of
points, we say (c, d) is in the upper right part of (a, b) if c ≥ a and d ≥ b.

Definition 1.1. It is easy to verify that the following six points are on 0:

(0, 0) (2µ1, 0), (0, 2µ2), (2µ1, 2(µ1+µ2)), (2(µ1+µ2), 2µ2), (2(µ1+µ2), 2(µ1+µ2)).

First we let the six points above belong to 6, then we determine other points in 6 as follows: For
(a, b) ∈ 6, intersect 0 with σ1 = a + 2N and σ2 = b+ 2N (N = 0, 1, 2, . . . ) and add the point(s) of
intersection to 6 that belong to the upper right part of (a, b). For each new member (c, d) ∈6 added by
this process, we apply the same procedure based on (c, d) to obtain possible new members.

Theorem 1.2. Let A= A2, hk
i and γ k

i satisfy (1-5). Then, for uk satisfying (1-2), (1-3) and (1-6), we have
(σ1, σ2) ∈6, where σi is defined by (1-7) and 6 is defined as in Definition 1.1.

Remark 1.3. If γ1 = γ2 = 0, the system is a nonsingular SU(3) Toda system. One sees easily that

6 = {(0, 0), (2, 0), (0, 2), (2, 4), (4, 2), (4, 4)}.

Indeed, when the procedure described in Definition 1.1 is applied to any of the six points in 6, no extra
point of intersection can be found. For example if we start from (0, 0) and intersect 0 by lines σ1 = 2N
(N being a nonnegative integer), then we see immediately that the intersection of 0 with σ1 = 2 gives
(2, 0) and (2, 4), which are already in 6. The intersection with σ1 = 4 gives (4, 2) and (4, 4), which also
belong to the six types in 6. There is no intersection between 0 and σ1 = 6. Theorem 1.2 in this special
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case was proved in [Jost et al. 2006]. Recent work of Pistoia, Musso and Wei [Musso et al. 2015] proved
that all six cases for nonsingular SU(3) Toda systems can occur.

Remark 1.4. It is easy to observe that the maximum value of σ1 on 0 is

4
3µ1+

2
3µ2+

4
3

√
µ2

1+µ1µ2+µ
2
2.

The maximum value of σ2 is
2
3µ1+

4
3µ2+

4
3

√
µ2

1+µ1µ2+µ
2
2.

Thus 6 is a finite set. As two special cases, we see that:

(1) If

4
3µ1+

2
3µ2+

4
3

√
µ2

1+µ1µ2+µ
2
2 < 2 and 2

3µ1+
4
3µ2+

4
3

√
µ2

1+µ1µ2+µ
2
2 < 2

then there are only six points in 6:

6 =
{
(0, 0), (2µ1, 0), (0, 2µ2), (2(µ1+µ2), 2µ2), (2µ1, 2(µ1+µ2)), (2(µ1+µ2), 2(µ1+µ2))

}
.

(2) For γ1 = γ2 = 1, in addition to (0, 0), (4, 0), (0, 4), (4, 8), (8, 4) and (8, 8), 6 has other 14 points.

An earlier version of the current article was posted on the arXiv in March 2013. After that, some work
has been done based on Theorem 1.2 (see [Battaglia and Malchiodi 2014] for example). Theorem 1.2
reflects some essential differences between Toda systems and Liouville systems. Lin et al. [2012a] proved
that all the global solutions of SU(n+ 1) Toda systems can be described by n2

+ 2n parameters and the
energy of global solutions is a discrete set. On the other hand, the global solutions of Liouville systems
all belong to a family of three parameters but their energy forms an (n−1)-dimensional hypersurface
(see [Chipot et al. 1997; Lin and Zhang 2010]). These differences lead to very different approaches in
their respective research. For example, [Lin et al. 2012b] obtained sharp estimates for fully bubbling
solutions (see Section 4 for the definition) of SU(3) Toda systems using the discreteness of energy as a
key ingredient in their proof.

Here we briefly describe the strategy used to prove Theorem 1.2. First we introduce a selection
process suitable for SU(n+ 1) Toda systems. The selection process has been widely used for prescribing
curvature-type equations (see [Li 1995; Chen and Lin 1998], etc) and we modify it to locate the bubbling
area, which is a union of finite disks. In each of the disks, the blowup solutions have roughly the energy
of a global SU(m + 1) Toda system on R2 (with m ≤ n), which is the limit of the blowup solutions
after scaling. If m = n, which means no component is lost after scaling and taking the limit, we say
the sequence of solutions in the disk is fully bubbling, otherwise we call it partially bubbling. Next we
introduce the “group” concept to place bubbling disks according to their relative locations. There are only
finitely many bubbling disks and their relative distances may tend to 0 with very different speed. The
name “group” is used to describe a few disks that are roughly closest to one another and much further from
other disks. Lemma 2.4 is a Harnack-type result that plays an important role in determining the energy
concentration around a group. Suppose there is a circle that surrounds a group and both components of
the blowup solutions have fast decay (see Section 3 for the definition) on the circle. Then a Pohozaev
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identity can be computed on this circle to determine how much energy this group carries. Because of
Lemma 2.4, such a circle can always be found, so the energy within the circle can be determined. Then
we consider the combination of groups by scaling. The relationship among groups is similar to that of
members in a same group. For example, if the distance between two groups is scaled to be 1, the bubbling
disks of one group look like a Dirac mass from afar. We can similarly find circles surrounding groups
that are also suitable for computing Pohozaev identities (i.e., both components of the blowup solutions
have fast decay on these circles). From these Pohozaev identities, we determine how much energy is
contained in each group and all the combinations of groups. One important fact is that one component of
the blowup solutions always has fast decay, even though the other component may not. It is possible for
the first (fast decay) component to turn to a slow decay component as the distance to a group becomes
bigger, but before that happens the second component, which used to be a slow decay component, will
turn to a fast decay component first.

As another application of the Pohozaev identity we establish some uniform estimates for fully bubbling
solutions. These estimates were first obtained by Li [1999] for the scalar Liouville equation without
singularity (using the method of moving planes) and [Bartolucci et al. 2004] for the scalar Liouville
equation with singularity (using the Pohozaev identity and potential analysis). For regular SU(3) Toda
systems, [Jost et al. 2006] established similar estimates using holonomy theory. Our results (Theorem 4.1
and Theorem 4.3) apply to general SU(n+ 1) Toda systems with singularity.

This article is set out as follows. In Section 2 we introduce the selection process mentioned before
and in Section 3 we prove the Pohozaev identity, which is crucial for the proof of Theorem 1.2. In
Section 4 we prove a uniform estimate for fully bubbling solutions (Theorem 4.3 and Theorem 4.1). Then
in Section 5 and Section 6 we finish the proof of Theorem 1.2 according to the strategy mentioned before.

2. A selection process for SU(n+ 1) Toda systems

Clearly in the proof of Theorem 1.2 we can assume 0 to be a blowup point:

max
x∈B1, i∈I

{uk
i − 2γ k

i log |x |} →∞, (2-1)

because otherwise the blowup type is (0, 0). So, from now on throughout the paper, (2-1) is assumed.

Case one: γ k
1 = · · · = γ

k
n = 0.

Proposition 2.1. Let A = (ai j )n×n be the Cartan matrix An , hk
i satisfy (1-5) and uk

= (uk
1, . . . , uk

n) be a
sequence of solutions to (1-2) with γ k

1 = · · · = γ
k
n = 0 such that (1-6) and (1-3) hold. Then there exist finite

sequences of points 6k := {xk
1 , . . . , xk

m} (all xk
j → 0, j = 1, . . . ,m) and positive numbers lk

1, . . . , l
k
m→ 0

such that the following four properties hold:

(1) maxi∈I {uk
i (x

k
j )} =maxB(xk

j ,l
k
j ),i∈I {u

k
i } for all j = 1, . . . ,m.

(2) exp
( 1

2 maxi∈I {uk
i (x

k
j )}
)
lk

j →∞, j = 1, . . . ,m.

(3) There exists C1 > 0 independent of k such that

uk
i (x)+ 2 log dist(x, 6k)≤ C1 for all x ∈ B1, i ∈ I,
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where dist stands for distance.

(4) In each B(xk
j , l

k
j ) let

vk
i (y)= uk

i (εk y+ xk
j )+ 2 log εk, εk = e−Mk/2, Mk =max

i
max

B(xk
j ,l

k
j )

uk
i . (2-2)

Then one of the following two alternatives holds:

(a) The sequence is fully bubbling: along a subsequence, (vk
1, . . . , v

k
n) converges in C2

loc(R
2) to

(v1, . . . , vn) which satisfies

1vi +
∑
j∈I

ai j h j ev j = 0 in R2, i ∈ I,

lim
k→∞

∫
B(xk

j ,l
k
j )

∑
t∈I

ai t hk
t euk

t > 4π, i ∈ I.

(b) I = J1 ∪ J2 ∪ · · · ∪ Jm ∪ N , where J1, J2, . . . , Jm and N are disjoint sets, N 6= ∅ and each
Jt (t = 1, . . . ,m) consists of consecutive indices. For each i ∈ N , vk

j tends to −∞ over any fixed
compact subset of R2. The components of vk

= (vk
1, . . . , v

k
n) corresponding to each Jl (l = 1, . . . ,m)

converge in C2
loc(R

2) to an SU(|Jl | + 1) Toda system, where |Jl | is the number of indices in Jl . For
each i ∈ Jl , we have

lim
k→∞

∫
B(xk

j ,l
k
j )

∑
t∈Jl

ai t hk
t ev

k
t > 4π.

Remark 2.2. In this article we don’t use different notations for sequences and subsequences.

Remark 2.3. For each xk
j ∈ 6k , suppose 2tk

j is the distance from xk
j to 6k \ {xk

j }. Then tk
j / lk

j →∞

as k→∞ if lk
j is suitably chosen.

Proof of Proposition 2.1. Without loss of generality we assume

uk
1(x

k
1)= max

i∈I, x∈B1
uk

i (x).

Clearly xk
1→ 0, because maxi maxx∈B1 uk

i →∞ and uk is uniformly bounded from above away from the
origin. Let (vk

1, . . . , v
k
n) be defined by (2-2) with xk

j replaced by xk
1 . Immediately we observe that |1vk

i |

is bounded because each vk
i ≤ 0. Consequently, |vk

i (z)− v
k
i (0)| is uniformly bounded in any compact

subset of R2. Thus, since vk
1(0)= 0, (along a subsequence) vk

1 converges in C2
loc(R

2) to a function v1. For
the other components of vk

= (vk
1, . . . , v

k
n), either some of them tend to −∞ over any compact subset

of R2, or all of them converge to a system of n equations. Let J ⊂ I be the set of indices corresponding to
those convergent components. That is, for all i ∈ J , vk

i converges to vi in C2
loc(R

2) and, for all j ∈ I \ J ,
vk

i tends to −∞ over any fixed compact subset of R2. For each i ∈ I \ J , there is J1 ⊂ J such that i ∈ J1,
the indices in J1 are consecutive and the limit of the vk

i is one component of an SU(|J1|+1) Toda system:{
1vm +

∑
j∈J amlhlevl = 0 in R2 for all m ∈ J1∫

R2 hmevm ≤ C, m ∈ J1,
(2-3)
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where hm = limk→∞ hk
m(x

k
1), (ai j )= A|J1|, and C is the same constant as in (1-6). By the classification

theorem of [Lin et al. 2012a] (if the limit is a system) or [Chen and Li 1991] (if the limit is one equation)
we have ∑

j∈J1

∫
R2

ai j h j ev j = 8π for all i ∈ J1 (2-4)

and
vi (x)=−4 log |x | + O(1), |x |> 2, for all i ∈ J1. (2-5)

Thus, for any index i ∈ I , we can find Rk→∞ such that

vk
i (y)+ 2 log |y| ≤ C, |y| ≤ Rk, for i ∈ I. (2-6)

Equivalently, for uk there exist lk
1 → 0 such that

uk
i (x)+ 2 log |x − xk

1 | ≤ C, |x − xk
1 | ≤ lk

1, for i ∈ I

and
euk

1(x
k
1 )/2lk

1 →∞ as k→∞, i ∈ J.

Next, we let qk be the maximum point of max|x |<1,i∈I uk
i (x)+ 2 log |x − xk

1 |. If

max
|x |≤1,i∈I

uk
i (x)+ 2 log |x − xk

1 | →∞,

we let j be the index such that

uk
j (qk)+ 2 log |qk − xk

1 | =max
i∈I

uk
i (x)+ 2 log |x − xk

1 | →∞.

The following localization is to adapt the original argument of R. Schoen [1988] for the scalar curvature
equation (also see [Chen and Lin 1998]). Set

dk =
1
2 |qk − xk

1 |

and
Sk

i (x)= uk
i (x)+ 2 log(dk − |x − qk |) in B(qk, dk).

Then clearly, for fixed k, Sk
i →−∞ as x tends to ∂B(qk, dk). On the other hand, at least for j , we have

Sk
j (qk)= uk

j (qk)+ 2 log dk→∞.

Let pk be where
max

i
max

x∈B(qk ,dk)

Sk
i

is attained and i0 be the index corresponding to where the maximum is taken:

uk
i0
(pk)+ 2 log(dk − |pk − qk |)≥ Sk

j (qk)→∞. (2-7)

Let
lk =

1
2(dk − |pk − qk |).
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Then for y ∈ B(pk, lk), by the choice of pk and lk , we have

uk
i (y)+ 2 log(dk − |y− qk |)≤ uk

i0
(pk)+ 2 log(2lk) for all i ∈ I.

On the other hand, by the definition of lk , we have

dk − |y− qk | ≥ dk − |pk − qk | − |y− pk | ≥ lk if |y− pk |< lk,

and

uk
i (y)≤ uk

i0
(pk)+ 2 log 2 for all y ∈ B(pk, lk). (2-8)

Next, we set

Rk = euk
i0
(pk)/2lk (2-9)

and scale uk
i by

ṽk
i (y)= uk

i (pk + e−uk
i0
(pk)/2 y)− uk

i0
(pk) for i ∈ I.

From (2-7) we clearly have Rk→∞. By (2-8) and standard elliptic estimates for the Laplacian, ṽk
i is

bounded in C2
loc(R

2) and there exists ∅ 6= J ⊂ I such that, for all i ∈ J , ṽk
i converges to a limit system

like (2-3). On the other hand, ṽk
i converges uniformly to−∞ over all compact subsets of R2 for all i ∈ I \ J .

Clearly (2-6) holds for ṽk
i . Going back to uk , we have

uk
i (x)+ 2 log |x − xk

2 | ≤ C for |x − xk
2 | ≤ lk

2,

where xk
2 is the point where maxi maxB(pk ,lk

2 )
uk

i is attained and lk
2 = lk . Here we note that xk

2 is neither qk

nor pk and the distance between pk and xk
2 is small: euk

i0
(pk)/2
|xk

2− pk | = O(1). If we rescale uk around xk
2 ,

then vk defined as in (2-2) satisfies (a) and (b) in Proposition 2.1. Clearly B(xk
1 , l

k
1)∩ B(xk

2 , l
k
2)=∅.

To continue with the selection process, we let 6k,2 := {xk
1 , xk

2} and consider

max
i∈I,x∈B1

uk
i (x)+ 2 log dist(x, 6k,2).

If, along a subsequence, the quantity above tends to infinity, we apply the same procedure to get xk
3 and lk

3 .
After each selection we add a new disjoint disk, say B(xk

m, l
k
m), in which the profile of bubbling solutions

is like that of a global system, so from (2-4) we see that∫
B(xk

m ,lk
m)

∑
i

hk
i euk

i ≥ C for some C > 0 independent of k.

Therefore by (1-6) the process stops after finitely many steps and we have

uk
i (x)+ 2 log d(x, 6k)≤ C, i ∈ I. (2-10)

Proposition 2.1 is established. �
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2.1. Case two: the singular case ∃γi 6= 0. First, the selection process is almost the same. The difference
is instead of taking the maximum of uk

i over B1 we require

0 ∈6k .

Clearly, in B1\{0}, uk satisfies the same equation as the nonsingular case. Then we consider the maximum
of uk

i (x)+ 2 log dist(x, 6k)= uk
i (x)+ 2 log |x | and the selection proceeds the same as before. Therefore,

in the singular case, 6k = {0, xk
1 , . . . , xk

m}.

Lemma 2.4. Let 6k be the blowup set (thus, if γ k
i = 0 for all i , 6k = {xk

1 , . . . , xk
m}, and if the system is

singular, 6k = {0, xk
1 , . . . , xk

m}). In either case, for all x0 ∈ B1 \6k , there exists C0 independent of x0

and k such that

|uk
i (x1)− uk

i (x2)| ≤ C0 for all x1, x2 ∈ B
(
x0,

1
2 d(x0, 6k)

)
for all i ∈ I.

Proof. We can assume |x | < 1
10 because it is easy to see from Green’s representation formula that the

oscillation of uk
i on B1 \ B1/10 is finite. Recall the regular part of uk

i is defined in (1-4) and ũk
i satisfies

1ũk
i (x)+

∑
j∈I

ai j hk
j (x)|x |

2γ k
j eũk

j (x) = 0 in B1, i ∈ I.

Let σk be the distance between x0 and 6k . Clearly, for x0 ∈ B1 \6k and x1, x2 ∈ B
(
x0,

1
2 d(x0, 6k)

)
,

uk
i (x1)−uk

i (x2)= ũk
i (x1)−ũk

i (x2)+O(1)=
∫

B1

(G(x1, η)−G(x2, η))
∑
j∈I

ai j hk
j (η)|η|

2γ k
j eũk

j (η) dη+O(1).

Here G is the Green’s function on B1. The last term on the above is O(1) because it is the difference of
two points of a harmonic function that has bounded oscillation on ∂B1. Since both x1, x2 ∈ B1/10, it is
easy to use the uniform bound on the energy (1-6) to obtain∫

B1

(γ (x1, η)− γ (x2, η))
∑
j∈I

ai j hk
j (η)|η|

2γ k
j eũk

j (η) dη = O(1),

where γ ( · , · ) is the regular part of G. Therefore, we only need to show∫
B1

log
|x1− η|

|x2− η|

∑
j

ai j hk
j |η|

2γ j eũ j dη = O(1).

If η ∈ B1 \ B
(
x0,

3
4σk

)
, we have log(|x1−η|/|x2−η|)= O(1), then the integration over B1 \ B

(
x0,

3
4σk

)
is uniformly bounded. Therefore, we only need to show∫

B(x0,3σk/4)
log
|x1− η|

|x2− η|

∑
j

ai j hk
j |η|

2γ j eũk
j dη =

∫
B(x0,3σk/4)

log
|x1− η|

|x2− η|

∑
j

ai j hk
j e

uk
j dη = O(1).

To this end, let

vk
i (y)= uk

i (x0+ σk y)+ 2 log σk, y ∈ B3/4, i ∈ I. (2-11)
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Then we just need to show∫
B3/4

log
|y1− η|

|y2− η|

∑
j

ai j hk
j (x0+ σkη)e

vk
j (η) dη = O(1). (2-12)

We assume, without loss of generality, that e1 is the image of the closest blowup point in 6k . Thus, by
the selection process,

vk
i (η)≤−2 log |η− e1| +C.

Therefore,
ev

k
i (η) ≤ C |η− e1|

−2.

With this estimate, we observe that |η− e1| ≥ C > 0 for η ∈ B3/4. Thus, for j = 1, 2 and any fixed i ∈ I ,∫
B3/4

∣∣log |y j − η|
∣∣evk

i (η) dη ≤ C
∫

B3/4

∣∣log |y j − η|
∣∣

|η− e1|2
dη ≤ C.

Lemma 2.4 is established. �

Remark 2.5. For systems with nonnegative coefficient matrix A, the selection process can also be applied.
See [Chen and Li 1993] or [Lin and Zhang 2010] for more details.

3. Pohozaev identity and related estimates on the energy

In this section we derive a Pohozaev identity for uk satisfying (1-2), (1-3) and (1-6), hk
i and γ k

i satisfying
(1-5), and A = An .

Proposition 3.1. Let A = An , σi be defined by (1-7). Suppose uk
= (uk

1, . . . , uk
n) satisfy (1-2), (1-6),(1-3)

and (2-1), hk and γ k
i satisfy (1-5). Then we have

∑
i, j∈I

ai jσiσ j = 4
n∑

i=1

(1+ γi )σi .

Proof. We start with a lemma:

Lemma 3.2. Given any εk→ 0 such that 6k ⊂ B
(
0, 1

2εk
)
, there exist lk→ 0 satisfying lk ≥ 2εk and

ūk
i (lk)+ 2 log lk→−∞ for all i ∈ I, where ūk

i (r) :=
1

2πr

∫
∂Br

uk
i . (3-1)

Remark 3.3. By Lemma 3.2 and Lemma 2.4,

uk
i (x)+ 2 log |x | → −∞ for all i ∈ I and x ∈ ∂Blk .

This is crucial for evaluating the R1 term (the first term on the right) of (3-7) below.

Proof of Lemma 3.2. Since 6k ⊂ B
(
0, 1

2εk
)
, we have, by Proposition 2.1(3),

uk
i (x)+ 2 log |x | ≤ C, |x | ≥ εk . (3-2)
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The key point of the argument below is that we can always use the finite energy assumption and Lemma 2.4
to make uk

1 satisfy (3-1). Then we can adjust the radius to make the other components satisfy (3-1) as
well.

First we observe that, for each fixed i , there exists rk,i ≥ εk such that

ūk
i (rk,i )+ 2 log rk,i →−∞, (3-3)

because otherwise we would have

ūk
i (r)+ 2 log r ≥−C for all r ≥ εk

for some C > 0. By Lemma 2.4, uk
i has bounded oscillation on each ∂Br . Thus

uk
i (x)+ 2 log |x | ≥ −C for all x ∈ ∂Br , εk < r < 1

for some C . Then
euk

i (x) ≥ C |x |−2, εk ≤ |x | ≤ 1.

Integrating euk
i on B1 \ Bεk , we get a contradiction on the uniform energy bound of

∫
B1

hk
i euk

i . Thus (3-3)
is established.

Now, for uk
1, we find rk,1 ≥ εk so that

ūk
1(rk,1)+ 2 log rk,1→−∞.

Here we claim that we can assume rk,1→ 0 as well. In fact, if rk,1 does not tend to 0, by Lemma 2.4

ūk
1(r)+ 2 log r ≤−Nk +C, 1

2rk,1 < r < rk,1,

where Nk→∞ and satisfies
ūk

1(rk,1)+ 2 log rk,1 ≤−Nk .

Using Lemma 2.4 again we have

ūk
1(r)+ 2 log r ≤−Nk +C, 1

4rk,1 < r < 1
2rk,1.

Obviously this process can be done N k times, where N k is chosen to tend to infinity slowly enough so
that r̄k := rk,12−N k satisfies

ūk
1(r̄k)+ 2 log r̄k ≤−Nk +C N k→−∞.

We can use r̄k to replace rk,1. Exactly the same argument shows the existence of sk→ 0, Ñk→∞ such
that {

sk/rk,1→∞,

ūk
1(r)+ 2 log r ≤−Ñk, rk,1 ≤ r ≤ sk .

Next we claim that, between rk,1 and sk , there must be a rk,2 such that

ūk
2(rk,2)+ 2 log rk,2 ≤−Nk,2 (3-4)
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for some Nk,2 →∞ as k →∞. The proof of (3-4) is very similar to what has been used before: If
this is not the case, euk

2 ≥ Cr−2 for some C > 0 and r ∈ (rk,1, sk). The fact that sk/rk,1→∞ leads to a
contradiction to the uniform bound of the energy of uk

2.
Thus, we have proved that, for r = rk,2 both uk

1 and uk
2 decay faster than −2 log r :

ūk
i (r)+ 2 log r ≤−Nk, r = rk,2, i = 1, 2,

for some Nk→∞. Then it is easy to see that there exist sk→ 0 and sk/rk,2→∞ such that

ūk
i (r)+ 2 log r ≤−N ′k, rk,2 ≤ r ≤ sk, i = 1, 2,

for some N ′k→∞ as well. The same argument as above guarantees the existence of lk ∈ (rk,2, sk) and
some N ′′k →∞ such that

ūk
3(lk)+ 2 log lk ≤−N ′′k .

Clearly this argument can be applied finitely many times to exhaust all the components of the whole
system. Lemma 3.2 is established. �

Now we continue with the proof of Proposition 3.1.

Case one: γ k
i ≡ 0. Using the definition of σi in (1-7), we choose lk→ 0 such that 6k ⊂ B

(
0, 1

2 lk
)

and

1
2π

∫
Blk

hk
i euk

i = σi + o(1) for i ∈ I. (3-5)

Here we claim that (3-1) also holds, because otherwise we would have

ūi (lk)+ 2 log lk ≥−C.

By Lemma 2.4

ūi (r)+ 2 log r ≥−C1, lk ≤ r ≤ 2lk,

which means there is a lower bound on the energy in the annulus B2lk \ Blk . Consequently

1
2π

∫
B2lk

hk
i euk

i > σi + ε

for some ε > 0 independent of k, a contradiction to the definition of σi in (1-7).
Let

vk
i (y)= uk

i (lk y)+ 2 log lk, i ∈ I.

Then clearly we have{
1vk

i (y)+
∑n

j=1 ai j H k
j (y)e

vk
j (y) = 0, |y| ≤ l−1

k , i ∈ I,
v̄k

i (1)→−∞,
(3-6)

where

H k
i (y)= hk

i (lk y), |y| ≤ l−1
k , i ∈ I.
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The Pohozaev identity we use is∑
i

∫
B√Rk

(x · ∇H k
i )e

vk
i + 2

∑
i

∫
B√Rk

H k
i ev

k
i

=

√
Rk

∫
∂B√Rk

∑
i

H k
i ev

k
i +

√
Rk

∫
∂B√Rk

∑
i, j

(
ai j∂νv

k
i ∂νv

k
j −

1
2ai j
∇vk

i ∇v
k
j
)
, (3-7)

where Rk→∞ will be chosen later and (ai j ) is the inverse matrix of (ai j ). The key point of the following
proof is to choose Rk properly in order to estimate ∇vk

i on ∂B√Rk
. In the estimate of ∂B√Rk

, the procedure
is to get rid of unimportant parts and prove that the radial part of ∇vk

i is the leading term. To estimate all
the terms of the Pohozaev identity we first write (3-7) as

L1+L2 =R1+R2+R3,

where L1 stands for “the first term on the left” and the other terms are understood similarly. First, we
choose Rk →∞ such that R3/2

k = o(l−1
k ), then use lk → 0 to show that L1 = o(1). To evaluate L2,

we observe that, by Lemma 2.4, vk
i (y)→−∞ over all compact subsets of R2

\ B1/2. Thus we further
require Rk to satisfy ∫

BRk \B3/4

H k
i ev

k
i = o(1) (3-8)

and, for i ∈ I , by (3-6) and Lemma 2.4,

vk
i (y)+ 2 log |y| → −∞ uniformly in 1< |y| ≤ Rk . (3-9)

By the choice of lk we clearly have

1
2π

∫
B1

H k
i ev

k
i =

1
2π

∫
Blk

hk
i euk

i = σi + o(1), i ∈ I.

By (3-8), we have

L2 = 4π
n∑

i=1

σi + o(1).

For R1, we use (3-9) to conclude R1 = o(1).
Therefore we are left with the estimates of R2 and R3, for which we shall estimate ∇vk

i on ∂BRk . Let

Gk(y, η)=−
1

2π
log |y− η| + γk(y, η)

be the Green’s function on Bl−1
k

with respect to the Dirichlet boundary condition. Clearly

γk(y, η)=
1

2π
log
|y|

l−1
k

∣∣∣∣ l−2
k y
|y|2
− η

∣∣∣∣,
and we have

∇yγk(y, η)= O(lk), y ∈ ∂B√Rk
, η ∈ Bl−1

k
. (3-10)
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We first estimate ∇vk
i on ∂BR1/2

k
. By Green’s representation formula,

vk
i (y)=

∫
B

l−1
k

G(y, η)
n∑

j=1

ai j H k
i ev

k
j dη+ Hik,

where Hik is the harmonic function satisfying Hik = v
k
i on ∂Bl−1

k
. Since Hik − ck = O(1) for some ck ,

|∇Hik(y)| = O(lk), so

∇vk
i (y)=

∫
B

l−1
k

∇yGk(y, η)
n∑

j=1

ai j H k
j ev

k
j dη+∇Hik(y)

=−
1

2π

∫
B

l−1
k

y− η
|y− η|2

n∑
j=1

ai j H k
j ev

k
j dη+ O(lk). (3-11)

We estimate the integral in (3-11) over a few subregions. First, the integral over Bl−1
k
\BR2/3

k
is o(1)R−1/2

k

because, over this region, 1/|y− η| ∼ 1/|η| ≤ o(R−1/2
k ). For the integral over B1, we use

y− η
|y− η|2

=
y
|y|2
+ O

(
1
|y|2

)
to obtain

−
1

2π

∫
B1

y− η
|y− η|2

n∑
j=1

ai j H k
j ev

k
j =

(
−

y
|y|2
+ O

(
1
|y|2

))( n∑
j=1

ai jσ j + o(1)
)
.

This is the leading term. For the integral over the region B(0,
√

Rk/2) \ B1, we use 1/|y− η| ∼ 1/|y|
and (3-8) to get ∫

B
R1/2

k /2
\B1

y− η
|y− η|2

n∑
j=1

ai j H k
j ev

k
j = o(1)|y|−1.

By a similar argument we also have∫
B

R2/3
k
\(B

R1/2
k /2
∪B(y,|y|/2))

y− η
|y− η|2

n∑
j=1

ai j H k
j ev

k
j = o(1)|y|−1.

Finally, over the region B(y, |y|/2) we use ev
k
i (η) = o(1)|η|−2 to get∫

B(y,|y|/2)

y− η
|y− η|2

n∑
j=1

ai j H k
j ev

k
j = o(1)|y|−1.

Combining the estimates on all the subregions mentioned above, we have

∇vk
i (y)=−

y
|y|2

( n∑
j=1

ai jσ j + o(1)
)
+ o(|y|−1), |y| = R1/2

k .
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Using the above in R2 and R3, we have

n∑
i, j=1

ai jσiσ j = 4
n∑

i=1

σi +◦(1).

Proposition 3.1 is established for the nonsingular case.

Case two: the singular case ∃γi 6= 0.

Lemma 3.4. For σ ∈ (0, 1), the following Pohozaev identity holds:

σ

∫
∂Bσ

∑
i, j∈I

ai j(∂νuk
i ∂νu

k
j −

1
2∇uk

i · ∇uk
j
)
+

∑
i∈I

σ

∫
∂Bσ

hk
i euk

i

= 2
∑
i∈I

∫
Bσ

hk
i euk

i +

∑
i∈I

∫
Bσ
(x · ∇hk

i )e
uk

i + 4π
∑
i, j∈I

ai jγ k
i γ

k
j .

Proof. First, we claim that, for each fixed k,

∇uk
i (x)= 2γ k

i x/|x |2+ O(1) near the origin. (3-12)

Indeed, recall the equation for the regular part ũk
i is

1ũk
i (x)+

∑
j

|x |2γ
k
j hk

j (x)e
ũk

j (x) = 0 in B1.

By the argument of Lemma 4.1 in [Lin and Zhang 2010], for fixed k, ũk
i is bounded above near 0, then an

elliptic estimate leads to (3-12).
Let �= Bσ \ Bε . The standard Pohozaev identity on � is∑

i∈I

(∫
�

(x ·∇hk
i )e

uk
i +2hk

i euk
i

)
=

∫
∂�

(∑
i

(x ·ν)hk
i euk

i +

∑
i, j

ai j(∂νuk
j (x ·∇uk

i )−
1
2(x ·ν)(∇uk

i ·∇uk
j )
))
.

Let ε → 0, then the integration over � extends to Bσ by the integrability of hk
i euk

i and (1-5). For
the terms on the right-hand side, clearly ∂� = ∂Bσ ∪ ∂Bε . Thanks to (3-12), the integral on ∂Bε is
−4π

∑
i, j ai jγ k

i γ
k
j . Lemma 3.4 is established. �

Let

σ k
i (r)=

1
2π

∫
Br

hk
i euk

i , i ∈ I.

Lemma 3.5. Let εk→ 0 such that 6k ⊂ B
(
0, 1

2εk
)

and

uk
i (x)+ 2 log |x | → −∞, |x | = εk, i ∈ I. (3-13)

Then we have ∑
i, j∈I

ai jσ
k
i (εk)σ

k
j (εk)= 4

∑
i∈I

(1+ γ k
i )σ

k
i (εk)+ o(1). (3-14)
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Proof of Lemma 3.5. First the existence of εk that satisfies (3-13) is guaranteed by Lemma 2.4. In Bεk , we
let ũk

i (x) be defined as in (1-4). Then

vk
i (y)= ũk

i (εk y)+ 2(1+ γ k
i ) log εk .

Using vk
i →−∞ on ∂B1, we obtain, by Green’s representation formula and standard estimates,

∇vk
i (y)=

(∑
j∈I

ai jσ
k
j (εk)+ o(1)

)
y, y ∈ ∂B1.

After translating the above to estimates of uk
i , we have

∇uk
i (x)=

(∑
j∈I

(ai jσ
k
j (εk)− 2γ k

j )

)
x
|x |2
+

o(1)
|x |

, |x | = εk . (3-15)

As we observe the Pohozaev identity in Lemma 3.4 with σ = εk , we see easily that the second term on the
left-hand side and the second term on the right-hand side are both o(1). The first term on the right-hand
side is clearly 4π

∑
i σ

k
i (εk). Therefore we only need to evaluate the first term on the left-hand side, for

which we use (3-15). Lemma 3.5 is established by similar estimates as in the nonsingular case. �

Thus Proposition 3.1 is established for the singular case as well. �

Remark 3.6. The proof of Proposition 3.1 clearly indicates the following statements when it is applied
to an SU(3) Toda system. Let B(pk, lk) be a circle centered at pk with radius lk . Let 6′k be a subset
of 6k . Suppose dist(6′k, ∂B(pk, lk))= o(1) dist(6k \6

′

k, ∂B(pk, lk)), and we consider the following two
situations: If pk = 0, we have

σ̃ k
1 (lk)

2
− σ̃ k

1 (lk)σ̃
k
2 (lk)

2
+ σ̃ k

2 (lk)= 2µ1σ̃
k
1 (lk)+ 2µ2σ̃

k
2 (lk)+ o(1).

If 0 ∈6k \6
′

k , then

σ̃ k
1 (lk)

2
− σ̃ k

1 (lk)σ̃
k
2 (lk)+ σ̃

k
2 (lk)

2
= 2σ̃ k

1 (lk)+ 2σ̃ k
2 (lk)+ o(1),

where σ̃ k
i (lk)= (1/2π)

∫
B(pk ,lk)

hk
i euk

i . This fact will be used in the final step of the proof of Theorem 1.2.

Remark 3.7. From the proof of Proposition 3.1, we see that the Pohozaev identity has to be evaluated on
fast decay components in order to rule out the R1 term. A component is called fast decay if the difference
between itself and the threshold harmonic function tends to −∞; for example, see (3-13). A component
is called a slow decay component if it is not a fast decay component. Later, in the remaining part of the
proof of Theorem 1.2, we shall derive Pohozaev identities over different regions and all of them will have
to be evaluated on fast decay components.

4. Fully bubbling systems

Next we consider a typical blowup situation for systems: fully bubbling solutions. First, let γ k
i ≡ 0 for

all i ∈ I . Let
λk
=max

{
max

B1
uk

1, . . . ,max
B1

uk
n
}

(4-1)
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and xk
→ 0 be where λk is attained. Let

vk
i (y)= uk

i (xk + e−λ
k/2 y)− λk, y ∈�k, i ∈ I, (4-2)

where �k = {y : e−λ
k/2 y+ xk ∈ B1}. The sequence is called fully bubbling if, along a subsequence,

{vk
1, . . . ., v

k
n} converge in C2

loc(R
2) to (v1, . . . , vn) (4-3)

that satisfies
1vi +

∑
j∈I

ai j h j ev j = 0 in R2, i ∈ I, (4-4)

where hi = limk→∞ hk
i (0). Our next theorem is concerned with the closeness between uk

= (uk
1, . . . , uk

n)

and v = (v1, . . . , vn).

Theorem 4.1. Let A = An , uk be a sequence of solutions to (1-2) with γ k
i = 0 for all i ∈ I . Suppose uk

satisfies (1-3) and (1-6), hk satisfies (1-5), and λk , xk and vk are described by (4-1) and (4-2), respectively.
Suppose uk is fully bubbling; then there exists C > 0 independent of k such that

|uk
i (e
−

1
2λ

k
y+ xk)− λk

− vi (y)| ≤ C + o(1) log(1+ |y|) for x ∈�k, i ∈ I. (4-5)

Remark 4.2. If A is nonnegative, i.e., the system is a Liouville system, Theorem 4.1 and Theorem 4.3
below are established in [Lin and Zhang 2010]. For A = A2, [Jost et al. 2006] proved

|uk
i (e
−λk/2 y+ xk)− λk

− vi (y)| ≤ C for x ∈�k, i = 1, 2.

Clearly this estimate is slightly stronger than (4-5) for n = 2. The Jost–Lin–Wang proof uses holonomy
theory but the proof of Theorem 4.1 is a simple application of the Pohozaev identity proved in Section 3.

If there is a γi 6= 0, we let

λ̃k
=max

{
maxB1 ũk

1

1+ γ k
1
, . . . ,

maxB1 ũk
n

1+ γ k
n

}
,

and
ṽk

i (y)= ũk
i (e
−λ̃k/2 y)− (1+ γ k

i )λ̃
k

for i ∈ I and y ∈�k := {y : e−λ̃
k/2 y ∈ B1}. We assume

(ṽk
1, . . . , ṽ

k
n) converge in C2

loc(R
2) to (ṽ1, . . . , ṽn) (4-6)

that satisfies

1ṽi +

n∑
j=1

ai j |x |2γ j h j eṽ j = 0 in R2, i ∈ I, (4-7)

where hi = limk→∞ hk
i (0).

Theorem 4.3. Let A = An , ũk , ṽk , (ṽ1, . . . , ṽn), λ̃k , εk and �k be as described above, and hk
i and γ k

i
satisfy (1-5); then, under assumption (4-6), there exists C > 0 independent of k such that

|ũk
i (e

λ̃k/2 y)− (1+ γ k
i )λ̃

k
− ṽi (y)| ≤ C + o(1) log(1+ |y|) for x ∈�k . (4-8)
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Proof of Theorem 4.1. Recall that σi is defined in (1-7). By Proposition 3.1, we have∑
i, j∈I

ai jσiσ j = 4
∑
i∈I

σi . (4-9)

On the other hand, let

σiv :=
1

2π

∫
R2

hi evi for i = 1, . . . , n,

where v= (v1, . . . , vn) is the limit of the fully bubbling sequence after scaling. Clearly σv= (σ1v, . . . , σnv)

also satisfies (4-9). We claim that

σi = σiv for i = 1, . . . , n. (4-10)

Let si = σi − σvi ; we obviously have si ≥ 0. The difference between σ and σv on (4-9) gives∑
i, j∈I

ai j si s j + 2
∑
i∈I

(∑
j∈I

ai jσv j − 2
)

si = 0. (4-11)

First, by Proposition 2.1, we have
∑

j∈I ai jσv j − 2> 0. Next, if either A is nonnegative (ai j ≥ 0 for all
i , j = 1, . . . , n) or A is positive definite, we have

∑
i, j∈I ai j si s j ≥ 0. Then (4-11) and si ≥ 0 imply (4-10).

From the convergence from vk
i to vi in C2

loc(R
2), we can find Rk→∞ such that

|vk
i (y)− vi (y)| = o(1), |y| ≤ Rk .

For |y|> Rk , let

v̄k
i (r)=

1
2πr

∫
∂Br

vk
i (y) d Sy .

Then
d
dr
v̄k

i (r)=
1

2πr

∫
Br

1vk
i =−

1
2πr

∫
Br

∑
j∈I

ai j hk
j e
vk

j =−

∑
j ai jσ j + o(1)

r
.

Hence

v̄k
i (r)=−

(∑
j∈I

ai jσ j + o(1)
)

log r + O(1) for all r > 2.

Since vk
i (y)= v̄

k
i (|y|)+ O(1) and

vi (y)=−
(∑

j

ai jσ j

)
log |y| + O(1) for |y|> 1,

we see that (4-5) holds. Theorem 4.1 is established. �

Proof of Theorem 4.3. By (3-14) we have∑
i, j∈I

ai jσiσ j = 4
∑
i∈I

(1+ γi )σi . (4-12)

Recall that v = (v1, . . . , vn) satisfies (4-7). Let

σiv =
1

2π

∫
R2

hi |x |2γi evi .
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On the one hand, (σ1v, . . . , σiv) also satisfies (4-12); on the other hand, the classification theorem of [Lin
et al. 2012a] gives ∑

j∈I

ai jσ jv > 2+ 2γi , i ∈ I. (4-13)

Let si = σi − σiv (i ∈ I ); then (4-12), which is satisfied by both (σ1, . . . , σn) and (σ1v, . . . , σnv), gives∑
i, j∈I

ai j si s j + 2
∑
i∈I

(∑
j∈J

ai jσ jv − 2− 2γi

)
si = 0.

By (4-13) and the assumption on A, we have si = 0 for all i ∈ I . The remaining part of the proof is
exactly like the last part of the proof of Theorem 4.1. Theorem 4.3 is established. �

5. Asymptotic behavior of solutions in each simple blowup area

In this section, we derive some results on the energy classification around each blowup point. First we let
A = An (the Cartan matrix) and consider:

The neighborhood around 0. Since 0 is postulated to belong to 6k first, it means there may not be a
bubbling picture in a neighborhood of 0.

Let τk =
1
2 dist(0, 6k \ {0}); we consider the energy limits of hk

i euk
i in Bτk . By the selection process

and Lemma 2.4,

uk
i (x)+ 2 log |x | ≤ C, uk

i (x)= ūk
i (|x |)+ O(1), |x | ≤ τk, i ∈ I, (5-1)

where ūk
i (|x |) is the average of uk

i on ∂B|x |. Let ũk
i be defined by (1-4). Then we have

1ũk
i (x)+

∑
j∈I

ai j |x |2γ j hk
j (x)e

ũk
j (x) = 0, |x | ≤ τk .

Let

−2 log δk =max
i∈I

max
x∈B(0,τk)

ũk
i

1+ γ k
i

and
vk

i (y)= ũk
i (δk y)+ 2(1+ γ k

i ) log δk, |y| ≤ τkδ
−1
k . (5-2)

It is easy to see the equation for vk
i is

1vk
i (y)+

∑
j∈I

ai j |y|
2γ k

j hk
j (δk y)ev

k
j (y) = 0, |y| ≤ τkδ

−1
k .

Then we consider two trivial cases, first, τkδ
−1
k ≤ C . This is the case that there is no entire bubble after

scaling.
Let f k

i solve {
1 f k

i +
∑

j∈I ai j |y|
2γ k

j hk
j (δk y)ev

k
j = 0, |y| ≤ τkδ

−1
k ,

f k
i = 0 on |y| = τkδ

−1
k .
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Using vi ≤ 0 we have | f k
i | ≤C on B(0, τkδ

−1
k ). Since vk

i − f k
i is harmonic and vk

i has bounded oscillation
on ∂B(0, τkδ

−1
k ), we have

vk
i (x)= v̄

k
i (∂B(0, τkδ

−1
k ))+ O(1) for all x ∈ B(0, τkδ

−1
k ), (5-3)

where v̄k
i (∂B(0, τkδ

−1
k )) stands for the average of vk

i on ∂B(0, τkδ
−1
k ). Direct computation shows that∫

B(0,τk)

euk
i (x) dx =

∫
B(0,τkδ

−1
k )

ev
k
i (y)|y|2γ

k
i dy.

Therefore, ∫
Bτk

hk
i euk

i dx = O(1)ev̄
k
i (∂B(0,τkδ

−1
k )). (5-4)

So, if v̄k
i (∂B(0, τkδ

−1
k ))→−∞, then

∫
Bτk

hk
i euk

i dx = o(1).

The second trivial case is when the blowup sequence is fully bubbling. We now have

τkδ
−1
k →∞ (5-5)

and we assume that (vk
1, . . . , v

k
n)→ (v1, . . . , vn) in C2

loc(R
2). Clearly,

1vi +

n∑
j=1

ai j |x |2γ j h j ev j = 0 in R2, i ∈ I,

where hi = limk→∞ hk
i (0). By the classification theorem of [Lin et al. 2012a], we have

1
2π

∑
j∈I

ai j

∫
R2
|y|2γ j ev j h j dy = 2(2+ γi + γn+1−i )

and
vi (y)=−(4+ 2γn+1−i ) log |y| + O(1), |y|> 1, i ∈ I.

By the proof of Theorem 4.3, there is only one bubble.

The final case we consider is a partially blown-up picture. Note that (5-5) is assumed. For the following
two propositions we assume n = 2, i.e., we consider SU(3) Toda systems.

Proposition 5.1. Suppose (1-2), (1-3), (1-5) and (1-6) hold for uk , hk
i and γi . The matrix A equals A2,

and (5-5) also holds. Suppose sk ∈ (0, τk) satisfies

uk
i (x)≤−2 log |x | − Nk, i = 1, 2,

for all |x | = sk and some Nk→∞. Then (σ k
1 (sk), σ

k
2 (sk)) is an o(1) perturbation of one of the following

five types:

(2µ1, 0), (0, 2µ2), (2(µ1+µ2), 2µ2), (2µ1, 2(µ1+µ2)), (2µ1+ 2µ2, 2µ1+ 2µ2).

On ∂B(0, τk), for each i either

uk
i (x)+ 2 log |x | ≥ −C, |x | = τk,
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for some C > 0 or

uk
i (x)+ 2 log |x |<−(2+ δ) log |x | + δ log δk, |x | = τk, (5-6)

for some δ > 0. If (5-6) holds for some i , then

σ k
i (τk)= o(1), 2µi + o(1) or 2µ1+ 2µ2+ o(1).

Moreover, there exists at least one i0 such that (5-6) holds for i = i0.

Similarly, for bubbles away from the origin we have:

Proposition 5.2. Suppose (1-2), (1-3), (1-5) and (1-6) hold for uk , hk
i and γi . The matrix A equals A2.

Let xk ∈6k \ {0}, τ̄k =
1
2 dist(xk, 6k \ {0, xk}) and

δ̄k = exp
(
−

1
2 max

i=1,2
x∈B(xk ,τ̄k)

uk
i (x)

)
.

Then, for all sk ∈ (0, τ̄k), if

uk
i (x)+ 2 log |x − xk | ≤ −Nk for all |x − xk | = sk, i = 1, 2,

for some Nk→∞, then
(
(1/2π)

∫
B(xk ,sk)

hk
1euk

1, (1/2π)
∫

B(xk ,sk)
hk

2euk
2
)

is an o(1) perturbation of one of
the following five types:

(2, 0), (0, 2), (2, 4), (4, 2), (4, 4).

On ∂B(xk, τ̄k), for each i either

uk
i (x)+ 2 log τ̄k ≥−C for all x ∈ ∂B(xk, τ̄k)

or
uk

i (x)≤−(2+ δ) log τ̄k + δ log δ̄k for all x ∈ ∂B(xk, τ̄k). (5-7)

If (5-7) holds for some i , then (1/2π)
∫

B(xk ,τ̄k)
hk

i euk
i is o(1), 2+ o(1) or 4+ o(1). Moreover, there exists

at least one i0 such that (5-7) holds for i0.

We shall only prove Proposition 5.1, as the proof for Proposition 5.2 is similar.

Proof of Proposition 5.1. Let vk
i be defined by (5-2). Since we only need to consider a partially blown-up

situation, without loss of generality we assume vk
1 converges to v1 in C2

loc(R
2) and vk

2 tends to −∞ over
any compact subset of R2. The equation for v1 is

1v1+ 2h1|y|2γ1ev1 = 0 in R2,

∫
R2

h1|y|2γ1ev1 <∞,

where h1 = limk→∞ hk
1(0). By the classification result of [Prajapat and Tarantello 2001] we have

2
∫

R2
h1|y|2γ1ev1 = 8πµ1

and
v1(y)=−4µ1 log |y| + O(1), |y|> 1.
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Thus we can find Rk→∞ (without loss of generality, Rk = o(1)τkδ
−1
k ) such that

1
2π

∫
BRk

hk
1(δk y)|y|2γ

k
1 ev

k
1 = 2µ1+ o(1),

i.e., σ k
1 (δk Rk)= 2µ1+ o(1), and ∫

BRk

hk
2(δk y)|y|2γ

k
2 ev

k
2 = o(1).

For r ≥ Rk , recall that

σ k
i (δkr)= 1

2π

∫
Br

hk
i (δk y)|y|2γ

k
i ev

k
i dy;

then we have
d
dr
v̄k

1(r)=
−2σ k

1 (δkr)+ σ k
2 (δkr)

r
,

d
dr
v̄k

2(r)=
σ k

1 (δkr)− 2σ k
2 (δkr)

r
, Rk ≤ r ≤ τkδ

−1
k .

Clearly we have

Rk
d
dr
v̄k

1(Rk)=−4µ1+ o(1), Rk
d
dr
v̄k

2(Rk)= 2µ1+ o(1). (5-8)

The following lemma says that as long as both components stay well below the harmonic function
−2 log |y| (i.e., both of them are fast decay components), there is no essential change on the energy for
either component:

Lemma 5.3. Suppose Lk ∈ (Rk, τkδ
−1
k ) satisfies

vk
i (y)+ 2γ k

i log |y| ≤ −2 log |y| − Nk, Rk ≤ |y| ≤ Lk, i = 1, 2, (5-9)

for some Nk→∞, then

σ k
i (δk Rk)= σ

k
i (δk Lk)+ o(1), i = 1, 2.

Proof of Lemma 5.3. We aim to prove that σ k
i does not change much from δk Rk to δk Lk . Suppose this is

not the case; then there exists i such that σ k
i (δk Lk) > σ

k
i (δk Rk)+ δ for some δ > 0. Let L̃k ∈ (Rk, Lk) be

such that

max
i=1,2

(σ k
i (δk L̃k)− σ

k
i (δk Rk))= ε for i = 1, 2, (5-10)

where ε > 0 is sufficiently small. Then, for vk
1 ,

d
dr
v̄k

1(r)≤
−4(1+ γ1)+ ε

r
≤−

2(1+ γ1)+ ε

r
. (5-11)

It is easy to see from Lemma 2.4 that ∫
BL̃k
\BRk

|y|2γ
k
1 ev

k
1 = o(1),
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which is σ k
1 (δk L̃k)= σ

k
1 (δk Rk)+ o(1). Indeed, by Lemma 2.4,∫

BLk \BRk

|y|2γ
k
1 ev

k
1 = O(1)

∫
BLk \BRk

|y|2γ
k
1 ev̄

k
1 = o(1).

The second equality above is because, by (5-11),

v̄k
1(r)+ 2γ k

1 log r ≤−Nk − 2 log Rk +
(
−2− 1

2ε
)

log r, Rk ≤ r ≤ Lk .

Thus σ k
2 (δk L̃k)= σ

k
2 (δk Rk)+ ε. However, since (5-9) holds, by Remark 3.6 we have

lim
k→∞

(σ k
1 (δk L̃k), σ

k
2 (δk L̃k)) ∈ 0.

The two points on 0 that have the first component equal to 2µ1 are (2µ1, 0) and (2µ1, 2(µ1+µ2)). Thus
(5-10) is impossible. Lemma 5.3 is established. �

From Lemma 5.3 and (5-8) we see that, for r ≥ Rk , either

vk
i (y)+ 2γ k

i log |y| ≤ −2 log |y| − Nk, Rk ≤ |y| ≤ τkδ
−1
k , i = 1, 2, (5-12)

or there exists Lk ∈ (Rk, τkδ
−1
k ) such that

vk
2(y)+ 2γ k

2 log Lk ≥−2 log Lk −C, |y| = Lk, (5-13)

for some C > 0, while, for Rk ≤ |y| ≤ Lk ,

vk
1(y)+ 2γ k

1 log |y| ≤ −(2+ δ) log |y|, Rk ≤ |y| ≤ Lk, (5-14)

for some δ > 0. Indeed, from (5-8) we see that if the energy has to change, σ k
2 has to change first. Lk can

be chosen so that σ k
2 (δk Lk)− σ

k
2 (δk Rk)= ε for some ε > 0 small.

Lemma 5.4. Suppose there exist Lk ≥ Rk such that (5-13) and (5-14) hold. For Lk , we assume
Lk = o(1)τkδ

−1
k . Then there exist L̃k such that L̃k/Lk → ∞ and L̃k = o(1)τkδ

−1
k still holds. For

|y| = L̃k , we have

vk
i (y)+ 2(1+ γ k

i ) log |y| ≤ −Nk, |y| = L̃k, i = 1, 2, (5-15)

for some Nk→∞. In particular,

vk
1(y)+ 2

(
1+ γ k

1 +
1
4δ
)

log |y| ≤ 0, |y| = L̃k, (5-16)

σ k
1 (δk L̃k)= 2µ1+ o(1), σ k

2 (δk L̃k)= 2µ1+ 2µ2+ o(1). (5-17)

Remark 5.5. The statement of Lemma 5.4 can be understood as follows: Suppose, starting from ∂BLk ,
σ k

2 starts to change because (5-13) holds. Then, from Lk to L̃k , σ k
1 does not change much and vk

1 is still
far below −2(1+ γ k

1 ) log |y|, but vk
2 has changed from decaying slowly (which is (5-13)) to a fast decay

(the i = 2 part of (5-16)). In other words, as σ k
2 changes from Lk to L̃k , vk

2 changes from slow decay to
fast decay but vk

1 still has fast decay in the meanwhile. The change of σ k
2 has influenced the derivative

of v̄k
1 , but has not made σ k

1 change much because σ k
2 changes too fast from Lk to L̃k .
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Proof of Lemma 5.4. First we observe that, by Lemma 5.3, the energy does not change if both components
satisfy (5-12). Thus we can assume that σ k

2 (δk Lk)≤ ε for some ε > 0 small. Consequently,

d
dr
v̄k

1(r)≤
−4(1+ γ1)+ 2ε

r
, r ≥ Rk .

Now we claim that there exists N > 1 such that

σ k
2 (δk(Lk N ))≥ 2+ γ1+ γ2+ o(1). (5-18)

If this is not true, we would have ε0 > 0 and R̃k→∞ such that

σ k
2 (δk R̃k Lk)≤ 2+ γ1+ γ2− ε0. (5-19)

On the other hand, R̃k can be chosen to tend to infinity slowly, so that, by Lemma 2.4 and (5-14),

vk
1(y)+ 2(1+ γ k

1 ) log |y| ≤ − 1
2δ log |y|, Lk ≤ |y| ≤ R̃k Lk . (5-20)

Clearly (5-20) implies σ k
1 (δk Lk)= σ

k
1 (δk R̃k Lk)+ o(1). Thus, by (5-19),

d
dr
v̄k

2(r)≥
−2− 2γ2+ ε0/2

r
. (5-21)

Using (5-21) and

vk
2(y)= (−2− 2γ k

2 ) log |y| + O(1), |y| = Lk,

we see easily that ∫
B(0,R̃k Lk)\B(0,Lk)

|y|2γ
k
2 ev

k
2 →∞,

a contradiction to (1-6). Therefore (5-18) holds.
By Lemma 2.4,

vk
i (y)+ 2 log(N Lk)= v̄

k
i (N Lk)+ 2 log(N Lk)+ O(1), |y| = N Lk, i = 1, 2.

Thus we have
v̄k

1(N Lk)≤
(
−2− 2γ k

1 −
1
2δ
)

log(N Lk),

v̄k
2(N Lk)≥ (−2− 2γ k

2 ) log(N Lk)−C.

Consequently,

v̄k
2((N + 1)Lk)≥ (−2− 2γ k

2 ) log Lk −C

leads to
1

2π

∫
B(0,(N+1)Lk)

hk
2(δk y)|y|2γ

k
2 ev

k
2(y) dy ≥ 2+ γ1+ γ2+ ε0

for some ε0 > 0. Going back to the equation for v̄k
2 , we have

d
dr
v̄k

2(r)≤−
2+ 2γ2+ ε0

r
, r = (N + 1)Lk .



CLASSIFICATION OF BLOWUP LIMITS FOR SU(3) SINGULAR TODA SYSTEMS 831

Therefore we can find R̃k→∞ such that R̃k Lk = o(1)τkδ
−1
k and

vk
2(y)≤ (−2− 2γ k

2 − ε0) log |y| − Nk, |y| = R̃k Lk,

vk
1(y)≤

(
−2− 2γ k

1 −
1
4δ
)

log |y|, Lk ≤ |y| ≤ R̃k Lk .

Obviously,
σ k

1 (δk R̃k Lk)= σ
k
1 (δk Lk)+ o(1)= σ k

1 (δk Rk)+ o(1)= 2(1+ γ1)+ o(1).

By computing the Pohozaev identity on R̃k Lk , we have

σ k
2 (δk R̃k Lk)= 2µ1+ 2µ2+ o(1).

Letting L̃k = R̃k Lk , we have proved Lemma 5.4. �

To finish the proof of Proposition 5.1, we need to consider the region L̃k ≤|y|≤ τkδ
−1
k if Lk=o(1)τkδ

−1
k

(in which case L̃k can be made to be o(1)τkδ
−1
k ), or Lk = O(1)τkδ

−1
k . First we consider the region

L̃k ≤ |y| ≤ τkδ
−1
k when L̃k = o(1)τkδ

−1
k . It is easy to verify that

d
dr
v̄k

1(r)=−
2γ1− 2γ2

r
+

o(1)
r
, r = L̃k,

d
dr
v̄k

2(r)=−
6+ 2γ1+ 4γ2+ o(1)

r
, r = L̃k .

The second equation above implies

d
dr
v̄k

2(r)≤−
2µ2+ δ

r
, r = L̃k,

for some δ > 0. So σ k
2 (r) does not change for r ≥ L̃k unless σ k

1 changes. By the same argument as before,
either vk

1 rises to −2 log |y| + O(1) on |y| = τkδ
−1
k , or there is L̂k = o(1)τkδ

−1
k such that

σ k
i (δk L̂k)= 2µ1+ 2µ2+ o(1), i = 1, 2.

Since this is the energy of a fully bubbling system, we have in this case both

vk
i (y)≤−(2µi + δ) log |y|, |y| = τkδ

−1
k , i = 1, 2,

for some δ > 0.
If Lk = O(1)τkδ

−1
k , it is easy to use Lemma 2.4 to see that one component is −2(1+γ k

i ) log |y|+O(1)
and the other component has the fast decay. Proposition 5.1 is established. �

6. Combination of bubbling areas

The following definition plays an important role:

Definition 6.1. Let Qk = {pk
1, . . . , pk

q} be a subset of 6k such that Qk has more than one point in it and
6k \ Qk =6 ∅. Qk is called a group if:

(1) dist(pk
i , pk

j )∼ dist(pk
s , pk

t ),

where pk
i , pk

j , pk
s , pk

t are any points in Qk such that pk
i 6= pk

j and pk
t 6= pk

s .
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(2) For any pk ∈6k \ Qk , dist(pk
i , pk

j )/dist(pk
i , pk)→ 0 for all pk

i , pk
j ∈ Qk with pk

i 6= pk
j .

Proof of Theorem 1.2. Let 2τk be the distance between 0 and 6k \ {0}. For each zk ∈6k ∩ ∂B(0, 2τk), if
dist(zk, 6k \ {zk}) ∼ τk , let G0 be the group that contains the origin. On the other hand, if there exists
z′k ∈ ∂B(0, 2τk) such that τk/ dist(z′k, 6k \ z′k)→∞, we let G0 be 0 itself. By the definition of a group,
all members of G0 are in B(0, Nτk) for some N independent of k. Let

vk
i (y)= uk

i (τk y)+ 2 log τk, |y| ≤ τ−1
k .

Then we have

1vk
i (y)+

2∑
j=1

ai j hk
j (τk y)ev

k
j (y) = 4πγ k

i δ0, |y| ≤ τ−1
k . (6-1)

Let 0, Q1, . . . , Qm be the images of members of G0 after the scaling from y to τk y. Then all Qi ∈ BN .
By Proposition 5.1 and Proposition 5.2, at least one component decays fast on ∂B1. Without loss of
generality, we assume

vk
1 ≤−Nk on ∂B1

for some Nk→∞, and

σ k
1 (τk)= o(1), 2µ1+ o(1) or 2µ1+ 2µ2+ o(1).

Specifically, if τkδ
−1
k ≤ C , then σ k

1 (τk) = o(1). Otherwise, σ k
1 (τk) is equal to one of the two other

cases mentioned above. By Lemma 2.4, vk
1 ≤−Nk +C on all ∂B(Qt , 1) (t = 1, . . . ,m); therefore, by

Proposition 5.2,
1

2π

∫
B(Qt ,1)

hk
1(τk · )ev

k
1 = 2mt + o(1), t = 1, . . . ,m,

where, for each t , mt = 0, 1 or 2. Let 2τk Lk be the distance from 0 to the nearest group other than G0.
Then Lk→∞. By Lemma 2.4 and the proof of Lemma 3.2, we can find L̃k ≤ Lk , L̃k→∞, such that
most of the energy of vk

1 in B(0, L̃k) is contributed by bubbles and vk
2 decays faster than −2 log L̃k on

∂B(0, L̃k):

1
2π

∫
B(0,Lk)

hk
1(0)e

vk
1 = 2m+ o(1), 2µ1+ 2m+ o(1) or 2(µ1+µ2)+ 2m+ o(1) (6-2)

for some nonnegative integer m, and

vk
2(y)+ 2 log L̃k→−∞, |y| = L̃k . (6-3)

Then we evaluate the Pohozaev identity on B(0, L̃k). Since (6-3) holds, by Remark 3.6 we have

lim
k→∞

(σ k
1 (τk L̃k), σ

k
2 (τk L̃k)) ∈ 0.

Moreover, by (6-2) we see that limk→∞(σ
k
1 (τk L̃k), σ

k
2 (τk L̃k))∈6 because the limit point is the intersection

between the line σ1 = limk→∞ σ
k
1 (τk L̃k) and 0.
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The Pohozaev identity for (σ k
1 (τk L̃k), σ

k
2 (τk L̃k)) can be written as

σ k
1 (τk L̃k)(2σ k

1 (τk L̃k)− σ
k
2 (τk L̃k)− 4µ1)+ σ

k
2 (τk L̃k)(2σ k

2 (τk L̃k)− σ
k
1 (τk L̃k)− 4µ2)= o(1).

Thus either

2σ k
1 (τk L̃k)− σ

k
2 (τk L̃k)≥ 4µ1+ o(1) (6-4)

or

2σ k
2 (τk L̃k)− σ

k
1 (τk L̃k)≥ 4µ2+ o(1).

Moreover, if

2σ k
1 (τk L̃k)− σ

k
2 (τk L̃k)≥ 2µ1+ o(1) and 2σ k

2 (τk L̃k)− σ
k
1 (τk L̃k)≥ 2µ2+ o(1),

then, by the proof of Theorem 4.3, ∫
Blk \τk l̃k

hk
i euk

i = o(1), i = 1, 2,

for any lk→ 0. In this case we have

σi = lim
k→∞

σ k
i (τk L̃k), i = 1, 2,

and Theorem 1.2 is proved in this case.
Thus, without loss of generality, we assume that (6-4) holds. From the equation for uk

1, this means that,
for some δ > 0,

ūk
1(τk L̃k)≤−2 log(τk L̃k)− Nk,

d
dr

ūk
1(r) <

−2−δ
r

, r = τk L̃k . (6-5)

The property above implies, by the proof of Proposition 5.1, that, as r grows from τk L̃k to τk Lk , the
following three situations may occur:

Case one. Both uk
i satisfy, for some Nk→∞, that

uk
i (x)+ 2 log |x | ≤ −Nk, τk L̃k ≤ |x | ≤ τk Lk, i = 1, 2.

In this case,

σ k
i (τk L̃k)= σ

k
i (τk Lk)+ o(1), i = 1, 2.

So, on ∂B(0, τk Lk), uk
1 is still a fast decaying component.

Case two. There exist L1,k and L2,k ∈ (L̃k, Lk) such that

uk
2(x)≥−2 log(τk L1,k)−C, |x | = τk L1,k,

uk
i (x)≤−2 log(τk L2,k)− Nk, |x | = τK L2,K , i = 1, 2, (6-6)

and

σ k
1 (τk L̃k)= σ

k
1 (τk L2,k)+ o(1). (6-7)
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Since (6-6) holds, by Remark 3.6 we have (limk→∞ σ
k
1 (τk L2,k), limk→∞ σ

k
2 (τk L2,k))∈0. Then we further

observe that, since (6-7) holds, limk→∞(σ
k
1 (τk L2,k), σ

k
2 (τk L2,k))∈6, because this point is obtained by in-

tersecting 0 with σ1= limk→∞ σ
k
1 (τk L̃k). In other words, the new point limk→∞(σ

k
1 (τk L2,k), σ

k
2 (τk L2,k))

is on the upper right part of the old point limk→∞(σ
k
1 (τk L̃k), σ

k
2 (τk L̃k)).

Case three. uk
2(x)≥−2 log τk Lk −C, |x | = τk Lk,

for some C > 0 and σ k
1 (τk L̃k) = σ

k
1 (τk Lk)+ o(1). This means that ∂B(0, τk Lk), uk

1 is still the fast
decaying component.

If the second case above happens, the relationship between σ k
1 and σ k

2 on B(0, τk Lk) \ B(0, τk L2,k) is
the same as discussed before. In any case, on ∂B(0, τk Lk) at least one of the two components has fast
decay and has its energy equal to a corresponding component of a point in 6. For any group not equal to
G0, it is easy to see that the fast decay component has its energy equal to 0, 2 or 4. The combination
of bubbles for groups is very similar to the combination of bubbling disks as we have done before. For
example, let G0, G1, . . . ,G t be groups in B(0, εk) for some εk→ 0. Suppose the distances between any
two of G0, . . . ,G t are comparable and

dist(Gi ,G j )= o(1)εk for all i, j = 0, . . . , t, i 6= j.

Also we require
(
6k \

(⋃t
i=0 Gi

))
∩ B(0, 2εk) = ∅. Let ε1,k = dist(G0,G1); then all G0, . . . ,G t are

in B(0, Nε1,k) for some N > 0. Without loss of generality let uk
1 be a fast decaying component on

∂B(0, Nε1,k). Then we have

σ k
1 (Nε1,k)= σ

k
1 (τk Lk)+ 2m+ o(1),

where m is a nonnegative integer because, by Lemma 2.4, uk
1 is also a fast decaying component

for G1, . . . ,G t . Moreover, by Proposition 5.2, the energy of uk
1 in Gs (s = 1, . . . , t) is o(1), 2+ o(1) or

4+ o(1). If uk
2 also has fast decay on ∂B(0, Nε1,k), then limk→∞(σ

k
1 (Nε1,k), σ

k
1 (Nε1,k)) ∈ 6 because

this is a point of intersection between 0 and σ1 = limk→∞ σ
k
1 (τk Lk)+ 2m. If

uk
2(x)≥−2 log Nε1,k −C, |x | = Nε1,k,

then, as before, we can find ε3,k in (Nε1,k, εk) such that, for some Nk→∞,

uk
i (x)+ 2 log ε3,k ≤−Nk, |x | = ε3,k, i = 1, 2,

and
σ k

1 (Nε1,k)= σ
k
1 (ε3,k).

Thus we have
lim

k→∞
(σ k

1 (ε3,k), σ
k
2 (ε3,k)) ∈6,

because this point is the intersection between 0 and σ1 = limk→∞ σ
k
1 (Nε1,k).

The last possibility on B(0, εk) \ B(0, ε1,k) is

σ k
1 (εk)= σ

k
1 (Nε1,k)+ o(1)



CLASSIFICATION OF BLOWUP LIMITS FOR SU(3) SINGULAR TODA SYSTEMS 835

and
uk

2(x)+ 2 log εk ≥−C, |x | = εk .

In this case, uk
1 is the fast decaying component on ∂B(0, εk).

Such a procedure can be applied to include groups further away from G0. Since we have only finitely
many blowup disks this procedure only needs to be applied finitely many times. Finally, let sk→ 0 be
such that

σi = lim
k→∞

lim
sk→0

σ k
i (sk), i = 1, 2,

and, for some Nk→∞,

uk
i (x)+ 2 log sk ≤−Nk, |x | = sk, i = 1, 2.

Then we see that (σ1, σ2) ∈6. Theorem 1.2 is established. �
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