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BY CHARACTERISTIC CAUCHY PROBLEM

CHRISTIAN GÉRARD AND MICHAŁ WROCHNA

We construct Hadamard states for Klein–Gordon fields in a spacetime M0 equal to the interior of the
future lightcone C from a base point p in a globally hyperbolic spacetime (M, g).

Under some regularity conditions at the future infinity of C , we identify a boundary symplectic space
of functions on C , which allows us to construct states for Klein–Gordon quantum fields in M0 from states
on the CCR algebra associated to the boundary symplectic space. We formulate the natural microlocal
condition on the boundary state on C , ensuring that the bulk state it induces in M0 satisfies the Hadamard
condition.

Using pseudodifferential calculus on the cone C , we construct a large class of Hadamard states on the
boundary with pseudodifferential covariances and characterize the pure states among them. We then show
that these pure boundary states induce pure Hadamard states in M0.

1. Introduction

Hadamard states are widely accepted as physically admissible states for noninteracting quantum fields on
a curved spacetime, one of the main reasons being their link with the renormalization of the stress–energy
tensor, a basic step in the formulation of semiclassical Einstein equations. Furthermore, they are nowadays
considered a necessary ingredient in the perturbative formulation of interacting (nonlinear) theories (see
the recent review articles [Khavkine and Moretti 2015; Hollands and Wald 2015]).

For Klein–Gordon fields, the construction of Hadamard states amounts to finding bisolutions of the
Klein–Gordon equation (called in this context two-point functions and denoted here by λ±) with a specified
wavefront set (that is, verifying the microlocal spectrum condition) and satisfying additionally a positivity
property [Radzikowski 1996].

There exist several ways to construct Hadamard states for Klein–Gordon fields: the first method
relies on the Fulling–Narcowich–Wald deformation argument [Fulling et al. 1981], which reduces the
construction of Hadamard states on an arbitrary spacetime to the case of ultrastatic spacetimes, where
vacuum or thermal states are easily shown to be Hadamard states.

The second approach, worked out in [Junker 1995; Junker and Schrohe 2002; Gérard and Wrochna
2014], uses pseudodifferential calculus on a fixed Cauchy surface6 in (M, g) and relies on the construction
of a parametrix for the Cauchy problem on 6. To use pseudodifferential calculus, some restrictions
on 6 and on the behavior of the metric g at spatial infinity are necessary. On the other hand, the method
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produces a large classes of rather explicit Hadamard states, whose covariances, expressed in terms of
Cauchy data, are pseudodifferential operators.

Another method, initiated by Moretti [2006; 2008] applies to conformal field equations, like the
conformal wave equation, on an asymptotically flat vacuum spacetime (M0, g0). By asymptotic flatness,
there exists a metric g̃0, conformal to g0, and a spacetime (M, g̃) such that (M0, g̃0) can be causally
embedded as an open set in (M, g̃) with the boundary C = ∂M0 of M0 being null in (M, g̃). States on the
boundary symplectic space, containing the traces on C of solutions of the wave equation in M0, naturally
induce states inside M0.

This method has been successfully applied in [Moretti 2006; 2008] to construct a distinguished
Hadamard state for asymptotically flat vacuum spacetimes with past time infinity and then extended to
several other geometrical situations in [Dappiaggi et al. 2009; 2011; Brum and Jorás 2015]. Further
results also include generalizations to Maxwell fields [Dappiaggi and Siemssen 2013] and linearized
gravity [Benini et al. 2014].

In the present paper we rework the above strategy systematically in terms of the associated characteristic
Cauchy problem in order to construct a large class of Hadamard states (instead of a preferred single one)
and to characterize the pure ones. For the sake of clarity, we do not impose geometrical assumptions
on M0 that allow one to correctly embed it in a larger spacetime M .

Instead we go the other way around and work in an a priori arbitrary globally hyperbolic space-
time (M, g), fix a base point p and consider the interior of the future lightcone

C := ∂ J+(p)\{p}

as the spacetime M0 of main interest, that is, M0 := I+(p), where I+(p) (resp. J+(p)) is the timelike
(resp. causal) shadow of p; see [Wald 1984, Section 8.1].

We make the following assumption on the geometry of C .

Hypothesis 1.1. We assume that there exists f ∈ C∞(M) such that:

(1) C ⊂ f −1({0}), ∇a f 6= 0 on C , ∇a f (p)= 0 and ∇a∇b f (p)=−2gab(p).

(2) The vector field ∇a f is complete on C .

Using Hypothesis 1.1 one can construct coordinates ( f, s, θ) near C such that C ⊂ { f = 0} and

g�C =−2 d f ds+ h(s, θ) dθ2,

where h(s, θ) dθ2 is a Riemannian metric on Sd−1.
This choice of coordinates allows one to identify C with C̃ := R×Sd−1. A natural space of smooth

functions on C̃ is then provided by H(C̃)— the intersection of Sobolev spaces of all orders, defined using
the standard metric m(θ) dθ2 on Sd−1.

We consider the Klein–Gordon operator P =−�g + r(x) (with r(x) ∈ C∞(M) real-valued) and its
restriction on M0, denoted by P0 := P�M0 . The bulk-to-boundary correspondence can be expressed in
this setup as follows. For an appropriate choice of β(s, θ) ∈ C∞(M0), the restriction map

ρφ := (β−1φ)�C , φ ∈ C∞sc (M0),
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is a monomorphism1 between the symplectic space of smooth, space-compact solutions of P0 (endowed
with the usual symplectic form induced by the causal propagator) and H(C̃), equipped with the symplectic
form

ḡ1σC g2 :=

∫
R×Sd−1

(∂s ḡ1g2− ḡ1 ∂s g2)|m|1/2(θ) ds dθ, g1, g2 ∈H(C̃). (1-1)

Thus, a quasifree state on (H(C̃), σC) with two-point functions λ± induces a unique quasifree state on
the usual symplectic space associated to P0.

Product-type pseudodifferential operators. In [Gérard and Wrochna 2014] we constructed Hadamard
states whose two-point functions on a Cauchy surface 6 are pseudodifferential operators. In the present
case, the obvious difference is that on the cone C the coordinate s is distinguished both from the point of
view of the microlocal spectrum condition (from now on abbreviated (µsc)) and in the expression (1-1)
for the symplectic form. This suggests that one should rather consider product-type pseudodifferential
operators 9 p1,p2(C̃) with symbols satisfying estimates

|∂α1
s ∂β1

σ ∂
α2
θ ∂

β2
η a(s, θ, σ, η)| ∈ O(〈σ 〉p1−|β1|〈η〉p2−|β2|)

in the covariables ξ = (σ, η) relative to the decomposition C̃ =R×Sd−1. Actually, to cope with the issue
that σC is defined using an operator Ds := i−1∂s whose spectrum is not separated from {0} (analogously
to the infrared problem in massless theories), we need to introduce a larger class 9̃ p1,p2(C̃) that includes
some operators whose symbol is discontinuous at η = 0. Namely, we set

9̃ p1,p2(C̃) :=9 p1,p2(C̃)+ B−∞9 p2(C̃),

where B−∞9 p2(C̃) is the class of pseudodifferential operators of order p2 (in the θ variables) with values
in operators on R that infinitely increase Sobolev regularity. Then, for instance, |Ds | ⊗ 1θ ∈ 9̃1,0(C̃)
although it is not in the pseudodifferential class 91,0(C̃).

Summary of results. Our main results can be summarized as follows. We always assume Hypothesis 1.1.
If E and F are topological vector spaces, we write T : E→ F to mean T : E→ F is linear and continuous.

(1) For pairs2 of two-point functions λ± on C satisfying λ± :H(C)→H(C), we give in Theorem 5.3
conditions on WF(λ±) that guarantee that the corresponding two-point functions on M0 satisfy (µsc).
This is essentially an adaptation of the results of [Moretti 2008] to our framework.

(2) In Theorem 7.4 we construct a large class of Hadamard states by specifying their two-point functions
λ± ∈ 9̃0,0(C̃) on the cone.

(3) In Theorem 8.2 we characterize the subclass of Hadamard states constructed in (2), which additionally
are pure on the symplectic space (H(C̃), σC) on the cone. It turns out that they can be parametrized
by a single operator in 9̃−∞,0(C̃).

1By monomorphism of symplectic spaces we mean an injective linear map that intertwines the symplectic forms.
2We work with charged fields, in which case it is natural to associate a pair of two-point functions to a quasifree state; see

Section 3B1. The charged and neutral approaches are equivalent.
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Figure 1. The Cauchy surface 6 in the future of p.

(4) In Theorem 8.4 we prove that if dim M ≥ 4 then the pure states considered in (3) induce pure states
in the interior M0 of the cone.

In Section 2C we argue that Hypothesis 1.1 covers the case when M0 is an asymptotically flat vacuum
spacetime with future time infinity, after a conformal transformation. Thus, our result (4) solves an open
question of Moretti [2008] for dim M ≥ 4.

Characteristic Cauchy problem. The proof of our main result (4) relies on rather standard results on the
characteristic Cauchy problem (also called the Goursat problem in the literature) in appropriate Sobolev
spaces.

Let 6 be a Cauchy surface for (M, g) in the future of {p} and 60 :=6 ∩M0. We set

M1 := I−(60;M)∩M0 and C0 := (J−(60;M)∩C)∪ {p};

see Figure 1. M1 is relatively compact in M with ∂M1 = 60 ∪C0, 60 and C0 are compact in M with
smooth boundary ∂60= ∂C0. We denote by H 1

0 (60) and H 1
0 (C0) the respective restricted Sobolev spaces

of order 1, i.e., the spaces of distributions in H 1(60) and H 1(C0) that vanish on the boundary.
If f ∈ H 1

0 (60)⊕ L2(60) is a pair of Cauchy data, we denote by e60 f its extension by 0 to 6 and by
u =U60 f the restriction to M1 of the solution of the Cauchy problem{

Pu = 0 in M,
ρu = e60 f on 6,

where ρu = (u�6 , i−1∂νu�6 ). By standard energy estimates one obtains that

U60 : H
1
0 (60)⊕ L2(60)→ H 1(M1)

is continuous.
In Section 8C we prove the following result.

Theorem 1.2. The map

T : H 1
0 (60)⊕ L2(60)→ H 1

0 (C0), f 7→ (U60 f )�C0,

is a homeomorphism. Moreover, if dim M ≥ 4 then T (C∞0 (60)⊕C∞0 (60)) is dense in |Ds |
−1/2L2(C̃).
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The first part of Theorem 1.2 is equivalent to the existence and uniqueness of solutions in M1 of the
characteristic Cauchy problem {

Pu = 0 in M1,

u�C0 = ϕ, ϕ ∈ H 1
0 (C0).

The proof proceeds by reduction to a case already considered by Hörmander [1990b], namely when
the characteristic surface is the graph of a Lipschitz function defined on a compact domain. Beside
[Hörmander 1990b] there is a considerable literature on the characteristic Cauchy problem for the Klein–
Gordon equation, for example [Bär and Wafo 2015; Cagnac 1981; Dossa 2002; Nicolas 2006]; let us also
mention related works on the Dirac equation [Nicolas 2002; Häfner and Nicolas 2011; Joudioux 2011].
The first part of Theorem 1.2 could actually also be deduced from [Bär and Wafo 2015, Theorem 23].

The second part of Theorem 1.2 asserts that there is no loss of information on the level of purity of
states when going from the cone C to its interior M0. The precise form of the statement comes from the
fact that the one-particle Hilbert space associated to our Hadamard states, namely, the completion of
H(C̃) for the inner product ( · | (λ++ λ−) · ), equals |Ds |

−1/2L2(C̃). The validity of this result appears
to be very delicate; it would be for instance problematic for |Ds |

−αL2(C̃) with α < 1
2 instead of α = 1

2
and we do not know whether it holds for d < 3. The generalization of Theorem 1.2 to other geometrical
situations is thus an interesting open problem, particularly relevant for the quantum field theoretical
bulk-to-boundary correspondence.

Plan of the paper. In Section 2 we fix the geometric setup and outline the construction of null coordinates
near the cone C . In Section 3 we briefly review the Klein–Gordon field in M0 and the definition of
Hadamard states. Section 4 is devoted to the so-called bulk-to-boundary correspondence, i.e., to the
definition of a convenient symplectic space (H(C̃), σC) of functions on C , containing the traces on C of
space-compact solutions in M0.

In Section 5, we formulate the Hadamard condition on C , that is, the natural microlocal condition on
the two-point functions of a quasifree state on (H(C̃), σC) that ensures that the induced state in M0 is a
Hadamard state.

Section 6 is devoted to the pseudodifferential calculus on R×Sd−1, more precisely to the “product-type”
classes associated to bihomogeneous symbols. We also describe more general operator classes, which are
pseudodifferential only in the variables in Sd−1.

In Section 7 we construct large classes of Hadamard states on the cone, whose covariances belong
to the operator classes introduced in Section 6. In Section 8 we characterize pure Hadamard states and
show that they induce pure states in M0. Finally in Section 9 we discuss the invariance of our classes of
Hadamard states under change of null coordinates on C . Various technical results are collected in the
Appendix.

2. Geometric setup

In this section we describe our geometrical setup and construct null coordinates near the cone C .
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2A. Future lightcone. We consider a globally hyperbolic spacetime (M, g) of dimension dim M = d+1.
If K ⊂M , then I±(K ;M) and J±(K ;M) denote the future/past timelike and causal, respectively, shadow
of K in M ; see, e.g., [Wald 1984, Chapter 8] or [Bär et al. 2007, Section 1.3] for more details. If the
spacetime M is clear from the context these sets will simply be denoted by I±(K ) and J±(K ).

As outlined in the introduction, we fix a base point p ∈ M and consider

C = ∂ J+(p)\{p} and M0 = I+(p),

so that C is the future lightcone from p, with tip removed, and M0 is the interior of C . From [Wald 1984,
Section 8.1] we know that M0 is open, with

M0 = J+(p), ∂M0 = ∂ J+(p)= C ∪ {p}.

We assume Hypothesis 1.1, i.e., that there exists f ∈ C∞(M) such that:

(1) C ⊂ f −1({0}), ∇a f 6= 0 on C , ∇a f (p)= 0 and ∇a∇b f (p)=−2gab(p).

(2) The vector field ∇a f is complete on C .

It follows that C is a smooth hypersurface, although C is not smooth. Moreover, since C is a null
hypersurface, ∇a f is tangent to C .

2B. Causal structure. We now collect some useful results on the causal structure of M0 and M .

Lemma 2.1. Let K ⊂ M0 be compact. Then:

J−(K )∩ J+(p) is compact, (2-1)

J+(K )∩C =∅. (2-2)

Proof. Equation (2-1) follows from [Bär et al. 2007, Lemma A.5.7]. Moreover, if V ⊂ M0 is open
with K ⊂ V , we have J+(K )⊂ I+(V )⊂ M0. Since ∂ J−(p)= ∂M0 and M0 is open, this implies (2-2).

�

The following lemma is due to Moretti [2006, Theorem 4.1(a)]. If K ⊂ M0, the notation J±(K ;M0)

or J±(K ;M) is used in place of J±(K ) to specify which causal structure one refers to.

Lemma 2.2. The Lorentzian manifold (M0, g) is globally hyperbolic. Moreover,

J+(K ;M0)= J+(K ;M) and J−(K ;M0)= J−(K ;M)∩M0 for all K ⊂ M0. (2-3)

The next proposition is also due to Moretti [2008, Lemma 4.3].

Proposition 2.3. Let K ⊂ M0 be compact. Then there exists a neighborhood U1 of p in M such that no
null geodesic starting from K intersects C ∩U1.
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2C. Asymptotically flat spacetimes. In what follows we explain the relation between Hypothesis 1.1 and
the geometrical assumptions met in the literature on Hadamard states [Moretti 2006; 2008; Dappiaggi
and Siemssen 2013; Benini et al. 2014].

Let us consider two globally hyperbolic spacetimes (M0, g0) and (M, g), where M0 is an embedded
submanifold of M . One introduces the following set of assumptions:

Hypothesis 2.4. Suppose the spacetime (M, g) is such that

(1) there exists � ∈ C∞(M) with �> 0 on M0 and g�M0 =�
2�M0 g0,

(2) there exists i− ∈ M such that J+(i−;M) is closed and

M0 = J+(i−;M)\∂ J+(i−;M),

(3) g0 solves the vacuum Einstein equations at least in a neighborhood of

I − := ∂ J+(i−;M)\{i−},

(4) �= 0 and d� 6= 0 on I −, d�(i−)= 0 and ∇a∇b�(i−)=−2gab(i−),

(5) if na
:= gab

∇b�, then there exists ω ∈ C∞(M) with ω > 0 on M0 ∪I − and

(a) ∇a(ω
4na)= 0 on I −,

(b) the vector field ω−1n is complete on I −.

Above, the symbols ∇a refer to the metric g.
One says that (M0, g0) is an asymptotically flat vacuum spacetime with past time infinity i− if there

exists a spacetime (M, g) such that M0 is an embedded submanifold of M and Hypothesis 2.4 is satisfied.3

Lemma 2.5. Suppose (M0, g0) is an asymptotically flat vacuum spacetime with past time infinity i− and
let (M, g) satisfy Hypothesis 2.4. Then Hypothesis 1.1 is satisfied for p := i− and f = ω�.

Note that actually only conditions (1), (2), (4) and (5b) in Hypothesis 2.4 are needed in Lemma 2.5.
In the present paper we construct Hadamard states for the Klein–Gordon operator P =−�g + r(x)

in (M0, g�M0) for any smooth, real-valued r . In the special case of the conformal wave operator P =
−�g + (n − 2)/(4(n − 1))R (with R the scalar curvature) this yields, however, also Hadamard states
on (M0, g0), since the two metrics are conformally related; see Appendix A2.

2D. Null coordinates near C. For later use it is convenient to introduce null coordinates near C . The
construction seems to be well known; we sketch it for the reader’s convenience. Note however the
estimates in Lemma 2.6, which will be useful later on.

We first choose normal coordinates (y0, ȳ) at p such that C = {(y0, ȳ) | (y0)2− |ȳ|2 = 0, y0 > 0} on
a neighborhood of p.

Set
v := y0

+ |ȳ|, w := y0
− |ȳ|, ψ :=

ȳ
|ȳ|
∈ Sd−1, (2-4)

3Note that we consider here only globally hyperbolic spacetimes; see [Moretti 2008, Appendix A] for a more general
definition.
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so that on a neighborhood of p one has C = {w = 0, v > 0}. Abusing notation slightly, we denote by
ψ1, . . . , ψd−1 coordinates on Sd−1 and use the same letter for their pullback to local coordinates on M
near p. We set

S := {w = 0, v = ε0}, (2-5)

where ε0 > 0 will be chosen to be small enough. Note that S ⊂ C is diffeomorphic to Sd−1.

Lemma 2.6. (1) There exists a unique solution s ∈ C∞(C) of{
(∇a f∇as)�C =−1,
s�S = 0.

(2) There exists unique solutions θ j
∈ C∞(C), 1≤ j ≤ d − 1, of{

(∇a f∇aθ
j )�C = 0,

θ j�S = ψ j .

(3) Moreover, there exists 0< ε0 < ε1 and k, θ̃ j
∈ C∞(]−ε1, ε1[×Sd−1) such that

s(v, ψ)= 1
2 ln(v)+ k(v, ψ) and θ j (v, ψ)= θ̃ j (v, ψ) on ]0, ε0[×Sd−1.

Proof. The proof is given in Appendix A4. �

It remains to extend s and θ j to smooth functions on a neighborhood of C .
We argue as in [Wald 1984, Section 11.1]: for s0 ∈ R, the submanifold Ss0 = {s = s0} ⊂ C is spacelike,

of codimension 2 in M . At a given point of Ss0 the orthogonal to its tangent space is two-dimensional
and timelike, and hence contains two null lines. One of them is generated by ∇a f ; the other is transverse
to C . We extend (s, θ) to a neighborhood of C by imposing that (s, θ) are constant along the above
family of null geodesics, transverse to C .

Lemma 2.7. The functions ( f, s, θ) constructed above are a system of local coordinates near C with
C ⊂ { f = 0} and

g�C =−2 d f ds+ hi j (s, θ) dθ i dθ j , (2-6)

where hi j (s, θ) dθ i dθ j is a smooth, s-dependent Riemannian metric on Sd−1.

Proof. The proof will be given in Appendix A3. �

2E. Estimates on traces. In this subsection we derive estimates, in the coordinates (s, θ) on C constructed
above, for the restriction to C of a smooth, space-compact function in M . These estimates will be applied
later to traces on C of solutions of the Klein–Gordon equation in M0.

We recall that C∞sc (M) denotes the space of smooth space compact functions, i.e., the space of
φ ∈ C∞(M) such that suppφ ⊂ J+(K )∪ J−(K ) for some compact K ⊂ M .

We will slightly abuse notation by writing φ(x0, . . . , xd) for the function φ expressed in some coordinate
system (x0, . . . , xd) near p. We will similarly write, for example, φ(v, ψ) or φ(s, θ) for φ ∈ C∞(C).

By Lemma 2.1 we see that suppφ ∩C is compact in C if φ ∈ C∞sc (M). This means that it suffices to
control the derivatives in (s, θ) of φ�C (s, θ) near s = −∞, that is, of φ�C (v, ψ) near v = 0. Clearly
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the only task is to control what happens near p, that is, when s→−∞. We first derive estimates in the
coordinates (v, ψ) introduced in (2-4) in a neighborhood of v = 0. If φ ∈ C∞sc (M) we denote by φ(y0, ȳ)
the function φ expressed in normal coordinates at p, which is defined on a neighborhood of 0. We then
set

φ̂(v, ψ)= φ
( 1

2v,
1
2vψ

)
∈ C∞(]−ε1, ε1[×Sd−1) for some ε1 > 0,

so that
φ�C = φ̂�{v>0} .

We denote by S0 the space of functions u(v, ψ) ∈ C∞(]−ε1, ε1[×Sd−1) which are bounded with all
derivatives.

Lemma 2.8. (1) If φ ∈ C∞sc (M) then φ̂(v, ψ) belongs to S0.

(2) Let |h| = det[hi j ]. Then |h|(v, ψ)= v2(d−1)r0(v, ψ) for r0, r−1
0 ∈ S0.

Proof. Considering the map χ : Sd−1
→ Rd , ψ 7→ ψ , and still denoting by ψ some coordinates, on Sd−1

we have
∂vφ̃ =

1
2(∂y0φ−ψ · ∂ȳφ) and ∂ψ i φ̃ = 1

2v∂ψ iχ j ∂ȳ jφ.

From this we obtain (1). To prove (2) we need to express hi j = 〈∂θ i | g∂θ j 〉 on C . An easy computation
using the estimates in Lemma 2.6 shows that on C we have

∂θ i = a j
i (v, ψ)∂ψ j + vr0(v, ψ)∂v,

where a j
i , r0 ∈ S0 and [ai j

](v, ψ) is invertible. Plugging this into (A-9), we obtain

[hi j ](v, ψ)= v
2(t
[a j

i ](v, ψ)[mi j ](ψ)[a
j
i ](v, ψ)+ v[bi j ](v, ψ)

)
,

where bi j ∈ S0. This implies (2). �

Later we will also need the following lemma. We denote by mi j (θ) dθ i dθ j the standard Riemannian
metric on Sd−1 and set

β(s, θ) := |m|1/4(θ)|h|−1/4(s, θ). (2-7)

Lemma 2.9. Let
φ̃(s, θ) := β−1(s, θ)φ�C(s, θ), φ ∈ C∞sc (M).

Then for all s1 ∈ R one has

∂αs ∂
β
θ φ̃ ∈ O(es(d−1)), s ∈ ]−∞, s1], for all α, β.

Proof. We note that β−1
= v(d−1)/2r0(v, ψ), for r0, r−1

0 ∈ S0. From this and Lemma 2.8, it follows that
if φ ∈ C∞0 (M) then φ̃(v, ψ) ∈ v(d−1)/2S0. It remains to estimate the derivatives of φ̃ with respect to s
and θ . By a standard computation we obtain, for u ∈ C∞(]−ε1, ε1[×Sd−1),

∂θ i u = a j
i (v, ψ)∂ψ j u+ vri (v, ψ)∂vu, and ∂su = v(1+ vr0(v, ψ))∂vu+ vb j (v, ψ)∂ψ j u

for r0, ri , b j , a j
i ∈ S0 and [a j

i ] invertible. From this point on the lemma is a routine computation. �
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3. Klein–Gordon fields inside the future lightcone

3A. Klein–Gordon equation in M0. We fix a smooth real function r ∈ C∞(M) and consider the Klein–
Gordon operator on (M, g)

P(x, Dx)=−∇
a
∇a + r(x) acting on C∞(M).

We denote by E± in D′(M ×M) the retarded and advanced Green’s functions for P , by E = E+− E−
in D′(M ×M) the Pauli–Jordan commutator function and by Solsc(P) the space of smooth, complex-
valued, space-compact solutions of

P(x, Dx)φ = 0 in M.

Recall that we have set in Section 2A

M0 := I+(p)

and, by Lemma 2.2, we know that (M0, g) is globally hyperbolic.
We denote by P0 =−∇

a
∇a+ r(x) the restriction of P to M0, by E0 ∈D′(M0×M0) the Pauli–Jordan

function for P0 and by Solsc(P0) the space of smooth, complex-valued, space-compact solutions of

P0(x, Dx)φ0 = 0 in M0.

By the global hyperbolicity of (M0, g)we know that Solsc(P0)= E0D(M0). From (2-3) and the uniqueness
of E0± we obtain that E0± = E±�M0×M0 ; hence,

E0 = E�M0×M0 .

It follows that any φ0 ∈ Solsc(P0) uniquely extends to φ ∈ Solsc(P); in fact,

φ0 = E0 f0, f0 ∈ D(M0) =⇒ φ0 = E f0�M0 . (3-1)

As usual we equip Solsc(P0) with the symplectic form

φ1σ0φ2 :=

∫
60

∇aφ1φ2−φ1∇aφ2na dσh, (3-2)

where 60 ⊂ M0 is a Cauchy hypersurface for (M0, g) (see Appendix A1 for notation). It is well known
that

E0 : (C∞0 (M0)/P0C∞0 (M0), E0)→ (Solsc(P0), σ0)

is a symplectomorphism.

3B. Hadamard states in M0. We first briefly recall some standard facts and refer, for example, to [Gérard
and Wrochna 2014, Section 2] for details and notation.
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3B1. Covariances of a quasifree state. If (Y, σ ) is a complex symplectic space, the complex covariances
3± ∈ Lh(Y,Y∗) of a (gauge-invariant) quasifree state ω on CCR(Y, σ ) (the polynomial CCR ∗-algebra
of (Y, σ )) are defined by

ω(ψ(y1)ψ
∗(y2))=: (y1 |3

+y2), ω(ψ∗(y2)ψ(y1))=: (y1 |3
−y2), y1, y2 ∈ Y.

From the CCR we obtain that 3+−3− = iσ =: q , and the necessary and sufficient condition for 3± to
be the complex covariances of a (gauge-invariant) quasifree state is that 3± ≥ 0.

If (Y, σ )= (C∞0 (M0)/PC∞0 (M0), E0), the complex covariances of a stateω are induced from two-point
functions, still denoted by 3±, such that

3± ∈ D′(M0×M0), P3± =3±P = 0,

where we identify operators on C∞0 (M0) with sesquilinear forms using the scalar product

(u | v) :=
∫

M0

ūv dµg, u, v ∈ C∞0 (M0).

3B2. Hadamard condition. We now recall the Hadamard condition for quasifree states. We denote
by T ∗M the cotangent bundle of M and by Z = {(x, 0)} ⊂ T ∗M the zero section. The principal symbol
of P is p(x, ξ)= ξagab(x)ξb; the set

N := {(x, ξ) ∈ T ∗M\Z : p(x, ξ)= 0}

is called the characteristic manifold of p.
The Hamilton vector field of p will be denoted by Hp, whose integral curves inside N are called

bicharacteristics.
We will use the notation X = (x, ξ) for points in T ∗M\Z and write X1 ∼ X2 if X1 = (x1, ξ1) and

X2 = (x2, ξ2) are in N and X1 and X2 lie on the same bicharacteristic of p.
Let us fix a time orientation and denote by Vx± ⊂ Tx M for x ∈ M the open future/past lightcones

and V ∗x± the dual cones

V ∗±x := {ξ ∈ T ∗x M : ξ · v > 0 for all v ∈ Vx± with v 6= 0}.

The set N has two connected components invariant under the Hamiltonian flow of p, namely

N± := {X ∈ N : ξ ∈ V ∗±x }.

Definition 3.1. A quasifree state ω on CCR(C∞0 (M0)/PC∞0 (M0), E0) with two-point functions 3±

satisfies the microlocal spectrum condition if

WF(3±)′ ⊂ N±×N±. (µsc)

Quasifree states satisfying (µsc) are called Hadamard states.

This form of the Hadamard condition was shown in [Sahlmann and Verch 2001] to be equivalent
to older definitions [Radzikowski 1996]; we refer the reader to [Sanders 2010; Wrochna 2013] for a
discussion on equivalent formulations of the microlocal spectrum condition.
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4. Bulk-to-boundary correspondence

4A. Boundary symplectic space. We equip C with the coordinates (s, θ) constructed in Section 2D and
hence identify C with

C̃ := R×Sd−1. (4-1)

We denote by H k(C̃), k ∈ N, the Sobolev space

H k(C̃) :=
{

g ∈ D′(R×Sd−1) :

∫
|∂αs ∂

β
θ g|2|m|1/2 ds dθ <∞, α+ |β| ≤ k

}
,

and extend the definition of H k(C̃) to k ∈ R in the usual way. The space H 0(C̃) will be denoted simply
by L2(C̃). We set also

H(C̃) :=
⋂
k∈R

H k(C̃) and H′(C̃) :=
⋃
k∈R

H k(C̃),

equipped with their canonical topologies.
We set

ḡ1σC g2 :=

∫
R×Sd−1

(∂s ḡ1g2− ḡ1∂s g2)|m|1/2(θ) ds dθ, g1, g2 ∈H(C̃). (4-2)

Introducing the charge q := iσC we have

ḡ1qg2 = 2(g1 | Ds g2)L2(C̃), g1, g2 ∈H(C̃),

where Ds = i−1∂s is selfadjoint on L2(C̃) on its natural domain. Clearly (H(C̃), σC) is a complex
symplectic space.

4B. Bulk-to-boundary correspondence.

Definition 4.1. Let β ∈ C∞(C̃) be as defined in (2-7). We set

ρ : Solsc(P0)→ C∞(R×Sd−1), φ 7→ β−1(s, θ)φ�C(s, θ).

Proposition 4.2. (1) ρ maps Solsc(P0) into H(C̃).

(2) ρ : (Solsc(P0), σ )→ (H(C̃), σC) is a monomorphism, i.e.,

ρφ1σCρφ2 = φ1σφ2 for all φ1, φ2 ∈ Solsc(P0).

Proof. Let φ0 and φ be as in (3-1). By Lemma 2.1 and the support properties of E , we see that suppφ∩C
is compact in M . Therefore the restriction of φ to C equals the restriction of a smooth, compactly
supported function to C . By Lemma 2.9 and the fact that ρφ0 is supported in ]−∞, s1[ × Sd−1 for
some s1, we obtain that ρφ0 ∈H(C̃), which proves (1).

We now prove (2). Let φi,0 ∈ Solsc(P0), i = 1, 2, be restrictions to M0 of φi ∈ Solsc(P). We fix a
Cauchy surface 60 for (M0, g) such that suppφi,0 ∩60 ⊂ K b M0. We can find a Cauchy surface 6 for
(M, g) such that 6 ∩ K =60 ∩ K . Denoting by

Ja(φ1, φ2) := φ1∇aφ2−∇aφ1φ2,
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the conserved current, we have
φ1,0σ0φ2,0 = φ1σφ2,

where

φ1σφ2 =−

∫
6

Ja(φ1, φ2)na dσh

is the symplectic form on Solsc(P). We now apply Stokes formula in the form (A-6) to the domain
U ⊂ M bounded by 6 ∩ K , C and ∂ J+(6 ∩ K ), using that ∇a J a(φ1, φ2) = 0. The boundary term on
6∩ K yields −φ1σφ2; the boundary term on ∂ J+(6∩ K ) vanishes. To express the boundary term on C ,
we use the coordinates ( f, s, θ) constructed in Section 2D. We formally obtain the quantity

ḡ1σ̂ g2 =

∫
R×Sd−1

(∂s ḡ1g2− ḡ1∂s g2)|h|1/2(s, θ) ds dθ

for gi = (φi )�C . This equals ρφ1σCρφ2 by an easy computation.
To justify the use of Stokes formula, we need to take care of the fact that C is not smooth at p. This

can be done as follows: for 0< ε� 1, we denote by Uε some ε-neighborhood of p. We replace C by a
smooth hypersurface Cε , obtained by smoothly gluing C\Uε to a piece of a Cauchy surface 6′ε passing
through Uε . The contribution of the integral on 6ε is written using (A-4) and converges to 0 when ε→ 0,
using that φi are smooth functions. The contribution of the integral on C\Uε converges to ρφ1σCρφ2,
using that ρφi ∈H(C̃). This completes the proof of the proposition. �

4C. Pullback of states from the boundary. Since

ρ : (Solsc(P0), σ0)→ (H(C̃), σC)

is a monomorphism, we can pull back a quasifree state ωC on CCR(H(C̃), σC) to a quasifree state ω0 on
CCR(C∞0 (M0)/P0C∞0 (M0), E0) by setting

ω0(ψ(u1)ψ
∗(u2)) := ωC (ψ(ρ ◦ E0u1)ψ

∗(ρ ◦ E0u2)), u1, u2 ∈ C∞0 (M0). (4-3)

If λ± ∈ Lh(H(C̃),H(C̃)∗) are the complex covariances of ωC , then the complex covariances of ω0 are
(formally) given by

3± := (ρ ◦ E0)
∗
◦ λ± ◦ (ρ ◦ E0). (4-4)

5. Hadamard condition on the cone

In this section we formulate the natural boundary version of the bulk Hadamard condition (µsc).

5A. Preparations. We recall that p(x, ξ) denotes the principal symbol of the Klein–Gordon operator P
(or P0).

Let C ⊂ M be the forward lightcone introduced in Section 2A. We denote by N ∗C ⊂ T ∗M\Z the
conormal bundle to C , namely,

N ∗C := {(x, ξ) ∈ T ∗M\Z : x ∈ C and ξ = 0 on TxC}.
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The fact that C is characteristic is equivalent to

N ∗C ⊂ N, (5-1)

where N is the characteristic manifold of p. Since N ∗C is Lagrangian, it is well known that (5-1) implies
that N ∗C is invariant under the flow of Hp. The projections on M of bicharacteristics starting from N ∗C
are (modulo reparametrization) characteristic curves, i.e., integral curves of the vector field va

=∇
a f if

f ∈ C∞(M) is some defining function of C , that is, f = 0 and d f 6= 0 on C .
We will use the coordinates ( f, s, θ) introduced in Section 2D, which, for ease of notation, will

be denoted by x = (r, s, y) ∈ R × R × Sd−1. The dual coordinates are denoted by ξ = (%, σ, η),
elements of T ∗M will sometimes be denoted by X = (x, ξ) and elements of T ∗C will be denoted by
Y = ((s, y), (σ, η)).

In the above coordinates, we have

C = {r = 0} and N ∗C = {r = 0, σ = η = 0}

and, from (2-6), we obtain that

p(x, ξ)�C =−2%σ + h(s, y, η), (5-2)

where we set h(s, y, η) = hi j (0, s, y)ηiη j . Note that h(s, y, η) is elliptic, that is, h(s, y, η) ≥ c0|η|
2

for c0 > 0, locally in (s, y), since hi j dyi dy j is Riemannian.
For later use let us extend the notation X1 ∼ X2 introduced in Section 3B2. For Y = (s, y, σ, η) ∈ T ∗C

and X = (x, ξ) ∈ T ∗M , we will write Y ∼ X if

σ 6= 0 and ((0, s, y), ((2σ)−1h(s, y, η), σ, η))∼ X. (5-3)

Recall also that the positive/negative energy components N± of N were defined in Section 3B2.

Lemma 5.1. Let Y1 = (s1, y1, σ1, η1) ∈ T ∗C and X2 = (x2, ξ2) ∈ T ∗M with x2 6∈ C. Then:

(1) There exists %1 ∈ R such that

X1 := ((0, s1, y1), (%1, σ1, η1))∼ (x2, ξ2)=: X2

if and only if σ1 6= 0, in which case %1 = (2σ1)
−1h(s1, y1, η1) and Y1 ∼ X2.

(2) If Y1 ∼ X2, then X2 ∈ N± if and only if ±σ1 > 0.

Proof. Let X1 = ((0, s1, y1), (%1, σ1, η1)) ∈ N. By (5-2) we have

−2%1σ1+ h(s1, y1, η1)= 0.

If σ1 = 0 then h(s1, y1, η1) = 0, hence η1 = 0 by ellipticity of h. Therefore σ1 = 0 implies X1 ∈ N ∗C .
Since X2∼ X1 and N ∗C is invariant under the flow of Hp, we also have X2 ∈ N ∗C , which contradicts the
hypothesis that x2 6∈ C . Therefore, necessarily σ1 6= 0, and hence %1 = (2σ1)

−1h(s1, y1, η1) and Y1 ∼ X2.
This proves (1).
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To prove (2) we have to show that

±σ1 > 0 ⇐⇒ ((0, s1, y1), ((2σ1)
−1h(s1, y1, η1), σ1, η1)) ∈ N±. (5-4)

Let us fix (y1, η1) ∈ T ∗Sd−1 and σ1 ∈ R. Since N± are the two connected components of N, it suffices,
by connectivity, to prove (5-4) for s1 in a neighborhood of −∞, i.e., in a neighborhood of p in M . Recall
that we introduced Gaussian normal coordinates (y0, ȳ) near p with ∂y0 future oriented. Let α be the
one-form (2σ1)

−1h(s1, y1, η1) dr + σ1 ds+ η1 dy. Then

((0, s1, y1), ((2σ1)
−1h(s1, y1, η1), σ1, η1)) ∈ N± ⇐⇒ ∓〈α | g−1 dy0

〉> 0.

Since it suffices to check the sign of 〈α | g−1 dy0
〉 near p, we can, by a simple approximation argument

(see, e.g., (A-9)) replace g by the flat metric at p. We then have — see Lemma 2.6 and recall that s = u
and r = f —

y0
= v+w, v = es, w = e−sr,

hence

∓〈α | g−1 dy0
〉 = ±2(e−s1σ1+ es1(2σ1)

−1h(s1, y1, η1))

has the same sign as ±σ1, which proves (5-4). �

Recall that E ∈ D′(M ×M) is the Pauli–Jordan commutator function for P and ρ : D(M)→ C∞(C̃),
u 7→ u�C , is (modulo a smooth, nonzero multiplicative factor) the operator of restriction to C , defined in
Definition 4.1.

Let us recall some notation: identifying T ∗(M1×M2)with T ∗M1×T ∗M2, we write (T ∗M1×T ∗M2)\Z
for the image of T ∗(M1×M2)\Z under this identification. If 0 ⊂ (T ∗M1× T ∗M2)\Z , one sets

M10 := {(x1, ξ1) : (x1, ξ1, x2, 0) ∈ 0 for some x2} ⊂ T ∗M1\Z1,

0M2 := {(x2, ξ2) : (x1, 0, x2, ξ2) ∈ 0 for some x1} ⊂ T ∗M2\Z2,
(5-5)

where Zi is the zero section of T ∗Mi .

Proposition 5.2. Let χ ∈ C∞0 (M) with suppχ ⊂ M\C and ψ ∈ C∞0 (C̃). Then:

(1) WF(ψρ ◦ Eχ)′ ⊂ {(Y1, X2) : y1 ∈ suppψ, x2 ∈ suppχ, Y1 ∼ X2}, where the notation Y ∼ X is as
defined in (5-3).

(2) ψρ ◦ Eχ : D(M)→ D(C̃) extends continuously as ψρ ◦ Eχ : D′(M)→ D′(C̃).

Proof. It is well known that

supp E ⊂ {(x1, x2) : x1 ∈ J (x2)},

WF(E)′ = {(X1, X2) ∈ N×N : X1 ∼ X2}.
(5-6)

On the other hand, the distributional kernel of ρ equals

δ(r2)⊗ δ(s1, y1, s2, y2)β
−1(s1, y1) ∈ D′(C̃ ×M).
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It follows that

WF(ρ)′ = {(Y1, X2) : r2 = 0, (s1, y1)= (s2, y2), (σ1, η1)= (σ2, η2), (σ2, η2) 6= (0, 0)}. (5-7)

Since E : D(M)→ E(M), we see that ψρ ◦ Eχ : D(M)→ D(C̃). Moreover, there exists χ1 ∈ C∞0 (M)
such that ψρ ◦ Eχ = ψρ ◦χ1 Eχ . We then have

C̃ WF(ρ)′ =WF(E)′M =∅

and it follows from [Hörmander 1990a, Chapter 8] and (5-6)–(5-7) that

WF(ψρ ◦ Eχ)′ ⊂WF(ψρ)′ ◦WF(Eχ)′

⊂ {(Y1, X2) : ((0, s1, y1), (%1, σ1, η1))∼ X2 for some %1, x2 ∈ suppχ}.

Using that suppχ ∩C =∅ and Lemma 5.1(1), this implies (1). Moreover, (1) implies that

WF(ψρ ◦ Eχ)′M =∅. (5-8)

Again by [Hörmander 1990a], this implies that ψρ ◦ Eχ = D(M)→ D(C̃) extends continuously as
ψρ ◦ Eχ : D′(M)→ D′(C̃). �

5B. Hadamard condition on the cone. Recall from Section 4B that we can associate to a quasifree state
ωC on CCR(H(C̃), σC) a quasifree state ω0 on CCR(C∞0 (M0)/PC∞0 (M0), E0). In this subsection we
give natural conditions on the covariances λ± of ωC which ensure that the induced state ω0 satisfies the
microlocal spectrum condition (µsc).

Recall that we denote by Y = ((s, y), (σ, η)) the points in T ∗C̃ . We also denote by 1 the diagonal in
T ∗C̃ × T ∗C̃ and we will use the notation C̃0 and 0C̃ introduced in (5-5).

Theorem 5.3. Let λ± :H(C̃)→H(C̃) and

3± := (ρ ◦ E0)
∗
◦ λ± ◦ (ρ ◦ E0).

Then:

(1) 3± ∈ D′(M0×M0).

(2) If

(i) WF(λ±)′ ∩ {(Y1, Y2) : ±σ1 < 0 or ± σ2 < 0} =∅,
(ii) WF(λ+− λ−)′ ∩ {(Y1, Y2) : σ1 and σ2 6= 0} ⊂1,

then

(iii) WF(λ±)′ ∩ {(Y1, Y2) : ±σ1 > 0 and ± σ2 > 0} ⊂1.

(3) Assume moreover that λ± :H(C̃)→H(C̃) and C̃ WF(λ±)′ =WF(λ±)′
C̃
=∅. Then, if (i) and (iii) in

(2) hold, 3± satisfy (µsc).

Proof. To prove (1) it suffices to check that ρ ◦E0 :D(M0)→H(C̃). If χ ∈C∞0 (M0) then, by Lemma 2.1,
ρ ◦ E0χ = ρ ◦ χ1 Eχ for some χ1 ∈ C∞0 (M). Since E : D(M)→ E(M) and ρ : D(M)→ H(C̃) are
continuous, this proves (1).
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To prove (2) we write

WF(λ±)′ ∩ {±σ1 > 0, ±σ2 > 0}
⊂ (WF(λ∓)′ ∩ {±σ1 > 0, ±σ2 > 0})∪ (WF(λ+− λ−)′ ∩ {±σ1 > 0, ±σ2 > 0})

⊂ (WF(λ∓)′ ∩ {±σ1 > 0, ±σ2 > 0})∪ (WF(λ+− λ−)′ ∩ {σ1, σ2 6= 0}).

The first set in the last line is empty by (i), and the second is contained in 1 by (ii).
To prove (3) we follow an argument due to Moretti [2008]. We treat only the case of λ+, the case of λ−

being similar, and omit the + superscript. Let χi ∈ C∞0 (M0), i = 1, 2. By Proposition 2.3 there exists
ψi ∈ C∞0 (C) (and hence ψi ≡ 0 near p) such that any null geodesic starting from suppχi intersects C
in {ψi = 1}. We have:

χ13χ2 = χ1(ρ ◦ E)∗ψ1 ◦ λ ◦ψ2(ρ ◦ E)χ2+χ1(ρ ◦ E)∗ψ1 ◦ λ ◦ (1−ψ2)(ρ ◦ E)χ2

+χ1(ρ ◦ E)∗(1−ψ1) ◦ λ ◦ψ2(ρ ◦ E)χ2+χ1(ρ ◦ E)∗(1−ψ1) ◦ λ ◦ (1−ψ2)(ρ ◦ E)χ2

=:31+32+33+34.

By the properties of χi and ψi , we can find χ̃i ∈ C∞0 (M) supported near p such that

(a) (1−ψi )(ρ ◦ E)χi = (1−ψi )ρ ◦ χ̃i Eχi ,

(b) no null geodesic from suppχi intersects supp χ̃i .

It follows from (b) and (5-6) that χ̃i Eχi has a smooth, compactly supported kernel, hence

χ̃i Eχi : D
′(M)→ D(M).

Since (1−ψi )ρ : D(M)→H(C̃), we see that

(1−ψi )ρ ◦ Eχi : D
′(M)→H(C̃), (5-9)

hence

χi (ρ ◦ E)∗(1−ψi ) :H
′(C̃)→ D(M). (5-10)

It remains to examine the properties of ψi (ρ ◦ E)χi . By Proposition 5.2, ψi (ρ ◦ E)χi : D
′(M)→ E′(C̃).

Since E′(C̃)⊂H′(C̃) continuously, we have

ψi (ρ ◦ E)χi : D
′(M)→H′(C̃), (5-11)

hence

χi (ρ ◦ E)∗ψi :H(C̃)→ D(M). (5-12)

From (5-9)–(5-12) and the assumption that λ : H(C̃)→ H(C̃) it follows that 3i : D
′(M0)→ D(M0),

which hence has a smooth kernel for i = 2, 3, 4, and WF(χ13χ2)
′
=WF(31)

′.
To bound WF(31)

′ we choose ψ̃i ∈ C∞0 (C̃) such that ψ̃iψi = ψi and write

31 = (χ1(ρ ◦ E)ψ1) ◦ (ψ̃1λψ̃2) ◦ (ψ2(ρ ◦ E)2)=: K ∗1 ◦ d ◦ K2,
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where Ki =ψi (ρ ◦ E)χi ∈ E′(M× C̃) and d = ψ̃1cψ̃2 ∈ E′(C̃× C̃). The distributions K1, K2 and d have
compact support. Moreover, we have

WF(d)′C̃ =C̃ WF(d)′ =WF(K1)
′

M =M WF(K ∗2 )
′
=∅.

In fact, the first two equalities follow from the corresponding hypothesis on WF(c)′ and the last two
from (5-8). We can then apply the results in [Hörmander 1990a, Chapter 8] on the composition of kernels
and obtain that K ∗2 ◦ d ◦ K1 is well defined and

WF(K ∗2 ◦ d ◦ K1)⊂WF(K ∗2 )
′
◦WF(d)′ ◦WF(K1)

′.

Now we apply Proposition 5.2(1), the fact that WF(d)′ ⊂WF(λ)′ and Lemma 5.1(1). We obtain that,
if (X1, X2) ∈WF(3)′, necessarily X1, X2 ∈ N+ and X1 ∼ X2, which is exactly condition (µsc). �

6. Pseudodifferential calculus

In this section we collect rather standard results on the pseudodifferential calculus on C̃ = R×Sd−1.
We will however need to consider bihomogeneous symbols on R×Sd−1, i.e., symbols having different
homogeneities in the covariables σ and η, dual to s and θ .

The reason for this is that the charge q =−2Ds is not an elliptic differential operator in the usual sense
(considered on C̃), hence operators like (q − z)−1 for z ∈ C\R are not in the usual pseudodifferential
classes.

For k, k ′ ∈ R, we denote by H k(R) and H k′(Sd−1) the Sobolev spaces on R and Sd−1 of orders k
and k ′ and by ‖ · ‖k and ‖ · ‖k′ their respective norms. Furthermore, we denote by H k,k′(R×Sd−1) the
Sobolev space on R×Sd−1 of biorder (k, k ′), that is, the completion of C∞0 (R×Sd−1) for the norm

‖ψ‖k,k′ := ‖〈Ds〉
k
〈Dθ 〉

k′ψ‖2.

We set also, for p ∈ R,
B p(R)=

⋂
k∈R

B(H k(R), H k−p(R)),

equipped with its natural topology.

6A. Pseudodifferential operators on R × Rd−1.

Definition 6.1. Let p1, p2 ∈ R.

(1) We denote by S p1,p2(R×Rd−1) the space of symbols a ∈ C∞(T ∗R× T ∗Rd−1) such that

|∂α1
s ∂β1

σ ∂
α2
y ∂

β2
η a| ∈ O(〈σ 〉p1−|β1|〈η〉p2−|β2|), α1, β1 ∈ N, α2, β2 ∈ Nd−1.

(2) We denote by B p1 S p2(R×Sd−1) the space of a ∈ C∞(T ∗Rd−1, B p1(R)) such that

‖∂α2
y ∂

β2
η a‖p1,k1 ∈ O(〈η〉p2−|β2|), α2, β2 ∈ Nd−1,

where ‖ · ‖p1,k1 is any seminorm of a in B p1(R).
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Using the Weyl quantization on R×Rd−1, we obtain a map

S p1,p2(R×Rd−1)→ B(C∞0 (R×Rd−1),C∞(R×Rd−1)), a 7→ Op(a),

whose range, denoted by 9 p1,p2(R×Rd−1), is the space of pseudodifferential operators on R×Rd−1 of
biorder (p1, p2). Similarly, using the Weyl quantization on Rd−1, we obtain a map

B p1 S p2(R×Rd−1)B(C∞0 (R×Rd−1),C∞(R×Rd−1)), a 7→ Op(a),

whose range will be denoted by B p19 p2(R×Rd−1).

6B. Pseudodifferential operators on C̃. Let A : C∞0 (C̃)→ C∞(C̃). If χi ∈ C∞(Sd−1), i = 1, 2, are
cutoff functions supported in chart open sets �i ⊂ Sd−1 and φi :�i → Rd−1 are coordinate charts, then
φ∗1 ◦χ1 Aχ2 ◦φ

−1∗
2 : C∞0 (R×Rd−1)→ C∞(R×Rd−1).

Definition 6.2. (1) We denote by 9 p1,p2(C̃) the space of operators A :C∞0 (C̃)→C∞(C̃) such that, for
any χi and φi as above, φ∗1 ◦χ1 Aχ2 ◦φ

−1∗
2 ∈9 p1,p2(R×Rd−1).

(2) We denote by B p19 p2(C̃) the space of operators A : C∞0 (C̃)→ C∞(C̃) such that, for any χi and φi

as above, φ∗1 ◦χ1 Aχ2 ◦φ
−1∗
2 ∈ B p19 p2(R×Rd−1).

(3) We set

9−∞,p2(C̃)=
⋂
p1∈R

9 p1,p2(C̃) and B−∞9 p2(C̃)=
⋂
p1∈R

B p19 p2(C̃).

(4) We set
9̃ p1,p2(C̃)=9 p1,p2(C̃)+ B−∞9 p2(C̃).

Note that if one defines, analogously, 9̃−∞,p2(C̃) :=
⋂

p1∈R 9̃
p1,p2(C̃), then actually 9̃−∞,p2(C̃)=

B−∞9 p2(C̃). Moreover, it is easy to check that

9̃ p1,p2(C̃) ◦ 9̃q1,q2(C̃)⊂ 9̃ p1+p2,q1+q2(C̃).

We refer the reader to [Rodino 1975; Borsero and Schulz 2014; Ruzhansky and Turunen 2010] and
references therein for more details on the pseudodifferential calculus on products of manifolds.4

6C. The Beals criterion. Let us denote by9 p(Sd−1) the classes of standard pseudodifferential operators
on Sd−1. It is well known that 9 p(Sd−1) can be characterized by the Beals criterion, namely an operator
A : C∞(Sd−1)→ C∞(Sd−1) belongs to 9 p(Sd−1) if and only if

ad f1 · · · ad fn adX1 · · adXm A : H k(Sd−1)→ H k−p+n(Sd−1), n,m ∈ N, k ∈ Z, (6-1)

for any fi ∈ C∞(Sd−1) and smooth vector fields X j on Sd−1 [Ruzhansky and Turunen 2010]. Moreover,
one can find a finite set of such fi and X j such that the topology on 9 p(Sd−1) given by the collection of
the norms of the multicommutators is equivalent to the standard topology on 9 p(Sd−1), given by the

4Note however that the literature discusses mostly the case when both manifolds are compact.
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symbol space topologies of the pullbacks φ∗i ◦χi Aχ j ◦φ j in Definition 6.2, for a fixed covering of Sd−1

by chart neighborhoods Ui .
These characterizations immediately carry over to the classes B p19 p2(C̃). In fact it is easy to see that

A ∈ B p1 S p2(C̃) if and only if

ad f1 · · · ad fn adX1 · · · adXm A : H k,k′(C̃)→ H k−p1,k′−p2+n(Sd−1), n,m ∈ N, k, k ′ ∈ Z. (6-2)

This result can be deduced from the previous one by considering the operators

((u1| ⊗1Sd−1) ◦ A ◦ (|u2)⊗ 1Sd−1) : C∞(Sd−1)→ C∞(Sd−1)

for u1 ∈ H−k+p1(R) and u2 ∈ H k(R), which belong to 9 p2(Sd−1) if (6-2) holds. Applying the result re-
called above about the equivalence of the standard topology and the topology given by the multicommutator
norms, one obtains that A ∈ B p19 p2(C̃) if (6-2) holds.

In the usual case one can deduce from the Beals criterion standard results on the functional calculus
for pseudodifferential operators, for example on complex powers of elliptic pseudodifferential operators
[Bony 1997]. These results are easy to extend to the classes B p19 p2(C̃). We will need only a very
simple one, which we now state. Recall that 9̃−∞,0(C̃) = B−∞90(C̃) ⊂ B(L2(C̃)). The spectrum of
b ∈ B(L2(C̃)) is denoted by spec(b).

Proposition 6.3. Let b ∈ 9̃−∞,0(C̃) and let be F holomorphic near spec(b) with F(0) = 0. Then
F(b) ∈ 9̃−∞,0(C̃).

Proof. The proof consists of expressing F(b) as a contour integral and applying the Beals criterion to the
resolvent (b− z)−1. �

6D. Essential support. We denote by 9 p
ph(R), p ∈ R, the class of global pseudodifferential operators

on R with polyhomogeneous symbols.

Definition 6.4. The essential support of a ∈9 p1,p2(C̃), denoted by ess supp(a)⊂ T ∗R\Z , is defined by
(s0, σ0) 6∈ ess supp(a) if there exists b ∈90

ph(R) that is elliptic at (s0, σ0) such that b ◦ a ∈9−∞,p2(C̃).

Clearly ess supp(a) is a closed conic subset of T ∗R\Z . Moreover, one can equivalently require that
a ◦ b ∈9−∞,p2(C̃) for some b ∈90

ph(R) that is elliptic at (s0, σ0).

6E. Wavefront set of kernels. For N =R, Sd−1, R×Sd−1, we denote by1N the diagonal in T ∗N×T ∗N
and by Z N the zero section in T ∗N .

For an operator a ∈ 9 p1,p2(R×Sd−1), it is in general not true that WF(a)′ is contained in the full
diagonal 1R×Sd−1 (as would be the case for an operator in 9 p(R×Sd−1)). Instead one has the following
estimate, which can be thought as a natural generalization of the usual estimate for the wavefront set of
tensor products of distributions (in this case Schwartz kernels) [Borsero and Schulz 2014].

Lemma 6.5. Let a ∈9 p1,p2(R×Sd−1). Then

WF(a)′ ⊂1R×1Sd−1 ∪1R× (ZSd−1 × ZSd−1)∪ (ZR× ZR)×1Sd−1 .

Less precise estimates are valid for the 9̃ p1,p2(R×Sd−1) classes:



CONSTRUCTION OF HADAMARD STATES BY CHARACTERISTIC CAUCHY PROBLEM 131

Lemma 6.6. (1) Let a ∈ B−∞9 p2(C̃). Then

WF(a)′ ∩ {(Y1, Y2) : σ1 6= 0 or σ2 6= 0} =∅.

(2) Let a ∈ 9̃ p1,p2(C̃). Then

C̃ WF(a)′ =WF(a)′C̃ =∅.

The proof is given in Appendix A5.

6F. Toeplitz pseudodifferential operators on C̃. We recall that H(C̃)=
⋂

m∈R H m(C̃)=
⋂

k∈R H k,k(C̃).
Let us set

L2
±
(C̃) := 1R±(Ds)L2(C̃)

and denote by i± : L2
±
(C̃)→ L2(C̃) the corresponding isometric injection, so that π± := i±i∗

±
= 1R±(Ds)

is the orthogonal projection on L2
±
(C̃) in L2(C̃). We also set

H±(C̃) := i∗
±

H(C̃)⊂H(C̃). (6-3)

We will see in Section 7 that this provides a useful setup for the discussion of the positivity condition
λ± ≥ 0 for the two-point functions of a Hadamard state.

Writing 1R± = χ1R± + (1−χ)1R± for a cutoff function χ ∈ C∞0 (R) equal to 1 near 0, we see that

π± ∈ 9̃
0,0(C̃). (6-4)

For α, β ∈ {+,−} and p1, p2 ∈ R, we set

9̃
p1,p2
αβ (C̃) := iα ◦ 9̃ p1,p2(C̃) ◦ i∗β .

By (6-3) we see that 9̃ p1,p2
αβ (C̃) :Hβ(C̃)→Hα(C̃). Moreover, if we set

Rαβ : 9̃ p1,p2(C̃)→ 9̃
p1,p2
αβ (C̃), a 7→ i∗α ◦ a ◦ iβ

then, using (6-4), we see that Rαβ has right inverse

Tαβ : 9̃
p1,p2
αβ (C̃)→ 9̃ p1,p2(C̃), a 7→ iα ◦ a ◦ i∗β,

which allows us to identify 9̃ p1,p2
αβ (C̃) with Ran Tαβ ⊂ 9̃ p1,p2(C̃). From (6-4) we also have

9̃
p1,p2
αβ (C̃) ◦ 9̃q1,q2

βγ (C̃)⊂ 9̃ p1+q1,p2+q2
αγ (C̃). (6-5)

7. Construction of Hadamard states on the cone

From the discussion in Section 5B, in particular Theorem 5.3, we are led to the following definition:
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Definition 7.1. A pair of maps λ± :H(C̃)→H(C̃) is called a pair of Hadamard two-point functions on
the cone C if

C̃ WF(λ±)′ =WF(λ±)′C̃ =∅, (Had-i)

WF(λ±)′ ∩ {(Y1, Y2) : ±σ1 < 0 or ± σ2 < 0} =∅, (Had-ii)

λ+− λ− = 2Ds, (Had-iii)

λ± ≥ 0 on H(C̃). (Had-iv)

As the name suggests, if λ± are Hadamard two-point functions on C in the sense of the above definition,
then 3± defined in (4-4) are Hadamard two-point functions on M0 (as follows from Theorem 5.3).

We now discuss in more detail the various conditions in (Had-i)–(Had-iv). It is natural to consider
pseudodifferential two-point functions, i.e., to assume that λ±∈9̃ p1,p2(C̃). Moreover to analyze conditions
(Had-iii)–(Had-iv) it is convenient to reduce oneself to λ± of the form

λ± = (2|Ds |)
1/2c±(2|Ds |)

1/2, where c± ∈ 9̃ p1,p2(C̃), (7-1)

for p1, p2 ∈R. Note that, writing (2|Ds |)
1/2 as χ(Ds)(2|Ds |)

1/2
+(1−χ(Ds))(2|Ds |)

1/2 for χ ∈C∞0 (R)
equal to 1 near 0, we see that (7-1) implies that λ± ∈ 9̃ p1+1,p2(C̃).

7A. Wavefront set. We first analyze conditions (Had-i)–(Had-ii).

Proposition 7.2. Assume that

λ± = a±+ r±, a± ∈9 p1,p2(C̃), r± ∈ 9̃−∞,p2(C̃), (R×R∓)∩ ess supp(a±)=∅. (7-2)

Then λ± satisfies conditions (Had-i)–(Had-ii).

Proof. The fact that λ± satisfy (Had-i) follows from Lemma 6.6(2). Also, since, by Lemma 6.6(1),
r± satisfy (Had-ii) we can assume that λ± = a±. We treat only the case of λ+ and use the notation in the
proof of Lemma 6.6. Let Ỹ1, Ỹ2 ∈ T ∗C̃\Z with σ̃1 6= 0 or σ̃2 6= 0. Let us assume that σ̃1 6= 0, the case
σ̃2 6= 0 being similar, using the remark after Definition 6.4.

Since (R×R+)∩ ess supp(a+)=∅, we can find a cutoff function χ1 with χ1(s̃1) 6= 0, a neighborhood
V1 of σ̃1 and some m1 ∈ 9

0
ph(R) elliptic at (s̃1, σ̃1) such that (1− m1)(s, Ds)vσ,λ ∈ O(〈λ〉−∞) in all

H k(R) and m1(s, Ds) ◦ a ∈ 9̃−∞,p2(C̃). The fact that (Ỹ1, Ỹ2) 6∈WF(a)′ then follows from the same
arguments as in the proof of Lemma 6.6. �

In terms of c± appearing in (7-1), a natural condition implying (7-2) is

1R∓(Ds)c± ∈ 9̃−∞,p2(C̃), (µscC )

which clearly implies that λ± satisfy (7-2).

Lemma 7.3. Let λ± be given by (7-1) and such that (µscC ) holds. Then

c± = 1R±(Ds)+ 9̃
−∞,p2(C̃).
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Proof. In terms of c±, (Had-iii) becomes c+− c− = sgn(Ds). Let χ± ∈ C∞(R) be cutoff functions equal
to 1 near ±∞ and to 0 near ∓∞. From (µscC ) and pseudodifferential calculus we obtain that

c± = χ±(Ds)c±χ∓(Ds)+ 9̃
−∞,p2(C̃). (7-3)

Using successively (7-3) and c+− c− = sgn(Ds), we obtain

c± = χ±c±χ±+ 9̃−∞,p2(C̃)

= χ±(c∓± sgn(Ds))χ
±
+ 9̃−∞,p2(C̃)

= χ±c∓χ±+χ±χ±+ 9̃−∞,p2(C̃)

= χ±χ∓c∓χ∓χ±+χ±+ 9̃−∞,p2(C̃)

= χ±+ 9̃−∞,p2(C̃)

= 1R±(Ds)+ 9̃
−∞,p2(C̃). �

7B. Positivity. We now discuss conditions (Had-iii)–(Had-iv). In terms of c± they become

c+− c− = sgn(Ds), (7-4-iii)

c± ≥ 0 on H(C̃). (7-4-iv)

To analyze (7-4-iii)–(7-4-iv) we use the framework of Section 6F. We denote c+ simply by c and set

cαβ = i∗α ◦ c ◦ iβ, α, β ∈ {+,−},

so that

c =
∑

α,β∈{+,−}

iαcαβ i∗β . (7-5)

Then (7-4-iii)–(7-4-iv) is equivalent to(
c++ c+−
c−+ c−−

)
≥ 0 and

(
c++− 1 c+−

c−+ c−−+1

)
≥ 0 on H+(C̃)⊕H−(C̃), (7-6)

which is equivalent to

(i) c++ ≥ 0, c−− ≥ 1 and c−+ = c∗
+−

.

(ii)

∣∣(u+ | c+−u−)
∣∣≤ (u+ | c++u+)1/2(u− | c−−u−)1/2,∣∣(u+ | c+−u−)
∣∣≤ (u+ | (c++− 1)u+)1/2(u− | (c−−+ 1)u−)1/2,

u± ∈H±(C̃).

Condition (ii) above is implied by∣∣(u+ | c+−u−)
∣∣≤ (u+ | (c++−1)u+)1/2(u− | c−−u−)1/2, u± ∈H±(C̃).

We are now in position to prove the following theorem, which is the analog of [Gérard and Wrochna 2014,
Theorem 7.5] in the present situation. It provides a rather large class of Hadamard two-point functions
on C and hence, by Theorem 5.3, of Hadamard states on M0.
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Theorem 7.4. Assume that

c++ = 1+ a∗
+

a+, c−− = a∗
−

a−, c+− = c∗
−+
= a∗
+

da−

for a+ ∈ 9̃
−∞,0
++ (C̃), a− ∈ 9̃

−∞,0
−− (C̃), d ∈ 9̃0,0

+−(C̃) with ‖d‖B(L2
−(C̃),L

2
+(C̃))
≤ 1.

Let c be given by (7-5), λ+= (2|Ds |)
1/2c(2|Ds |)

1/2 and λ−=λ+−2Ds . Then λ± is a pair of Hadamard
two-point functions on the cone.

Proof. We set, as before, λ± = (2|Ds |)
1/2c±(2|Ds |)

1/2
∈ 9̃1,0(C̃), so that c+ = c and c− = c− sgn(Ds).

Conditions (7-4-iii)–(7-4-iv) follow from the above discussion. It remains to check condition (µscC ). We
embed the spaces 9̃ p1,p2

αβ (C̃) into 9̃ p1,p2(C̃) as explained at the end of Section 6F and we have

c+ = a∗
+

a++ a∗
+

da−+ a∗
−

d∗a++ a∗
−

a−+1R+(Ds),

c− = a∗
+

a++ a∗
+

da−+ a∗
−

d∗a++ a∗
−

a−+1R−(Ds),

hence
1R−(Ds)c+ = a∗

+
a++ a∗

+
da− ∈ 9̃−∞,0(C̃),

1R+(Ds)c− = a∗
−

d∗a++ a∗
−

a− ∈ 9̃−∞,0(C̃),

and condition (µscC ) is satisfied. �

Remark 7.5. The special choice of vanishing a+, a− and d in Theorem 7.4 gives two-point functions

λ± =±21R±(Ds)Ds .

In the setting of asymptotically flat spacetimes with past time infinity i−, these correspond to the Hadamard
state found and further studied in [Moretti 2006; 2008].

8. Pure Hadamard states

In this section we first characterize pure Hadamard states on the cone C . We then prove that any pure
Hadamard state ωC on C induces a pure Hadamard state ω0 in M0.

8A. An abstract criterion for purity. Let (Y, σ ) a complex symplectic space and ω a gauge invariant
quasifree state on CCR(Y, σ ), with complex covariances λ±.

Let Ycpl the completion of Y for the norm

‖y‖ω := (ȳ · λ+y+ ȳ · λ−y)1/2. (8-1)

Let us introduce the hermitian form q = iσ ∈ Lh(Y,Y∗). Clearly q and λ± extend uniquely to Ycpl.
Then, by [Araki and Shiraishi 1971/72], ω is pure if and only if

(1) q is nondegenerate on Ycpl,

(2) there exists an involution κ : Ycpl
→ Ycpl such that κ∗qκ = q, qκ ≥ 0 and λ± = 1

2q(κ ±1).

From this discussion we immediately obtain the following lemma:
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Lemma 8.1. Let (Yi , σi ), i = 1, 2, be two complex symplectic spaces and ρ : Y1→ Y2 an injective map
such that ρ∗σ2ρ = σ1. Let ω2 be a pure, gauge-invariant quasifree state on CCR(Y2, σ2). Let ω1 be the
gauge-invariant, quasifree state on CCR(Y1, σ1) defined by the complex covariances

λ±1 = ρ
∗λ±2 ρ.

Then, if ρY1 is dense in Y2 for the norm ‖ · ‖ω2 defined in (8-1), the state ω1 is pure on CCR(Y1, σ1).

8B. Pure Hadamard states on the cone. The following theorem is the exact analog of [Gérard and
Wrochna 2014, Theorem 7.10]. In what follows we will use the notations introduced in Section 6F.

Theorem 8.2. Let λ± be the two-point functions of a state ωC on (H(C̃), σC) of the form (7-1) and
satisfying (µscC ). Then ωC is pure if and only if there exists a ∈ 9̃−∞,0−+ (C̃) such that

c+ =
(

1+ a∗a a∗(1+ aa∗)1/2

(1+ aa∗)1/2a aa∗

)
.

Proof. We consider the pair c± obtained from λ±, write as before c+ for c and identify c with the matrix(
c++ c+−
c−+ c−−

)
.

Arguing as in the proof of [Gérard and Wrochna 2014, Theorem 7.10], we obtain that the state ωC on
(H(C̃), σC) with covariances λ± is pure if and only if

c =
(

1+ a∗a a∗(1+ aa∗)1/2

(1+ aa∗)1/2a aa∗

)
(8-2)

for some a : L2
+
(C̃)→ L2

−
(C̃). This proves the “if”.

Let us now prove the “only if”. Since we assumed that c± ∈ 9̃0,0(C̃) satisfy (µscC ), we obtain that

a∗a ∈ 9̃−∞,0++ (C̃), (1+ aa∗)1/2a ∈ 9̃−∞,0−+ (C̃). (8-3)

We claim that
(1+ aa∗)−1/2

∈ 1+ 9̃−∞,0−− (C̃). (8-4)

Let us prove (8-4). We use the operators Rαβ and Tαβ defined at the end of Section 6F. We first embed
aa∗ into 9̃−∞,0(C̃), i.e., consider b = T−−(a∗a). Then b ≥ 0 on L2(C̃) and, applying Proposition 6.3 to
F(z)= (1+ z)1/2−1, we obtain that (1+b)−1/2

−1 ∈ 9̃−∞,0(C̃). Writing b as a 2×2 matrix acting on
L2
+
(C̃)⊕ L2

−
(C̃) we see that R++((1+ b)1/2)= (1+ aa∗)1/2, which proves (8-4). From (8-4) and (8-3)

we obtain that a ∈ 9̃−∞,0−+ (C̃). �

In the next lemma we identify the completion of H(C̃) for the norm (8-1) associated to any Hadamard
state considered in Theorem 8.2.

Let us first fix some notation. For a : L2
+
(C̃)→ L2

−
(C̃) we denote by c+(a) the operator defined

in (8-2) and set c−(a)= c+(a)− sgn(Ds) and

λ±(a)= (2|Ds |)
1/2c±(a)(2|Ds |)

1/2. (8-5)
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If H is a Hilbert space and h ≥ 0 is a selfadjoint operator on H with Ker h = {0}, we denote by hH the
completion of Dom h−1 (the range of h) for the norm ‖h−1u‖H.

Lemma 8.3. Let a : L2
+
(C̃)→ L2

−
(C̃). Then the completion of H(C̃) for the norm ( · |(λ+(a)+λ−(a)) · )1/2

equals |Ds |
−1/2L2(C̃).

Proof. By (8-5) and the definition of |Ds |
−1/2L2(C̃), it suffices to prove that the completion of H(C̃) for

the norm
(
u
∣∣ (c+(a)+ c−(a))u

)1/2 equals L2(C̃). Let

u(a)=
(
(1+ aa∗)1/2 a

a∗ (1+ a∗a)1/2

)
and note that

u(a)∗c±(0)u(a)= c±(a). (8-6)

Moreover, using the identity a f (a∗a) = f (aa∗)a, valid for any Borel function f , we obtain that
u(a)−1

= u(−a), hence u(a) : L2(C̃)→ L2(C̃) is boundedly invertible. By (8-6), it suffices to treat the
case a = 0, which is obvious since c+(0)+ c−(0)= 1. �

8C. Pure Hadamard states in M0. Our main result concerns the purity of the states induced in the bulk.
We postpone the introduction of the key technical ingredients of the proof to Section 8D for the sake of
self-consistency of our results on the characteristic Cauchy problem.

Theorem 8.4. Assume that dim M ≥ 4. Let ωC be a pure Hadamard state on CCR(H(C̃), σC) as in
Theorem 8.2. Then the state ω induced by ωC on CCR(C∞0 (M0) /PC∞0 (M0), E0) is a pure state.

Proof. The proof relies on Lemma 8.1 and on some results on the characteristic Cauchy problem
in M0, proved below in Section 8D. Recall that the map ρ : Solsc(P0) → H(C̃) was introduced in
Definition 4.1. By Lemmas 8.1 and 8.3 it suffices to check that ρ(Solsc(P0)) is dense in |Ds |

−1/2L2(C̃).
Since C∞0 (R×Sd−1) is dense in |Ds |

−1/2L2(C̃), it suffices, for w ∈ C∞0 (R×Sd−1), to find a sequence
φn ∈ Solsc(P0) such that ρφn→ w in |Ds |

−1/2L2(C̃).
We will use freely the notation introduced in Section 8D. We first fix a Cauchy surface 6 in (M, g) as

in Section 8D2 to the future of suppw. Note that, since w vanishes near s=−∞, we know that w belongs
to the space H̃ 1

0 (C̃0) introduced in Proposition 8.8. By Theorem 8.7 and Proposition 8.8, there exists f in
the energy space E0(60) such that w= R◦T f . Since C∞0 (60)⊕C∞0 (60) is dense in E0(60), there exists
a sequence fn ∈ C∞0 (60)⊕C∞0 (60) such that fn→ f in E0(60). By Theorem 8.7 and Proposition 8.8
we have R ◦ T fn→ w in H̃ 1

0 (C̃0), hence also R ◦ T fn→ w in |Ds |
−1/2L2(C̃), by Remark 8.9.

Let φn ∈ Solsc(P0) be the solution with Cauchy data fn on 60. Then ρφn = R ◦ T fn → w in
|Ds |

−1/2L2(C̃), which completes the proof of the theorem. �

8D. A characteristic Cauchy problem in M0. From Lemma 8.1 we see that, to deduce purity of the bulk
state from the purity of the boundary state, the range of ρ in H(C̃) should be sufficiently large. One way
to ensure this is to solve a characteristic Cauchy problem in M0, that is, to construct an inverse for ρ.
If M has a compact Cauchy surface, the characteristic problem was shown to be well posed in energy
spaces by Hörmander [1990b]. With some care those results can be used in our situation.
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8D1. Characteristic Cauchy problem for compact Cauchy surfaces. We recall an important result of
[Hörmander 1990b] on the characteristic Cauchy problem in energy spaces, whose framework is as
follows:

One considers a spacetime (M̃, g̃) for M̃ = R× 6̃, where 6̃ is a smooth compact manifold and
g̃ =−β̃(t, x) dt2

+ h̃i j (t, x) dxi dx j . One also fixes a real function r̃ ∈ C∞(M̃).
If 6̃1 is a Cauchy hypersurface in (M̃, g̃), we will denote by

Ũ6̃1
: C∞(6̃1)⊕C∞(6̃1)→ C∞(M̃)

the Cauchy evolution operator for −�g̃ + r̃ , so that φ = Ũ6̃1
f solves

−�g̃φ+ r̃φ = 0,
φ�6̃1
= f 0,

nµ∇µφ�6̃1
= f 1.

A hypersurface C̃ of the form

C̃ = {(F(x), x) : x ∈ 6̃}, F Lipschitz, (8-7)

is called spacelike (resp. weakly spacelike) if

sup
x∈6̃

(
−β−1(F(x), x)+ ∂i F(x)hi j (F(x), x)∂ j F(x)

)
< 0 (resp. ≤ 0).

If F is smooth then of course C̃ is spacelike (resp. weakly spacelike) if and only if all tangent vectors at
each point of C̃ are spacelike (resp. spacelike or null).

Since 6̃ is compact and F Lipschitz, the Sobolev space H 1(C̃) and of course L2(C̃) are well defined,
for example by identifying C̃ with 6̃ and using the Riemannian metric h̃i j (0, x) dxi dx j on 6̃ to equip C̃
with a density dνC̃ .

One also needs the measure

dν0
C̃ = (β

−1
− hi j ∂i F̃ ∂ j F̃) dνC̃ ,

which vanishes if C̃ is a null hypersurface.
We now set

E(C̃) := H 1(C̃)⊕ L2(C̃, dν0
C̃). (8-8)

Note that if C̃ is spacelike (i.e., a Cauchy hypersurface), then E(C̃)= H 1(C̃)⊕ L2(C̃).

Theorem 8.5 [Hörmander 1990b]. Let 6̃1 be any Cauchy hypersurface in M̃ and let C̃ be weakly spacelike
of the form (8-7). Then the map

T̃ : E(6̃1)→ E(C̃), f 7→ ((Ũ6̃1
f )�C̃ , (β

−1∂tŨ6̃1
f )�C̃),

is a homeomorphism.

Note that, if C̃ is characteristic, then L2(C̃, dν0
C̃
) = {0} and E(C̃) = H 1(C̃), so one obtains as a

particular case the solvability of the characteristic Cauchy problem in energy spaces.
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p
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C0

6̃
∂C0

C̃
t

Figure 2. The modified cone C̃ .

8D2. Embedding M0 into M̃. We will use Hörmander’s result, recalled above, to solve a characteristic
Cauchy problem in M0 in an arbitrary neighborhood of p. The first task is to locally embed M into a
spacetime M̃ as above.

We fix a Cauchy hypersurface 6 to the future of p and identify M with R×6 equipped with

g =−β(t, x) dt2
+ hi j (t, x) dxi dx j .

We set 60 =6 ∩M0 and fix an open, precompact set U such that J−(60)∩ J+(p)⊂U .
The following lemma shows that, over U , C can be parametrized by 6.

Lemma 8.6. There exists a bounded, Lipschitz function F defined on 6 such that

C ∩U = {(t, x) : t = F(x)} ∩U.

Proof. The proof is given in Appendix A6. �

We next embed 60 into a smooth compact manifold 6̃. We consider the spacetime M̃ = R× 6̃ and
extend F to a Lipschitz function F̃ on 6̃ and g to a metric g̃ as in Section 8D1. We set

C̃ = {t = F̃(x)} ⊂ M̃

and define
C0 := (J−(60;M)∩C)∪ {p}. (8-9)

C0 is an open subset of C , with C0 compact in M and

∂60 = ∂C0. (8-10)

We claim that we can choose the embedding 60 ⊂ 6̃ and the extensions F̃ and g̃ so that

J−(6̃\60; M̃)∩C0 =∅, (8-11)

C̃ is weakly spacelike in M̃ . (8-12)

This is clearly possible by modifying 6, F and g only outside a large open set U and using that the
embedding of (M0, g) into (M, g) is causally compatible; see (2-3).

The situation is summarized in Figure 2. Identification symbols (a single and double bar) are used to
stress that 6̃ is compact.
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8D3. Sobolev spaces. We now recall some well-known facts about Sobolev spaces. If � is a relatively
compact open set in a compact manifold X with smooth boundary ∂�, then H 1

0 (�)— defined as the
closure of C∞0 (�) in H 1(�)— can also be characterized as H 1

0 (�) = {u ∈ H 1(�) : u�∂� = 0}. The
restriction operator r� : H 1(X)→ H 1(�) is surjective from H 1

∂�(X)= {u ∈ H 1(X) : u�∂� = 0} to H 1
0 (�),

with right inverse e� : H 1
0 (�)→ H 1

∂�(X) equal to the extension by 0 in X\�.
We set E0(�) := H 1

0 (�)⊕ L2(�) and E∂�(X)= H 1
∂�(X)⊕ L2(X). We will still denote the operator

r�⊕ r� : E∂�(X)→ E0(�) by r� and e�⊕ e� : E0(�)→ E∂�(X) by e�.
We will use these facts for �=60, C0 and X = 6̃, C̃ . If �= C0, then we use the notation in (8-8),

i.e., E0(C0)= H 1
0 (C0)⊕{0} ∼ H 1

0 (C0), since C0 is characteristic.

8D4. Characteristic Cauchy problem. In the theorem below, we denote by U60 the operator U6̃ ◦ e60 ,
that is, the Cauchy evolution operator (in M̃) for Cauchy data in E0(60) (extended by 0 in 6̃\60).

Theorem 8.7. The map
T : E0(60)→ E0(C0), f 7→ (U60 f )�C0,

is a homeomorphism.

Proof. We will prove the theorem by reducing ourselves to Theorem 8.5. We first claim that

T = rC0 ◦ T̃ ◦ e60 . (8-13)

In fact this follows from the fact that e60 : E0(60)→ E(6̃) is the extension by 0.
By Theorem 8.5, this implies that T : E0(60)→ E(C0). Moreover, by finite speed of propagation, if

f ∈ C∞0 (60)⊕C∞0 (60) then T f vanishes near ∂C0, hence T maps continuously E0(60) into E0(C0).
We next claim that S=r60◦T̃

−1
◦eC0 is a right inverse to T . In fact, let g∈E0(C0) and f̃ = T̃−1

◦eC0 g=
( f̃ 0, f̃ 1) ∈ E(6̃). Since ∂60 = ∂C0, we have f̃ 0�∂60 = g�∂C0 = 0, hence e60 ◦ r60 f̃ ∈ E(6̃). Since
f̃ − e60 ◦ r60 f̃ vanishes on 60, we obtain by (8-11) and finite speed of propagation that

rC0 ◦ T̃ ( f̃ − e60 ◦ r60 f̃ )= 0,

hence T ◦ Sg = rC0 ◦ T̃ f̃ = rC0 ◦ eC0 g = g. This completes the proof of the theorem. �

8E. Sobolev space on the cone in null coordinates. Let us set

R : C∞(C)→ C∞(R×Sd−1), g 7→ β−1g(s, θ).

The goal in this subsection is to describe more precisely the image of H 1
0 (C0) under R.

We will denote by C̃0 ⊂ R×Sd−1 the image of C0 under the map q 7→ (s(q), θ(q)) for q ∈ C , where
the coordinates (s, θ) are as constructed in Lemma 2.6. Using that ∂C0 = ∂60 is spacelike and included
in C , we easily obtain from Lemma 2.7 that C̃0 is of the form

C̃0 = {(s, θ) ∈ R×Sd−1
: s < s0(θ)}

for some smooth function s0. To simplify notation, the measure |m|1/2(θ) dθ on Sd−1 will be simply
denoted by dθ . We also set r = es .
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Proposition 8.8. Assume d = dim M − 1≥ 3. Then the image of H 1
0 (C0) under R equals the completion

of C∞0 (C̃0) under the norm

‖ψ‖1 :=

(∫
C̃0

(r−1
|∂sψ |

2
+ r−1

|∂θψ |
2
+ r−1

|ψ |2) ds dθ
)1

2

.

We will denote this space by H̃ 1
0 (C̃0).

Remark 8.9. Since r ≤ r0 on C0, we see that H̃ 1
0 (C̃0) injects continuously into |Ds |

−1/2L2(R×Sd−1).

Proof. We recall that (v, ψ) (see (2-4)) are coordinates on C such that the topology in H 1
0 (C0) is given

by the norm (∫
C0

(|v|d−1
|∂vg|2+ |v|d−3

|∂ψg|2+ |v|d−1
|g|2) dv dψ

)1
2

.

Recall that we have set r = es . A function g ∈ H 1
0 (C0) expressed in the coordinates (s, θ) or (r, θ) will

still be denoted by g. Similarly, the image of C̃0 under the map (s, θ) 7→ (es, θ) will still be denoted
by C̃0.

From Lemma 2.6(3) and a routine computation, we see that an equivalent norm on H 1
0 (C0) is(∫

C̃0

(rd−1
|∂r g|2+ rd−3

|∂θg|2+ rd−1
|g|2 dr dθ)

)1
2

. (8-14)

Since d = dim M−1≥ 3, Hardy’s inequality −1≥C |x |−2 holds on L2(Rd). Considering (r, θ) as polar
coordinates on Rd , we obtain that∫

C̃0

rd−1
|∂r g|2+ rd−3

|∂θg|2 dr dθ ≥ C
∫

C̃0

rd−3
|g|2 dr dθ, g ∈ H 1

0 (C0).

Therefore, adding a term rd−3
|g|2 under the integral in (8-14) yields an equivalent norm on H 1

0 (C0).
Since r is bounded on C̃0, this term dominates the term rd−1

|g|2 and we finally obtain that the topology
of H 1(C0) is given by the norm(∫

C̃0

(rd−1
|∂r g|2+ rd−3

|∂θg|2+αrd−3
|g|2) dr dθ

)1
2

,

where the constant α > 0 can be chosen arbitrarily large. Going back to coordinates (s, θ), we obtain the
norm (∫

C̃0

(rd−2
|∂s g|2+ rd−2

|∂θg|2+αrd−2
|g|2) ds dθ

)1
2

. (8-15)

For two functions m, n ∈ C∞(C0) we write m ∼ n if m = r0n for some r0, r−1
0 ∈ S0, where the class S0

is as defined in Section 2E. We have β ∼ r−(d−1)/2, hence

∂sβ, ∂θβ ∼ r−(d−1)/2. (8-16)

Setting ψ = Rg = β−1g, we have

∂s g = β∂sψ + (∂sβ)ψ and ∂θg = β∂θψ + (∂θβ)ψ.
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Then, using (8-16) and choosing α� 1 in (8-15), we obtain that (8-15) is equivalent to(∫
C̃0

(r−1
|∂sψ |

2
+ r−1

|∂θψ |
2
+ r−1

|ψ |2) ds dθ
)1

2

. (8-17)

This completes the proof of the proposition. �

9. Change of null coordinates

The map ρ : Solsc(P0)→H(C̃) introduced in Definition 4.1 depends on the choice of the null coordinates
(s, θ) on C , i.e., on the choice of the initial hypersurface S used in Lemma 2.6 to construct (s, θ). In this
section we discuss how our class of Hadamard states depends on the above choice.

9A. New null coordinates. We fix a reference hypersurface S in C , yielding null coordinates (s, θ)
near C such that g�C is given by (2-6) and S = { f = s = 0}.

We choose another hypersurface S̃ transverse to ∇a f in C , hence

S̃ = { f = 0, s = b(θ)} for some b ∈ C∞(Sd−1). (9-1)

Since ∇a f�C = ∂s , we obtain that the new coordinates (s̃, θ̃ ) obtained from Lemma 2.6 with S replaced
by S̃ are given by

θ̃ = θ, s̃(s, θ)= s− b(θ). (9-2)

We then have
g�C =−2 d f ds̃+ h̃i j (s̃, θ) dθ i dθ j

and a standard computation shows that |h|(s̃, θ)= |h|(s, θ), hence β̃(s̃, θ)= β(s, θ). Denoting by ρ̃ the
analog of ρ in Definition 4.1 for the new coordinates (s̃, θ) we then have

ρ̃φ =Uρφ, φ ∈ Solsc(P0), (9-3)

where
U :H(C̃)→H(C̃), g 7→Ug(s, θ)= g(s+ b(θ), θ).

The map U is symplectic on (H(C̃), σC) and unitary on L2(C̃) with U∗DsU = Ds .

Proposition 9.1. If A ∈ 9̃−∞,p(C̃) then U AU−1
∈ 9̃−∞,p(C̃).

Remark 9.2. The above invariance property does not hold for the classes 9m,p(C̃) since, for example,
the classes 9m,p(R×Rd−1) are not even preserved by linear changes of variables (s, y) 7→ (s+ Ay, y).

Proof. We will use the Beals criterion explained in Section 6C, which implies that B ∈ 9̃−∞,p(C̃) if and
only if, for any functions g1, . . . gn ∈ C∞(Sd−1) and smooth vector fields X1, . . . , Xm on Sd−1 and any
N ∈ N, k, k ′ ∈ R, one has

adX1 · · · adXm adg1 · · · adgn B : H k,k′(C̃)→ H k+N ,k′−p+n(C̃). (9-4)

To simplify notation, we rewrite (9-4) as

adαX adβḡ B : H k,k′(C̃)→ H k+N ,k′+p+|β|(C̃), (9-5)



142 CHRISTIAN GÉRARD AND MICHAŁ WROCHNA

denoting by X and ḡ an arbitrary n-tuple of vector fields and m-tuple of functions, respectively.
If g is a function on Sd−1, considered as a multiplication operator, and X is a vector field on Sd−1, we

have

U−1gU = g, U−1 XU = X + (X · db)∂s, U−1∂sU = ∂s . (9-6)

Now let A∈ 9̃−∞,p(C̃). Forψ ∈C∞(Sd−1
×Sd−1), let us denote by Aψ the operator with distributional

kernel A(s1, s2, θ1, θ2)ψ(θ1, θ2). By the well-known properties of the pseudodifferential calculus on Sd−1,
we know that if ψ = 1 in some neighborhood of the diagonal then A− Aψ ∈ 9̃−∞,−∞(C̃) or, equivalently,
maps H k,k′(C̃) into H k+N ,k′+N (C̃) for any k, k ′ and N . Using (9-6) this implies that U (A− Aψ)U−1

has the same property, hence belongs to 9̃−∞,−∞(C̃).
Therefore we can replace A by Aψ and assume that the kernel of A is supported in R×R×�, where

� is an arbitrarily small neighborhood of the diagonal in Sd−1
×Sd−1. Introducing a smooth partition of

unity 1=
∑M

1 χi on Sd−1, we see that we can replace A by χ Aχ , where χ ∈C∞(Sd−1) is supported in a
small neighborhood of a point θ0 ∈Sd−1. We pick local coordinates θ1, . . . , θd−1 near θ0 and rewrite (9-5)
as

〈∂s〉
k+N
〈∂θ 〉

k′−p+|β| adαX adβḡ A〈∂s〉
−k
〈∂θ 〉

−k′
∈ B(L2(C̃)). (9-7)

We now set A′=U AU−1. Note first that if the kernel of A is supported in R×R×� then so is the kernel
of A′, hence by the above discussion it suffices to check that A′ satisfies (9-7). Let us set U−1 XU = X ′

if X is a vector field on Sd−1 and, in particular, ∂ ′θ =U−1∂θU = ∂θ + ∂θb∂s . Then an easy computation
yields

〈∂s〉
k+N
〈∂θ 〉

k′−p+|β| adαX adβḡ U AU−1
〈∂s〉
−k
〈∂θ 〉

−k′

=U 〈∂s〉
k+N
〈∂ ′θ 〉

k′−p+|β| adαX ′ adβḡ A〈∂s〉
−k
〈∂ ′θ 〉

−k′U−1. (9-8)

Using (9-6) and the fact that A ∈ 9̃−∞,p(C̃), we obtain that

adαX ′ adβḡ A ∈ 9̃−∞,p−|β|(C̃) and 〈∂s〉
N
〈∂θ 〉

k′−p+|β| adαX̄ ′ adβḡ A〈∂s〉
N
〈∂θ 〉

−k′
∈ B(L2(C̃))

for any N ∈ N. It follows that the left-hand side of (9-8) belongs to B(L2(C̃)) if, for any s ∈ R, there
exists N ∈ N such that

〈∂s〉
−N
〈∂ ′θ 〉

s
〈∂θ 〉

−s, 〈∂s〉
−N
〈∂θ 〉

s
〈∂ ′θ 〉

−s
∈ B(L2(C̃)). (9-9)

Let us now prove (9-9). The first statement of (9-9) is easy to check for s ∈N, using that ∂ ′θ = ∂θ + ∂θb∂s .
Conjugation by U gives the second statement for s ∈ N. By duality and interpolation, we then obtain
(9-9) for arbitrary s, which completes the proof of the proposition. �

From Proposition 9.1 and the fact that U∗DsU = Ds , we immediately obtain the following result:

Proposition 9.3. The classes of Hadamard states obtained in Theorems 7.4 and 8.2 are independent of
the choice of the null coordinates (s, θ).
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Appendix

A1. Stokes formula. Let (M, g) an orientable, oriented pseudo-Riemannian manifold of dimension n.
We denote by d Volg ∈

∧n
(M) the associated volume form and by dµg = |d Volg| the associated density.

Let 6 ⊂ M a smooth submanifold of codimension 1 and ι : 6 → M the natural injection, which
induces ι∗ :

∧
(M)→

∧
(6). From the orientation of M and a continuous transverse vector field v ∈ T6M ,

we obtain an induced orientation of 6. If 6 ⊂ ∂U for an open set U ⊂ M with piecewise smooth
boundary ∂U , we choose v pointing outwards.

If ω ∈
∧n
(M) and X ∈ T M , then Xyω ∈

∧n−1
(M) and one sets

ι∗Xω := ι
∗(Xyω) ∈

∧n−1
(6).

Similarly, if µ= |ω| is a density on M , we set ι∗Xµ := |ιXω|, which is a density on 6.
If ∇a is the Levi-Civita connection associated to g then

∇a Xa d Volg = d(Xy d Volg),

which, applying Stokes formula ∫
U

dω =
∫
∂U
ι∗ω, ω ∈

∧n−1
(M), (A-1)

to ω = ι∗X d Volg yields ∫
U
∇a Xa d Volg =

∫
∂U
ι∗X d Volg . (A-2)

Noncharacteristic boundaries. Assume first 6 ⊂ ∂U is noncharacteristic, that is, the one-dimensional
space

Tx(6)
ann
⊂ Tx M∗

is not null (the superscript “ann” denotes the annihilator). It follows that the metric h := ι∗g on 6
is nondegenerate (in the Lorentzian case, one typically assume that 6 is spacelike; then h = ι∗g is
Riemannian). Let n ∈ T6M be the unit, outward-pointing normal vector field to σ . Then

d Volh = ι∗n d Volg and ι∗X d Volg = Xana d Volh, (A-3)

hence ∫
6

ι∗X d Volg :=

∫
6

Xana dσh .

If all of ∂U is noncharacteristic, then from (A-2) we obtain Gauss’s formula∫
U
∇a Xa dµg =

∫
6

Xana dσh, (A-4)

where dσh = |d Volh|.
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Characteristic boundaries. Assume now that 6 is characteristic. Then there is no normal vector field
anymore. To express the right-hand side of (A-2), one chooses a defining function f for 6, i.e., such that
f = 0 and d f 6= 0 on 6, and completes f with coordinates y1, . . . , yn−1 such that d f ∧dy1

∧· · ·∧dyn−1

is positively oriented. Then, computing in the coordinates f , y1, . . . , yn−1, one sees that

ι∗X d Volg = Xa
∇a f |g|1/2 dy1

∧ · · · ∧ dyn−1,

hence ∫
6

ι∗X d Volg =

∫
6

Xa∇
a f |g|1/2 dy1

∧ · · · ∧ dyn−1 (A-5)

In the general case we can, for example, split ∂U as 61 ∪62, where 61 is noncharacteristic and 62 is
characteristic, and obtain∫

U
∇a Xa dµg =

∫
61

Xana dσh +

∫
62

Xa∇
a f |g|1/2 dy1

∧ · · · ∧ dyn−1. (A-6)

A2. Conformal transformations. In this section we briefly discuss conformal transformations of a
globally hyperbolic spacetime (M, g). Let ω ∈ C∞(M) be strictly positive and consider the conformally
related metric

g′ = ω2g.

Set

P =−∇a
∇a +

n− 2
4(n− 1)

R,

where R is the scalar curvature. For this special choice of the lower-order terms, the conformal transfor-
mation g→ g′ amounts to

P ′ = ω−n/2−1 Pωn/2−1.

This entails that the causal propagators are related by E ′ = ω−n/2+1 Eωn/2+1. One concludes that
multiplication by ω−n/2+1 induces a symplectic map

(Solsc(P), σ )
ω−n/2+1

−−−−→ (Solsc(P ′), σ ′), (A-7)

where σ and σ ′ are defined as in (3-2) using the respective volume densities.
We apply this discussion to (M0, g) and the conformally related spacetime with metric g′ = ω2g. In

the setting of Section 4A, there is a monomorphism of symplectic spaces

(Solsc(P0), σ0)
ρ
−→ (H(C̃), σC).

By (A-7) we also have a monomorphism

(Solsc(P ′0), σ
′

0)
ρ◦ωn/2−1

−−−−−→ (H(C̃), σC).

Therefore, one can construct states for the conformally related spacetime using the bulk-to-boundary
correspondence with a modified trace map ρ ′ = ρ ◦ωn/2−1.
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A3. Proof of Lemma 2.7. We fix a point q ∈C and complete the coordinate x0
= f by local coordinates

x̄ = (x1, . . . , xd) near q . The functions s and θk defined on C are denoted by s(x̄) and θk(x̄), since x̄ are
local coordinates on C . We denote by h(x̄) the restriction of g−1 to T ∗C . Note that the fact that C is null
implies that g00(0, x̄)≡ 0 and that from Lemma 2.6 we have

gi0(x̄)∂i s(x̄)=−1, gi0(x̄)∂iθk(x̄)= 0. (A-8)

If X is a null vector, orthogonal to C ∩ {s(x̄)= s(q)} and transverse to C , we obtain that

gX = λ
( 1

2∇i s∇ i s,∇i s
)
, λ ∈ R.

Let us denote for the moment by s̃ and θ̃k the extensions of s and θk outside C , which are constant along
the flow of X . We obtain that, on C ,

ds̃ =
( 1

2 ds · h ds, ds
)
, d θ̃k = (ds · h dθk, dθk).

Using also d f = (1, 0, . . . , 0) and (A-8), a routine computation leads to the following identities on C :

d f · g−1 d f = ds̃ · g−1 ds̃ = d f · g−1 d θ̃k = ds̃ · g−1 d θ̃k = 0,

d f · g−1 ds̃ = ds̃ · g−1 d f =−1,

d θ̃k · g−1 d θ̃l = ∂iθkhi j∂ jθl .

This implies that g is of the form (2-6) on C .

A4. Proof of Lemma 2.6. Since (y0, ȳ) are normal coordinates, we have

g�C =−dv dw+ 1
4v

2mi j (ψ) dψ i dψ j
+ v2g1, (A-9)

where mi j (ψ) dψ i dψ j is the standard Riemannian metric on Sd−1 and g1 is a smooth pseudo-Riemannian
metric in the arguments dv, dw and v dψ i .

We start by expressing f in the normal coordinates (y0, ȳ). By Malgrange’s preparation theorem
[Hörmander 1990a, Theorem 7.5.6] one can write

f (y0, ȳ)= m(y0, ȳ)((y0)2− |ȳ|2)+ a(ȳ)y0
+ b(ȳ)

for m near (0, 0) and a, b ∈ C∞ near 0. Since C ⊂ f −1({0}), we obtain that b(ȳ)= a(ȳ)|ȳ| and, since
b ∈ C∞(Rd), necessarily a ∈ O(|ȳ|∞). Moreover, from the Hessian of f at p we obtain that m(0, 0)= 1.

Going to coordinates (v,w,ψ), we obtain

f (v,w,ψ)= m(v,w,ψ)vw+wa(v,w,ψ)

for a ∈ O(|w− v|∞). Using also that m(0, 0, ψ)= 1, it follows that

∂v f (v, 0, ψ)= ∂ψ i f (v, 0, ψ)= 0 and ∂w f (v, 0, ψ)= v+ r(v, ψ)

for r ∈ O(|v|2). Using (A-9) to express (g−1)�C , we obtain after an easy computation that

∇
a f =−2v

(
(1+ va0(v, ψ))∂v + vai (v, ψ)∂ψ i

)
, (A-10)
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where a0 and ai are smooth, bounded functions near v = 0.
Let us now prove (1). Using (A-10) we obtain the equation near p

(v+ v2a0(v, ψ))∂vs+ v2ai (v, ψ)∂ψ i s = 1
2

for smooth functions a0 and ai . We set s = 1
2 ln(vh(v, ψ)) and obtain after an elementary computation

(1+ va0)∂vh+ a0h+ vai (v, ψ)∂ψ i h = 0,

which we can uniquely solve on [−ε1, ε1]×Sd−1 by fixing h(0, ψ). We may fix h(0, ψ) > 0 to ensure
that s(ε0, ψ)= 0. We obtain s = 1

2 ln v+ 1
2 ln h(v, ψ) for h ∈ C∞([−ε1, ε1]×Sd−1), h > 0.

It remains to extend s globally to C . To do this it suffices to check that, for any q ∈ C , the integral
curve of ∇a f through q crosses S at one and only one point. By [Wald 1984, Corollary to Theorem 8.1.2]
we know that q can be joined to p by a null geodesic γ . Locally, a null geodesic on C is, modulo
reparametrization, an integral curve of ∇a f . Since ∇a f is complete, the whole γ \{p} is an integral curve
of ∇a f . Hence the integral curve of ∇a f through q crosses S. Choosing ε0 in (2-5) small enough, we
can ensure that ∇a f∇av > 0 on S, hence the integral curve through q crosses S at only one point. We
can hence extend s globally to C as a C∞ function.

The proof of (2) is similar. We obtain the equation near p

(v+ v2a0(v, ψ))∂vθ
j
+ v2ai (v, ψ)∂ψ i θ j

= 0

or, equivalently,
(1+ va0(v, ψ))∂vθ

j
+ vai (v, ψ)∂ψ i θ j

= 0,

which we can solve in ]−ε1, ε1[×Sd−1 by imposing θ j (ε0, ψ)=ψ
j . The estimate (3) on θ j is immediate.

We extend θ j to all of C by the same argument as before.

A5. Proof of Lemma 6.6. We use the characterization of the wavefront set of kernels using oscillatory
test functions, which we now recall.

Let (s̃, ỹ) ∈ C and λ≥ 1. We set, for (σ, η) ∈ R×Rd−1,

vσ,λ( · )= χ( · )eiλ〈 · ,σ 〉
∈ C∞0 (R) and wη,λ( · )= ψ( · )eiλ〈 · ,η〉

∈ C∞(Sd−1), (A-11)

where χ ∈C∞0 (R) andψ ∈C∞(Sd−1) are supported near s̃ and ỹ, respectively. We set u(σ,η),λ=vσ,λ⊗wη,λ.
Note that if V and W are small neighborhoods of σ̃ ∈R and η̃∈Rd−1, respectively, then for n+=max(n, 0)
we have, uniformly on U = V ×W ,

‖u(σ,η),λ‖k,k′ ∈


O(〈λ〉k++k′+),

O(〈λ〉k+k′+) if σ0 6= 0,
O(〈λ〉k++k′) if η0 6= 0.

(A-12)

Let Ỹ1, Ỹ2 ∈ T ∗C . Then (Ỹ1, Ỹ2) 6∈WF(a)′ if there exist cutoff functions χi and ψi with χi (s̃i ), ψi (ỹi ) 6= 0
and neighborhoods Ui = Vi ×Wi of (σ̃i , η̃i ) such that

(u(σ1,η1),λ | au(σ2,η2),λ)L2(C) ∈ O(〈λ〉−∞) uniformly for (σi , ηi ) ∈Ui . (A-13)
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We first prove (1). Let a ∈ B−∞9 p2(C) and Ỹ1, Ỹ2 ∈ T ∗C such that σ̃1 6= 0 or σ̃2 6= 0. Then (A-13)
follows from (A-12) and the fact that a : H k1,k2 → H k1+m,k2+p2 for any m ≥ 0.

We now prove (2). If a ∈9 p1,p2(C) the statement follows from Lemma 6.5. It remains to consider the
case a ∈ B−∞9 p2(C) and to prove that (A-13) holds if (σ̃1, η̃1)= (0, 0) and (σ̃2, η̃2) 6= 0 or vice versa.
If σ̃1 6= 0 or σ̃2 6= 0, we have already proved (A-13).

Assume now that η̃1 = 0 and η̃2 6= 0, the other case being similar. Then we can find cutoff functions
gi ∈ C∞0 (R

d−1) supported near η̃i with disjoint supports such that (1− gi (λ
−1 Dy))u(σi ,ηi ),λ ∈ O(λ−∞)

in all H k,k′ uniformly for (σi , ηi ) ∈U . It follows that

(u(σ1,η1),λ | au(σ2,η2),λ)L2(C) = (u(σ1,η1),λ | g1(λ
−1 Dy)ag2(λ

−1 Dy)u(σ2,η2),λ)L2(C)+ O(〈λ〉−∞)

uniformly for (σi , ηi )∈Ui . By pseudodifferential calculus on Sd−1, we know that g1(λ
−1 Dy)ag2(λ

−1 Dy)

is in O(〈λ〉−∞) in B(H k,k′) for any k, k ′ ∈ R. Combined with (A-12), we obtain (A-13) also if η̃1 = 0
and η̃2 6= 0. This completes the proof of the lemma.

A6. Proof of Lemma 8.6. Set γx= {(s, x) : s ≤ 0} for x∈6. To prove that C is the graph of a function F
over 6 we have to show that γx intersects C at one and only one point for each x ∈6. Then we have

F(x)= inf{s ≤ 0 : (s, x) ∈ I+(p)}.

If F(x)=−∞ then γx ⊂ I+(p)∩ J−((0, x))⊂ J+(p)∩ J−((0, x)). This last set is compact by global
hyperbolicity, which is a contradiction. Hence γx intersects C . Moreover, if (t1, x)∈C then (s, x)∈ J−(p)
for all t1 ≤ s ≤ 0. This shows that γx intersects C at only one point, hence the function F is well defined,
and bounded.

Let (T 0, x0) be the coordinates of p. For x 6= x0, C is smooth near (F(x), x) and ∂t is transverse to C .
By the implicit function theorem this implies that F is smooth near x. Moreover, if K1 ⊂6 is a compact
set then d F is uniformly bounded on K1\{x0

}. To prove this it suffices to introduce normal coordinates
at p such that, near p, C becomes a neighborhood of the tip of the flat lightcone.
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