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RICCI FLOW ON SURFACES WITH CONIC SINGULARITIES

RAFE MAZZEO, YANIR A. RUBINSTEIN AND NATASA SESUM

We establish short-time existence of the Ricci flow on surfaces with a finite number of conic points,
all with cone angle between 0 and 2π , with cone angles remaining fixed or changing in some smooth
prescribed way. For the angle-preserving flow we prove long-time existence; if the angles satisfy the
Troyanov condition, this flow converges exponentially to the unique constant-curvature metric with these
cone angles; if this condition fails, the conformal factor blows up at precisely one point. These geometric
results rely on a new refined regularity theorem for solutions of linear parabolic equations on manifolds
with conic singularities. This is proved using methods from geometric microlocal analysis, which is the
main novelty of this article.
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1. Introduction

This article studies the local and global properties of Ricci flow on compact surfaces with conic singularities.
This is a natural continuation of various efforts, including recent work of Mazzeo and Sesum, to develop a
comprehensive understanding of Ricci flow in two dimensions in various natural geometries. This work is
also partly motivated by extensive recent efforts in higher-dimensional complex geometry toward finding
Kähler–Einstein edge metrics with prescribed cone angle along a divisor, as approached by Mazzeo and
Rubinstein using a stationary (continuity) method with features suggested by the Ricci flow, together with
geometric microlocal techniques. A final motivation is the Hamilton–Tian conjecture, stipulating that
Kähler–Ricci flow on Fano manifolds should converge in a suitable sense to a Kähler–Ricci soliton with
mild singularities; we make some progress toward the analogue of this conjecture in our setting.

We investigate here the dynamical problem of Ricci flow on a Riemann surface (M, J ), with conic
singularities at a specified k-tuple of points Ep, where the cone angle at p j is 2πβ j . Our main theorems
provide optimal regularity for flow in this setting for cone angle smaller than 2π . We state these results,
deferring explanation of the notations and terminology until later in the introduction and the next section.

MSC2010: 53C44, 58J35.
Keywords: Ricci flow, conic singularities, heat kernels.

839

http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2015.8-4
http://msp.org


840 RAFE MAZZEO, YANIR A. RUBINSTEIN AND NATASA SESUM

Theorem 1.1. Consider a set of conic data (M, J, Ep, Eβ) with all β j ∈ (0, 1), and let g0 be a C2,γ
b conic

metric compatible with this data (this regularity class is defined in Section 3B) with curvature Kg0 ∈ C
0,γ
b .

If β j (t) : [0, t0] → (0, 1) is a k-tuple of C∞ functions with β j (0) = β j , then there exists a solution g(t)
of (2-1) defined on some interval 0≤ t < T ≤ t0 with conic singularities at the points p j with cone angle
2πβ j (t) at time t. For t > 0, g(t) is smooth away from the p j and polyhomogeneous at these conic points,
and satisfies limt↘0 g(t)= g0.

The special case of this theorem when β j (t) ≡ β j (0) is called the angle-preserving flow and is the
two-dimensional case of a recent short-time existence result for the Yamabe flow with edge singularities
by [Bahuaud and Vertman 2014]; the methods developed here to obtain the necessary bounds for the
linear parabolic problem are somewhat more flexible than theirs and yield stronger estimates.

The key step in the proof of this short-time existence result is a new regularity statement for the
linearized parabolic equation. This regularity is one of the main new technical contributions of this article.

Theorem 1.2. Let β ∈ (0, 1). Suppose that (∂t −1g − V )u = f , u(0, · )= φ, where g, V , φ ∈ C0,γ
b (M)

and f lies in the parabolic regularity space Cγ,γ /2b (M ×[0, T )). Then, near each conic point,

u = a0(t)+ r1/β(a11(t) cos y+ a12(t) sin y)+O(r2), (1-1)

where a0, ai j (t) ∈ C1+γ /2([0, T )). When g, V , f and φ are all polyhomogeneous, then the solution u is
polyhomogeneous on [0, T )×M. If β > 1, a similar expansion holds but there exist additional terms of
order r δ(log r)k with δ ∈ (1/β, 2).

This refined regularity for solutions of singular parabolic equations seems to be new and requires some
delicate analysis that is mostly contained in Propositions 3.6 and 3.9. We expect this type of estimate
should be a standard tool in problems where such equations arise; see [Gell-Redman 2011] for a recent
application.

We go beyond this short-time existence result only for the angle-preserving flow. Theorem 1.2 allows
us to directly adapt Hamilton’s method to get long-time existence of the normalized flow. Convergence,
however, is more subtle. As we explain below, there is a set of linear inequalities (2-14), discovered by
Troyanov, which is known to be necessary and sufficient for the existence of constant-curvature metrics
with this prescribed conic data (for cone angles less than 2π ).

Theorem 1.3. Let g(t) be the angle-preserving solution of the normalized Ricci flow from Theorem 1.1.
Then g(t) exists for all t > 0. If χ(M) ≤ 0, or if χ(M) > 0 and (2-14) holds, then g(t) converges
exponentially to the unique constant-curvature metric compatible with this conic data.

In the remaining cases we have two parallel results.

Theorem 1.4. Let g(t) be the angle-preserving solution of the normalized Ricci flow, as above. Suppose
that χ(M) > 0 and (2-14) fails.

• Define ψ(t) to be the t-dependent diffeomorphism generated by the vector field ∇ f (t), where
1 f (t)= Rg(t)− ρ (where ρ is the average of R). Then ĝ(t) := ψ∗g(t) satisfies ∂ ĝ(t)/∂t = 2µ̂(t),
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where µ̂ is the tensor defined by (5-1) with respect to the metric ĝ(t), and we prove that

lim
t→∞

∫
M
|µ̂(t)|2ĝ(t) d Â(t)= lim

t→∞

∫
M
|µ(t)|2g(t) d A(t)= 0.

Furthermore, the vector field X =∇R+ R∇ f satisfies

lim
t→∞

∫
M
|X (t)|2g(t) d A(t)= 0.

• Returning to the unmodified normalized Ricci flow, and writing g(t)= u(t, · )g0, the conformal factor
u blows up at precisely one point q ∈ M.

The significance of the tensor µ and the vector field X , is that they both vanish on a Ricci soliton. It
would be very interesting to connect the two different conclusions of this theorem.

Remark 1.5. It should be possible to show that there is a t-dependent family of conformal dilations F(t)
fixing the point of blowup of u(t), and such that F(t)∗g(t) converges (on every compact set K ⊂ S2

\ Ep) to
an eternal solution of normalized Ricci flow. One would hope to prove that the family of metrics F(t)∗g(t)
converges to a soliton metric, but, unfortunately, this does not seem to be possible with the present methods.
It would also be quite interesting to identify the unique point of blowup of u(t); the natural conjecture
is that this blowup occurs at the unique conic point p j ∈ Ep where the Troyanov condition fails.

We learned only in November 2014 of [Phong et al. 2014], where this conjecture is verified. The proof
uses the machinery developed in the recent proof of the Yau–Tian–Donaldson conjecture.

Our goals are, first, to provide a clear and direct analytic treatment of the short-time existence for
this problem, thus circumventing the approximation methods of [Yin 2010], and, second, to establish
convergence to a constant-curvature metric when the Troyanov condition holds. This generalizes [Yin
2013], where only the negative case is handled. We assume throughout that all cone angles lie between
0 and 2π . As explained below, this restriction has significant geometric and analytical ramifications.
The regularity theorem accounts for a substantial amount of the analysis here, and is one of our new
innovations. Our methods provide a new approach for obtaining estimates for heat operators on conic
spaces on the naturally associated Hölder spaces.

This article is organized as follows. In Section 2 we review some basic facts regarding the two-
dimensional Ricci flow. The heart of the article, Section 3, develops the linear parabolic edge theory on
Riemann surfaces. In particular, Sections 3A–3E review the relevant elliptic theory, based on the methods
of [Mazzeo 1991; Jeffres et al. 2014], but emphasizing the simplifications that occur in this dimension com-
pared to [Jeffres et al. 2014]. Building on this, Section 3F develops the corresponding parabolic regularity
theory. Short-time existence, Theorem 1.1, is proved in Section 3G, while Section 3H contains Theorem 1.2
on the asymptotic expansion for solutions and the further results on higher regularity. The long-time exis-
tence of the flow is a fairly easy consequence of all of this and appears in Section 3J. The convergence result
in the Troyanov regime is the subject of Section 4, while in Section 5 we study the complementary regime.
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2. Preliminaries on Ricci flow

The normalized Ricci flow equation on surfaces is

∂t g(t)= (ρ− R(t, · ))g(t), (2-1)

where R is the scalar curvature function of the metric g(t) and ρ is the (time-independent!) average of the
scalar curvature. For this choice of ρ, the area A(M, g(t)) remains constant in time. This flow preserves
the conformal class of g(t), so (2-1) can be written as a scalar equation for the conformal factor: if g0 is
the metric at t = 0 and g(t)= u(t, · )g0, then (2-1) is equivalent to

∂t u =1g0 log u− Rg0 + ρu, u(0)≡ 1. (2-2)

This is the fundamental equation studied in this article.

2A. Miscellaneous formulae. In two dimensions, Ric(g) = 1
2 R g, where R is the scalar curvature, so

Ricci flow coincides with the Yamabe flow, and both are given by (2-1). This flow preserves the conformal
class of the metric, and so can be written as a scalar parabolic equation. Indeed, if g = eφg0, then the
scalar curvatures of these two metrics satisfy

10φ− R0+ Reφ = 0, (2-3)

so, with u = eφ , (2-1) is equivalent to (2-2). (The reader should note that the conformal factor is often
written e2φ elsewhere, but this is compensated for here by the fact that R = 2K .)

If g0 is any metric with finite Hölder regularity and isolated conic points, then its conformal class [g0]

admits a representative ḡ0 which is smooth on all of M . We can even assume that ḡ0 is exactly Euclidean
in a ball around each p j . Fix any such metric, then choose a conformal factor φ0 ∈ C∞(M \{p1, . . . , pk})

which equals (β j −1) log r in Euclidean coordinates near each p j . The metric g̃0 = e2φ0 ḡ0 is then smooth
away from each p j and has the exact conic form dr2

+β2
j r

2 dy2 near p j . Finally, write the metric g0, the
initial condition for the Ricci flow, as u0g̃0. This encodes the finite regularity entirely in the conformal
factor. Using this regular background conic metric g̃0 allows for some technical simplifications in the
presentation below. Henceforth we relabel g̃0 as g0, and then consider the initial value problem (2-2)
with u(0)= u0, assuming that g0 is C∞ on M \ {p1, . . . , pk} and exactly conic near each p j .

We record some other useful formulae. First, using (2-3) in (2-2) with φ = 1
2 log u gives

∂t u = (ρ− R)u ⇐⇒ ∂t log u = ρ− R. (2-4)

Another formulation of the equations for the angle-fixing flow includes a distributional contribution from
the cone points:

∂t log u = ρ− R+ 2π
∑

(1−βi )δpi .

This conforms with a standard presentation in higher dimensions, but we primarily work with the
equations (2-2) without the extra delta summands. Denoting the area form for g(t) by d A, then

d
dt

d A = (ρ− R) d A. (2-5)
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Consequently, the area A(t) :=
∫

M d A satisfies

d
dt

A(t)=
∫

M
(ρ− R) d A = ρA(t)− 4πχ(M, Eβ),

so, if we now fix

ρ =
4πχ(M, Eβ)

A(0)
, (2-6)

then A(t)≡A(0) for all t .
Note that, by (2-4), uniform bounds on R(t) imply bounds and (at least subsequential) convergence for

log u(t) as t ↗∞. This means we can focus on the curvature function rather than the conformal factor.
Differentiating (2-3), assuming that g(t) is a solution of (2-1) on some interval 0≤ t < T , we obtain

∂t R =1g(t)R+ R(R− ρ). (2-7)

When M is compact and smooth, (2-7) implies that the minimum of R is nondecreasing in t . Indeed,
Rmin(t) := infM R(q, t) satisfies

d
dt

Rmin ≥ Rmin(Rmin− ρ).

Since Rmin(t) is only Lipschitz, the term on the left is defined as the limit infimum of the forward
difference quotient of Rmin(t). Since ρ is the average of R, Rmin ≤ ρ; hence, if ρ ≤ 0, then the right-hand
side is nonnegative, and the claim about Rmin being nondecreasing holds. If ρ > 0, then, choosing r(t) so
that dr(t)/dt = r(t)(r(t)− ρ), r(0)= Rmin(0), a similar argument applied to the difference Rmin− r(t)
leads to the same conclusion.

Estimating Rmax is more difficult, especially when R > 0, and we discuss this later.

2B. Conic singularities. In two dimensions, there are two equivalent ways to describe conic singularities.
The first is conformal: using a local holomorphic coordinate, we can write

g = e2φ
|z|2β−2

|dz|2, (2-8)

where β > 0 and φ is a bounded function (with regularity to be specified later); the second is the polar
coordinate model

g = dr2
+ r2h(r, y)2dy2, y ∈ S1

2π , (2-9)

where h is a strictly positive function with h(0, y)= β, again with regularity to be specified later. The
equivalence between these two representations, at least in the model case where φ ≡ 0 and h ≡ 1, is
exhibited by writing |dz|2 = dρ2

+ ρ2dy2, y ∈ S1
2π = R/2πZ, and setting r = ρβ/β, since then

dr = ρβ−1dρ =⇒ g = e2φ(dr2
+β2r2dy2).

The fact that more general conic metrics can be written in either of these two forms is considered
in [Troyanov 1991]. We refer also to [Jeffres et al. 2014, §2.1] for a thorough discussion of this
correspondence. Consequently, if g has a conic singularity at p, then the underlying conformal class [g]
extends smoothly across p, or, in other words, the conformal class [g] determined by a conic metric contains
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a representative which is smooth across the conic points. (This holds for isolated conic singularities only
in two dimensions, or, more generally, for nonisolated “edge” singularities in complex codimension one.)

It is also convenient to use
α = β − 1,

and we refer to either α or β as the cone angle parameter, hopefully without causing confusion. We focus
in this article exclusively on surfaces with conic singularities for which the equivalent conditions

2πβ ∈ (0, 2π), β ∈ (0, 1), α ∈ (−1, 0) (2-10)

hold. There are good reasons for this restriction: for such cone angles, the uniformization results are
definitive, and, in addition, conic surfaces with cone angles in this range have certain favourable geometric
and analytic properties which are very helpful, and perhaps crucial, in certain parts of the analysis below.
Related issues appear in [Jeffres et al. 2014].

2C. Uniformization of conical Riemann surfaces. Fix a smooth compact surface M , along with a
conformal, or, equivalently, a complex structure J . Denote by Ep = {p1, . . . , pk} ⊂ M a collection of
k distinct points, and let Eβ = {β1, . . . , βk} ∈ (0, 1)k be a corresponding set of cone angle parameters. As
above, write α j = β j − 1. The conic Euler characteristic associated to this data is the number

χ(M, Eβ)= χ(M)+
k∑

j=1

α j = χ(M)+
k∑

j=1

β j − k. (2-11)

In the higher-dimensional language of [Jeffres et al. 2014], this is the twisted anticanonical class of
the pair

(
M,

∑
(1− βi )pi

)
, i.e., −KM −

∑
(1− βi )pi , where KM = T 1,0,?M denotes the class of the

canonical divisor of M .
The uniformization problem asks for the existence of a conic metric g compatible with the complex

structure J with cone parameters β j at p j and with constant curvature away from these conic points.
This can also be phrased in terms of the distributional equation

Rg − 2π
∑

(1−βi )δpi = const . (2-12)

Indeed, in conformal coordinates, Rg =−1g log γ up to a constant factor, where g =
√
−1γ dz⊗ dz =

√
−1γ |dz|2, and the Poincaré–Lelong formula asserts that −1g log |z| is a multiple of the delta function

at {z = 0} (this can be seen by excising a small neighbourhood near the cone point and using Stokes’
formula). Then (2-12) follows, since, for a conic metric, γ = |z|2β−2 F near a cone point, with F bounded.

A consequence of this formulation is the Gauss–Bonnet theorem in this setting: if g is any metric with
this conic data, then

2πχ(M, Eβ)=
∫

M
Kg d Ag. (2-13)

Therefore, if a constant-curvature metric with this conic data exists, then the sign of its curvature Kg

agrees with the sign of χ(M)+
∑
αi . Note that, because of (2-10), this sign can be positive only when

M = S2 (or RP2, but for simplicity we always work in the oriented case).
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The next theorem combines results of McOwen [1988; 1993] and Troyanov [Troyanov 1991] (the
existence), Luo and Tian [1992] (uniqueness and nonexistence), and Jeffres, Mazzeo and Rubinstein
[Jeffres et al. 2014] (higher regularity).

Theorem 2.1. Let (M, J, Ep, Eβ) be as above. Then there exists a conic metric with constant curvature
associated to the data (J, Ep, Eβ) if and only if either χ(M, Eβ) ≤ 0, in which case {β j } ∈ (0, 1)k can be
arbitrary, or else χ(M, Eβ) > 0 and, for each j = 1, . . . , k,

α j >
∑
i 6= j

αi or, equivalently, 2α j >

k∑
i=1

αi . (2-14)

This metric, when it exists, is unique, except when χ(M, Eβ)= 0, in which case it is unique up to a constant
positive multiple, or when M = S2 and there are no more than two conic singularities, in which case it is
unique up to Möbius transformations which fix the cone points. Finally, the metric is polyhomogeneous
with a complete asymptotic expansion of the form

g ∼
( ∑

j,k≥0

N j,k∑
`=0

a jk`(y)r j+k/β(log r)`
)
|z|2β−2

|dz|2

The existence and regularity statements here were recently generalized to any dimension in [Jeffres
et al. 2014, Theorems 1 and 2]; in that setting, the Troyanov condition is replaced by the coercivity of the
twisted Mabuchi K-energy functional. Following [Ross and Thomas 2011], these conditions can also be
reinterpreted as saying that the twisted Futaki invariant of the pair

(
M,

∑
(1−βi )pi

)
is nonnegative, or,

equivalently, that this pair is logarithmically K-stable. The generalization of the uniqueness part of this
result to higher dimensions has been accomplished by Berndtsson [2015]. Nonexistence when coercivity
fails can be easily deduced from [Jeffres et al. 2014] together with work of Berman [2013]. We also
remark that Berman’s work gave a new proof of Troyanov’s original results. We refer to [Rubinstein
2014] for a survey of the results mentioned in this paragraph and further references.

The rather curious linear inequalities (2-14) were discovered by Troyanov [1991, Theorem 5], and
we refer to them henceforth as the Troyanov conditions. As just noted, they guarantee coercivity in the
variational approach to this problem, which is key to proving existence, and which plays a key role in our
considerations about the flow below. This coercivity is automatic when χ(M)≤ 0, where simpler barrier
methods suffice [McOwen 1988].

We also remark that, if k > 2, then (2-14) can fail for no more than one value of j . Indeed, if these
inequalities fail for two distinct index values j , j ′, which we may as well take as j = 1 and j ′ = 2, then

α1 ≤ α2+

k∑
j=3

αi , α2 ≤ α1+

k∑
j=3

αi =⇒ 0≤
k∑

j=3

αi ,

which is impossible since all the αi are negative.
We discuss the cases k=1, 2 separately. Using that a constant-curvature metric is rotationally symmetric

near each conic point, we see that there can be no constant-curvature metric with only one conic point,
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while, if there are precisely two conic points, then the surface is globally rotationally symmetric, the cone
angles are equal and the metric is the standard suspension dr2

+β2 sin2 r dy2, 0≤ r ≤ π . When k ≤ 2
and no constant-curvature metrics exist, there are well-known soliton metrics: the teardrop (k = 1 and
any β ∈ (0, 1)) and the (American) football (k = 2 and any pair 0< β1 < β2 < 1). These can be obtained
by ODEs methods; see [Hamilton 1988; Yin 2010; Ramos 2013]; Ramos’s paper gives a particularly
complete and incisive analysis.

The variational approach has recently been extended considerably through the work of Malchiodi et al.
to allow angles bigger than 2π , even when coercivity fails; see, e.g., [Bartolucci et al. 2011; Carlotto and
Malchiodi 2012]. Our regularity result, Theorem 1.2, holds for such angles, but our proofs of long-time
existence and convergence do not carry over to that angle regime.

2D. Optimal regularity. We have already identified the central role of the refined regularity in Theorem 1.2.
This result considerably sharpens the linear estimates proved by Jeffres and Loya [2003]. At the technical
level, that paper establishes control on two “b-derivatives”, i.e., with respect to the vector fields r∂r and ∂y ,
which vanish at the cone points, which imply only that ∂r u=O(r−1), for example. Our Theorem 1.2 shows
that both ∂r u and r1−1/β∂r u are bounded. It also parallels the recent result [Jeffres et al. 2014, Proposi-
tion 3.3], which concerns the corresponding elliptic Poisson equation1gu= f for the Laplacian of a Kähler
edge metric g (generalizing the conic metrics considered here). This result in the elliptic case for smooth
(or polyhomogeneous) edge metrics and with data lying in Sobolev spaces appears in [Mazzeo 1991].

These refined regularity statements represent basic phenomena associated to elliptic and parabolic edge
operators. The fact that “singular” terms with noninteger exponents appear in solutions goes back to the
work of Kondratiev and his school in the 1960s. However, since the methods and the particular choice of
function spaces used here are less well known to geometric analysts, we pause to make some additional
remarks. One key fact is that, even for the model (exact conic) case, if 1gu = f is Hölder continuous
with respect to the metric g (i.e., defining Hölder seminorms using the distance determined by g), then it
is not the case — unlike in the smooth setting — that all second derivatives of u are even bounded, let
alone Hölder continuous. A basic example of this is the harmonic function u = Re z = r1/β cos y, since,
if 1

2 < β < 1, then ∂2
r u ∼ r1/β−2 blows up as r→ 0. The optimal regularity is that [∂r u]g;0,1/β−1 <∞,

where

[v]g;0,γ = sup
|v(z)− v(z′)|

dg(z, z′)γ
.

The results described above show that the phenomena in these examples provide the only mechanism
through which control of second derivatives is lost. They also show that, if β ∈

(
0, 1

2

]
(the easier “orbifold

regime”), one has full control on the Hessian, since 1/β ≥ 2. One can obtain a slightly weaker statement
using classical methods; see [Donaldson 2012]. As shown here, and in line with [Jeffres et al. 2014], one
can go further by taking advantage of a detailed description of the structure of the Green function and
heat kernel. Thus, we use here the so-called b-Hölder spaces Ck,γ

b , which are defined using the slightly
different seminorms

[v]b;0,γ = sup
|v(z)− v(z′)|(r + r ′)γ

dg(z, z′)γ
,
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where r = r(z) and r ′ = r(z′) are the g-distances of these respective points to the nearest conic points.
As already noted, [Bahuaud and Vertman 2014] contains a result similar to Theorem 1.1 for the

higher-dimensional Yamabe flow for metrics with edges, while, as announced in [Mazzeo and Rubinstein
2012], direct analogues of Theorems 1.1 and 1.2 for the higher-dimensional Kähler–Ricci edge flow will
appear in [Mazzeo and Rubinstein ≥ 2015].

2E. Historical remarks. The survey [Isenberg et al. 2011] provides a fairly recent account of what is
known about Ricci flow on various classes of smooth surfaces, both compact and noncompact. The survey
[Rubinstein 2014] reviews results on geometry and analysis related to Kähler edge metrics, including the
special case of conic metrics on Riemann surfaces. The Ricci flow on conic surfaces presents several new
challenges, some geometric and some analytic. For example, the uniformization problem in this setting
is obstructed, in the sense that it is not always possible to find metrics of constant curvature in a given
conformal class with certain prescribed cone angles. In addition, the flow starting at an initial singular
surface is not uniquely defined: there are solutions which immediately smooth out the cone points [Simon
2002; Ramos 2011], and others which immediately become complete and send the cone points to infinity
[Giesen and Topping 2010; 2011]. The solutions studied here, by contrast, either preserve the cone angles
or allow them to change in some prescribed, smoothly varying manner. Our methods are drawn from
geometric microlocal analysis, and are continuations of the elliptic methods used in [Jeffres et al. 2014;
Mazzeo and Rubinstein 2012; ≥ 2015] to study the existence problem for Kähler–Einstein edge metrics.
These provide very detailed information about the asymptotic behaviour of solutions near the conic points.
Indeed, we have already noted that Theorem 1.2, concerning a regularity and asymptotics theorem for
solutions of linear heat equations on manifolds with conic singularities, is a key ingredient, and should be
useful elsewhere too.

The angle-preserving flow for Riemann surfaces with conic singularities was previously studied by
Yin [2010]; his approach provides few details about the geometric nature of the solution and does not
yield precise analytic or geometric control of the solution for positive time. More recently, in [Yin
2013], he establishes long-time existence of the normalized Ricci flow for conic surfaces, and proves
convergence to a constant-curvature metric when the conic Euler characteristic (see Section 2C for the
definition) is negative. However, he only establishes smooth convergence away from the conic points,
and does not describe the precise limiting behaviour near these conic points. There is other work on
this problem by Ramos, contained in his thesis but not yet released (see, however, [Ramos 2011; 2013]).
Another related paper is [Bahuaud and Vertman 2014], which proves a short-time existence result for
the Yamabe flow on higher-dimensional manifolds with edge singularities. Their methods are not far
from the ones here, but our approach to regularity theory developed is simpler in many regards. Recently,
Chen and Wang [2013] use quite different ideas to study the Kähler–Ricci flow on Kähler manifolds with
edges.

We also mention the work of Rochon [2014], where a “propagation of polyhomogeneity” result is
proved in the spirit of Theorem 1.2 but in the complete asymptotically hyperbolic setting; see also Albin,
Aldana and Rochon [Albin et al. 2013], and also [Rochon and Zhang 2012] concerning a similar result in
higher dimensions.
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Finally, we make some remarks about the history of these results and of this particular work. The
initial draft of this paper was completed in the Fall of 2011, though the work on it had started a few
years before, and this material has been presented at conferences since then and announced in the survey
article [Isenberg et al. 2011]. The appearance of this final draft was held up by other commitments of
the authors, as well as our efforts to obtain the most incisive results possible. We now comment on the
relationship between this work and other recent papers. These recent works include Yin’s original [2010]
paper and his very recent follow-up [2013]; these certainly have substantial overlap with the present work,
although our more detailed treatment of the linear and nonlinear regularity theory should be useful in
further and more refined investigations of this problem. In addition, some time ago we were informed
that D. Ramos had obtained results on this problem, relying on the short-time existence results in [Yin
2010]. His work was done independently of ours and has many points of overlap as well, though we have
not seen details beyond what is contained in [Ramos 2011; 2013]. We acknowledge some very interesting
and helpful conversations with him, clarifying his work, shortly before this paper was initially posted.
Finally, we mention the very recent paper by Chen and Wang [2013], which has made substantial inroads
into the higher-dimensional Kähler–Ricci flow in the presence of edge singularities using rather different
methods that do not give higher regularity, and the announcement of Tian and Zhang [2013] concerning
the Hamilton–Tian conjecture in the smooth setting in dimension three.

3. Linear estimates and existence of the flow

We now review some of the basic theory of the Laplacian and its associated heat operator on manifolds
with conic singularities. For brevity, we focus entirely on the two-dimensional case. The main part of this
section is an extension of standard parabolic regularity estimates to this conic setting; the main goal is a
refined regularity result which is necessary for understanding our particular geometric problem. These
estimates also lead directly to a proof of short-time existence.

3A. Elliptic operators on conic manifolds. Let g be a metric on a compact two-dimensional surface M
with a finite number of conic singularities; in fact, to simplify the discussion below, assume that there is
only one conic point, p. Write g= eφg0, where g0 is smooth and exactly conic near p. We now study some
analytic properties of the operator 1g + V , where g and V have some specified Hölder regularity. Since

(1g + V )u = (e−φ(1g0 + eφV )u = f =⇒ (1g0 + eφV )u = eφ f,

we may as well replace g by g0 and the potential V by eφV , and hence it suffices to study operators of
the form 1g + V , where g is smooth and exactly conic, and V satisfies an appropriate Hölder condition.

We use tools from geometric microlocal analysis to study elliptic operators on surfaces with cone
points. As references for these results, see the monograph by Melrose [1993] and the articles of Mazzeo
[1991], Gil, Krainer and Mendoza [Gil et al. 2006], and [Jeffres et al. 2014, §3 ] for a more extended
expository review. This approach takes advantage of the approximate homogeneity of the Laplacian of a
conic metric of the cone point, as well as the resulting approximate homogeneity of the Schwartz kernels
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of the corresponding Green functions. The strategy is to use these to obtain refined mapping properties of
the operator, as well as regularity properties of its solutions.

In much of the following, it is convenient to replace the conic manifold M with a manifold with
boundary M̃ which is obtained by blowing up the conic point. This blowup procedure (which is described
in more generality below) corresponds to introducing polar coordinates (r, y) around the conic point p
and then replacing p by the circle {(0, y)} = {0}× S1 at r = 0. The space M̃ is then given the smallest
smooth structure for which these polar coordinate functions give a smooth chart.

3B. Function spaces. We first introduce various function spaces used later. The key to all these definitions
is that it is advantageous to base them on differentiations with respect to the elements of Vb(M̃), the
space of all smooth vector fields on M̃ which are unconstrained in the interior but tangent to the boundary.
In local coordinates, any element of this space is a linear combination, with C∞(M̃) coefficients, of the
vector fields r∂r and ∂y . Natural differential operators are built out of these; for example, the Laplacian
of an exactly conic metric with cone angle 2πβ takes the form

1β = r−2((r∂r )
2
+β−2∂2

y )

near p, where y ∈ S1
2π . In other words, up to the factor r−2, this is an elliptic combination (sum of

squares) of the basis elements of Vb.
Now define

Ck
b(M̃)= {u : V1 · · · V`u ∈ C0(M̃) for all `≤ k and V j ∈ Vb(M)}.

Because these spaces are based on differentiating by elements of Vb, observe that Ck
b contains functions

like r ζψ(y), where ψ ∈ Ck(S1) and Re ζ > 0. We also use the corresponding family of b-Hölder
spaces Ck+δ

b (M̃). The space Cδb(M̃) consists of functions φ such that ‖φ‖b,δ := sup |φ| + [φ]b;δ <∞,
where this Hölder seminorm is the ordinary one away from ∂ M̃ , while, in a neighbourhood U = {r < 2},

[φ]b,δ,U = sup
(r,y) 6=(r ′,y′)

|φ(r, y)−φ(r ′, y′)|(r + r ′)δ

|r − r ′|δ + (r + r ′)δ|y− y′|δ
.

Observe that, if we decompose U into a union of overlapping dyadic annuli,
⋃
`≥0 A`, where each

A` = {(r, y) : 2−`−1
≤ r ≤ 2−`+1

}, then this seminorm (for functions supported in U) is equivalent to the
supremum over ` of the Hölder seminorm on each annulus,

[φ]δ,U ≈ sup
`≥0
[φ]δ,A` . (3-1)

Said differently, the seminorm can be computed assuming 1
2 ≤ r/r ′ ≤ 2. To verify this, simply note that,

if (r, y) ∈ A` and (r ′, y′) ∈ A`′ with |`− `′| ≥ 2, then

|r − r ′|
|r + r ′|

≈ 1,

so that
|φ(r, y)−φ(r ′, y′)|(r + r ′)δ

|r − r ′|δ + (r + r ′)δ|y− y′|δ
≤ C sup |φ|
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with C independent of ` and `′.
We also let Ck+δ

b (M̃) consist of the space of φ such that V1 · · · V`φ ∈ Cδb(M̃) for all `≤ k, and where
V j ∈ Vb(M̃) for every j ; finally, define rγ Ck+δ

b (M̃)= {φ = rγψ : ψ ∈ Ck+δ
b (M̃)}.

The intersection of all these spaces,
⋂

k C
k
b(M̃), is the space of conormal functions, denoted by A(M̃).

It contains the very useful subspace of polyhomogeneous functions, Aphg. By definition, Aphg consists of
all conormal functions which admit asymptotic expansions of the form

φ ∼
∑

Re γ j↗∞

N j∑
`=0

φ j,`(y)rγ j (log r)`.

Note that the conormality condition requires that each coefficient φ j,` lies in C∞(S1). As an important
special case, C∞(M̃) ⊂ Aphg(M̃), since smoothness corresponds to demanding that the exponents in
the expansion above are all nonnegative integers, i.e., γ j = j and N j = 0 for all j ≥ 0. Finally, define
A0(M̃)=A(M̃)∩ L∞ and A0

phg(M̃)=Aphg(M̃)∩ L∞(M).
A metric g is Ck+δ

b , conormal, polyhomogeneous or smooth if g = ug0, where the background metric
g0 is smooth and exactly conic, and where the function u satisfies any one of these regularity conditions.

3C. Mapping properties. Suppose that L =1g+V , where both g and V are polyhomogeneous (and V
is real-valued). There is a canonical self-adjoint realization of this operator, which we still denote by L ,
defined via the Friedrichs construction associated to the quadratic form

∫
|∇u|2− V |u|2 d Ag and core

domain C∞0 (M \ {p}). It is well known that the Friedrichs domain of L obtained from this construction
is compactly contained in L2, so this operator has discrete spectrum. We let G denote its generalized
inverse. As an operator on L2(M̃), this satisfies

1g ◦G = G ◦1g = Id−5, (3-2)

where 5 is the orthogonal projector onto the nullspace of L . Thus 5 has finite rank, and a basic regularity
theorem in the subject (see the references cited earlier) states that, if g and V are polyhomogeneous,
then the range of 5, which is the nullspace of L , lies in Aphg. When V ≡ 0, we have rank(5)= 1 and
5 projects onto the constant functions. We regard each of these integral operators as corresponding to
a Schwartz kernel, which is an element of D′(M̃ × M̃). The “integration”, or distributional pairing, is
taken with respect to the density d Ag. In local coordinates this equals r dr dy; the reader should note
that this is not the standard b-density r−1 dr dy that is commonly used in setting up the b-calculus. The
differences are minor and notational only.

In this subsection we apply the theory of b-pseudodifferential operators to describe the fine structure of
the Schwartz kernel of G. There are many reasons for wanting to know this structure, beyond the simplest
statement that G is bounded on L2. One example is that, once we know the pointwise structure of this
Schwartz kernel, we can show that G and 5 are bounded operators acting between certain weighted
b-Hölder spaces. Since the equality of operators (3-2) remains true on these spaces as well, we deduce
that the operator L is Fredholm between these weighted Hölder spaces as well as just on L2 or Sobolev
spaces. This is very helpful when studying nonlinear problems.
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We are primarily interested in the mapping

L : C2+δ
b (M̃)−→ Cδb(M̃). (3-3)

This is unbounded because, for a general u ∈ C2+δ
b , it need only be true that 1gu ∈ r−2Cδb . Thus the

domain of (3-3) is
Dγb (L) := {u ∈ C

2+δ
b (M̃) : Lu = f ∈ Cδb(M̃)}, (3-4)

which we call the Friedrichs–Hölder domain of L . This space is independent of the potential V . Indeed,
if u ∈Dδb(L), then 1gu= f −V u ∈ Cδb , so u ∈Dδb(1g). Note finally that Dδb(1g) is complete with respect
to the Banach norm

‖u‖Dδ
b
:= ‖u‖Cδb +‖1gu‖Cδb .

An essentially tautological characterization of this space is that

Dδb(L)= {u = G f +w : f ∈ Cδb and w ∈ ker L ∩ C2+δ
b }. (3-5)

However, there is an even more explicit characterization of this space:

Proposition 3.1. Suppose that L = 1g + V with g, V ∈ Cδb , and u ∈ Dδb(L) satisfies Lu = f ∈ Cδb(M̃).
Then

u = a0+ (a11 cos y+ a12 sin y)r1/β
+ ũ,

where a0, a11, a12 are constants and ũ ∈ r2C2+δ
b . (Note that the middle term on the right can be absorbed

into ũ if β ≤ 1
2 .)

To explain the relevance of the terms in this expansion, recall that, using the exactly conic structure
of g near the conic points, we have that, if γ ∈ R and φ ∈ C∞(S1), then

1grγφ(y)= (β−2φ′′(y)+ γ 2φ(y))rγ−2 and V rγφ(y)=O(rγ ).

Thus, in terms of its formal action on Taylor series, 1g is the principal part. The operator 1g has special
locally defined solutions r j/β(a j1 cos( j y)+ a j2 sin( j y)), and the terms in the statement of this result are
simply those special solutions with exponent less than 2.

The L2 version of this proposition is a special case of Theorem 7.14 in [Mazzeo 1991], and it is not
hard to deduce the corresponding statement in these b-Hölder spaces from that. We sketch a direct proof
below in Section 3E.

Remark 3.2. The higher-dimensional version of this decomposition for solutions of Schrödinger-type
equations on manifolds with edges plays a crucial role in [Jeffres et al. 2014].

3D. Structure of the generalized inverse. We now describe the detailed structure of G. First recall the
definition of conormal and polyhomogeneous distributions. We say that u is conormal of order γ on M̃ ,
written u ∈ Aγ (M̃), if V1 · · · V`u ∈ rγ L∞ for every ` ≥ 0 and all V j ∈ Vb(M). Such a u is smooth
away from the conic points. Next, let E be an index set, i.e., a discrete subset {(γ j , p j )} ⊂ C×N0 such
that there are only finitely many pairs with γ j lying in any half-plane Re z < C . We also assume that
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(γ j , p j ) ∈ E implies that (γ j + `, p j ) ∈ E for every ` ∈N. We then say that u is polyhomogeneous with
index set E , written u ∈AE

phg(M), if u ∈Aγ (M̃) and

u ∼
∑

(γ j ,p j )∈E

∑
`≤p j

a j`(y)rγ j (log r)`,

where each a j` ∈ C∞(S1). Similarly, if X is any manifold with corners, then we can define the space of
polyhomogeneous functions on X ; these have the same type of asymptotic expansion at all boundary
faces and product-type expansions at the corners of X .

The reason for introducing polyhomogeneity is that the Schwartz kernel G is polyhomogeneous, not
on (M̃)2, but rather on a certain manifold with corners (M̃)2b which is obtained by blowing up (M̃)2

along the codimension two corner (∂ M̃)2. This new space has three boundary hypersurfaces: two are
lifts of the faces ∂ M̃ × M̃ and M̃ × ∂ M̃ and called the left and right faces, lf and rf, respectively, and
the third is the front face, ff, which is the one produced by the blowup. There is a natural blowdown
map b : (M̃)2b→ (M̃)2, and the precise statement is that G = (b)∗KG , where KG is polyhomogeneous
on (M̃)2b, with an additional conormal singularity along the lifted diagonal in (M̃)2b.

There are several useful coordinate systems on (M̃)2b. Using coordinates (r, y) near the boundary on the
first copy of M̃ and an identical set (r ′, y′) on the second copy, this blowup is tantamount to introducing
the polar coordinates r = R cos θ , r ′ = R sin θ and replacing the corner {r = r ′ = 0} by the hypersurface
{R = 0, θ ∈ [0, π/2]}. Thus lf corresponds to θ = π/2, rf corresponds to θ = 0, and the front face ff
corresponds to R = 0. The lifted diagonal is the submanifold {θ = π/4, y = y′}. If E = (Elf, Erf) is a pair
of index sets, the first for lf and the second for rf, then we say that a pseudodifferential operator A lies in
the space 9−∞,r,Eb (M̃) if the lift K A of its Schwartz kernel to (M̃)2b lies in Ar,E

phg((M̃)
2
b), where the initial

superscript r indicates that K A = Rr−2K ′A, where K ′A is C∞ up to the front face and is polyhomogeneous
at the side faces with index sets Elf and Erf, respectively. Finally, A∈9m,r,E

b (M̃) if K A= Rr−2(K ′A+K ′′A),
where the first term lies in 9−∞,r,Eb and K ′′A is supported in a small neighbourhood of the lifted diagonal,
and in particular vanishes near lf∪ rf, has a conormal singularity of pseudodifferential order m along
the lifted diagonal (so its Fourier transform on the fibres of the normal bundle to the lifted diagonal is a
symbol of order −2+m), and is smoothly extendible across the front face. The reason for the slightly
odd normalization of the singularity along ff is to make the identity operator an element of 90,0,∅,∅

b (M).
Indeed, relative to the measure r ′dr ′dy′, the Schwartz kernel of Id is r−1δ(r − r ′)δ(y− y′), and this lifts
to (M̃)2b as R−2δ(θ −π/4)δ(y− y′).

If g is a smooth conic metric and β /∈Q, then the index set for the expansion of KG at lb and rb is

E =
{( j
β
+ `, 0

)
: j, ` ∈ N0, ( j, `) 6= (0, 1)

}
.

This excluded element (0, 1) corresponds to requiring that the expansion not include the term log r . If β
is rational, or if g is only polyhomogeneous, then we are able to state that the generalized inverse G lies
in 9−2,2,E ′,E ′

b (M) for some index set E ′, which may contain extra terms, including log terms, high up in
the index set; however, the initial part of this index set (and hence the exponents in the initial part of the
expansion of any solution) up to order 2 remains the same. The fact that the index r in the general definition
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equals 2 for the particular kernel KG turns out to be very helpful. This correspond to precisely the order of
approximate homogeneity needed to compensate for the fact that the identity operator behaves like R−2 at
the front face, and 1g is approximately homogeneous of order 2. The index sets of G at the left and right
faces are equal to one another because G is a symmetric operator. The fact that E does not contain the term
(0, 1) is because G is the generalized inverse for the Friedrichs extension. It can also be verified by direct
calculation that, in fact, E does not contain the element (1, 0), for, if it did, then we could produce a poly-
homogeneous element u =G f in the Friedrichs domain which contains a term u1(y)r ; this holds because
1gr =O(r−1). We refer to [Jeffres et al. 2014, §3 ] for a more careful description of all of these facts.

Let us say that A ∈9m,r,E
b is of nonnegative type if m ≤ 0, r ≥ 0, all the terms (γ, s) in the index sets

Elf and Erf are nonnegative and, if (0, s) lies in either index set, then s = 0. Proposition 3.27 in [Mazzeo
1991] implies that, if A is of nonnegative type, then A : C0,δ

b → C0,δ
b is a bounded mapping.

3E. Mapping properties, revisited. We are now ready for:

Proof of Proposition 3.1. Rewrite Lu = f as 1gu = f − V u := f̃ ∈ Cδb . Let G denote the generalized
inverse of the Friedrichs extension of1g, so that u=G f̃ −5u; since5u is a constant, we can concentrate
on the first term.

Decompose the Schwartz kernel of G into a sum G ′+G ′′, where G ′ is supported in a small neighbour-
hood of the lifted diagonal of M̃2

b (and hence vanishes near lf∪ rf), and G ′′ ∈Aphg(M̃2
b ); see Section 3F3,

where the parabolic version of this decomposition is described more carefully. Since G ′ ∈9−2,2,∅,∅
b , we

can write G ′ = r2Ĝ ′, where Ĝ ′ ∈9−2,0,∅,∅
b and hence is nonnegative. Since Ĝ ′ f̃ ∈ C2+δ

b , we obtain that
u′ ∈ r2C2+δ

b .
Turning now to u′′, first observe that r∂r and ∂y lift to the left factor of (M̃)2b as smooth vector

fields on M̃2
b that are tangent to all boundaries. It follows that (r∂r )

j∂`y G ′′ ∈9−∞,2,0,0b for all j , `≥ 0,
from which it follows that u′′ ∈ A0(M̃). Moreover, the initial part of the expansion G — and hence
of G ′′— at rf takes the form A0r0

+ (A11 cos y+ A12 sin y)r1/β
+O(r2), which means that the kernel

(r∂r −β
−1)(r∂r ) ◦G is not only of nonnegative type (and of pseudodifferential order −∞), but in fact

vanishes to order 2 at rf. Since G ′′ already vanishes to this order at ff, we can remove a factor of r2, i.e.,
write (r∂r −β

−1)r∂r ◦G ′′ = r2Ĝ ′′, where Ĝ ′′ is of nonnegative type and smoothing. This means that

(r∂r )(r∂r −β
−1)u′′ ∈ r2A0(M̃).

Integrating in r gives that u′′ = a0(y)+ a1(y)r1/β
+ r2A0. Finally, since 1gu′′ is bounded, we conclude

that a0 is constant and a1(y)= a11 cos y+ a12 sin y, as claimed. �

We conclude this discussion with the following application of Proposition 3.1 to our geometric problem.

Proposition 3.3. Let g0 be a conic metric and suppose that its scalar curvature Rg0 lies in Cδb and,
in particular, is bounded near the conic points. If g = eφg0 is another conformally related metric,
with φ ∈ C2+δ

b , then Rg ∈ Cδb if and only if

φ = c0+ r1/β(c11 cos y+ c12 sin y)+ φ̃, φ̃ ∈ r2C2+δ
b ,

or, more succinctly, φ ∈ Dδb(M̃).
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Proof. Apply the generalized inverse G for the Friedrichs extension of 1g0 to the curvature transformation
equation

1g0φ = Rg0 −
1
2 Rgeφ

to get
φ =5φ+G

(
Rg0 −

1
2 Rge2φ).

Suppose now that Rg ∈Cδb . The first term5φ is just a constant, while, by Proposition 3.1, G
(
Rg0−

1
2 Rge2φ

)
has an expansion up to order r2.

On the other hand, if φ has an expansion as in the statement of this proposition, then Rg ∈ Cδb . �

Remark 3.4. The results in 3A–3E are special cases of the ones in [Jeffres et al. 2014, §3], which are
proved for Kähler manifolds of arbitrary dimension. We have presented this material in some detail since
the statements and proofs in the Riemann surface case are simpler than in higher dimensions, and also
because the discussion above sets the stage for the derivation of the parabolic estimates, which occupies
the remainder of this section.

3F. Parabolic Schauder estimates. We now turn to the parabolic problem, and in particular to the
analogue of Proposition 3.1.

Let (M, g) be a smooth exactly conic metric with cone angle 2πβ < 2π , and set L =1g+V , where V
is polyhomogeneous; later we relax this to assume that V ∈ Cδb . We are interested in the homogeneous
and inhomogeneous problems{

(∂t − L)v = 0,
v(0, z)= φ(z),

and
{
(∂t − L)u = f,
u(0, z)= 0,

(3-6)

for which the solutions can be represented as

v(t, z)=
∫

M
H(t, z, z′)φ(z′) d Ag(z′), (3-7)

u(t, z)=
∫ t

0

∫
M

H(t − t ′, z, z′) f (t ′, z′) dt ′ d Ag; (3-8)

here H is the heat kernel associated to L . In order to study the regularity properties of the solution u, we
describe a fine structure theorem for H , similar to the one for the Green function G above. This leads to
a definition of parabolic weighted Hölder spaces, and finally a derivation of the estimates for solutions
in these spaces. As in the previous section, we work exclusively with the Friedrichs extension of the
Laplacian.

3F1. Structure of the heat kernel. Denote by gβ the complete flat conic metric dr2
+β2r2 dy2 and by

1β its Laplacian. The first observation is that the model heat operator ∂t −1β is homogeneous with
respect to the dilation (t, r, y) 7→ (λ2t, λr, y), λ > 0, and hence, if Hβ is the heat kernel associated to
(the Friedrichs realization of) 1β , then

Hβ(λ2t, λr, y, λr ′, y′)= λ−2 Hβ(t, r, y, r ′, y′). (3-9)



RICCI FLOW ON SURFACES WITH CONIC SINGULARITIES 855

In fact, there are explicit expressions:

Hβ(t, r, y, r ′, y′)=
1
π

∞∑
`=0

(∫
∞

0
e−λ

2t J`/α(λr)J`/α(λr ′)λ dλ
)

cos `(y− y′)

=

∞∑
`=0

1
t

exp
(
−(r2

+ (r ′)2)
2t

)
I`/α

(
rr ′

2t

)
cos `(y− y′).

These expressions are better suited for studying the action of Hβ on L2 Sobolev spaces than weighted
Hölder spaces, so, just as for the operator G earlier, we describe this model heat kernel, and then the true
heat kernel, using the language of blowups and polyhomogeneous distributions. This structure theory for
the Laplacian on a conic space appears in [Mooers 1999], with basic mapping properties later determined
by Jeffres and Loya [2003].

The function H(t, z, z′) is a distribution on R+× (M̃)2, but the key point is that its lift to the “conic
heat space” (M̃)2h is polyhomogeneous. This will be obvious for the model heat kernel Hβ once we
define (M̃)2h and, conversely, starting from the ansatz that this lift is polyhomogeneous, we can construct
(the lift of) H as a polyhomogeneous object by standard heat operator parametrix methods.

The conic heat space is defined, starting from R+× (M̃)2, through a sequence of blowups. The first
step is to blow up the corner r = r ′= t = 0, with a parabolic homogeneity in the variable t , and, following
that, to blow up the diagonal in (M̃)2 at t = 0. The first blowup is tantamount to introducing the parabolic
spherical coordinates ρ ≥ 0 and ω = (ω0, ω1, ω2) ∈ S2

+
= S2
∩ (R+)3, where

ρ =
√

t + r2+ (r ′)2 and ω =

(
t
ρ2 ,

r
ρ
,

r ′

ρ

)
.

Thus ρ, ω, y, y′ are nondegenerate local coordinates near the new face created by this first step. For the
second blowup we use the coordinates

R =
√

t + |z− z′|2, θ =
z− z′

R
, z′,

where z is any interior coordinate system and z′ an identical chart on the second copy of M̃ . This sequence
of blowups is summarized by the notation

M2
h := [R

+
× M̃2

; {0}× (∂ M̃)2, {dt}; {0}× diagM̃ , {dt}].

This manifold with corners has five boundary faces (see Figure 1): the left and right faces lf= {ω2 = 0}
and rf= {ω1= 0}, which are the lifts of the faces r ′= 0 and r = 0, respectively; the front face ff= {ρ= 0};
the temporal diagonal td= {R = 0}, which covers the diagonal at t = 0, and bf, the original bottom face
at t = 0 away from the diagonal.

The construction in [Mooers 1999] shows that H is polyhomogeneous on (M̃)2h with index set
E = {( j/β, 0) : j ∈ N0} at the left and right faces; note that these are exactly the same as the index sets
for the Green function G at the corresponding faces. The kernel H vanishes to infinite order at bf, while
at td it has an expansion in powers of R, starting with R−2 (in general, this is R− dim M ). Finally, at ff it
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rflf

bf td

ff

bf

Figure 1. The faces of the manifold with corners.

has an expansion in integer powers of ρ, beginning with ρ−1. The leading coefficient of the expansion at
this face is precisely the model heat kernel Hβ .

3F2. Function spaces. We now describe a family of function spaces commonly used in parabolic problems.
We refer to [Lunardi 1995, Chapter 5] for a careful description of these (in the setting of interior and
standard boundary problems). In the definitions and discussion below, we first introduce a scale of fully
dilation-invariant spaces (jointly in the variables (t, r)), where the parabolic estimates are obtained by
using scaling arguments to reduce to standard interior parabolic estimates. After that, we refine the
estimates to obtain the maximal expected regularity in t .

First, for 0 < δ < 2, define C0,δ/2
b0 ([0, T ] × M̃) to consist of all u ∈ C0([0, T ] × M̃) for which

u( · , z) ∈ Cδ/2([0, T ]) for all z ∈ M̃ \ ∂ M̃ and

[u]b0;0,δ/2 := sup
z

r δ[u( · , z)]δ/2, [0,T ] <∞; (3-10)

by contrast, the standard Hölder space in t , C0,δ/2([0, T ]× M̃) is defined using the usual seminorm

[u]0,δ/2 := sup
z
[u( · , z)]δ/2, [0,T ]

(without the extra weight factor r δ). Next, spatial regularity is measured using the spaces

Cδ,0b ([0, T ]× M̃)= {u ∈ C0([0, T ]× M̃) : u(t, · ) ∈ Cδb(M̃) for all t ∈ [0, T ]},

where the norm is ‖u‖b;δ,0 = supt‖u(t, · )‖b;δ . We still let 0< δ < 2, with the understanding that if δ = 1
then this is the Zygmund space (so that interpolation arguments can be used). For simplicity below we
omit discussion of this special case. Taking intersections yields the two natural parabolic Hölder spaces

Cδ,δ/2b0 ([0, T ]× M̃)= C0,δ/2
b0 ([0, T ]× M̃)∩ Cδ,0b ([0, T ]× M̃), (3-11a)

Cδ,δ/2b ([0, T ]× M̃)= C0,δ/2([0, T ]× M̃)∩ Cδ,0b ([0, T ]× M̃). (3-11b)
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Thus, functions in Cδ,δ/2b0 have no regularity in t at r = 0, while functions in Cδ,δ/2b satisfy the ordinary
Hölder regularity in t even at r = 0. The seminorms on these two spaces agree away from p, while, in a
neighbourhood U of this conic point, these seminorms are described as follows. Decomposing U into a
countable union of dyadic annuli,

⋃
`≥0 A`, we have

[u]b0;δ,δ/2,U = sup
`∈N0

sup
|t−t ′|<2−2`

sup
z,z′∈A`

|u(t, r, y)− u(t ′, r ′, y′)|(r + r ′)δ

|r − r ′|δ + |t − t ′|δ/2+ (r + r ′)δ|y− y′|δ

and

[u]b;δ,δ/2,U = sup
t,t ′

sup
`∈N0

sup
z,z′∈A`

|u(t, r, y)− u(t ′, r ′, y′)|(r + r ′)δ

|r − r ′|δ + (r + r ′)δ(|t − t ′|δ/2+ |y− y′|δ)
.

These seminorms are equivalent to

sup
(t,z)6=(t ′,z′)

|u(t, z)− u(t ′, z′)|max{r(z)δ, r ′(z′)δ}
|t − t ′|δ/2+ distg(z, z′)δ

and

sup
(t,z) 6=(t ′,z′)

|u(t, z)− u(t ′, z′)|max{r(z)δ, r ′(z′)δ}
|t − t ′|δ/2 max{r(z)δ, r ′(z′)δ}+ distg(z, z′)δ

,

respectively, where the radial function r has been extended from U to the rest of M̃ to be smooth and
strictly positive.

We also define higher regularity versions of these spaces,

Ck+δ,(k+δ)/2
b0 ([0, T ]× M̃) and Ck+δ,(k+δ)/2

b ([0, T ]× M̃),

where k is an even positive integer and 0 < δ < 2. The former space consists of functions u such that
V1 · · · Vi (r2∂t)

j u ∈ Cδ,δ/2b0 for i + 2 j ≤ k, where every V` ∈ Vb(M̃), while the latter consists of all u such
that V1 · · · Vi∂

j
t u ∈ Cδ,δ/2b for i + 2 j ≤ k and every V` ∈ Vb(M̃). As before, these are Zygmund spaces

when δ = 1. We also introduce weighted versions of these spaces, rγ Ck+δ,(k+δ)/2
∗ , ∗ = b0 or b. For

later reference, for the same ranges of k and δ, C0,(k+δ)/2([0, T ] × M̃) is the space of functions u with
∂

j
t u ∈ C0,δ/2([0, T ]× M̃) for 2 j ≤ k.

Finally, we define the analogues of the Friedrichs–Hölder domain:

Dδ,δ/2
∗

([0, T ]× M̃)= {u ∈ Cδ,δ/2
∗
:1u ∈ Cδ,δ/2

∗
([0, T ]× M̃)}, ∗ = b0 or ∗ = b,

again with the higher regularity analogues.
If h(t, r, y) ∈ Ck+δ,(k+δ)/2

b0 is supported in R+×U , then the rescaled function hλ(t, r, y)= h(λ2t, λr, y)
satisfies

‖hλ‖b0;k+δ,(k+δ)/2,γ = λ
γ
‖h‖b0;k+δ,(k+δ)/2,γ

(the final subscript in the norms indicates the weight factor). In other words, these spaces are compatible
with the approximate dilation invariance of the heat operator ∂t − L , which means that we will be able
to prove the basic a priori estimates on them by exploiting this scaling. On the other hand, it is clearly
important to obtain better regularity of solutions in t near r = 0. We obtain estimates on the b-spaces
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starting from the estimates on the b0-spaces and using induction and interpolation. Note that the analogue
of (3-11b) is not true when k > 0; namely, there is a proper inclusion

Ck+δ,(k+δ)/2
b ( Ck+δ,(k+δ)/2

b0 ∩ C0,(k+δ)/2, k > 0.

3F3. Estimates. The basic Hölder estimates for the homogeneous problem were already determined by
Jeffres and Loya [2003].

Proposition 3.5. Suppose that φ ∈ Ck+δ
b (M̃) and

(∂t − L)v = 0, v|t=0 = φ.

Then v ∈ Ck+δ,(k+δ)/2
b ([0, T ]× M̃) and, furthermore, v(t, · ) ∈Aphg(M̃)∩D0,δ

b (M̃) for all t > 0.

The proof in [Jeffres and Loya 2003] of the first assertion here proceeds by direct and rather intricate
estimates in various local coordinate systems, but they do not consider the issue of membership in D0,δ

b .
The polyhomogeneity of v when t>0 is immediate from the polyhomogeneous structure of H on M2

h ; also,
v ∈ D0,δ

b implies that v(t, · )∼ c0(t)+ (c11(t) cos y+ c12(t) sin y)r1/β as r→ 0; using polyhomogeneity
again, these coefficients are smooth when t > 0.

There are a couple of variants of the inhomogeneous problem, depending on the regularity assumptions
placed on f . We start with the version in dilation-invariant spaces.

Proposition 3.6. Let f ∈ Ck+δ,(k+δ)/2
b0 ([0, T ] × M̃) and suppose that u is the unique solution in the

Friedrichs domain to (∂t − L)u = f , u|t=0 = 0. Then u ∈ Ck+2+δ,(k+2+δ)/2
b0 ([0, T ]× M̃) and

‖u‖b0;k+2+δ,(k+2+δ)/2 ≤ C‖ f ‖b0;k+δ,(k+δ)/2, (3-12)

where C is a constant independent of u and f . In addition,

u(t, z)= û(t, z)+ ũ(t, z), where ũ ∈ r2Ck+2+δ,(k+2+δ)/2
b0 (M̃) and û(t, z) ∈

⋂
`≥0

C2`,`
b0 .

The proof of this, which relies on the approximate homogeneity structure of H , adapts readily to the
homogeneous case too, and gives a new proof of Proposition 3.5 which is conceptually simpler than the
one in [Jeffres and Loya 2003].

Proof. Write u as in (3-8). We analyze this integral by decomposing H into a sum of two terms, as
follows. Choose a smooth nonnegative cutoff function χ =χ (1)(ρ)χ (2)(ω) on M2

h , where χ (1)(ρ) equals 1
for ρ ≤ 1 and vanishes for ρ ≥ 2, and χ (2)(ω) has support in

{ 1
2 ≤ ω1/ω2 ≤ 2, ω0 ≤

1
2

}
and equals 1

near (0, 1/
√

2, 1/
√

2) (which is where the diagonal {t = 0, r = r ′} intersects ff). Note that χ is (locally)
invariant under the parabolic dilations (t, r, y, r ′, y′) 7→ (λ2t, λr, y, λr ′, y′). Then set

H = H0+ H1, H0 = (1−χ(ρ, ω))H, H1 = χ(ρ, ω)H,

and

u = u0+ u1, u j = H j ? f, j = 0, 1.
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We study u1 first. Introduce a partition of unity {ψ`} relative to the covering U =
⋃

A`; for example,
take ψ`(r) = ψ(2`r), where ψ(r) ∈ C∞0

((1
4 , 4

))
≥ 0 equals 1 for 1

2 ≤ r ≤ 1 and is chosen so that∑
`≥0 ψ(2

`r)= 1 for 0< r ≤ 1. Now write

f =
∑

f`(t, r, y), f` = ψ` f, and u1` = H1 ? f`.

Thus f` has support in R+× A`, while the support of u1` lies in R+× (A`−1 ∪ A` ∪ A`+1). We can also
assume that f` is supported in some time interval [τ, τ + 22−2`

], since if |t − t ′| > (r + r ′)2 then the
b-Hölder seminorm can be estimated by C sup | f`|. By the support properties of H1, u1` is supported in
a time interval of at most twice this length. We replace t by t − τ without further comment.

Fix ` ∈ N0 and let λ = 2`−1; for any function h, define (Dλh)(t̄, r̄ , y) = h(λ−2 t̄, λ−1r̄ , y). Thus,
if h is supported in A`, then Dλh is supported in A1 :=

{
(t̄, r̄ , y) : 1

4 ≤ r̄ ≤ 1
}
. In particular, Dλ f`

and Dλu1` are supported in [0, 1] × A1 and [0, 1] × (A0 ∪ A1 ∪ A2), respectively. We shall use that
‖Dλu1`‖b0;k+2+δ,(k+2+δ)/2 = ‖u1`‖k+2+δ,(k+2+δ)/2, and similarly for Dλ f`.

For convenience in the next few paragraphs, drop the indices ` and 1, and simply write Dλu = uλ,
Dλ f = fλ. Since it also just complicates the notation, we also assume that k= 0. Using these conventions,
change variables in u = H1 ? f by setting

t̄ = λ2t, t̂ = λ2t ′, r̄ = λr, r̂ = λr ′.

This yields

uλ(t̄, r̄ , y)=
∫ t̄

0

∫
λ−4 H1(λ

−2(t̄ − t̂), λ−1r̄ , y, λ−1r̂ , y′) fλ(t̂, r̂ , y′)r̂ dr̂ dy′ dt̂ .

For simplicity we have replaced the measure d Ag dt ′ in the initial integral by r ′ dr ′ dy′ dt ′.
The key point is that the polyhomogeneous structure of H1 on M2

h implies that the family of dilated
kernels

(H1)λ(t̄ − t̂, r̄ , y, r̂ , y′) := λ−2 H1(λ
−2(t̄ − t̂), λ−1r̄ , y, λ−1r̂ , y′)

converges in Aphg on the portion of the heat space with r̄ , r̂ ∈
[ 1

4 , 4
]

as λ→∞. In fact, its limit is simply
the heat kernel for the model operator 1β on the complete warped product cone restricted to this range
of radial variables. Since this region remains away from the vertex, we invoke the classical parabolic
Schauder estimates to deduce that, as an operator between ordinary parabolic Hölder spaces, the norm
of (H1)λ restricted to functions supported in [0, 1]× (A0 ∪ A1 ∪ A2) is uniformly bounded in λ. Hence,
comparing the last two displayed formulae, we see that

‖uλ‖b0;2+δ,1+δ/2 ≤ Cλ−2
‖ fλ‖b0;δ,δ/2 =⇒ ‖r−2uλ‖b0;2+δ,1+δ/2 ≤ C‖ fλ‖b0;δ,δ/2

with C independent of λ. Restoring the indices, and using the fact that, analogous to (3-1),

‖h‖b0;kδ,(k+δ)/2 ≈ sup
`

‖h‖b0;k+δ,(k+δ)/2

for any function h and any k ∈ N0, we conclude finally that

‖r−2u1‖b0;2+δ,1+δ/2 ≤ C‖ f ‖b0;δ,δ/2, (3-13)
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so u1 ∈ r2C2+δ,(1+δ)/2
b0 .

We now turn to the estimate for u0 = H0 ? f , which is the same as the function û in the statement
of the theorem. The polyhomogeneous structure of H0 is slightly simpler than that for H ; indeed, H0

vanishes to infinite order not only along bf but along td as well. This means that H0 is polyhomogeneous
on the space obtained from M2

h by blowing down td. We first claim that ‖H0 ? f ‖C0 ≤C‖ f ‖C0 . The proof
reduces immediately to verifying that

∫ t
0

∫
M H0(t − s, r, y, r ′, y′)r ′ dr ′ dy′ ds ≤ C independently of t ,

and this can be done by changing to polar coordinates in M2
h near ff to see that the integrand is actually

bounded. Details are left to the reader. Since the vector fields r2∂t , r∂r and ∂y lift to M2
h to be tangent to

the side and front faces, and because of the infinite order vanishing along t = 0, the differentiated kernel
(r2∂t)

i (r∂r )
j∂s

y H0 has the same polyhomogeneous structure as H0 for any i , j , s ∈N0. This means that
(r2∂t)

i (r∂r )
j∂s

yu0 satisfies precisely the same estimates as u0 does, whence u0 = û ∈ C2`,`
b0 for all `≥ 0,

as claimed.
This discussion has focussed entirely on the behaviour of H near ff. This is because if we localize H

by multiplying by a cutoff function which vanishes near ff and the side faces, then the estimates reduce to
those for a standard local interior problem with no conic degeneracy. �

Remark 3.7. There is one other dilation-invariant vector field, namely t∂t , and it is natural to ask about
the regularity of t∂t u when f ∈ Ck+δ,(k+δ)/2

b0 . Write t∂t = (t/r2)r2∂t , and note that, in the support of H1,
t/r2 is a smooth bounded function; in addition, t∂t is tangent to the front face of the heat space, and
hence preserves the expansion of H0. Taking these two facts together, we see that

(r∂r )
i (∂y)

j (r2∂t)
`(t∂t)

mu ∈ Cδ,δ/2b0

provided i + j + 2`+ 2m ≤ k + 2. In particular, we see that u obtains more regularity in t than was
initially apparent near r = 0 when t > 0.

The next estimate is for the Friedrichs–Hölder domain norm.

Proposition 3.8. Suppose that f ∈ Ck+δ,(k+δ)/2
b0 ([0, T ]× M̃) and u is the unique solution to (∂t−L)u= f ,

u|t=0 = 0. Then u lies in the Friedrichs–Hölder domain Dk+δ,(k+δ)/2
b0 and satisfies

‖u‖Dk+δ,(k+δ)/2
b0

:= ‖u‖b0;k+δ,(k+δ)/2+‖1gu‖b0;k+δ,(k+δ)/2 ≤ C‖ f ‖b0;k+δ,(k+δ)/2. (3-14)

Proof. We must estimate

1gu =
∫ t

0

∫
M
1g H(t − t ′, z, z′) f (s, z′) d Ag dt ′

in Cδ,δ/2b0 . The key observation is that the Schwartz kernel K of 1g ◦ H is an operator of heat type which
we say is of “nonnegative type” (by analogy with the stationary case), and which therefore gives a bounded
map of the spaces Cδ,δ/2b0 . To be more specific, K is polyhomogeneous at all the faces of M2

h , and the
terms in its expansions at the left and right faces are nonnegative, while the leading terms at ff and td
are ρ−4 ∼= t−2 and R−4, respectively. To see this, note that 1g differentiates tangentially to the left face
(where r ′→ 0) so K has the same leading order as H there; at the right face (r → 0), 1g annihilates
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the initial terms r0 and r1/β cos y and r1/β sin y in the expansion of H , so the leading order of K is
nonnegative here too; the leading orders exhibit the maximal drop in order to ρ−4 and R−2 at the other
two faces because 1g is not tangent to these faces and acts as a second-order conic operator in (r, y), and
the leading coefficients in the expansion of H there are not annihilated by this operator.

We now proceed as in the preceding proof, decomposing K into K0+ K1 and estimating the integrals
corresponding to each. The details are almost exactly the same, except for two facts. First, the extra factor
of λ−2

= 2−2` no longer appears when rescaling the terms K1 ? f` because of the drop in leading order
homogeneity (from ρ−2 to ρ−4) at the front face. In addition, we appeal to the standard interior estimate
‖1u‖δ,δ/2 ≤ C‖ f ‖δ,δ/2, where u and f are defined on the product of [0, 1] with a ball of radius 1, 1 is a
nondegenerate Laplacian on that ball, and, as usual, the norm on the left is only computed over a ball of
radius 1

2 . A generalization of this interior estimate is that, if J is a kernel on the double heat space of R2

with compact support in all variables, and which vanishes to infinite order at t = 0 but blows up like t−2

at the new face, td, of the blowup, then ‖J f ‖δ,δ/2 ≤ C‖ f ‖δ,δ/2. The simpler integral estimate for K0 ? f
is again essentially the same, since

∫
K0(t, z, z′) dt dz′ is still bounded as a function of z. This proves

that ‖1gu‖b0;k+δ,(k+δ)/2 ≤ C‖ f ‖b0;k+δ,(k+δ)/2. �

We can now turn to the estimates in the b-spaces.

Proposition 3.9. Suppose that f ∈ Ck+δ,(k+δ)/2
b ([0, T ] × M̃) and u is the unique Friedrichs solution to

(∂t − L)u = f , u|t=0 = 0. Then u lies in the Friedrichs–Hölder domain Dk+δ,(k+δ)/2
b and satisfies

‖u‖b;k+2+δ,(k+2+δ)/2 ≤ C‖ f ‖b;k+δ,(k+δ)/2 (3-15)

and
‖u‖Dk+δ,(k+δ)/2

b
:= ‖u‖b;k+δ,(k+δ)/2+‖1gu‖b;k+δ,(k+δ)/2 ≤ C‖ f ‖b;k+δ,(k+δ)/2. (3-16)

Moreover, u = û+ ũ, where ũ ∈ r2Ck+2+δ,(k+2+δ)/2
b and

û(t, z)= a0(t)+ (a11(t) cos y+ a12(t) sin y)r1/β (3-17)

with a0, a11, a12 ∈ C1+δ/2([0, T ]).

Proof. First suppose that k = 0. We prove (3-16) using (3-11b). By Proposition 3.8, we already know that
u ∈ C2+δ,1+δ/2

b0 ∩Dδ,δ/2b0 . Thus it suffices to show that u and1gu lie in C0,δ/2 as well. Defining K =1g ◦H ,
we first prove that

K? : Cδ,δ/2b0 ∩ C0,`
−→ Cδ,δ/2b0 ∩ C0,`

is bounded for `= 0, 1. For `= 0, observe first that if f = C is constant then K ? f ≡ 0, since H ? 1= t .
This means that we may reduce to considering functions which vanish at t = r = 0. Next, if f vanishes
near t = r = 0, then direct inspection of the integral defining K ? f shows that this function also vanishes
near t = r = 0; taking the closure in the C0 norm (or rather, the C0

∩ Cδ,δ/2b0 ) norm preserves the property
of vanishing at t = r = 0. The case `= 1 follows by noting that ∂t commutes with H and hence with K .
By interpolation, we conclude the boundedness of

K? : Cδ,δ/2b0 ∩ C0,δ/2
−→ Cδ,δ/2b0 ∩ C0,δ/2.
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This finishes the proof of (3-16).
To obtain (3-15) when k = 0, we must show that u ∈ C2+δ,1+δ/2

b , or equivalently (in a neighbourhood
of the conic point), that (r∂r )

i∂
j
y ∂
`
t u ∈ Cδ,δ/2b if i + j + 2` ≤ 2. If ` = 1 (so i = j = 0), we use that

∂t u =1gu+ f ∈ Cδ,δ/2b , as per the last paragraph. If `= 0, we observe, as before, that (r∂r )
i∂

j
y ◦ H is

bounded on Cδ,δ/2b0 ∩ C0,` for `= 0, 1, and hence, by interpolation, is bounded on Cδ,δ/2b .
Now suppose that k is a strictly positive even integer. We use induction, supposing that (3-16) and (3-15)

have been proved for 0, 2, . . . , k− 2. To prove that K =1g ◦ H? is bounded on Ck+δ,(k+δ)/2
b , we must

show that Ki, j,` := (r∂r )
i∂

j
y ∂
`
t ◦ K? : Ck+δ,(k+δ)/2

b → Cδ,δ/2b is bounded whenever i + j + 2` ≤ k. There
are three cases. First, if 1 ≤ ` ≤ k/2 − 1, then Ki, j,` : C

k+δ,(k+δ)/2
b → Cδ,δ/2b is bounded provided

Ki, j,0 : C
k+δ−2`,(k+δ−2`)/2
b → Cδ,δ/2b is, and, since i + j ≤ k − 2` ≤ k − 2, this is known by induction.

Next, if `= k/2 then, since ∂k/2
t ◦ K = K ◦ ∂k/2

t , we reduce directly to the boundedness of K on Cδ,δ/2b .
Finally, when ` = 0, a bit more work is needed. If V is any b-vector field, we consider either the
commutator [V, H?] or, more or less equivalently, the commutator [V, ∂t −1]. The latter is slightly
more elementary, so we follow that route. Writing g = eφ(dr2

+ (1+β)2r2 dy2) near the conic point, it
is easy to check that

[V,1] = p1+ q +W,

where W is a second-order operator with coefficients supported away from r = 0. Since the estimates we
seek are standard in the support of W , we shall systematically neglect this term in the calculations
below. For this part of the estimate we induct in integer steps, so, to unify the notation, assume
that k ∈ N and 0< δ < 1. Now, suppose that f ∈ Ck+δ,(k+δ)/2

b and that we have proved by induction that
u ∈ Ck+1+δ,(k+1+δ)/2

b and 1u ∈ Ck−1+δ,(k−1+δ)/2
b . We then compute that

(∂t −1)V u = V f + (p1+ q)u ∈ Ck−1+δ,(k−1+δ)/2
b ,

which implies that V u ∈Ck+1+δ,(k+1+δ)/2
b and1V u ∈Ck−1+δ,(k−1+δ)/2

b . Finally, V1u=1V u+(p1+q)u
is in Ck−1+δ,(k−1+δ)/2

b . Since this is true for every b-vector field V , we conclude that u ∈ Ck+2+δ,(k+2+δ)/2
b

and 1u ∈ Ck+δ,(k+δ)/2
b , as required. This proves (3-16) and (3-15) in general.

It remains to study the expansion as r → 0. We explain the case k = 0 and leave the extension to
spaces with higher regularity to the reader. Recalling the decomposition H = H0+ H1 from the proof of
Proposition 3.6, the same interpolation argument as earlier implies that

H1? : C
δ,δ/2
b −→ r2C2+δ,1+δ/2

b .

Next, similarly to what we did in the stationary (elliptic) case, note that r∂r (r∂r − β
−1) ◦ H0 = r2 H ′0,

where H ′0 has nonnegative index sets at ff∪ lf∪ rf (and vanishes to infinite order at td), which means that
r∂r (r∂r −β

−1)u0 ∈ r2Ck,k/2
b0 for all k ≥ 0. Applying interpolation once more, this time for the mappings

(r∂r )
i∂ j

y ∂
`
t r∂r (r∂r −β

−1)H0? : C
δ,δ/2
b0 ∩ C0,m

−→ r2Cδ,δ/2b0 ∩ C0,m,

gives that r∂r (r∂r − β
−1)u0 ∈ r2Ck+δ,(k+δ)/2

b for every k ≥ 0. Both this and the previous interpolation
involving H1 are complicated slightly by the fact that [∂t , H j?] is no longer zero, but the extra terms can
still be handled.
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Finally, integrating in r gives that u0 = a0(t, y)+a1(t, y)r1/β
+ ũ′, where ũ′ ∈ r2C2+δ,1+δ/2

b . Applying
(∂t −1g) to u = u0+ u1 shows first that a0 = a0(t) and a1 = a11(t) cos y + a12(t) sin y, and then that
a0, a11, a12 ∈ C1+δ/2([0, T ]). �

Corollary 3.10. Let u and f be as in Proposition 3.9. Then

‖u‖b,k+δ,(k+δ)/2 ≤ CT ‖ f ‖b,k+δ,(k+δ)/2. (3-18)

Proof. The inequality (3-18) is actually a formal consequence of (3-12) and (3-16). Indeed, since
u(0, z)= 0,

u(t, z)=
∫ t

0
∂τu(τ, z) dτ =⇒ ‖u‖b;δ,0 ≤

∫ T

0
‖∂τu(τ, · )‖b;δ,0 dτ ≤ T ‖u‖b;2+δ,1+δ/2 ≤ CT ‖ f ‖b;δ,δ/2.

Similarly, since ∂τu(0, z)=1gu(0, z)= 0,

|u(t, z)− u(t ′, z)| ≤
∫ t

t ′
|∂τu(τ, z)| dτ =

∫ t

t ′
|∂τu(τ, z)− ∂τu(0, z)| dτ

≤ ‖u‖b;2+δ,1+δ/2

∫ t

t ′
τ δ/2 dτ ≤ C |t − t ′| · (|t + t ′|δ/2+ 1)‖u‖b;2+δ,1+δ/2

for some constant C = C(δ) > 0, whence

[u]b;0,δ/2 ≤ CT ‖ f ‖b;δ,δ/2.

Combining these two inequalities yields (3-18). �

We make a special note of the fact that the estimate (3-16) is the main one here, since both (3-15)
and (3-18) follow from it.

Corollary 3.11. Let g0 be any smooth conic metric, and suppose that g1= eφg0 with φ ∈ Ck+δ
b (M̃), where

φ = 0 at ∂ M̃. For any R1 ∈ Ck+δ
b (M̃), i.e., not necessarily the scalar curvature of g1, set L1 =1g1 + R1.

Then the solution operator H1 to (∂t− L1)u = f , u|t=0= 0, satisfies the same set of bounds (3-12), (3-14),
(3-15), (3-16) and (3-18) (for that particular value of k, with constants depending only on g0 and the
norms ‖φ‖b;k+δ, ‖R1‖b;k+δ.

Proof. We may as well absorb the term R1u into f . Choose a function ã ∈ Ck+δ
b which agrees with eφ

in a small neighbourhood of ∂ M̃ and which is chosen uniformly close to 1 on the rest of M̃ , so that
‖(ã− 1)10 H0?‖b;k+δ < ε, where H0 is the heat kernel for ∂t −10. Writing 1̃1 = ã10,

(∂t − 1̃1)H0?= Id−(ã− 1)10 H0?;

by our choice of ã, the right-hand side is invertible by Neumann series, so we may represent the heat
kernel H̃1 for 1̃1 as

H̃1 = H0 ? (Id−(ã− 1)10 H0?)
−1.

This shows that the solution ũ to (∂t − 1̃1)ũ = f satisfies all the same estimates as the solution u
to (∂t −10)u = f , with constants depending only on the norm of φ.
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Taking as given that the solution u exists, but may not satisfy the correct estimates near M̃ , observe
that

(∂t − 1̃1)(ũ− u)= b10u

for some function b ∈ Ck+δ
b which vanishes in a fixed neighbourhood of the conic points. Noting that, by

standard local parabolic regularity theory, u certainly satisfies the correct estimates on the support of b,
we observe finally that

u = ũ− H̃1 ? (b10u)= H̃1 ? ( f − b10u),

from which we again obtain all necessary estimates. It is clear that the constants depend on φ only through
its norm ‖φ‖b;k+δ. �

3G. Short-time existence. We can now apply the mapping properties of the last section to establish the
short-time existence for the angle-preserving solution of the flow (2-2). For this short-time result, we
may as well assume that ρ = 0, and we consider the flow starting at any Dk,δ

b metric g0. Recall that this
means that g0 = ew0 ḡ0, where ḡ0 is a smooth and exact conic and w0 ∈ Dk,δ

b . Now let g(t)= eφ(t)g0, so
that (2-2) becomes

∂tφ = e−φ1g0φ− R0e−φ = (1g0 + R0)φ− R0+ (e−φ − 1)10φ− R0(e−φ − 1+φ)

:= Lφ− R0+ Q(φ,10φ) (3-19)

with φ(0, · ) = 0. By Corollary 3.11, the heat kernel H for ∂t − L , L = 1g0 + Rg0 , satisfies the same
estimates as before.

Proposition 3.12. Let g0 be a Dk,δ
b metric. Then there exists a unique solution φ∈Dk+δ,(k+δ)/2

b ([0, T ]×M̃)
to (3-19) with φ|t=0 = 0 for some T > 0 depending on the Dk,δ

b norm of g0.

Proof. We suppose that k= 0, leaving the case of general k to the reader. The equation (3-19) is equivalent
to the integral equation

φ(t, z)=
∫ t

0

∫
M

H(t − s, z, z′)(Q(φ,10φ)(s, z′)− R0(s, z′)) ds d Az′ . (3-20)

Denote the operator on the right by T (φ). We claim that there are constants η and T so that the convex,
closed set

J =
{
φ ∈ Dδ,δ/2b ([0, T ]× M̃) : ‖φ‖b;δ,δ/2+‖10φ‖b;δ,δ/2 ≤ η

}
is mapped to itself by T and, moreover, T : J → J is a contraction.

For notational simplicity below, write

‖φ‖b;δ,δ/2+‖10φ‖b;δ,δ/2 := ‖φ‖D.

Denote by B the norm of H? : Cδ,δ/2b → Dδ,δ/2b ; cf. Proposition 3.9. Writing 8 = H ? (−R0), we then
take η = 2‖8‖D.

To proceed, recall first that, if χ ∈ Cδ,δ/2b vanishes at t = 0, then, for 0≤ t ≤ T ,

|χ(t, z)| = |χ(t, z)−χ(0, z)| ≤ T δ/2
‖χ‖b;δ,δ/2,
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and hence

[χ1χ2]b;δ,δ/2 ≤ ‖χ1‖∞[χ2]b;δ,δ/2+ [χ1]b;δ,δ/2‖χ2‖∞ ≤ T δ/2
‖χ1‖b;δ,δ/2‖χ2‖b;δ,δ/2.

Therefore,
‖(e−φ − 1)10φ‖b;δ,δ/2 ≤ CT δ/2

‖φ‖b;δ,δ/2‖10φ‖b;δ,δ/2,

where the constant C depends on η; hence,

‖Q(φ,10φ)‖b;δ,δ/2 ≤ C1T δ/2η2.

Thus, if φ ∈ J , then
‖T (φ)‖D ≤ BC1T δ/2η2

+‖8‖D.

By taking T sufficiently small, we can make this less than η again, so T maps J to itself.
By the same reasoning, adding and subtracting (e−φ2 − 1)10φ1 shows that

‖(e−φ1 − 1)10φ1− (e−φ2 − 1)10φ2‖b;δ,δ/2 ≤ CT δ/2(‖φ1‖D+‖φ2‖D)‖φ1−φ2‖D.

The identical estimate for the other term in Q(φ,10φ), which does not involve derivatives of the φ j , is
easier. We deduce that

‖T (φ1)− T (φ2)‖D ≤ BCT δ/2(2η)‖φ1−φ2‖D,

so, by taking T still smaller, we can make the coefficient less than 1
2 . This proves that T is a contraction

on J , and hence that there exists a unique solution φ ∈ Dδ,δ/2b to (3-20) in J . �

We now prove the short-time existence result for the angle-changing flow. Since this is a side note
of the paper, we make some simplifying assumptions about the initial metric to remove some irrelevant
details from the proof. We assume that the prescribed angle functions βi (t) are smooth functions of t ,
although the optimal result should allow these to have only finite Hölder regularity. Assume too that there
is only one conic point, and that the initial metric g0 is the exact conic metric dr2

+β2r2 dy2 near r = 0.
Reverting back to the conformal form of the metric, define

ĝ0(t)= |z|2β(t)−2
|dz|2.

We have ĝ′0(t)= 2β ′(t) log |z|ĝ0(t), or, in terms of the (r, y) coordinates,

ĝ′0(t)= κβ
′(t) log r ĝ0(t), κ =

2
β
.

Setting g(t)= u(t, · )ĝ0(t), the Ricci flow equation (with ρ = 0) thus becomes

(∂t u+ uCκβ ′ log r)=1ĝ0(t) log u− Rĝ0(t),

or, finally, in terms of φ = log u,

∂tφ = e−φ1ĝ0(t)φ− Rĝ0(t)e
−φ
− κβ ′ log r. (3-21)

We seek a local-in-t solution to this equation with initial value φ(0, · )≡ 0.
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Unlike the case considered before, the reference metric ĝ0(t) now depends on t , and there is an extra
inhomogeneous term −κβ ′(t) log r . For the first issue we say nothing, because short-time existence for
the heat operators associated to time-dependent metrics is standard; see [Chow et al. 2006]. Regarding
the second issue, since this additional term is polyhomogeneous, we may choose a polyhomogeneous
function φ̂(t, · ) with leading term Cκr2 log r that satisfies

(∂t − e−φ̂1ĝ0(t))φ̂+ Rĝ0(t)e
−φ̂
=−κβ ′(t) log r +χ,

where χ is smooth and vanishes to infinite order at r = 0. Now set φ = φ̂+ψ and rewrite (3-21) as an
equation for the unknown function ψ . It is straightforward to check that this equation is different from
the one for the angle-fixing flow in only a few minor ways. There are additional terms in the coefficients
of the nonlinear terms; these, however, are polyhomogeneous in (r, y, t) and vanish at least like r2 log r .
Next, there is an additional inhomogeneous term coming from the “error term” χ . The general structure
of the equation is very similar to the one considered earlier in this section, and it is a straightforward
exercise to check that this equation has a solution ψ(t, · ) for 0≤ t < T for T sufficiently small.

It is important to note that, unlike in the angle-changing flow, the fact that the conformal factor now
includes a term r2 log r means that the curvature Rg(t) is unbounded for t > 0 near r = 0. This is in
accord with the results in the thesis of Ramos.

3H. Higher regularity. It will be very helpful for us later to be able to appeal to some higher regularity
properties of the solution, so we prove these now.

Proposition 3.13. Suppose that g(t) is the solution to the Ricci flow equation with g(t)= u(t)g0, where
g0 is smooth and exactly conic, u(0) ∈ C0,δ

b , and u ∈ Dδ,δ/2b is given by Proposition 3.12. Then u is
polyhomogeneous on (0, T )× M̃.

Proof. Write u = eφ with φ satisfying (3-19) and φ(0)= φ0 ∈ C0,δ
b . Since the initial condition is no longer

zero, we have

φ(t, z)=
∫

M
H0(t, z, z′)φ0(z′) d Az′ + H0 ? (Q(φ,10φ)− R0).

The first term is polyhomogeneous when t > 0 because of the polyhomogeneous structure of H0. The
second term lies in C2+δ,1+δ/2

b , so its restriction to any t = ε > 0 lies in C2,δ
b . Consider the equation

starting at t = ε, i.e., replace t by t+ ε. Then Proposition 3.12 and the uniqueness of solutions shows that
u ∈ D2+δ,1+δ/2

b for t ≥ ε and, since ε is arbitrary, this holds for all t > 0. Bootstrapping in the obvious
way gives that u ∈ Dk+δ,(k+δ)/2

b for every k, all in the same interval of existence (0, T ). In other words,
(r∂r )

j∂`θ ∂
r
t 10u ∈ Cδ,δ/2b for all j , `, s ≥ 0, which means that u is conormal when t > 0.

From Proposition 3.6, φ = a0(t)+ r1/β(a11(t) cos y+ a12(t) sin y)+ φ̃; by what we have just shown,
φ̃ ∈ r2A((0, T )× M̃) and a0, a11, a12 ∈ C∞((0, T )). In order to extend this expansion to all higher orders,
assume g0 is exactly conic (so R0 ≡ 0) in some neighbourhood of r = 0 and write (3-19) there as

r2∂t eφ = ((r∂r )
2
+β−2∂2

y )φ.
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Since φ is conormal, we may study this formally. Taking advantage of information we have already
obtained, inserting the expansion of φ to order 2 shows that the expression on the left has a finite expansion
r2a′0(t)+ r2+1/β(a′11(t) cos y+ a′12(t) sin y) and a conormal error term of order r4. Using the operator
on the right shows that φ must have an expansion up to order 4, with new terms of orders r2 and r2+1/β

as well as r2/β if β > 1
2 , with a conormal error term of order 4. Continuing in this way, we see that φ has

an expansion to all orders, as claimed. �

Corollary 3.14. Let R(t) denote the curvature function of the solution metric g(t). Then R(t) is also
polyhomogeneous on (0, T )× M̃ , and the initial terms in its expansion have the form

R(t)∼ b0(t)+ r1/β(b11(t) cos y+ b12(t) sin y)+O(r2).

In particular, 10 R is bounded and polyhomogeneous for all t > 0.

Proof. This follows directly from the polyhomogeneity of φ and equation (2-4). �

3I. Maximum principles. Before embarking on the remainder of the proof of long-time existence and
convergence, we present some results which show how the maximum principle may be extended to this
conic setting. We adapt the trick of [Jeffres 2005].

The possible difficulty in applying the maximum principle directly is if the maximum of the solution
were to occur at a conic point, so the idea is to perturb the solution slightly to ensure that the maximum
cannot occur at the singular locus.

Lemma 3.15. Suppose that (M, g(t)) is a family of metrics which is in Dδ,δ/2b ([0, T )× M̃ , polyhomoge-
neous on (0, T )× M̃), and that w satisfies

∂tw ≥1w+ X · ∇w+ a(w2
− A2),

where X and a are a given vector field and function, respectively, with the same regularity as g(t) and with
a>0; here A≥0 is a constant. Suppose too thatw(0, · )≥−A and that sup

(
|w(t, · )|+rσ |∇w(t, · )|

)
<∞

for every t > 0, where 0< σ < 1. Then w ≥−A for all t < T .

Proof. Define wmin(t)= infq∈M̃ w(t, q). By hypothesis, wmin(0)≥−A. Suppose that, at some time t > 0,
this minimum is achieved at some point q. If q is not one of the conic points, then 1w(t, q) ≥ 0 and
∇w(t, q)= 0; hence

d
dt
wmin(t)≥ a(wmin(t)2− A2). (3-22)

Suppose for the moment that we have established this differential inequality regardless of the location of
the minimum. But then, if wmin(t) were ever to achieve a value less than −A at some t0 > 0, (3-22) would
give that w′min(t0) > 0, which is impossible (if t0 > 0 is the smallest time at which wmin(t0) <−A).

Thus it suffices to show that (3-22) is always true. Fix γ with 0 < γ < 1− σ . Then, for any k ≥ 1,
define wk(q, t)= w(q, t)− rγ /k (where r is a fixed radial function near each conic point such that r is
smooth and strictly positive in the interior and r = 0 at a conic point). Suppose that wmin(t) is achieved
at some conic point p. We first observe that, for q sufficiently near p, using the hypothesis on |∇w|,

w(t, q)≤ wmin(t)+Cr1−σ
= w(t, p)+Cr1−σ ,
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where r = r(q), and hence

wk(t, q)≤ w(t, p)+Cr1−σ
−

1
k

rγ <w(t, p)= wk(t, p)

for r sufficiently small. In other words, (wk)min(t) cannot occur at p. Now, the differential inequality
satisfied by wk is

∂twk ≥1
(
wk +

1
k

rγ
)
+ X · ∇

(
wk +

1
k

rγ
)
+ a

((
wk +

1
k

rγ
)2
− A2

)
.

At a spatial minimum (away from the conic point),1wk≥0 and∇wk=0. On the other hand,1rγ ≥Crγ−2

and |X · ∇rγ | ≤ Crγ−1 near r = 0, and, since the first of these terms is positive, these two terms together
satisfy

1
k
(1rγ + X · ∇rγ )≥ C

k
.

Thus altogether, applying the same reasoning as before (and using that (wk)min does not occur at a conic
point), we deduce that

d
dt
(wk)min ≥

C
k
+ a

((
(wk)min+

1
k

r(qk(t))γ
)2
− A2

)
,

where the minimum of wk is achieved at qk(t). The same arguments as above give (wk)min ≥−A−C ′/k,
and hence wmin ≥−A−C ′′/k. Letting k↗∞ proves the result. �

Essentially the same proof gives the following version of the maximum principle:

Lemma 3.16. Suppose that the setup is exactly the same as in the previous lemma, and that

∂tw =1w+ aw2
+ bw.

Then
d
dt
wmax ≤ aw2

max+ bwmax and d
dt
wmin ≥ aw2

min+ bwmin. (3-23)

3J. Long-time existence. We are finally able to complete the proof of long-time existence of the solution
of the Ricci flow with prescribed conic singularities. In fact, the proof is a straightforward adaptation of
the original proof of this same fact for the Ricci flow on smooth compact surfaces in [Hamilton 1988].
We refer to that article as well as [Isenberg et al. 2011] for all the details of the proof. We supply here
only the key results which then allow the proofs in those articles to be applied verbatim.

The strategy is to consider the “potential function” f for the metric g(t). (In the language of [Jeffres
et al. 2014], f is the Ricci potential for g.) By definition, this is a solution to the equation

1g(t) f = Rg(t)− ρ, (3-24)

where ρ is the average scalar curvature. The crucial property that it must satisfy is that |∇ f | ≤C . Observe
that f is only defined up to an arbitrary additive constant, which may depend on t , but that the proof in
[Hamilton 1988] shows how to choose this constant using the evolution equation satisfied by f .

In any case, we now show that a potential function with bounded gradient exists. Interestingly, this is
one place where the assumption that the cone angles are less than 2π plays a crucial role.
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Proposition 3.17. Suppose that g is a conic metric with all cone angles less than 2π ; suppose too that
g = ug0, where g0 is smooth (or polyhomogeneous) on M̃ , u ∈ C2,δ

b and, furthermore, Rg ∈ C0,δ
b . Then the

solution f to 1g f = Rg−ρ which lies in the Friedrichs domain and satisfies
∫

f d Ag = 0 has |∇ f | ≤C.

Proof. By Proposition 3.1 (as well as the fact that the integral of R− ρ is zero), there exists a unique
solution f which has integral zero, and this function has a partial expansion

f ∼ a0+ (a11 cos y+ a12 sin y)r1/β
+ ũ, ũ ∈ r2C2,δ

b .

Since β < 1, it follows immediately that |∇ f | ≤ C . �

We recall very briefly that the rest of the proof of long-time existence involves getting an priori uniform
bound on Rg(t) where g(t) is the family of solution metrics, and then using (2-4) to find bounds for log u.
The bounds on Rmin follow easily from the maximum principle, while the bound for Rmax is derived by
considering the evolution equation satisfied by h :=1 f + |∇ f |2. For both of these steps, one needs the
maximum principle from the previous subsection, which is permissible since R and h both satisfy the
conditions of Lemma 3.15.

4. Convergence of the flow in the Troyanov case

We are now in a position to be able to prove that the solution g( · , t) converges exponentially as t→∞
to a constant-curvature metric with the same cone angles, provided the Troyanov condition (2-14) holds.

Let W 1,2 denote the usual Sobolev space of L2 functions whose gradient is in L2 (with respect to g0).
Following [Troyanov 1991; Struwe 2002], consider the energy functional F :W 1,2

→ R,

F(φ) :=
∫

M
(|∇0φ|

2
+ 2R0φ) d A0,

where the conformal factor has been rewritten as u = eφ . (The function spaces W 1,2 and W 2,2 used below
are taken with respect to any fixed conic metric that is smooth in the (r, y) coordinates.) The next lemma
says that the Ricci flow is the gradient flow of F with respect to the Calabi L2 metric (see, e.g., [Clarke
and Rubinstein 2013, §2]).

Lemma 4.1. If u is a solution of (2-2), then

d
dt

F(φ)=−2
∫

M
(R− ρ)2 d Ag. (4-1)

Proof. On smooth, closed surfaces the formula is well known [Struwe 2002, Equation (49)]. Indeed,
recall that, using (2-1) and (2-2),

∂tφ = e−φ (10u− R0)+ ρ = ρ− R;

from this we get

d
dt

F(φ)= 2
∫

M
(∇φ · ∇φt + R0φt) d A0 = 2

∫
M
φt(R0−10φ) d A0

= 2
∫

M
Reφφt d A0 =−2

∫
M
(R− ρ)R d Ag,
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and the result follows since
∫
(R−ρ) d Ag = 0. Concealed here is the fact that these integrations by parts

remain valid in this conic setting. This sort of computation will be used repeatedly in the remainder of
this paper. The key point is that the functions involved enjoy sufficient regularity near the conic points
that one may integrate by parts on the complement of an ε-neighbourhood of these points and show that
the boundary term tends to 0 with ε. �

Troyanov [1991] proves that the conditions (2-14) ensure that there exists a constant C such that

F(φ(t))≥−C for all t ≥ 0.

(In fact, Troyanov considers the stationary problem from a variational point of view and proves that F is
bounded below on W 1,2 if (2-14) holds.)

We now prove that φ( · , t) is uniformly bounded in W 2,2. This too follows arguments in [Troyanov
1991; Struwe 2002].

Proposition 4.2. With all notation as above, if the conditions (2-14) hold and φ is a solution to the flow,
then

‖φ( · , t)‖W 2,2 ≤ C.

Proof. We sketch the argument and refer to [Troyanov 1991; Struwe 2002] for more details. The starting
point is the uniform lower bound F(φ( · , t))≥−C . We first claim that

‖φ( · , t)‖W 1,2 ≤ C, t ≥ 0. (4-2)

There are three cases to consider. We only give details for the case when χ(M, Eβ) > 0, since the
cases where χ(M, Eβ) ≤ 0 are similar but simpler. The Troyanov condition (2-14) is equivalent to
0< 2πγ := 2πχ(M, Eβ) < 4π mini {βi }. Choose b such that πγ = πχ(M, Eβ) < b< 2π mini {βi } and set

I (φ) := 1
2b

∫
M
|∇φ|2 d A0+

1
πγ

∫
M

R0φ d A0.

As in the proof of Theorem 5 in [Troyanov 1991], we have I (φ)≥−C for all φ ∈W 1,2. But

1
2πγ

F(φ)= I (φ)+ 1
2

( 1
πγ
−

1
b

) ∫
M
|∇φ|2 d A0 > I (φ)≥−C.

Since F(φ)≤ m, ∫
M
|∇φ|2 d A0 ≤ C, t ≥ 0,

and Troyanov’s argument then shows that also the L2 is uniformly bounded [Troyanov 1991, p. 817],
whence ‖φ( · , t)‖W 1,2 ≤ C for all t ≥ 0.

It is proved in [Troyanov 1991] that, if 0< b < 2π mini {2+ 2αi }, then there exists a constant C such
that ∫

M
ebu2

d A0 ≤ C

for all u ∈W 1,2 such that
∫

M u d A0 = 0 and
∫

M |∇u|2 d A0 ≤ 1. This is the Moser–Trudinger–Cherrier
inequality for surfaces with conic singularities.
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We now prove that ∫
M
|∇

2φ|2 d A0 ≤ C for all t ∈ [0,∞).

Carrying out a standard integration by parts argument over the complement of the ε-balls around the
conic points, we obtain∫

M\B( Ep,ε)
|∇

2φ|2 d A0

=

∫
M\B( Ep,ε)

|10φ|
2 d A0−

1
2

∫
M\B( Ep,ε)

R|∇φ|2 d A0+

∫
∂B( Ep,ε)

∂ν∇φ ·∇φ dσ0−

∫
∂B( Ep,ε)

10φ ∂νφ dσ0.

Using Proposition 3.3 and letting ε→ 0 gives∫
M
|∇

2φ|2 d A0 =

∫
M
|10φ|

2 d A0−
1
2

∫
M

R|∇φ|2 d A0. (4-3)

By (2-3),∫
M
|10φ|

2 d A0 ≤ 2
(∫

M
R2

0 d A0+

∫
M

R2e2φ d A0

)
≤ C

(
1+

∫
M

e2|φ| d A0

)
≤ C

(
1+

∫
M

eb2
|φ|2 d A0

)
,

since, by Corollary 5.7 (proved later), the scalar curvature is uniformly bounded in time, where b is
any real number such that 0< b2 < 2π mini {2+ 2αi } and C may depend on the choice of b. Now, by
[Troyanov 1991, Proposition 11], the map φ 7→ eφ is a compact embedding of W 1,2 in L2, which thus
yields ∫

M
|10φ|

2 d A0 ≤ C,

and hence, finally, ∫
M
|∇

2φ|2 d A0 ≤ C for all t ≥ 0. �

Proposition 4.3. Let g(t) be the angle-preserving solution of (2-1) provided by Theorem 1.1. If (2-14)
holds, then g(t) converges exponentially to the unique constant-curvature metric in the conformal class
of g0 with specified conic data.

Proof. We have already shown that φ( · , t) exists and ‖φ( · , t)‖W 2,2 ≤C for all t ≥ 0. We now invoke the
arguments of [Struwe 2002] verbatim to deduce that g(t) converges exponentially to a constant-curvature
metric g∞ in the conformal class of g0.

It remains to show that g∞ has the same conic data { Ep, Eβ} as g0. The W 2,2 bound and the Sobolev
embedding theorem give a uniform C0 bound |φ( · , t)| ≤ C . This implies that the conic points do not
merge in the limit. Indeed, if i 6= j and γ t

i j is the geodesic for g(t) joining these two conic points, then

distg(t)(pi , p j )=

∫
γ t

i j

eφ/2 ≥ c̄
∫
γ t

i j

≥ c̄ distg(0)(pi , p j ).

Next, suppose that g∞ has cone angle parameter β̃i at pi . Thus, in local conformal coordinates,

g0 = e2φ0 |z|2βi−2
|dz|2 and g∞ = e2φ∞ |z|2β̃i−2

|dz|2,
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so by the uniform C0 bound it is clear that β̃i ≥ βi for all i . Since

χ(M)+
∑

βi = χ(M)+
∑

β̃i ,

we see that βi = β̃i for all i . �

5. Convergence in the non-Troyanov case

In this final section we consider the case where the Troyanov condition (2-14) fails. As remarked earlier,
the angle inequality fails at just one of the points p j , say p1, and necessarily M = S2. Then, (M, J, Ep, Eβ)
does not admit a constant-curvature metric, and hence, even if g( · , t) converges, its limit must either not
be of constant curvature or else some of the conic data is destroyed in the limit. More precisely, the limit
might be a surface with fewer conic points and different cone angles, and hence might conceivably still
admit a constant-curvature metric. The existence of nonconstant-curvature, soliton metrics with one or
two conic points (the teardrop or American football) on S2 can be ascertained using ODEs arguments,
[Yin 2010], and these are the reasonable candidates for limiting metrics in the non-Troyanov case. To
this end, we first show that every compact two-dimensional shrinking Ricci soliton which does not have
constant curvature has at most two conic points. Furthermore, if (2-14) holds, then any shrinking Ricci
soliton must have constant curvature. The next lemma also appears in [Ramos 2013].

Lemma 5.1. If g is a shrinking Ricci soliton metric on M with conic data ( Ep, Eβ) and there are at least
three conic points, then g has constant curvature.

Proof. View g as a Kähler–Ricci soliton; then

(R− 1)gi j̄ =∇i∇ j̄ f,

where the vector field X i
:= ∇

i f is a holomorphic vector field on S2
\ Ep. The trace of the soliton equation

gives 1 f = R − 1, and hence, using the static case of Theorem 1.2 — see also [Jeffres et al. 2014,
Propositions 3.3 and 3.8] — it follows that ∇ f =O(r1/β−1), so must vanish at each of the points pi . This
may also be deduced as in [Luo and Tian 1992, Lemma 3]. Using this same regularity, we can integrate
by parts to get ∫

S2\ Ep
|X |2 d A =

∫
S2\ Ep
|∇ f |2 d A =

∫
S2\ Ep

(1− R) f d A <∞.

However, there is no nontrivial holomorphic vector field on S2 which vanishes at more than two points,
so X = 0 and hence ∇ j̄∇i f = 0. Finally, using the soliton equation again, R ≡ 1. �

Lemma 5.2. If (M, J, Eβ, Ep) satisfies (2-14) and g is a shrinking Ricci soliton metric, then g has constant
curvature, i.e., f = const.

Proof. The argument carries over from the smooth setting, by virtue of Theorem 1.2. We already know
that there exists a constant-curvature metric ḡ with this prescribed data. By rescaling, assume Rḡ = 1.
Write g = eφ ḡ. Since g is a shrinking soliton, it moves under Ricci flow by a 1-parameter family of



RICCI FLOW ON SURFACES WITH CONIC SINGULARITIES 873

diffeomorphisms ψ(t), so g(t)= ψ(t)∗g. Hence, φ( · , t)= ψ∗φ solves

∂tφ = 〈∇ f,∇φ〉g = e−φ(1ḡφ− Rḡ)+ 1.

However, Rg = e−φ(1−1ḡφ) and Rḡ = 1, so 〈∇ f,∇φ〉g =−Rg + 1, which implies that

〈∇ f,∇φ〉g = Rg − 1=−1g f,

or, equivalently, div(eφ∇ f )= 0. Multiplying by f and integrating by parts on M \ Bε( Ep) gives∫
M\Bε( Ep)

|∇ f |2eφ d Ag =

∫
∂Bε( Ep)

f ∂ν f eφ dσ,

and this converges to 0 as ε→ 0. Hence,
∫

M |∇ f |2 d Ag = 0, so f = const. Thus Rg ≡ 1 and, by the
uniqueness of constant-curvature metrics with given conic data [Luo and Tian 1992], g = ḡ. �

Our goal in the remainder of this section is to prove:

Proposition 5.3. Let g(t) be the angle-preserving flow on (M, J, Ep, Eβ) and assume that (2-14) fails.
Define ψ(t) to be the t-dependent diffeomorphism generated by the vector field ∇ f (t), where 1 f (t)=
Rg(t)− ρ. Then ĝ(t) := ψ∗g(t) satisfies ∂ ĝ(t)/∂t = 2µ̂(t), where µ̂ is the tensor defined by (5-1) with
respect to the metric ĝ(t). We prove that

lim
t→∞

∫
M
|µ̂(t)|2ĝ(t) d Â = lim

t→∞

∫
M
|µ(t)|2g(t) d A = 0

and, moreover,

lim
t→∞

∫
M
|X (t)|2g(t) d A = 0,

where X =∇R+ R∇ f .

In the next subsections we assemble various facts which lead to the proof of this proposition. These
were all initially developed in the smooth case, and the main work here consists mainly in verifying that
they remain true in this conic setting.

The outline of this proof is as follows: In Section 5A we adapt Perelman’s arguments for volume
noncollapsing for the Kähler–Ricci flow; see [Sesum and Tian 2008]. We then follow the arguments
in [Hamilton 1988], making use of the entropy functional N (g) =

∫
M R log R dVg, and showing that

N (g(t))≤ C here too. In Section 5C we explain how to apply the maximum principle in the proof of the
Harnack inequality, and hence obtain that Rsup ≤ C Rinf. Area noncollapsing, entropy monotonicity and
the Harnack estimate then show that R ≤ C for all t ∈ [0,∞). We also show R ≥ c > 0 for t ≥ t0.

5A. Area noncollapsing via Perelman’s monotonicity formula. Our first goal is to prove an estimate
on the area of small geodesic balls.

Lemma 5.4. Let (M, g(t)) be a compact conic surface evolving by the angle-preserving area-normalized
Ricci flow. Define Rmax(t)= supq∈M Rg(t). Then there exists C > 0 so that, for all p ∈ M and t > 0, we
have

Areag(t)B(p, Rmax(t)−1/2)≥
C

Rmax(t)
.
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Proof. The proof relies on monotonicity properties with respect to the unnormalized Ricci flow of
Perelman’s W functional,

W(g, f, τ )= (4πτ)−1
∫

M
[τ(|∇ f |2+ R)+ f − 2]e− f d Ag,

where g is a metric, f is a function and τ ∈ R+. For us, g is a polyhomogeneous conic metric and
f (z, t)= a0(t)+ (a11(t) cos y+a12(t) sin y)r1/β

+r2 f̃ (z, t), where both f and f̃ lie in C1([0,∞); C2,δ
b ).

This integral is convergent, since |∇ f | is bounded.
We review the proof of monotonicity of this functional to check that the singularities of g and f do not

cause difficulties. We restrict to the space of triples (g, f, τ ) such that the measure (4πτ)−1/2e− f d Ag is
fixed. If (v, h, σ ) is a tangent vector to this space then, by [Kleiner and Lott 2008, Propositions 5.3 and
12.1],

δW|(g, f,τ )(v, h, σ )= (4πτ)−1
∫

M
[σ(Rg + |∇ f |2)− τ 〈v,Ricg +∇

2 f 〉+ h]e− f d Ag

This requires justifying the three integrations by parts∫
M

e− f (−1 trg v) d A =−
∫

M
1(e− f ) trg v d A,∫

M
e− f δ∗δ∗v d A =

∫
M
〈∇

2e− f , v〉 d A,∫
M

e− f
〈∇ f,∇h〉 d A =

∫
M
1e− f h d A,

which we do in the usual way, using the expansion for f .
Still following [Kleiner and Lott 2008, §12], set v =−2(Ricg +∇

2 f ), so trg v =−2(Rg +1 f ), and
also h =−1 f + |∇ f |2− Rg + 1/(2τ), σ =−1. Then

δW|(g, f,τ )(v, h, σ )=
∫

M
τ

∣∣∣Ricg +∇
2 f − 1

2τ
g
∣∣∣2(4πτ)−1e− f d Ag ≥ 0.

To recover the actual Ricci flow, we add to v and h the Lie derivative terms LV g and LV f = V f ,
respectively, where V =∇ f . This new infinitesimal variation corresponds to the flow

∂t g =−2 Ricg, ∂t f =−1 f + |∇ f |2− Rg +
1
τ

and ∂tτ =−1,

along which we have

δW|(g, f,τ )(v, h, σ )=
∫

M
2τ
∣∣∣∇2 f + 1

2

(
Rg −

1
τ

)
gi j

∣∣∣2(4πτ)−1/2e− f d Ag.

Finally, define
µ(g, τ ) := inf

f

{
W(g, f, τ ) : (4πτ)−1/2 ∫

M e− f d Ag = 1
}
.

We have proved that µ(g(t), τ (t)) increases along the Ricci flow. Using this monotonicity, we follow
precisely the same arguments as in Perelman’s proof of volume noncollapsing for the Kähler–Ricci flow
(see [Sesum and Tian 2008] for details). �
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5B. Entropy estimate. The potential function f satisfies 1 f = R− ρ. Define the symmetric, trace-free
2-tensor

µ=∇2 f − 1
21 f g (5-1)

and the vector field X =∇R+ R∇ f . As in the earlier part of this section, g is a gradient Ricci soliton
if µ≡ 0; in fact, one also has X ≡ 0 on any soliton. The entropy function introduced by Hamilton [1988]
when Rg0 is a strictly positive function on M is the quantity

N (t)=
∫

M
R log R d A.

When R changes sign, Chow [1991b] considered the modified entropy

N (t)=
∫

M
(R− s) log(R− s) d A, (5-2)

where s ′(t)= s(s− r) with s(0) <minx∈M R(x, 0). In either case, if M is smooth, these authors showed
that N (t)≤ C for t ≥ 0; in the first case, this is based on the monotonicity of N , which follows from the
formula

d N
dt
=−

∫ (
2|µ|2+

|X |2

R

)
d A. (5-3)

We now prove that this entropy function, or its modified form, is still bounded above even in the conic
setting.

Lemma 5.5. If g(t) is an angle-preserving solution of the normalized Ricci flow, and if the entropy N is
defined by (5-3) if R > 0 everywhere and by (5-2) if R changes signs, then N (t)≤ C for all t <∞.

Proof. The argument proceeds exactly as in the smooth case once we show that the various integrations
by parts are justified. We assume that R does change signs, since the two cases are very similar, and
follow Chow’s [1991a] proof on orbifolds.

Define L = log(R− s). The proof relies on the following identities:∫
1L(R− s)=−

∫
|∇R|2

R− s
,

∫
L1R =−

∫
|∇R|2

R− s
,∫

(1 f )2 =−
∫
〈∇ f,∇1 f 〉,

∫
〈∇ f,1∇ f 〉 = −

∫
|D2 f |2,∫

f1 f =−
∫
|∇ f |2,

∫
〈∇R,∇ f 〉 = −

∫
R1 f =−

∫
R(R− r),∫

〈∇L ,∇ f 〉 = −
∫

L1 f =−
∫

L(R− r);

these are all proven using Green’s identity on M \ B( Ep, ε) and taking advantage of the expansions of f
and R to show that the boundary terms vanish in the limit ε→ 0. �
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5C. Harnack estimate and curvature bound. The proof of the Harnack estimate for R, when R > 0
everywhere, or for R− s if R changes sign, again proceeds exactly as in the smooth [Chow 1991b] and
orbifold [Chow and Wu 1991] cases, although now using the maximum principles from Lemmas 3.15
and 3.16. We outline the main step. Consider P = Q+ sL , where

Q = ∂t L − |∇L|2− s =1L + R− ρ and L = log(R− s).

One computes that

∂t P ≥1P + 2∇L · ∇P + 1
2(P

2
−C2), (5-4)

where C is a constant chosen so that L ≥−C−Ct . By Corollary 3.14, R is polyhomogeneous (for t > 0)
and the only terms in its expansion less than r2 are r0 and r1/β . Using (2-7), the initial terms in the
expansion of 1R have the same exponents. Thus, |∇P| satisfies the conditions in these maximum
principle lemmas, and we conclude that Q ≥−C , independently of t . The usual integration in spatial and
time variables leads to the Harnack inequality — see [Chow 1991b] for details — and thus gives:

Lemma 5.6. If y ∈ Bg(t)
(
x, 1

8

√
R(x, t)

)
, then R(y, t +1)≥ C R(x, t) for some universal constant C > 0.

Using the entropy bound and area comparison, the boundedness of R follows as in [Hamilton 1988;
Chow 1991b].

Corollary 5.7. There exist constants c, C > 0 such that |R( · , t)| < C for all t > 0 and R( · , t) ≥ c
for t � 1.

Proof of Proposition 5.3. Consider the following modification of the Ricci flow equation:

∂

∂t
ĝi j = 2µ̂i j = (ρ− R̂)ĝi j − 2∇i∇ j f, (5-5)

where R̂ is the scalar curvature of ĝ (the covariant derivatives in the last term are also with respect to ĝ(t),
but we omit this from the notation for simplicity) and f is the same potential function as before. This
differs from the standard flow by the action of the one-parameter family of diffeomorphisms ψt generated
by ∇ f , i.e., ĝ(t)= ψ∗t g(t), where g(t) is a solution of the original normalized (but unmodified) Ricci
flow. According to Lemma 5.5, Corollary 5.7, and (5-3), N (t) is monotone (for t sufficiently large) and
converges to a finite limit, hence

lim
t→∞

d N
dt
= 0;

recalling (5-3), the conclusion follows from this. �

Remark 5.8. Hamilton’s original argument showing that the pointwise norm of µ converges exponentially
to zero breaks down in our setting for the following reason. As for many of the other quantities we
consider here, the function f admits an expansion

f = a0(t)+ r1/β(a11(t) cos y+ a12(t) sin y)+ a2(t)r2
+O(r2+ε),
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where the ai and ai j are smooth in t . This follows from the equation satisfied by R, the equation

1g(t) f (t)= R(t)− ρ =−ρ+
R0−1g(0) log u(t)

u(t)
,

the asymptotic expansion (1-1) of u(t), and [Jeffres et al. 2014, Corollary 3.5]. However,

µ=∇2 f − 1
21 f g (5-6)

is a second-order operator applied to f , and not all of these annihilate the troublesome term r1/β in the
expansion of f . This means that, although µ, and hence |µ|, has an asymptotic expansion, this expansion
contains a singular term of the form r1/β−2. This means that the maximum principle is not applicable,
and we cannot conclude the exponential decay of |µ|. Note that there is no difficulty with what we prove
above, since this most singular term r1/β−2 is square-integrable with respect to r dr dy.

5D. One concentration point. We now prove the second part of Theorem 1.4, concerning the divergence
profile of the unmodified flow. Namely, we show that the conformal factor φ blows up at precisely one
point q as t ↗∞, but tends uniformly to zero on every compact set K ⊂ S2

\ {q}. This argument is
drawn from methods developed specifically for higher-dimensional complex analysis, so it is convenient
to now change to the Kähler formalism.

Fix the initial conic metric g0; since the flow immediately smooths out any initial metric, we may as
well assume that g0 is polyhomogeneous. Denote its associated Kähler form by ω. Define Hω to consist
of all functions φ such that ωφ := ω+

√
−1∂∂̄φ > 0, and then denote by PSHω the L1 closure of Hω.

Observe that, since ω and ωφ (or, rather, g0 and gφ) lie in the same Kähler class, they are conformally
related; indeed,

ωφ = (1+10φ)ω, and similarly ω = (1−1φφ)ωφ.

Here 10 and 1φ are the Laplacians for ω and ωφ , respectively. Note that this implies that

10φ >−1 and 1φφ < 1. (5-7)

For any φ ∈ PSHω, we define the multiplier ideal sheaf I(φ) associated to the presheaf which assigns
to any open set U the space of holomorphic functions

I(φ)(U )= {h ∈OS2(U ) : |h|2e−φ ∈ L1
loc(S

2, ω)}.

It is proved in [Nadel 1990] that I(φ) is always coherent; moreover, it is called proper if it is neither the
trivial (zero) sheaf nor the structure sheaf OS2 .

Definition 5.9 [Nadel 1990, Definition 2.4]. The multiplier ideal sheaf I(φ) is called a Nadel sheaf if
there exists an ε > 0 such that (1+ ε)φ ∈ PSHω.

A fundamental result of Nadel’s [1990] is that any Nadel sheaf has connected support. The proof is not
hard in this low dimension, so we give it below. This uses an extension (for the one-dimensional case only)
of the result [Rubinstein 2009, Theorem 1.3], which in turn extends Nadel’s work from the continuity
method to the Ricci flow. Note too that [Rubinstein 2009] provided a new proof of the uniformization
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theorem in the smooth case using the Ricci flow (see also [Chen et al. 2006] for an earlier and different
flow-based proof), and hence its use here is natural.

We write the flow equation in this setting in terms of the Kähler potential as

ω+
√
−1∂∂̄φ := ωφ = e fω−φ+φ̇ω, φ(0)= φ0, and φ̇ = ∂tφ, (5-8)

where fω is the initial value f (0) of the Ricci potential, as defined in (3-24). There is a choice of constant
in this initial condition, and it is explained in [Phong et al. 2007] how to choose this additional constant
so that φ̇ remains bounded along the flow. We assume henceforth that this initial condition has been set
properly. We also write A for the (constant value of the) area of (S2, g(t)).

Theorem 5.10. Suppose that (S2, J, Ep, Eβ) does not satisfy (2-14). Fix any γ ∈
( 1

2 , 1
)
. Then the solu-

tion φ(t), normalized as above, admits a subsequence φ j := φt j for which φ̂ j := φt j − A−1
∫
φt j converges

in L1 to φ∞ ∈ PSHω. Finally, I(γ φ∞) is a proper Nadel multiplier ideal sheaf with support equal to a
single point.

Proof. We proceed in a series of steps.

Step 1: diam(M, g(t))≤C . This is a special case of [Jeffres et al. 2014, Claim 6.4]. Indeed, since β < 1,
if p, q ∈ M are not conic points then the minimizing geodesic which connects them does not pass through
a conic point. Thus we can apply the standard argument for Myers’ theorem, using that R > c > 0 for
large t . This can also be deduced by specializing Perelman’s diameter estimate [Sesum and Tian 2008] to
our setting, which is possible using Theorem 1.2.

Step 2: − infφ ≤ supφ+C . The proof of [Rubinstein 2009, Lemma 2.2] carries over without change by
using the twisted Berger–Moser–Ding functional

D(φ)=

√
−1

2A

∫
∂φ ∧ ∂̄φ− log

(
1
A

∫
e fω−φω

)
.

This is monotone along the flow, which gives, after some calculations, that [Rubinstein 2009, (15)]

1
A

∫
−φωφ ≤

1
A

∫
φω+C. (5-9)

We next show that the average A−1
∫
φω is comparable to supφ. Indeed, the inequality A−1

∫
φω≤supφ

is trivial. For the converse, recall that the Green function of 10, normalized so that
∫

G0(q, q ′)ω(q ′)= 0
for every q and G↘−∞ near the diagonal, is bounded from above by a constant E0. We then write

φ(q)−
1
A

∫
φω =

∫
G(q, q ′)1ωφ(q ′)ω(q ′)

=

∫
−(G(q, q ′)− E0)(−1ωφ(q ′))ω(q ′)≤−

∫
(G(q, q ′)− E0)ω ≤ AE0,

using the first inequality in (5-7). Taking the supremum over the left side gives supφ ≤ (1/A)
∫
φω+C ,

as claimed.
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To estimate the infimum of φ we use a similar trick, but using the upper bound Gφ(q, q ′)≤ Eφ and
the second inequality in (5-7). This gives

φ(q)−
1
A

∫
φωφ =

∫
Gφ(q, q ′)1φφ(q ′)ωφ(q ′)

=

∫
(G(q, q ′)− E0)1ωφ(q ′)ωφ(q ′)≥

∫
(G(q, q ′)− E0)ωφ(q ′)≥−AEφ,

so, taking the infimum, − infφ ≤−(1/A)
∫
φωφ + AEφ .

It remains only to observe that, special to this dimension, Gφ(q, q ′)= G0(q, q ′); this is because, if we
write ωφ = Fω, and if

∫
f ωφ = 0, then

1φ

∫
Gφ(q, q ′) f (q ′)ωφ(q ′)= F−110

∫
Gφ(q, q ′) f (q ′)F(q ′)ω(q ′),

and this equals f (q) when Gφ = G0. This means that Eφ = E0 and the constant in this inequality does
not vary along the flow.

Putting these inequalities together completes this step.

Step 3: supt‖φt‖0 = ∞. Indeed, if this supremum were finite, then, by Step 2, φ would be bounded
in C0, and standard regularity estimates would then show that some subsequence of the φt converges. The
limiting metric (or rather, the limit of any one of these subsequences) would then need to have constant
curvature. Furthermore, the uniform boundedness of the conformal factor shows that the cone angles
do not change in the limit. This is a contradiction, since we are assuming that the Troyanov conditions
(2-14) fail.

The construction of the Nadel sheaf now proceeds as in [Rubinstein 2009, p. 5846].

Step 4: If γ ∈
( 1

2 , 1
)

and Vγ denotes the support of Iγ := I(γ φ∞), then Vγ is a single point. Recall that
a coherent sheaf is locally free away from a complex codimension-two set, so, since we are in complex
dimension one, Iγ is a sheaf of sections of a holomorphic line bundle OS2(−k), k ≥ 0. By the properness
assumption, k ≥ 1. We claim that k = 1, which then implies that Iγ is spanned by a single holomorphic
section, which vanishes to order one at precisely one point.

To do this, let U be a small open set and let h ∈ Iγ (U ), and assume that h vanishes exactly to order one
at a point p ∈U . Then

∫
U |h|

2e−γφ∞ω <∞. Now fix a local holomorphic coordinate z which vanishes
at p and assume either that U contains no conic points or, if it does contain one, then p is that point. In
the first of these cases, ω is locally equivalent to |dz|2, while φ∞ ≥ 4 log |z|, and 0< γ < 1. If p = pi

is a conic point, then, assuming that U contains no other conic points,
∫

U |h|
2e−γφ∞z2βi−2

|dz|2 <∞.
This follows just as before but using that φ∞ has a singularity of, at worst, 4 log |z| − 2(1− βi ) log |z|
(recall [ω] =OS2(2)−

∑
(1−βi )[pi ]) and 0< γ < 1. Thus k cannot be greater than one. Since k > 0, it

follows that k = 1, as desired.

There is an alternative proof that does not rely on facts about coherent sheaves, using weighted L2 esti-
mates for the ∂̄-equation. This proceeds as follows. Let η be a (0, 1)-form such that

∫
|η|2e−γφ∞ |dz|2<∞.

It is always possible [Berndtsson 2010, §1] to find a solution ρ to ∂̄ρ= η that satisfies
∫
|ρ|2e−γφ∞ |dz|2≤
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Cγ
∫
|η|2e−γφ∞ |dz|2 <∞, where Cγ = O((1− γ )−1). The same arguments can be used to verify that

this estimate also holds with respect to the measure |z|2βi−2
|dz|2. This proves that H 1(S2, Iγ ) = 0.

From the long exact sequence in cohomology corresponding to the short exact sequence of sheaves
0→ Iγ →OS2 →OVγ → 0, one concludes that H 0(Vγ ,OVγ )

∼= H 0(S2,OS2)∼= C, which means once
again that the support of Iγ is connected, i.e., a single point.

These two methods of proof are closely related, of course, by virtue of the identification H 1(S2, Iγ )∼=
H 0(S2,OS2(KS2 − Iγ )). �

Following [Clarke and Rubinstein 2013, Lemma 6.5], we can use Theorem 5.10 to deduce estimates
on the conformal factor:

Corollary 5.11. The conformal factor u blows up at exactly one point. On any compact set K disjoint
from that point, u→ 0 uniformly, so, in particular, the area of K with respect to g(t) tends to 0.
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