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We consider the Toda system of Liouville equations on a compact surface 6
−1u1 = 2ρ1

(
h1eu1∫

6
h1eu1 dVg

− 1
)
− ρ2

(
h2eu2∫

6
h2eu2 dVg

− 1
)
,

−1u2 = 2ρ2

(
h2eu2∫

6
h2eu2 dVg

− 1
)
− ρ1

(
h1eu1∫

6
h1eu1 dVg

− 1
)
,

which arises as a model for nonabelian Chern–Simons vortices. Here h1 and h2 are smooth positive
functions and ρ1 and ρ2 two positive parameters.

For the first time, the ranges ρ1 ∈ (4kπ, 4(k + 1)π), k ∈ N, and ρ2 ∈ (4π, 8π) are studied with a
variational approach on surfaces with arbitrary genus. We provide a general existence result by using a
new improved Moser–Trudinger-type inequality and introducing a topological join construction in order
to describe the interaction of the two components u1 and u2.

1. Introduction

We are interested here in the Toda system on a compact surface 6
−1u1 = 2ρ1

(
h1eu1∫

6
h1eu1 dVg

− 1
)
− ρ2

(
h2eu2∫

6
h2eu2 dVg

− 1
)
,

−1u2 = 2ρ2

(
h2eu2∫

6
h2eu2 dVg

− 1
)
− ρ1

(
h1eu1∫

6
h1eu1 dVg

− 1
)
,

(1)

where 1 is the Laplace–Beltrami operator, ρ1 and ρ2 are two nonnegative parameters, h1, h2 :6→R are
smooth positive functions, and 6 is a compact orientable surface without boundary with a Riemannian
metric g. For the sake of simplicity, we normalize the total volume of 6 so that |6| = 1.

The above system has been widely studied in the literature since it is motivated by problems in both
differential geometry and mathematical physics. In geometry, it relates to the Frenet frame of holomorphic
curves in CPn [Bolton and Woodward 1997; Calabi 1953; Chern and Wolfson 1987]. In mathematical
physics, it models nonabelian Chern–Simons theory in the self-dual case, when a scalar Higgs field is
coupled to a gauge potential [Dunne 1995; Tarantello 2008; 2010; Yang 2001].
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Equation (1) is variational, and solutions correspond to critical points of the Euler–Lagrange functional
Jρ : H 1(6)× H 1(6)→ R (ρ = (ρ1, ρ2)) given by

Jρ(u1, u2)=

∫
6

Q(u1, u2) dVg +

2∑
i=1

ρi

(∫
6

ui dVg − log
∫
6

hi eui dVg

)
, (2)

where Q(u1, u2) is a quadratic form that has the expression

Q(u1, u2)=
1
3(|∇u1|

2
+ |∇u2|

2
+∇u1 · ∇u2). (3)

The structure of Jρ strongly depends on the range of the two parameters ρ1 and ρ2. An important tool in
treating this kind of functional is the Moser–Trudinger inequality; see (7). For the Toda system, a similar
sharp inequality was derived in [Jost and Wang 2001]:

4π log
∫
6

eu1−u1 dVg+4π log
∫
6

eu2−u2 dVg≤

∫
6

Q(u1, u2) dVg+C6, (u1, u2)∈H 1(6)×H 1(6); (4)

here ui stands for the average of ui on 6.
By means of the latter inequality, we immediately get existence of a critical point provided both ρ1

and ρ2 are less than 4π : indeed for these values, one can minimize Jρ using standards methods of the
calculus of variations. The case of larger ρi is subtler due to the fact that Jρ is unbounded from below.

Before describing the main difficulties of (1), we consider its scalar counterpart: the Liouville equation

−1u = 2ρ
(

heu∫
6

heu dVg
− 1

)
, (5)

where h is a smooth positive function on 6 and ρ a positive real number.
Equation (5) appears in conformal geometry in the problem of prescribing the Gaussian curvature,

whereas in mathematical physics it describes models in abelian Chern–Simons theory. The literature
on (5) is broad with many results regarding existence, blow-up analysis, compactness, etc. [Malchiodi
2008b; Tarantello 2010].

As with many geometric problems, (5) presents blow-up phenomena. It was proved in [Brezis and
Merle 1991; Li 1999; Li and Shafrir 1994] that, for a sequence of solutions (un)n that blow up around a
point p, the following quantization property holds:

lim
r→0

lim
n→+∞

∫
Br (p)

heun dVg = 4π.

Moreover, the limit function (after rescaling) can be viewed as the logarithm of the conformal factor of
the stereographic projection from S2 onto R2, composed with a dilation.

Concerning the Toda system (1), a sequence of solutions can blow up in three different ways: one
component blows up and the other stays bounded, one component blows up faster than the other, or both
components diverge at the same rate. Jost et al. [2006] proved that the volume quantizations in these
scenarios are (0, 4π) or (4π, 0) in the first case, (4π, 8π) or (8π, 4π) for the second one, and (8π, 8π)
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for the last situation. Moreover, each alternative may indeed occur [D’Aprile et al. 2015; 2014; del Pino
et al. 2005; Esposito et al. 2005; Musso et al. 2013].

With this at hand, with some further analysis, it is possible to obtain a compactness property, namely
that the set of solutions to (1) is bounded (in any smoothness norm) for (ρ1, ρ2) bounded away from
multiples of 4π (see Theorem 2.1). This fact, combined with a monotonicity method from [Struwe 1985],
allows one to attack problem (1) via min-max methods.

Let us now discuss the variational strategy for proving existence of solutions and how our result
compares to the existing literature. The goal is to introduce min-max schemes based on the study of the
sublevels of the Euler–Lagrange functional. Consider the scalar case (5), with Euler–Lagrange energy

Iρ(u)=
1
2

∫
6

|∇gu|2 dVg + 2ρ
(∫

6

u dVg − log
∫
6

heu dVg

)
. (6)

By the classical Moser–Trudinger inequality

8π log
∫
6

e(u−u) dVg ≤
1
2

∫
6

|∇u|2 dVg +C6,g, (7)

the latter energy is coercive if and only if ρ < 4π . A key result in treating this kind of problem without
coercivity conditions (i.e., when ρ > 4π ) is an improved version of (7), usually refereed to as the Chen–Li
inequality and obtained in [Chen and Li 2001; Djadli 2008] (see also [Djadli and Malchiodi 2008]);
roughly speaking, it states that, if the function eu is spread (in a quantitative sense) among at least (k+1)
regions of 6, k ∈ N, then the constant in the left-hand side of (7) can be taken nearly (k + 1) times
larger. This in turn implies that, for such functions u, Iρ(u) is bounded below even when ρ < 4(k+ 1)π .
Therefore, if ρ satisfies the latter inequality and if Iρ(u) attains large negative values (i.e., when the lower
bounds fail), eu should be concentrated near at most k points of 6; see [Djadli 2008] for a formal proof
of this fact.

To describe such low sublevels, it is then natural to introduce the family of unit measures 6k that are
supported at at most k points of 6, known as formal barycenters of 6 of order k:

6k =

{ k∑
i=1

tiδxi :

k∑
i=1

ti = 1, ti ≥ 0, xi ∈6 for all i = 1, . . . , k
}
. (8)

Endowed with the weak topology of distributions, 61 is homeomorphic to 6 while, for k ≥ 2, 6k is a
stratified set (union of open manifolds of different dimensions). It is possible to show that the homology
of 6k is always nontrivial and, using suitable test functions, that it injects into that of sufficiently low
sublevels of Iρ : this gives existence of solutions to (5) via suitable min-max schemes for every ρ /∈ 4πN.

Returning to the Toda system (1), a first existence result was presented in [Malchiodi and Ndiaye 2007]
for ρ1 ∈ (4kπ, 4(k+ 1)π), k ∈ N, and ρ2 < 4π (see also [Jost et al. 2006] for the case k = 1). When one
of the two parameters is small, the system (1) resembles the scalar case (5) and one can adapt the above
argument to this framework as well. When both parameters exceed the value 4π , the description of the
low sublevels becomes more involved due to the interaction of the two components u1 and u2.
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The first variational approach to understand this interaction was given by Malchiodi and Ruiz [2013],
who obtained an existence result for (ρ1, ρ2) ∈ (4π, 8π)2. This was done in particular by showing that, if
both components of the system concentrate near the same point and with the same rate, then the constants
in the left-hand side of (4) can be nearly doubled.

Later, the case of general parameters (ρ1, ρ2) /∈3 was considered in [Battaglia et al. 2015] but only
for surfaces of positive genus. Using improved inequalities à la Chen and Li, it is possible to prove that,
if ρ1 < 4(k + 1)π and ρ2 < 4(l + 1)π , k, l ∈ N, and if Jρ(u1, u2) is sufficiently low, then either eu1 is
close to 6k or eu2 is close to 6l in the distributional sense. This (not mutually exclusive) alternative can
be expressed in terms of the topological join of 6k and 6l . Recall that, given two topological spaces A
and B, their join A ∗ B is defined as the family of elements of the form

A ∗ B =
{(a, b, s) : a ∈ A, b ∈ B, s ∈ [0, 1]}

E
, (9)

where E is an equivalence relation such that

(a1, b, 1)
E
∼ (a2, b, 1) for all a1, a2 ∈ A, b ∈ B, (a, b1, 0)

E
∼ (a, b2, 0) for all a ∈ A, b1, b2 ∈ B.

This construction allows one to map low sublevels of Jρ into 6k ∗6l , with the join parameter s expressing
whether distributionally eu1 is closer to 6k or eu2 is closer to 6l .

The hypothesis on the genus of 6 in [Battaglia et al. 2015] was used in the following way: on such
surfaces, one can construct two disjoint simple noncontractible curves γ1 and γ2 such that 6 retracts on
each of them through continuous maps 51 and 52. By means of these retractions, low-energy sublevels
may be described in terms of (γ1)k or (γ2)l only. On the other hand, one can build test functions modeled
on (γ1)k ∗ (γ2)l for which each component ui only concentrates near γi , to somehow minimize the
interaction between the two components u1 and u2, due to the fact that γ1 and γ2 are disjoint.

We prove here the following result, which for the first time applies to surfaces of arbitrary genus when
both parameters ρi are supercritical and one of them also arbitrarily large:

Theorem 1.1. Let h1 and h2 be two positive smooth functions, and let6 be any compact surface. Suppose
that ρ1 ∈ (4kπ, 4(k+ 1)π), k ∈ N, and ρ2 ∈ (4π, 8π). Then problem (1) has a solution.

Remark 1.2. Theorem 1.1 is new when 6 is a sphere and k ≥ 3. As we already discussed, the case of
surfaces with positive genus was covered in [Battaglia et al. 2015]. The case of 6 ' S2 and k = 1 was
covered in [Malchiodi and Ruiz 2013], while for k = 2 it was covered in [Lin et al. 2014]. In the latter
paper, the authors indeed computed the Leray–Schauder degree of the equation for the range of ρi in
Theorem 1.1. It turns out that the degree of (1) is 0 for the sphere when k ≥ 3: since solutions do exist
by Theorem 1.1, it means that either they are degenerate or that degrees of multiple ones cancel, so a
global degree counting does not detect them. A similar phenomenon occurs for (5) on the sphere, when
ρ > 12π [Chen and Lin 2003]. Even for positive genus, we believe that our approach could be useful in
computing the degree of the equation, as it happened in [Malchiodi 2008a] for the scalar equation (5).
More precisely, we speculate that the degree should be computable as 1−χ(Y ), where the set Y is given
in (51). This is satisfied for example in the case of the sphere thanks to Lemma 5.4.
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Other results on the degree of the system, but for different ranges of parameters, are available in
[Malchiodi and Ruiz 2015].

As described above, in the situation of Theorem 1.1, it is natural to characterize low sublevels of the
Euler–Lagrange energy Jρ by means of the topological join 6k ∗61 (notice that 61 ' 6). However,
differently from [Battaglia et al. 2015], we crucially take into account the interaction between the two
components u1 and u2. As one can see from (3), the quadratic energy Q penalizes situations in which the
gradients of the two components are aligned, and we would like to make a quantitative description of this
effect. Our proof uses four new main ingredients.

• A refinement of the projection from low-energy sublevels onto the topological join 6k ∗61 from
[Battaglia et al. 2015] (see Section 3), which uses the scales of concentration of the two components and
which extends some construction in [Malchiodi and Ruiz 2013]. Having to deal with arbitrarily high
values of ρ1, differently from [Malchiodi and Ruiz 2013], we also need to take into account the stratified
structure of 6k and the closeness in measure sense to its substrata.

• A new, scaling-invariant improved Moser–Trudinger inequality for system (1); see Proposition 3.5.
This is inspired from another one in [Brezis and Merle 1991] for singular Liouville equations, i.e., of
the form (5) but with Dirac masses on the right-hand side. The link between the two problems arises in
the situation when one of the two components in (1) is much more concentrated than the other: in this
case, the measure associated to its exponential function resembles a Dirac delta compared to the other
one. The above improved inequality gives extra constraints to the projection on the topological join; see
Proposition 3.7 and Corollary 3.8.

• A new set of test functions showing that the characterization of low-energy levels of Jρ is sharp, as a
subset Y of 6k ∗61. We need indeed to build test functions modeled on a set that contains 6k−1 ∗61,
and the stratified nature of 6k−1 makes it hard to obtain uniform upper estimates on such functions.

• A new topological argument showing the noncontractibility of the above set Y , which we use then
crucially to develop our min-max scheme. The fact that Y is simply connected and has Euler characteristic
equal to 1 forces us to use rather sophisticated tools from algebraic topology.

We expect that our approach might extend to the case of general physical parameters ρ1 and ρ2,
including the singular Toda system, in which Dirac masses (corresponding to ramification or vortex points)
appear in the right-hand side of (1); see also [Battaglia 2015] for some results with this approach.

The paper is organized as follows. In Section 2, we recall some improved versions of the Moser–
Trudinger inequality: first some that rely on the macroscopic spreading of the components u1 and u2

and then some refined ones, which are scaling-invariant. In Section 3, we derive a new — still scaling-
invariant — improved version of the Moser–Trudinger inequality for systems, and we use it to find a
characterization of low-energy levels of Jρ by means of a subset Y of the topological join 6k ∗61. In
Section 4, we construct then suitable test functions that show the optimality of the above characterization.
In Section 5, we finally introduce the variational method to prove the existence of solutions.
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Notation. The symbol Br (p) stands for the open metric ball of radius r and center p, while Ap(r1, r2) is
the open annulus of radii r1 and r2 and center p. For the complement of a set � in 6, we will write �c.
Given a function u ∈ L1(6) and �⊂6, the average of u on � is denoted by the symbol∫

\

�

u dVg =
1
|�|

∫
�

u dVg,

while u stands for the average of u in 6: since we are assuming |6| = 1, we have

u =
∫
6

u dVg =

∫

\

6

u dVg.

We also write
N( f, D)=

f∫
D f dVg

.

The sublevels of the functional Jρ will be denoted by

J a
ρ = {(u1, u2) ∈ H 1(6)× H 1(6) : Jρ(u1, u2)≤ a}.

Throughout the paper, the letter C will stand for large constants that are allowed to vary among different
formulas or even within the same line. To stress the dependence of the constants on some parameter,
we add subscripts to C , as Cδ, etc. We will write or (1) to denote quantities that tend to 0 as r → 0 or
r→+∞; we will similarly use the symbol Or (1) for bounded quantities.

2. Preliminaries

We begin by stating a compactness property that is needed in order to run the variational methods. Letting
3 be the set defined as

3= (4πN×R)∪ (R∪ 4πN)⊆ R2, (10)

by the local blow-up in [Jost et al. 2006] and some analysis [Battaglia and Mancini 2015], one deduces:

Theorem 2.1 [Battaglia and Mancini 2015; Jost et al. 2006]. For (ρ1, ρ2) in a fixed compact set of R2
\3,

the family of solutions to (1) is uniformly bounded in C2,β for some β > 0.

In the next two subsections, we will discuss some improved versions of the Moser–Trudinger inequality
(4) that hold under suitable assumptions on the components of the system. The first type of inequality
relies on the spreading of the (exponentials of the) components over the surface [Battaglia et al. 2015].
The second one, from [Malchiodi and Ruiz 2013], relies instead on comparing the scales of concentration
of the two components.

2.1. Macroscopic improved inequalities. Here comes the first kind of improved inequality: basically, if
the masses of both eu1 and eu2 are spread on at least k+ 1 and l + 1 different sets, then the logarithms
in (4) can be multiplied by k+ 1 and l + 1, respectively. Notice that this result was given in [Malchiodi
and Ndiaye 2007] in the case l = 0 and in [Malchiodi and Ruiz 2013] in the case k = l = 1. The proof
relies on localizing (4) by using cut-off functions near the regions of volume concentration. For (7), this
was previously shown in [Chen and Li 1991].
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Lemma 2.2 [Battaglia et al. 2015]. Let δ > 0, θ > 0, k, l ∈ N, and {�1,i , �2, j }i∈{0,...,k}, j∈{0,...,l} ⊂6 be
such that

d(�1,i , �1,i ′)≥ δ for all i, i ′ ∈ {0, . . . , k} with i 6= i ′,

d(�2, j , �2, j ′)≥ δ for all j, j ′ ∈ {0, . . . , l} with j 6= j ′.

Then for any ε > 0, there exists C =C(ε, δ, θ, k, l, 6) such that any (u1, u2)∈ H 1(6)×H 1(6) satisfying∫
�1,i

eu1 dVg ≥ θ

∫
6

eu1 dVg for all i ∈ {0, . . . , k},∫
�2, j

eu2 dVg ≥ θ

∫
6

eu2 dVg for all j ∈ {0, . . . , l}

satisfies

4π(k+ 1) log
∫
6

eu1−u1 dVg + 4π(l + 1) log
∫
6

eu2−u2 dVg ≤ (1+ ε)
∫
6

Q(u1, u2) dVg +C.

As one can see, larger constants in the left-hand side of (4) can be helpful in obtaining lower bounds
on the functional Jρ even when the coefficients ρ1 and ρ2 exceed the threshold value (4π, 4π). A
consequence of this fact is that, when the energy Jρ(u1, u2) is large and negative, then eu1 and eu2 are
forced to concentrate near certain points in 6 whose number depends on ρ1 and ρ2. To make this
description rigorous, it is convenient to introduce some further notation.

We denote by M(6) the set of all Radon measures on 6 and introduce a distance on it by using duality
versus Lipschitz functions; that is, we set

d(ν1, ν2)= sup
‖ f ‖Lip(6)≤1

∣∣∣∣∫
6

f dν1−

∫
6

f dν2

∣∣∣∣, ν1, ν2 ∈M(6). (11)

This is known as the Kantorovich–Rubinstein distance.
The following result was proven using the improved inequality from Lemma 2.2 (see previous page

for N):

Proposition 2.3 [Battaglia et al. 2015]. Suppose ρ1 ∈ (4kπ, 4(k+ 1)π) and ρ2 ∈ (4lπ, 4(l + 1)π). Then,
for any ε > 0, there exists L > 0 such that any (u1, u2) ∈ J−L

ρ satisfies either

d(N(eu1, 6),6k) < ε or d(N(eu2, 6),6l) < ε.

When a measure is d-close to an element in 6k (see (8)), it is then possible to map it continuously to a
nearby element in this set. The next proposition collects some properties of this map from Proposition
2.2 in [Battaglia et al. 2015] and Lemma 2.3 in [Djadli and Malchiodi 2008] (together with the proof of
Lemma 3.10).

Proposition 2.4. Given l ∈ N, for εl sufficiently small, there exists a continuous retraction

ψl : {ν ∈M(6) : d(ν,6l) < 2εl} →6l .

Here continuity refers to the distance d. In particular, if νn ⇀ ν in the sense of measures, with ν ∈ 6l ,
then ψl(νn)→ ν.
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Furthermore, the following property holds: given any ε > 0, there exists ε′� ε with ε′ depending on l
and ε such that if d(ν,6l−1) > ε then there exist l points x1, . . . , xl such that

d(xi , x j ) > 2ε′ for i 6= j,
∫

Bε′ (xi )

ν > ε′ for all i = 1, . . . , l.

The alternative in Proposition 2.3 can be expressed naturally in terms of the topological join of 6k ∗6l ;
see also the comments after (9). Indeed, we can define a map from the low sublevels J−L

ρ onto this set.

Proposition 2.5 [Battaglia et al. 2015]. Suppose ρ1 ∈ (4kπ, 4(k+ 1)π) and ρ2 ∈ (4lπ, 4(l + 1)π). Then
for L > 0 sufficiently large there exists a continuous map

9 : J−L
ρ →6k ∗6l .

Proof. The proof is carried out exactly as in Proposition 4.7 of [Battaglia et al. 2015]. We repeat here the
argument for the reader’s convenience as we will need to suitably modify it later on. By Proposition 2.3, we
know that for any ε>0, taking L>0 sufficiently large, (u1, u2)∈ J−L

ρ satisfies either d(N(eu1, 6),6k)<ε

or d(N(eu2, 6),6l) < ε (or both). Using then Proposition 2.4, it follows that either ψk(N(eu1, 6)) or
ψl(N(eu2, 6)) is well-defined. We let d1 = d(N(eu1, 6),6k) and d2 = d(N(eu2, 6),6l) and introduce a
function s̃ = s̃(d1, d2) in the following way:

s̃(d1, d2)= f
(

d1

d1+ d2

)
,

where f is given by

f (t)=


0 if t ∈ [0, 1

4 ],

2z− 1
2 if t ∈ (1

4 ,
3
4),

1 if t ∈ [ 34 , 1].
We finally set

9(u1, u2)= (1− s̃)ψk(N(eu1, 6))+ s̃ψl(N(eu2, 6)). (12)

One just has to observe that, when one of the two ψ is not defined, the other necessarily is. Therefore,
the map is well-defined by the equivalence relation of the topological join; see (9). �

2.2. Scaling-invariant improved inequalities. Malchiodi and Ruiz [2013] set up a tool to deal with
situations to which Lemma 2.2 does not apply, for example in cases when both eu1 and eu2 are concentrated
around only one point. They provided a definition of the center and the scale of concentration of such
functions, to obtain new improved inequalities in terms of these. We are interested here in measures
concentrated around possibly multiple points. We need therefore a localized version of the argument in
[Malchiodi and Ruiz 2013], which applies to measures supported in a ball and sufficiently concentrated
around its center.

Given x0 ∈6 and r > 0 small, consider the set

Ax0,r =

{
f ∈ L1(Br (x0)) : f > 0 a.e. and

∫
Br (x0)

f dVg = 1
}
,

endowed with the topology inherited from L1(6).
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Fix a constant R > 1, and let R0 = 3R. Define σ : Br (x0)×Ax0,r → (0,+∞) such that∫
Bσ(x, f )(x)∩Br (x0)

f dVg =

∫
(BR0σ(x, f )(x))c∩Br (x0)

f dVg. (13)

It is easy to check that σ(x, f ) is uniquely determined and continuous (both in x ∈ Br (x0) and in f ∈ L1).
Moreover (see (3.2) in [Malchiodi and Ruiz 2013]), σ satisfies

d(x, y)≤ R0 max{σ(x, f ), σ (y, f )}+min{σ(x, f ), σ (y, f )}. (14)

We now define T : Br (x0)×Ax0,r → R as

T (x, f )=
∫

Bσ(x, f )(x)∩Br (x0)

f dVg.

Lemma 2.6 ([Malchiodi and Ruiz 2013] with minor changes). If x ∈ Br (x0) is such that T (x, f ) =
maxy∈Br (x0)

T (y, f ), then σ(x, f ) < 3σ(x, f ) for any other x ∈ Br (x0).

As a consequence of the previous lemma and of a covering argument, one can obtain the following:

Lemma 2.7 ([Malchiodi and Ruiz 2013] with minor changes). There exists a fixed τ > 0 such that

max
x∈Br (x0)

T (x, f ) > τ > 0 for all f ∈Ax0,r .

Let us define σ :Ax0,r → R by

σ( f )= 3 min{σ(x, f ) : x ∈ Br (x0)},

which is obviously a continuous function.
Given τ as in Lemma 2.7, consider the set

S( f )= {x ∈ Br (x0) : T (x, f ) > τ, σ (x, f ) < σ( f )}. (15)

If x ∈ Br (x0) is such that T (x, f )=maxx∈Br (x0)
T (x, f ), then Lemmas 2.6 and 2.7 imply that x ∈ S( f ).

Therefore, S( f ) is a nonempty set for any f ∈Ax0,r . Moreover, recalling (13) and the notation before it,
from (14), we have that

diam(S( f ))≤ (R0+ 1)σ ( f ). (16)

We will now restrict ourselves to a class of functions in L1(Br (x0)) that are almost entirely concentrated
near the center x0. In this case, one expects σ( f ) to be small and points in S( f ) to be close to x0: see
Remark 2.8 for precise estimates in this spirit. Given ε > 0 small, let us introduce the class of functions

Cε,r (x0)=

{
f ∈Ax0,r :

∫
Bε(x0)

f dVg > 1− ε
}
. (17)

Remark 2.8. For this class of functions, we claim that T (x, f ) ≤ ε when d(x, x0) > 2ε. In fact, if
σ(x, f )≤ d(x, x0)− ε, then we are done since

T (x, f )=
∫

Bσ(x, f )(x)∩Br (x0)

f dVg ≤

∫
Bε(x0)c∩Br (x0)

f dVg ≤ ε.
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If this is not the case, i.e., σ(x, f ) > d(x, x0)− ε, then using d(x, x0) > 2ε, we obtain

R0σ(x, f ) > R0(d(x, x0)− ε) >
1
2 R0 d(x, x0)

> d(x, x0)+ ε.

Similarly as before, we get

T (x, f )=
∫
(BR0σ(x, f )(x))c∩Br (x0)

f dVg ≤

∫
Bε(x0)c∩Br (x0)

f dVg ≤ ε.

Being τ -universal, ε can be taken so small that (T (x, f )− τ)+ = 0 outside B2ε(x0) for all f ∈ Cε,r (x0).

By the Nash embedding theorem, we can assume that 6 ⊂ RN isometrically, N ∈ N. Take an open
tubular neighborhood 6 ⊂U ⊂ RN of 6 and δ > 0 small enough so that

co[Bx((R0+ 1)δ)∩6] ⊂U for all x ∈6, (18)

where co denotes the convex hull in RN .
For f ∈ Cε,r (x0), we define now

η( f )=

∫
6
(T (x, f )− τ)+(σ ( f )− σ(x, f ))+x dVg∫
6
(T (x, f )− τ)+(σ ( f )− σ(x, f ))+ dVg

∈ RN ,

which is well-defined; see Remark 2.8. The map η yields a sort of center of mass in RN of the measure
induced by f . Observe that the integrands become nonzero only on the set S( f ). However, whenever
σ( f )≤ δ, (16) and (18) imply that η( f ) ∈U , and so we can define

β : { f ∈Ax0,r : σ( f )≤ δ} →6, β( f )= P ◦ η( f ),

where P :U →6 is the orthogonal projection.
We finally define the map ψ : Cε,r (x0)→6× (0, r), which will be the main tool of this subsection:

ψ( f )= (β, σ ). (19)

Roughly, this map expresses the center of mass of f and its scale of concentration around this point.
Malchiodi and Ruiz [2013] proved that, if both components (u1, u2) of the Toda system concentrate

around the same point in 6, with the same scale of concentration, then the constants in the left-hand side
of (4) can be nearly doubled.

Remark 2.9. The core of the argument of the improved inequality in [Malchiodi and Ruiz 2013] consists
of proving that

ψ(N(eu1, Br (x)))= ψ(N(eu2, Br (y)))

implies the existence of σ > 0 and of two balls Bσ (z1) and Bσ (z2) such that∫
Bσ (zi )

eui dVg∫
6

eui dVg
≥ γ0,

∫
(BRσ (zi ))c∩Br (zi )

eui dVg∫
6

eui dVg
≥ γ0 for i = 1, 2 with d(z1, z2). σ (20)

for some fixed positive constant γ0. Once this is achieved, the improved inequality is obtained by scaling
arguments and Kelvin inversions (see Section 3 in [Malchiodi and Ruiz 2013] for full details).
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Even when eu1 and eu2 are not necessarily concentrated near a single point, the assumptions of the next
proposition still allow us to obtain (20) and hence again nearly double constants in the left-hand side of (4).

Proposition 2.10 ([Malchiodi and Ruiz 2013] with minor changes). Let ε̃ > 0 and δ′ > 0. Then there
exist R = R(ε̃) and ψ as in definition (19) such that, for any (u1, u2) ∈ H 1(6)× H 1(6) such that there
exist x, y ∈6 with ∫

Br (x)
eu1 dVg ≥ δ

′

∫
6

eu1dVg,

∫
Br (y)

eu2 dVg ≥ δ
′

∫
6

eu1 dVg,

N(eu1, Br (x)) ∈ Cε,r (x), N(eu2, Br (y)) ∈ Cε,r (y)
and

ψ(N(eu1, Br (x)))= ψ(N(eu2, Br (y))), (21)

the following inequality holds:

8π
(

log
∫
6

eu1−u1 dVg + log
∫
6

eu2−u2 dVg

)
≤ (1+ ε̃)

∫
6

Q(u1, u2) dVg +C (22)

for some C = C(ε̃, δ′, 6).

Remark 2.11. (i) Condition (21) can be relaxed. In fact, let C1 > 1 and C2 > 0 be two positive constants
and define

ψ(N(eu1, Br (x)))= (β1, σ1), ψ(N(eu2, Br (y)))= (β2, σ2).

Then, the result still holds true if

1
C1
≤
σ1

σ2
≤ C1, d(β1, β2)≤ C2σ1.

In such a case, the constant C would also depend on C1 and C2.

(ii) In the right-hand side of (22), one can actually integrate Q(u1, u2) only in any set compactly containing
Br (x)∪ Br (y). This can be seen using suitable cut-off functions; see the comments before Lemma 2.2.

We can now improve this result for situations in which the first component of the system is concentrated
around l points of 6, l ∈N. The proof relies on combining the argument for Proposition 2.10 with the
macroscopic improved inequality of Lemma 2.2 (see also Remark 2.11(ii)).

Proposition 2.12. Let ε̃ > 0, δ′ > 0, and k ∈ N. Then there exist R = R(ε̃) and ψ as in definition (19)
such that, for any (u1, u2) ∈ H 1(6)× H 1(6) with the property that there exist {xi }i∈{1,...,k} ⊂ 6 and
y ∈6 with

d(xi , x j ) > 4δ′ for all i, j ∈ {1, . . . , k} with i 6= j,∫
Bδ′ (xi )

eu1 dVg ≥ δ
′

∫
6

eu1 dVg for i = 1, . . . , k,
∫

Bδ′ (y)
eu2 dVg ≥ δ

′

∫
6

eu2 dVg

such that
N(eu1, Bδ′(xi )) ∈ Cε,δ′(xi ) for i = 1, . . . , k, N(eu2, Bδ′(y)) ∈ Cε,δ′(y)
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and
ψ(N(eu1, Bδ′(xl)))= ψ(N(eu2, Bδ′(y))) for some l ∈ {1, . . . , k},

the following inequality holds:

4π(k+ 1) log
∫
6

eu1−u1 dVg + 8π log
∫
6

eu2−u2 dVg ≤ (1+ ε̃)
∫
6

Q(u1, u2) dVg +C

for some C = C(ε̃, δ′, l, 6).

In the next section, we will derive a new improved inequality for the Toda system with scaling-invariant
features; see Proposition 3.5. The result is inspired by arguments developed in [Bartolucci and Malchiodi
2013] for the singular Liouville equation where a Dirac delta is involved (see Remark 3.6), and for the
first time, this type of inequality is presented for a two-component problem.

3. A refined projection onto the topological join

Suppose that ρ1 ∈ (4kπ, 4(k+ 1)π) and ρ2 ∈ (4π, 8π). By Proposition 2.5, we have the existence of a
map 9 from the low sublevels of Jρ onto the topological join 6k ∗61; see (8) and (9). However, we will
next need to also take into account the fine structure of the measures eu1 and eu2 as described in (19). For
this reason, we will modify the map 9 so that the join parameter s in (9) will depend on the local centers
of mass and the local scales defined in (19) and (23). We will see in the sequel that this will provide extra
information for describing functions in the low sublevels of Jρ .

3.1. Construction. We start by defining the local centers of mass and the local scales of functions that
are concentrated around l well-separated points of 6.

Let l ≥ 2, consider 0< εl � εl−1� 1 as given in Proposition 2.4, and suppose d(N(eu1, 6),6l) <

2εl so that ψl is well-defined. Assume moreover d(N(eu1, 6),6l−1) > εl−1. By the second part of
Proposition 2.4, there exist ε′l−1� εl−1 and l points x l

1, . . . , x l
l such that

d(x l
i , x l

j ) > 2ε′l−1 for i 6= j,
∫

Bε′l−1
(x l

i )

eu1 dVg > ε
′

l−1

∫
6

eu1 dVg for all i = 1, . . . , l.

We then localize u1 around the point x l
i and define

f
x l

i
loc(u1)=

eu1χBε′l−1
(x l

i )∫
Bε′l−1

(x l
i )

eu1 dVg
.

Given ε > 0, by the second assertion of Proposition 2.4, taking εl sufficiently small, one gets∫
Bε(x l

i )

f
x l

i
loc(u1) dVg > 1− ε for d(N(eu1, 6),6l) < 2εl .

It follows that f
x l

i
loc(u1) ∈ Cε,ε′l−1

(x l
i ) (see (17)), and hence, the map ψ in (19) is well-defined on f

x l
i

loc(u1).
We then set (

βx l
i
, σx l

i

)
:= ψ

(
f

x l
i

loc(u1)
)
. (23)
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In this way, starting from a function with d(N(eu1, 6),6l)< 2εl and such that d(N(eu1, 6),6l−1)> εl−1,
we obtain, around each point x l

i , a notion of local center of mass and scale of concentration.
When l = 1, we have to deal with just one point x1

1 of 6. We then apply the map ψ to the function f
x1

1
loc

directly.
As we discussed above, we would like to map low-energy sublevels of Jρ into the topological join6k∗61

taking the above scales into account. More precisely, the parameter s in (9) will depend on the local
scale σx l

i
only of the points near the center of mass of eu2 (in case of ambiguity, we will define a sort of

averaged scale).
To proceed rigorously, let 0< εk � εk−1� · · · � ε1� 1 be as before. We consider cut-off functions

f, gl , and h for l = 1, . . . , k− 1 such that

f(t)=
{

0, t ≥ 2εk,

1, t ≤ εk,

gl(t)=
{

0, t ≥ 2εl,

1, t ≤ εl,
l = 1, . . . , k− 1, (24)

h(t)=
{

0, t ≥ 1
8ε
′

k−1,

1, t ≤ 1
16ε
′

k−1.
(25)

We define now a global scale σ1(u1) ∈ (0, 1] for eu1 in three steps. Suppose d(N(eu2, 6),61) < 2ε1 so
that ψ( f z

loc(u2))= (βz, σz) is well-defined.
First of all, we define an averaged scale for eu1 by recurrence in the following way. If we have

d(N(eu1, 6),61) < 2ε1, we set C1(u1)= σx1
1
. For l ∈ {2, . . . , k− 1}, we define recursively

Cl(u1)= gl−1
(
d(N(eu1, 6),6l−1)

)
Cl−1(u1)+

(
1− gl−1

(
d(N(eu1, 6),6l−1)

))1
l

l∑
i=1

σ l
xi
.

Secondly, we interpolate between Ck−1(u1) and the local scale of the closest point to βz among the βxk
i

(provided they are well-defined), setting

B(u1, u2)= h
(
d
(
βz,

{
βxk

1
, . . . , βxk

k

}))
σx +

(
1− h

(
d
(
βz,

{
βxk

1
, . . . , βxk

k

})))1
k

k∑
i=1

σxk
i
,

A(u1, u2)= gk−1
(
d(N(eu1, 6),6k−1)

)
Ck−1(u1)+

(
1− gk−1

(
d(N(eu1, 6),6k−1)

))
B(u1, u2),

where x = xk
j was chosen so that it realizes the minimum of d(βz, {βxk

1
, . . . , βxk

k
}): notice that, since

d(xk
j , xk

l )≥ 2ε′k−1 for j 6= l, by (25) the point realizing the latter minimum is unique if h 6= 0.
As a third and final step, to check whether eu1 is d-close to 6k , we set

σ1(u1)= f
(
d(N(eu1, 6),6k)

)
A(u1, u2)+

(
1− f

(
d(N(eu1, 6),6k)

))
.

We define next the global scale σ2(u2) ∈ (0, 1] of eu2 . We will be interested here in functions
concentrated near just one point of 6. Therefore, we just need the single local scale C1(u2) = σz if
ψ( f z

loc(u2))= (βz, σz) is well-defined. Moreover, we have to check the d-closeness of eu2 to 61. Hence,
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the scale reads

σ2(u2)= g1
(
d
(
N(eu2, 6),61

))
σz +

(
1− g1

(
d(N(eu2, 6),61)

))
.

We can now specify the join parameter s in (9). Fix a constant M � 1, and consider the function

FM(t)=


0, t ≤ 1/M,

t
1+ t

, t ∈ [2/M,M],

1, t ≥ 2M.
We then define

s(u1, u2)= FM

(
σ1(u1)

σ2(u2)

)
. (26)

We now pass to considering the maps ψk and ψ1 that are needed in the projection onto the join 6k ∗61;
see (12). As mentioned in the introduction of this section, it is convenient to modify these maps in such a
way that they take into account the local centers of mass defined in (19) and (23). More precisely, when
eu1 is concentrated in k well-separated points of 6, we would rather consider the local centers of mass βx l

i

in (23) than the supports of the map ψk in Proposition 2.4.
Suppose d(N(eu1, 6),6k) < 2εk so that ψk is well-defined, and suppose d(N(eu1, 6),6k−1) > εk−1

so that βxk
i

are defined for i = 1, . . . , k. Let

ψk(N(eu1, 6),6k)=

k∑
i=1

tiδyi , ti ∈ [0, 1], yi ∈6.

Observe that, by construction and by the second statement in Proposition 2.4, d(βxk
i
, yi )→ 0 as εk→ 0.

Hence, there exists a geodesic γi joining yi and βxk
i

in unit time. We then perform an interpolation:

ψ̃k(N(eu1, 6))=


∑k

i=1 tiδyi if d(N(eu1, 6),6k−1)≤ εk−1,∑k
i=1 tiδγi (ε

−1
k−1d(N(eu1 ,6),6k−1)−1) if d(N(eu1, 6),6k−1) ∈ (εk−1, 2εk−1),∑k

i=1 tiδβxk
i

if d(N(eu1, 6),6k−1)≥ 2εk−1.

(27)

For a function u2 with d(N(eu2, 6),61) < 2ε1, letting ψ1(N(eu2, 6))= δz , we let

ψ̃1(N(eu2, 6))= δβz . (28)

With these maps and this join parameter, we finally define the refined projection 9̃ : J−L
ρ →6k ∗61 as

9̃(u1, u2)= (1− s)ψ̃k(N(eu1, 6))+ sψ̃1(N(eu2, 6)). (29)

3.2. A new improved Moser–Trudinger inequality. Using the improved geometric inequality in [Bar-
tolucci and Malchiodi 2013] for the singular Liouville equation, we can provide a dilation-invariant
improved inequality for system (1). Before stating the main result, we prove some auxiliary lemmas; we
first recall our notation on annuli at the end of Section 1.
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Lemma 3.1. Let γ0 > 0, τ0 > 0, z ∈6, and r2 > r1 > 0 (both small) be such that∫
Az(r1,r2)

eu2 dVg∫
6

eu2 dVg
> γ0 and sup

y∈Az(r1,r2)

∫
Bτ0d(y,z)(y)

eu2 dVg∫
Az(r1,r2)

eu2 dVg
< 1− τ0. (30)

Then for any ε > 0, there exist C = C(ε, τ0, γ0), τ̃0 = τ̃0(τ0, γ0), r̃1 ∈ [r1/C, r1/4], r̃2 ∈ [4r2,Cr2], and
ũ2 ∈ H 1(6) such that

(a) ũ2 is constant in Br̃1(z) and on ∂Br̃2(z),

(b)
∫

Az(r̃1,r̃2)

|∇ũ2|
2 dVg ≤

∫
Az(r̃1,r̃2)

|∇u2|
2 dVg + ε

∫
6

|∇u2|
2 dVg,

(c) sup
y∈Az(r̃1,r̃2)

∫
Bτ̃0d(y,z)(y)

eũ2 dVg∫
Az(r̃1,r̃2)

eũ2 dVg
< 1− τ̃0.

Proof. First of all, we modify u2 so that it becomes constant in Br̃1(z) and on ∂Br̃2(z). Take ε > 0: we
can find C = C(ε) and properly chosen r̃1 ∈ [r1/C, r1/4] and r̃2 ∈ [4r2,Cr2] such that∫

Az(r̃1,2r̃1)

|∇u2|
2 dVg ≤ ε

∫
6

|∇u2|
2 dVg,

∫
Az(r̃2/2,r̃2)

|∇u2|
2 dVg ≤ ε

∫
6

|∇u2|
2 dVg.

We denote by u2(r̃1) and u2(r̃2) the averages

u2(r̃1)=

∫

\

Az(r̃1,2r̃1)

u2 dVg, u2(r̃2)=

∫
\

Az(r̃2/2,r̃2)

u2 dVg. (31)

Now let χ be a cut-off function, with values in [0, 1], such that

χ =


0 in Br̃1(z),
1 in Az(2r̃1, r̃2/2),
0 in (Br̃2(z))

c,

and define

ũ2 =


χ(d(x, z))u2+ (1−χ(d(x, z))u2(r̃1)) in B2r̃1(z),

u2 in Az(2r̃1, r̃2/2),
χ(d(x, z))u2+ (1−χ(d(x, z))u2(r̃2)) in (Br̃2/2(z))

c.

(32)

By Poincaré’s inequality, the Dirichlet energy of ũ2 is bounded by∫
Az(r̃1,2r̃1)

|∇ũ2|
2 dVg ≤ C̃ε

∫
6

|∇u2|
2 dVg,

∫
Az(r̃2/2,r̃2)

|∇ũ2|
2 dVg ≤ C̃ε

∫
6

|∇u2|
2 dVg,

where C̃ is a universal constant. Hence, one gets∫
Az(r̃1,r̃2)

|∇ũ2|
2 dVg ≤

∫
Az(r̃1,r̃2)

|∇u2|
2 dVg + 2C̃ε

∫
6

|∇u2|
2 dVg.

We are left with proving that there exists τ̃0 = τ̃0(τ0, γ0) such that

sup
y∈Az(r̃1,r̃2)

∫
Bτ̃0d(y,z)(y)

eũ2 dVg∫
Az(r̃1,r̃2)

eũ2 dVg
< 1− τ̃0. (33)
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If this isn’t the case, there exist (u2,n)n ⊂ H 1(6) satisfying (30), (r̃1,n)n ⊂ [r1/C, r1/4], (r̃2,n)n ⊂

[4r2,Cr2], and cut-off functions (χn)n and (ũ2,n)n ⊂ H 1(6) defined analogously to ũ2 in (32) such that

eũ2,n∫
Az(r̃1,n,r̃2,n)

eũ2,n dVg
⇀ δx (34)

in the sense of measures for some x ∈ Az(r1/C,Cr2). We distinguish between three situations.

Case 1. Suppose first that x ∈ Az(r1, 2r2). By the choices of the cut-off functions and (32), as ũ2,n

coincides with u2,n on Az(r1/2, 2r2), it follows that

eu2,n∫
Az(r1,2r2)

eu2,n dVg
=

eũ2,n∫
Az(r1,2r2)

eũ2,n dVg
⇀ δx . (35)

Case 1.1. Let x ∈ Az(r1,
3
2r2). To get a contradiction to (35), we prove that there exists τ 0 = τ 0(τ0, γ0)

such that

sup
y∈Az(r1,(3/2)r2)

∫
Bτ0d(y,z)(y)

eu2,n dVg ≤ (1− τ 0)

∫
Az(r1,2r2)

eu2,n dVg. (36)

Let τ 0 = τ0/2. If Bτ 0d(y,z)(y) ⊆ Az(r1(1− τ0), r2(1+ τ0)), we can use directly the second part of the
assumption (30) on u2,n to get the bound on the left-hand side of (36) (taking τ 0 sufficiently small).
Moreover, by the first part of (30) on u2,n , we deduce∫

Az(r1,r2)

eu2,n dVg ≥ γ0

∫
6

eu2,n dVg ≥ γ0

∫
Az(r1,2r2)

eu2,n dVg.

Given then Br (y)⊆ Az(r2, 2r2), since Br (y)∩ Az(r1, r2)=∅, by the first inequality in (30),∫
Br (y)

eu2,n dVg ≤ (1− γ0)

∫
Az(r1,2r2)

eu2,n dVg for any Br (y)⊆ Az(r2, 2r2). (37)

Now if Bτ 0d(y,z)(y)⊆ Az(r2, 2r2), we exploit (37) to deduce the bound on the left-hand side of (36) taking
a possibly smaller τ 0. This concludes the proof of the claim (36).

Case 1.2. Suppose x ∈ Az(
5
4r2, 2r2). Using again (37), we obtain a contradiction to (35).

Case 2. Consider now x ∈ Az(r1/2, r2): reasoning exactly as in Case 1, we get a contradiction.

Case 3. We are left with the case x ∈ (Az(r1/2, 2r2))
c: notice that, differently from the previous two cases,

the cut-off functions χn might not be identically equal to 1 near x0. For this choice of x and by (34),∫
Az(r1,r2)

eũ2,n dVg∫
Az(r̃1,n,r̃2,n)

eũ2,n dVg
→ 0. (38)

Using the definition of ũ2,n in Az(r̃2,n/2, r̃2,n) given by (32) and applying Young’s inequality with
1/p = χn and 1/q = 1−χn , we have

eũ2,n = eχnu2,n e(1−χn)u2(r̃2,n) ≤ χneu2,n + (1−χn)eu2,n(r̃2,n) in Az(r̃2,n/2, r̃2,n). (39)
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Recall the notation in (31): by Jensen’s inequality, it follows that

eu2,n(r̃2,n) ≤

∫

\

Az(r̃2,n/2,r̃2,n)

eu2,n dVg.

Therefore, integrating (39), one can show that∫
Az(r̃2,n/2,r̃2,n)

eũ2,n dVg ≤ 2
∫

Az(r̃2,n/2,r̃2,n)

eu2,n dVg.

Similarly, we get ∫
Az(r̃1,n,2r̃1,n)

eũ2,n dVg ≤ 2
∫

Az(r̃1,n,2r̃1,n)

eu2,n dVg.

In conclusion, we have ∫
Az(r̃1,n,r̃2,n)

eũ2,n dVg ≤ 2
∫
6

eu2,n dVg.

This, together with (38), implies that∫
Az(r1,r2)

eu2,n dVg∫
6

eu2,n dVg
≤ 2

∫
Az(r1,r2)

eũ2,n dVg∫
Az(r̃1,n,r̃2,n)

eũ2,n dVg
→ 0,

which is in contradiction with (30). Therefore we are done. �

Lemma 3.2. Under the same assumptions of Lemma 3.1, let ũ2 ∈ H 1(6) be the function given there.
Then property (c) can be extended to the following: there exists τ 0 > 0 such that

sup
y∈Br̃2 (z), y 6=z

∫
Bτ0d(y,z)(y)

eũ2 dVg∫
Br̃2 (z)

eũ2 dVg
< 1− τ 0. (40)

Proof. By property (c) of Lemma 3.1, we just have to show (40) for y ∈ Br̃1(z). Observe that, by definition,
ũ2 is constant in Br̃1(z). Therefore, for any Bτ̃0d(y,z)(y)⊆ Br̃1(z), which implies d(y, z)≤ r̃1, we have∫

Bτ̃0d(y,z)(y)
eũ2 dVg =

τ̃ 2
0 d(y, z)2

r̃2
1

∫
Br̃1 (z)

eũ2 dVg ≤ τ̃
2
0

∫
Br̃1 (z)

eũ2 dVg ≤ τ̃
2
0

∫
Br̃2 (z)

eũ2 dVg,

and we conclude that (40) holds for τ̃0 small enough. For the same choice of τ̃0, we are left with the
case B := Bτ̃0d(y,z)(y) ∩ (Br̃1(z))

c
6= ∅. The integral over B will be bounded by the integral over a

larger ball with center shifted onto ∂Br̃1(z). Using normal coordinates at z, consider the shift of center
y 7→ r̃1 y/d(y, z). Then we have, using the property (c),∫

B
eũ2 dVg ≤

∫
Bτ̃0 r̃1 (r̃1 y/d(y,z))

eũ2 dVg ≤ (1− τ̃0)

∫
Br̃2 (z)

eũ2 dVg.

Therefore, we get∫
Bτ̃0d(y,z)(y)

eũ2 dVg ≤ τ̃
2
0

∫
Br̃2 (z)

eũ2 dVg +

∫
B

eũ2dVg ≤ τ̃
2
0

∫
Br̃2 (z)

eũ2 dVg + (1− τ̃0)

∫
Br̃2 (z)

eũ2 dVg.

Taking τ 0 possibly smaller, we obtain the conclusion. �
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We recall here an improved geometric inequality with k = 1 and α = 1.

Proposition 3.3 [Bartolucci and Malchiodi 2013, Proposition 4.1]. Let p ∈6, and let r > 0 and τ0 > 0.
Then for any ε > 0, there exists C = C(ε, r) such that

log
∫

Br (p)
d(x, p)2e2v dVg ≤

1+ ε
8π

∫
Br (p)
|∇v|2 dVg +C

for every function v ∈ H 1
0 (Br (p)) such that

sup
y∈Br (p), y 6=p

∫
Bτ0d(y,p)(y)

d(x, p)2e2v dVg∫
Br (p)

d(x, p)2e2v dVg
< 1− τ0.

We now state the new improved Moser–Trudinger inequality.

Remark 3.4. In what follows, the number r is supposed to be small but not tending to 0 while σ could
be arbitrarily small.

Proposition 3.5. Let r > 0, γ0 > 0, and τ0 > 0. For any ε > 0, there exists C = C(ε, r, τ0, γ0) such that,
if for some σ ∈ (0, r/C2) and z ∈6∫

Bσ/2(z)
eu1 dVg∫

6
eu1 dVg

> γ0,

∫
Az(Cσ,r/C) eu2 dVg∫

6
eu2 dVg

> γ0 (41)

and

sup
y∈Az(Cσ,r/C)

∫
Bτ0d(y,z)(y)

eu2 dVg∫
Az(Cσ,r/C) eu2 dVg

< 1− τ0, (42)

then

4π log
∫
6

eu1−u1 dVg + 8π log
∫
6

eu2−u2 dVg ≤

∫
Br (z)

Q(u1, u2) dVg + ε

∫
6

Q(u1, u2) dVg +C.

Proof. Taking r sufficiently small, we may suppose that we have the Euclidean flat metric in the ball BCr (z).
Suppose for simplicity that u1 = u2 = 0 and that z = 0. Observe that we can write

log
∫

Br (0)
eu2 dVg = log

∫
Br (0)
|x |2e2(u2/2−log|x |) dVg.

We wish to apply Proposition 3.3 to u2/2− log|x |, so we need to modify this function in such a way that it
becomes constant outside a given ball. Moreover, it will be useful to also replace it with a constant inside
a smaller ball. In this process, we should not lose the volume-spreading property (42). By Lemma 3.1,
this can be done, and we let C = C(ε, τ0, γ0), r̃1 ∈ [σ,Cσ/4], r̃2 ∈ [4r/C, r ], and ũ2 ∈ H 1(6) be as in
the statement of the lemma. By property (a) in Lemma 3.1 and by Lemma 3.2, we are in position to apply
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Proposition 3.3 to (ũ2− ũ2(r̃2)) ∈ H 1
0 (Br̃2(0)) and get

log
∫
6

eu2 dVg ≤ log
∫

A0(Cσ,r/C)
eu2 dVg +C = log

∫
A0(Cσ,r/C)

|x |2e2(u2/2−log|x |) dVg +C

≤ log
∫

Br̃2 (0)
|x |2e2ũ2 dVg +C = log

∫
Br̃2 (0)
|x |2e2(ũ2−ũ2(r̃2)) dVg + ũ2(r̃2)+C

≤
1+ ε
8π

∫
A0(r̃1,r̃2)

|∇ũ2|
2 dVg + ũ2(r̃2)+C

≤
1+ ε
8π

∫
A0(r̃1,r̃2)

|∇( 1
2 u2− log|x |)|2 dVg + ε

∫
6

|∇u2|
2 dVg + ũ2(r̃2)+C

≤
1

8π

∫
A0(σ,r)
|∇( 1

2 u2− log|x |)|2 dVg + ε

∫
6

Q(u1, u2) dVg + ũ2(r̃2)+C, (43)

where in the first row we exploited (41) while in the last one we used the definitions of r̃1 and r̃2. Observe
that by the definition (32) of ũ2 we have

ũ2(r̃2)=

∫

\

Az(r̃2/2,r̃2)

( 1
2 u2− log|x |) dVg.

Applying Hölder’s and Poincaré’s inequalities, one gets∫

\

Az(r̃2/2,r̃2)

(1
2 u2− log|x |) dVg ≤

∫

\

Az(r̃2/2,r̃2)

|u2| dVg + C̃r ≤ Cr‖u2‖L2(6)+ C̃r

≤ Cr

(∫
6

|∇u2|
2 dVg

)1/2

+ C̃r ≤ ε

∫
6

|∇u2|
2 dVg +

C̃r Cr

ε
. (44)

Inserting the latter estimate into (43), we deduce

log
∫
6

eu2 dVg ≤
1

8π

∫
A0(σ,r)
|∇( 1

2 u2− log|x |)|2 dVg + ε

∫
6

Q(u1, u2) dVg +C. (45)

Using the fact that
1
4 |∇u2|

2
= Q(u1, u2)−

1
12 |∇(u2+ 2u1)|

2,

we obtain∫
A0(σ,r)
|∇( 1

2 u2− log|x |)|2 dVg =
1
4

∫
A0(σ,r)
|∇u2|

2 dVg − 2π log σ + 2πu2(σ )+C

=

∫
A0(σ,r)

Q(u1, u2) dVg −
1
12

∫
A0(σ,r)

|∇(u2+ 2u1)|
2 dVg

− 2π log σ + 2πu2(σ )+C, (46)

where u2(σ )=
∫

\Bσ (0)
u2 dVg.

We claim now that for any ε̃ > 0 one has∫
A0(σ,r)
|∇(u2+ 2u1)|

2 dVg ≥ 2π
(

2
ε̃
(u2(σ )+ 2u1(σ ))+

1
ε̃2 log σ

)
− ε

∫
6

Q(u1, u2) dVg −C. (47)
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Letting v(x)= u2(x)+ 2u1(x), we have to prove∫
A0(σ,r)
|∇v|2 dVg ≥ 2π

(
2
ε̃
v(σ )+

1
ε̃2 log σ

)
,

where v(σ )= u2(σ )+ 2u1(σ ). Choose k ∈ N such that∫
A0(2kσ,2k+1σ)

|∇v|2 dVg ≤ ε

∫
6

|∇v|2 dVg,

and define 
ũ(x)= v(σ ) if x ∈ B2kσ (0),
1ũ(x)= 0 if x ∈ A0(2kσ, 2k+1σ),

ũ(x)= v(x) if x /∈ B2k+1σ (0).

Then there exists a universal constant C0 such that∫
A0(2kσ,r)

|∇ũ|2 dVg ≤

∫
A0(σ,r)
|∇v|2 dVg +C0ε

∫
6

|∇v|2 dVg

≤

∫
A0(σ,r)
|∇v|2 dVg +C0ε

∫
6

Q(u1, u2) dVg.

Solving the Dirichlet problem in A0(2kσ, r) with constant data v(σ ) on ∂B2kσ (0), one gets{
w(x)= A log σ if |x |> 2kσ ,

w(2kσ)= A log(2kσ)= v(σ ) if |x | = 2kσ

for some constant A. We have that∫
A0(2kσ,r)

|∇w|2 dVg = 2π A2 log
1

2kσ
−C = 2π

v(σ)2

log(1/2kσ)
−C.

Moreover, ∫
A0(2kσ,r)

|∇w|2 dVg ≤

∫
A0(2kσ,r)

|∇ũ|2 dVg.

Finally, using Young’s inequality

v(σ ) log
1
σ
≤

1
2

(
ε̃v(σ )2+

1
ε̃

(
log 1

σ

)2
)
,

we end up with
v(σ )2

log(1/σ)
≥

(
2
ε̃
v(σ )+

1
ε̃2 log σ

)
.

Therefore, we conclude

2π
(

2
ε̃
v(σ )+

1
ε̃2 log σ

)
−C ≤ 2π

v(σ)2

log(1/σ)
−C =

∫
A0(2kσ,r)

|∇w|2 dVg

≤

∫
A0(2kσ,r)

|∇ũ|2 dVg ≤

∫
A0(σ,r)
|∇v|2 dVg +C0ε

∫
6

Q(u1, u2) dVg,

which proves the claim (47).
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Inserting (47) into (46), we have∫
A0(σ,r)
|∇( 1

2 u2− log|x |)|2 dVg ≤

∫
A0(σ,r)

Q(u1, u2) dVg −
1
12 2π

(
2
ε̃
(u2(σ )+ 2u1(σ ))+

1
ε̃2 log σ

)
− 2π log σ + 2πu2(σ )+ ε

∫
6

Q(u1, u2) dVg +C .

Choosing ε̃ = 1
6 , we obtain∫

A0(σ,r)
|∇( 1

2 u2− log|x |)|2 dVg ≤

∫
A0(σ,r)

Q(u1, u2) dVg − 4πu1(σ )− 8π log σ

+ ε

∫
6

Q(u1, u2) dVg +C . (48)

We use then (48) in (45) to get

8π log
∫
6

eu2 dVg ≤

∫
A0(σ,r)

Q(u1, u2) dVg − 4πu1(σ )− 8π log σ + ε
∫
6

Q(u1, u2) dVg +C. (49)

For the first component, we consider the scalar local Moser–Trudinger inequality (see for example
Proposition 2.3 of [Malchiodi and Ruiz 2013]), namely

log
∫

Br/2(0)
eu1 dVg ≤

1
16π

∫
Br (0)
|∇u1|

2 dVg + u1(r)+ ε
∫
6

|∇u1|
2 dVg +C

≤
1

4π

∫
Br (0)

Q(u1, u2) dVg + u1(r)+ ε
∫
6

Q(u1, u2) dVg +C.

Performing a dilation to Bσ (0), one gets

4π log
∫

Bσ/2(0)
eu1 dVg ≤

∫
Bσ (0)

Q(u1, u2) dVg + 4πu1(σ )+ 8π log σ + ε
∫
6

Q(u1, u2) dVg +C.

We then use the assumption (41), and we obtain

4π log
∫
6

eu1 dVg ≤

∫
Bσ (0)

Q(u1, u2) dVg + 4πu1(σ )+ 8π log σ + ε
∫
6

Q(u1, u2) dVg +C. (50)

Summing equations (49) and (50), we deduce

4π log
∫
6

eu1 dVg + 8π log
∫
6

eu2 dVg ≤

∫
Br (z)

Q(u1, u2) dVg + ε

∫
6

Q(u1, u2) dVg +C,

which concludes the proof. �

Remark 3.6. The above result is inspired by the work [Bartolucci and Malchiodi 2013] (see in particular
Proposition 4.1 there), where the singular Liouville equation is considered. The authors derive a geometric
inequality by means of the angular distribution of the conformal volume near the singularities. Somehow
the singular equation can be seen as the limit case of the regular one. Roughly speaking, when one com-
ponent is much more concentrated with respect to the other one, its effect resembles that of a Dirac delta.
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3.3. Lower bounds on the functional Jρ . We are going to exploit the improved inequality stated in
Proposition 3.5 to derive new lower bounds of the energy functional Jρ defined in (2); see Proposition 3.7.
This will give us some extra constraints for the map from the low sublevels of Jρ onto the topological
join 6k ∗61; see (9).

Given a small δ > 0, our aim is to describe the low sublevels of the functional Jρ by means of the set

Y := (6k ∗61) \ S ⊆6k ∗61, (51)

where

S=
{(
ν, δz,

1
2

)
∈6k∗61 :ν=

k∑
i=1

tiδxi , d(xi , x j )≥ δ for all i 6= j, δ ≤ ti ≤ 1− δ for all i, z∈supp(ν)
}
.

(52)
We will show that there is a lower bound for Jρ whenever 9̃, which is defined in (29), has image inside S;
see Proposition 3.7.

Consider Cε,r (x0) as given in (17), f ∈ Cε,r (x0), and ψ defined in (19). Before stating the next main
result, we recall some properties of the map ψ ; see Proposition 3.1 in [Malchiodi and Ruiz 2013] (with
minor changes).

Fact. Let ψ( f )= (β, σ ). Then given R > 1, there exists p ∈6 with the properties

d(p, β)≤C ′σ for some C ′ = C ′(R),
∫

Bσ (p)∩Br (x0)

f dVg>τ,

∫
(BRσ (p))c∩Br (x0)

f dVg>τ, (53)

where τ depends only on R and 6.

Recall also the distance d between measures in (11), the numbers εi > 0 in Proposition 2.4, the projec-
tions ψ̃k and ψ̃1 in (27)–(28), and the definition of the parameter s in the topological join given by (26).

Proposition 3.7. Suppose that ρ1 ∈ (4kπ, 4(k + 1)π), ρ2 ∈ (4π, 8π) and that d(N(eu1, 6),6k) < 2εk

and d(N(eu2, 6),61) < ε1. Let

ψ̃k(N(eu1, 6))=

k∑
i=1

tiδxi , ψ̃1(N(eu2, 6))= δβz .

There exist δ > 0 and L > 0 such that, if the properties

(1) d(xi , x j )≥ δ for all i 6= j and ti ∈ [δ, 1− δ] for all i = 1, . . . , k,

(2) s(u1, u2)=
1
2 , and

(3) βz = xl for some l ∈ {1, . . . , k}

hold true, then
Jρ(u1, u2)≥−L .

Proof. Suppose without loss of generality that u1= u2= 0. We first observe that exploiting the assumption
s(u1, u2)=

1
2 we deduce σ1(u1)= σ2(u2). Secondly, it is not difficult to show that from property (1) it
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follows that d(N(eu1, 6),6k−1)≥ 2εk−1. Therefore, by the definition of ψ̃k , we deduce that xi = βxk
i

for
i = 1, . . . , k, where the βxk

i
are the local centers of mass given by (23). Hence, we get

ψ̃k(N(eu1, 6))=

k∑
i=1

tiδβxk
i
.

Recalling that we have set (see Section 3.1)

σ2(u2)= g1
(
d(N(eu2, 6),61)

)
σz +

(
1− g1

(
d(N(eu2, 6),61)

))
,

using the fact that d(N(eu2, 6),61) < ε1, by the definition of g1 in (24), σ2(u2) reduces to σz . We recall
now also the definition of σ1(u1), namely

σ1(u1)= f
(
d(N(eu1, 6),6k)

)
A(u1, u2)+

(
1− f

(
d(N(eu1, 6),6k)

))
with A(u1, u2) defined in Section 3.1. Assuming d(N(eu1, 6),6k)<2εk implies f(d(N(eu1, 6),6k))>0.
Again, using property (1), we obtain from d(N(eu1, 6),6k−1)≥2εk−1 that gk−1(d(N(eu1, 6),6k−1))=0
and hence A(u1, u2)= B(u1, u2) (see the notation before (26)). Moreover, the property (3) implies that
h(d(βz, {βxk

1
, . . . , βxk

k
}))= 1. Therefore, B(u1, u2)= σxk

l
. Hence, one finds

σu1 = f
(
d(N(eu1, 6),6k)

)
σxk

l
+
(
1− f

(
d(N(eu1, 6),6k)

))
.

We distinguish between two cases.

Case 1. Suppose first that f(d(N(eu1, 6),6k))= 1. In this case, we obtain σxk
l
= σ1(u1)= σ2(u2)= σz .

By this fact and by property (3), we get (βxk
l
, σxk

l
)= (βz, σz). Let r = δ/4: from (53) and the definitions

of βz and βxk
i
, there exists γ̃0 > 0 such that∫

Br (βxk
i
)

eu1 dVg ≥ γ̃0

∫
6

eu1 dVg for i = 1, . . . , k,
∫

Br (βz)

eu2 dVg ≥ γ̃0

∫
6

eu2 dVg. (54)

Therefore, we are in position to apply Proposition 2.12 and get

4(k+ 1)π log
∫
6

eu1 dVg + 8π log
∫
6

eu2 dVg ≤ (1+ ε)
∫
6

Q(u1, u2) dVg +Cr .

The conclusion then follows from the expression of Jρ and from the upper bounds on ρ1 and ρ2.

Case 2. Suppose now f(d(N(eu1, 6),6k))<1: we deduce immediately that d(N(eu1, 6),6k)∈ (εk, 2εk).
Given ε > 0, let R = R(ε) be such that Proposition 2.10 holds true. Let C ′ = C ′(R) and τ = τ(R) be

as in (53). Take τ0 = τ/100 and γ0 = γ̃0τ , where γ0 is given as in (54), and let C = C(ε, r, τ0, γ0) be
the constant obtained in Proposition 3.5. We then define C̃ = max{C ′,C}. Moreover, observe that by
construction σxk

l
≤ σ1(u1)= σ2(u2)= σz .

If σxk
l
≤ σz ≤ C̃ 8σxk

l
, we still can apply Proposition 2.12 as before; see Remark 2.11. Consider now

the case C̃ 8σxk
l
≤ σz . We distinguish between two situations.
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Case 2.1. If r is as in Case 1, suppose that∫
BC̃4σ

xk
l

(βz)

eu2 dVg > τ0

∫
Br (βz)

eu2 dVg (55)

(the right side exceeds γ̃0τ0
∫
6

eu2 dVg; see (54)). By the fact that C̃4σxk
l
� σz , from (53), we also get∫

(BRC̃4σ
xk
l

(βz))c∩Br (βz)

eu2 dVg > τ0

∫
Br (βz)

eu2 dVg > γ̃0τ0

∫
6

eu2 dVg. (56)

The conditions on the local scale of u1, given by (βxk
l
, σxk

l
) = ψ( f

xk
l

loc(u1)), yield by (53) the existence
of p ∈6 such that ∫

Bσ
xk
l
(p)

eu1 dVg > τ

∫
Br (βxk

l
)

eu1 dVg > γ̃0τ

∫
6

eu1 dVg,

∫
(BR σ

xk
l
(p))c∩Br (βxk

l
)

eu1 dVg > τ

∫
Br (βxk

l
)

eu1 dVg > γ̃0τ

∫
6

eu1 dVg.

The latter formulas, together with (55) and (56), imply an improved Moser–Trudinger inequality (see
Remarks 2.9 and 2.11):

8π
(

log
∫
6

eu1 dVg + log
∫
6

eu2 dVg

)
≤ (1+ ε)

∫
Br (βz)

Q(u1, u2) dVg +C0(ε, r, τ, γ̃0). (57)

Case 2.2. Suppose now that the second situation occurs, namely∫
BC̃4σ

xk
l

(z)
eu2 dVg ≤ τ0

∫
Br (βz)

eu2 dVg. (58)

The goal is to apply the improved inequality stated in Proposition 3.5. Take σ =(C ′)2σxk
l

and Aβz (Cσ, r/C)
as the annulus on which we will test the conditions (41)–(42). We start by considering (41). Observe that∫

Bσ/2(z)
eu1 dVg > γ0

∫
6

eu1 dVg

follows from (53) and (54) by the choice of σ and γ0. Similarly, using the volume concentration of u2

in (BRσz (p))
c
∩ Br (βz) in (53) and (recalling the definition of C̃) Cσ � Rσz , we get∫

Aβz (Cσ,r/C)
eu2 dVg > γ0

∫
6

eu2 dVg

by taking ε1 sufficiently small in Proposition 3.7. We are left by proving condition (42), i.e.,

sup
y∈Aβz (Cσ,r/C)

∫
Bτ0d(y,z)(y)

eu2 dVg∫
Aβz (Cσ,r/C) eu2 dVg

< 1− τ0.
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If this is not the case, then there exists y ∈ Aβz (Cσ, r/C) such that∫
Bτ0d(y,z)(y)

eu2 dVg ≥ (1− τ0)

∫
Aβz (Cσ,r/C)

eu2 dVg.

Using the assumption (58) and σ < C̃4σxk
l
, we get∫

Bτ0d(y,z)(y)
eu2 dVg ≥ (1− τ0)

∫
Aβz (Cσ,r/C)

eu2 dVg ≥ (1− τ0)

∫
Aβz (Cσ,r/C)

eu2 dVg

= (1− τ0)

∫
Br (βz)

eu2 dVg − (1− τ0)

∫
BCσ (βz)

eu2 dVg ≥ (1− 2τ0)

∫
Br (βz)

eu2 dVg.

Moreover, by the property of the local scale of u2 given by (βz, σz)= ψ( f z
loc(u2)) (see (53)), we have∫

Bσz (p)

eu2 dVg > τ

∫
Br (βz)

eu2 dVg,

∫
(BRσz (p))c∩Br (βz)

eu2 dVg > τ

∫
Br (βz)

eu2 dVg.

Notice that by the choice of τ0 the three properties above cannot hold simultaneously. Hence, we have a
contradiction. Finally, we are in position to apply Proposition 3.5 and deduce that

4π log
∫
6

eu1 dVg + 8π log
∫
6

eu2 dVg ≤

∫
Br (βz)

Q(u1, u2) dVg + ε

∫
6

Q(u1, u2) dVg +C.

Observe that by the latter formula and by (57), in both Cases 2.1 and 2.2, we can assert that

4π log
∫
6

eu1 dVg + 8π log
∫
6

eu2 dVg ≤

∫
Br (βz)

Q(u1, u2) dVg + ε

∫
6

Q(u1, u2) dVg +C. (59)

Recall that under Case 2 we have d(N(eu1, 6),6k)> εk . By the second part of Proposition 2.4 (applied
with l = k+ 1), there exist εk > 0, depending only on εk , and k+ 1 points x1, . . . , xk+1 such that

d(x i , x j ) > 2εk for i 6= j,
∫

Bεk (x i )

eu1 dVg > εk

∫
6

eu1 dVg for all i = 1, . . . , k+ 1.

Without loss of generality, we can assume δ < εk/8. By this the choice of δ, there exist k points y1, . . . , yk

such that

d(yi , y j ) > εk for i 6= j, d(yi , βxk
i
) > δ for all i = 1, . . . , k,∫

Bεk (yi )

eu1 dVg > εk

∫
6

eu1 dVg for all i = 1, . . . , k.

We perform then a local Moser–Trudinger inequality for u1 in each region (see (50)), and summing up,
we have (recall that r = δ/4)

4kπ log
∫
6

eu1 dVg ≤

∫
(Br (βxk

l
))c

Q(u1, u2) dVg + ε

∫
6

Q(u1, u2) dVg +Cr , (60)
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where the average was estimated using Hölder’s and Poincaré’s inequalities as in (44). By summing (59)
and (60), we deduce

4(k+ 1)π log
∫
6

eu1 dVg + 8π log
∫
6

eu2 dVg ≤ (1+ ε)
∫
6

Q(u1, u2) dVg +C,

so we conclude as in Case 1. �

By Proposition 3.7, we obtain:

Corollary 3.8. Let S be as in (52), and let Y = (6k ∗61) \ S. Then, for L̃ > 0 large, 9̃ (defined in (29))
maps the low sublevels J−L̃

ρ into the set Y .

4. Test functions

We show that the lower bound in Proposition 3.7 is optimal; see also Corollary 3.8. In fact, we will
construct suitable test functions modeled on Y on which Jρ attains arbitrarily negative values.

To describe our construction, let us recall the test functions employed for the scalar case (5). When
ρ > 4π , as mentioned in Section 1, the energy Iρ in (6) is unbounded below. One can see that using test
functions of the type

ϕλ,z(x)= log
(

λ

1+ λ2d(x, z)2

)2

, (61)

for a given point z ∈6 and for λ > 0, as λ→+∞, these satisfy the properties

eϕλ,z ⇀ δz and Iρ(ϕλ,z)→−∞ (ρ > 4π), (62)

holding uniformly in z ∈6. More generally, if ρ ∈ (4kπ, 4(k+ 1)π), a natural family of test functions
can be modeled on 6k [Djadli 2008; Djadli and Malchiodi 2008]. In fact, setting

ϕλ,ν(x)= log
k∑

i=1

ti

(
λ

1+ λ2d(x, xi )2

)2

, ν =

k∑
i=1

tiδxi , (63)

similarly to (62), for λ→+∞, one has uniformly in ν ∈6k

d(eϕλ,ν , ν)→ 0 and Iρ(ϕλ,ν)→−∞ (ρ ∈ (4kπ, 4(k+ 1)π)).

When dealing with the energy functional Jρ in (2), one can expect to interpolate between the ϕλ,ν for
the component u1 and the ϕλ,z for u2 when ρ1 ∈ (4kπ, 4(k + 1)π) and ρ2 ∈ (4π, 8π). Therefore, the
topological join 6k ∗61 represents a natural object to globally parametrize this family with the join
parameter s playing the role of interpolation parameter. However, as mentioned in Section 1, the cross
term in the quadratic energy penalizes gradients pointing in the same direction. By this reason, not all
elements in 6k ∗61 will give rise to test functions with low energy. It will turn out that the subset Y
of 6k ∗61 (see (51)) will be the right one at which to look.
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4.1. A convenient deformation of Y∩{s= 1
2}. We construct here a continuous deformation of Y∩{s= 1

2},
which is relatively open in the join 6k ∗61, onto some closed subset: see Corollary 4.6. This will allow
us to build test functions depending on a compact space of parameters, which is easier. Before doing this,
we recall some facts from Section 3 of [Malchiodi 2008a].

There exists a deformation retract H0(t, · ) of a neighborhood (with respect to the metric induced by d
in (11)) of 6k−1 in 6k onto 6k−1. To see this, one can take a positive δ1 small enough and consider a
nonincreasing continuous function F0 : (0,+∞)→ (0,+∞) such that

F0(t)=
1
t

for t ∈ (0, δ1], F0(t)=
1

2δ1
for t > 2δ1. (64)

We then define F :6k \6k−1→ R as

F
( k∑

i=1

tiδxi

)
=

∑
i 6= j

F0(d(xi , x j ))︸ ︷︷ ︸
F1((xi )i )

+

k∑
i=1

1
ti (1− ti )︸ ︷︷ ︸

F2((ti )i )

. (65)

Notice that F is well-defined on6k \6k−1 as it is invariant under permutation of the couples (ti , xi )i=1,...,k .
Observe also that it tends to +∞ as its argument approaches 6k−1. Moreover, the gradient of F with
respect to the metric of 6k

× T0 (where T0 is the simplex containing the k-tuple T := (ti )i ) tends to +∞
in norm as

∑k
i=1 tiδxi tends to 6k−1. It follows that, sending L to +∞, we get a deformation retract

of FL := {F ≥ L} ∪6k−1 onto 6k−1 for L sufficiently large. We then obtain H0 by a reparametrization
of the (positive) gradient flow of F .

We introduce now the set Ỹ1/2 ⊆ Y ∩ {s = 1
2} ⊆6k ∗61 defined as

Ỹ1/2 = {
(
ν, δz,

1
2

)
: ν ∈6k−1} ∪ {

(
ν, δz,

1
2

)
: ν ∈6k \6k−1, z /∈ supp(ν)}.

Lemma 4.1. There exists a continuous deformation H̃(t, · ) of the set Y ∩ {s = 1
2} onto Ỹ1/2.

Proof. Let δ > 0 be as in (52). Consider 0< δ̃� δ, and let f̃ : (0,+∞)→ (0,+∞) be a nonincreasing
continuous function given by

f̃ (t)=
{

1/t2 in t ≤ δ̃,
0 in t ≥ 2δ̃.

Moreover, recall the deformation retract H0(t, · ) of a neighborhood of 6k−1 in 6k onto 6k−1 constructed
above. To define H̃ , we distinguish among four situations, fixing δ̂� δ̃ (in particular, we take δ̂ so small
that H0 is well-defined on the 3δ̂-neighborhood of 6k−1 in the metric d).

(i) d(ν,6k−1)≤ δ̂. Recall that elements in Y ∩ {s = 1
2} are triples of the form (ν, δz,

1
2) with ν ∈6k . In

this first case, we project ν onto 6k−1 while δz remains fixed. If H0 is the retraction described above, we
simply define H̃ to be

H̃
(
t, ν, δz,

1
2

)
= (H0

(
t, ν), δz,

1
2

)
.
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(ii) d(ν,6k−1) ∈ [δ̂, 2δ̂]. Let

ν1(t)= H0(t, ν)=

k∑
i=1

ti (t)δxi (t).

If f̃ is as before, we introduce the following flow acting on the support of δz:

d
dt

z(t)=
k∑

i=1

ti (t) f
(
d(z(t), xi (t))

)
∇zd(z(t), xi (t)). (66)

To define H̃ in this case, we interpolate from a constant motion in z and (66) depending on d(ν,6k−1):

H̃
(
t, ν, δz,

1
2

)
=
(
ν1(t), δz(t(d(ν,6k−1)−δ̂)/δ̂)

, 1
2

)
.

Notice that when d(ν,6k−1)= 2δ̂ we get z(t(d(ν,6k−1)− δ̂)/δ̂)= z(t) and this point never intersects
the support of ν1(t) unless ν1(t) ∈6k−1. Therefore, as for case (i), H̃(1, ν, δz,

1
2) ∈ Ỹ1/2.

(iii) d(ν,6k−1) ∈ [2δ̂, 3δ̂]. In this case, the evolution of ν interpolates between the projection onto 6k−1

and staying fixed; i.e., we set

ν2(t)= H0

(
t
3δ̂− d(ν,6k−1)

δ̂
, ν

)
and let z(t) evolve according to (66) with ti (t) and xi (t) given by

∑k
i=i ti (t)δxi (t)=ν2(t), so we define H̃ as

H̃
(
t, ν, δz,

1
2

)
=
(
ν2(t), δz(t),

1
2

)
.

(iv) d(ν,6k−1) ≥ 3δ̂. The deformation H̃ now leaves ν fixed while we let z(t) evolve by (66) with
ti (t)≡ ti and xi (t)≡ xi :

H̃
(
t, ν, δz,

1
2

)
=
(
ν, δz(t),

1
2

)
.

Observe that in this case, by the definition of f̃ and by the choice of δ̃, the latter flow of z does not
intersect the support of ν and d(z, z(1))= O(δ̃). �

We next slice the set Ỹ1/2 in the second entry δz: for p ∈6, we introduce Ỹ(1/2,p) ⊆6k given by

Ỹ(1/2,p) =
{
ν ∈6k :

(
ν, δp,

1
2

)
∈ Ỹ1/2

}
, (67)

so that
Ỹ1/2 =

⋃
p∈6

(
Ỹ(1/2,p), δp,

1
2

)
.

In Proposition 4.4, we will further deform Ỹ(1/2,p) to some compact subset of 6k (depending on p).
Let δ2 > 0 be a small number, p ∈6, and χδ2 a cut-off function such that

χδ2 =

{
0 in Bδ2(p),
1 in (B2δ2(p))

c.
(68)

We start by proving the following lemmas (we are extending the notation in (8) to any subset of 6):
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Lemma 4.2. Let p ∈6, and let δ2 > 0 be as before. There exists δ3 > 0 sufficiently small such that the
above-defined map H0(t, · ) is a deformation retract of{

ν ∈ Ỹ(1/2,p) :
∫
6

χδ2 dν ≥ δ2, d
(
χδ2ν

‖χδ2ν‖
, 6k−2

)
∈ (0, δ3)

}
∩ {d(ν,6k−1) < δ3}

onto (6 \ {p})k−1 with the property that for all t ∈ [0, 1] we have p /∈ supp H0(t, ν).

Proof. Let δ1 be as in (64). We can assume that δ1 ≤ δ2/16. We first prove that H0(t, · ) has the property
that, as the d-distance of ν from 6k−1 tends to 0, the support of the measure H0(t, ν) is contained in a
shrinking neighborhood of the support of ν (uniformly in ν). We will then show that H0 restricted to the
particular set considered in the statement gives the desired deformation retract.

To prove the first assertion, we endow 6k , to which the k-tuple X := (xi )i belongs, with the product
metric and the simplex T0, containing the k-tuple T := (ti )i , with its standard metric induced from Rk .
Then one can notice that, as the singularities of F1 and F2 behave like the inverse of the distance from
the boundaries of their domains, there exists a constant C such that

1
C

F1(X)2−C ≤ |∇X F1(X)| ≤ C F1(X)2+C,
1
C

F2(T )2−C ≤ |∇T F2(T )| ≤ C F2(T )2+C. (69)

We now consider the evolution s 7→ ζ(ν, s) with initial datum ν in a small neighborhood of 6k−1,
where, we recall, F attains large values and its gradient does not vanish. If we evolve by the gradient of
F , then X evolves by the gradient of F1 and T by the gradient of F2. By the last formula, we then have∣∣∣∣d X

ds

∣∣∣∣= |∇X F1| ≤ C F1(X)2+C.

On the other hand, still by (69), we have that

d F
ds
= |∇X F1(X)|2+ |∇T F2(T )|2 ≥

1
C2 F1(X)4+

1
C2 F2(T )4− 2C.

Notice that this quantity is strictly positive if F is large enough (see (65)), which allows us to invert the
function s 7→ F(ζ(ν, s)). Therefore, if sν is the maximal time of existence for ζ(ν, s), we can write that∫ sν

0

∣∣∣∣d X
ds

∣∣∣∣ ds=
∫
∞

F(ν)

∣∣∣∣d X
ds

∣∣∣∣ 1
d F/ds

d F.

By the above two inequalities, we deduce that∫ sν

0

∣∣∣∣d X
ds

∣∣∣∣ ds≤
∫
∞

F(ν)

C F1(X)2+C
F1(X)4/C2+ F2(T )4/C2− 2C

d F.

By elementary inequalities, recalling that F = F1(X)+ F2(T ), we also find∫ sν

0

∣∣∣∣d X
ds

∣∣∣∣ ds≤ C̃
∫
∞

F(ν)

1
F2− C̃

d F.

Therefore, as ν approaches 6k−1, namely for F(ν) large, we find that the displacement of X becomes
smaller and smaller. This gives us the claim stated at the beginning of the proof.
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Next, we observe that, by having ν ∈ Ỹ(1/2,p) and d(χδ2ν/‖χδ2ν‖, 6k−2) > 0 by assumption, it follows
that there exists at most one point of the support of ν in the ball B(3/4)δ2(p) that does not coincide with p.
Moreover, by the above claim, we have that the points outside Bδ2(p) following the flow induced by F
move by a distance of order oδ3(1) since d(ν,6k−1) < δ3. Therefore, choosing δ3 sufficiently small, we
get the existence of at most one point in the ball B(3/4)δ2(p), different from p, even while the flow is acting.

By the choice of F1 (see (64)–(65)) and by the choice δ1 ≤ δ2/16, we deduce that the point inside
B(3/4)δ2(p) is not affected by the flow and in particular does not collapse onto p. �

Lemma 4.3. There exists a deformation retract H(t, · ) of {ν ∈ Ỹ(1/2,p) :
∫
6
χδ2 dν ≥ δ2} to the set

B := (6 \ Bδ2(p))k ∪
{
card

(
(supp(ν)) \ Bδ2(p)

)
≤ k− 2

}
.

Proof. Let us first consider a deformation retract that pushes points in 6 \ {p} away from p. Define
H1(t, · ), t ∈ [0, 1], as follows: if ν =

∑k
i=1 tiδxi , xi 6= p, then (using normal coordinates around p)

H1(t, ν)=

k∑
i=1

tiδxi,t, where xi,t =

{ xi

|xi |
((1− t)|xi | + tδ2) if d(p, xi ) < δ2,

xi if d(p, xi )≥ δ2.

We next introduce two cut-off functions χ δ3
1 and χ δ3

2 (χ δ3
2 corresponds to the dashed graph):

1

δ3/2

χ
δ3
2 χ

δ3
1

δ3

For {d(ν,6k−1) < δ3}, we define the deformation retract H2(t, · ) as an interpolation between the
homotopies H0 and H1, precisely

H2(t, ν)= H1

(
tχ δ3

2

(
d
(
χδ2ν

‖χδ2ν‖
, 6k−2

))
, H0

(
tχ δ3

1

(
d
(
χδ2ν

‖χδ2ν‖
, 6k−2

))
, ν

))
.

The introduction of the cut-off functions makes the deformation retract continuous with respect to the
topology induced by the d-distance.

For d(ν,6k−1) arbitrary, we instead define H as

H(t, ν)= H1
(
tχ δ3

2 (d(ν,6k−1)), H2
(
χ
δ3
1 (d(ν,6k−1)), ν

))
.

Again, notice that the cut-off functions in the first argument of H1 give continuity in ν. �

The main result of this subsection is the following proposition: we retract Ỹ(1/2,p) to a set of measures
6k,p,τ (see (70)) for which either the support is bounded away from p or for which there are at most k−2
points not closest to p. As we will see, these conditions will be helpful to find suitable test functions with
low Euler–Lagrange energy; see the next subsections.
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Proposition 4.4. There exist τ � 1 and a retraction Rp of Ỹ(1/2,p) to the set

6k,p,τ =

{
ν =

k∑
i=1

tiδxi ∈6k : d(xi , p)≥
1
τ

for all i
}

∪

{
ν =

k∑
i=1

tiδxi ∈6k : card{x j : d(x j , p) >min
i

d(xi , p)} ≤ k− 2
}
. (70)

Proof. Recall first the definition (68) of χδ2 . We then extend the result in Lemma 4.3 to arbitrary values
of m2(ν)=

∫
6
χδ2 dν, namely also for m2 < δ2, finding a retraction onto B. Consider normal coordinates

around p. Define m(ν)=
∥∥ν(χδ2(m2(ν))+ (1−χδ2(|x |))(1−χδ2(m2(ν)))

)∥∥, and let

T (ν)=


ν
(
χδ2(m2(ν))+ (1−χδ2(|x |))(1−χδ2(m2(ν)))

)
m(ν)

if m2(ν) < 2δ2,

ν if m2(ν)≥ 2δ2.

We then define the retraction as
R̃(ν)= T

(
H(χδ2(m2(ν)), ν)

)
.

Let νH = H(χδ2(m2(ν)), ν). To have R̃ well-defined, we need to ensure that whenever T is acting, namely
for m2(νH ) < 2δ2, we have m(νH ) > 0. Clearly, it is enough to show that∫

6

(1−χδ2) dνH > 0. (71)

We point out that

m2(νH )+

∫
6

(1−χδ2) dνH = 1.

Therefore, by m2 < 2δ2, we obtain ∫
6

(1−χδ2) dνH > 1− 2δ2.

Finally, we construct a retraction of B onto 6k,p,τ . For ν ∈ B with ‖(1− χδ2)ν‖ > 0, we define a
parameter τ = τ(ν) ∈ (0,+∞] in the following way:

1
τ
= d

(
(1−χδ2)ν

‖(1−χδ2)ν‖
, δp

)
. (72)

Consider normal coordinates around p. Let τ � 1 be such that 1/τ � δ2� 1, and let f :B×6→ R+

and g : R+→ R+ be two smooth functions such that

f (ν, x)=


0 if τ =+∞,
1/τ if τ <+∞ and |x | ≤ 1/τ ,
|x | if τ <+∞ and |x | ≥ 2/τ ,

g(t)=
{

t if t ≤ 1/τ ,
1 if t ≥ 2/τ .

For ν =
∑k

i=1 siδyi ∈B with ‖(1−χδ2)ν‖> 0, we consider (1−χδ2)ν =
∑k

i=1 tiδxi and then define

ν̃ =

∑k
i=1 ti g(|xi |)δ(xi/|xi |) f (ν,xi )∑k

i=1 ti g(|xi |)
. (73)
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Observe that, for d(xi , p)≤ 1/τ for all i , (73) reads as

ν̃ =

∑k
i=1 ti |xi |δ(xi/|xi |)(1/τ)∑k

i=1 ti |xi |

while, for d(xi , p)≥ 2/τ for all i , we obtain ν̃ =
∑k

i=1 tiδxi .
For a general ν ∈B, the retraction is given by

Rp(ν)= (1−m2)ν̃+χδ2ν. (74)

Observe that, when ‖(1−χδ2)ν‖ = 0, τ is not defined. However, the map Rp(ν) is well-defined since in
this case we have m2 = 1. Notice furthermore that Rp(ν) ∈6k since ‖Rp(ν)‖ = 1 and since we do not
increase the number of points in the support of ν, due to the fact that the map ν 7→ ν̃ does not affect the
points xi with d(xi , p)≥ 2/τ , which was chosen such that 2/τ � δ2. �

Remark 4.5. (i) With the above definitions, letting δ2 tend to 0, one shows that the map Rp is homotopic
to the identity on its domain.

(ii) The parameter δ2 is chosen so that δ2� δ.

Combining Lemma 4.1 and Proposition 4.4 (applying its proof uniformly in p∈6), we obtain the follow-
ing result; notice that by construction the retraction Rp from Proposition 4.4 depends continuously on p.

Corollary 4.6. There exist τ � 1 and a continuous deformation R of Y ∩ {s = 1
2} onto the set⋃

p∈6

{
(
ν, δp,

1
2

)
: ν ∈6k,p,τ },

where 6k,p,τ is as in (70).

In the next two subsections, we perform the construction of test functions using the above deformations.

4.2. Test functions modeled on Ỹ(1/2, p) ∗ δ p. In this subsection, we introduce a class of test functions
parametrized on Ỹ(1/2,p) ∗ δp ⊆ Y ; see (67) and (51). The latter subset of Y is where the interaction
between the two components of (1) is stronger and hence where more refined energy estimates will be
needed. The remainder of Y will be taken care of in the next subsection.

The retraction Rp defined in Proposition 4.4 will play a crucial role in the construction of the test
functions. Indeed, starting from a measure in Ỹ(1/2,p) we will consider, through the map Rp, a configuration
belonging to 6k,p,τ ; see (70). When considering Ỹ(1/2,p) ∗ δp and the corresponding join parameter s,
our goal is to pass continuously from vector-valued functions (ϕ1, ϕ2) with eϕ1 ' ν̂ ∈ 6k,p,τ (in the
distributional sense) to functions (ϕ1, ϕ2)with eϕ2'δp. This needs to be done so that the energy Jρ(ϕ1, ϕ2)

stays arbitrarily low.
As the formulas are rather involved, we first discuss the general ideas behind them. Our construction

relies on superpositions of regular bubbles and singular bubbles. Regular bubbles are functions as in (61)
that (roughly) optimize inequality (7) in the scalar case. Singular bubbles instead are profiles of solutions
to (5) when a Dirac mass is present in the right-hand side: this singular version of (5) shadows system (1)
when one component has a higher concentration than the other.
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From the computational point of view, regular or singular bubbles behave like logarithmic functions of
the distance from a point truncated at a proper scale, with coefficient−4 or−6, respectively. By this reason,
we sometimes substitute an expression as in (61) (or in the subsequent formula) with truncated logarithms.

Another aspect of the construction is that, at a scale at which the function ϕi dominates, the gradient
of the other component ϕ j of (1) will behave like −1

2∇ϕi , the reason of which relies on the fact that this
choice minimizes Q(ϕ1, ϕ2) (see (3)) for ϕi fixed.

We introduce now the test functions (ϕ1, ϕ2) as in the figure below, starting by motivating the definitions
of the parameters involved.

−6 log d(x,p)

2 log d(x,p)

1/ŝτ̃

1/ŝµ

1/ŝτλ
p x̃i

ϕ1

−4 log d(x,x̃i )

1/siλi
1/ŝλ̌

0

−4 log d(x,p)

ϕ2

x̃i

2 log d(x,x̃i )

1/ŝτ̃

1/ŝµ

p

Consider p ∈6 and ν ∈ Ỹ(1/2,p): recalling Proposition 4.4 and defining

ν̂ :=Rp(ν)=

k∑
i=i

tiδxi ∈6k,p,τ , (75)

let τ be as given in (72). Consider parameters τ̃ � µ� λ� 1, and let s ≥ 1 be a scaling parameter
that will be used to deform one component into the other one: this will be chosen to depend on the join
parameter s. Roughly speaking, ϕ1 is made by a singular bubble at scale 1/ŝτλ, where ŝ is given by (78)
(but one can think ŝ= s for the moment) and

τλ :=min{τ, λ}, (76)

on top of which we add regular bubbles at scales 1/siλi centered at points x̃i with d(x̃i , p)≥ 1/ŝτ for
all i . The parameters si and λi are defined by (81) and (80) in order to get comparable integrals of eϕ1



1996 ALEKS JEVNIKAR, SADOK KALLEL AND ANDREA MALCHIODI

near all points x̃i ; we will discuss later why we sometimes take ŝ 6= s. The centers x̃i of the regular
bubbles are defined as follows: letting δ be small but fixed, we set in normal coordinates at p

x̃i =
1
s̃i

xi , s̃i =

{
ŝ if d(xi , p)≤ δ,
1 if d(xi , p)≥ 2δ.

(77)

We point out that for d(xi , p) ≤ δ we get x̃i =
1
ŝ
xi , which gives continuity when xi approaches the

plateau {d( · , p)≤ 1/τλ}. For d(xi , p)≥ δ, instead the position of the points does not depend on s.
The effect of the increasing parameter s depends on the starting configuration ν ∈ Ỹ(1/2,p). In case we

have points xi on the plateau of the singular bubble, i.e., d(xi , p)≤ 1/τλ for some i , the support of the
singular and regular bubbles of ϕ1 shrinks; moreover, the points x̃i approach p. On the other hand, ϕ2 is
(qualitatively) dilated by a factor of 1/ŝ so that eϕ2 loses concentration at the expense of eϕ1 .

In case we do not have points on the plateau, namely when d(x̃i , p)≥ 1/τλ for all i , it is not convenient
anymore to develop a singular bubble with center p as s increases. To prevent this situation, we give
an upper bound on ŝ depending on τ . For τ1 ≥ 1 large but fixed, we let P̂ : (0,+∞)→ (0,+∞) be a
nondecreasing continuous function defined by{

P̂(t)= 1 for t ≤ τ1,

P̂(t)→+∞ for t→ 2τ1.

If τ is as in (72), we then define ŝ= ŝ(s, τ ) as

ŝ=

{
min{s, P̂(τ )} if τ < 2τ1,

s if τ ≥ 2τ1.
(78)

Notice that by construction of the retraction Rp (see Proposition 4.4) when there are no points on the
plateau {d( · , p)≤ 1/τλ}, it follows that τ ≤ C and therefore, taking 2τ1 > C , we get ŝ≤ P̂(C) <+∞.

In this situation, namely for ŝ bounded from above, the second component ϕ2 remains fixed when we
start to concentrate the first component ϕ1. To do this, we develop more and more concentrated bubbles
around the points x̃i ; we introduce a parameter λ̌ = λ̌(τ ) so that λ̌→ +∞ even for τ ≤ 2τ1 when s

increases. Let qP : (0,+∞)→ (0,+∞) be a nonincreasing continuous function such that{
qP(t)→+∞ for t→ 2τ1,

qP(t)= 1 for t ≥ 4τ1.

We then let

λ̌= šλ, š=

{
s if τ ≤ 2τ1,

min{s, qP(τ )} if τ > 2τ1.
(79)

To have a comparable integral of eϕ1 at each peak around x̃i for i = 1, . . . , k, we impose the conditions{
log λi − log d(xi , p)= log τλ+ log λ̌ if d(xi , p) > 1/τλ,

λi = λ̌ if d(xi , p)≤ 1/τλ
(80)

and
log si + log s̃i = 2 log ŝ, (81)

which determine λi and si .
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Recall the definitions of ν̂ in (75): motivated by the above discussion, we define the functions (ϕ1, ϕ2)

as follows (see the figure on page 1995). The positive peaks of ϕ1 are given by

v1(x)= v1,1(x)+ v1,2(x)= log
k∑

i=1

ti

max
{

1,min
{(

4
d(x̃i , p)

d(x, x̃i )

)−4

,

(
4

d(x̃i , p)
1

siλi

)−4}}
((ŝτλ)−2+ d(x, p)2)3

,

where

v1,1(x)= log
k∑

i=1

ti max
{

1,min
{(

4
d(x̃i , p)

d(x, x̃i )

)−4

,

(
4

d(x̃i , p)
1

siλi

)−4}}
,

v1,2(x)= log
1

((ŝτλ)−2+ d(x, p)2)3
.

The positive peak of ϕ2 is instead defined by

v2(x)= log
(

max
{

1,min
{
(ŝµ d(x, p))−4,

(µ
τ̃

)−4
}})

.

We finally set

ϕλ,τ̃ ,s(x)=
(
ϕ1(x)
ϕ2(x)

)
:=

(
v1(x)− 1

2v2(x)
−

1
2v1,1(x)+ v2(x)

)
. (82)

The main result of this subsection is:

Proposition 4.7. Suppose that ρ1 ∈ (4kπ, 4(k + 1)π) and ρ2 ∈ (4π, 8π), let 9̃ be defined in (29), and
let ϕλ,τ̃ ,s be defined in (82), with p ∈ 6 and ν ∈ Ỹ(1/2,p). Then for suitable values of τ̃ � µ� λ� 1
and for s= 1, 9̃(ϕλ,τ̃ ,1) is valued into the second component of the join 6k ∗61. Moreover, there is a
value sp,ν > 1 of s, which depends continuously on p and ν such that 9̃(ϕλ,τ̃ ,sp,ν ) is valued into the first
component of the join, and such that

Jρ(ϕλ,τ̃ ,s)→−∞ as λ→+∞ uniformly in s ∈ [1, sp,ν] and in p and ν.

Proof. As some of the estimates are rather technical, most of the proof is postponed to the Appendix.
Concerning the first statement, when s= 1, by construction (see in particular Lemma A.2), one can see

that most of the integral of eϕ2 is concentrated in a ball centered at p with radius of order 1/τ̃ while that
of eϕ1 near at most k balls of larger scale. From the definitions of scales σ1(u1) and σ2(u2) in Section 3.1,
it follows that for s = 1 the quantity s(ϕ1, ϕ2) defined in (26) is equal to 1, provided we choose the
parameters τ̃ � µ� λ� 1 properly. By the way 9̃ is defined, this implies our first statement.

As s increases (see again Lemma A.2), the scale σ1(ϕ1) (as defined in Section 3.1) decreases while,
depending on τ , the scale of σ2(ϕ2) reaches some positive value bounded away from 0. In particular for
τ ≥ 2τ1 (recall (78)), by the estimates in Lemma A.2, for s' log τ̃ − 2 logµ, the scale σ2(ϕ2) becomes
of order 1. In any case, for s sufficiently large, s(ϕ1, ϕ2)= 0, so 9̃ maps the test function into the first
component of the joint. As the scales σ1(ϕ1) and σ2(ϕ2) vary continuously in ϕ1 and ϕ2, sp,ν can be
chosen to depend continuously on p and ν.
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Regarding the energy estimates, the most delicate situation is when τ is large, i.e., when ŝ= s; see (78).
In this case, sp,ν ' log τ̃ −2 logµ and the computations are worked out in the Appendix. When τ instead
is smaller than the fixed number 2τ1 (see again (78)), the singular part of the first component of the test
function (with slope−6 log d( · , p)) has negligible contribution and the support of the measure ν̂ in (75) is
bounded away from p by a fixed positive amount. In this case, the interaction between the two components
is negligible, and similar estimates as those in Proposition 3.3 of [Battaglia et al. 2015] can be applied. �

We proceed now with parametrizing the above functions via the number s in the topological join.
Ideally, one would like to have s varying from 1 to sp,ν as s decreases from 1 to 0. However, for this map
to be well-defined on the topological join, we will need to eliminate the dependence of the test function
on the first and second components of the join when s = 1 and s = 0, respectively. For this reason, we
will need some extra deformations depending on s. The construction goes as follows, depending on three
ranges of the join parameter s.

4.2.1. The case s ∈ [ 14 ,
3
4 ]. Let ϕλ,τ̃ ,s be defined in (82), with p ∈6 and ν ∈ Ỹ(1/2,p). We set

8λ(ν, p, s)= ϕλ,τ̃ ,2(1−sp,ν)s+(3/2)sp,ν−1/2 (83)

so that 8λ(ν, p, 1
4)= ϕλ,τ̃ ,sp,ν and 8λ(ν, p, 3

4)= ϕλ,τ̃ ,1.

4.2.2. The case s ∈ [0, 1
4 ]. Starting from test functions of the form ϕλ,τ̃ ,sp,ν , the goal will be to eliminate

the dependence on the second component of the join, namely on the measure δp. To this end, we divide
the interval [0, 1

4 ] in several subintervals in which we perform different operations on the test functions.
Moreover, we want Jρ to attend arbitrarily low values while doing these procedures. Notice that, in what
follows, this range of the join parameter s will correspond to s= sp,ν , which is given in Proposition 4.7.

Step 1. Let s ∈ [ 3
16 ,

1
4 ]. We flatten here the function v2 in the second component of (82) by considering

the deformation

qϕt
λ,τ̃ (x)=

(
qϕt

1(x)
qϕt

2(x)

)
:=

(
v1(x)− 1

2 t v2(x)
−

1
2v1,1(x)+ t v2(x)

)
, t ∈ [0, 1].

We will then take

8λ(ν, p, s)= qϕt
λ,τ̃ (x), t = 16(s− 3

16). (84)

It is easy to see that Jρ attends arbitrarily low values on this deformation by minor modifications in the
proof of Proposition 4.7.

Step 2. Let s ∈ [18 ,
3
16 ]. Starting from s = 3

16 , we deform the test functions introduced in (82) to the
standard test functions of the form given as in (63). Roughly speaking, the idea is to modify the profile
of the first component ϕ1 (see the figure on page 1995) by performing the following two continuous
deformations. We first flatten the singular bubble v1,2; see (82). On the other hand, we eliminate the
dependence of the point p in the regular bubbles v1,1. Therefore, we set

vt
1(x)= v

t
1,1(x)+ v

t
1,2(x),
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where

vt
1,1(x)= log

k∑
i=1

ti max
{

1,min
{((

4
d(x̃i , p)

)t

d(x, x̃i )

)−4

,

((
4

d(x̃i , p)

)t 1
siλi

)−4}}
and vt

1,2(x)= t v1,2(x). Finally, recalling that we have flattened v2 in Step 1, we consider

ϕ̃t
λ,τ̃ (x)=

(
ϕ̃t

1(x)
ϕ̃t

2(x)

)
:=

(
vt

1(x)
−

1
2v

t
1,1(x)

)
, t ∈ [0, 1]. (85)

We will then take
8λ(ν, p, s)= ϕ̃t

λ,τ̃ (x), t = 16(s− 1
8). (86)

Concerning ϕ̃t
1, its peaks around x̃i for i = 1, . . . , k are truncated at a scale 1/siλi , with si given by (81)

and λi to be chosen in the following way in order to have comparable volume at any x̃i :{
log λi + log si − t log d(x̃i , p)= (t + 1) log ŝ+ log λ̌+ t log τλ if d(xi , p) > 1/τλ,

λi = λ̌ if d(xi , p)≤ 1/τλ.
(87)

Observe that for t = 0 we again get (80). The following result holds true:

Proposition 4.8. Suppose that ρ1 ∈ (4kπ, 4(k+ 1)π) and ρ2 ∈ (4π, 8π). Let ϕ̃t
λ,τ̃

be defined as in (85),
with p ∈6 and ν ∈ Ỹ(1/2,p). Then one has

Jρ(ϕ̃t
λ,τ̃ )→−∞ as λ→+∞ uniformly in t ∈ [0, 1] and in p and ν.

The most delicate case is when the set of the points on the plateau is not empty, i.e., for I1 6=∅; see
(121). We give the proof of the latter result just in this situation, skipping the case I1 = ∅ where the
singular bubble of the first component of the test function (with slope −6 log d( · , p)) has negligible
contribution and the estimates are rather easy. As observed in Case 1 of the proof of Proposition 4.7
(see (134)), for I1 6=∅, we deduce ŝ= s and λ̌≤ Cλ. Moreover, for this range of the join parameter s,
we have s = sp,ν � 1. The proof will follow from the estimates below, which are obtained exactly as
Lemmas A.1, A.2, and A.3 by using (81) and (87).

Lemma 4.9. For t ∈ [0, 1], we have that∫

\

6

ϕ̃t
1 dVg = O(1),

∫

\

6

ϕ̃t
2 dVg = O(1).

Lemma 4.10. Recalling the notation in (114), for t ∈ [0, 1], it holds that∫
6

eϕ̃
t
1 dVg 'C ŝ2+2tτ 2t

λ λ̌
2,

∫
6

eϕ̃
t
2 dVg 'C 1.

Lemma 4.11. Let I1, I2 ⊆ I be as in (121). Then for t ∈ [0, 1], we have∫
6

Q(ϕ̃t
1, ϕ̃

t
2) dVg ≤ 8|I1|π

(
log λ̌− t log τλ+ (1− t) log ŝ

)
+

∑
i∈I2

8π
(
log si + log λi − t log d(x̃i , p)

)
+ 16tπ

∑
i∈I2

log d(x̃i , p)+ 24t2π(log τλ+ log ŝ)+C,

for some C = C(6).
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Proof of Proposition 4.8. Using Lemmas 4.9, 4.10, and 4.11, the energy estimate we obtain is

Jρ(ϕ̃t
1, ϕ̃

t
2)≤ 8|I1|π

(
log λ̌− t log τλ+ (1− t) log ŝ

)
+

∑
i∈I2

8π
(
log si + log λi − t log d(x̃i , p)

)
+16tπ

∑
i∈I2

log d(x̃i , p)+24t2π(log τλ+log ŝ)−ρ1
(
(2+2t) log ŝ+2t log τλ+2 log λ̌

)
+C

for some constant C > 0. Inserting the condition (87), we obtain

Jρ(ϕ̃t
1, ϕ̃

t
2)≤ 8|I1|π

(
log λ̌− t log τλ+ (1− t) log ŝ

)
+

∑
i∈I2

8π
(
(t + 1) log ŝ+ log λ̌+ t log τλ

)
+16tπ

∑
i∈I2

log d(x̃i , p)+24t2π(log τλ+log ŝ)−ρ1
(
(2+2t) log ŝ+2t log τλ+2 log λ̌

)
+C.

Notice that for t = 1 we get exactly the estimate in (134) (recall that we have flattened v2). The latter
estimate can be rewritten as

Jρ(ϕ̃t
1, ϕ̃

t
2)≤ log ŝ

(
8(1− t)|I1|π + 8(t + 1)|I2|π + 24t2π − (2+ 2t)ρ1

)
+ log λ̌

(
8(|I1| + |I2|)π − 2ρ1

)
+ log τλ

(
8t |I2|π − 8t |I1|π + 24t2π − 2tρ1

)
+ 16tπ

∑
i∈I2

log d(x̃i , p)+C.

As observed in Case 1 of the proof of Proposition 4.7, by construction of 6k,p,τ (see (70)), |I2| ≤ k− 2
whenever |I1| 6=∅. Therefore, we conclude that the latter estimate is uniformly large-negative in t ∈ [0, 1]
since ρ1 > 4kπ and by the fact that ŝ= ŝp,ν � λ̌≥ τλ. Observe that for t = 0 we get

Jρ(ϕ̃t
1, ϕ̃

t
2)≤ log ŝ

(
8(|I1| + |I2|)π − 2ρ1

)
+ log λ̌

(
8(|I1| + |I2|)π − 2ρ1

)
+C,

which is the estimate one expects by considering standard bubbles as in (63); see for example part (i) of
Proposition 4.2 in [Malchiodi and Ndiaye 2007]. �

Recall now the definition of ν̂ given in (75): ν̂ = Rp(ν) =
∑k

i=i tiδxi ∈ 6k,p,τ . Notice that in the
construction of the test functions (82), the points xi are dilated according to (77) so deformed to the
points x̃i . Observe that for t = 0 we obtain in (85) standard test functions as in (63). Roughly speaking,
the first component resembles the form of ϕλ,ν̃ (see (63)), where ν̃ =

∑k
i=i tiδx̃i .

In what follows, we will skip the energy estimates since they are quite standard for test functions as
in (63); see for example part (i) of Proposition 4.2 in [Malchiodi and Ndiaye 2007].

Step 3. Consider s ∈ [ 1
16 ,

1
8 ]. We will deform here the points x̃i to the original points xi . Observe that

by construction (see (77)) we have d(xi , x̃i )≤ 2δ for all i . Hence, there exists a geodesic γ̃i joining x̃i

and xi in unit time, and we set x t
i = γ̃i (t) with t ∈ [0, 1]. Denoting by ϕ̂t

λ,τ̃
= (ϕ̂t

1, ϕ̂
t
2) the corresponding

test functions, we will then take

8λ(ν, p, s)= ϕ̂t
λ,τ̃ (x), t = 16( 1

8 − s). (88)

Once we have deformed the points x̃i to the original ones xi , i.e., for t = 1, we get test functions for
which the first component has the form of ϕλ,Rp(ν).
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Step 4. Consider s ∈ [0, 1
16 ]. In this step, we eliminate the dependence on the map Rp. Observe that

Rp is homotopic to the identity map (see Remark 4.5), and let HRp : Ỹ(1/2,p) × [0, 1] → Ỹ(1/2,p) be a
continuous map such that HRp( · , 0)=Rp and HRp( · , 1)= IdỸ(1/2,p) . We consider then the deformation
νt =HRp(ν, t), and letting ϕt

λ,τ̃
= (ϕt

1, ϕ
t
2) be the corresponding test functions, we set

8λ(ν, p, s)= ϕt
λ,τ̃ (x), t = 16( 1

16 − s). (89)

Such a deformation will bring us to test functions that resemble the form of ϕλ,ν .

4.2.3. The case s ∈ [34 , 1]. The goal here will be to continuously deform the initial test functions in (82),
with s= 1, to a configuration that does not depend on the measure ν; see (75). Furthermore, in this
procedure, we want Jρ to attend arbitrarily low values. For this purpose, we flatten v1 (see (82)) by using
the deformation

ϕt
λ,τ̃ (x)=

(
ϕt

1(x)
ϕt

2(x)

)
:=

(
tv1(x)− 1

2v2(x)
−

1
2 tv1,1(x)+ v2(x)

)
, t ∈ [0, 1]. (90)

We will then take
8λ(ν, p, s)= ϕt

λ,τ̃ (x), t = 4(1− s). (91)

Proposition 4.12. Suppose that ρ1 ∈ (4kπ, 4(k + 1)π) and ρ2 ∈ (4π, 8π), and let ϕt
λ,τ̃

be defined as
in (90), with p ∈6 and ν ∈ Ỹ(1/2,p). Then, one has

Jρ(ϕt
λ,τ̃ )→−∞ as λ→+∞ uniformly in t ∈ [0, 1] and in p and ν.

The latter result follows from the next estimates, which are obtained similarly as in Lemmas A.1, A.2,
and A.3, using the fact that s= 1.

Lemma 4.13. For t ∈ [0, 1], we have that∫

\

6

ϕt
1 dVg = O(1),

∫

\

6

ϕt
2 dVg = O(1).

Lemma 4.14. Recalling the notation in (114), there exists a constant C1(τλ, λ) such that for t ∈ [0, 1]∫
6

eϕ
t
1 dVg 'C

∫
6

etv1 dVg = C1(τλ, λ),

∫
6

eϕ
t
2 dVg 'C

∫
6

ev2 dVg 'C
τ̃ 2

µ4 .

Lemma 4.15. For t ∈ [0, 1], we have that∫
6

Q(ϕt
1, ϕ

t
2) dVg ≤ 8π(log τ̃ − logµ)+C2(τλ, λ)

for some constant C2(τλ, λ).

Proof of Proposition 4.12. Exploiting Lemmas 4.13, 4.14, and 4.15, we deduce

Jρ(ϕt
1, ϕ

t
2)≤ 8π(log τ̃ − logµ)− ρ2(2 log τ̃ − 4 logµ)+ C̃1(τλ, λ)+C2(τλ, λ)

≤ log τ̃ (8π − 2ρ2)+ logµ(4ρ2− 8π)+ C̃1(τλ, λ)+C2(τλ, λ)

for some constant C̃1(τλ, λ). The latter upper bound is large and negative since ρ2 > 4π and by the choice
of the parameters τ̃ � µ� λ≥ τλ. �
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4.3. The global construction. In this subsection, we will perform a global construction of a family of
test functions modeled on Y , relying on the estimates of the previous subsection. More precisely, as Y is
not compact, we will consider a compact retraction of it.

Letting (D, 1
2)⊆ (6k ×61,

1
2) be the domain of the map R in Corollary 4.6, we extend it to {(D, s) :

s ∈ (0, 1)} fixing the second component and considering the same action of R on the first one.
Secondly, we retract the set Y to a subset where the (extended) map R is well-defined or where s ∈{0, 1}.

In order to do this, for ν =
∑k

i=1 tiδxi ∈6k , we let

D(ν)= min
i=1,...,k, i 6= j

{d(xi , x j ), ti , 1− ti }.

Moreover, recall the choices of δ and δ2 given in (52) and (68), respectively. Observe that for D(ν)≤ δ we
are in the domain of R. Moreover, for D(ν) > δ and d(p, supp(ν))≥ δ2, the map R is still well-defined.
The idea is then to retract the set Y to a subset where one of the above alternatives holds true or where
s ∈ {0, 1}. We define now the retraction of Y in three steps.

Step 1. Let D(ν) ≥ 2δ. In this situation, we can deform a configuration (ν, δp, s) to a configuration
(ν, δ p̃, s̃) ∈ Y (recall (51)) where either d( p̃, supp(ν))≥ δ2 or s̃ ∈ {0, 1}. Let

2= (21,22) : [0,+∞)×[0, 1] \
{(

0, 1
2

)}
→ [0,+∞)×[0, 1] \ ((0, δ2)× (0, 1))

be the radial projection as in
s

3
4

1
2

1
4

δ2 d(p, supp(ν))

2

Observe now that by the fact that δ2� δ (recall Remark 4.5), for D(ν)≥ 2δ, we get the existence of a
unique point x jp ∈ {x1, . . . , xk} such that d(p, x jp)≤ δ2. To then get the above-described deformation,
we define, in normal coordinates around x jp , the map

(ν, δp, s) 7→
(
ν, δ21(d(p,supp(ν),s))(p/|p|),22(d(p, supp(ν)), s)

)
∈ ϒ̃2,

where

ϒ̃2 =
{
(ν, δp, s) : D(ν)≥ 2δ, d(p, supp(ν))≥ δ2

}
∪
{
(ν, δp, s) : D(ν)≥ 2δ, d(p, supp(ν))≤ δ2, s ∈ {0, 1}

}
. (92)
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Step 2. Let D(ν) ∈ [δ, 2δ]. In this range, we interpolate between the deformation 2 and the identity map.
Consider the radial projection 2t

= (2t
1,2

t
2) given as in

s

3
4

1
2 (1+ t)

1
2

1
2 (1− t)

1
4 tδ2 δ2 d(p, supp(ν))

ϒt

2t

with t = (D(ν)− δ)/δ:

2t
= (2t

1,2
t
2) : [0,+∞)×[0, 1] \

{(
0, 1

2

)}
→ ϒt ,

where

ϒt = [0,+∞)×[0, 1] \
(
(0, tδ2)×

( 1
2(1− t), 1

2(1+ t)
))
.

Observe that for D(ν)= 2δ one gets 2t
=21

=2, while for D(ν)= δ one deduces 2t
=20

= Id. We
then set

(ν, δp, s) 7→
(
ν, δ2t

1(d(p,supp(ν),s))(p/|p|),2
t
2(d(p, supp(ν)), s)

)
.

Step 3. Let us now introduce the set we obtain after the deformation performed in Step 2:

ϒ̃δ =
{
(ν, δp, s) : D(ν)= t ∈ [δ, 2δ], (p, s) ∈ ϒt

}
,

which we will deform using the radial projection 2̃δ : ϒ̃δ→ ϒ̂δ given as in

D(ν) 2δ δ

d(p, supp(ν))

s

ϒ̃δ 3
4

1
2

2̃δ

δ2
1
4
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where ϒ̂δ is defined by

ϒ̂δ =
{
(ν, δp, s) : D(ν) ∈ [δ, 2δ], d(p, supp(ν))≤ δ2, s ∈ {0, 1}

}
∪ {(ν, δp, s) : D(ν)= δ}

∪ {(ν, δp, s) : D(ν) ∈ [δ, 2δ], d(p, supp(ν))≥ δ2}. (93)

See the following figure, where ∂ϒ̂δ is represented:

D(ν) 2δ δ

d(p, supp(ν))

s
ϒ̂δ

3
4

1
2

δ2
1
4

Construction of the test functions. Observing that for D(ν)≤ δ we are already in the domain of R and
recalling the sets (92) and (93), we have found a retraction F : Y → YR, where

YR = {(ν, δp, s) : D(ν)≤ δ} ∪ ϒ̃δ ∪ ϒ̃2

= {(ν, δp, s) : D(ν)≤ δ} ∪ {(ν, δp, s) : D(ν)≥ δ, d(p, supp(ν))≥ δ2}

∪
{
(ν, δp, s) : D(ν)≥ δ, d(p, supp(ν))≤ δ2, s ∈ {0, 1}

}
, (94)

on which the map R is well-defined or where s ∈ {0, 1}.

Remark 4.16. By the way the retraction F is constructed, it is clear that we have indeed a deformation
retract of the set Y onto YR, i.e., there exists a continuous map Ft : Y ×[0, 1] → Y such that F0 = IdY ,
F1 = F : Y → YR, and F1(ξ)= ξ for all ξ ∈ YR.

We finally call 8λ =8λ(ν, p, s) the test functions in Sections 4.2.1, 4.2.2, and 4.2.3 (see (83), (84),
(86), (88), (89), and (91)) using as parameters (ν, p, s) ∈ YR (where we use the identification p ' δp).
By the estimates obtained in Section 4.2, the next result holds true.

Proposition 4.17. Suppose that ρ1 ∈ (4kπ, 4(k+ 1)π) and ρ2 ∈ (4π, 8π). Then we have

Jρ(8λ(ν, p, s))→−∞ as λ→+∞ uniformly in (ν, p, s) ∈ YR.

The definition of 8λ reflects naturally the join element (ν, p, s) in the sense that, once composed with
the map 9̃ in (29), we obtain a map homotopic to the identity on YR; see the next section.

5. Proof of Theorem 1.1

In this section, we introduce the variational scheme that we will use to prove Theorem 1.1. As we already
observed, the case of surfaces with positive genus was obtained in [Battaglia et al. 2015]. Therefore, from
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X = S2
k ∗ S2 S

U3k+2
δ

(S2
k−1)

δ
∗ S2

Figure 1. Here X = S2
k ∗ S2 is the ambient space, (S2

k−1)
δ
∗ S2 is a neighborhood of

S2
k−1 ∗ S2 in X , S misses this neighborhood, and Uδ is a neighborhood of S in that

complement.

now on, we will consider the case when 6 is homeomorphic to S2. We will first analyze the topological
structure of the set Y in (51) and then introduce a suitable min-max scheme.

5.1. On the topology of Y when 6 is a sphere. In this subsection, we will use the notation ' for a
homotopy equivalence and ∼= for an isomorphism. Consider the topological join X = S2

k ∗ S2 (observe
that S2

1 = S2), and recall the definition of its subset S given in (52), that is,

S =
{(
ν, δy,

1
2

)
∈ S2

k ∗ S2
: ν ∈ S2

k \ (S
2
k−1)

δ, y ∈ supp(ν)
}
,

where we have set

(S2
k−1)

δ
=

{
ν ∈ S2

k : ν =

k∑
i=1

tiδxi , d(xi , x j ) < δ for some i 6= j
}

∪

{
ν ∈ S2

k : ν =

k∑
i=1

tiδxi , ti < δ for some i
}
∪

{
ν ∈ S2

k : ν =

k∑
i=1

tiδxi , ti > 1− δ for some i
}
.

Notice that S is a smooth manifold of dimension 3k− 1, with boundary of dimension 3k− 2.
The key point of this subsection is to prove that the complementary subspace Y = (S2

k ∗ S2) \ S is not
contractible; see Proposition 5.6. Before we do so, we establish some properties of Y and S. Below,
Uδ will represent an open neighborhood of S not meeting (S2

k−1)
δ
∗ S2 with the property that U δ is a

manifold with boundary ∂U δ, where both Uδ and U δ deformation-retract onto S and such that U δ \ S
deformation-retracts onto ∂U δ (see Figure 1).

For a metric space X, throughout this subsection, we use the notation for the k-tuples in X

F(X, k) := {(x1, . . . , xk) ∈ Xk
: xi 6= x j , i 6= j}

and B(X, n) to denote its quotient by the permutation action of the symmetric group. These are the
ordered and unordered k-th configuration spaces of X, respectively.
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Lemma 5.1. S is up to homotopy equivalence a degree-k covering of B(S2, k). Its homological dimension
is at most k, and its mod-2 homology is completely described by

H∗(S)∼= H∗(S2)⊗ H∗(B(R2, k− 1)).

Proof. The barycentric set S2
k is a suitable quotient of

1k−1×Sk (S
2)k,

with Sk acting diagonally by permutations and 1k−1 = {(t0, . . . , tk) : ti ∈ [0, 1],
∑

ti = 1}. The
identification occurs when xi = x j for some i 6= j or when ti = 0 for some i . When this happens, we are
identifying with points in S2

k−1. This means that, if 1̇k−1 is the open simplex, then

S2
k \ S2

k−1 = 1̇k−1×Sk F(S2, k), (95)

where F(S2, k) is the configuration space of k distinct points on S2. The action of Sk on F(S2, k) is free,
so we have a bundle projection

1̇k−1×Sk F(S2, k)→ B(S2, k),

where B(S2, k) := F(S2, k)/Sk is the configuration of k-unordered points on S2. The preimages, being
copies of the simplex, are contractible so that necessarily

S2
k \ S2

k−1 ' B(S2, k).

In fact, {1/k} maps to 1̇k−1 with image (1/k, . . . , 1/k) and the induced map

B(S2, k)=
{1

k

}
×Sk F(S2, k)→ 1̇k−1×Sk F(S2, k)

is an equivalence. To summarize, S can be deformed onto the subspace

Wk = {([x1, . . . , xk], x) ∈ B(S2, k)× S2
: x = xi for some i}.

By projecting Wk onto B(S2, k), we get a covering. This implies that the homological dimension hd
of Wk is that of B(S2, k), which is also the homological dimension of its covering space F(S2, k). We
claim that this dimension is at most k. The projection onto the first coordinate F(S2, k)→ S2 is a
bundle map with fiber F(R2, k − 1), so hd(F(S2, k)) ≤ 2+ hd(F(R2, k − 1)). Since we also have a
fibration F(R2, k− 1)→ F(R2, k− 2) given by projecting onto the first k− 2 entries, with fiber a copy
of R2

\ {x1, . . . , xk−2} that is a bouquet of circles, the claim follows immediately by induction, knowing
that F(R2, 2)' S1.

Note that we can identify Wk with the quotient F(S2, k)/Sk−1 where the symmetric group acts on the
first k− 1 coordinates. In particular in the case k = 2, S 'W2 = F(S2, 2)' S2.

By projecting Wk onto S2 via the last coordinate, we get a bundle with fiber B(R2, k− 1). Let us look
at the inclusion of the fiber over {∞} ∈ S2

= R2
∪ {∞} in this bundle

B(R2, k− 1) ↪→Wk = F(S2, k)/Sk−1,

[x1, . . . , xk−1] 7→ ([x1, . . . , xk−1],∞).
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Let S∞ be the direct union of the Sn under inclusion: this is a contractible space. Now S2 embeds in S∞

and we have a map of quotients

F(S2, k)/Sk−1→ F(S∞, k)/Sk−1.

The space on the right-hand side projects onto S∞ with fiber B(R∞, k − 1). Since the base space is
contractible, there is a homotopy equivalence F(S∞, k)/Sk−1 ' B(R∞, k − 1). Let us consider the
composition

B(R2, k− 1)
ι
−→Wk = F(S2, k)/Sk−1→ B(R∞, k− 1). (96)

This composition is homotopic to the map induced on configuration spaces from the inclusion R2
⊂ R∞.

It is a known useful fact that each embedding B(Rn, k) ↪→ B(Rn+1, k) induces a monomorphism in
mod-2 homology.1 In the case k = 2 for example, this is B(Rn, 2)' RPn−1

→ B(Rn+1, 2)' RPn . This
then implies that B(R2, k− 1) ↪→ B(R∞, k− 1) induces in homology mod-2 a monomorphism as well,
which then means that the first portion of the composition in (96), which is inclusion of the fiber, injects
in homology. Consider the Wang long exact sequence in homology associated to the bundle Wk→ S2

[Mimura and Toda 1991, Theorem 2.5]:

Hq+1(Wk)→ Hq−n+1(B(R2, k− 1))→ Hq(B(R2, k− 1))
ι∗
−→ Hq(Wk)→ Hq−n(B(R2, k− 1))

with n = 2 in our case. Since ι∗ is a monomorphism, the long exact sequence splits into short exact
sequences, and because we are working over a field, Hq(Wk)∼= Hq(B(R2, k− 1))⊕ Hq−2(B(R2, k− 1)).
Since H∗(Wk)∼= H∗(S), the proof is complete. �

Remark 5.2. The top mod-2 homology group Hk(S) is trivial if k−1 is not a binary power and is a copy
of Z2 if k− 1 is a binary power. This is because Hk−2(B(R2, k− 1)) satisfies the same condition [Fuks
1970, p. 146], by Lemma 5.1.

Lemma 5.3. Suppose k ≥ 3. The manifold S defined in (52) is not orientable.

Proof. We first observe that the manifold S2
k \ S2

k−1 is not orientable for any k ≥ 2. From the proof of
Lemma 5.1,

S2
k \ S2

k−1 = 1̇k−1×Sk F(S2, k)

is a bundle over B(S2, k) with fiber the open simplex. Since B(S2, k) is orientable (because unordered
configuration spaces of smooth manifolds are orientable if and only if the dimension of the manifold
is even), the orientability of the total space is the same as the orientability of the bundle. But the braid
generators of the fundamental group of B(S2, k) act (after restriction to the open simplex) by transpositions
on the vertices of 1k−1 and this is orientation reversing, so the bundle is not orientable.

Now let Vk be the subset of S2
k \S

2
k−1 of all sums

∑
tiδxi with xi =∞ for some i . Again∞ stands for the

north pole of S2
=R2
∪{∞}. Here Vk ' B(R2, k−1). Note that π1(B(R2, k−1)) embeds in π1(B(S2, k))

with similar braid generators. For the exact same reason as for S2
k \ S2

k−1, Vk is not orientable.

1This follows from the work of Cohen [1976], who first calculated H∗(B(Rn, k); F) for all n and k and for F=Z2,Zp , p odd.
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Consider finally the manifold

S=
{(
ν, δy,

1
2

)
∈ S2

k ∗ S2
: ν ∈ S2

k \ S2
k−1, y ∈ supp(ν)

}
.

Then S is a codimension-0 submanifold of S (with boundary) that is also a deformation retract. Both
S and S have the same orientation. But there is a bundle map S→ S2 with fiber Vk . It is easy to see
now that the orientation of S is that of Vk . Indeed the bundle over the open upper hemisphere D of S2

is trivial and thus homeomorphic to Vk × D. This is an open subset of S that is nonorientable; thus, S
must be nonorientable. �

Lemma 5.4. Let k ≥ 3. Then Y = (S2
k ∗ S) \ S has the Euler characteristic of a contractible space, i.e.,

χ(Y )= 1.

Proof. By the previous lemma, S is up to homotopy a degree-k covering of B(S2, k). This gives

χ(S)= kχ(B(S2, k))= k
1
k!
χ(F(S2, k))=

1
(k− 1)!

χ(S2)χ(F(R2, k− 1))= 0.

Here what vanishes is χ(F(R2, k− 1))= 0 since, letting C∗ = C \ {0}, there are homeomorphisms

F(R2, k− 1)= R2
× F(R2

\ {(0, 0)}, k− 2)= R2
×C∗× F(C∗ \ {1}, k− 3)

and χ(C∗)= χ(S1)= 0.
On the other hand, S is a smooth (3k− 1)-dimensional manifold with boundary. A neighborhood of S

in S2
k ∗ S2 is a (3k + 2)-dimensional open manifold Uδ. This neighborhood is the union of two open

subspaces A and B, where A is a fiberwise cone over the interior of S and B is a bundle over ∂S with
fiber the cone over a hemisphere. The complement U δ \ S is the union of two subspaces Ã and B̃, where
Ã retracts onto an S2-bundle over the interior of S while B̃ is up to homotopy ∂S. Clearly Ã∩ B̃ retracts
onto an S2-bundle over ∂S. We can then write

χ(Uδ \ S)= χ( Ã∪ B̃)= χ( Ã)+χ(B̃)−χ( Ã∩ B̃)= 2χ(S)+χ(∂S)− 2χ(∂S)

= 2χ(S)−χ(∂S). (97)

We know that, for a manifold S of dimension m with boundary,

χ(∂S)= χ(S)− (−1)mχ(S).

Since χ(S)= 0, we get χ(∂S)= 0 and therefore χ(Uδ \ S)= 0 by (97).
Now cover X = S2

k ∗ S2 by means of Uδ ' S and Y = X \ S. The inclusion-exclusion property of the
Euler characteristic gives that

χ(X)= χ(Uδ)+χ(Y )−χ(Uδ \ S)= χ(S)+χ(Y )= χ(Y )

so that χ(Y ) = χ(X). But χ(X) = 1 since χ(X) = χ(S2
k ∗ S2) = χ(S2

k )+ χ(S
2)− χ(S2

k )χ(S
2), and

χ(S2
k )= 1 for k ≥ 3 by the formula

χ(Zk)= 1−
1
k!
(1−χ)(2−χ) · · · (k−χ)
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for any surface Z [Malchiodi 2008a] and more generally for any simplicial complex Z [Kallel and Karoui
2011] with χ = χ(Z). �

Lemma 5.5. The set Y is simply connected.

Proof. Using the same notation as in the proof of the previous lemma, we have the pushout

Ã∩ B̃

��

// Ã

��

B̃ // U δ \ S

Recall that Ã is up to homotopy an S2-bundle over S, B̃ ' ∂S, and Ã∩ B̃ is an S2-bundle over ∂S. This
means that π1( Ã∩ B̃)= π1(∂S) and π1( Ã)∼= π1(S). We therefore have the pushout in the category of
groups (by the van Kampen theorem)

π1(∂S)

∼=

��

// π1(S)

��

π1(∂S) // π1(Uδ \ S)

which shows that π1(Uδ \ S)∼= π1(S)∼= π1(Uδ). Observe that we have used the fact that U δ \ S 'Uδ \ S
since we are removing the boundary from a manifold not intersecting S. On the other hand, we can use
the same open covering of X = S2

k ∗ S2 by Uδ and Y = X \ S. Since X is a join of connected spaces, it is
1-connected. The pushout of groups

π1(Uδ \ S)

∼=

��

// π1(X \ S)

��

π1(Uδ) // 0

implies that, because the left-hand vertical map is an isomorphism, the right-hand vertical map must be
an isomorphism as well and π1(X \ S)= π1(Y )= 0. �

Despite the fact that Y is simply connected and has unit Euler characteristic, it is noncontractible.

Proposition 5.6. Suppose k ≥ 2 and k 6= 4. Then the subspace

Y = (S2
k ∗ S2) \ S

is not contractible.

Proof. We assume that Y is contractible and derive a contradiction. The main step is to prove that under
this condition with mod-2 coefficients we must have

H∗(S)∼= H3k−1−∗(S2
k ), 0≤ ∗ ≤ k. (98)

This will then be shown to be impossible.
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The closed subset S has a neighborhood Uδ that is (3k+ 2)-dimensional with (3k+ 1)-dimensional
boundary ∂U δ. Using Poincaré’s duality with mod-2 coefficients for the closed manifold ∂U δ gives us

H∗(∂U δ)∼= H3k+1−∗(∂U δ).

Since U δ \ S retracts onto ∂U δ and homology is dual to cohomology for finite-type spaces and field
coefficients, we can conclude that

H∗(U δ \ S)∼= H3k+1−∗(U δ \ S), ∗ ≥ 0. (99)

Next we turn to the open covering of X = S2
k ∗ S2 by Uδ and Y = X \ S. Using that Y ∩Uδ =Uδ \ S

and Uδ ' S, the Mayer–Vietoris sequence for this union takes the form

H∗(Uδ \ S)→ H∗(S)⊕ H∗(Y )→ H∗(X)→ H∗−1(Uδ \ S)→ H∗−1(S)⊕ H∗−1(Y )→ H∗−1(X)→ · · · .

Since Y has trivial reduced homology by assumption, the sequence becomes

H∗(Uδ \ S)→ H∗(S)→ H∗(X)→ H∗−1(Uδ \ S)→ H∗−1(S)→ H∗−1(X)→ · · · . (100)

But S has homological dimension k (see Lemma 5.1), so for ∗ > k + 1, we have the isomorphism
H∗−1(Uδ \ S)∼= H∗(X). Since X is the third suspension of S2

k , H∗(X)∼= H∗−3(S2
k ) and thus

H∗(Uδ \ S)∼= H∗−2(S2
k ), ∗> k. (101)

It is generally known [Kallel and Karoui 2011] that the barycentric set Zk is (2k + r − 2)-connected
whenever Z is r -connected, r ≥ 1. If Z = S2, which is 1-connected, S2

k is (2k−1)-connected and so X is
(2k+ 2)-connected. In the range ∗ ≤ 2k+ 2, H̃∗(X)= 0. The Mayer–Vietoris sequence (100) leads in
this case to

H∗(Uδ \ S)∼= H∗(S), ∗< 2k+ 2.

Since S has no homology beyond degree k, we can focus on the range below so that

H∗(Uδ \ S)∼= H∗(S), 0≤ ∗ ≤ k. (102)

We can now combine all previous isomorphisms into one for 0≤ ∗ ≤ k:

H∗(S)
∼=
−−→
(102)

H∗(Uδ \ S)
∼=
−−→
(99)

H3k+1−∗(Uδ \ S)
∼=
−−→
(101)

H3k−1−∗(S2
k ).

This is the claim in (98). Note that S2
k is (3k−1)-dimensional as a CW complex and is (2k−1)-connected,

so its homology is nonzero only in the range 2k ≤ ∗ ≤ 3k− 1.
The isomorphism H∗(S)∼= H3k−1−∗(S2

k ) cannot hold. First let us check the case k = 2. In that case,
we pointed out in the proof of Lemma 5.1 that S ' F(S2, 2) ' S2. Since S2

2 ' 6
3RP2 (the 3-fold

suspension of RP2 [Kallel and Karoui 2011, Corollary 1.6]), the isomorphism obviously cannot hold: in
fact, H1(S2)= 0 but H4(6

3RP2)= H1(RP2)= Z2.
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Suppose that k≥3. According to Theorem 1.3 in [Kallel and Karoui 2011], S2
k has the same homology as

(one desuspension) of the symmetric smash product SPk
(S3)= (S3)∧k/Sk ; i.e., H∗(S2

k )
∼= H∗+1(SPk

(S3)).
Combining this with (98), we get

H∗(S)∼= H3k−∗(SPk
(S3)), 0≤ ∗ ≤ k. (103)

We will show that this is impossible. To that end, we need to describe the groups on both sides of (103).
We work again mod-2. From Lemma 5.1, we have that

H∗(S)∼= H∗(B(R2, k− 1))⊕ H∗−2(B(R2, k− 1)), ∗ ≥ 0.

(when ∗ − 2 < 0 the corresponding group is zero). The mod-2 homology of B(R2, k − 1) has been
computed by Fuks [1970], and it is best described as a subspace of the polynomial algebra (viewed as an
infinite vector space generated by powers of the indicated generators)

Z2[a(1,2), a(3,4), . . . , a(2i−1,2i ), . . . ], (104)

where the notation ai, j refers to a generator having homological degree i and a certain filtration degree j ,
both degrees being additive under multiplication of generators. Now the condition for an element
ak1
(2i1−1,2i1 )

· · · akr
(2ir−1,2ir )

∈ H∗(B(R2, k− 1)) is that its filtration degree is less than or equal to k− 1, that
is, if and only if

∑
is

kis 2
is ≤ k− 1.

For example, H̃∗(B(R2, 2)) = Z2{a(1,2)} (one copy of Z2 generated by a(1,2) having homological
degree 1 and filtration degree 2). Similarly H̃∗(B(R2, 4))= Z2{a(1,2), a2

(1,2), a(3,4)} so that

H1(B(R2, 4))= Z2{a(1,2)}, H2(B(R2, 4))= Z2{a2
(1,2)}, H3(B(R2, 4))= Z2{a(3,4)}.

Now H∗(B(R2, 5))∼= H∗(B(R2, 4)), and this turns out to be a general fact explained in Proposition 5.9
in more geometric terms.

On the other hand, the reduced groups H̃∗(SPk
(S3)) form a subvector space of the polynomial algebra

Z2[ι(3,1), f(5,2), f(9,4), . . . , f(2i+1+1,2i ), . . . ] (105)

consisting of those elements of second filtration degree precisely k (see the Appendix in [Kallel and Karoui
2011] and references therein). Here again f(2i+1+1,2i ) denotes an element of homological degree 2i+1

+ 1
and filtration degree 2i . For example, (here ι= ι(3,1))

H̃∗(SP4 S3)= Z2{ι
4, ι2 f(5,2), f 2

(5,2), f(9,4)},

which is better listed as

H12(SP4 S3)= Z2{ι
4
}, H11(SP4 S3)= Z2{ι

2 f(5,2)},

H10(SP4 S3)= Z2{ f 2
(5,2)}, H9(SP4 S3)= Z2{ f(9,4)}.

This space SP4
(S3) is 8-connected, and more generally, SPk

(S3) is 2k-connected [Kallel and Karoui 2011].
Let us now compare the groups in (103). When ∗ = 0, H0(S) = Z2 but so is H3k(SPk

(S3)) gen-
erated by the class ιk(3,1). Also when ∗ = 1 and k ≥ 3, H1(S) = H1(B(R2, k − 1)) = Z2 but so is
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H3k−1(SPk
(S3)) generated by {ιk−2 f5,2}. There is no contradiction yet. When ∗= 2, we get the generator

a2
(1,2) ∈ H2(B(R2, k−1))∼= Z2 as soon as k ≥ 5 (a2

(1,2) is in filtration 4). This gives that H2(S)= Z2⊕Z2.
We claim however that H3k−2(SPk

(S3)) = Z2, which will give a contradiction in that case. Indeed a
generator in filtration degree k in (105) is written as a finite product

ιk0 f k1
5,2 · · · f ki

(2i+1+1,2i )
· · · ,

∑
i≥0

ki 2i
= k.

The homological degree of this class is
∑

i≥0 ki (2i+1
+ 1)= 2

∑
i≥0 ki 2i

+
∑

i≥0 ki . To obtain the rank
of H3k−2, we need to find all the possible sequences of integers (k0, k1, k2, . . . ) such that

∑
i≥0 ki 2i

= k
and 2

∑
i≥0 ki 2i

+
∑

i≥0 ki = 3k− 2. We have to solve for∑
i≥0

ki 2i
= k = 2+

∑
i≥0

ki .

This immediately gives that ki = 0, i ≥ 2. There is one and only one solution: k0 = k − 4 and k1 = 2.
And the group H3k−2(SPk

(S3))∼= Z2 is generated by ιk−4 f 2
5,2.

The isomorphism (103) cannot hold for k ≥ 5. We are left to consider the case k = 3: here H3(S)= Z2

but H6(SP3
(S3))= 0, giving a contradiction.

In conclusion since the isomorphism (103) (equivalently (98)) cannot hold, Y must have nontrivial
mod-2 homology and thus cannot be contractible as we had asserted. �

The next proposition treats the case k = 4: in preparation, we need the following lemma. Recall that S
is a manifold with boundary embedded in U δ ⊂ S2

k ∗ S2. We can write U δ as the union of two sets A
and B, where A is a three-dimensional disk bundle over S and A∩ B its restriction over ∂S. We refer to
this bundle as the normal disk bundle and its boundary as the sphere normal bundle. Note that, in the
proof of Lemma 5.4, we have used Ã = A \ S and B̃ = B \ S.

Lemma 5.7. The sphere normal bundle over ∂S is orientable.

Proof. We will view this bundle as an extension of a normal sphere bundle over the interior Ṡ := int(S)
that is orientable (in doing so, we give more details on the construction of A and A∩ B).

We recall that the join is given by the equivalence relation X ∗ Y = X × Y × I/∼, where ∼ are
identifications at the endpoints of I =[0, 1]; see (9). The join contains the open dense subset X×Y×(0, 1)
(let us call it the big cell). This subset is a manifold of dimension n+m+ 1 if X and Y are manifolds of
dimensions n and m, respectively. In our case, S is a subset of the big cell

(S2
k \ (S

2
k−1)

δ)× S2
× (0, 1)⊂ (S2

k \ (S
2
k−1)

δ) ∗ S2

and int(S) is regularly embedded as a differentiable submanifold. It therefore has a unit normal disk
bundle (of dimension 3) in there. This is homeomorphic to a tubular neighborhood V δ of int(S).
Let us use the same name for the neighborhood and the normal bundle. The normal bundle of Ṡ
in (S2

k \ (S
2
k−1)

δ)× S2
× (0, 1) is the normal bundle of Ṡ in (S2

k \ (S
2
k−1)

δ)× S2
×{

1
2}, to which we add a

trivial line bundle. We can then consider directly Ṡ as a subset of (S2
k \ (S

2
k−1)

δ)× S2 and show that it has
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an orientable rank-2 normal bundle there. Write Dk := S2
k \ (S

2
k−1)

δ and

S =
{( k∑

i=1

tiδxi , x
)
∈ Dk × S2

: x = xi for some i
}
.

Define V δ the neighborhood of S in Dk × S2 as

V δ
=

{( k∑
i=1

tiδxi , x
)
∈ Dk × S2

: |x − xi |<
δ

2
for some and hence unique xi

}
.

The choice of xi is unique as x cannot be strictly within δ/2 of two distinct xi and x j since d(xi , x j )≥ δ

according to the definition of S. The neighborhood retracts back to S via the map( k∑
i=1

tiδxi , x
)
7→

( k∑
i=1

tiδxi , xi

)
where d(x, xi ) < δ/2. Consider the projection map π : Ṡ→ S2 sending (

∑k
i=1 tiδxi , x) 7→ xi if d(x, xi ) <

δ/2. We claim that the normal bundle of Ṡ in Dk × S2 is isomorphic to the pullback via π of the tangent
bundle T S2 over S2. We assume δ to be less than the injectivity radius of S2. Define a homeomorphism
between the tubular neighborhood V δ of Ṡ and a normal disk bundle of the pullback of T S2 over Ṡ by
sending (

∑k
i=1 tiδxi , x) with d(x, xi ) < δ/2 for some i to the element in the pullback(( k∑

i=1

tiδxi , x
)
, exp−1

xi
(x)
)

where expxi
is the exponential map at xi ∈ S2. This map is a homeomorphism onto its image, and the

normal bundle to Ṡ in Dk × S2 is isomorphic to T S2. Since T S2 is orientable (although nontrivial), the
normal bundle over Ṡ is orientable. This bundle can be extended to S by taking the closure of V δ in
Dk × S2

:= (S2
\ (S2

k−1)
δ)× S2

×{
1
2}. This extension is orientable over all of S since it is orientable over

the interior. By adding a line bundle, we get the normal bundle over S in the big cell. This bundle is
orientable over all of S and in particular over ∂S. This is our claim. �

Proposition 5.8. The subspace Y = (S2
k ∗ S2) \ S is not contractible for all k ≥ 2.

Proof. As before, we assume Y is contractible and derive a contradiction. We first show that for any field
coefficients F and ∗> k

H∗+3(Uδ \ S)∼= H∗(∂S). (106)

Write as before U δ \ S as the union Ã∪ B̃ with Ã∩ B̃ retracting onto the S2-bundle over ∂S discussed
earlier. The Mayer–Vietoris sequence for the union Ã∪ B̃ is given by

Hn+1( Ã∩ B̃)→ Hn+1( Ã)⊕Hn+1(B̃)→ Hn+1(Uδ \ S)→ Hn( Ã∩ B̃)→ Hn( Ã)⊕Hn(B̃)→ Hn(Uδ \ S).

As S has homological dimension at most k and Ã is an S2-bundle over it, Hn( Ã) vanishes for n > k+ 2.
On the other hand, the S2-bundle over ∂S is orientable (Lemma 5.7) and has a global section; this follows
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from the fact that the normal bundle over S has a trivial summand and hence there is a nonzero section
over all S that we can restrict to ∂S. By the Gysin sequence [Hatcher 2002, §4.D], one has a splitting

Hn( Ã∩ B̃)∼= Hn(∂S)⊕ Hn−2(∂S), n > 2.

Replacing in the Mayer–Vietoris sequence gives for n > k+ 2

· · · →
Hn+1(∂S)
⊕

Hn−1(∂S)

φn+1
−−→ Hn+1(∂S)→ Hn+1(Uδ \ S)→

Hn(∂S)
⊕

Hn−2(∂S)

φn
−→ Hn(∂S)→ · · · .

Now, in every inclusion of Ã∩ B̃ into B̃, the fibers (i.e., S2) contract to a point. Therefore, φn is trivial
on the bottom group while restricted to the top group it is a bijection. This map is an epimorphism, and
the long exact sequence for n > k+ 2 splits into short exact sequences

0→ Hn+1(Uδ \ S)→ Hn(∂S)⊕ Hn−2(∂S)→ Hn(∂S)→ 0.

As vector spaces, we get Hn+1(Uδ \ S)∼= Hn−2(∂S), which is our claim. Combined with (101), this yields

H∗(∂S)∼= H∗+1(S2
k ), ∗> k. (107)

Next we look at the Mayer–Vietoris sequence for the union S2
k = (S

2
k \ S2

k−1)∪ (S
2
k−1)

δ . It is shown in
[Malchiodi 2008a] that (S2

k−1)
δ
\ S2

k−1 retracts onto ∂(S2
k−1)

δ so that the long exact sequence becomes

· · · → Hn+1(∂(S2
k−1)

δ)→ Hn+1(S2
k−1)⊕ Hn+1(S2

k \ S2
k−1)→ Hn+1(S2

k )→ Hn(∂(S2
k−1)

δ)→ · · · .

Since the inclusion of S2
k−1 in S2

k is contractible and since S2
k \S

2
k−1' B(S2, k) has homological dimension k

(see Lemma 5.1), for n > k, the short sequence

0→ Hn+1(S2
k )→ Hn(∂(S2

k−1)
δ)→ Hn(S2

k−1)→ 0

is exact and we have the splitting

H∗(∂(S2
k−1)

δ)∼= H∗(S2
k−1)⊕ H∗+1(S2

k ), ∗> k. (108)

Both isomorphisms (107) and (108) cannot hold simultaneously as we now explain.
A key point to observe is that ∂S is a degree-k regular covering of ∂(S2

k−1)
δ . A property of a covering

π : X→ Y is the existence of a transfer morphism tr : H∗(Y )→ H∗(X) so that π∗ ◦ tr is multiplication
in H∗(Y ) by the degree of the covering, i.e., by k [Hatcher 2002, §3.G]. If the characteristic of the field
of coefficients is prime to k, then this composite is nontrivial and H∗(Y ) injects into H∗(X).

When k = 4, we have a degree-4 covering ∂S→ ∂(S2
3)
δ so that with F = F3-coefficients (the finite

field with 3 elements) we must have a monomorphism H∗(∂(S2
3)
δ
; F3) ↪→ H∗(∂S; F3). When ∗> 4, upon

combining (107) and (108), we get a monomorphism

H∗(S2
3; F3)⊕ H∗+1(S2

4; F3)→ H∗+1(S2
4; F3).

This leads immediately to a contradiction if H∗(S2
3; F3) 6= 0 in that range of dimensions.



THE TODA SYSTEM ON COMPACT SURFACES 2015

We know that H∗(S2
3)
∼= H∗+1(SP3

(S3)). We therefore wish to show that H∗(SP3
(S3); F3) 6= 0 for

some ∗ ≥ 6. It turns out that old calculations of Nakaoka [1956] give us precisely the answer. Nakaoka’s
Theorem 15.5 states that

H r (SP3(Sn); F3)∼= F3

for r = 0, n, n+ 4k with 1 ≤ k ≤ [n/2] and k 6= [n/4], r = n+ 4k + 1 with 1 ≤ k ≤ [(2n− 1)/4] and
k 6= [(n− 1)/4], and r = 2n with n ≡−2 or 1 (mod 4). In our case n = 3, so H r (SP3(S3); F3)∼= F3 for
r = 0, 3, 7, 8. Dually we obtain the same groups for Hr (SP3(S3); F3) (since working over a field). But
Hr (SP3(S3); F3)∼= Hr (SP3

(S3); F3) for r > 3 for the following three reasons:

• By construction, Hr (SP3
(S3); F3)= Hr (SP3(S3),SP2(S3); F3), r ≥ 1.

• There is a splitting due originally to Steenrod (for any coefficients [Kallel and Karoui 2011]):

Hr (SP3(S3))∼= Hr (SP3(S3),SP2(S3))⊕ Hr (SP2(S3)).

• Hr (SP2(S3); F3) = 0 if r > 3. In fact, from the covering (S3)2→ SP2(S3), by a consequence of
the transfer construction, H∗(SP2(S3); F3) is the subvector space of invariant cohomology classes
in H∗(S3

× S3) under the induced permutation action interchanging the two spheres. Since S3 is an
odd sphere, the involution acts via τ∗([S3

]⊗ [S3
])=−[S3

]⊗ [S3
] and the class [S3

]⊗ [S3
] is not

invariant so maps to 0 in H∗(SP2(S3); F3).

As a consequence, Hr (SP3
(S3); F3)∼= F3 for r = 7, 8, which gives a contradiction as we had asserted. �

Note that using the transfer property for the homology of a covering used in the proof of Proposition 5.8
we can give an alternative proof of Proposition 5.6 for k odd.

To conclude this topological discussion, it is worthwhile noting that Lemma 5.1 can be used to give a
novel proof of the following result on the mod-2 homology of unordered configurations of points in Rn:

Proposition 5.9. For k odd and n ≥ 2, one has

H∗(B(Rn, k);Z2)∼= H∗(B(Rn, k− 1);Z2).

Proof. All homology is with mod-2 coefficients. A starting point is the homology splitting

Hq(B(Sn, k))∼= Hq(B(Rn, k))⊕ Hq−n(B(Rn, k− 1)). (109)

One reference to this result is Theorem 18(1) of [Salvatore 2004]. It is also a special case of a similar result
of Kallel, where one can replace the sphere by any closed manifold M and Rn by M \ {p}, its punctured
version. Let Wn,k := F(Sn, k)/Sk−1 where Sk−1 acts by permutations on the first k− 1 coordinates. By
projecting onto the last coordinate, we obtain a bundle over Sn with fiber B(Rn, k− 1). Precisely as in
the proof of Lemma 5.1, we see that

H∗(Wn,k)∼= H∗(B(Rn, k− 1))⊕ H∗−n(B(Rn, k− 1)). (110)

Consider next the degree-k regular covering π : Wn,k → B(Sn, k) := F(Sn, k)/Sk . There is a transfer
morphism tr : H∗(B(Sn, k))→ H∗(Wn,k) so that the composite π∗ ◦ tr is multiplication by k. Since
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k is odd and thus prime to the characteristic of the field Z2, multiplication by k is injective and
H∗(B(Sn, k)) necessarily embeds in H∗(Wn,k); that is, (109) embeds into (110). But H∗(B(Rn, k− 1))
always embeds into H∗(B(Rn, k)) (in fact for any coefficients as it is relatively easy to see). This
means that H∗(B(Rn, k);Z2) ∼= H∗(B(Rn, k − 1);Z2) if k is odd as claimed. It also means that
H∗(B(Sn, k))∼= H∗(Wn,k). �

5.2. Min-max scheme. To prove Theorem 1.1, we will run a min-max scheme based on (a retraction
of) the set Y in (51). More precisely, we will consider the set YR introduced in (94) on which the test
functions 8λ are modeled. Some parts are quite standard and follow the ideas of [Ding et al. 1999] (see
[Malchiodi 2008a] for a Morse-theoretical point of view). For the specific problem (1), the crucial step is
Proposition 5.10, giving information on the topology of the low sublevels of Jρ ; see also the comments
after the proof.

Given any L > 0, Proposition 4.17 guarantees us the existence of λ > 1 sufficiently large such that
Jρ(8λ(ν, p, s)) <−L for any (ν, p, s) ∈ YR. Recalling 9̃ in (29), we take L so large that Corollary 3.8
applies, i.e., such that 9̃(J−L

ρ ) ⊆ Y . The crucial step in describing the topology of the low sublevels
of Jρ is:

Proposition 5.10. Let L and λ be as above, and let F be the retraction given before (94). Then the
composition

YR
8λ
−→ J−L

ρ

F◦9̃
−−→ YR

is homotopically equivalent to the identity map on YR.

Proof. We divide the proof in three cases, depending on the values of the join parameter s.

Case 1. Let s ∈ [34 , 1]. In this case, the test functions we are considering have the form (ϕt
1, ϕ

t
2), t = t (s),

as defined in Section 4.2.3. Notice that, as discussed at the beginning of the proof of Proposition 4.7,
most of the integral of eϕ

t
2 is localized near p and σ2(ϕ

t
2)� σ1(ϕ

t
1) for these values of s, which again

implies s(ϕt
1, ϕ

t
2)= 1; see (26). It turns out that, by the construction in Section 3.1, one has

9̃(8λ(ν, p, s))= 9̃(ϕt
1, ϕ

t
2)= (∗, p̃, 1),

where ∗ is an irrelevant element of 6k (recall that they are all identified when the join parameter equals 1;
see (9)) and where p̃ ∈6 is a point close to p. If p(t) : [0, 1] →6 is a geodesic joining p to p̃, one can
realize the desired homotopy as

((ν, p, s); t) 7→ (ν, p(t), (1− t)s+ t), t ∈ [0, 1].

Case 2. Let s ∈ [14 ,
3
4 ]. The test functions we are considering here are given in Section 4.2.1. For this

range of s, the exponential of the first component ϕ1 (see (82)) is well-concentrated around the points x̃i ;
see (77). The exponential of the second component ϕ2, depending on the value of s, will instead either
be concentrated near p or will be spread over 6 in the sense that σ2(ϕ2) might not be small. Recall the
maps ψ̃l given in Proposition 2.4 and the definition of ν̂ involved in the construction of the test functions



THE TODA SYSTEM ON COMPACT SURFACES 2017

given in (75): ν̂ =Rp(ν)=
∑k

i=i tiδxi . We then have

9̃(8λ(ν, p, s))= 9̃(ϕ1, ϕ2)=

{
(ψ̃k(ϕ1), ψ̃1(ϕ2), s(ϕ1, ϕ2)) if σ2(ϕ2) small,
(ψ̃k(ϕ1), ∗, 0) otherwise,

with ψ̃1(ϕ2) close to p (whenever defined, i.e., for σ2(ϕ2) small) and ψ̃k(ϕ1) close to
∑k

i=1 tiδx̃i in the
distributional sense. Furthermore, writing ϕ1 = ϕ1,λ to emphasize the dependence on λ, it turns out that

ψ̃k(ϕ1,λ)→

k∑
i=1

tiδx̃i as λ→+∞,

which gives us the homotopy

(ν; t) 7→ ψ̃k(ϕ1,λ/t), t ∈ [0, 1].

Reasoning as in Step 3 of Section 4.2.2, we get a homotopy that deforms the points x̃i to the original
ones xi . Letting γ̃i be the geodesic joining x̃i and xi in unit time, we consider

(ν; t) 7→

k∑
i=1

tiδγ̃i (1−t), t ∈ [0, 1].

Notice that for t= 0 we get in the above homotopy (ν; 0)=Rp(ν). Observe now that Rp is homotopic
to the identity map (see Remark 4.5), and let HRp be the map introduced in Step 4 of Section 4.2.2, which
realizes this homotopy. We then consider

(ν; t) 7→HRp(ν, 1− t), t ∈ [0, 1].

Finally, letting H be the concatenation of the above homotopies (rescaling the respective domains of
definition) and letting p(t) : [0, 1] →6 again be a geodesic joining p to ψ̃1(ϕ2) (whenever defined), we
get the desired homotopy

((ν, p, s); t) 7→
{(

H(ν; t), p(t), (1− t)s+ ts(ϕ1, ϕ2)
)
, t ∈ [0, 1] if σ2(ϕ2) is small,(

H(ν; t), p, (1− t)s
)
, t ∈ [0, 1] otherwise.

(111)

Case 3. Let s ∈ [0, 1
4 ]. In this case, the test functions we are considering are as in Section 4.2.2. Notice

that for this range of s we always get σ2(ϕ̂
t
2)� σ1(ϕ̂

t
1) (see the beginning of the proof of Proposition 4.7)

and therefore s(ϕ̂t
1, ϕ̂

t
2)= 0. We have to further subdivide this case depending on the values of s due to

the construction of the test functions in the Steps 1–4 of Section 4.2.2.
Emphasizing in the test functions the dependence on λ and recalling that t = t (s), for s ∈ [ 3

16 ,
1
4 ], we

get the property ψ̃k(qϕ
t
1,λ)

λ→∞
−−−→

∑k
i=1 tiδx̃i (see Step 1). When s ∈ [ 18 ,

3
16 ], one has by construction that

ψ̃k(ϕ̃
t
1,λ)

λ→∞
−−−→

∑k
i=1 tiδx̃i (see Step 2). For s ∈ [ 18 ,

3
16 ], we instead get ψ̂k(ϕ̃

t
1,λ)

λ→∞
−−−→

∑k
i=1 tiδγ̃i (see

Step 3). Finally, when s ∈ [ 18 ,
3
16 ], we obtain ψk(ϕ̃

t
1,λ)

λ→∞
−−−→HRp(ν, t) (see Step 4).

In any case, we then proceed analogously as in Step 2 and the desired homotopy is given as in the
second part of (111). �
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In this situation, one says that the set J−L
ρ dominates YR [Hatcher 2002, p. 528]. Recall now that Y is

not contractible (see Proposition 5.6); YR being a deformation retract of Y (see Remark 4.16), we get that
YR is not contractible too. Therefore, by the latter result, we deduce that

8λ(YR) is not contractible in J−L
ρ .

Moreover, one can take λ large enough so that 8λ(YR) ⊂ J−2L
ρ . We next define the topological cone

over YR by the equivalence relation

C= YR×[0, 1]/YR×{0},

where YR×{0} is identified to a single point, and we consider the min-max value

m = inf
h∈0

max
ξ∈C

Jρ(h(ξ)),

where

0 =
{
h : C→ H 1(6)× H 1(6) : h(ν, p, s)=8λ(ν, p, s) for all (ν, p, s) ∈ ∂C' YR

}
. (112)

First, we observe that the map from C to H 1(6)× H 1(6) defined by ( · , t) 7→ t8λ( · ) belongs to 0;
hence, this is a nonempty set. Moreover, by the choice of 8λ we have

sup
(ν,p,s)∈∂C

Jρ(h(ν, p, s))= sup
(ν,p,s)∈YR

Jρ(8λ(ν, p, s))≤−2L .

The crucial point is to show that m ≥−L . Indeed, ∂C is contractible in C and hence in h(C) for any h ∈0.
On the other hand by the fact that YR is not contractible and by Proposition 5.10, ∂C is not contractible
in J−L

ρ , so we deduce that h(C) is not contained in J−L
ρ . This being valid for any h ∈ 0, we conclude

that m ≥−L necessarily.
It follows from standard variational arguments [Struwe 2000] that the functional Jρ admits a Palais–

Smale sequence at level m. However, this does not guarantee the existence of a critical point since it is not
known whether the Palais–Smale condition holds. To bypass this problem, one needs a different argument,
usually named the monotonicity trick. This technique was first introduced by Struwe [1985] (see also
[Ding et al. 1999; Jeanjean 1999; Lucia 2007]) and has been used intensively, so we will be sketchy.

Let us take η > 0 such that [ρ1−2η, ρ1+2η]×[ρ2−2η, ρ2+2η] ⊂R2
\3, where 3 is the set defined

in (10). Consider then a parameter γ ∈ [−η, η]. It is easy to see that the above min-max geometry holds
uniformly for any ργ = (ρ1+γ, ρ2+γ ). In particular, for any L > 0, there exists λ large enough so that

sup
(ν,p,s)∈∂C

Jργ (h(ν, p, s)) <−2L , mγ = inf
h∈0

sup
ξ∈C

Jργ (h(ξ))≥−L . (113)

In this setting, the following result is well-known:

Lemma 5.11. The functional Jργ̃ possesses a bounded Palais–Smale sequence (u1,n, u2,n)n at level m γ̃

for almost every γ̃ ∈ ϒ = [−η, η].
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Standard arguments show that a bounded Palais–Smale sequence yields the existence of a critical
point; see, e.g., Proposition 5.4 in [Malchiodi 2008b]. Consider now γ̃n ∈ ϒ such that γ̃n→ 0, and let
(u1,n, u2,n)n denote the corresponding solutions. To conclude, it is then sufficient to apply the compactness
result given in Theorem 2.1, which implies convergence of (u1,n, u2,n) to a solution of (1).

Appendix: Proof of Proposition 4.7

The energy estimates of Proposition 4.7 will follow from the next three lemmas.

Lemma A.1. If ϕ1 and ϕ2 are defined as in (82), we have that∫
\

6

ϕ1 dVg = O(1),
∫

\

6

ϕ2 dVg = O(1).

Proof. From elementary inequalities (see also the figure on page 1995), it is easy to show that there exists
a constant C so that

|ϕ1| + |ϕ2| ≤ C
(

1+ log
1

d( · , p)
+

∑
i

1
d( · , x̃i )

)
.

As the logarithm of the distance from a fixed point is integrable, the conclusion easily follows. �

In the following, for positive numbers a and b, we will use the notation

a 'C b ⇐⇒ there exists C > 1 such that
b
C
≤ a ≤ Cb. (114)

Lemma A.2. Under the above assumptions, one has∫
6

eϕ1 dVg 'C ŝ4τ 2
λ λ̌

2,

∫
6

eϕ2 dVg 'C max
{
τ̃ 2

ŝ2µ4 , 1
}
.

Proof. Let τ ∈ (0,+∞] be fixed, and let ν̂ ∈ 6k,p,τ be as in (75). For simplicity, we may assume that
there is only one point in the support of ν̂, i.e., ν̂ = δx j . The case of a general ν̂ is then treated in an
analogous way. It is not difficult to show that the terms − 1

2v2 and − 1
2v1,1 do not affect the integrals of eϕ1

and eϕ2 , respectively, and that∫
6

eϕ1 dVg 'C

∫
6

ev1 dVg,

∫
6

eϕ2 dVg 'C

∫
6

ev2 dVg.

Therefore, it is enough to prove∫
6

ev1 dVg 'C ŝ4τ 2
λ λ̌

2,

∫
6

ev2 dVg 'C max
{
τ̃ 2

ŝ2µ4 , 1
}
. (115)

We start by observing that, by definition, for d(x j , p)≤ 4/λ j

v1(x)= log
1

((ŝτλ)−2+ d(x, p)2)3
.

By an elementary change of variables, we find∫
6

ev1 dVg =

∫
6

1
((ŝτλ)−2+ d(x, p)2)3

dVg 'C ŝ4τ 4
λ . (116)
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By the definition of τ and ν̂ ∈6k,p,τ (see in particular (72) and (73)), recalling that d(x j , p)≤ 4/λ j and
that λ j ≥ λ by construction, we get

1
τ
≤ d(x j , p)≤

4
λ j
≤

C
λ
. (117)

By taking λ sufficiently large, we deduce τ � 1. It follows that š = 1 and λ̌= λ; see (79). Moreover, by
(117), we have

C
λ
≤ τλ ≤ λ.

Therefore, we can rewrite (116) as∫
6

ev1 dVg =

∫
6

1
((ŝτ)−2+ d(x, p)2)3

dVg 'C ŝ4τ 2
λ λ̌

2

and the proof of the first part of (115) is concluded. Suppose now d(x j , p) > 4/λ j , and divide 6 into
three subsets:

A= Ax̃ j

(
1

s jλ j
,

d(x̃ j , p)
4

)
, B= B1/(s jλ j )(x̃ j ), C=6 \ (A∪B).

We start by estimating ∫
B

ev1 dVg =

∫
B1/(s j λ j )(x̃ j )

s4
jλ

4
j d(x̃ j , p)4

((ŝτλ)−2+ d(x, p)2)3
dVg.

Observe that if in the latter formula we substitute d(x, p) with d(x̃ j , p) we get negligible errors, which
will be omitted. Therefore, we can rewrite it as∫

B
ev1 dVg =

∫
B1/(s j λ j )(x̃ j )

s4
jλ

4
j

d(x̃ j , p)2
1

((ŝτλd(x̃ j , p))−2+ 1)3
dVg

=
s2

jλ
2
j

d(x̃ j , p)2
C

((ŝτλd(x̃ j , p))−2+ 1)3
= s2

j s̃
2
j

λ2
j

d(x j , p)2
C

((ŝτλd(x̃ j , p))−2+ 1)3
,

where in the last equality we have used (77). Exploiting now the conditions (80) and (81) and the
assumption d(x j , p) > 4/λ j and recalling that d(x j , p)≥ 1/τ by definition (73), we conclude that∫

B
ev1 dVg = ŝ4τ 2

λ λ̌
2 C
((ŝτλd(x̃ j , p))−2+ 1)3

'C ŝ4τ 2
λ λ̌

2.

It is then not difficult to show that∫
A

ev1 dVg ≤ ŝ4τ 2
λ λ̌

2C,
∫

C
ev1 dVg ≤ ŝ4τ 2

λ λ̌
2C

for some C > 0. This concludes the proof of the first part of (115).
For the second part of (115), similarly as before, we divide 6 into

Ã= Ap

(
1
ŝτ̃
,

1
ŝµ

)
, B̃= B1/(ŝτ̃ )(p), C̃=6 \ (Ã∪ B̃).
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For x ∈ B̃, we have v2(x)= log(µ/τ̃ )−4; hence,∫
B̃

ev2 dVg =

∫
B1/(ŝτ̃ )(p)

(µ
τ̃

)−4
dVg =

τ̃ 2

ŝ2µ4 C. (118)

Moreover, working in normal coordinates around p, one gets∫
Ã

ev2 dVg ≤
τ̃ 2

ŝ2µ4 C (119)

for some C > 0. On the other hand, we have∫
C̃

ev2 dVg 'C 1. (120)

From (118), (119), and (120), it follows that∫
6

ev2 dVg 'C max
{
τ̃ 2

ŝ2µ4 , 1
}
,

which concludes the proof of the second part of (115). �

Recalling the definition of ν̂ ∈ 6k,p,τ in (75), we introduce now the following sets of indices. Let
I ⊆ {1, . . . , k} be given by

I =
{

i : d(xi , p) >
4
λi

}
.

We then subdivide I into two subsets I1, I2 ⊆ I :

I1 =

{
i : d(xi , p)≤

1
τλ

}
, I2 =

{
i : d(xi , p) >

1
τλ

}
. (121)

Lemma A.3. Under the above assumptions, one has∫
6

Q(ϕ1, ϕ2) dVg ≤ 8π(log τ̃ − logµ)+ 8|I1|π(log λ̌− log τλ)+
∑
i∈I2

8π(log si + log λi − log d(x̃i , p))

+ 16π
∑
i∈I2

log d(x̃i , p)+ (24π log τλ+ 24π log ŝ)+C

for some C = C(6).

Proof. We start by observing that, by definition, ∇v1,1 = 0 in 6 \
⋃

i∈I Ax̃i (1/siλi , d(x̃i , p)/4) while
∇v2=0 in6\Ap(1/ŝτ̃ , 1/ŝµ). We next prove the following estimates on the gradients of v1,1, v1,2, and v2:

|∇v1,1(x)| ≤
4

dmin(x)
in
⋃
i∈I

Ax̃i

(
1

siλi
,

d(x̃i , p)
4

)
, (122)

|∇v2(x)| ≤
4

d(x, p)
in Ap

(
1
ŝτ̃
,

1
ŝµ

)
, (123)

|∇v1,2(x)| ≤
6

d(x, p)
for every x ∈6, (124)
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where dmin(x)=mini∈I d(x, x̃i ) and

|∇v1,2(x)| ≤ C ŝτλ for every x ∈6, (125)

where C is a constant independent of τλ and ŝ.
Concerning (122) and (123), we show the inequalities just for v1,1 as for v2 the proof is similar. We

have that

∇v1,1(x)=−4

∑k
i=1 ti

(
d(x,x̃i )
d(x̃i ,p)

)−5
∇x

(
d(x,x̃i )
d(x̃i ,p)

)
∑k

j=1 t j

(
d(x,x̃ j )

d(x̃ j ,p)

)−4 =−4

∑k
i=1 ti

(
d(x,x̃i )
d(x̃i ,p)

)−4
∇x d(x,x̃i )

d(x,x̃i )∑k
j=1 t j

(
d(x,x̃ j )

d(x̃ j ,p)

)−4

=−4

∑k
i=1 ti

(
d(x,x̃i )
d(x̃i ,p)

)−4
∇x d(x,x̃i )

dmin(x)∑k
j=1 t j

(
d(x,x̃ j )

d(x̃ j ,p)

)−4 .

Exploiting the fact that |∇x d(x, x̃i )| ≤ 1, we obtain (122). Moreover, by direct computations, one gets
(123). We consider now

∇v1,2(x)=−3
ŝ2τ 2

λ∇x(d2(x, p))
1+ ŝ2τ 2

λd2(x, p)
.

Using the estimate |∇x(d2(x, p))| ≤ 2d(x, p), the properties (124) and (125) easily follow by the
inequalities

ŝ2τ 2
λd2(x, p)

1+ ŝ2τ 2
λd2(x, p)

≤ 1,
ŝτλd(x, p)

1+ ŝ2τ 2
λd2(x, p)

≤ 1 for every x ∈6,

respectively. Recalling the definitions of ϕ1 and ϕ2 in (82) and that v1 = v1,1+ v1,2, we obtain∫
6

Q(ϕ1, ϕ2) dVg =
1
3

∫
6

(
|∇ϕ1|

2
+ |∇ϕ2|

2
+∇ϕ1 · ∇ϕ2

)
dVg

=
1
3

∫
6

(
|∇v1|

2
+

1
4 |∇v2|

2
−∇v1 · ∇v2

)
dVg

+
1
3

∫
6

(
|∇v2|

2
+

1
4 |∇v1,1|

2
−∇v2 · ∇v1,1

)
dVg

+
1
3

∫
6

(
∇v1−

1
2∇v2

)
·
(
∇v2−

1
2∇v1,1

)
dVg

=
1
4

∫
6

|∇v1,1|
2 dVg +

1
4

∫
6

|∇v2|
2 dVg +

1
3

∫
6

|∇v1,2|
2 dVg

+

∫
6

( 1
6∇v1,1 · ∇v1,2−

7
12∇v1,1 · ∇v2

)
dVg. (126)

We start by observing that the integral of the mixed terms is uniformly bounded. Indeed, we claim that

∇v1,1 · ∇v2 = 0. (127)

By the remark before (122), (127) will follow by proving Ax̃i (1/siλi , d(x̃i , p)/4)∩ Ap(1/ŝτ̃ , 1/ŝµ)=∅
for all i ∈ I . Recall the constant δ in (77). Clearly, when all the points of the support of ν̂ are bounded
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away from p, i.e., d(xi , p) > δ for all i , we get the conclusion. Consider now the case d(xi , p)≤ δ for
some i , and observe that in this case s̃i = ŝ; see (77). Moreover, by taking δ sufficiently small, one has
also š ≤ C by the definition (79) (see also (117) and the motivation above it). To prove that the above
two subsets are disjoint, one just has to ensure that d(x̃i , p)� 1/ŝµ. We distinguish between two cases.
Suppose first that d(xi , p) > 1/τλ. By the assumptions we have made and by (80), one gets

d(x̃i , p)=
1
s̃i

d(xi , p)=
1
ŝ

d(xi , p)≥
1
ŝλi
=

1

ŝd(xi , p)τλλ̌
≥

1

C ŝτλλ̌
=

1
C ŝτλšλ

≥
1

C ŝτλλ
�

1
ŝµ

by the choice of the parameters µ and λ. The case d(xi , p)≤ 1/τλ is treated in the same way with minor
modifications. This conclude the proof of (127).

We claim now that ∫
6

∇v1,1 · ∇v1,2 dVg ≤ C. (128)

We introduce the sets

Ai =
{

x ∈6 : d(x, x̃i )=min
j∈I

d(x, x j )
}
. (129)

By (122) and (125), we get∫
6

∇v1,1 · ∇v1,2 dVg ≤

∫
6

C
dmin(x) d(x, p)

dVg ≤
∑
i∈I

∫
Ai

C
d(x, x̃i ) d(x, p)

dVg

≤

∑
i∈I

∫
Ax̃i (1/(siλi ),d(x̃i ,p)/4)

C
d(x, x̃i ) d(x̃i , p)

dVg ≤ C,

which proves the claim (128).
Using the estimate (122), one has

1
4

∫
6

|∇v1,1|
2 dVg ≤ 4

∫
6

1
d2

min(x)
dVg ≤ 4

∑
i∈I

∫
Ai

1
d2(x, x̃i )

dVg

≤ 4
∑
i∈I

∫
Ax̃i (1/(siλi ),d(x̃i ,p)/4)

1
d2(x, x̃i )

dVg

≤

∑
i∈I

8π(log si + log λi + log d(x̃i , p))+C. (130)

Recalling the definitions of I1, I2 ⊆ I given in (121), we observe that for i ∈ I1 we get λi = λ̌ and s̃i = ŝ;
see (80) and (77), respectively. Moreover, taking into account (81), we deduce

1
4

∫
6

|∇v1,1|
2 dVg ≤ 8|I1|π(log λ̌− log τλ)+

∑
i∈I2

8π(log si + log λi + log d(x̃i , p))+C

= 8|I1|π(log λ̌− log τλ)+
∑
i∈I2

8π(log si + log λi − log d(x̃i , p))

+ 16π
∑
i∈I2

log d(x̃i , p)+C. (131)
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Similarly as for (130), by (123), we get

1
4

∫
6

|∇v2|
2 dVg = 4

∫
Ap(1/(ŝτ̃ ),1/(ŝµ))

1
d2(x, p)

dVg ≤ 8π(log τ̃ − logµ)+C. (132)

To estimate the term |∇v1,2|
2, we consider 6 = B1/ŝτλ(p)∪ (6 \ B1/ŝτλ(p)). From (124), we deduce that∫

B1/(ŝτλ)(p)
|∇v1,2|

2 dVg ≤ C.

Then using (124), one finds

1
3

∫
6\B1/(ŝτλ)(p)

|∇v1,2|
2 dVg ≤ 12

∫
6\B1/(ŝτλ)(p)

1
d2(x, p)

dVg ≤ 24π(log τλ+ log ŝ)+C. (133)

Finally, by (127) and (128) and by inserting (131), (132), and (133) into (126), we get the conclusion. �

Proof of Proposition 4.7. Using Lemmas A.1, A.2, and A.3, the energy estimate we get is

Jρ(ϕ1, ϕ2)≤ 8π(log τ̃ − logµ)+ 8|I1|π(log λ̌− log τλ)+
∑
i∈I2

8π(log si + log λi − log d(x̃i , p))

+ 16π
∑
i∈I2

log d(x̃i , p)+ (24π log τλ+ 24π log ŝ)

− ρ1(4 log ŝ+ 2 log τλ+ 2 log λ̌)− ρ2 log max
{
τ̃ 2

ŝ2µ4 , 1
}
+C

≤ 8π(log τ̃ − logµ)+ 8|I1|π(log λ̌− log τλ)+
∑
i∈I2

8π(log si + log s̃i + log λi

− log d(xi , p))+ 16π
∑
i∈I2

log d(x̃i , p)+ (24π log τλ+ 24π log ŝ)

− ρ1(4 log ŝ+ 2 log τλ+ 2 log λ̌)− ρ2 log max
{
τ̃ 2

ŝ2µ4 , 1
}
+C

for some constant C > 0. Exploiting the conditions (80) and (81), we obtain

Jρ(ϕ1, ϕ2)≤ 8π(log τ̃ − logµ)+ 8|I1|π(log λ̌− log τλ)+
∑
i∈I2

8π(2 log ŝ+ log λ̌+ log τλ)

+ 16π
∑
i∈I2

log d(x̃i , p)+ (24π log τλ+ 24π log ŝ)

− ρ1(4 log ŝ+ 2 log τλ+ 2 log λ̌)− ρ2 log max
{
τ̃ 2

ŝ2µ4 , 1
}
+C. (134)

Recalling the definitions of I1 and I2 in (121), we distinguish between two cases.

Case 1. Suppose first that I1 6=∅. By construction, it follows that τ � 1; see (72) and (73). Therefore,
by (78), we get ŝ= s. On the other hand, using (79) and the definition of λ̌ under it, we deduce λ̌≤ Cλ.

For ŝ� τ̃ /µ2, we get in (134)

max
{
τ̃ 2

ŝ2µ4 , 1
}
=

τ̃ 2

ŝ2µ4 . (135)
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In this case, (134) can be rewritten as

Jρ(ϕ1, ϕ2)≤ log τ̃ (8π−2ρ2)+ log λ
(
8(|I1|+ |I2|)π−2ρ1

)
+ log ŝ

(
24π+16|I2|π−4ρ1+2ρ2

)
+ log τλ

(
8|I2|π − 8|I1|π + 24π − 2ρ1

)
+ logµ(4ρ2− 8π)+C. (136)

Recalling that ŝ� τ̃ /µ2, the latter estimate is negative by the choice of the parameters τ̃ � µ� λ

and ρ2 > 4π .
When instead ŝ= τ̃ /µ2

+ O(1), we have

max
{
τ̃ 2

ŝ2µ4 , 1
}
= 1. (137)

Considering now (134) and observing that log ŝ= log τ̃ − 2 logµ+C , we end up with

Jρ(ϕ1, ϕ2)≤ log τ̃
(
32π + 16|I2|π − 4ρ1

)
+ log λ

(
8(|I1| + |I2|)π − 2ρ1

)
+ log τλ

(
8|I2|π − 8|I1|π + 24π − 2ρ1

)
+ logµ

(
8ρ1− 56π − 32|I2|π

)
+C.

The crucial fact is that by construction of 6k,p,τ (see (70)) |I2| ≤ k− 2 whenever |I1| 6=∅. Hence, we
conclude that

Jρ(ϕ1, ϕ2)≤ log τ̃ (16kπ − 4ρ1)+ log λ
(
8(|I1| + |I2|)π − 2ρ1

)
+ log τλ

(
8|I2|π − 8|I1|π + 24π − 2ρ1

)
+ logµ

(
8ρ1− 56π − 32|I2|π

)
+C,

which is large-negative since ρ1 > 4kπ and by the choice of the parameters.

Case 2. Suppose now I1 = ∅. By construction, we deduce that τ ≤ C ; see (72) and (73). Therefore,
using (78), we obtain ŝ≤ C . In this case, the equality in (135) always holds true. Moreover, by (79), we
have λ̌= sλ. Hence, (134) can be rewritten as

Jρ(ϕ1, ϕ2)≤ log s(8|I2|π − 2ρ1)+ log τ̃ (8π − 2ρ2)+ log λ(8|I2|π − 2ρ1)

+ log τλ
(
8|I2|π + 24π − 2ρ1

)
+ logµ(4ρ2− 8π)+C.

Observing that |I2| ≤ k, we conclude that the latter estimate is large-negative since ρ1 > 4kπ and ρ2 > 4π
and by the choice of the parameters. �
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