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ASYMPTOTICS OF HADAMARD TYPE FOR EIGENVALUES OF
THE NEUMANN PROBLEM ON C1-DOMAINS FOR ELLIPTIC OPERATORS

JOHAN THIM

This article investigates how the eigenvalues of the Neumann problem for an elliptic operator depend
on the domain in the case when the domains involved are of class C1. We consider the Laplacian and
use results developed previously for the corresponding Lipschitz case. In contrast with the Lipschitz
case, however, in the C1-case we derive an asymptotic formula for the eigenvalues when the domains are
of class C1. Moreover, as an application we consider the case of a C1-perturbation when the reference
domain is of class C1,α .

1. Introduction

The results presented in this article are based on an abstract framework for eigenvalues of the Neumann
problem previously developed by Kozlov and Thim [2014], where we considered applications to Lipschitz-
and C1,α-domains. However, the corresponding result for C1-domains was omitted. In this study we
present an asymptotic formula of Hadamard type for perturbations in the case when the domains are of
class C1. We also apply this theorem to the case when the reference domain is C1,α , which simplifies the
expressions involved.

Partial differential equations are typically not easily solvable when the domain is merely C1. Indeed,
the existence result for Laplace’s equation on a general C1-domain with L p-data on the boundary was
only finally resolved by [Fabes et al. 1978]. This problem was difficult due to the fact that proving that
the layer potentials define compact operators (so Fredholm theory is applicable, similar to the C1,α-case)
was rather technical. The results are based on estimates for the Cauchy integral on Lipschitz curves and
we only obtain L p-estimates for the gradient. As a consequence, the problem of eigenvalue dependence
on a C1-domain becomes difficult.

Hadamard [1908] — see also [Maz′ya and Shaposhnikova 1998] — studied a special type of perturba-
tions of domains with smooth boundary in the early twentieth century, where the perturbed domain �ε
is represented by xν = h(x ′) with x ′ ∈ ∂�0, xν the signed distance to the boundary (xν < 0 for x ∈�0),
and h a smooth function bounded by a small parameter ε. Hadamard considered the Dirichlet problem,
but a formula of Hadamard type for the first nonzero eigenvalue of the Neumann Laplacian is given by

3(�ε)=3(�0)+

∫
∂�0

h(|∇ϕ|2−3(�0)ϕ
2) d S+ o(ε),
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where d S is the surface measure on ∂�0 and ϕ is an eigenfunction corresponding to 3(�0) such
that ‖ϕ‖L2(�0) = 1; compare with [Grinfeld 2010]. In more general terms, eigenvalue dependence on
domain perturbations is a classical and important problem going far back. Moreover, these problems
are closely related to shape optimization; see, e.g., [Henrot 2006; Sokołowski and Zolésio 1992], and
references found therein.

Specifically, let �1 and �2 be domains in Rn , n ≥ 2, and consider the spectral problems{
−1u =3(�1)u in �1,

∂νu = 0 on ∂�1
(1-1)

and {
−1v =3(�2)v in �2,

∂νv = 0 on ∂�2,
(1-2)

where ∂ν is the normal derivative with respect to the outward normal. In the case of nonsmooth boundary,
we consider the corresponding weak formulations. The analogous Dirichlet problems have previously
been considered [Kozlov 2006; 2013; Kozlov and Nazarov 2010; 2012], however the Neumann problem
requires a different approach as regards what one can use as a proximity quantity between the two domains
and the operators involved.

We will require that the domains are close, in the sense that the Hausdorff distance between the sets �1

and �2, namely
d =max

{
sup
x∈�1

inf
y∈�2
|x − y|, sup

y∈�2

inf
x∈�1
|x − y|

}
, (1-3)

is small. For example, if the problem in (1-1) has a discrete spectrum and the two domains �1 and �2 are
close, then the problem in (1-2) has precisely Jm eigenvalues 3k(�2) close to 3m(�1); see, for instance,
Lemma 3.1 in [Kozlov and Thim 2014]. Here, Jm is the dimension of the eigenspace Xm corresponding
to 3m(�1). The aim is to characterize the difference 3k(�2)−3m(�1) for k = 1, 2, . . . , Jm .

In a previous study [Kozlov and Thim 2014], we considered the cases when the domains are Lipschitz
or C1,α , with 0< α < 1, as applications of an abstract framework. The main result is an asymptotic result
for C1,α-domains, where �1 is a C1,α-domain and �2 is a Lipschitz perturbation of �1, in the sense
that the perturbed domain �2 can be characterized by a function h defined on the boundary ∂�1 such
that every point (x ′, xν) ∈ ∂�2 is represented by xν = h(x ′), where (x ′, 0) ∈ ∂�1 and xν is the signed
distance to ∂�1 as defined above. Moreover, the function h is assumed to be Lipschitz continuous and
satisfy |∇h| ≤ Cdα . We proved that, if the problem in (1-1) has a discrete spectrum and m is fixed, then
there exists a constant d0 > 0 such that, if d ≤ d0, then

3k(�2)−3m(�1)= κk + O(d1+α) (1-4)

for every k = 1, 2, . . . , Jm . Here, κ = κk is an eigenvalue of the problem

κ(ϕ, ψ)=

∫
∂�1

h(x ′)(∇ϕ · ∇ψ −3m(�1)ϕψ) d S(x ′) for all ψ ∈ Xm, (1-5)

where ϕ ∈ Xm . Moreover, κ1, κ2, . . . , κJm in (1-4) run through all eigenvalues of (1-5), counting their
multiplicities; see Theorem 1.1 in [Kozlov and Thim 2014].
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In the case when the domains are merely Lipschitz, we only obtain that there exists a constant C ,
independent of d , such that |3k(�2)−3m(�1)| ≤ Cd for every k = 1, 2, . . . , Jm ; see Corollary 6.11 in
[Kozlov and Thim 2014]. Furthermore, in Section 6.7 there, we provide an example which shows that we
can not get an asymptotic result of the type above for the Lipschitz case.

1A. New results. The main result of this article is proved in Section 4B, where an asymptotic formula
for 3m(�2)−3k(�1) in the case of C1-domains is derived. The main term consists of extensions of
eigenfunctions to (1-1) and the remainder is of order o(d); see Theorem 4.4. We suppose that �2 is a
Lipschitz perturbation of a C1-domain �1 such that the Hausdorff distance d between �1 and �2 is small
and the outward normals n1 and n2 — taken at the corresponding points of �1 and �2, respectively — are
comparable in the sense that n1− n2 = o(1) as d→ 0 (uniformly). If we also require that �2 ⊂�1 to
avoid the need for extension theorems, we obtain the following result:

Theorem 1.1. Suppose that �1 is a C1-domain, that �2 is as described above, and that �2 ⊂ �1. In
addition, assume that the problem in (1-1) has a discrete spectrum and that m is fixed. Then there exists a
constant d0 > 0 such that, if d ≤ d0, then

3k(�2)−3m(�1)= τk + o(d) for k = 1, 2, . . . , Jm . (1-6)

Here, τ = τk is an eigenvalue of

τ(ϕ, ψ)=

∫
�1\�2

(∇ϕ · ∇ψ −3m(�1)ϕψ) dx for all ψ ∈ Xm, (1-7)

where ϕ ∈ Xm . Moreover, τ1, τ2, . . . , τJm in (1-6) run through all eigenvalues of (1-7), counting their
multiplicities.

Note that the main term is of order d and that the remainder is strictly smaller as d→ 0.
As an application, in Section 5 we consider the case when the perturbation is of Hadamard type and

we assume that the reference domain �1 is a C1,α-domain. Indeed, if �2 is a perturbation of �1 in
the sense that the perturbed domain �2 can be characterized by a Lipschitz function h defined on the
boundary ∂�1 such that (x ′, xν)∈ ∂�2 is represented by xν = h(x ′), where (x ′, 0)∈ ∂�1, xν is the signed
distance to ∂�1 as defined above, and ∇h = o(1) as d→ 0 (uniformly), we obtain the following result;
see Theorem 5.1.

Theorem 1.2. Suppose that �1 is a C1,α-domain, that �2 is a perturbation as described above, that the
problem in (1-1) has a discrete spectrum, and that m is fixed. Then there exists a constant d0 > 0 such
that, if d ≤ d0, then

3k(�2)−3m(�1)= κk + o(d) (1-8)

for every k = 1, 2, . . . , Jm . Here, κ = κk is an eigenvalue of the problem

κ(ϕ, ψ)=

∫
∂�1

h(x ′)(∇ϕ · ∇ψ −3m(�1)ϕψ) d S(x ′) for all ψ ∈ Xm, (1-9)

where ϕ ∈ Xm . Moreover, κ1, κ2, . . . , κJm in (1-8) run through all eigenvalues of (1-9) counting their
multiplicities.
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We also note here that Theorem 1.2 is sharp. Indeed, the main term in (1-9) is of order d and the
example given in Section 6.7 in [Kozlov and Thim 2014] shows that this cannot be improved.

2. Notation and definitions

We will use the same abstract setting and notation that was used in [Kozlov and Thim 2014]. Let us
summarize the notation. We consider the operator 1−1; a number λ is an eigenvalue of the operator 1−1
if and only if λ − 1 is an eigenvalue of −1. The reason for considering 1−1 is to avoid technical
difficulties due to the eigenvalue zero. Enumerate the eigenvalues 3k(�1) = λk − 1 for k = 1, 2, . . .
of (1-1) according to 0< λ1 < λ2 < · · · . Similarly, we let 3k(�2)= µ− 1 be the eigenvalues of (1-2).
Suppose that H1 and H2 are infinite-dimensional subspaces of a Hilbert space H . We denote the inner
product on H by ( · , · ). Let the operators K j : H j → H j be positive definite and self-adjoint for j = 1, 2.
Furthermore, let K1 be compact. We consider the spectral problems

K1ϕ = λ
−1ϕ, ϕ ∈ H1, (2-1)

and

K2U = µ−1U, U ∈ H2, (2-2)

and denote by λ−1
k for k = 1, 2, . . . the eigenvalues of K1. Let Xk ⊂ H1 be the eigenspace corresponding

to the eigenvalue λ−1
k . Moreover, we denote the dimension of Xk by Jk and define Xm = X1+X2+· · · Xm ,

where m ≥ 1 is any integer. In this article we study eigenvalues of (2-2) located in a neighborhood of λ−1
m ,

where m is fixed. Note that it is known that there are precisely Jm eigenvalues of (1-2) near λ−1
m ; see,

e.g., Lemma 3.1 in [Kozlov and Thim 2014]. We wish to describe how close they are in the case of
C1-domains.

Let S1 : H→ H1 and S2 : H→ H2 be orthogonal projectors and define S as the restriction of S2 to H1.
To compare K1 and K2, we define the operator B : H1→ H2 as B = K2S− SK1. For ϕ ∈ Xm , Bϕ is
typically small in applications. Furthermore, we use the convention that C is a generic constant that can
change from line to line, but always depend only on the parameters. We also use the notation κ for a
generic function κ : [0,∞) 7→ [0,∞) such that κ(δ)= o(1) as δ→ 0.

2A. Domains in Rn. Let �1 be the reference domain, which will be fixed throughout. We will assume
that �1 and �2 are at least Lipschitz domains. Then there exists a positive constant M such that the
boundary ∂�1 can be covered by a finite number of balls Bk , k= 1, 2, . . . , N , where there exist orthogonal
coordinate systems in which

�1 ∩ Bk = {y = (y′, yn) : yn > h(1)k (y′)} ∩ Bk,

where the center of Bk is at the origin and h(1)k are Lipschitz functions, i.e.,

|h(1)k (y′)− h(1)k (x ′)| ≤ M |y′− x ′|,
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such that h(1)k (0)= 0. We assume that �2 belongs to the class of domains where �2 is close to �1 in the
sense that �2 can be described by

�2 ∩ Bk = {y = (y′, yn) : yn > h(2)k (y′)} ∩ Bk,

where h(2)k are also Lipschitz continuous with Lipschitz constant M .
The case when�1 is a C1- or C1,α-domain is defined analogously, with the addition that h(1)k ∈C1(Rn−1)

(or C1,α(Rn−1)) such that

h(1)k (0)= ∂xi h
(1)
k (0)= 0, i = 1, 2, . . . , n− 1.

Note that when �1 is a C1-domain we obtain that, for P , Q ∈ ∂�1, the outward normal n1 of �1 satisfies

n1(P)− n1(Q)= o(1) as |P − Q| → 0

uniformly.

2B. Perturbations of C1-domains. The situation we consider is the case when the reference domain �1

is a C1-domain and the perturbed domain �2 is close in the sense of Section 2A. We require that �2 is a
Lipschitz domain such that

|∇(h(1)k − h(2)k )| = o(1) as d→ 0 (2-3)

uniformly. This condition can be compared to the one we used in [Kozlov and Thim 2014] for perturbations
of C1,α-domains:

|∇(h(1)k − h(2)k )| ≤ Cdα. (2-4)

Note that h(2)k are only assumed to be Lipschitz continuous and satisfy (2-3) and (2-4), respectively.

3. Definition of the operators K j

Let �1 and �2 be two domains in Rn (�1∩�2 6=∅) and put H = L2(Rn) and H j = L2(� j ) for j = 1, 2,
where functions in H j are extended to Rn by zero outside of � j if necessary. For f ∈ L2(� j ), the weak
solution to the Neumann problem (1−1)W j = f in � j and ∂νW j = 0 on ∂� j for j = 1, 2 satisfies∫

� j

(∇W j · ∇v+W jv) dx =
∫
� j

f v dx for every v ∈ H 1(� j ),

and the Cauchy–Schwarz inequality implies that

‖∇W j‖L2(� j )+‖W j‖L2(� j ) ≤ ‖ f ‖L2(� j ) for all f ∈ L2(� j ).

We define the operators K j on L2(� j ), j =1, 2, as the solution operators corresponding to the domains� j ,
i.e., K j f = W j . The operators K j are self-adjoint and positive definite and, if � j are, e.g., Lipschitz,
also compact.
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3A. Results for Lipschitz domains. We will work with results for Lipschitz domains and then refine
estimates using the additional smoothness of the C1-case. Let � be a Lipschitz domain. The truncated
cones 0(x ′) at x ′ ∈ ∂� are given by, e.g.,

0(x ′)= {x ∈� : |x − x ′|< 2 dist(x, ∂�)}

and the nontangential maximal function is defined on the boundary ∂� by

N (u)(x ′)= max
k=1,2,...,N

sup{|u(x)| : x ∈ 0(x ′)∩ Bk}.

For the case when �1 and �2 are Lipschitz, one can show that

‖N (K j u)‖L2(∂� j )+‖N (∇K j u)‖L2(∂� j ) ≤ C‖u‖L2(� j ), j = 1, 2, (3-1)

where the constant C depends only on the Lipschitz constant M and B1, B2, . . . , BN . We interpret
∂νK j u = 0 on ∂� j in the sense that n · ∇K j u→ 0 nontangentially (with limits taken inside cones 0(x ′))
at almost every point on ∂�, where n is the outward normal. These results are discussed further in
Section 6.2 of [Kozlov and Thim 2014]. Let us summarize that reference’s Lemmas 6.2 and 6.3 for
convenience.

Lemma 3.1. Let � be a Lipschitz domain. Then:

(i) If g∈ L2(∂�), then there exists a unique (up to constants) function u in H 1(�) such that (1−1)u= 0
in � and ∂νu = g a.e. on ∂� in the nontangential sense and, moreover,

‖N (u)‖L2(∂�)+‖N (∇u)‖L2(∂�) ≤ C‖g‖L2(∂�).

(ii) If f ∈ L2(�), then there exists a unique function u in H 1(�) such that (1−1)u= f in� and ∂νu= 0
on ∂� in the nontangential sense, and

‖N (u)‖L2(∂�)+‖N (∇u)‖L2(∂�) ≤ C‖ f ‖L2(�).

Here, the constant C depends only on M and B1, B2, . . . , BN .

The corresponding lemma for the Dirichlet case is also known and one can prove it using an argument
similar to the one used to prove Lemmas 6.2 and 6.3 in [Kozlov and Thim 2014].

Lemma 3.2. Let � be a Lipschitz domain. Then:

(i) If g∈ L2(∂�), then there exists a unique function u∈H 1(�) such that (1−1)u=0 in�, u= g on ∂�
in the nontangential sense, and

‖N (u)‖L2(∂�) ≤ C‖g‖L2(∂�).

(ii) If f ∈ L2(�), then there exists a unique function u ∈ H 1(�) such that (1−1)u= f in�, u=0 on ∂�
in the nontangential sense, and

‖N (u)‖L2(∂�) ≤ C‖ f ‖L2(�).

Here, the constant C depends only on M and B1, B2, . . . , BN .
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We conclude with an extension result for Lipschitz domains; see, e.g., [Kozlov and Thim 2014,
Lemma 6.4(i)] for a proof.

Lemma 3.3. Suppose that f ∈ H 1(∂�) and g ∈ L2(∂�), where � is a Lipschitz domain. Then there
exists a function u ∈ H 1(�c) such that u→ f and n · ∇u→ g nontangentially at almost every point
on ∂�, where n is the outward normal of �, and there exists a constant C such that

‖N (u)‖L2(∂�)+‖N (∇u)‖L2(∂�) ≤ C(‖ f ‖H1(∂�)+‖g‖L2(∂�)),

where C depends only on M and B1, B2, . . . , BN .

4. Main results

Let us proceed to prove the main results. In Section 4A, we prove a key lemma concerning an estimate
for ∂νK j S jϕ on ∂(�1 ∩�2). Using this estimate, we can refine results for Lipschitz domains that were
previously developed in [Kozlov and Thim 2014] and, as a result, obtain an asymptotic formula describing
the difference between λ−1

m and µ−1
m in terms of eigenfunctions of K1.

4A. Boundary estimates for C1-domains. Since ∂νϕ= 0 on ∂�1, we would expect that ∂νϕ is small also
on �2 if the domains are close. However, since in the C1-case we only obtain solutions with derivatives
in L p, this problem becomes more difficult than the corresponding issue in the C1,α-case (which was
solved in [Kozlov and Thim 2014]). To this end, we will exploit that, locally on the boundaries ∂� j ,
the normal vectors can be approximated by constant unit vectors en (with respect to the local coordinate
system). That is, we approximate the surface by its tangent plane at a specific point. We obtain the
following result:

Lemma 4.1. Let P ∈ ∂(�1 ∩�2) and δ > 0 such that B(P, 2δ)⊂ Bk for some k, where Bk are the balls
covering �1 ∩�2 given in Section 2A. Then there exists a function κ(δ) such that∫

∂(�1∩�2)∩B(P,δ)
|∂νK j S jϕ|

2 d S(x ′)≤ κ(δ)
∫
�1

|ϕ|2 dx, j = 1, 2, (4-1)

for every ϕ ∈ Xm , where κ(δ)= o(1) as δ→ 0.

Proof. Let B = B(P, 2δ). We wish to consider ∂νK j S jϕ on ∂(�1 ∩�2). However, since ∇K j S jϕ only
exist in the sense of L2, it is nontrivial to exploit the fact that ∂νK j S jϕ is zero on ∂� j . Therefore, let
us instead consider ∂xn K j S jϕ (with respect to the coordinate system in Bk). The outward normal of � j

is comparable to en in Bk and ∂νK j S jϕ = 0 on ∂� j , so we expect ∂xn K j S jϕ to be small on ∂� j ∩ Bk .
Indeed, since ∇K j S jϕ · n j → 0 nontangentially on ∂� j and n j = en + o(1) as δ→ 0, we obtain that∫

∂� j∩B
|∂xn K j S jϕ|

2 d S(x ′)≤ κ(δ)
∫
�1

|ϕ|2 dx . (4-2)

However, we cannot expect ∂xn K j S jϕ to be small on all of � j . The idea is to use the fact that
∂xn commutes with (1− λm −1). Indeed, we see that if 8= ∂xn K1S1ϕ, then (1− λm −1)8= 0 in �1

and 8= ∂xn K1S1ϕ on ∂�1. The case when j = 2 will be treated similarly but requires some additional
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steps. Let us consider the equation (1− λm −1)8= 0 in �1 and 8= ∂xn K1S1ϕ on ∂�1. We split this
equation in two separate parts.

Part 1. Let8p be the solution to (1−λm−1)8p= 0 in�1,8p= ∂xn K1S1ϕ on ∂�1∩B and, on ∂�1∩Bc,
we let 8p = 0. Lemma 3.2 implies that 8p satisfies∫

∂�1

|N (8p)|
2 d S(x ′)≤ κ(δ)

∫
�1

|ϕ|2 dx . (4-3)

Then it follows that ∫
�1∩∂�2∩B

|8p|
2 d S(x ′)≤ κ(δ)

∫
�1

|ϕ|2. (4-4)

Part 2. Let 8h be the solution to (1− λm −1)8h = 0 in �1, 8h = 0 on ∂�1 ∩ B, and 8h = ∂xn K1S1ϕ

on ∂�1 ∩ Bc. To prove an estimate for 8h on ∂�1 ∩ B similar to the one given for 8p in (4-4), we use
a local estimate for solutions to the Dirichlet problem, where we exploit that the boundary data is zero
on �1 ∩ B. Indeed, let 1

2 B be the ball with the same center as B but half the radius. Then Theorem 5.24
in [Kenig and Pipher 1993] (for example) implies that∫

∂�1∩
1
2 B
|N (∇8h)|

2 d S(x ′)≤ C
∫
�1∩B
|∇8h|

2 dx (4-5)

since the tangential gradient of 8h is zero on the boundary. This, in turn, implies that the left-hand side
in (4-5) is finite and, furthermore, since also 8h = 0 on �1 ∩ B, it follows that∫

�1∩∂�2∩
1
2 B
|8h|

2 d S(x ′)≤ Cd
∫
�1

|ϕ|2 dx, (4-6)

where d is the Hausdorff distance between �1 and �2.
Equations (4-4) and (4-6) are sufficient to obtain that∫

∂(�1∩�2)∩
1
2 B
|N (∂xn K1S1ϕ)|

2 d S(x ′)≤ κ(δ)
∫
�1

|ϕ|2 dx

since 8=8p +8h .
Turning our attention to when j =2, we see that (1−1)K2S2ϕ= S2ϕ and that this equation is not homo-

geneous. Moreover, the right-hand side is not necessarily small. However, since Sϕ = λm K2Sϕ− λm Bϕ
and Bϕ is small, we can consider

(1− λm −1)K2S2ϕ =−λm Bϕ. (4-7)

Let 9 be the weak solution to (1− λm −1)9 =−λm Bϕ in �2 and 9 = 0 on ∂�2. Then

‖9‖H1(�2) ≤ C‖Bϕ‖L2(�2)

and the trace of 9 is defined on ∂�. Moreover, from Lemma 3.2 we obtain that

‖N (9)‖L2(∂�2) ≤ C‖Bϕ‖L2(�2). (4-8)
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Now, put 8=9+W . Then (1−λm−1)W = 0 and W = ∂xn K2S2ϕ on ∂�2. It is now possible to carry
out steps 1 and 2 for W in �2 analogously to 8 in �1, exchanging the roles of �1 and �2. Thus, using
the same notation, we obtain that∫

∂(�1∩�2)∩
1
2 B
|N (W )|2 d S(x ′)≤ κ(δ)

∫
�1

|ϕ|2 dx . (4-9)

Finally, Lemma 6.6 in [Kozlov and Thim 2014] states that ‖Bϕ‖2L2(�2)
≤ Cd‖ϕ‖2L2(�1)

, so this fact and
equations (4-8) and (4-9) prove that∫

∂(�1∩�2)∩
1
2 B
|N (∂xn K2S2ϕ)|

2 d S(x ′)≤ κ(δ)
∫
�1

|ϕ|2 dx . (4-10)

We can now conclude the proof by observing that the outward normal on ∂(�1 ∩�2) is given by n1

or n2 at almost every point, and n j = en + r j with r j = κ(δ), j = 1, 2, so we obtain that∫
∂(�1∩�2)∩

1
2 B
|∂νK j S jϕ|

2 d S(x ′)≤ κ(δ)
∫
�1

|ϕ|2 dx . �

The previous lemma is local in nature, but due to compactness we can prove the following corollary:

Corollary 4.2. There exists a constant d0 > 0 such that, if d ≤ d0, then∫
∂(�1∩�2)

|∂νK j S jϕ|
2 d S(x ′)≤ κ(d)

∫
�1

|ϕ|2 dx, j = 1, 2, (4-11)

for every ϕ ∈ Xm , where κ(d)= o(1) as d→ 0.

Proof. By compactness, if d is small we can cover ∂(�1 ∩�2) by a finite number of balls B(P, d) such
that B(P, 2d)⊂ Bk for some k, where Bk are the covering balls from Section 2A. By choosing d0 small
enough and letting δ = d in the previous lemma, the result in the corollary now follows. �

4B. Proof of Theorem 1.1. The following proposition is a reformulation of Proposition 6.10 in [Kozlov
and Thim 2014], where the proof can also be found. The expressions with tildes are the extensions of
the corresponding functions provided by Lemma 3.3. We will use this result and Corollary 4.2 to prove
Theorem 1.1.

Proposition 4.3. Suppose that �1 and �2 are Lipschitz domains in the sense of Section 2A. Then

λ−1
m −µ

−1
k = τk + O(d3/2) for k = 1, 2, . . . , Jm . (4-12)

Here, τ = τk is an eigenvalue of

τ(ϕ, ψ)= λ−1
m

∫
�1\�2

((1− λm)K̃2Sϕψ +∇ K̃2Sϕ · ∇ψ) dx

− λ−1
m

∫
�2\�1

((1− λm)(K2Sϕ)ψ̃ +∇K2Sϕ · ∇ψ̃) dx (4-13)

for all ψ ∈ Xm , where ϕ ∈ Xm . Moreover, τ1, τ2, . . . , τJm in (4-12) run through all eigenvalues of (4-13),
counting their multiplicities.
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Let us now prove a version of this proposition that holds specifically for C1-domains. We will show
the following result:

Theorem 4.4. Suppose that �1 is a C1-domain and that �2 is a perturbation in the sense of Section 2B
satisfying (2-3). Then

λ−1
m −µ

−1
k = τk + o(d) for k = 1, 2, . . . , Jm . (4-14)

Here, τ = τk is an eigenvalue of

τ(ϕ, ψ)= λ−1
m

∫
�1\�2

((1− λm)ϕψ +∇ϕ · ∇ψ) dx − λ−1
m

∫
�2\�1

((1− λm)ϕ̃ψ̃ +∇ϕ̃ · ∇ψ̃) dx (4-15)

for all ψ ∈ Xm , where ϕ ∈ Xm . Moreover, τ1, τ2, . . . , τJm in (4-14) run through all eigenvalues of (4-15),
counting their multiplicities.

Proof. We need to prove that (4-13) can be expressed as (4-15) up to a term of order o(d). Since
K2Sϕ = Bϕ+ λ−1

m Sϕ, we let

K̃2Sϕ = B̃ϕ+ λ−1
m ϕ̃,

where B̃ϕ is the extension of Bϕ from �1 ∩�2 and ϕ̃ is the extension of ϕ from �1, both provided by
Lemma 3.3. We show that B̃ϕ is small and that λ−1

m ϕ̃ gives the main term. To this end, let V = Bϕ
in�1∩�2. Then (1−1)V = 0 in�1∩�2, ∂νV = ∂νK2Sϕ on ∂�1∩�2, and ∂νV =−∂νK1ϕ on�1∩∂�2.
Using Corollary 4.2 and Lemma 3.1, we then obtain that

‖N (V )‖L2(∂(�1∩�2))+‖N (∇V )‖L2(∂(�1∩�2)) ≤ κ(d)‖ϕ‖L2(�1),

where κ(d)= o(1) as d→ 0, and thus

‖N (B̃ϕ)‖L2(∂(�1∩�2))+‖N (∇ B̃ϕ)‖L2(∂(�1∩�2)) ≤ κ(d)‖ϕ‖
2
L2(�1)

.

Now, the Cauchy–Schwarz inequality implies that∫
�1\�2

|∇ B̃ϕ · ∇ψ | dx ≤
(∫

�1\�2

|∇ B̃ϕ|2 dx
)1

2
(∫

�1\�2

|∇ψ |2 dx
)1

2

≤ Cd
(∫

∂(�1∩�2)

N (∇ B̃ϕ)2 d S(x ′)
)1

2
(∫

�1\�2

|∇ψ |2 dx
)1

2

= o(d)

and, similarly,∫
�1\�2

|B̃ϕψ | dx ≤ Cd
(∫

∂(�1∩�2)

N (B̃ϕ)2 d S(x ′)
)1

2
(∫

�1\�2

|ψ |2 dx
)1

2

= o(d).

Analogously, one can show that the corresponding expressions involving Bϕ on �2 \�1 are also of
order o(d). �
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To pass from λ−1
m −µ

−1
m to 3k(�2)−3m(�1), observe that

λ−1
m −µ

−1
k = λ

−2
m

(
λm

µk
(µk − λm)

)
= λ−2

m

(
µk − λm −

(µk − λm)
2

µk

)
,

where (µk − λm)
2
= O(d2) since �1 and �2 are at least Lipschitz; see Corollary 6.11 in [Kozlov and

Thim 2014]. Note also that, if it is the case that �2 ⊂ �1, we can simplify the previous theorem by
removing the second integral in (4-15) and avoid the use of extensions of eigenfunctions; compare with
the statement of Theorem 1.1 in the introduction.

5. C1-perturbations of C1,α-domains

Suppose that �1 is a C1,α-domain and that it is possible to characterize the perturbed domain �2 by a
Lipschitz function h defined on the boundary ∂�1 such that (x ′, xν) ∈ ∂�2 is represented by xν = h(x ′),
where (x ′, 0) ∈ ∂�1 and xν is the signed distance to the boundary ∂�1 (with xν < 0 when x ∈�1). We
assume that ∇h = o(1) as d → 0 (uniformly). In this case, we can simplify the expression given in
Theorem 4.4 and avoid the use of extensions by stating the formula (4-14) as a boundary integral.

Theorem 5.1. Suppose that �1 is a C1,α-domain and that �2 is as described above. Then

λ−1
m −µ

−1
k = τk + o(d) (5-1)

for k = 1, 2, . . . , Jm . Here, τ = τk is an eigenvalue of

τ(ϕ, ψ)= λ−2
m

∫
∂�1

h(x ′)((1− λm)ϕψ +∇ϕ · ∇ψ) d S(x ′) for all ψ ∈ Xm, (5-2)

where ϕ ∈ Xm . Moreover, τ1, τ2, . . . , τJm in (5-1) run through all eigenvalues of (5-2), counting their
multiplicities.

Proof. Since �1 is a C1,α-domain, we can use results from the proof of Corollary 6.17 in [Kozlov
and Thim 2014]. In that proof, we showed that ϕ ∈ C1,α(�1) and also that ϕ can be extended to a
function ϕ̃ ∈ C1,α(Rn) such that∫

�1\�2

(
|ϕ(x)−ϕ(x ′, 0)|2+ |∇ϕ(x)−∇ϕ(x ′, 0)|2

)
dx ≤ Cd1+α

‖ϕ‖2L2(�1)
,

with the corresponding estimate holding for ϕ̃ on �2 \�1. Hence, Theorem 4.4 implies that λ−1
m −µ

−1
k is

given by

λ−2
m

(∫
∂�1∩�

c
2

∫ h(x ′)

0

(
(1− λm)ϕ(x ′, 0)ψ(x ′, 0)+∇ϕ(x ′, 0) · ∇ψ(x ′, 0)

)
dxν d S(x ′)

−

∫
∂�1∩�2

∫
−h(x ′)

0

(
(1− λm)ϕ̃(x ′, 0)ψ̃(x ′, 0)+∇ϕ̃(x ′, 0) · ∇ψ̃(x ′, 0)

)
dxν d S(x ′)

)
+ o(d).

The desired conclusion follows from this statement. �
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