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A POINTWISE INEQUALITY FOR
THE FOURTH-ORDER LANE–EMDEN EQUATION

MOSTAFA FAZLY, JUN-CHENG WEI AND XINGWANG XU

We prove the pointwise inequality

−1u ≥
(

2
(p+ 1)− cn

)1
2
|x |a/2u(p+1)/2

+
2

n− 4
|∇u|2

u
in Rn,

where cn := 8/(n(n− 4)), for positive bounded solutions of the fourth-order Hénon equation, that is,

12u = |x |au p in Rn

for some a ≥ 0 and p > 1. Motivated by Moser’s proof of Harnack’s inequality as well as Moser
iteration-type arguments in the regularity theory, we develop an iteration argument to prove the above
pointwise inequality. As far as we know this is the first time that such an argument is applied towards
constructing pointwise inequalities for partial differential equations. An interesting point is that the
coefficient 2/(n − 4) also appears in the fourth-order Q-curvature and the Paneitz operator. This, in
particular, implies that the scalar curvature of the conformal metric with conformal factor u4/(n−4) is
positive.

1. Introduction

We are interested in proving an a priori pointwise estimate for positive solutions of the fourth-order Hénon
equation

12u = |x |au p in Rn, (1-1)

where p > 1 and a ≥ 0. Let us first mention that, for the case a = 0, it is known that (1-1) only admits
u = 0 as a nonnegative solution when p is a subcritical exponent, that is, 1 < p < (n + 4)/(n − 4)
when n ≥ 5, and 1< p when n ≤ 4. Moreover, for the critical case p= (n+4)/(n−4), all entire positive
solutions are classified. See [Lin 1998; Wei and Xu 1999]. This is a counterpart of the standard Liouville
theorem of Gidas and Spruck [1981a; 1981b] for the second-order Lane–Emden equation

−1u = u p in Rn, (1-2)

stating that u = 0 is the only nonnegative solution for (1-2) when p is a subcritical exponent, that is,
1< p< (n+2)/(n−2) when n ≥ 3. Note also that, for the fourth-order Hénon equation, it is conjectured
that u = 0 is the only nonnegative solution of (1-1) when p is a subcritical exponent, that is, when
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1< p < (n+ 4+ 2a)/(n− 4) and n ≥ 5; see [Fazly and Ghoussoub 2014]. Therefore, throughout this
note, when we are dealing with (1-1) we assume that p > (n+ 4+ 2a)/(n− 4) and n ≥ 5. For more
information, see [Fazly and Ghoussoub 2014; Souplet 2009] and references therein.

Pointwise estimates have had tremendous impact on the theory of elliptic partial differential equations.
In what follows, we list some of the celebrated pointwise inequalities for certain semilinear elliptic
equations and systems. These inequalities have been used to tackle well-known conjectures and open
problems. The following inequality has been one of the main techniques to solve De Giorgi’s conjecture
(1978) for the Allen–Cahn equation and to analyze various semilinear equations and problems.

Theorem 1.1 [Modica 1985]. Let F ∈ C2(R) be a nonnegative function and u be a bounded entire
solution of

1u = F ′(u) in Rn. (1-3)

Then
|∇u|2 ≤ 2F(u) in Rn. (1-4)

For the specific case F(u)= 1
4(1− u2)2, equation (1-3) is known as the Allen–Cahn equation. Note

also that [Caffarelli et al. 1994] extended this inequality to quasilinear equations. We refer interested
readers to [Farina and Valdinoci 2010; 2011; 2013; 2014; Castellaneta et al. 2012; Farina et al. 2008]
regarding pointwise gradient estimates and certain improvements of (1-4). For the fourth-order counterpart
of (1-3) with an arbitrary nonlinearity, a general inequality of the form (1-4) is not known. However, for
a particular nonlinearity known as the fourth-order Lane–Emden equation, i.e.,

12u = u p in Rn (1-5)

it was shown by Wei and Xu [1999, Theorem 3.1] that the negative Laplacian of the positive solutions is
nonnegative, that is, −1u ≥ 0 in Rn . Set v =−1u and, from the fact that −1u ≥ 0, we can consider
(1-5) as a special case (when q = 1) of the Lane–Emden system{

−1u = vq in Rn,

−1v = u p in Rn,
(1-6)

where p ≥ q ≥ 1. Note that there is a significance difference between system (1-6) and equation (1-5), in
the sense that this system has Hamiltonian structure while the equation has gradient structure. This system
has been of great interest, at least in the past two decades. In particular, the Lane–Emden conjecture, stating
that u = v = 0 is the only nonnegative solution for this system when 1/(p+ 1)+ 1/(q + 1) > (n− 2)/n
has been studied extensively and various methods and techniques have been developed to tackle this
conjecture. Among these methods, Souplet [2009] proved the following pointwise inequality for solutions
of (1-6) and then used it to prove the Lane–Emden conjecture in four dimensions. Note that the particular
case 1< p < 2 was done by Phan [2012].

Theorem 1.2 [Souplet 2009]. Let u and v be nonnegative solutions of (1-6). Then

u p+1

p+ 1
≤
vq+1

q + 1
in Rn. (1-7)
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Applying this theorem, the following pointwise inequality holds for nonnegative solutions of (1-5):

−1u ≥
√

2
p+1

u(p+1)/2 in Rn. (1-8)

Note also that Phan [2012], with similar methods to those [Souplet 2009], extended the pointwise
inequality (1-7) to nonnegative solutions of the Hénon–Lane–Emden system{

−1u = |x |bvq in Rn,

−1v = |x |au p in Rn,
(1-9)

where p ≥ q ≥ 1. Suppose that 0≤ a− b ≤ (n− 2)(p− q); then

|x |a
u p+1

p+ 1
≤ |x |b

vq+1

q + 1
in Rn. (1-10)

The standard method to prove a pointwise inequality, as is used to prove (1-7) and (1-4), is to derive
an appropriate equation — call it an auxiliary equation — for the function that is the difference between
the right-hand and left-hand sides of the inequality. Then, whenever we have enough decay estimates
on solutions of the auxiliary equation, maximum principles can be applied to prove that the difference
function has a fixed sign. So, the key point here is to manipulate a suitable auxiliary equation.

In a more technical framework, to construct an auxiliary equation to prove (1-7) and (1-8), a few
positive terms, including a gradient term of the form |∇u|2ut−2 for some number t , are not considered
in [Souplet 2009]. To be more explicit, in order to prove (1-8), which is a particular case of (1-7), the
difference function w(x) :=1u+

√
2/(p+ 1)u(p+1)/2 is considered. Straightforward calculations show

that the following auxiliary equation holds:(√
2

p+1
u(1−p)/2

)
1w =1u+

√
2

p+1
u(p+1)/2

+
p−1

2
|∇u|2

u
. (1-11)

In order to show that 1w is nonnegative when w is nonnegative, via maximum principles for the above
equation, the gradient term |∇u|2/u is not considered in [Souplet 2009]. Note that (1-11) implies, in
spirit, that the gradient term |∇u|2/u should have an impact on the inequality, just like the Laplacian
operator and the power term u(p+1)/2. This is our motivation to attempt to include the gradient term in the
inequality (1-8) that gives a lower bound on the Laplacian operator. Let us briefly mention that Modica, in
his proof of (1-4), took advantage of similar gradient terms to construct an auxiliary equation. Following
ideas provided by Modica [1985] and Souplet [2009], as we shall see in the proof of Proposition 3.1, we
manage to keep most of the positive terms when looking for an auxiliary equation.

In this paper, we develop a Moser iteration-type argument to prove a lower bound for the negative
Laplacian of positive bounded solutions of (1-1) that involves powers of u and the new term |∇u|2/u
with 2/(n− 4) as the coefficient. The remarkable point is that the coefficient 2/(n− 4) is exactly what
we need in the estimate of the scalar curvature for the conformal metric g = u2/(n−4)g0.

Here is our main result:
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Theorem 1.3. Let u be a bounded positive solution of (1-1). Then the following pointwise inequality
holds:

−1u ≥
√

2
(p+1)−cn

|x |a/2u(p+1)/2
+

2
n−4
|∇u|2

u
in Rn, (1-12)

where cn := 8/(n(n− 4)) and 0≤ a ≤ infk≥0 Ak (Ak is defined in (4-28)).

Remark 1.4. A natural question here is: what are the best constants in the inequality (1-12)?

Let us now put the inequality (1-12) in a more geometric text. By the conformal change g= u4/(n−4)g0,
where g0 is the usual Euclidean metric, the new scalar curvature becomes

Sg =−
4(n− 1)

n− 2
u−(n+2)/(n−4)1(u(n−2)/(n−4)).

An immediate consequence of (1-12) is that the conformal scalar curvature is positive. Note that this
cannot be deduced from the inequality (1-8).

The idea of proving a lower bound for the negative of the Laplacian operator is also used in the context
of nonlinear eigenvalue problems to prove certain regularity results; see, e.g., [Cowan et al. 2010]. Similar
pointwise inequalities are used to prove Liouville theorems in the notion of stability in [Wei et al. 2013;
Wei and Ye 2013] and references therein as well. We would like to mention that Gui [2008] proved a very
interesting Hamiltonian identity for elliptic systems that may be regarded as a generalization of Modica’s
inequality. He used this identity to rigorously analyze the structure of level curves of saddle solutions of
the Allen–Cahn equation as well as Young’s law for the contact angles in triple junction formation. Note
also that, as is shown by Farina [2004] for the Ginzburg–Landau system, the analog of Modica’s estimate
is false for systems in general. We refer interested readers to [Alikakos 2013] for a review of this topic
and to [Fazly and Ghoussoub 2013] for De Giorgi-type results for systems.

Here is the organization of the paper. In Section 2, we provide certain standard elliptic estimates that
are consequences of Sobolev embeddings and the regularity theory. Then, in Section 3 we develop a
Moser iteration-type argument, following ideas provided by Modica [1985] and Souplet [2009]. Finally,
in Section 4, we first give a certain maximum principle argument for a quasilinear equation that arises in
the Moser iteration process. Then we apply the estimates and methods developed in the earlier sections.
We suggest the reader ignores the weight function |x |a in (1-1) when reading the paper for the first time.

2. Technical elliptic estimates

In this section, we provide some elliptic decay estimates that we use frequently later in the proofs.
Deriving the right decay estimates for solutions of (1-1) plays a fundamental role in our proofs. Similar
estimates have been also used in the literature to construct Liouville theorems and regularity results. We
refer interested readers to [Fazly 2014; Fazly and Ghoussoub 2014; Phan 2012; Souplet 2009; Phan and
Souplet 2012]. We start with the following standard estimate:
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Lemma 2.1 (L p-estimate on BR). Suppose that u is a nonnegative solution of (1-1); then, for any R > 1
we have ∫

BR

|x |au p
≤ C Rn−(4p+a)/(p−1),

where C = C(n, p, a) > 0 is independent of R.

Proof. Consider the following test function φR ∈ C4
c (R

n) with 0≤ φR ≤ 1:

φR(x)=
{

1 if |x |< R,
0 if |x |> 2R,

where ‖DiφR‖∞ ≤ C/Ri for 1≤ i ≤ 4. For fixed m ≥ 2, we have

|12φm
R (x)| ≤

{
0 if |x |< R or |x |> 2R,
C R−4φm−4

R if R < |x |< 2R,

where C > 0 is independent of R. For m ≥ 2, multiply the equation by φm
R and integrate to get∫

B2R

|x |au pφm
R =

∫
B2R

12uφm
R =

∫
B2R

u12φm
R ≤ C R−4

∫
B2R\BR

uφm−4
R .

Applying Hölder’s inequality, we get∫
B2R

|x |au pφm
R ≤ C R−4

(∫
B2R\BR

|x |(−a/p)p′
) 1

p′
(∫

B2R\BR

|x |au pφ
(m−4)p
R

)1
p

≤ C R(n−(a/p)p′)/p′−4
(∫

B2R\BR

|x |au pφ
(m−4)p
R

)1
p
,

where p′ = p/(p− 1). Set m = (m− 4)p, so that m = 4p/(p− 1), to get∫
B2R

|x |au pφm
R ≤ C R(n−(a/p)p′)/p′−4

(∫
B2R

|x |au pφm
R

)1
p
.

Therefore, ∫
B2R

|x |au pφm
R ≤ C R(n−(a/p)p′)−4p′ .

This finishes the proof. �

From Hölder’s inequality we get the following:

Corollary 2.2. Under the same assumptions as Lemma 2.1,∫
BR\BR/2

u ≤ C Rn−(a+4)/(p−1),

where C = C(n, p, a) > 0 is independent of R.

We now show that the operator −1u has a sign. Then, we apply this to provide various elliptic
estimates for derivatives of u. In addition, later on this helps us to start an iteration argument.

Proposition 2.3. Let u be a positive solution of (1-1). Then, −1u ≥ 0 in Rn .
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Proof. Let v =−1u. Ideas and methods applied in this proof are strongly motivated by the ones given
in [Wei and Xu 1999]. Suppose that there is x0 ∈ Rn such that v(x0) < 0. Without loss of generality
we take x0 = 0, i.e., if x0 6= 0 set ω(x)= v(x + x0) and apply the same argument. We use the notation
f̄ (r)= (1/|∂Br |)

∫
∂Br

f d S for the average of a function f (x) on the boundary of Br . We refer interested
readers to [Ni 1982] regarding the average function. Applying Hölder’s inequality,{

−1r ū(r)= v̄(r) in R,

−1r v̄(r)≥ ra(ū)p in R,
(2-1)

where 1r is the Laplacian operator in polar coordinates, i.e.,

1r f̄ (r)= r1−n(rn−1 f̄ ′(r))′.

It is straightforward to see that

v̄′(r)=
1
|∂Br |

∫
Br

1v =−
1
|∂Br |

∫
Br

|x |au p
≤ 0.

Therefore, v̄(r)≤ v̄(0) < 0 for r > 0. Similarly, for ū′(r) we have

ū′(r)=−
1
|∂Br |

∫
Br

v =−r1−n
∫ r

0
sn−1v̄(s) ds ≥−v̄(0)r1−n

∫ r

0
sn−1 ds =−

v̄(0)
n

r.

From this, for any r ≥ r0 we get

ū(r)≥ αr2, (2-2)

where α =−v̄(0)/(2n) > 0. We now have a lower bound on ū(r). Suppose instead that the following
more general lower bound holds on ū(r):

ū(r)≥
α pk

βsk
r tk for r ≥ rk, (2-3)

where s0 := 0, t0 := 2, α := −v̄(0)/(2n) > 0 and β := 2p+a+n+4> 0. Note that (2-1) gives a relation
between the two functions ū(r) and v̄(r). Therefore, the lower bound on ū(r) forces an upper bound
on v̄(r) and vice versa. In the light of this fact, we can construct an iteration argument to improve the
bound (2-3). Integrating the second equation of (2-1) over [rk, r ] when r ≥ rk , we get

rn−1v̄′(r)≤ rn−1
k v̄′(rk)−

α pk+1

β psk

∫ r

rk

sn−1+a+ptk ds

≤−
α pk+1

β psk (ptk + n+ a)
(r ptk+n+a

− r ptk+n+a
k ) since v̄′ < 0.

Therefore, v̄′(r)≤−
(
α pk+1

/(β psk (ptk + n+ a))
)
(r ptk+a+1

− r ptk+a+1
k ) for all r ≥ rk , that is,

v̄′(r)≤−
α pk+1

2β psk (ptk + n+ a)
r ptk+a+1 for all r ≥ 21/(ptk+a+1)rk .
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Integrating the last inequality over [21/(ptk+a+1)rk, r ] when r ≥ 21/(ptk+a+1)rk = r̃k , we obtain

v̄(r)≤ v̄(r̃k)−
α pk+1

2β psk Tk,n,a,p
(r ptk+a+2

− r̃ ptk+a+2
k ),

where Tk,n,a,p := (ptk + n+ a)(ptk + 2+ a). By similar discussions and by taking r large enough, that
is, r ≥ 21/(ptk+a+1)21/(ptk+a+2)rk = ˜̃r k , we end up with

v̄(r)≤−
α pk+1

4β psk Tk,n,a,p
r ptk+a+2. (2-4)

Applying (2-4) and integrating (2-1) again over [˜̃r k, r ] when r ≥ ˜̃r k , we have

rn−1ū′(r)= r̃n−1
k ū′(r̃k)−

∫ r

r̃k

sn−1v̄(s) ds ≥
α pk+1

4β psk Tk,n,a,p

∫ r

r̃k

s ptk+a+n+1 ds.

Therefore, the following new lower bound on ū(r) holds:

ū(r)≥
α pk+1

24β psk T̃k,n,a,p
r ptk+a+n+4,

where
r ≥ 21/(ptk+a+3)21/(ptk+a+4) ˜̃r k = 2

∑4
i=1 1/(ptk+a+i)rk

and
T̃k,n,a,p = (ptk + n+ a+ 2)(ptk + 4+ a)Tk,n,a,p

= (ptk + n+ a)(ptk + 2+ a)(ptk + n+ a+ 2)(ptk + 4+ a)

≤ (ptk + n+ a+ 4)4.

We now modify this estimate to make the coefficients similar to (2-3). After simplifying, we get

ū(r)≥
α pk+1

β psk Mk
r ptk+a+4 for r ≥ 24/(ptk+a+1)rk, (2-5)

where Mk := 24(ptk + n+ a+ 4)4. In what follows, we put an upper bound on Mk that is expressed as a
power of β. Note that

1
2

4
√

Mk+1= ptk+1+n+a+4= p(ptk+n+a+4)++n+a+4≤ (ptk+n+a+4)(p+1)= 1
2(p+1) 4

√
Mk .

From this we have Mk+1≤ (p+1)4 Mk and therefore Mk ≤ (p+1)4k M0, where M0= 24(2p+n+a+4)4

because t0 = 2. Since the constant β is defined as β = 2p+ n+ a+ 4, we get the bound

Mk ≤ β
4k+4. (2-6)

From this, (2-3) and (2-5), and to complete the iteration process, we set

tk+1 := ptk + a+ 4 for t0 = 2, (2-7)

sk+1 := psk + 4k+ 4 for s0 = 0, (2-8)
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and, therefore,

ū(r)≥
α pk+1

βsk+1
r tk+1 for r ≥ rk+1, (2-9)

where rk+1 := 24/(ptk+a+1)rk ≥ 2
∑4

i=1 1/(ptk+a+i)rk . By direct calculations on these recursive sequences,
we get the explicit sequences

tk =
2pk+1

+ (a+ 2)pk
− (a+ 4)

p− 1
,

sk =
4pk+1

− 4p(k+ 1)+ 4k
(p− 1)2

,

rk = 2
∑k−1

i=0 4/(pti+a+1)r0 ≤ 2
∑
∞

i=0 4/(pti+a+1)r0 =: r∗ <∞.

Set R := β2/(p−1)M , where M = max{α−1,m} when m > 1 is large enough to ensure mβ2/(p−1)
≥ r∗.

Therefore, R ≥ r∗ ≥ rk for any k and we have

ū(R)≥ M tk−pk
β2tk/(p−1)−sk .

If we take k large enough, e.g., k ≥ (ln(a+4)− ln(a+2))/ ln p, then tk > pk . The fact that M > 1 gives
us

ū(R)≥ β2tk/(p−1)−sk = β(2(a+2)pk
+4k(p−1)+4p−2(a+4))/(p−1)2 .

Since we have assumed that a+2> 0 and β > 1, we get ū(R)→∞ as k→∞. Note that 0< R <∞ is
independent of k. This finishes the proof. �

We now apply Proposition 2.3 to conclude that −1u ≥ 0 and therefore we can consider (1-1) as a
special case of the Hénon–Lane–Emden equation.

Lemma 2.4 (L1-estimates on BR). Suppose that u is a nonnegative solution of (1-1); then, for any R > 1
we have ∫

BR

|1u| ≤ C Rn−(2p+2+a)/(p−1),

where C = C(n, p, a) > 0 is independent of R.

Proof. Set v =−1u. From Proposition 2.3 we know that v ≥ 0. Therefore, the pair (u, v) satisfies the
system {

−1u = v in Rn,

−1v = |x |au pin Rn,
(2-10)

which is a particular case of the Hénon–Lane–Emden system. From the estimates provided in [Fazly and
Ghoussoub 2014, Lemma 2.1], we get the desired result. �

Lemma 2.5 (an interpolation inequality on BR). Let R > 1 and z ∈W 2,1(B2R). Then∫
BR\BR/2

|Dz| ≤ C R
∫

B2R\BR/4

|1z| +C R−1
∫

B2R\BR/4

|z|,

where C = C(n) > 0 is independent of R.
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Corollary 2.6. Under the same assumptions as Lemma 2.1. The following estimate holds:∫
BR\BR/2

|Du| ≤ C Rn−(p+3+a)/(p−1),

where C = C(n, p, a) > 0 is independent of R.

Lemma 2.7 (Lτ -estimate on BR). Let 1< τ <∞ and z ∈W 2,τ (B2R). Then∫
BR\BR/2

|D2z|τ ≤ C
∫

B2R\BR/4

|1z|τ +C R−2τ
∫

B2R\BR/4

|z|τ ,

where C = C(n, τ ) > 0 does not depend on R.

Lemma 2.8 (L2-estimates on BR). Suppose that u is a bounded nonnegative solution of (1-1); then, for
any R > 1 we have∫

BR

|1u|2 ≤ C
∫

B2R

|x |au p+1
+C R−2

∫
B2R

|1u| +C R−4
∫

B2R\BR

u, (2-11)

where C = C(n, p, a) > 0 does not depend on R.

Proof. We proceed in two steps.

Step 1: Multiply both sides of (1-1) by uφ2, where φ ∈C∞c (R
n)∩[0, 1] is a test function. Then, integrating

by parts, we get∫
Rn
|1u|2φ2

=

∫
Rn
|x |au p+1φ2

− 4
∫

Rn
1u∇u · ∇φφ−

∫
Rn

u1u(2|∇φ|2+ 2φ1φ)

≤

∫
Rn
|x |au p+1φ2

+ δ

∫
Rn
|1u|2φ2

+C(δ)
∫

Rn
|∇u|2|∇φ|2+C

∫
Rn
|1u|(|∇φ|2+ |1φ|)

for some constant C > 0. Here, we have used Cauchy’s inequality for 0< δ < 1. Therefore, if we set φ to
be the standard test function, that is, φ = 1 in BR and φ = 0 in Rn

\ B2R with ‖Di
xφ‖L∞(B2R\BR) ≤ C R−i

for i = 1, 2, then we get∫
BR

|1u|2 ≤
∫

B2R

|x |au p+1
+C R−2

∫
B2R\BR

|∇u|2+C R−2
∫

B2R\BR

|1u|, (2-12)

where C = C(n, p, a) > 0 does not depend on R.

Step 2: Multiply both sides of−1u= v by uφ2, where φ is the same test function as in Step 1. Integrating
by parts again, we get∫

Rn
|∇u|2φ2

=

∫
Rn

uvφ2
− 2

∫
Rn

u∇u · ∇φφ ≤
∫

Rn
uvφ2

+ δ

∫
Rn
|∇u|2φ2

+C(δ)
∫

Rn
|∇φ|2u2,

where we have also used Cauchy’s inequality for 0< δ < 1. So,∫
BR

|∇u|2 ≤ C
∫

B2R

|1u| +C R−2
∫

B2R\BR

u, (2-13)
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where we have used the boundedness of u. From (2-12) and (2-13) we get∫
BR

|1u|2 ≤
∫

B2R

|x |au p+1
+C R−2

∫
B2R

|1u| +C R−4
∫

B2R\BR

u. (2-14)

This completes the proof. �

We now apply Lemma 2.1, Lemma 2.8 and Corollary 2.2 to get the following:

Corollary 2.9. Suppose that the assumptions of Lemma 2.1 hold. Moreover, let u be bounded; then∫
BR

|1u|2 ≤ C Rn−(4p+a)/(p−1), (2-15)

where C = C(n, p, a) > 0 is independent of R.

Lemma 2.10 (Sobolev inequalities on the sphere Sn−1). Fix n≥ 2, a positive integer i and 1< t <τ ≤∞.
For z ∈W i,t(Sn−1),

‖z‖Lτ (Sn−1) ≤ C‖Di
θ z‖L t (Sn−1)+C‖z‖L1(Sn−1),

where {1
τ
=

1
t
−

i
n−1

if i t + 1< n,

τ =∞ if i t + 1> n,
and C = C(i, t, n, τ ) > 0.

3. Developing the iteration argument

In this section, we develop a counterpart of the Moser iteration argument [1961] for solutions of (1-1).
We define a sequence of functions (wk)k=−1 of the form

wk :=1u+αk |∇u|2(u+ ε)−1
+βk |x |a/2u(p+1)/2,

where αk and βk are certain nondecreasing sequences of nonnegative numbers with α−1 = β−1 = 0.
Assuming that wk ≤ 0, that is, essentially, a lower bound on the negative Laplacian operator holds,

we construct a differential inequality for wk+1 with αk+1 ≥ αk and βk+1 ≥ βk . Then, applying certain
maximum principle arguments, we show that wk+1 ≤ 0. Note that wk+1 ≤ 0 is stronger than wk ≤ 0,
because it forces a stronger lower bound on the negative of the Laplacian operator.

We start by proving that w−1, which is the Laplacian operator of u, is nonpositive; see Proposition 2.3.
Then, using this fact and applying (1-9) and (1-10) when q = 1 and b= 0, we get the following inequality
for nonnegative solutions of the fourth-order Hénon equation (1-1):

−1u ≥
√

2
p+1
|x |a/2u(p+1)/2 in Rn, (3-1)

where 0≤ a ≤ (n− 2)(p− 1). Inequality (3-1) is the first step of the iteration argument, meaning that
w0 ≤ 0 for α0 = 0 and β0 =

√
2/(p+ 1).

We now perform the iteration argument:
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Proposition 3.1. Let u be a positive classical solution of (1-1). Suppose that (αk)k=0 and (βk)k=0 are
sequences of numbers. Define the sequence of functions

wk :=1u+αk |∇u|2(u+ ε)−1
+βk |x |a/2u(p+1)/2, (3-2)

where ε = ε(k) is a positive constant. Suppose that wk ≤ 0; then wk+1 satisfies the differential inequality

1wk+1−2αk+1(u+ε)−1
∇u·∇wk+1+αk+1wk+1(u+ε)−2

|∇u|2− 1
2βk+1(p+1)u(p−1)/2

|x |a/2wk+1

≥ I (1)ε,βk
|x |au p

+αk+1 I (2)αk
|∇u|4(u+ ε)−3

+ I (4)a,αk ,βk
|x |a−2u(p+1)/2

+ I (3)ε,αk ,βk
|x |au(p+1)/2

∣∣∣∣∇u
u
+

aβk+1
( 1

2(p+ 1)−αk+1u/(u+ ε)
)

2I (3)ε,αk ,βk

x
|x |2

∣∣∣∣2, (3-3)

where

I (1)ε,αk ,βk
: = 1− p+1

2
β2

k+1+
2
n
αk+1β

2
k

u
u+ε

,

I (2)αk
: =

2
n
(αk+1+αk + 1)2− 2αk+1(αk+1+ 1)+αk+1,

I (3)ε,αk ,βk
: =

4
n
αk+1βk(αk+1+αk + 1)

u2

(u+ ε)2
+βk+1αk+1

u2

(u+ ε)2

− (p+ 1)βk+1αk+1
u

u+ε
+

p+ 1
2

( p−1
2
−αk+1

u
u+ε

)
βk+1,

I (4)a,ε,αk ,βk
: =

a
2
βk+1

(
n+ a

2
− 2

)
−

a2β2
k+1

( 1
2(p+ 1)−αk+1u/(u+ ε)

)2

4I (3)ε,αk ,βk

.

Proof. For the sake of simplicity in calculations, set b := 1
2a and q := 1

2(p + 1). From (3-2), the
function wk+1 is defined as

wk+1 :=1u+αk+1|∇u|2(u+ ε)−1
+βk+1|x |buq .

Taking Laplacian of wk+1 and using (1-1), we get

1wk+1 =1
2u+αk+11(|∇u|2(u+ ε)−1)+βk+11(|x |buq)= |x |au p

+ I + J, (3-4)

where I := αk+11(|∇u|2(u+ ε)−1) and J := βk+11(|x |buq). In what follows, we simplify I and J as
well as finding lower bounds for these terms. We start with J :

J
βk+1

=1(|x |buq)=1|x |buq
+1uq

|x |b+ 2∇|x |b · ∇uq

= b(n+ b− 2)|x |b−2uq
+ q(q − 1)|x |buq−2

|∇u|2+ q|x |buq−11u+ 2bq|x |b−2uq−1
∇u · x .

From the definition of wk+1, we have

1u = wk+1−αk+1|∇u|2(u+ ε)−1
−βk+1|x |buq . (3-5)
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Substitute this into the previous equation to simplify J as

J
βk+1

= quq−1
|x |bwk+1− qβk+1u2q−1

|x |2b
+

(
q(q − 1)− qαk+1

u
u+ε

)
|x |buq−2

|∇u|2

+ b(n+ b− 2)|x |b−2uq
+ 2bq|x |b−2uq−1

∇u · x . (3-6)

We now simplify I :

I
αk+1

=1(|∇u|2(u+ ε)−1)=
∑
i, j

∂ j j (u2
i (u+ ε)

−1)

= 2(u+ ε)−1
∑
i, j

(∂i j u)2+ 2(u+ ε)−1
∇u · ∇1u− 4(u+ ε)−2

∑
i, j

∂i u∂ j u∂i j u

− |∇u|2(u+ ε)−21u+ 2|∇u|4(u+ ε)−3.

Again substituting (3-5) into the term 2(u+ ε)−1
∇u · ∇1u that appears above, we get

I
αk+1

= 2(u+ ε)−1
∑
i, j

(∂i j u)2− 4(u+ ε)−2
∑
i, j

∂i u∂ j u∂i j u+ 2|∇u|4(u+ ε)−3
− |∇u|2(u+ ε)−31u

+ 2(u+ ε)−1
∇u · ∇wk+1− 2αk+1(u+ ε)−1

∇u · (|∇u|2(u+ ε)−1)

− 2βk+1(u+ ε)−1
∇u · ∇(|x |buq).

Then, collecting similar terms, we obtain

I
αk+1
− 2(u+ ε)−1

∇u · ∇wk+1

= 2(u+ ε)−1
∑
i, j

(∂i j u)2− 4(αk+1+ 1)(u+ ε)−2
∑
i, j

∂i u∂ j u∂i j u+ 2(αk+1+ 1)|∇u|4(u+ ε)−3

− |∇u|2(u+ ε)−21u− 2βk+1b|x |b−2(u+ ε)−1uq
∇u · x − 2βk+1q|x |buq−1(u+ ε)−1

|∇u|2.

Completing the square, we get

I
αk+1
−2(u+ε)−1

∇u ·∇wk+1

= 2(u+ε)−1
∑
i, j

(∂i j u−(αk+1+1)(u+ε)−1∂i u∂ j u)2−2αk+1(αk+1+1)|∇u|4(u+ε)−3

−|∇u|2(u+ε)−21u−2βk+1b|x |b−2(u+ε)−1uq
∇u ·x−2βk+1q|x |buq−1(u+ε)−1

|∇u|2. (3-7)

Note that, for any n×n matrix A= (ai, j ), the Hilbert–Schmidt norm is defined by ‖A‖2=
√∑

i, j |ai, j |
2=

√
trace(AA∗), where A∗ denotes the conjugate transpose of A. From the Cauchy–Schwarz inequality, the

following inequality holds:

|trace A|2 = |(A, I )|2 ≤ ‖A‖22‖I‖
2
2 = n

∑
i, j

|ai, j |
2. (3-8)
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Set ai, j := ∂i j u− (αk+1+ 1)(u+ ε)−1∂i u∂ j u in (3-8) to get

n∑
i, j

(∂i j u− (αk+1+ 1)(u+ ε)−1∂i u∂ j u)2 ≥
1
n
(1u− (αk+1+ 1)(u+ ε)−1

|∇u|2)2.

From this lower bound for the Hessian and (3-7), we get

I
αk+1
− 2(u+ ε)−1

∇u · ∇wk+1 ≥
2
n
(u+ ε)−1(1u− (αk+1+ 1)(u+ ε)−1

|∇u|2)2

−2αk+1(αk+1+ 1)|∇u|4(u+ ε)−3
− |∇u|2(u+ ε)−21u+ Tk, (3-9)

where

Tk := −2βk+1b|x |b−2(u+ ε)−1uq
∇u · x − 2βk+1q|x |buq−1(u+ ε)−1

|∇u|2.

Note also that, from the assumption wk ≤ 0, we have the upper bound on the Laplacian operator
1u ≤−αk |∇u|2(u+ ε)−1

−βk |x |buq . Elementary calculations show that, if t ≤ t∗ ≤ 0 and s ≥ 0, then
(t − s)2 ≥ t2

∗
− 2t∗s + s2. Set the parameters as t = 1u, t∗ = −αk |∇u|2(u + ε)−1

− βk |x |buq and
s = (αk+1+ 1)(u+ ε)−1

|∇u|2 to get the following lower bound on the square term that appears in (3-9):

(1u− (αk+1+ 1)(u+ ε)−1
|∇u|2)2

≥ (αk |∇u|2(u+ε)−1
+βk |x |buq)2+2(αk |∇u|2(u+ε)−1

+βk |x |buq)(αk+1+1)(u+ε)−1
|∇u|2

+ (αk+1+ 1)2(u+ ε)−2
|∇u|4. (3-10)

Substitute (3-5) into the term−|∇u|2(u+ε)−21u that appears in (3-9) to eliminate the Laplacian operator.
Then, apply inequality (3-10) to simplify (3-9) as

I
αk+1
− 2(u+ ε)−1

∇u · ∇wk+1

≥
2
n
(u+ε)−1((αk+1+αk+1)2|∇u|4(u+ε)−2

+β2
k |x |

2bu2q
+2βk(αk+1+αk+1)|x |buq(u+ε)−1

|∇u|2
)

−wk+1(u+ ε)−2
|∇u|2−αk+1(2αk+1+ 1)|∇u|4(u+ ε)−3

+βk+1|x |buq(u+ ε)−2
|∇u|2+ Tk .

Collecting similar terms and using the value of Tk , we end up with

I
αk+1
− 2(u+ ε)−1

∇u · ∇wk+1+wk+1(u+ ε)−2
|∇u|2

≥
2
n
β2

k |x |
2bu2q(u+ε)−1

+I (2)αk
|∇u|4(u+ε)−3

+Sε,αk ,βk |∇u|2uq−2
|x |b−2βk+1b|x |b−2(u+ε)−1uq

∇u·x,

where

I (2)αk
:=

2
n
(αk+1+αk + 1)2− 2αk+1(αk+1+ 1)+αk+1,

Sε,αk ,βk :=
4
n
βk(αk+1+αk + 1)

u2

(u+ ε)2
+βk+1

u2

(u+ ε)2
− 2βk+1q

u
u+ ε

.
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Therefore, the following lower bound for I holds:

I ≥ 2αk+1(u+ ε)−1
∇u · ∇wk+1−αk+1wk+1(u+ ε)−2

|∇u|2+ 2
n
αk+1β

2
k |x |

2bu2q(u+ ε)−1

+ Iαk |∇u|4(u+ ε)−3
+ Sε,αk ,βk |∇u|2uq−2

|x |b− 2βk+1b|x |b−2(u+ ε)−1uq
∇u · x . (3-11)

Finally, applying this lower bound for I and the lower bound given for J in (3-6), from (3-3) we get

1wk+1− 2αk+1(u+ ε)−1
∇u · ∇wk+1+αk+1(u+ ε)−2

|∇u|2wk+1−βk+1quq−1
|x |bwk+1

≥ |x |au p
(

1− qβ2
k+1+

2
n
αk+1β

2
k

u
u+ ε

)
+αk+1 I (2)αk

|∇u|4(u+ ε)−3

+

(
αk+1Sε,αk ,βk +

(
q(q − 1)−αk+1q u

u+ε

)
βk+1

)
|∇u|2uq−2

|x |b

+ 2bβk+1

(
q −αk+1

u
u+ε

)
|x |b−2uq−1

∇u · x + bβk+1(n+ b− 2)|x |b−2uq .

Completing the square finishes the proof. �

4. Proof of Theorem 1.3 via iteration arguments

To apply the iteration argument, we need to develop a maximum principle argument for the equation

1w−2α(u+ε)−1
∇u ·∇w+αw(u+ε)−2

|∇u|2− 1
2β(p+1)|x |a/2u(p−1)/2w= f (x)≥ 0 in Rn (4-1)

that appears in Proposition 3.1, where α and β are positive constants, u is a solution of (1-1) and
w, f ∈ C∞(Rn).

Lemma 4.1. Suppose that w is a solution of the differential inequality (4-1), where u is a solution of (1-1)
and

w =1u+α(u+ ε)−1
|∇u|2+β|x |a/2u(p+1)/2 (4-2)

for positive constants ε, α and β. Then, assuming that p+ 1> 2α,

1w̃ ≥ 0 on {w ≥ 0} ⊂ Rn, (4-3)

where w̃ = (u+ ε)tw for t =−α.

Proof. Straightforward calculations show that

1w̃ = (u+ ε)t1w+ 2t (u+ ε)t−1
∇u · ∇w+ t (u+ ε)t−1w1u+ t (t − 1)w(u+ ε)t−2

|∇u|2.

We now add and subtract two terms, 1
2β(p+ 1)|x |a/2u(p−1)/2(u+ ε)tw and tw(u+ ε)t−2

|∇u|2, to the
above identity and collect similar terms to get

1w̃ = (u+ ε)t
(
1w+ 2t (u+ ε)−1

∇u · ∇w− tw(u+ ε)−2
|∇u|2− 1

2β(p+ 1)|x |a/2u(p−1)/2w
)

+
1
2β(p+ 1)|x |a/2u(p−1)/2(u+ ε)tw+ tw(u+ ε)t−2

|∇u|2+ t (u+ ε)t−1w1u

+ t (t − 1)w(u+ ε)t−2
|∇u|2.



A POINTWISE INEQUALITY FOR THE FOURTH-ORDER LANE–EMDEN EQUATION 1555

From the fact that t =−α and w satisfies (4-1), we get

1w̃ ≥ 1
2β(p+ 1)|x |a/2u(p−1)/2(u+ ε)tw+ t (u+ ε)t−1w1u+ t2w(u+ ε)t−1 |∇u|2

u+ ε
.

Note that we can eliminate the gradient term using (4-2), that is,

α(u+ ε)−1
|∇u|2 = w−1u−β|x |a/2u(p+1)/2.

Therefore, after collecting similar terms we get

1w̃ ≥
t2

α
w2(u+ ε)t−1

+ (u+ ε)t−1wt
(

1− t
α

)
1u

+β(u+ ε)t−1
|x |a/2u(p−1)/2w

(
(p+1)ε

2
+ u

( p+1
2
−

t2

α

))
=: R1+ R2+ R3.

We claim that the above three terms, R1, R2 and R3, are nonnegative when w≥ 0. From the fact that α > 0
one can see that R1 is nonnegative. From the definition of t =−α < 0, we have t (1− t/α)=−2α < 0.
This together with Proposition 2.3, that is, 1u ≤ 0, confirms that R2 is nonnegative. Positivity of R3 is an
immediate consequence of the assumptions: β is positive and 1

2(p+ 1)− t2/α = 1
2(p+ 1)− α is also

positive. This finishes the proof. �

We now apply Lemma 4.1 to show that any solution w of (4-1) is negative.

Lemma 4.2. Suppose that w̃ and w as in Lemma 4.1. Let u be a bounded solution of (1-1); then w ≤ 0.

Proof. The methods and ideas that we apply in the proof are motivated by Souplet [2009]. Multiply (4-3)
by w̃s

+
, where s > 0 is a parameter that will be determined later. Then, integration by parts over BR gives

us

0≤
∫

BR

1w̃w̃s
+
=−s

∫
BR

|∇w̃+|
2w̃s−1
+
+ Rn−1

∫
Sn−1

w̃r w̃
s
+
. (4-4)

Therefore, ∫
BR

|∇w̃+|
2w̃s−1
+
≤

1
s(s+ 1)

Rn−1
∫

Sn−1
(w̃s+1
+
)r = C(s)Rn−1 I ′(R), (4-5)

where

I (R) :=
∫

Sn−1
w̃s+1
+
=

∫
Sn−1

(u+ ε)−(s+1)αws+1
+

and C(s) is a constant independent of R. Note thatw, given asw=1u+α|∇u|2(u+ε)−1
+β|x |a/2u(p+1)/2,

satisfies w ≥ 0 if and only if −1u ≤ α|∇u|2(u+ ε)−1
+β|x |a/2u(p+1)/2. Therefore,

ws+1
+
≤ C |∇u|2(s+1)(u+ ε)−(s+1)

+C |x |(s+1)a/2u(s+1)(p+1)/2, (4-6)
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where C = C(α, β, s). Applying this upper bound for w+, we can get an upper bound for I (R):

I (R)≤ C
∫

Sn−1
(u+ ε)−(s+1)(α+1)

|∇u|2(s+1)
+C R(s+1)a/2

∫
Sn−1

(u+ ε)−α(s+1)u(s+1)(p+1)/2

≤ C(ε)
∫

Sn−1
|∇u|2(s+1)

+C(ε)R(s+1)a/2
∫

Sn−1
u(s+1)(p+1)/2

=: C(ε)(I1(R)+ I2(R)). (4-7)

In what follows, we show that there is a sequence R such that the two terms I1(R) and I2(R) decay to
zero for a fixed ε. We start with I2(R), which includes an integral of a positive power of u over the sphere.
Due to the boundedness assumption on u, it is straightforward to relate this term to L p estimates of u
over the sphere. As a matter of fact, if (s+ 1)(p+ 1) > 2p then, from the boundedness of u, we have∫

Sn−1
u(s+1)(p+1)/2

≤ C(n)‖u‖p
L p(Sn−1)

(4-8)

and for the case (s+ 1)(p+ 1)≤ 2p we can use Hölder’s inequality to get∫
Sn−1

u(s+1)(p+1)/2
≤ C(n, p)‖u‖(p+1)(s+1)/2

L p(Sn−1)
. (4-9)

So, to prove a decay estimate for I2(R) we need to construct a decay estimate for ‖u‖L p(Sn−1). On the
other hand, we apply Lemma 2.10 to get an upper bound for the first term in (4-7), I1(R). In fact, from
Lemma 2.10 with i = 1, τ = 2(s+ 1) and t = 2, we have

‖Dx u‖L2(s+1)(Sn−1) ≤ C‖Dθ Dx u‖L2(Sn−1)+C‖Dx u‖L1(Sn−1)

≤ C R‖D2
x u‖L2(Sn−1)+C‖Dx u‖L1(Sn−1) (4-10)

for s = 2/(n− 3). In order to get a decay estimate for I1(R), we need decay estimates for the two terms
in the right-hand side of (4-10), ‖D2

x u‖L2(Sn−1) and ‖Dx u‖L1(Sn−1).
We now apply the elliptic estimates given in Section 2 to provide decay estimates for ‖u‖L p(Sn−1),
‖Dx u‖L1(Sn−1) and ‖D2

x u‖L2(Sn−1). To do so we first find appropriate upper bounds for these terms on the
ball of radius R. Then we use certain measure-comparison arguments to construct decay estimates over
the sphere. So, from Lemma 2.7 with τ = 2, we get∫ R

R/2
‖D2

x u‖2L2(Sn−1)
rn−1 dr ≤ C

∫
B2R\BR/4

|1u|2+C R−4
∫

B2R\BR/4

u2. (4-11)

We now apply Corollary 2.9 and Corollary 2.2 to get a decay estimate for the right-hand side of (4-11),
namely,

R−4
∫

B2R\BR/4

u2
≤ C R−4

∫
B2R\BR/4

u ≤ C R−4 Rn−(a+4)/(p−1)
= C Rn−(a+4p)/(p−1),∫

B2R\BR/4

|1u|2 ≤ C Rn−(a+4p)/(p−1),
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where C is independent from R. From this and (4-11), we obtain the desired decay estimate on the
Hessian operator of u, ∫ R

R/2
‖D2

x u‖2L2(Sn−1)
rn−1 dr ≤ C Rn−(4p+a)/(p−1). (4-12)

Similarly, from Corollary 2.6 and Lemma 2.1, we have∫ R

R/2
‖Dx u‖L1(Sn−1)r

n−1 dr ≤ C Rn−(p+3+a)/(p−1), (4-13)∫ R

R/2
‖u‖p

L p(Sn−1)
rn−1 dr ≤ C Rn−(a+4)p/(p−1). (4-14)

Now let’s define the following sets. These sets are meant to facilitate our arguments towards construction
of decay estimates for ‖u‖L p(Sn−1), ‖Dx u‖L1(Sn−1) and ‖D2

x u‖L2(Sn−1). For a large number M , which will
be determined later, define

01(R) := {r ∈ (R/2, R) : ‖u‖p
L p(Sn−1)

> M R−(a+4)p/(p−1)
},

02(R) := {r ∈ (R/2, R) : ‖Dx u‖L1(Sn−1) > M R−(p+3+a)/(p−1)
},

03(R) := {r ∈ (R/2, R) : ‖D2
x u‖2L2(Sn−1)

> M R−(a+4p)/(p−1)
}.

We claim that |0i (R)| ≤ R/4 for 1≤ i ≤ 3: Using (4-12), we get

C ≥ R−n+(a+4p)/(p−1)
∫ R

R/2
‖D2

x u‖2L2(Sn−1)
rn−1 dr

≥ N R−n+(a+4p)/(p−1)Rn−1
∫ R

R/2
‖D2

x u‖2L2(Sn−1)
dr

≥ N M R−n+(a+4p)/(p−1)Rn−1
∫
|03(R)|

R−(a+4p)/(p−1) dr

≥ N M R−n+(a+4p)/(p−1)Rn−1
|03(R)|R−(a+4p)/(p−1)

= N M |03(R)|R−1,

where N =
( 1

2

)n−1. Therefore, |03(R)| ≤ C R/N M . Now, choosing M to be large enough, that is,
M>4C/N , we get |03(R)|≤ R/4. Similarly, applying (4-13) and (4-14), one can show that |0i (R)|≤ R/4
for i = 1, 2. Hence, |0i (R)| ≤ R/4 for 1≤ i ≤ 3 while 0i (R)⊂ (R/2, R). So, we can find a sequence of
R̃ such that

R̃ ∈ (R/2, R) \
i=3⋃
i=1

0i (R) 6=∅. (4-15)

Therefore, for the sequence R̃, we obtain

‖u‖p
L p(Sn−1)

≤ M R−(a+4)p/(p−1), (4-16)

‖Dx u‖L1(Sn−1) ≤ M R−(p+3+a)/(p−1), (4-17)

‖D2
x u‖2L2(Sn−1)

≤ M R−(a+4p)/(p−1). (4-18)



1558 MOSTAFA FAZLY, JUN-CHENG WEI AND XINGWANG XU

Substituting (4-16) into (4-8) and (4-9), we get the decay estimate on I2(R)

I2(R)≤ Cχ{(s+ 1)(p+ 1) > 2p}R(s+1)/2a−(a+4)p/(p−1)

+Cχ{(s+ 1)(p+ 1)≤ 2p}R(s+1)a/2−(a+4)(p+1)(s+1)/(2(p−1))

= Cχ{(s+ 1)(p+ 1) > 2p}R−η1 +Cχ{(s+ 1)(p+ 1) > 2p}R−η2, (4-19)

where χ is the characteristic function, η1 := a
(

p/(p − 1)− 1
2(s + 1)

)
+ 4p/(p − 1) > 0 and η2 :=

(s + 1)(ap+ 2(p+ 1))/(p+ 1) > 0. Note that we have used the fact that p/(p− 1)− 1
2(s + 1) > 0

because 0< s = 2/(n− 3)≤ 1 when n ≥ 5. On the other hand, substituting (4-17) and (4-18) into the
Sobolev embedding (4-10), we get

‖Dx u‖L2(s+1)(Sn−1) ≤ C R1−(a+4p)/(p−1)
+C R−(p+3+a)/(p−1)

= 2C R−(p+3+a)/(p−1). (4-20)

From this and the definition of I1(R), we end up with the decay estimate on I1(R)

I1(R)=
∫

Sn−1
|∇u|2(s+1)

≤ C R−2(p+3+a)(s+1)/(p−1)
= C R−η3, (4-21)

where η3 := 2(p+ 3+ a)(s+ 1)/(p− 1) > 0. Finally, from (4-21) and (4-19), we observe that

I (R)≤ C R−η for all R > 1,

where η :=min{η1, η2, η3}> 0. So, I (R)→ 0 as R→∞. Note that R̃→∞ as R→∞. Since I (R) is
a positive function and converges to zero, there is a sequence such that the functional I ′(R) is nonpositive.
Therefore, (4-5) yields ∫

BR

|∇w̃+|
2w̃s−1
+
≤ 0. (4-22)

Hence, w̃+ has to be a constant. From the continuity of w̃, we have w̃ ≡ C . Note that the constant C
cannot be strictly positive. So, w̃+ = 0 and therefore w+ = 0. This finishes the proof. �

Note that Lemma 4.1 and Lemma 4.2 imply an iteration argument for the sequence of functions,
for k ≥−1,

wk =1u+αk(u+ ε)−1
|∇u|2+βk |x |a/2u(p+1)/2 (4-23)

as long as the right-hand side of (3-3) stays nonnegative. For the rest of this section, we construct
sequences {αk}k=−1 and {βk}k=−1 such that the right-hand side of (3-3) is nonnegative.

Constructing sequences αk and βk. In this part, we define sequences αk and βk needed for the iteration
argument.

Lemma 4.3. Suppose α0 = 0 and define

αk+1 :=
4(αk + 1)− n+

√

n(16α2
k + 24αk + n+ 8)

4(n− 1)
. (4-24)

Then (αk)k is a positive, bounded and increasing sequence that converges to α := 2/(n−4) provided n> 4
and p > 1. Moreover, for this choice of (αk)k , the sequence I (2)αk of coefficients defined in Proposition 3.1
equals zero.
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Proof. It is straightforward to show that αk > 0 for any k ≥ 0. Also, direct calculations show that
αk→ α := 2/(n−4) provided αk is convergent. Note that α1 = (4−n+

√
n2+ 8n)/(4n−4) < 2/(n−4)

and, by induction, one can see that αk ≤ α for all k ≥ 0. Lastly, we show that αk is an increasing sequence:
For any k,

αk+1−αk =

√

n(16α2
k + 24αk + n+ 8)− ((n− 4)+ 4ak(n− 2))

4(n− 1)

=
8(n− 1)(n− 4)(2αk + 1)

Sn,k

(
2

n− 4
−αk

)
,

where Sn,k =
√

n(16α2
k + 24αk + n+ 8) + (n − 4) + 4ak(n − 2) > 0. Therefore, from the fact that

αk ≤ α = 2/(n− 4), we get the desired result. �

Similarly, we provide an explicit formula for the sequence βk :

Lemma 4.4. Suppose β0 =
√

2/(p+ 1) and define

βk+1 :=

√
2

p+1
+

4
(p+1)n

αkβ
2
k , (4-25)

where (αk)k is as in Lemma 4.3. Then (βk)k is a positive, bounded and increasing sequence that converges
to β :=

√
2/((p+ 1)− cn), where cn = 8/(n(n− 4)) provided that n > 4 and p > 1. Moreover, for this

choice of (αk)k and (βk)k , the sequence I (1)0,αk ,βk
of coefficients defined in Proposition 3.1 is strictly positive.

Proof. The sequence (βk)k for all k ≥ 0 is positive. Note that boundedness of the sequence (αk)k forces
the boundedness of the (βk)k , meaning that βk+1 ≤

√

2/(p+ 1)+ (4α/((p+ 1)n))β2
k for any k. By

straightforward calculations we get

β2
k+1 ≤

2
p+ 1

k+1∑
i=0

(
4α

n(p+ 1)

)i

.

Note that 4α/(n(p+ 1)) = 8/(n(n − 4)(p + 1)) < 1 provided that n > 4 and p > 1. Therefore,∑
∞

i=0
(
4α/(n(p+ 1))

)i
<∞. This proves the boundedness of (βk)k .

Since (αk)k=0 is an increasing sequence, the sequence (βk)k=0 will be nondecreasing by induction.
Note that

β1 = β0 and β2 =

√
2

p+1
+

8
(p+1)2n

4−n+
√

n2+8n
4n−4

> β1 =

√
2

p+1
.

Suppose that βk−1≤ βk for a certain index k ≥ 2; then we apply the fact that αk ≥ αk−1 to show βk ≤ βk+1.
This can be found as a consequence of

βk+1−βk =
β2

k+1−β
2
k

βk+1+βk
=

4
(p+ 1)n(βk+1+βk)

(β2
kαk −β

2
k−1αk−1)≥

4αk−1(βk +βk−1)

(p+ 1)n(βk+1+βk)
(βk −βk−1).

So, (βk)k is convergent and converges to β :=
√

2n(n−4)/((p+1)(n−4)n−8). Since (p+1)n(n−4)>8
for p > 1 and n > 4, β is well-defined. �
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Note that, based on the definition of the sequences {αk}k=−1 and {βk}k=−1, we concluded that I (1)0,αk ,βk
>0

and I (2)αk = 0. In the next two lemmata we investigate the positivity of I (3)ε,αk ,βk
and I (4)a,ε,αk ,βk

, the sequences
that appeared in (3-3) in Proposition 3.1.

Lemma 4.5. Set ε = 0 in I (3)ε,αk ,βk
, which is defined in Proposition 3.1. Then

I (3)0,αk ,βk
→ I (3)0,α,β :=

4
n
αβ(2α+ 1)+αβ +βq(q − 3α− 1) (4-26)

as k→∞. The constant I (3)0,α,β is positive provided p > (n+ 4)/(n− 4) and n > 4.

Proof. Note that when p > (n+ 4)/(n− 4) and n > 4, we have 1
2(p+ 1) > n/(n− 4). As k→∞, from

Lemma 4.3 and Lemma 4.4, the sequences αk → α := 2/(n − 4) and βk → β :=
√

2/((p+ 1)− cn).
Therefore,

I (3)0,α,β

β
=

4
n

( 2
n−4

)( 4
n−4

+ 1
)
+

2
n−4

+
p+1

2

( p−1
2
−

6
n−4

)
=

( p+1
2

)2
−

( p+1
2

)(n+2
n−4

)
+

2n
(n− 4)2

=

( p+1
2
−

n
n−4

)( p+1
2
−

2
n−4

)
> 0. �

Note that I (4)a,ε,αk ,βk
appears in (3-3) mainly because of the weight function |x |a . In other words, we

have I (4)0,ε,αk ,βk
= 0 in the case of a = 0.

Lemma 4.6. For any k ≥ 0,

I (3)0,αk ,βk
< βk+1

( 1
2(p+ 1)−αk+1

)2 (4-27)

provided p > (n+ 4)/(n− 4) and n > 4. Therefore, for any a ≥ 0 that satisfies the upper bound

a ≤ Ak :=
2(n− 2)I (3)0,αk ,βk

βk+1
( 1

2(p+ 1)−αk+1
)2
− I (3)0,αk ,βk

, (4-28)

the sequence I (4)a,0,αk ,βk
is positive for any k.

Proof. Basic calculations show that

βk+1

( p+1
2
−αk+1

)2
− I (3)0,αk ,βk

= βk+1

( p+1
2
−αk+1

)2
−

4
n
αk+1βk(αk+1+αk + 1)−αk+1βk+1−βk+1

p+1
2

( p+1
2
− 3αk+1− 1

)
≥ βk+1

(( p+1
2
−αk+1

)2
−

4
n
αk+1(αk+1+αk + 1)−αk+1−

p+1
2

( p+1
2
− 3αk+1− 1

))
= βk+1

(n−4
n
α2

k+1−
4
n
α2

k+1−
4
n
αk+1+

p−1
2
αk+1+

p+1
2

)
,
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where we have used the fact that βk and αk are increasing sequences in the first and the second inequality,
respectively. Therefore,

βk+1

( p+1
2
−αk+1

)2
− I (3)0,αk ,βk

≥ βk+1

(n−4
n
α2

k+1+αk+1

( p−1
2
−

4
n
αk+1

)
+

p+1
2
−

4
n
αk+1

)
≥ βk+1

(n−4
n
α2

k+1+ (αk+1+ 1)
( p−1

2
−

4
n
α
))

> 0.

Note that in the last inequality we have used the fact that

p− 1
2
−

4
n
α =

p−1
2
−

4
n

2
n−4

>
4

(n−4)n
(n− 2) > 0,

since p > (n+ 4)/(n− 4) and n > 4. �

Remark 4.7. It would be interesting if a counterpart of (1-12) could be proved for bounded solutions of
the fourth-order semilinear equation 12u = f (u) under certain assumptions on the arbitrary nonlinearity
f ∈ C1(R). We expect that such an inequality could be established for some convex nonlinearity f .

Appendix

We would like to mention that given the estimates in Lemma 2.1 and Lemma 2.4, one can provide a
somewhat simpler proof of Proposition 2.3, as follows.

Second proof of Proposition 2.3. From Lemma 2.1, we have
∫

Rn |x |2−n+au p dx <∞. Hence, we define
the function

w(x)=
1

n(n− 2)ωn

∫
Rn

|y|au p(y)
|x − y|n−2 dy.

It is clear that w(x) ≥ 0 and 1w = −|x |au p. This implies that, for a solution u of (1-1), the function
h(x) := w(x)+1u(x) is a well-defined harmonic function on Rn . Thus, for any x0 ∈ Rn and any R > 0,
by the mean value theorem for harmonic functions we will have

h(x0) :=

∫
∂BR(x0)

h dσ =
∫
∂BR(x0)

(w+1u) dσ ≤
∫
∂BR(x0)

w dσ +
∫
∂BR(x0)

|1u| dσ. (A-1)

Since w(x0) <∞, through Tonelli’s theorem, we can change the order of the integrations to see that
the first integral on the right-hand side of (A-1) tends to zero as R→∞ for all R. To be more precise,
notice that, up to a constant multiple, the first integral can be written as∫

Rn

∫
∂BR(x0)

dσx

|x − y|n−2 |y|
au p(y) dy.

Then we use the fact that
∫
∂BR(x0)

1/|x − y|n−2 dσx = |y − x0|
2−n if |y − x0| > R and equals R2−n

if |y− x0|< R. Thus the integral will split into two parts. The outside part tends to zero as R→∞ due
to the fact that w(x0) <∞, while the inside part tends to zero due to the fact that, by Lemma 2.1,

R2−n
∫

BR(x0)

|y|au p(y) dy ≤ R2−n
∫

BR+|x0|(0)
|y|au p dy ≤ C R2−n(R+ |x0|)

n−(4p+a)/(p−1)
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tends to zero as R→∞. The second integral will tend to zero for some sequence of R by Lemma 2.4
again. Apply the above inequality to this sequence to see that h(x0) ≤ 0. Since x0 is arbitrary, we
have −1u ≥ 0. �
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