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For a family of second-order elliptic systems in divergence form with rapidly oscillating, almost-periodic
coefficients, we obtain estimates for approximate correctors in terms of a function that quantifies the
almost periodicity of the coefficients. The results are used to investigate the problem of convergence rates.
We also establish uniform Holder estimates for the Dirichlet problem in a bounded C'* domain.
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1. Introduction and statement of main results

In this paper we consider a family of second-order elliptic operators in divergence form with rapidly
oscillating, almost-periodic coefficients,

P = —div(A(x/e)V) = _%G?jﬂ(x/g)%)’ e > 0. (1-1)
L J

We will assume that A(y) = (af‘jﬁ (y)) with 1 <i, j <d and 1 <«, B <m is real and satisfies the ellipticity
condition

pléP <aff ()76 < 1P for y € RY and £ = (&) € RO (1-2)

where © > 0 (the summation convention is used throughout the paper). We further assume that A = A(y)
is uniformly almost-periodic in R?; i.e., A is the uniform limit of a sequence of trigonometric polynomials
in RY.
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Let 2 be a bounded Lipschitz domain in R?. Let u, € H'(2; R™) be the weak solution of the Dirichlet
problem
Pe(ug)=F 1in Q and us =g on 0%, (1-3)

where F € H™!(€2; R™) and g € H'/?(3Q; R™). Under the ellipticity condition (1-2) and the almost
periodicity condition on A, it is known that u, — uo weakly in H'(€2; R™) and thus strongly in L2(2; R™)
as ¢ — 0. Furthermore, the function ug is the solution of

Lo(ug) =F in Q and up=g on 0%, (1-4)

where %o = — div(AV) is a second-order elliptic operator with constant coefficients, uniquely determined
by A(y). As in the periodic case (see, e.g., [Bensoussan et al. 1978]), the constant matrix A= (Ezf}ﬁ ) is
called the homogenized matrix for A and &y the homogenized operator for &.. In this paper we shall be
interested in quantitative homogenization results as well as uniform estimates for solutions of (1-3).

Homogenization of elliptic equations with rapidly oscillating, almost-periodic or random coefficients
was studied first by S. M. Kozlov [1978; 1979] and by G. C. Papanicolaou and S. R. S. Varadhan [1981].
In particular, the o(1) convergence rate of u, — ug in C° () for some o > 0 was obtained in [Kozlov
1978] for a scalar second-order elliptic equation in divergence form with almost-periodic coefficients.
Under some additional conditions on the frequencies in the spectrum of A(y), the sharp O (¢) rate in C (Q)
was proved in [Kozlov 1978] for operators with sufficiently smooth quasiperiodic coefficients. It is known
that, without additional structure conditions on A(y), the O (¢) rate cannot be expected in general (see
[Bondarenko et al. 2005] for some interesting results in the 1-dimensional case).

In contrast to the periodic case, the equation for the exact correctors x (y),

—div(A()VX(y) =div(A()VP(y) in RY, (1-5)

may not be solvable in the almost-periodic (or random) setting for linear functions P(y). In [Kozlov
1978], solutions x (y) of (1-5) with sublinear growth and almost-periodic gradient were constructed and,
as a result, homogenization was obtained for operators with trigonometric polynomial coefficients, by a
lifting method. The homogenization result for the general case follows by an approximation argument. A
different approach, which also gives the homogenization of the second-order elliptic equations with random
coefficients, is to formulate and solve an abstract auxiliary equation in a Hilbert space for ¥ (y) = Vx (y).
We outline this approach in Section 2 and refer the reader to [Jikov et al. 1994] for a detailed presentation
and references.

Another approach to homogenization involves the use of the so-called approximate correctors [Pa-
panicolaou and Varadhan 1981; Kozlov 1979]. Under certain mixing conditions, the approach has
been employed successfully to establish quantitative homogenization results for second-order linear
elliptic equations and systems in divergence form with random coefficients [ Yurinskii 1986; Pozhidaev
and Yurinskii 1989; Bourgeat and Piatnitski 2004]. For nonlinear second-order elliptic equations and
Hamilton—Jacobi equations, we refer the reader to [Caffarelli and Souganidis 2010; Armstrong et al.
2014; Armstrong and Smart 2014] for recent advances and references on quantitative homogenization
results. We point out that the almost-periodic case, which does not satisfy the mixing conditions generally
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imposed in the random case, is studied in [Caffarelli and Souganidis 2010; Armstrong et al. 2014]. We
also mention that sharp quantitative results were obtained recently in [Gloria and Otto 2011; 2012; Gloria
et al. 2014] for stochastic homogenization of discrete linear elliptic equations in divergence form.

In this paper we carry out a quantitative study of the approximate correctors 1 = ( Xﬁ, j) for £, in (1-1),

where, for 1 < j<dand 1 <8 <m,u= Xﬁ,j is defined by
—div(A()Vu) + T 2u = div(A(y)VPf (y)) in RY (1-6)

and Pj.ﬁ ) =y;©,...,0,1,0,...,0) with 1 in the B-th position. Among other things, we will prove
that, for T > 1 and o € (0, 1),

T X7 |l Looey < Co®p (T), (1-7)
lxr(x) — x| < CoT'™|x —y|° forany x,ye R’ (1-8)

1

2 T o
Sup(][ |VXT|2) fca(_) , (1-9)
xeRd B(x,r) r

where C, depends only on d, m, o0 and A. The continuous function ®,(7), which is decreasing and

and, forO<r <T,

converges to zero as T — 0o, is defined by

O, (T)= inf (p(R)+ (5)0), (1-10)
0<R<T T
where
p(R) = sup inf |AC-+y) = AC +2)llo@me) (I-11)
yeR ok

is a decreasing and continuous function that quantifies the almost periodicity of A. Indeed, a bounded
continuous function A in R? is uniformly almost-periodic if and only if p(R) — 0 as R — oo.

With the estimates (1-7), (1-8) and (1-9) at our disposal, we obtain the following theorems on the
convergence rates. Our results in Theorems 1.2 and 1.4 are new even in the scalar case m = 1.

Theorem 1.1. Suppose that A(y) = (a?jﬂ (y)) satisfies the ellipticity condition (1-2) and is uniformly
almost-periodic inR?. Let p > d, o € (0, 1), and Q be a bounded C"* domain in R¢ for some a > 0. Then
there exists a modulus 1 : (0, 1] — [0, 00), which depends only on A and o, such that lim;_.on(t) =0
and

e — ttoll o gy < (@ lluoll e (1-12)
for e € (0, 1) whenever u, € H'(Q) is the weak solution of (1-3) and ug € WP () is the solution of (1-4).
Furthermore, we have

lue —uo —exr(x/e)Vuoll g @) = Cn(e)lluollwzr(g) (1-13)

where T = ¢~ ! and x7(y) denotes the approximate corrector defined by (1-6). The constants C in (1-12)
and (1-13) depend only on 2, p, o and A.
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The next theorem gives more precise rates of convergence, provided p(R) decays fast enough that
[ (p(r)/r)dr < co.

Theorem 1.2. Under the same assumptions as in Theorem 1.2,
04 (r)

/ey T

llue —uollr2(@) < C”MOHWZJ’(Q)(/ dr + [®1(8_1)]U> (1-14)
1

and
* Ou(r)
/(2¢) r

lue —uo — e x7(x/&) Vol g1 () < C||M0||w2-p(sz)( / dr + [@1@—1)]0/2) (1-15)
1

forany o € (0, 1), where T = ¢~ and C depends only on Q, A, p and o.
Remark 1.3. By taking R = +/T in (1-10), we obtain O, (T) < p(~/T) + T~/ for T > 1. It follows

that - -
/ PO 4 < 00 = / 9" 4y < 00 (1-16)
1 1

r r
for any o € (0, 1]. It is not clear whether estimates (1-14) and (1-15) are sharp. However, let us suppose
that there exist T > 0 and C > 0 such that
p(R)<CR™™ forall R>1. (1-17)
Then, for T > 1,
Oy (T) < CToV/+D),
It follows from (1-14) that

lue —uoll 2y < Ce”" TN ugllwan(qy-

Since o € (0, 1) is arbitrary, this gives

T

lue —uoll 2@y < Cy8y||uo||w2.p(9) forany 0 <y < 1 (1-18)
Similarly, one may deduce from (1-15) that
lue —uo — exr(x/&)Vuoll gy < Cye lluollwzr (o) (1-19)

for any 0 < y < t/(2(tr + 1)). It is interesting to note that if A is periodic then p(R) = O for R large
and thus the condition (1-17) holds for any T > 1. Consequently, estimates (1-18) and (1-19) yield
convergence rates O(e'7%) and 0(g'/?79) for any § > 0 in L*(Q) and H (Q), respectively, which are
near optimal. Also note that, under the condition (1-17), our estimate (1-7) gives

X7l < CsTV/(FHDF? (1-20)

for any § > 0, while one has | xr|lz~ < C if A is periodic. Section 8 contains some examples of
quasiperiodic functions for which condition (1-17) is satisfied.

In this paper we also establish the uniform Holder estimates for the Dirichlet problem (1-3).
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Theorem 1.4. Suppose that A(y) = (a?jﬁ (y)) satisfies the ellipticity condition (1-2) and is uniformly
almost-periodic in RY. Let Q be a bounded C'* domain in R¢ for some a > 0. Let u, be a weak solution

of
Le(ug) =F +div(f) in Q and ug =g on 90S2. (1-21)

Then, for any o € (0, 1),

1
2
IIMSIICJ(Q)§C<Ilgllca<ag)+ sup r“][ |F|+ sup r1"<][ |f|2) ) (1-22)
xeQ B(x,r)NQ xeQ B(x,r)NQ2

O<r<ry O<r<ry

where ro = diam(2) and C depends only on o, A and Q2.

We now describe the outline of this paper as well as some of key ideas used in the proof of its main
results. In Section 2 we give a brief review of the homogenization of second-order elliptic systems
with almost-periodic coefficients, based on an auxiliary equation in B?(R?), the Besicovich space of
almost-periodic functions. We also prove a homogenization theorem (Theorem 2.2) for a sequence of
operators {— div(B¢(x/g¢)V)}, where e, — 0 and {B,(y)} are obtained from A(y) through rotations and
translations. With this theorem, a compactness argument is used in Sections 3 and 4 to establish the
uniform interior and boundary Holder estimates for local solutions of &, (u.) = F +div(f). The proof of
Theorem 1.4 is given in Section 4. We mention that the compactness argument, which originated from
the regularity theory in the calculus of variations and minimal surfaces, was introduced to the study of
homogenization problems by M. Avellaneda and F. Lin [1987; 1989]. It was used recently in [Kenig et al.
2013] to establish the Lipschitz estimates for the Neumann problem in periodic homogenization. Also
see related work in [Shen 2008; Geng et al. 2012; Shen and Geng 2015]. In the almost-periodic setting,
the compactness argument was used in [Dungey et al. 2001] to obtain the interior Holder estimate for
operators with complex coefficients. However, we point out that some version of Theorem 2.2 seems to
be necessary to ensure that the constants are independent of the centers of balls.

The approximate correctors xr are constructed in Section 5, while estimates (1-7), (1-8) and (1-9) are
established in Section 6. The proof of (1-8) and (1-9) relies on the uniform Holder estimates for £.. We
will also show that

xr (@) = xr(MI < CTJA(-+x) — A(-+y)[lL~ forany x,y e R’ (1-23)

The estimate (1-7) follows from (1-23) and (1-8) in a manner somewhat similar to the case of Hamilton—
Jacobi equations in the almost-periodic setting [Ishii 2000; Lions and Souganidis 2005; Armstrong et al.
2014].

Theorems 1.1 and 1.2 are proved in Section 7. Here we follow an approach for the periodic case by
considering

We = Ug(x) —ug(x) —exr(x/e)Vug(x) + ve(x),
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where T = ¢! and v, is the weak solution of the problem ¥, (v.) =0 in Q and v, = e x7(x/&)Vug(x)
on 0€2. We are able to show that

lwell g1(@) < Co (O (T) + (1Y — VxrI)) lluoll w2 (1-24)

for any o € (0, 1), where ¥ is the limit of V7 in B>(R?) as T — oo. In the periodic case, one of the
key steps is to write A— A(y) — A(y)Vx(y) as a divergence of some bounded periodic function. In the
almost-periodic setting, this will be replaced by solving the equation

—Au+T *u= By —(Br) in RY, (1-25)

where Br(y) = A-— A(y) — A(y)Vxr(y). The same ideas for proving (1-7)—(1-9) are used to obtain
the desired estimates for ||u|| .~ and ||Vu| .~ in terms of the function ®, (7). Finally, in Section 8 we
consider the case of quasiperiodic coefficients and provide some sufficient conditions on the frequencies
of A(y) for the estimate (1-17) on p(R).

Throughout this paper, unless indicated otherwise, we always assume that A = (af‘jﬂ ) satisfies the
ellipticity condition (1-2) and is uniformly almost-periodic in RY. We will use fE f=AU/IE)) /. g [ to
denote the L' average of f over E, and C to denote constants that depend on A(y), €2 and other relevant
parameters, but never on € or 7.

2. Homogenization and compactness

This section contains a brief review of homogenization theory of elliptic systems with almost-periodic
coefficients. We refer the reader to [Jikov et al. 1994, pp. 238-242] for a detailed presentation. We also
prove a homogenization theorem for a sequence of operators obtained from &, through translations and
rotations.

Let Trig(RY) denote the set of (real) trigonometric polynomials in R?. A bounded continuous function
f in R? is said to be uniformly almost-periodic (or almost-periodic in the sense of Bohr) if f is a limit of
a sequence of functions in Trig(R¢) with respect to the norm || f|/z. A function f in L2 (R?) is said to

loc
belong to B>(R?) if f is a limit of a sequence of functions in Trig(RY) with respect to the seminorm

1
2
||f||Bz=hmsup(][ |f|2) . @-1)
R—00 B(0,R)

Functions in B2(R?) are said to be almost-periodic in the sense of Besicovich. It is not hard to see that, if
f € B2(R%) and g is uniformly almost-periodic, then fg € B*>(R?).
Let f € L1 (R?). A number (f) is called the mean value of f if

loc

tim [ re/opeds=s) [ o 2-2)

e—0t

for any ¢ € Cg° (RY. If f e L? (RY) and I f1l g2 < oo, the existence of { f) is equivalent to the condition

loc

that, as ¢ — 0, f(x/e) — (f) weakly in L2 (R?), i.e., f(x/e) — (f) weakly in L>(B(0, R)) for

loc
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any R > 1. In this case, one has

(f)y= lim I
L—00 Jp(0,L)
It is known that if £, g € B>(R?) then fg has the mean value. Furthermore, under the equivalent relation
that f ~ g if || f — gllg2 = 0, the set B2(R?)/~ is a Hilbert space with the inner product defined by
(f. 8) =(fg).

A function f = (f) in Trig(R?; R?*™) is called potential if there exists g = (g%) € Trig(R?; R™)
such that f* = dg*/0x;. A function f = (f) in Trig([Rd; R4*m) is called solenoidal if af¥/9x; =0
for 1 <a <m. Let szot
polynomials with mean value zero in B?(R¢; R¢*™). Then

(resp. Vﬁ)l) denote the closure of potential (resp. solenoidal) trigonometric

B*RY; RY™) = V2, & Ve @ RT ™. (2-3)

By the Lax—Milgram theorem and the ellipticity condition (1-2), for any 1 < j <d and 1 < 8 < m there
exists a unique 1//}3 = (Ipf‘j’g ) € Vi such that

(@il wllor) = —(aLo?) forany ¢ = (9f) € V2, (2-4)
Let
al = (al) +(al vl (2-5)
and A = (&?jﬁ ). Then
wlel? <allerel < g (2-6)

for any & = (§7) € R?>™ where 1; depends only on d, m and . It is also known that A% = (A)*,
where A* denotes the adjoint of A, i.., A* = (b7 with b = a’}".
As the following theorem shows, the homogenized operator for £, is given by £p = — div(AV).

Theorem 2.1. Let Q be a bounded Lipschitz domain in R¢ and F € H~'(Q; R™). Let u, € H'(Q; R™) be
a weak solution of £, (us) = F in Q. Suppose u, — ug weakly in H'(Q; R™). Then A(x/e)Vu, — AVM()
weakly in L*(Q; RY™). Consequently, if f € H'/2(dQ; R™) and u, is the unique weak solution in
H'(Q; R™) of the Dirichlet problem $.(u;) = F in Q and u, = f on 0%2, then, as ¢ — 0, u, — ug
weakly in H'(Q; R™) and strongly in L>(2; R™), where ug is the unique weak solution in H'(Q; R™) of
the Dirichlet problem $o(ug) = F in Q and ug = f on 0S2.

Proof. See [Jikov et al. 1994] for the single equation case (m = 1). The proof for the case m > 1 is
exactly the same. (|

In Sections 3 and 4 we will use a compactness argument to establish the uniform Holder estimates
for local solutions of £, (u.) = div(f) + F. This requires us to work with a class of operators that are
obtained from $4 = — div(A(x)V) through translations and rotations of coordinates in R¢. Observe
that, if $4(u) = F and x = Oy + z for some rotation O = (0;;) and z € R?, then ¥ (v) = G, where
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v(y) =u(0y+2). B=®(y)) with b (y) = ajf (0y +2) 04 Oyj. and G(y) = F(Oy +z). Thus, for
each A = (ao”3 ) fixed, we shall consider the set of matrices

d={B= (bf‘ﬁ(y)) by’ (y) = agl (Oy +12) 04 Oy; for some rotation O = (0;j) and z € R'}. (2-7)

Note that, if B(y) = O'A(Oy +2)O € A, where O denotes the transpose of O, then the homogenized
matrix B equals O'AO.
The proof of Theorems 3.1 and 4.1 relies on the following extension of Theorem 2.1:

Theorem 2.2. Let Q2 be a bounded Lipschitz domain in RY and F € H-'(2; R™). Let uy € H (2; R™)
be a weak solution of — div(Ay(x/e¢)Vuy) = F in Q, where e; — 0 and Ay € A. Suppose that uy — u
weakly in H'(S; R™). Then u is a weak solution of — div(AVu) = F in Q, where A = O’AOfor some
rotation O in RY.

Proof. Suppose that Ay(y) = OéA(Ogy + z¢) O, for some rotations O, and z; € R?. By passing to
a subsequence we may assume that O, — O as £ — oo. Since A(y) is uniformly almost-periodic,
{A(y + z¢)}72, is precompact in Cp(R?%), the set of bounded continuous functions in R?. Thus, by
passing to a subsequence, we may also assume that A(y + z;) converges uniformly in R? to an almost-
penodlc matrix B(y) Consequently, we obtain Ay(y) — B(y) = O'B(0y) O uniformly in R“. Note that
B=0'BO=0'A0.

Now, let v, € H'(Q; R™) be the weak solution of the Dirichlet problem

—div(B(x/e))Vve)=F in Q and vy=u; on 9.

Using —diV(Ag(x/é‘g)V(ug — 'Ug)) = diV((Ag(X/S() — E(x/sg))va) in 2 and uy; — vy =0 on 092, we
may use the energy estimates to deduce that

lue — vell gy < CllAe — Bll= Vel 2y < CllAe — Bllz{lluell gy + 1 Fll 10 -

It follows that uy — v, — 0 in H'(Q; R™) as £ — oo.

Finally, since vy = vy — up + u¢ — u weakly in HY(Q; [R’") it follows from Theorem 2.1 that
B(.X/S()V'Ug —~ AVu weakly in H'(Q; R4*™)  where A= B — 0'AO. As a result, we obtain
—div(AVu) = F in . This completes the proof. 0

3. Uniform interior Holder estimates

The goal of this and the next section is to establish uniform interior and boundary Holder estimates
for solutions of &, (u.) = f + div(g). We will first use a compactness method to deal with the special
case & (ugz) =0. The results are then used to establish size and Holder estimates for fundamental solutions
and Green functions for &,. The general case follows from the estimates for fundamental solutions and
Green functions.
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Theorem 3.1. Let u, € H'(B(xo, 2r); R™) be a weak solution of div(A(x/¢)Vu,) = 0 in B(xo, 2r) for
some xo € R andr > 0. Let o € (0, 1). Then

e (x) — e ()| sca('x_y') (f |us|2) (3-1)
r B(x0,2r)

forany x,y € B(xg, r), where C, depends only on d, m, o and A (not on &, xy or r).

Theorem 3.1 follows from Theorem 2.2 by a three-step compactness argument, similar to the periodic
case in [Avellaneda and Lin 1987].

Lemma 3.2. Let 0 < o < 1. Then there exist constants ey > 0 and 6 € (O, le)’ depending only on o and A,

SLtCh that
’ MS ’ u&‘

whenever u, € Hl(B(y, 1); R™) is a weak solution of div(A(x/e)Vu.) =0 in B(y, 1) for some y € R4

and
][ lue* < 1.
B(y,1)

Proof. 1f div(A(x/e)Vu,) =0 in B(y, 1) and v(x) = u.(x 4+ y), then div(B(x/e)Vv) = 0 in B(0, 1),
where B(x) = A(x + ¢ 'y) € sl. As a result, it suffices to establish estimate (3-2) for y = 0 and for
solutions u, of div(B(x/¢)Vuy=0in B(0, 1), where B € .

To this end, we first note that, if w is a solution of a second-order elliptic system in B(O, %) with

2
<0% forany 0 <e < & (3-2)

constant coefficients satisfying the ellipticity condition (2-6), then

3(0,6) B(O,(;)
1

where Cy depends only on d, m and . We now choose 6 € (O, Z) so small that

2

< 0092][ lw|*> forany 0 <6 <1, (3-3)
B(0,1/2)

24CoH% < 6. (3-4)

We claim that the estimate (3-2) with y = 0 holds for this # and for some &y > 0, which depends only
on A, whenever u, is a weak solution of div(B(x/¢)Vu,) =0 in B(0, 1) for some B € «A.
Suppose this is not the case. Then there exist {e,} C Ry, {B¢} C o and {u,} C H'(B(0, 1); R™) such

that &, — 0,
div(Be(x/e¢)Vug) =0 in B(0, 1),

= =
B(0,1)

2

> 0% (3-6)
Since {u¢} is bounded in L>(B(0, 1); R™), by Cacciopoli’s inequality, {u¢} is bounded in H'(B(0, 1); R™).
By passing to a subsequence, we may assume u; — u weakly in H'(B(0, 1); R™) and in L(B(0, 1); R™).

and
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It follows from Theorem 2.2 that u is a solution of div(Au) =01in B(O, %), where A = O'AO for some
rotation O in R, Since the matrix O’ A O satisfies the ellipticity condition (2-6), estimate (3-3) holds
for w = u. However, since u, — u strongly in LZ(B (O, %), IR’"), we may deduce from (3-6) that

9205][ u—][ " SCOQZJ[ |u|252d0092][ ul, (3-7)
B(0,0) B(0,0) B(0,1/2) B(0,1)

where we have used (3-3) for the second inequality.

2

Finally, we note that the weak convergence of uy in L?(B(0, 1); R™) and the inequality in (3-5) give

][ lu> < 1.
B(0,1)

In view of (3-7), we obtain 6%° < 2902, which contradicts (3-4). This completes the proof. Il

Lemma 3.3. Fix0 <o < 1. Let &g and 6 be the constants given by Lemma 3.2. Letu, € H' (B(y, 1); R™)
be a weak solution of div(A(x/e)Vue) = 0 in B(y, 1) for some y € RY. Then, if 0 < & < go8*~! for

some k > 1,
% Ug — % Ug
B(y,0%) B(y,0%)

Proof. The lemma is proved by an induction argument on k, using Lemma 3.2 and the rescaling property
that, if £.(u.) =0 in B(y, 1) and v(x) = u.(0%x), then

2
< oo ][ e . (3-8)
B(y,1)

Lepc(v) =0 in BO ¥y, 07%).
See [Avellaneda and Lin 1987] for the periodic case. O

Proof of Theorem 3.1. By rescaling we may assume that » = 1. Suppose that u, € H'(B(y, 2); R™) and
div(A(x/e)Vug,) =0in B(y,2) for some y € R4. We show that

frenl™ B
B(z,t) B(z,t)

forany 0 <t < 6 and z € B(y, 1), where 6 € (0, ) is given by Lemma 3.2. The estimate (3-1) follows

2
<Ct* ][ |ug|? (3-9)
B(z,1)

from (3-9) by Campanato’s characterization of Holder spaces.

With Lemma 3.3 at our disposal, the proof of (3-9) follows the same line of argument as in the periodic
case. We refer the reader to [Avellaneda and Lin 1987] for details. We point out that the classical local
Holder estimates for solutions of elliptic systems in divergence form with continuous coefficients are
needed to handle the case ¢ > 0ggand 0 <t <6, as well asthe case 0 <& <fgpand 0 <t < g/gyg. [

It follows from (3-1) and Cacciopoli’s inequality that

o
][ Vue > < C, (5) ][ IVue> forany 0<7 <r (3-10)
B(y.1) "7 JBGy.r

if div(A(x/e)Vu,) =0in B(y, r). Since A* satisfies the same ellipticity and almost periodicity conditions
as A, estimate (3-16) also holds for solutions of div(A*(x/e)Vu,) =0 in B(y, r). As a result, one may
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construct an m x m matrix of fundamental solutions I'.(x, y) = (F?ﬁ (x, y)) such that, for each y € R4,
V,Ie(x, y) is locally integrable and

— [ aP(xye)-2(r? 9% ;
0= [ atf /o e S ax G-11)

for any ¢ = (¢%) € C(l) (R4, R™) (see, e.g., [Hofmann and Kim 2007]). Moreover, if d > 3, the matrix
s (x, y) satisfies

ITe(x, y)| < Clx —y[*™ (3-12)
for any x, y € R? with x # y, and
Cylh|®
|F5(X+h, )’) _FS(X’ y)| =< La
|x _ y|d—2+a (3_]3)
Co|h|”
ITe(x,y+h)—Te(x, )| < m,

where x, y, h € R? and 0 < |h| < %lx — y|. Since £ (Ts(x,-)) =01in R? \ {x}, using Cacciopoli’s
inequality and (3-12)—(3-13) we obtain

1
2 C
|V, <x,y>|2dy> < (3-14)
<][R§|y_x52R e Rd-1

and

1
I Clx—z|°
Vy{Te(x, ) = Te(z, y) 2d> < (3-15)
(,%RSD;_XOSQRl ){ & y € y }| y Rd_1+a

where x, z € B(xg, r) and R > 2r.
Theorem 3.4. Let u, € H'(B(xq, 2r); R™) be a weak solution of
—div(A(x/e)Vu,) = f +div(g) in 2B = B(xy, 2r).

Let 0 <o < 1. Then, for any x, 7z € B = B(xg, 1),

1 1 1
2 2 2
|ug<x>—ug<z)|sax—zr’(r—”(][ |ua|2) + sup t“(f |f|2> + sup tl—”(][ |g|2> )
2B YEB B(y.1) yeB B(y.1)

O<t<r O<t<r
(3-16)

where C depends only on p, o and A. In particular,

1 1 1
2 2 2
||u£||Loo<B)sc(][ |u£|2) +Cr° sup r“(][ |f|2) +Cr? sup rl‘“(][ |g|2) :
2B yeB B(y,1) YeB B(y,1)
O<t<r O<t<r
(3-17)

where C depends only on p, o and A.

Proof. We first note that the L> estimate (3-17) follows easily from (3-16). To see (3-16), we assume d > 3;
the case d = 2 follows from the case d = 3 by adding a dummy variable (the method of ascending). We
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choose a cut-off function ¢ € C3°(B(xo, 2r)) such that 0 < ¢ < 1, ¢ = L in B(xo, 3r), and |Vg| < Cr~1.
Since
Le(ue) = fo+div(gp) —gVe — A(x/e)Vu, - Vo — V{A(x/e)u - Vi,

we obtain that, for x € B(xq, r),
ue () = /R T DO dy - /R VT, 80RO dy
- /R T E0IVe ) dy - /R Tee, DAG/E) V() Vo) dy
+ /R VT DA s ()T () dy. (3-18)
It follows that, for any x, z € B(xo, ),
e () — 6 2)] SCfZB oo, y) = Tez I F )] dy
+sz3 IV4{Ta (e, y) = Tele Mg dy
+C/ZBIFe(x,y)—Fs(z,y)llg(y)llvfp(y)ldy
+c[23|rs<x,y>—m<z, DIVt ()] Vg () dy
+C/ZBIVyFs(x,y)—Vyl“s(z,y)llus(y)llvw(y)ldy, (3-19)

where 2B = B(xg, 2r). Since |V¢| =0 in B(xo, %r) and x, z € B(xg, r), the last three terms in the
right-hand side of (3-19) may be handled easily, using estimate (3-13), Cacciopoli’s inequality and (3-15).
They are bounded by

(T () we (L) (1))

for any o € (0, 1).
Next, we use (3-12) and (3-13) to bound the first term in the right-hand side of (3-19) by

C/ | f (") dy +Cf Lf(»)ldy +Cso|/ _fldy (3-20)
B B 2

(x49) X = ¥]972 @55 12— y1472 B\BGx.ds) 1X — y[T2Hon

where s = |x — z| and oy € (o, 1). By decomposing B(x, 4s) as a union of sets {y : |y — x| ~ 2/s}, it is
not hard to verify that the first term in (3-20) is bounded by

1

2

Cs® sup tz_”(][ |f|2) .
yEB B(y.1)

O<t<r

The other two terms in (3-20) may be handled in a similar manner.
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Finally, the second term in the right-hand side of (3-19) is bounded by

/ [VyTe(x, g dy+/ IVyLe(z, g dy
B(x,4s) B(z,5s)

+/ IVy{Le(x, y) = Te(z, Mg dy. (3-21)
2B\ B(x,4s)

By decomposing 2B \ B(x, 4s) as a union of sets {y : |y — x| ~ 2/s} and using Holder’s inequality
and (3-15) (with o replaced by some o] € (o, 1)), we may bound the third term in (3-21) by

1

3

Cs’ sup tl"<][ |g|2) .
yEB B(y,t)

O<t<r

The other two terms in (3-21) may be handled in a similar manner. This completes the proof. U

Remark 3.5. Suppose that —div(A(x/e)Vu,) = f in 2B and f € L?(2B; R™) for some p > 2, where
2B = B(xgp, 2r). Assume d > 3. Using (3-18) and Cacciopoli’s inequality, we may obtain that

|ug(x)|§C/ %dwrc(][ |u£|2)2+Cr2<][ |f|2>2 (3-22)
2B X — Y 2B 2B

for any x € B = B(xy, r). By the fractional integral estimates, this gives

1 1

g 2)\? 2
(][B|ua|q> §C<]£B |Ms|) +Cr <]€B|f|p) ; (3-23)

where 0 < 1/p—1/q <2/d.

=

4. Uniform boundary Holder estimates and proof of Theorem 1.4
For xg € 02 and 0 < r < ro = diam(2), define
Qr(x9) = B(x0, )N and A,(x9) = B(xg,r)NI. 4-1)

Theorem 4.1. Let Q be a bounded C'" domain in R for some n > 0. Let u, € H' (22, (x0); R™) be a
weak solution of L. (u.) =0 in Q,(x¢) and u, = 0 on A, (xg) for some xy € 02 and 0 < r < rq. Then, for
any 0 <o <landx,y € 2,/2(xp),

1

|ua(x)—ua(y)|50("‘_y'> (][ |ug|2) , (4-2)
r Q, (x0)

where C depends only on o, A and 2.

Let ¢ : R~ — R be a C!+" function such that

¢0)=0, V¢o(0)=0 and [Vo|conga-1)=Mo. (4-3)
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Let
D(r)=D(r,¢) ={(x',x) eR*: |x| <r and ¢ (x') < x4 < ¢(x)+ 10(Mo + Dr},
I =10¢)={(,¢x) eR: x| <r}.

By translation and rotation, Theorem 4.1 may be reduced to the following:

(4-4)

Theorem 4.2. Let u, € H' (D(r); R™) be a weak solution of div(B(x/€)Vus) =0 in D(r) and u, =0
on I(r) for somer > 0and B € A. Then, forany 0 <o <l and x,y € D(r/2),

|ug<x>—us(y)|sc('x_y') (][ |ug|2)2, (4-5)
r D,

where C depends only on o, A and (n, My) in (4-3).

To prove Theorem 4.2, we need a homogenization result for a sequence of matrices in the class ${ on a
sequence of domains.

Lemma 4.3. Let { By} be a sequence of matrices in . Let {¢} be a sequence of C'" functions satisfy-
ing (4-3). Suppose that div(By(x/e;)Vuy) =0in D(r, ¢¢) and uy =0 on I (r, ¢;) for some r > 0, where
e¢ = 0 and |lugll g1 (p(r.g,)) < C. Then there exist subsequences of {¢¢} and {u}, which we still denote
by {¢¢} and {u,}, respectively, a function ¢ satisfying (4-3) with u € H' (D(r, ¢); R™), and a constant
matrix B , such that

{qﬁg—)q& in C'(|x'| <r), (4-6)
ue(x', xg — pe(x")) = u(x', x4 — p(x))  weakly in H'(D(r, 0); R™),
and

diV(éVu) =0 in D(r, ¢) and u=0 on I(r, o). 4-7)

Moreover, the matrix B, which is given by O' Ao for some rotation O in R?, satisfies the ellipticity
condition (2-6).

Proof. Since |V conma-1y < Mo and |luell g1 (perg,)) < C, (4-6) follows by passing to subsequences.
Suppose that By(y) = OEA(Ogy + z4) O, for some rotation O, and z; € R¥. By passing to a subse-
quence, we may assume that O, — O. Since uy — u weakly in H'(Q; R™) for any Q € D(r, ¢), it
follows from Theorem 2.2 that div(Bu) = 0 in D(r, ¢), where B = 0'AO. Finally, since v, (x', x4) =
ue(x', xg + e (x)) = v(x’, x4 + d(x")) weakly in H'(D(r, 0)) and v, =0 on I(r, 0), we may conclude
that v =0on I(r, 0). Hence, u =0 on I(r, ¢). O

Proof of Theorem 4.2. With Lemma 4.3 at our disposal, Theorem 4.2 follows by the three-step compactness
argument, as in the periodic case. We refer the reader to [Avellaneda and Lin 1987] for details. O

With interior and boundary Holder estimates in Theorems 3.1 and 4.1, one may construct an m X m matrix
G:(x,y)= (Ggﬁ (x, y)) of Green functions for &£, for a bounded C L. domain 2. Moreover, if d > 3,

|Ge(x, y)| < Clx — y[*¢ (4-8)
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for any x, y € Q and
C(7|X—Z|U
1Ge(x, y) = Gelz, y)|§m (4-9)

for any x, y, z € Q with |x —z| < %|x—y| and any 0 < o < 1. Since G.(-,y) =0 and G.(y,-) =0

on 02, one also has

C3())" (B()*
1Ge(x, y)| < |x( _“‘y)li,_;fj ”

(4-10)
for any x, y € Q and any 0 < o1, 0o < 1, where §(x) = dist(x, d2) and C depends only on A, 2, o]
and o5.

Theorem 4.4. Let Q be a bounded C'"" domain in R¢ for some n > 0. Suppose that ¥.(u;) = F in Q
and u, =0 o0n 0Q2. Then

xeQ
O<r<ry

el ey < Ca sup P~ ][ IF| (4-11)
Q(x,r)

forany 0 < a < 1, where ro = diam(2) and Cy depends only on A, Q2 and «.

Proof. Since
ug(x) :/ Ge(x,y)F(y)dy,
Q
it follows that, for any x, z € €,

e (x) —ue (2)] < /Q |Ge(x, y) = Ge(z, MIF(y)|dy.

Let t = |x — z| and write Q = [Q \ B(x,41)] U Q(x,4t). We use (4-8) to estimate the integral of
|Ge(x,y) —Ge(z, y)||F(y)| over 2(x, 4¢). This gives

F(y)ld F(Wld
/ |G8(X,y)—Gs(Z,y)HF(y)IdySC/ 1EDIdy / |F()ldy
Q(x,41) o

Qx4 X — 472 @sn 12— yld=2
<Ct* sup rz_“][ |F|.
xeQ Q(x,r)
O<r<ry

For the integral over 2\ B(x, 4¢), we choose B € («, 1) and use (4-9) to obtain

|F(y)ldy _
[ iGwy-Gaepironay e [ OS2 p
Q\B(x,41) Q\B(x,41) |X — Y xeQ Qx,r)
O<r<rg
Thus we have proved that |u(x) — u(z)|/|]x — z|* is bounded by the right-hand side of (4-11). The
remaining estimate for ||u ||z~ (@) is similar. O

Theorem 4.5. Let Q be a bounded C*" domain in R4 for some n > 0. Suppose that £, (u.) = div(f)
in Qand u, =0o0n 0. Then

1

2
lutell ey < Coe sup rl‘“( ][ |f|2> (4-12)
Q(x,r)

xeR
O<r<rg
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forany 0 < a < 1, where ro = diam(2) and Cy depends only on A, Q and «.
Proof. The proof is similar to that of Theorem 4.4, using

e (x) — ue (2)] §/Q|Vy(Gs(x,y)—Gs(Z, | Lf )l dy.

The lack of pointwise estimates for VG, (x, y) is overcome by using the following estimates:

C
/ 194G (e, )Py < S 1Ge(x. y)Pdy,
r<ly—x|<2r = Jrp2<ly—x|<3r

(4-13)

C
f IV (Ge(x, y) — Gel(z, y) P dy < |Ge(x, y) — Ge(z, y)* dy,
R<|y—x|<2R

R? Jrp2<iy-xI<3R

where |x —z| < A—Hx — y|. Estimate (4-13) follows from Cacciopoli’s inequality. We omit the rest of the
proof. O

Theorem 4.6. Let Q be a bounded C'" domain in R? for some 1 > 0. Suppose that £, (u.) =0 in Q and
us =g on IQ2. Then

luellcaggy < Callgllceo (4-14)
forany 0 < a < 1, where C,, depends only on A, Q2 and «.

Proof. Without loss of generality we may assume that ||g||c«aq) = 1. Let v be the harmonic function in
such that v € C(Q2) and v = g on 9. It is well known that Ivllca@) < Callgllce @) = Co, Where Cq
depends only on « and 2. By interior estimates for harmonic functions, one also has

IVu(x)] < Ca(8(x))* (4-15)
for any x € Q. Since . (4, —v) = —F.(v) in 2 and u, — v = 0 on 92, it follows that
0.0 =00 = = [ 9,60 )AG/) VU0 dy,
Q
This, together with (4-15), gives

lue(x) —v(x)| < Ca/ IVyGe(x, M) (SN dy. (4-16)
Q
We will show that

/ IVyGe(x, PG dy < Co(8(x)*  forany x € Q. (4-17)
Q
Assume (4-17) for a moment. Then

lus(x) —v(x)| < Cu(8(x))* forany x € Q. (4-18)

It follows that |lug||z@) < [[vllz=@) +C < C. Let x, y € Q. To show |us(x) —us(y)| < Clx — y|¥, we
consider three cases: (1) |x — y| < %5()6); Q) |x—yl< %S(y); B lx—yl= max(%z?(x), }‘5(y)). In the
first case, since ¥ (u.) = 0 in 2, we may use the interior Holder estimates in Theorem 3.1 to obtain

lug(x) —ue ()| < Colx — y|* uellL=Bex.6()2) < Calx —y|%.
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The second case is handled in the same manner. For the third case we use (4-18) and Holder estimates
for v to see that

e (x) —ue (V)] = ue(x) — v+ [v(x) —vW) |+ [v(y) —ue (V)]
SCE@N*+Clx —y[*+CE(y)*
< Cotlx - Y|a-

It remains to prove (4-17). To this end we fix x € Q and let r = §(x)/2. We first note that

f IVyGe(x, B dy < Cr“—lf IVyGe(x, y)ldy < Cr®, (4-19)
B(x,r) B(x,r)

where the last inequality follows from the first estimate in (4-13) by decomposing B(x, r) \ {0} as
U?O:O{B(x, 277r)\ B(x,27/71r)}. To estimate the integral on 2\ B(x, r), we observe that, if Q is a
cube in R? with the property that 3Q C Q\ {x} and £(Q) ~ dist(Q, ), then

1

/Q|vng(x,y>|<6<y>>°‘—1 dy < C(E(Q))“_1|Q|<][QIVyGe(x,y)lzdy)z

< C(E(Q))“leI<]£ Ge(x, y>|2dy)2

0

1

< Cr ) 2| e L @20
- o I — yPa—Tare) )

where o1, as € (0, 1). We remark that Cacciopoli’s inequality was used for the second inequality above,
while the estimate (4-10) was used for the third. Since 3Q C Q\ {x}, we see that |[x — y| ~ |x — z| for
any y, z € 2Q. As a result, it follows from (4-20) that

(8(y))*tea—?
|x —y |d—2+a1 +az

fQIVyGa(x, NI dy < Cr"”/Q (4-21)

By decomposing 2\ B(x, r) as a nonoverlapping union of cubes Q with the said property (a Whitney-type
decomposition of €2), we obtain

b} atoy—2
/ V3G, DI () dy < Cr / ) iy
Q\B(x,r)

o (I =yl + )i et
yz+a2—2dy

<Cr*® .
re (Ir = yal+r+ [y hi-rete

(4-22)

Finally, a direct computation shows that the integral on the right-hand side of (4-22) is bounded by Cr®~!
provided that o > o and o > 1 — . This completes the proof. U

Proof of Theorem 1.4. This follows from Theorems 4.4, 4.5 and 4.6 by writing u, = u” +u® +u®,

where u{", u® and u® satisfy the conditions in Theorems 4.4, 4.5 and 4.6, respectively. O
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5. Construction of approximate correctors

In this section we construct the approximate correctors x7 = ( X? D= X?’sj) and obtain some preliminary
estimates.

Proposition 5.1. Let f € L2 (RY; R™) and g = (g1, ..., ga) € L (RY; R™™). Assume that

loc loc

sup/ (£ +1gl*) < oc.
B(x,1)

xeRd

Then, for T > 0, there exists a unique u € HILC(Rd; R™) such that

—div(A(X)Vu) + T 2u = f +div(g) in R? (5-1)
and
sup/ (Vul® + |u)?) < co. (5-2)
xeRd J B(x,1)

Moreover, the solution u satisfies the estimate

sup][ (VuP+T2u) < C sup][ UgP+T21F D). (5-3)
B(x,T) B(x,T)

xeRd xeRd

where C depends only on d, m and .

Proof. By rescaling we may assume that 7 = 1. The proof of the existence and estimate (5-3)
may be found in [Pozhidaev and Yurinskii 1989]. It uses the fact that, for f € L*(R¢; R™) and
g = (g1,...,84) € L*(RY; R™™) with compact support, there exists a constant A > 0, depending
only on d, m and p, such that the solution of (5-1) in H L(RY; R™) satisfies

fd (VU + ) dx < C/de“'(lf|2+ 2 dx.
R R

For the uniqueness, assume that u € HILC(R"; R™) satisfies (5-2) and — div(A(x)Vu) +u = 0 in R?.
By Cacciopoli’s inequality,

C
R N N
B(O,R) B(O,R) R* JBo.2r)

for any R > 1. It follows that

C
f ul> < — |u|?
B(O,R) R [ (0,24 R)

for any R > 1. However, the condition (5-2) implies that f B(0.29R) |u|2 < C,R. Consequently, we obtain
S50, 141> < C,R™ for any R > 1 and thus u =0 in R. O
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Remark 5.2. The solution u of (5-1), given by Proposition 5.1, in fact satisfies
1 1

1
P 7 . \2
sup [Vul? ) <C sup lgl” )] +C sup T2 (5-4)
xeRd B(x,T) xeRd B(x,T) xeR4 B(x,T)

1 1

q 2
sup(][ T‘qlulq) <c sup(][ |g|”> e sup(f T2|f|2) (5-5)
xeRd B(x,T) xeRd B(x,T) xeRd B(x,T)

for some p > 2, depending only on d, m and p, where 1/g =1/p —1/d for d > 3. If d = 2, the left-hand
side of (5-5) should be replaced by T u| oo

To see (5-4), one uses the weak reverse Holder estimate: if u is a weak solution of — div(A(x)u) =
f +div(g) in B, = B(xg, r), then

(f ) <6 ) we(f ) ver(f )

for some p > 2, depending only on d, m and u (see, e.g., [Giaquinta 1983]). Estimate (5-5) follows
from (5-4) by Sobolev imbedding.

=

—_
—_

LetPﬁ(x)—xeﬁ where 1 < j <d, 1 <B <m,andef =(0,...,0,1,0,...,0) with 1 in the
B-th position. For T > 0 the approximate corrector is defined as xr = (XT J) where for each1 <j<d
and1 <8 <m,u —XT, (XT],---,XT'S) is the weak solution of

—div(A(X)Vu)+ T %u = div(A(x)VPf) in R?, (5-6)

given by Proposition 5.1. It follows from (5-3) that

sup ][ (Vxr?+T2xr1) < C, (5-7)
B(x,T)

xeRd

where C depends only on d, m and . Clearly, this gives

sup ][ (Vxr?+T2xr1) < C, (5-8)
B(x,L)

xeR?
L>T

where C depends only on d, m and .

Lemma 5.3. Let x, v, z € RY. Then

1

2
(][ IVxr(+y) = Vxr( +Z)|2df> = CllAC-+y) = A(- + Dl Lo ra),
B(x,T)

1

(5-9)

T—l(][ |xT(r+y)—xT<r+z)|2dz) <CIAC-+Y) — AC-+ D)l Lo ey
B(x,T)

where C depends only on d, m and .
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Proof. Fix y,z € R%and 1 < j <d, 1 < B <m. Letu(t) = xf ;(t +y) and v(t) = x} ,(t +2). Then
w = u — v 18 a solution of

—div(A(t +y)Vw) + T 2w = div([A( +y) — A(t + z)]VPf) +div([A(t +y) — A(t +2)]Vv).

In view of Proposition 5.1, we obtain
| avu et
B(x,T)

< C sup ][ |A(t+y)—A(t+Z)|2dt+C sup ][ |A(t+y)—A(t+z)|2|Vv|2dt
B(x,T) B(x,T)

xeRd xeRd

<CIAC+Y) = AC+DFwe +CIACG+Y) — AC+2) 17 sup][ Vol
B(x,T)

xeRd

<CIAC-+y) = A+ D)3,

where we have used (5-7) in the last inequality. This completes the proof. 0
Remark 5.4. For f € L} (R?), define
%
I.f I = lim sup sup(][ |f|2) : (5-10)
L—oo xeRd B(x,L)

Note that, by (5-7),
IVxrllw2+ T xrliw: <C, (5-11)

where C depends only on d, m and p. Moreover, by Lemma 5.3, for any 7 € R?,
IVxr(-4+7) = Vxr(Dllw2 + T xr -+ 1) = xr(Dllw2 < CIAC+ 1) = AC) =, (5-12)
Since A is uniformly almost-periodic, for any ¢ > 0, the set
(T €R:AC+D) = AC) | L) < €}

is relatively dense in R?. It follows that, for any & > 0, the set of 7 for which the left-hand side of (5-12) is
less than ¢ is also relatively dense in R4, By [Besicovitch and Bohr 1931], this implies that V x7 and xr
are limits of sequences of trigonometric polynomials with respect to the seminorm || - [|yy2 in (5-10). In
particular, Vxr, x7 € B*(R?) for any 7 > 0.

Lemma 5.5. Letuy = Xﬁ’jfor someT >0,1<j<dand1 < <m. Then

du’. v* ov”
ay ¥ -2 af
oy T \4T )= —(a®P 5-13
<alk e 8x,-> (ur -v) <a,j ox; >, ( )

where v = (v*) € H,} (RY; R™) and v*, Vv* € B*(R?).

Proof. For any ¢ = (¢%) € H'(R?; R™) with compact support, we have

ul. 3¢~ 1 ok
ay 9¥T af

c . + . 1 . 5-14
/Rd ik ox, ox; T2 /Rd ur - ¢ /Rd “ij dx; ( )
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Let v = (v*) € H! (R?; R™). Suppose that v* € B*(R?) and Vv* € B*(R?). Choose ¢ (x) = p(ex)v(x)
in (5-14), where ¢ € Cgo([R{d). The desired result follows by a simple change of variables x +— x /¢
in (5-14), multiplying both sides of the equation by &¢, and finally letting £ — 0. 0

Letting v be a constant in (5-13), we see that
(x7 ;) =0. (5-15)
By taking v = Xﬁ,j, we obtain
(AVXR Vb )+ T 25k 1P = —(A* V), (5-16)

where A* denotes the adjoint of A. This, in particular, implies that

(VxrP)+ Ty <€
where C depends only on d, m and .
Lemma 5.6. Let = (Iﬂ%ﬂ) be defined by (2-4). Then, as T — oo,

—(XTﬁ)A vl weakly in B*(RY). (5-17)

Proof Fix 1< j<dand1<p <m. Let ! = (Wﬂ) € B2(R; R%™) be the weak limit in B2(R?)

we see that wﬂ e V2

ot Moreover,

of a subsequence ng’ ., where Ty — oo. Since VXT] IS Vpot,

since T2(|xr|?) < C, it follows by letting T — oo in (5-13) that

~ 581)“ 581)
(it o) = 35
1

for any v = (v*) € Trlg([Rd R™). This implies that wﬂ is a solution of (2-4). By the uniqueness of the
solution, we obtain 1,0’3 wﬁ and hence (5-17). U

Theorem 5.7. As T — oo, T~ (| xr|*) — O

Proof. Note that
v = Voxr ) = (a7 (w7 = 50 (vif = =)
= @i v — () e i ) = T P,

where we have used equations (2-4) and (5-13). In view of Lemma 5.6, this implies that, as T — oo,
T=2(|xr|*) — 0 and

1Y = Vxrllp — 0. (5-18)

This concludes the proof. O
Remark 5.8. For T > 0, let

affy = i) +{a S 0d)) (5-19)
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be the approximate homogenized coefficients. Then
sab _ soB p_ 9 . vp
atf =it = (i (v = 75 0d))| = v = Vr e, (5-20)

6. Estimates of approximate correctors

In this section we will establish sharp estimates for approximate correctors yr. The proof relies on the
uniform L*° and Holder estimates obtained in Section 3 for solutions of £, (u.) = f + div(g).

Lemma 6.1. For T > 1,
X7l pooqray < CT, (6-1)

where C is independent of T. Moreover, forany 0 <o < land |x —y| <T,
X1 () = xr (M < CoT' 7 |x — y/°, (6-2)
where C, depends only on o and A.

Proof. We consider the case d > 3. The 2-dimensional case follows by the method of ascending.
Let 1 <j<dand1<p <m.Fix z € R? and consider the function

u(x) = xp () + Pl (x —2). (6-3)
It follows from (5-7) that
1
2
<][ |u|2> <CT. (6-4)
B(z,4T)
Since
div(A)Vu) =Ty}, in R, (6-5)

we may apply the estimate (3-23) repeatedly to show that

1
)4
(f W) <c,T 6-6)
B(z,2T)

for any 2 < p < oo, where C,, depends only on p and A. This, together with (3-17), gives
lull LB,y < CT.
Hence, | xng’ j (z)| < CT for any z € R?. Finally, (6-2) follows from (6-1) and the Holder estimate (3-16). [J

Lemma 6.2. Let 01,00 € (0,1) and 2 < p < 00. Then, forany 1 <r <T,

1
)4
sup vxrl?) <cre (Z) 6-7)
B(x,r) r

xeRd

where C depends only on p, o1, o5 and A.
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Proof. Let u be the same as in the proof of Lemma 6.1. By Cacciopoli’s inequality,

][ |W|Zscﬂ][ = @ P + CrIT 2y
B(z,r) B(z,2r)

where 0 < r < T. In view of (6-1) and (6-2), this gives

1
2 T\°
sup<][ |VXT|2> <Co(= (6-8)
B(z,r) <r)

zeRd

forany o € (0, 1) and 0 < » < T. Since A is uniformly continuous in R?, by the local W7 estimates for
elliptic systems in divergence form, it follows from (6-5) that

1
P 2 z -2
Vul?') =Cp IVul" | +CT =l xrllL=
B(z,1) B(z,2)

for any z € R? and 2 < p < oo, where C, depends only on p and A. This, together with (6-8), yields

1

D
SUP(][ |VXTIP> <CpoT?
zeR4 B(z,1)

for any o € (0, 1) and p € (2, 00). Consequently, forany 1 <r < T and o € (0, 1),

1

P
sup (][ IVXTI") <CpoT°. (6-9)
zeR4 B(z,r)

The desired estimate (6-7) now follows from (6-8) and (6-9) by a simple interpolation of L” norms. [J

—_

Theorem 6.3. Let T > 1. The approximate corrector xr is uniformly almost-periodic in RY. Moreover,
foranyy,z € R4,

IxrC-+3) = xr (- +Dllpemsy < CTIAC +y) = AC- +2) [ Lo Re). (6-10)
where C is independent of T, y and z.

Proof. We assume d > 3. The case d = 2 follows from the case d = 3 by the method of ascending. Fix
y,zeRland1<j<d, 1<B<m.Let

u@)=xﬁﬂX+y)—x5ﬂX+z)
Note that

—div(A(x+y)Vu) = —T‘2u+div((A(x+y)—A(x+z))VPJ’.8)+div((A(x+y)—A(x+z))Vv), (6-11)

where v(x) = Xﬁ, j(x +z). Let B = B(xg, T). As in the proof of Theorem 3.4, we choose a cut-off
function ¢ € C§°(B(xo, 3T)) such that ¢ = 1 in B(xo, 3T and |[Vg| < CT~!. Using the representation
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formula by fundamental solutions and (6-11), we obtain, for any x € B,
ol =12 [P @il dr+CIAC+ ) = AC+ Dl [ 19 w0
2B 2B

+ClIAC-+y) —AC-+ 2|z /2 VoIV (I (x, e (1))| dt
B

+CT(][ |W|2>2 +C<][ |u|2)2, (6-12)
2B 2B

where we have used I'V(x,t) = I'(x + y, t + y) to denote the matrix of fundamental solutions for the
operator — div(A(-+y)V) in R4, By Lemma 5.3, the last two terms in the right-hand side of (6-12) are
bounded by the right-hand side of (6-10). Using the size estimate (3-12) and Cacciopoli’s inequality, it is
also not hard to see that the second term in the right-hand side of (6-12) is bounded by the right-hand
side of (6-10).

To treat the third term in the right-hand side of (6-12), we note that

/ZBIVU(I)I V(T (x, ()| dt

=C Z(J[ IVv(t)|2c1z>2 <][ |V, (I (x, t)(p)lzdt)z(Z_gT)d
=0 [t—x|~2—tT [t—x|~2-tT

oo

<cy @Yy .-a'n.erny
=0

<CT,

where o € (0, 1) and we have used (6-8) to estimate the integral involving [Vv(2)|? for the second
inequality. As a result, we have proved that, for any x € B,

|u(?)]

B |x —1]d2

Iu(JC)IECT_Z/2 dt+CT|A(-+y) = A(-+2) | 1=. (6-13)

By the fractional integral estimates, this implies that

1
(][|u|‘1>qsc<][ W) L CTIAG+y) — A+ 211,
B 2B

where l < p<g <ooand 1/p—1/g <2/d. Since

==

1
2
(f |u|2) <CTIAC+y) = AC+D)
2B
by Lemma 5.3, a simple iteration argument shows that
lullLosy < CTIAC-+y) — A(-+2) [l Lo>.

This completes the proof. O
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Remark 6.4. Let u(x) = xr(x +y) — xr(x + 2), as in the proof of Theorem 6.3. Then

(t) —u(s)| < C(”;TS') TIAG+) = AC-+ D)l 6-14)

forany o € (0, 1) and ¢, s € R4, where C, depends only on o and A. This follows from (6-11), (6-10)
and (3-16). By Cacciopoli’s inequality and (6-14), we may deduce that

1

sup (][ |W|2>2 < Co () 1AC+9) = AC+D)ue (6-15)
B(x,r) r

xeRd

for any o € (0, 1).
Theorem 6.5. Let T > 1. Then
—1 R\°
T xr s < Co(p(R)+ (7)) (6-16)

forany R > 0and o € (0, 1), where C, depends only on o and A. In particular, T~ X7l oo qray = O
as T — oo.

Proof. Let y, z € R?. Suppose |z| < R. Then
X1 () = X1 (O] < X7 () — X1 @1+ X7 @) — X7 (0)| < CTJA(-+y) = AC- +2) || g iy + Co T' R,

where we have used Theorem 6.3 and Lemma 6.1. It follows that

_ RY°
sup 77" x7.(3») = x7(0)] = Co(R)+Co ) (6-17)
yeRd T
for any R > 0.
Finally, we observe that
|x7(0)] < ][ (XT(y)_XT(O))dY‘"i‘ ][ xr(y)dy| < sup [xr(y)—xr(0)[+ ][ XT()’)d)"~
B(0,L) B(0,L) yeRd B(0,L)
Since (x7) = 0, we may let L — oo in the estimate above to obtain
|x7(0)] < sup |x7(y) — xr(0)].
yeR4
This, together with (6-17), yields the estimate (6-16). U
For T > 1 and o > 0, define
. R\°
O, (T)= inf (p(R) n (—) ) (6-18)
0<R<T T

Note that ®,(T') is a decreasing and continuous function of 7 and ®, (7)) — 0 as T — oo. It follows
from Theorem 6.5 that

T x|l Looey < Co®g (T) forany T > 1, (6-19)
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where o € (0, 1). By taking R = T“ for some « € (0, 1) in (6-18), we see that

O, (T) < p(T*) +T71~, (6-20)

This, in particular, implies that

o0 o0
O4
[ 'O(r)dr<ooﬁ / (r)dr<oo.
1 1

r r

Theorem 6.6. Let T > 1. Then

(W = Vi) < Cy /OO 90 4 6-21)

T2 T
for o € (0, 1), where C, depends only on o and A.

Proof. Fix 1< j<dand1<B<m. Letu= Xﬁ’j’ V= XfT,j and w = u — v. It follows from Lemma 5.5
that |
m(v'ﬁé’) - ﬁ(“"/))

for any ¢ € H, (R?, R™) with ¢, V¢ € B*(R?). By taking ¢ = w, we obtain

(AVw - Vo) =

(IVwl?) < CT2((lu?) + (Jv]*) < Co (05 (T) + O, (2T))?, (6-22)
where we have used (6-19) for the second inequality. Hence, we have proved that
T
e
o
T2 T
where we have used the fact that ®, (r) is decreasing. Consequently,
et 00
®
SV = V) =€, [~ 22 (©-23)
=0 T2 7

Recall that, by (5-18), (| — Vxr|?) = 0 as T — oo. The estimate (6-21) now follows from (6-23). O
Remark 6.7. Suppose that there exist C > 0 and 7 > 0 such that
p(R) < % for R > 1. (6-24)
By taking R = 7°/("*%) in (6-16), we obtain
T MIxrlle < CO(T) < CT /7).
Since o € (0, 1) is arbitrary, this shows that
T xrllpe < CsT 7/ HDH (6-25)

for any é € (0, 1), where Cs depends only on § and A. Under the condition (6-24), by Theorem 6.6, we
also obtain
(I — V)2 < s~V forany § € (0, 1). (6-26)
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7. Convergence rates

In this section we give the proof of Theorems 1.1 and 1.2.

Lemma 7.1. Let h € L?

loc

(RY) and T > 0. Suppose that there exists o € (0, 1) such that

) % T 1—o
sup ][ |A| < <—> forany 0 <r <T. (7-1)
xeRd \ JB(x.r) r
Letu € Hlf)c([Rd) be the solution of
—Au+T2u=h inR? (7-2)
given by Proposition 5.1. Then
lullz~ < CT?,  ||Vull1~ < CT, (7-3)
and
IVu(x) = Vu(y)| < CT'"|x = y|°  forany x,y e R, (7-4)

where C depends only on d and o. Furthermore, u € H%C(Rd) and

1

2
sup (f |V2u|2) <C. (7-5)
xeRd B(x,T)

Proof. By rescaling we may assume 7 = 1. It follows from Proposition 5.1 and (7-1) that

1 1

2 2
sup (][ |u|2> <C and sup (][ |Vu|2> <C, (7-6)
xeR4 B(x,1) xeR4 B(x,1)

where C depends only on d. Fix xg € R? and let ¢ € C° (B(xo, 2)) be a cut-off function such that ¢ =1
in B(xg, 1). By representing u¢ as an integral and using the fundamental solution for —A, the desired
estimates follow from (7-1) by a standard procedure. We leave the details to the reader. (|

Under additional almost periodicity conditions on /, the next lemma gives much sharper estimates for
the solution u of (7-2).

Lemma 7.2. Leth € LIZOC(R‘I) and T > 0. Suppose that there exists o € (0, 1) such that

1

2 1—0o
sup(][ |h|2) SC0<Z> ,
xeRd B(x,r) r

) % T\1—o
sup(][ (e + ) = h(t+2)| dr) <Co(5) HACH) —AC+D)x
B(x.r) r

xeRd

(7-7)

foranyO <r <T andy,z € R Letu € H' (R?) be the solution of (1-2), given by Proposition 5.1. Then

loc
T2 (lullz~ < CONT) + | (h)],
T~ Vull= < COG(T),
where O (T) is defined by (6-18) and C depends at most on d, o and C.

(7-8)
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Proof. By applying Lemma 7.1 to the function

ux+y) —ulx+z)
CollAC-+y) = A(-+2) L=

with y and z fixed, we obtain
lu(-+y) —uC-+ 2l < CTAC-+y) — AC-+2) | v,
IVu(-+y) = Vu(- + )1~ = CTAC-+y) — A(-+ 2l L,

(7-9)

where C depends only on d, Cy and o. This shows that u and Vu are uniformly almost periodic. In
particular, # and Vu have mean values and (Vu) = 0. Also, note that condition (7-7) implies that
h € B2(R?) and hence has the mean value (k). It is easy to deduce from (7-2) that (u) = T>(h).

Note that, for any y € RY and z € R? with |z] <R <T,

T2 |u(y) —u(0)| < T2 u(y) — u(@)| + T *|u(z) —u(0)] < Cl[A(-+y) — A(-+2) |z~ +CT'R,

where we have used (7-9) and ||Vu|L~ < CT for the second inequality. It follows from the definition
of p(R) that

sup T 2|u(y) —u(0)| < C(p(R)+T~'R) forany 0<R<T.
yERd

By the definition of ®, this gives
sup T~2|u(y) —u(0)| < CO(T). (7-10)

yeRd
][ u(x)
B(0,L)

IT2u(0)] < CONT) + T2 (u)| = CONT) + |(h)]. (7-11)

Using
T 2u(0)| < T2

][ W(y) — (0)) dy' 4
B(0,L)

for any L > 0 and (7-10), we see that, by letting L — oo,

The first inequality in (7-8) now follows from (7-10) and (7-11).
Finally, we point out that the second inequality in (7-8) follows in the same manner, using (7-9)
and (7-4) as well as the fact that the mean value of Vu is zero. Il

We are now ready to estimate the rates of convergence of u, to u.

Theorem 7.3. Let u, (¢ > 0) be the weak solution of £.(u.) = F in Q and u, = g on 0Q2. Suppose that
uyg € W>2(Q). Let
dup
We (x) = up(x) — ug(x) —SXT,,/(X/8)£+US, (7-12)
J

where T = ¢~ and v, € H'(; R™) is the weak solution of the Dirichlet problem

9
P0)=0 inQ and v =8XT,j(x/g)a—m’ on 09. (7-13)
Xj
Then
lwell 1) < Co (O (T) + (|1¥ — Vxr ) lluollw22(0 (7-14)
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forany o € (0, 1), where C, depends only on o, A and Q2.

Proof. With loss of generality we may assume that

luollw22(q) = 1. (7-15)
A direct computation shows that
Le(we) = — div(Br(x/e)Vuo) + & div(A(x /&) x1 (x /&) Vuy), (7-16)
where Br(y) = (b’ (y)) is given by
R 3
b0 =i — el 0) =i g o0, (7-17)

Since w, € HO1 (2; R™), it follows from (7-16) that

cf |[Vwe|?dx <
Q

f div(Br(x/€)Vug) - we dx
Q

+f lexr(x/&)|VZuol [Vwe|dx = I + . (7-18)
Q
It suffices to show that

L+ 15 <Co(Os(T)+ (1Y — Vxr) lwell g1 (q) (7-19)

for any o € (0, 1).
First, it is easy to see that

L < CellxrllL=llVwell 2@ < COT)[|Vwell 120 (7-20)

for any o € (0, 1), where we have used (7-15) and (6-19).
Next, to estimate 1, we let h(y) =hr(y) = Br(y)— (Br) and solve (7-2). More precisely, let h = (h?ﬁ)

j
and f = ( fgﬁ ), where fl(j’g € H2_(R?) solves

loc

AP T2 =0 in R (7-21)

By (6-8) and (6-15), the function A satisfies the condition (7-7) for any o € (0, 1). Since (h) =0, it

follows from Lemma 7.2 that
T2 fll~ < COUT),

» (7-22)
TV fliLe = CO4(T)

for any o € (0, 1). Using (7-21) and integration by parts, we may bound /; in (7-18) by

f div(Af (x /&) Vo) - we dx
Q

+T2/;2|f(x/8)||VMO||VU)s|d.x+C<|w—VXTD”U)SHLZ(Q), (7-23)

where we have used the fact that |(B7)| < C(|Y — Vxr|). Note that, by (7-22), the second term in (7-23)
is bounded by C@] (T) ||Vw£ ||L2(Q)
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It remains to estimate the first term in (7-23), which we denote by /1;. To this end we write

. 0 off 8”5 o
dlv(Af(x/s)Vuo)wg:a Afl.j (x/e)— -w

Xj

NENC A e AN N/ “’3
= — — —— W N
ax; \ox \ dxi  ox; £ Jx; Bxkax, Xj

NN 85 . 9 fif aga
“E(%W—a >(/) 8]>'ws+a_(axkaxl(/)a )w

where we have used the product rule and the fact that

(- o)
X; 0X) 0Xy ox; Xj

It then follows from an integration by parts that

1“<c8f IV £ (x/e)||1V2ug| |[Vw,| dx +C Z” Vi (x/&)||Vuol [Vwe|dx =17 +12. (7-24)
J.a.B
In view of (7-22), we have
I{Y < Ce||V fllL=IVwell 20y < CO (T Vel 20 (7-25)

for any o € (0, 1).
Finally, to estimate / 1(1), we note that, by the definition of xr,

oy
- = ( i) = X
y; JAj S T2AT
It follows that
3fi‘;ﬂ Ly 1
—A — =——=Xr i
dyi  T* T2
Observe that the function 7! xr satisfies the assumption on 4 in Lemma 7.2 with 0 = 1. As a result, we
obtain
af’
H v <C;04(T)
3)65 L

for any o € (0, 1). This allows us to bound / 1(? by Cs 04 (T)||Vwel12(q) and completes the proof.  [J
The next lemma gives an estimate for the norm of v, in H'(Q).
Lemma 7.4. Let v, be the weak solution of (7-13) with T = ¢~ '. Then
1Vell @) < Co (T lxrllze) 277 (I Vuoll L= + 1 V2uoll 2(2) (7-26)

forany o € (0, %), where Cy, depends only on A, Q2 and o.
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Proof. We may assume that ||Vu0||LOO(Q)+||V2uo||Lz(Q) =1. We may also assume that § = T xrllze >0
is small, since § — 0 as T — 00. Choose a cut-off function ns € Cgo([R{d) sothat0<ns <1,ns(x)=1
if dist(x, 3Q) < 8, ns(x) = 0 if dist(x, Q) > 28, and |Vns| < C5~!. Note that

Vel 1) < Cellxr (x/e)Vuol girpe)

< Celnsxr(x/e)Vuol g1 (g
1
2
< C(llXTllLoo3_l/28+ ( / |VXT(x/e)|2dx> ) (7-27)
Qs

where Qs = {x € Q: dist(x, Q) < 28}. Since || x|~ /?e =872, we only need to estimate the integral
of |V xr(x/e)|?> over Q.
To this end, we cover Qs with cubes Q; of side length & such that ) j |Q ] < C4. It follows that

f |VxT<x/e>|2dxsZ/ Vxr(x/e)l*dx <10l \Vxrl?
Qs j Q; | (1/6)Q;

<C§ sup ][|VXT|2§Q,51—<’ (7-28)
UQ)=3T JQ

for any o € (0, 1), where we have used the estimate (6-8) in the last inequality. This, together with (7-27),
gives (7-26). U

We are now in a position to give the proof of Theorems 1.1 and 1.2.
Proof of Theorem 1.1. It follows from Theorem 7.3 and Lemma 7.4 that, for any o € (0, 1) and § € (0, %)
lue —uo —exr(x/e)Vuoll g1
< C(Oo(T) + (1Y = Vxr)lluollwaz (@) + C (@ (TN 272 (| Vugll @) + V2 uoll 12(0)
< C((I¥ = Vr ) +(©o (1)) lluo w2 )
< C (¥ = Vxrl) + @) uollwzr (). (7-29)

where T = ¢! and we have used the Sobolev imbedding VuollL=) < Clluollw2.r(q) for p > d. This
implies that

lue —uoll 2y < lexr(x/e)Vuoll 2 + C (1Y — Vxrl) + @1 (T) ) luollw2r (g
< C((Ily = Vxrl) + @ 1(TNHuollwzr ()

where C depends only on A and 2. Since (| — Vxr|) + (®(T)H'* - 0as T — oo, one may find a
modulus 7 on (0, 1], depending only on A, such that n(0+) = 0 and

(I — Vxrl) + @ (THY* <™
for T > 1. As a result, we obtain

lue —uo —exr(x/e)Vuol g < Cn(e)lluollw2r(q)s

llue —uollL2(@) = Cn(@)lluollwzr -
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Finally, we observe that, by Theorem 1.4, for any o € (0, 1),

liell oy < CIg o2 + 1 Fllagy) < Clluoll o + 1V 200l agy) < Clluollwzacgy-

It follows by interpolation that, for any o € (0, 1),

e — ol co @) < Cii) luollwr (),
where 7 is a modulus function depending only on A and o, and 77(0+) = 0. This completes the proof. [

Proof of Theorem 1.2. Estimate (1-15) follows directly from (7-29) and Theorem 6.6. To see (1-14), we
use
lue —uoll 2@y < llue —uo —exr(x/e)Vuo + vellp2(q) + llvell L2

< Co (O (T) + (|1 — V) lluollw22eg) + Ve ll 22 (7-30)
where v, is as defined in Theorem 7.3. By Theorem 1.4 we obtain
lvellz2@) < CllvellLe(g)

< Cllexr(x/e)Vugllca o)

< CE""lxr oo + O (T) [ Vugllcer o)

< C(T Mxrlcon + Oo (T luollw2r (e,
where p >d, o0 € (0,1) and 0 <oy <1 —d/p. Since T Nxrllre < Cy®y(T) and | x7(x) — xr(¥)| <
CoT'%|x — y|® for any « € (0, 1), it follows by interpolation that

T M xrllcon < C(O(T)'™7

for any oy > o1. Hence,

Vel 22 < C(O0 (T) P lluollw2ry < COITN” T ugllwr e

for any 6,0 € (0, 1) and p > d, where C depends only on 8, p, o, A and Q2. This, together with (7-30)
and Theorem 6.6, gives

lue —uoll 2@y < C({1¥ = Vxrl) + (@ 1(T)7) luollw.r (o)

% 0,(r) _
=< C(f ——dr +(©i(e 1))U)||MO||WZP(Q)
/@) T

for any o € (0, 1), and completes the proof. O

8. Quasiperiodic coefficients

In this section we consider the case where A(x) is quasiperiodic and continuous. More precisely, without
loss of generality, we will assume that

{A(x) = B(jn(x)),

8-1
B is l-periodic and continuous in R, ®-1)
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where M = m| +ms+ - --+my and, for x = (x, x2, ..., xg) € R4,
Jax) = gxp, ATxn, oo A, Axa, e, A X, e A, A xg) € RM.
Also, foreachi =1, 2, ..., d, the set {A}, R )L?"" } is assumed to be linearly independent over Z. Under

these conditions, it is known that A (x) is uniformly almost periodic. We shall be interested in conditions
oni= (k{ ) that imply the power decay of p(R) as R — o0. For convenience we consider

p1(R)=sup inf [AC-+y)—A(-+2)llL~, (8-2)
yeRd zeR?
lzlloo<R
where ||z]loo = max(|z1], ..., |zq]) for z = (z1, ..., zq). It is easy to see that pi(v/dR) < p(R) < pi(R).

Let
w(8) =sup{|B(x) —B()|: lx =yl =68}, >0,
denote the modulus of continuity of B(x). For x € R, write x = [x] + <x>, where [x] € Z and

<x>€ [—%, %) Ifx = (x1, ..., xy) €RM define [x]= ([x1], ..., [xy]) and <x> = (<x1>, ..., <xp>).
It is easy to see that || <x>||» gives the distance from x to Z¥ with respect to the norm || - ||oo.

Lemma 8.1. Let pi(R) be defined by (8-2). Then, for any R > 0, p1(R) < w (0, (R)), where

0, (R) = sup inf [lx — <j3(2)>[lco- (8-3)
xe[—1/2,1/21M HZZHER<R

Proof. Note that, since B is 1-periodic,
|B(x) =B =|B(y+[x —yl+<x—y>)—By)|=|B(y+<x—y>) —B(y)| =o(l<x — y>|)
for any x, y € RM. It follows that
[A(x +y) — Alx +2) = o (I<jr(¥) = Jn(2)>lo0)
for any x, y, z € R?. This implies that

p1(R) < sup inf & ([[<jr(y) = jr(2)>llo)

R(
YR sr
Using
</ () = jn(@)>lloo = I<<jn(1)> = <ja(2)>> oo = 1<ja(¥)> — <jn(2)>lo0s
we obtain
p1(R) = sup inf - & (|<jp(y)> = <ji(2)> o) = @(B1(R)),
yeRd z€
lzllo<R
where we have used the continuity of w(8) for the second inequality. O

Let &; = (A, 22, ..., A7) e R™ foreach 1 <i <d and

1

Ju @) =l A%, A eR™ for 1 e R.
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Thus, for z = (z1, 22, - . ., Zq) € RY,

Jr(@) = (o, (1), Jon(22)s ooy Jay(2a))-
It follows that

lx — <ja(@>lloo = max |lx; — <ji, (zi)>loos
1<i<d

where x = (x1, X2, ..., x7) € RM and x; € R™. This implies that
0, (R) = max 6;,(R), (3-4)
1<i<d
where
0, (R) = sup inf [[x — <j;,(#)>]lc- (8-5)

xe[—1/2,1/2]m \ztERR

Note that if m; = 1 then 6,,(R) = 0 for R large. We will use the Erd6s—Turdn—Koksma inequality in
the discrepancy theory to estimate the function 6, (R), defined by (8-5), for m; > 2.

Let P = Py = {x1, X2, ..., Xy} be a finite subset of [—%, %]m The discrepancy of P is defined as
—|B]

’

A(B; P)
Dy(P) =sup| ———
B N

1

where the supremum is taken over all rectangular boxes B = [ay, b1] X - - - X [ay, byy] C [—%, Q]m and

A(B; P) denotes the number of elements of P in B. It follows from the Erd6s—Turdn—Koksma inequality

that
1

1 2mi(n-x)
— e
<1+|n1|)---<1+|nm|)‘N;

1
Dy (P) sc{ﬁ+ > } (8-6)

neZ™
O<lnllc<H

for any H > 1, where C depends only on m (see, e.g., [Drmota and Tichy 1997, p. 15]). It is not hard to
see that

max  min ||y — zlleo < S[Dn (P, (8-7)
ye[—1/2,1/2]m ze Py

Lemma 8.2. Let R > 2 and { > 2 be two positive integers. We divide the interval [—R, R] into 2R{
subintervals of length 1/€. Let N = 2R{ and

Py=lx=<po>e[-34] n=j+5 —R<jsR-1mdo<k<e-1},

where A = ()Ll, .o, A e R™ and m = 2. Suppose that there exist cg > 0 and T > 0 such that
ln-Al>coln|”" forany n e Z™\{0}. (8-8)
Then
Dy(Py) < C(R™VHD(log RY" !+ N~IRHV D (log RY™ 1), (8-9)

where C depends only on m, cg, |A| and t.
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Proof. Let f(t) = 2™ and

_ 1 2mi(n-x) __ 1 .
= 2, &M =53  fp. (8-10)

XEPN ],k
wheren € 7"\ {0}, j=—R,...,R—1,k=0,...,£—1and tj; = j +k/L. Using

R
1 1 -
ﬁ/Rfmdr—NZf(z,k) < CM S lloos
B ik
we obtain
1 1" 1 1 1
Li<ce | f == - <C(~ R |n|”
| < Ce ||f||oo+2Rf_Rf<r>dr = CM A4 = = W nl+ R ),

where we have used the assumption (8-8). In view of (8-6), we obtain

i ¢nl+ R nf" )
Dy (P Cl —
i) = (H+ 2 A D

neZU?
O<llzlloo=H
E—l R—l T
5C<i+f bl &+ B x| dx>
H " Jiy<ca (L+x1]) - (T4 |xp])
< C(% + RN""H(log HY"™' + R~ H" (log H)m—l)
for any H > 2. By taking H = R+ we obtain the estimate (8-9). g
Theorem 8.3. Let A= (A1, ..., Aq) with A; = (A}, e A:"i) e R™ for 1 <i <d. Suppose that there exist
co > 0and t > 0 such that, for each 1 <i <d withm; > 2,
|n-Ai| = coln|™" forany n e Z™ \{0}. (8-11)
Then, for any R > 2,
61(R) < CR™V/ D (1og R)! =1/, (8-12)
where m = max{my, ..., mgq} and C depends only on d, m, cy and t.

Proof. Suppose m; > 2. Let P = Py be same as in Lemma 8.2. It follows from (8-7) and Lemma 8.2 that

0)\1 (R) S C(R—l/(f-'rl)(log R)mi—l + N—1R1+1/(‘L’+1)(10g R)mi_l)l/mi

< CR—l/(Mi(f-i-l))(]Og R)l_l/mi’
where we have taken N = CR'*2/+D_ This, together with (8-4), gives (8-12). O

Remark 8.4. Suppose that A(x) = B(j,(x)) and B(y) is 1-periodic. Also assume that A satisfies the
condition (8-11) and B(y) is Holder continuous of order « for some « € (0, 1]. It follows from Lemma 8.1
and Theorem 8.3 that

o(R) < CR—a/(m(r+1))(log Ry*(=1/) (8-13)

for R > 1. In view of Remark 1.3, this leads to

lue —uoll 2 < Cye? lluollwar(q)



1600 ZHONGWEI SHEN

for any 0 < y < a/(o +m(t 4+ 1)). We point out that, for A(y) that satisfies the condition (8-11) and is
sufficiently smooth, the sharp estimate [lu; — uo|l;2(q) = O(¢) was obtained in [Kozlov 1978].
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