
ANALYSIS & PDE

msp

Volume 9 No. 3 2016

PABLO ANGULO-ARDOY, DANIEL FARACO,
LUIS GUIJARRO AND ALBERTO RUIZ

OBSTRUCTIONS TO THE EXISTENCE OF LIMITING CARLEMAN
WEIGHTS



ANALYSIS AND PDE
Vol. 9, No. 3, 2016

dx.doi.org/10.2140/apde.2016.9.575 msp

OBSTRUCTIONS TO THE EXISTENCE OF LIMITING CARLEMAN WEIGHTS

PABLO ANGULO-ARDOY, DANIEL FARACO, LUIS GUIJARRO AND ALBERTO RUIZ

We give a necessary condition for a Riemannian manifold to admit limiting Carleman weights in terms of
its Weyl tensor (in dimensions 4 and higher), or its Cotton–York tensor in dimension 3. As an application,
we provide explicit examples of manifolds without limiting Carleman weights and show that the set of
such metrics on a given manifold contains an open and dense set.

1. Introduction

The inverse problem posed by Calderón asks for the determination of the conductivity of a medium by
making voltage-to-current measurements in the boundary. The problem in the current form started with
the seminal work of Calderón [1980] and research on it has been very intense. An outstanding problem is
the case of anisotropic conductivities. At least in dimension n > 3, the right formalism seems to be the
language of differential geometry. Namely for (M, g), a Riemannian manifold with boundary, and 4g,
the corresponding Laplace–Beltrami operator, does the Dirichlet-to-Neumann map determine the metric g
up to a gauge transformation? The problem seemed out of reach, apart from the real analytic class (see
[Kohn and Vogelius 1984; 1985]). However, a recent breakthrough in [Dos Santos Ferreira et al. 2009]
allows one to solve several inverse problems in the Riemannian setting for a larger class of Riemannian
manifolds. We refer to [Dos Santos Ferreira et al. 2009; 2013b; Salo 2013] for detailed accounts of these
results, and recall the following theorem as an illustration. For reconstruction, see [Kenig et al. 2011] and
for stability, see [Caro and Salo 2014].

Theorem 1.1 [Dos Santos Ferreira et al. 2009, Theorem 1.7; 2013a, Theorem 1.1]. Let (M, g) be
an admissible Riemannian manifold of dimension n > 3 with boundary and q1, q2 be two potentials
in Ln/2(M). Assume that 0 is not a Dirichlet eigenvalue for the corresponding Schrödinger operator
Lqi =−4g + qi . If 3q1 =3q2 , then q1 = q2.

A precise definition of admissibility is given in [Dos Santos Ferreira et al. 2009, Definition 1.5], but a
necessary condition in that paper for a manifold (M, g) to be so was the existence of a so-called limiting
Carleman weight (LCW for short). It turns out that this is a conformally invariant notion, as the following
theorem shows:
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Theorem 1.2 [Dos Santos Ferreira et al. 2009, Theorem 1.2]. If (M, g) is an open manifold having a
limiting Carleman weight, then some conformal multiple of the metric g, called g̃ ∈ [g], admits a parallel
unit vector field. For simply connected manifolds, the converse is true.

Recall that a vector field X is parallel if ∇X = 0 and that in a simply connected manifold, X is parallel if
and only if it is a Killing field (e.g., LX g=0) and also a gradient field. It was proven in [Dos Santos Ferreira
et al. 2009] that if g̃ admits a parallel vector field X , there exist local coordinates such that X = ∂1 and

g̃(x1, x ′)=
(

1 0
0 g0(x ′)

)
and hence g(x)= e2 f (x)

(
1 0
0 g0(x ′)

)
.

In other words, around each point, g̃ = e⊕ g0, where g0 is the metric of an (n−1)-manifold and e is the
euclidean metric in R.

Here we concentrate on the local existence of limiting Carleman weights for a given metric g. Thus we
can consider the manifolds as being simply connected, and the existence of limiting Carleman weights is
therefore equivalent to having parallel vector fields after a conformal change of the metric. This character-
ization is very elegant but it has the drawback that it requires information about the whole conformal class
of g. It would be desirable to have a criterion that depends on the metric g itself in an invariant manner.
It seems natural to look at this question in terms of the Weyl curvature tensor, which as a (1, 3)-tensor is a
conformal invariant. In dimension n> 4, being conformally flat is equivalent to the Weyl tensor being zero.

For the case of parallel vector fields, we prove:

Theorem 1.3. Let (M, g) be a Riemannian manifold of dimension n > 4. Assume that a metric g̃ ∈ [g]
admits a parallel vector field. Then for any p ∈ M , there is a tangent vector v ∈ Tp M such that the
Weyl tensor of any metric in [g] satisfies Wp(v ∧ v

⊥) ⊂ v ∧ v⊥. In particular, for any p ∈ M , we have
Wp ∈ S2(32(T ∗p M)) has at least n− 1 linearly independent eigenvectors that are simple.

Recall that an element of 32
p(M) is simple if it is equal to v∧w for v,w ∈ Tp M . In the above theorem,

we are considering Wp as a curvature operator as defined, for instance, in [Besse 1987] and given a vector
v ∈ Tp M , we define v⊥ ∈ Tp M to be its orthogonal complement, that is, v⊕ v⊥ = Tp M . An algebraic
Weyl operator (Weyl tensor) in a euclidean vector space V is a symmetric operator on the space 32V that
satisfies the Bianchi and the Ricci conditions (see Section 2, equations (3) and (4) for the definitions). To
facilitate the reading, we include a brief overview of curvature operators in Section 2. We also give a
special name to algebraic Weyl operators satisfying the condition in the above theorem.

Definition 1.4. Let W be a Weyl tensor. We say that W satisfies the eigenflag condition if and only if
there is a vector v ∈ V such that W (v∧ v⊥)⊂ v∧ v⊥.

The following is an easy corollary of Theorem 1.3.

Corollary 1.5. Let (M, g) be a 4-dimensional Riemannian manifold such that some g̃ ∈ [g] admits a
parallel vector field. Then all the eigenvectors of the Weyl operator of g are simple.

The theorem gives a simple algebraic condition to decide whether a given Riemannian manifold can
admit a parallel vector field after a conformal change. Hence our theorem yields a quick way to decide
that a given metric does not admit limiting Carleman weights; we illustrate this in Section 4 by showing
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that any manifold locally isometric to CP2 with its Fubini–Study metric does not fall into this class.
However, the metric is analytic so Calderón’s problem can be solved by unique continuation from the
boundary, at least for analytic potentials.

Notice that conformal geometry in dimensions n = 2 and n = 3 is characterized differently. In
dimension n= 2, every manifold is conformally flat due to the existence of isothermal coordinates. Dimen-
sion n=3 is also special as conformal flatness is characterized by the vanishing of the Cotton tensor. Notice
that in the presence of conformal flatness, direct proofs are available as long as the conformal parametriza-
tion is invertible. In analogy with higher dimensions, the existence of conformally parallel vector fields (and
thus the existence of limiting Carleman weights) can be read algebraically from the Cotton–York tensor.

Theorem 1.6. Let n = 3. If a metric g̃ ∈ [g] admits a parallel vector field then, for any p ∈ M , there is a
tangent vector v ∈ Tp M such that

CYp(v, v)= CYp(w1, w2)= 0

for any pair of vectors w1, w2 ∈ v
⊥.

In the above theorem, the Cotton–York tensor CY is understood as a (0, 2)-tensor. The characterization
can be read easily from the matrix representation of the Cotton–York tensor in any basis.

Corollary 1.7. The above condition is equivalent to det(CYp)= 0.

Finally, we end our study of the 3-dimensional case using Theorem 1.6 and Corollary 1.7 to determine
which of the eight Thurston geometries admit limiting Carleman weights. The motivation for such a
question spurs from the geometrization theorem, since any closed oriented 3-dimensional manifold arises
as union of pieces admitting one of these eight geometries.

Theorem 1.8. Among the eight Thurston geometries, only the Nil and S̃L2(R)-geometries do not admit
limiting Carleman weights. The others are admissible in the sense of [Dos Santos Ferreira et al. 2009].

In the last section, we show that the set of metrics not admitting LCWs contains an open and dense
subset of the space of all the metrics. A precise statement is contained in the next result:

Theorem 1.9. Let U be an open submanifold of some compact manifold M without boundary having
dimension n > 3. The set of Riemannian metrics on M for which no limiting Carleman weight exists on U
contains an open and dense subset of the set of all metrics, endowed with the C3-topology for n = 3, and
the C2-topology for n > 4.

Remark 1.10. If a Riemannian metric on U admits an LCW, then Theorem 1.3 shows that its Weyl
tensor satisfies the eigenflag condition at every point of U . We make use of that fact in our proof of
Theorem 1.9, fixing a point p0, and proving that the set of metrics whose Weyl tensor at p0 does not
satisfy the eigenflag condition is open and dense.

The proof of Theorem 1.9 gives indeed a constructive method for building explicit metrics that do not
admit an LCW near any given Riemannian metric by adding a “bump” at a certain point. In Section 4 and
the subsection beginning on page 584, we show explicit examples of classical homogeneous manifolds
that do not admit local LCWs at any point of U .
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In the companion paper [Angulo-Ardoy 2015], it is shown that the set of Riemannian metrics on U that
do not admit a locally defined LCW at any point is also open and dense. This generalizes [Liimatainen
and Salo 2012, Corollary 1.3], where it is proven that this set is residual.

2. Tensors in conformal geometry

The proof relies on the decomposition of the curvature tensor and its behaviour under conformal transfor-
mations. We denote by R, S and Ric the (0, 4)-curvature, Schouten and Ricci tensors respectively, and
by s the scalar curvature. Recall

S = 1
n−2

(
Ric− 1

2(n−1)
sg
)
, (1)

R =W + S ? g, (2)

where ? is the Kulkarni–Nomizu product of two symmetric 2-tensors, which is defined by

(α?β)i jkl = αikβ jl +βikα jl −αilβ jk −α jkβil,

and R and W are understood as (0, 4)-tensors.
In the proof of Theorem 1.3, we consider W as an algebraic curvature operator; for a fuller treatment of

such objects, we refer the reader to [Besse 1987], but for completeness we include here a short description.
Consider the curvature at a point p as a (0, 4)-tensor; its symmetries allow us to consider it as a symmetric
linear endomorphism ρp of the space of bivectors 32(T ∗p M), that is, ρp ∈ S2(32(T ∗p M)). Now the first
Bianchi identity induces a projector onto the 4-forms, considered as symmetric endomorphisms of the
space of bivectors:

b(R)(x, y, z, t)= 1
3

(
R(x, y, z, t)+ R(y, z, x, t)+ R(z, x, y, t)

)
, (3)

so that S2(32(T ∗p M))= ker(b)⊕ Im(b), where the elements of ker(b) are called the algebraic curvature
operators. It turns out the Weyl tensors are curvature operators in the kernel of the Ricci contraction.
That is, if we define r : S2(32(T ∗p M))→ S2(T ∗p (M)) by

r(R)(x, y)= Tr
[
R(x, · , y, · )

]
(4)

then
W(Tp M)= ker(b)∩ ker(r).

We would like to remark on one property of the space of Weyl tensors. Any rotation ρ ∈ SO(V )
induces a rotation B(ρ) on the space of bivectors, where B(ρ)(v∧w)= ρ(v)∧ρ(w). The space of Weyl
tensors is invariant under all such rotations (see [Besse 1987, 1.114]):

Wp ∈W(Tp M) ⇐⇒ B(ρ) ◦Wp ◦ B(ρ)t ∈W(Tp M). (5)

In our formulation of Theorem 1.3, we used the isomorphism induced by g between 32(T ∗p M) and
32(Tp M) to consider Wp as a symmetric endomorphism of the latter space. Thus, given a simple bivector
x ∧ y ∈32(Tp M), we have that Wp(x ∧ y) is the only bivector (not necessarily simple) such that〈

Wp(x ∧ y), z ∧ t
〉
=
〈
Wp(x, y)z, t

〉
for any z, t ∈ Tp M , where the Wp in the right-hand side is considered as a (1, 3)-tensor.
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When dealing with a 4-dimensional manifold M , we make use of the Hodge operator (or, more
precisely, of its equivalent in bivectors). This is a linear map ∗ :32

p M→32
p M defined as

〈∗ω, τ 〉 = 〈ω∧ τ, e1 ∧ e2 ∧ e3 ∧ e4〉

for an oriented orthonormal basis {ei } of Tp M . Since ∗ is self-adjoint and (∗)2ω = ω for any bivector,
there is a splitting

32
p =3

+
⊕3−

into eigenspaces with eigenvalues 1 and −1 respectively. Each eigenspace has dimension 3: 3+ is
spanned by the bivectors e1∧e2+e3∧e4, e1∧e3+e4∧e2 and e1∧e4+e2∧e3 and 3− by the bivectors
e1∧e2−e3∧e4, e1∧e3−e4∧e2 and e1∧e4−e2∧e3.

This gives a corresponding splitting for algebraic curvature operators R:

R =
( s

12 Id+W+ Z
Z t s

12 Id+W−

)
, (6)

where W =W+⊕W− and Z =
(
Ric− s

4 g
)
? g (see [Besse 1987, 1.126–1.128]).

Another important tensor in conformal geometry is the Cotton tensor. It is a (0, 3)-tensor defined as

Ci jk = (∇i S) jk − (∇ j S)ik, (7)

where the notation (∇a S)bc stands for (∇∂a S)(∂b, ∂c), so that

(∇a S)bc = ∂a(S(∂b, ∂c))− S(∇a∂b, ∂c)− S(∂b,∇a∂c).

The Cotton tensor has the symmetries

Ci jk =−C j ik,

Ci jk +C jki +Cki j = 0,

gi j Ci jk = 0,

gikCi jk = 0.

(8)

The first three are straightforward, and the last follows from the second Bianchi identity (see [York 1971]).
If the metric is changed within its conformal class to g̃ = e2 f g, the (1, 3)-Weyl tensor is unchanged,

the (0, 4)-Weyl tensor changes as W̃ = e2 f W , and the Cotton tensor changes as

C̃(x, y, z)= C(x, y, z)−W (x, y, z,∇ f ).

Indeed, conformal flatness is characterized, at any dimension n> 3, by the vanishing of both the Cotton
and Weyl tensors at all points (see, for example, [Hertrich-Jeromin 2003, p. 5] for the classical proof and
[Liimatainen and Salo 2015] for less regular metrics).

For n > 4, the Cotton tensor is the divergence of the Weyl tensor:

Proposition 2.1. If n > 3, then (∇l W )li jk = (n− 3)Ci jk .

Thus the Cotton tensor vanishes if the Weyl tensor vanishes.
In dimension n = 3, the Weyl tensor always vanishes, and conformal flatness has to be read directly

from the Cotton tensor. This is conformally invariant, and it is equivalent to the so-called Cotton–York
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tensor. This new tensor is defined by considering the Cotton tensor as a map C p : Tp M→ 32(T ∗p M)
(thanks to the antisymmetry of C with respect to its first two entries) and composing with the Hodge star
operator ∗ :32(T ∗p M)→ T ∗p M . This gives a (0, 2)-tensor that turns out to be symmetric and trace-free,
but not conformally invariant. The Cotton–York tensor also appears in the literature as a (1, 1)-tensor
after raising one index.

In a patch with coordinates x1, x2, x3, the Hodge star has the expression

∗(dx i
∧ dx j )=

∑
glk

εi jl
√

det(g)
dxk,

where εi jl is the signature of the permutation (i, j, l) (it takes the values 0, 1 and −1). So from

C =
∑

Ci jkdx i
⊗ dx j

⊗ dxk
=

1
2

∑
Ci jk(dx i

∧ dx j )⊗ dxk,

the following expression for the (0, 2)-version of the Cotton–York tensor follows:

CYi j =
1
2Ckli g jm

εklm
√

det g
= g jm(∇k S)li

εklm
√

det g
. (9)

It follows from (8) that this tensor is symmetric and its trace is zero:

CYi j = CY j i ,

gi j CYi j = CY i
i = 0.

Remark 2.2. The reader may notice, looking at (9), that the Cotton–York tensor is not conformally
invariant. However, if the metric g is replaced by λg, the Cotton–York tensor is scaled by λ−1/2 so,
in particular, the determinant of the tensor is zero if and only if it is zero for any conformal metric.
The (1, 1)-version of the Cotton–York tensor is not conformally invariant either. We remark that our
computation of the scaling factor differs from the one found in the literature [York 1971].

3. Proof of Theorem 1.3

The (1, 3)-Weyl tensor is invariant under conformal changes of the metric. Thus, thanks to Theorem 1.2,
we can assume that g admits a parallel vector field X . As in [Dos Santos Ferreira et al. 2009], we notice
that in the appropriate semigeodesic coordinates, X = e1 and the metric is written as

g̃(x1, x ′)=
(

1 0
0 g0(x ′)

)
.

For any set of coordinates, e1 is parallel if and only if R1i jk = 0 (the sufficiency follows from Frobenius’
theorem). Moreover, notice that g1 j = 0 for all j > 2. Thus, by the formula of the Schouten tensor, it
holds that in these coordinates, S1 j = 0 for all j > 2. Now for j, k, l > 2,

(S ? g)1 jkl = S1k g jl + S jl g1k − S1l g jk − S jk g1l = 0,

and by the decomposition of the curvature tensor,

W1 jkl = R1 jkl − (S ? g)1 jkl = 0.
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Recall that W acts on bivectors by

W (ei ∧ e j )=
∑
k,l

Wi jklek ∧ el .

Given p ∈ M , let v = X p = e1; thus g1 j = δ1 j ; in these coordinates, e1 ∧ e⊥1 is invariant. In other
words, for every j, k, l 6= 1, 〈

W (e1 ∧ e j ), ek ∧ el
〉
= 0=W1 jkl .

Therefore W (v ∧ v⊥) ⊂ v ∧ v⊥, and the first part of Theorem 1.3 is proved. Finally, v ∧ v⊥ is an
(n−1)-dimensional subspace of simple bivectors; thus it contains n − 1 linearly independent simple
eigenbivectors of W .

Proof of Corollary 1.5. Let v ∈ Tp M be the vector given by Theorem 1.3. Since 32(v⊥) is orthogonal
to v ∧ v⊥, and v ∧ v⊥ is invariant by W , we know that W also leaves 32(v⊥) invariant. But v⊥ being
3-dimensional implies that every element of 32(v⊥) is simple, finishing the proof. �

4. Examples of manifolds without LCWs

This section provides explicit examples of Riemannian manifolds without any LCWs. Namely, this:

Theorem 4.1. Let CP2 be the complex projective space with its Fubini–Study metric gcan. Then any
subdomain �⊂ CP2 with boundary does not admit an LCW.

Proof. Since CP2 is 4-dimensional, we will make use of the decomposition

32
pCP2

=3+⊕3−

induced by the Hodge operator ∗ :32
pCP2

→32
pCP2 as was explained in Section 2.

Use J : TpCP2
→ TpCP2 to denote the canonical complex structure of CP2 and let {ei } be an

orthonormal basis of TpCP2, with e2 = Je1, e4 = Je3. A basis of 32
pCP2 is given by

φ1 = e1 ∧ e2+ e3 ∧ e4, φ2 = e1 ∧ e3− e2 ∧ e4, φ3 = e1 ∧ e4+ e2 ∧ e3 (10)

for its self-dual component, and

ψ1 = e1 ∧ e2− e3 ∧ e4, ψ2 = e1 ∧ e3+ e2 ∧ e4, ψ3 = e1 ∧ e4− e2 ∧ e3 (11)

for its anti-self-dual part.
The curvature of CP2 is computed in several texts in Riemannian geometry; we give a quick overview

here, but see [do Carmo 1992, p. 189] for more details. Viewing S5 as the unit sphere in C3, and CP2 as the
basis of a Riemannian submersion under the action of S1 on S5 given by z · (z1, z2, z3)= (zz1, zz2, zz3),
the sectional curvature of a 2-plane in CP2 is

K (X, Y )= 1+ 3 cos2 φ,

where X, Y is an orthonormal basis of the plane in CP2, and cosφ is the hermitian product 〈X , iY 〉 of the
horizontal lifts X , Y of X , Y respectively to S5. From here it is easy to see that the sectional curvatures
of CP2 take values between 1 and 4. Since norms of horizontal lifts agree with those of the vectors in
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the base, 06 〈X , iY 〉6 1. Therefore K (X, Y )= 1 only when 〈X , iY 〉 = 0; since the complex structure
of CP2 is induced by that of C3, this happens only when the plane σ = {X, Y } satisfies Jσ ⊥ σ . On the
other hand, a 2-plane σ will have K (σ )= 4 if and only if σ is complex, i.e, Jσ = σ .

To recover the full curvature operator from the sectional curvature, either use an explicit formula for the
terms of the curvature in terms of the sectional curvatures, as the one in [Cheeger and Ebin 1975, p. 16], or
continue using O’Neill’s formula for the curvature terms 〈R(x, y)z, w〉 in CP2 in terms of the correspond-
ing curvature terms in S5 and O’Neill’s A-tensor, as in [do Carmo 1992, p. 187, Exercise 10(a)]. The reader
will also find [Sakai 1996, pp. 76–77] useful, which, in spite of defining the curvature tensor differently,
makes explicit the relation between the complex structure of CP2 and the submersion S5

→ CP2.
The only nonvanishing components of the curvature tensor are then

〈R(e1, e2)e1, e2〉 = 〈R(e3, e4)e3, e4〉 = 4,

〈R(e1, e3)e1, e3〉 = 〈R(e1, e4)e1, e4〉 = 〈R(e2, e3)e2, e3〉 = 〈R(e2, e4)e2, e4〉 = 1

for the sectional curvatures and

〈R(e1, e2)e3, e4〉 = 2, 〈R(e1, e3)e2, e4〉 = 1, 〈R(e1, e4)e2, e3〉 = −1

for the mixed terms.
In the space of bivectors and with the φi , ψi as above, the curvature operator Rp satisfies

Rp(φ1)= 6φ1, Rp(φ2) = 0, Rp(φ3) = 0,

Rp(ψ1)= 2ψ1, Rp(ψ2)= 2ψ2, Rp(ψ3)= 2ψ3.

Thus the curvature operator Rp of gcan is written as

Rp =

(
6E 0
0 2I

)
,

where I is the 3× 3 identity matrix, and E is the matrix

E =

1 0 0
0 0 0
0 0 0

 .
A simple computation, using (6), yields

W+p =

4 0 0
0 −2 0
0 0 −2

 , W−p = 0.

Observe that every eigenvector of Wp belongs to either3+ or3−, which contain no simple eigenvectors.
Hence no eigenvector of Wp is simple, which, by Corollary 1.5, implies that no subdomain of (CP2, g f s)

admits an LCW. �

Similar arguments can be used in higher dimensions to rule out domains in CPn or other suitable
symmetric spaces.
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5. The 3-dimensional case

Restrictions on the Cotton–York tensor.

Proof of Theorem 1.6. Since Theorem 1.6 is formulated at some fixed point p ∈ M , we can assume that
everything is local. Recall that in semigeodesic coordinates, the metric is independent of x1, and that

g1 j = 0= S1 j = S j1 = 0

if j 6= 1. It follows also that
0= 0k

1 j = 0
k
j1 = 0

1
jk .

These identities simplify the expression of the Cotton–York tensor: if either i , l or k is equal to 1, then

(∇k S)li = ∂k(Sli ).

Now for i 6= 1 6= j , we notice that m 6= 1 for each nonzero term in the sum:

CYi j = g jm(∇k S)li
εklm
√

det g
.

Thus for εklm
6= 0, necessarily k or l are equal to 1, and hence

CYi j = g jm∂k Sli
εklm
√

det g
= 0

using that ∂1Sli = 0= S1i for i 6= 1.
Similarly, √

det gC11 = g1m∂k Sl1ε
klm
= ∂k Sl1ε

kl1
= 0.

These equations yield that v = ∂/∂x1 is the vector required in Theorem 1.6. �

In fact, since the Cotton tensor is invariant after conformal changes of the metric, we can assume
that M is isometric to R×6, where 6 is a surface. Taking coordinates (x1, x2, x3), with t = x1 and
(x2, x3) isothermal coordinates of 6, the metric reads as g = dx2

1 + e f (dx2
2 + dx2

3) for some function
f (x2, x3) on 6. In these coordinates, a simple expression of the full Cotton–York tensor is available.
Namely, the Ricci tensor takes the values

Ric1i = 0, Ric22 = Ric33 =−
1
2(1 f ), Ric23 = 0,

the scalar curvature is
s =−(1 f )e− f ,

the Schouten tensor equals

Ric11 =
1
4(1 f )e− f , Ric22 = Ric33 =−

1
4(1 f ), Ric12 = Ric13 = Ric23 = 0,

and a further calculation using formula (9) yields the following explicit formula for the Cotton–York
tensor:

CY12 = CY21 =−
1
4

(
1 f ∂3 f − ∂3(1 f )

)
e− f ,

CY13 = CY31 =
1
4

(
1 f ∂2 f − ∂2(1 f )

)
e− f .
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The Cotton–York tensor of the product of R with a surface 6 in isothermal coordinates can also be
expressed as

CY = 1
2 dx1 · (∗ds),

where · is the symmetric product of forms, s is the scalar curvature of the surface, and ∗ is the Hodge star
operator of the surface, which sends the 1-form ds to an orthogonal 1-form on 6.

Proof of Corollary 1.7. Corollary 1.7 follows from this lemma:

Lemma 5.1. Let V be a 3-dimensional euclidean space, and A : V → V be a symmetric endomorphism.
Then there exists a 2-dimensional subspace P such that for any v1, v2 ∈ P , w ∈ P⊥, we have

〈Av1, v2〉 = 〈Aw,w〉 = 0 (12)

if and only if det(A)= Tr(A)= 0.

Proof. The “only if” part is clear: Let e1, e2 ∈ P and e3 ∈ P⊥ form an orthonormal basis. The expression
of A in these coordinates is

A =

0 0 a
0 0 b
a b 0

 .
Thus the conditions on the determinant and the trace of A are obvious.

For the converse, first notice that since it is symmetric, we can diagonalize A. Our conditions imply
the existence of λ1 ∈ R and an orthonormal basis v1, v2, v3 such that

A =

λ1 0 0
0 −λ1 0
0 0 0

 .
The desired plane P is the span of {v1+ v2, v3}. Namely for t1, t2 ∈ R,〈

A
(
t1(v1+ v2)+ t2v3

)
, t1(v1+ v2)+ t2v3

〉
= λ1t1

〈
v1− v2, t1(v1+ v2)+ t2v3

〉
= 0,

and similarly 〈
A(v1− v2), v1− v2

〉
= λ1

〈
v1+ v2, v1− v2

〉
= 0. �

Remark 5.2. The matrix expressions of the (1, 1)- and the (0, 2)-versions of the Cotton–York tensor are
different at any point where the matrix for the metric is not the identity. However, the determinant will
vanish for one of them if and only if it does for the other.

LCWs in the Thurston geometries. The rest of this section deals with the existence of LCWs among
the eight Thurston geometries. A good reference for their definition and properties is the classical paper
[Scott 1983]. We begin with the following six geometries:

• S3, E3,H3: These three geometries are conformally flat, and consequently admit multiple LCWs.

• S2
×R,H2

×R: This case is obvious, with the LCW lying along the R-direction.
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• Sol: Recall that Sol can be seen as R3 with a metric given in the standard coordinates (x, y, z) by

g = e2zdx2
+ e−2zdy2

+ dz2.

The metric ḡ = e−2z
· g splits along ∂x , and therefore g has an LCW.

The last two geometries have a different behaviour.

Theorem 5.3. S̃L2(R) and Nil do not admit LCWs.

Proof. We start by recalling the properties we will need.

• S̃L2(R): Since our study is local, we will work directly in SL2(R). Being a Lie group, SL2(R) has a
left-invariant metric defined by declaring the three matrices

e1 =

(
0 1
−1 0

)
, e2 =

(
1
2 0
0 −1

2

)
, e3 =

(
0 1
0 0

)
as an orthonormal basis of TI SL2(R). We will use E1, E2, E3 to denote the left-invariant vector fields
in S̃L2(R) agreeing with e1, e2, e3 at the identity.

To write the metric in coordinates, we will use the Iwasawa decomposition that writes any element
in SL2(R) as an ordered product of three matrices of the form(

cos θ sin θ
− sin θ cos θ

)
,

(
et/2 0
0 e−t/2

)
,

(
1 s
0 1

)
.

It is easy to see that we can take θ , t and s as coordinates in a suitable neighbourhood of the identity
matrix I , with ∂θ , ∂t and ∂s agreeing with E1, E2 and E3 at I , but not away from it. In fact, in these coor-
dinates, a tedious calculation shows that the coefficients for the above-mentioned left-invariant metric are

gθθ = (4s2
+ 1)e2t

+
(
(s2
− 1)et

+ e−t)2
, gθs = (s2

− 1)et
+ e−t ,

gθ t =
(
(s2
− 1)et

+ e−t)s+ 2set , gt t = s2
+ 1, gts = s, gss = 1.

(13)

To see this, write the orthonormal basis {Ei } in terms of ∂θ , ∂t , ∂s .

Once we have an expression for the metric tensor in coordinates, computing the determinant of the
Cotton–York tensor is a matter of following the definitions with a lot of care. The Ricci tensor is

Ricθθ =−8s2e2t ,

Ricθ t = Rictθ =−4set ,

Rict t =−2,

the scalar curvature is s =−2, the Schouten tensor is

Sθθ =−8s2e2t
+

1
2(4s2

+ 1)e2t
+

1
2

(
(s2
− 1)et

+ e−t)2
,

Sθ t =
( 1

2 s3
−

7
2 s
)
et
+

1
2 e−t s, Sθs =

1
2(s

2
− 1)et

+
1
2 e−t ,

St t =−
3
2 +

1
2 s2, Sts =

1
2 s, Sss =

1
2 .

(14)
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The Cotton–York tensor of S̃L2(R) can be computed from these equations and formula (9), yielding

CYθθ = 4s4e2t
− 28s2e(2t)

+ 8s2
+ 8e2t

+ 4e(−2t)
− 12,

CYθ t = 4s3et
+ 4se−t

− 14set , CYθs = 4s2et
+ 4e−t

− 6et ,

CYt t = 4s2
− 4, CYts = 4s, CYss = 4.

(15)

When s = t = 0, this yields

CY(θ,0,0) =

 0 0 −2
0 −4 0
−2 0 4

 ,
with nonzero determinant. Since the metric is left-invariant, the same happens at any other point.

• Nil: This is the space of triangular matrices of the form
1 x z

0 1 y
0 0 1

 : x, y, z ∈ R

 ,
with the natural left-invariant metric. This turns out to be just R3 with the metric

g = dx2
+ dy2

+ (dz− x dy)2.

Once again, we apply the standard formulas, and find the Ricci tensor

Ric=

−
1
2 0 0

0 1
2 x2
−

1
2 −

1
2 x

0 −
1
2 x 1

2

 ,
the scalar curvature s =− 1

2 , the Schouten tensor,

S =

−
3
8 0 0

0 5
8 x2
−

3
8 −

5
8 x

0 −
5
8 x 5

8

 ,
and the Cotton–York tensor

CY =


1
2 0 0

0 −x2
+

1
2 x

0 x −1

 .
The determinant of CY is −1

4 , and there are no local LCWs in this space. �

6. Proof of Theorem 1.9 in dimensions n> 4

We divide the proof into two parts. First, we examine the set of algebraic Weyl operators satisfying the
eigenflag condition. We prove that this set is semialgebraic (and, in fact, algebraic in dimension 4), and
compute its codimension explicitly. Then, we see how to use this to approximate any metric by metrics
whose Weyl tensor at a given point p0 does not satisfy the eigenflag condition.
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The algebraic part is contained in the following theorem.

Theorem 6.1. The set EW of Weyl tensors that satisfy the eigenflag condition is a semialgebraic subset of
the space of Weyl tensors with codimension

1
3 n3
− n2
−

4
3 n+ 2.

In particular, the codimension is 2 for n = 4 and 12 for n = 5.

Remark 6.2. A semialgebraic subset of Rn is defined by equations and inequalities involving polynomials.
We will need the Tarski–Seidenberg theorem, which states that the image of a semialgebraic set by a map
given by polynomials is a semialgebraic set (see [Bochnak et al. 1998, Proposition 2.2.7]). At present,
we do not know whether the set of Weyl tensors satisfying the eigenflag condition is an algebraic set;
nonetheless, this will not be necessary for the purposes of this paper.

Dimension 4. Before proving Theorem 6.1, we recall the special structure of the Weyl operator in
dimension 4. The curvature tensor in dimension 4 has the following decomposition induced by the Hodge
operator ? (see Section 2):

R =

(
s

12 Id+W+ Z
Z t s

12 Id+W−

)
,

where W+ (resp. W−) is any symmetric traceless operator on the 3-dimensional space 3+ (resp. 3−).
Reciprocally, any such operators appear as W+ and W− for some curvature operator.

Clearly there are no simple bivectors in 3+ or 3−. The Weyl operator can have simple eigenvectors
only when W+ and W− share some eigenvalue since in that case W could have some eigenspace that
would not be contained in 3+ or 3−.

In particular, if all the eigenvalues of W are different, all eigenvectors of W will be nonsimple. This
gives the following argument for the density of Weyl operators in dimension 4 that do not satisfy the
eigenflag condition.

Let W0 =W+0 ⊕W−0 be a Weyl operator in EW . We define a sequence of Weyl operators W j having
the same eigenvectors of W0 and such that the corresponding eigenvalues of W j converge to those of W0.
It is clear that we can choose the six eigenvalues of W j to be different (thus assuring that W j /∈ EW) and
also such that the three eigenvalues of either W+j or W−j add up to zero; this assures us that W j is a Weyl
operator, thus proving density of the complement of EW .

Notice that this automatically implies the openness and denseness of the complement of EW . Now we
turn to the proof of Theorem 6.1.

Proof of Theorem 6.1 for n = 4. Let W = W+ ⊕ W− be a Weyl operator satisfying the eigenflag
condition. Since W ∈ EW , there is some v ∈ V such that W (v ∧ v⊥) ⊂ v ∧ v⊥. This also implies that
32(v⊥)= (v∧ v⊥)⊥ is an eigenspace of W .

We can perform a rotation in V so that e1 = v and e1∧e2, e1∧e3 and e1∧e4 are eigenvectors of the
Weyl operator with corresponding eigenvalues λ12, λ13 and λ14. Notice that the induced rotation in 32(V )
leaves 3+ and 3− invariant.
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We now compute W (e3 ∧ e4): By the eigenflag condition,

W (e3 ∧ e4) ∈ 〈e2 ∧ e3, e2 ∧ e4, e3 ∧ e4〉.

By the choice of basis,

W (e1 ∧ e2+ e3 ∧ e4)= λ12 e1 ∧ e2+W (e3 ∧ e4)

must lie in 3+. From λ12(e1 ∧ e2+ e3 ∧ e4) ∈3
+, it follows that

W (e1 ∧ e2+ e3 ∧ e4)− λ12(e1 ∧ e2+ e3 ∧ e4) ∈ 〈e2 ∧ e3, e2 ∧ e4, e3 ∧ e4〉 ∩3
+
= {0}.

Hence W (e3 ∧ e4)= λ12e3 ∧ e4. Similarly, W (e2 ∧ e4)= λ13e2 ∧ e4 and W (e2 ∧ e3)= λ14e2 ∧ e3.
Thus in the basis of 32(V ) as given in (10) and (11), W is written as

λ12

λ13

λ14

λ12

λ13

λ14


,

and since both W+ and W− are traceless, λ12+ λ13+ λ14 = 0.
The dimension of the space of Weyl tensors in dimension 4 is 10. Let us now compute the dimension

of EW . By the above, the map
8 : SO(V )×R2

→ EW,

sending (ρ, λ12, λ13) to

B(ρ) ·



λ12

λ13

−λ12− λ13

λ12

λ13

−λ12− λ13


· B(ρ)t ,

is surjective, where B(ρ) is the rotation on 32(V ) induced by ρ.
This means that EW is the image of an algebraic set by an algebraic map, so it is a semialgebraic

subset of W by the Tarski–Seidenberg theorem [Bochnak et al. 1998, Proposition 2.2.7]. The map is
singular only if two of the three numbers λ12, λ13 and λ14 = −λ12 − λ13 coincide, or if all of them
vanish. This implies that the map 8 is locally injective in an open set, and thus the dimension of EW is
dim SO(V )+ 2= 8. �

Remark 6.3. As mentioned before, we do not know whether EW is an algebraic set. However, in
dimension 4, we have shown that operators in EW have at least one double eigenvalue. It follows that EW
is contained in a proper algebraic set.
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Theorem 6.4. In dimension 4, the set of Weyl tensors having different eigenvalues and nonsimple eigen-
vectors is the complement of a proper algebraic set.

Proof. The set of algebraic operators with at least one multiple eigenvalue is an algebraic set given by the
equations

1t(det(tW − I ))= 0,

where 1t is the discriminant of a polynomial in t . The discriminant of the characteristic polynomial
of W vanishes exactly when the characteristic polynomial has nonsimple roots, which happens when the
operator has eigenspaces of dimension greater than 1. �

Weyl tensors with the eigenflag condition in dimensions n> 5.

Proof of Theorem 6.1 for n > 5. As in dimension 4, we will find an algebraic map from a space of
dimension smaller than dimW whose image is exactly EW and use [Bochnak et al. 1998, Proposition 2.2.7]
to show that EW is semialgebraic.

Let W be an algebraic Weyl operator with the eigenflag condition on the vector space V . We will build
an orthonormal basis of V such that W is written conveniently.

By hypothesis, there is vector v such that W (v ∧ v⊥) ⊂ v ∧ v⊥. The operator W |v∧v⊥ is symmetric
and diagonalizes in an orthonormal basis of bivectors contained in v∧ v⊥. All such eigenvectors are of
the form v∧w, and two such bivectors v∧w1 and v∧w2 are orthogonal if and only if w1 is orthogonal
to w2. We let {e1 = v, e2, . . . , en} be an orthonormal basis of v∧ v⊥ such that W |v∧v⊥ is diagonal in the
basis e1 ∧ ek , with eigenvalue λk .

Then, in this basis,

W =


λ2

. . .
λn

W2

 .
In other words,

W =
∑

λke1k � e1k +W2,

where W2 is a symmetric operator on the vector space 32(v⊥) and eab � ecd denotes the symmetric
endomorphism of32V sending ea∧eb to ec∧ed and vice versa; notice that we will use the same� notation
to indicate also the symmetric product in V ; it will be clear from the context which situation applies.

Notice that

b(W )= 0, b(e1k � e1k)= 0,

where b is the Bianchi projector defined as in (3); we obtain that W2 is a curvature operator. It may not
be a Weyl operator, because for the Ricci projector r introduced in (4),

r(e1k � e1k)= e1� e1+ ek � ek . (16)
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Nonetheless, we can deduce that
∑n

k=2 λk = 0 because

0= 〈r(W ), e1� e1〉 =

n∑
k=2

λk
〈
r(e1k � e1k), e1� e1

〉
+〈r(W2), e1� e1〉, (17)

and 〈r(W2), e1�e1〉=0 because W2 is an operator on the orthogonal complement of e1. Together with (16),

r(W2)=−

n∑
k=2

λk r(e1k � e1k)=−

( n∑
k=2

λkek � ek

)
.

In other words, W2 ∈ ker(b) ∩ r−1
(
−
∑n

k=2 λkek � ek
)
. We denote this (affine) space by R({λk}); its

dimension will agree with the dimension of W(v⊥)= ker(b)∩ ker(r).
Hence if W ∈ EW , there exist an element ρ ∈ SO(V ), numbers λ2, . . . , λn with

∑
k λk = 0, and a

curvature operator W2 ∈R({λk}) such that

W = B(ρ) ·

∑ λke1k � e1k +


0
. . .

0
W2


 · B(ρ)t , (18)

where remember that B(ρ) is the map in bivectors induced by ρ. Let

S=

{
(λk)k=2,...,n :

∑
λk = 0

}
,

and define a map
8 : SO(V )×S×R({λk})→W

by the above formula (18).
We know that ∑

λke1k � e1k +

0 . . .
0

W2


is a Weyl tensor because it lies in the kernel of b and r , and conjugating by B(ρ) produces another Weyl
tensor by equation (5). It follows that 8(ρ, {λk},W2) is always a Weyl tensor, and it is clear that it has
the eigenflag property. Thus 8 is surjective onto EW .

We will now compute the dimension of EW . The dimension of the space of curvature operators is

dimRn = dim S2(32V )− dim(34V )= 1
12 n4
−

1
12 n2.

The dimension of the space of Weyl operators is

dimWn = dimRn − dim S2(V )= 1
12 n4
−

7
12 n2
−

1
2 .

The dimension of SO(V )×S×R({λk}) is thus the sum of

dim SO(V )=
(n

2

)
, dim S= n− 2, dimR({λk})=

1
12(n− 1)4− 7

12(n− 1)2− 1
2 .
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However, the dimension of SO(V )×S×R({λk}) could be strictly greater than that of EW . In order
to prove that this is not the case, we show that 8 is finite-to-one when restricted to a nontrivial open
subset A of SO(V )×S×R({λk}).

Let w be the projection from the curvature operators onto the Weyl tensors. Then A is the set of triples
(ρ, {λk}, R) such that

• all λk for k = 2, . . . , n are different,

• the Weyl tensor w(R) does not satisfy the eigenflag condition.

It is clear that A is open. In order to see that it is not empty, we use induction to find a Weyl tensor W2 on
the space ∂⊥1 that does not satisfy the eigenflag condition. The base case for the induction is dimension 4,
which was done in the previous section. We fix arbitrary {λk} whose sum is 0, and choose any rotation ρ.
Let R0 be any operator in R({λk}). Then R1 = R0+W2−w(R0) is a curvature operator in the affine
space R({λk}) whose projection w(R1) to the space of Weyl tensors is W2.

For W ∈8(A), let us compute its preimages (ρ, {λk}, Rn−1) in A. The direction v1 is a direction with
the eigenflag property, and by the hypothesis, it is unique up to sign. The numbers λk for k = 2, . . . , n are
the unique eigenvalues of W |v1∧v

⊥

1
, up to change of order. The vk are unit-vectors in v⊥1 such that v1∧vk are

eigenvectors of W |v1∧v
⊥

1
corresponding to the eigenvalues λk , and they are unique up to a change of sign.

The basis vk determines ρ uniquely and Rn−1 is the unique remainder B(ρ)t ◦W ◦ B(ρ)−
∑
λke1k� e1k .

It follows that 8−1(W ) is finite for any W , and dim(EW) agrees with dim
(
SO(V )×S×R({λk})

)
. Thus

using the above formulae, we obtain that the codimension of EW inside W is

1
3 n3
− n2
−

4
3 n+ 2. �

Proof of Theorem 1.9 for n = dim M > 4. We start with a precise statement of a folklore lemma in
Riemannian geometry.

Lemma 6.5. Let M be a Riemannian manifold with metric g and p any point in M , with R(p) the
curvature of the metric g at p.

Then for any algebraic curvature operator R0 close enough to R(p), there exists a metric g′ that agrees
with g outside a neighbourhood of p and such that the curvature of g′ at p is R0.

Furthermore, we can choose g′ such that

‖g′− g‖C2 6 C‖R0
− R(p)‖,

with a constant C independent of R0.

Remark 6.6. The norm appearing in the left-hand side in the above inequality is computed in a fixed set
of coordinates of p.

Proof. We use the following formula for the computation of the Riemannian curvature in terms of partial
derivatives of g and the Christoffel symbols:

Rik`m =
1
2

(
∂2gim

∂xk∂x`
+

∂2gk`

∂x i∂xm −
∂2gi`

∂xk∂xm −
∂2gkm

∂x i∂x`

)
+ gnp

(
0n

k`0
p
im −0

n
km0

p
i`

)
. (19)
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Take normal coordinates for the metric g at p. In these coordinates, the Christoffel symbols at p vanish.
In these coordinates, choose a smooth function ϕ with value 1 near p and value 0 in the complement

of the domain of the coordinates. Define a new metric as

g′i j = gi j −
1
4

∑
k,h

R∗ih jk xh xkϕ(x)

in the coordinate patch, and by g outside of it, where R∗ = R0
− R(p). If R∗ is small enough, g′ will

still be positive definite. The Christoffel symbols are given by

0m
i j =

1
2

gmk
(
∂

∂x j gki +
∂

∂x i gk j −
∂

∂xk gi j

)
.

Thus, since the Christoffel symbols of g vanish, and we have added a quadratic perturbation to g, the
Christoffel symbols of g′ also vanish. We compute the curvature of g′ at p using (19):

R′(p)iklm = R(p)iklm −
1
4

(
R∗ikml + R∗kilm − R∗iklm − R∗kiml

)
= R(p)iklm + R∗iklm = R0

iklm . (20)

The C2-norm of g′− g is bounded by C‖R∗‖, with a constant C independent of R∗. �

Proof of Theorem 1.9 for dim M > 4. Let U ⊂ M for a compact manifold M . Denote by O the set of
Riemannian metrics on M for which there is at least one point p ∈U such that the Weyl tensor Wp of g
at p does not satisfy the eigenflag condition. By Theorem 1.3, O is contained in the set of metrics that do
not admit an LCW on U .

Since the complement of EW is open, and the map that assigns its Weyl tensor to a Riemannian metric
is continuous under C2-deformations of the metric, O is open.

For density, fix an arbitrary point p0 ∈ U and consider a metric g such that W (g)p0 ∈ EW . By
Theorem 6.1, we can find a Weyl tensor W̃ 6∈ EW such that ‖W̃ −W (g)p0‖< ε.

We choose R0 = R(g)p0 −W (g)p0 + W̃ and apply Lemma 6.5 to get a new metric g′ that satisfies
‖g′−g‖C2 6C‖W̃−W (g)p0‖<Cε. The Weyl tensor of g′ at p0 is W̃ 6∈ EW; thus g′ is not in O. Since ε
is arbitrary, denseness of O follows. �

Proof of Theorem 1.9 for n = dim M = 3. In this section, we use the Cotton tensor instead of the Weyl
tensor.

The space of algebraic Cotton–York tensors at p ∈ M consists of simply the symmetric, traceless
operators on the euclidean space Tp M . It is obvious that the set of Cotton–York tensors with zero
determinant is a proper algebraic subset of the set of all such tensors.

The following result is the equivalent of Lemma 6.5 for the Cotton tensor:

Lemma 6.7. Let M be a Riemannian manifold with metric g and p any point in M.
Then for any algebraic Cotton–York tensor CY 0 close enough to CYp, we can find a metric g′ that

agrees with g outside a neighbourhood of p so that the Cotton–York tensor of g′ at p is CY 0.
Furthermore, we can find the metric g′ in such a way that the C3-norm of |g− g′| is bounded by a

multiple of the norm of CY 0
−CYp.
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Proof. Our first goal is to find a formula that expresses the Cotton tensor at p in terms of the metric tensor
and its derivatives. Take normal coordinates at p, so that gp is the identity matrix, and the Christoffel
symbols vanish at p. We start with the formula (19) for the curvature tensor and take derivatives.

We compute first the Schouten tensor in a neighbourhood of p:

Sab =
1
2

(
δiaδlb−

1
4 gabgil)gkm

(
∂2gim

∂xk∂x`
+

∂2gk`

∂x i∂xm −
∂2gi`

∂xk∂xm −
∂2gkm

∂x i∂x`

)
+ Q(0), (21)

where Q(0) consists of terms like 0n
k`0

p
im .

The covariant derivative ∇n Sab(p)= (∂/∂xn)Sab(p) at p is

∇n Sab(p)=
1
2
∂

∂xn

(
∂2gak

∂xk∂xb +
∂2gkb

∂xa∂xk −
∂2gab

∂xk∂xk −
∂2gkk

∂xa∂xb

)
−

1
4
∂

∂xn

(
∂2gik

∂xk∂x i −
∂2gkk

∂x i∂x i

)
δab. (22)

The derivatives of Q(0) vanish because one Christoffel symbol will remain in the final computation, and
it evaluates to 0 at p.

The Cotton tensor at p is

Cnab(p)

=
1
2
∂

∂xn

(
∂2gak

∂xk∂xb+
∂2gkb

∂xa∂xk−
∂2gab

∂xk∂xk−
∂2gkk

∂xa∂xb

)
−

1
2
∂

∂xa

(
∂2gnk

∂xk∂xb+
∂2gkb

∂xn∂xk−
∂2gnb

∂xk∂xk−
∂2gkk

∂xn∂xb

)
−

1
4
∂

∂xn

(
∂2gik

∂xk∂x i−
∂2gkk

∂x i∂x i

)
+δab

1
4
∂

∂xa

(
∂2gik

∂xk∂x i−
∂2gkk

∂x i∂x i

)
δnb

=
1
2

(
∂3gak

∂xk∂xn∂xb−
∂3gnk

∂xk∂xa∂xb−
∂3gab

∂xk∂xn∂xk+
∂3gnb

∂xk∂xa∂xk

)
−

1
4

(
∂3gik

∂xk∂x i∂xn−
∂2gkk

∂x i∂x i∂xn

)
δab

+
1
4

(
∂3gik

∂xk∂x i∂xa−
∂2gkk

∂x i∂x i∂xa

)
δnb. (23)

If the Aklm
i j are small enough real numbers, symmetric under permutations of i, j and also under permuta-

tions of k, l,m (there are 60 different such terms), then

g′i j = gi j +
∑

Aklm
i j xk x l xm

defines a new metric g′.
The new Cotton tensor at 0 is

C ′nab(p)= Cnab(p)+ 1
2(A

knb
ka − Akab

kn − Akkn
ab + Akka

nb )−
1
4(A

kin
ki − Ai in

kk )δab+
1
4(A

kia
ki − Ai ia

kk )δnb. (24)

We define A to be the real vector space of dimension 60 whose coordinates are indexed by the tuples
({i, j}, {k, l,m}). The formula

Amlk
i j

L
−→

1
2(A

knb
ka − Akab

kn − Akkn
ab + Akka

nb )−
1
4(A

kin
ki − Ai in

kk )δab+
1
4(A

kia
ki − Ai ia

kk )δnb
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defines a linear map L : A→ Cp into the space of algebraic Cotton tensors (the (0, 3)-tensors with the
symmetries (8)). It follows from (24) that the image of L consists of Cotton tensors, but it is a nice
exercise to check it directly.

In order to show that we can prescribe the Cotton tensor at p, we just need to check that L is surjective.
The map from the Cotton tensors to the Cotton–York tensors is a linear isomorphism, so we only need to
check that the image of the above linear map has dimension 5. Let L(eklm

i j ) be the image by L of the
basis vector eklm

i j ∈ A, with Akml
i j = 1 and the other entries equal to 0. The reader may check, for instance,

that L(e122
11 ), L(e123

11 ), L(e222
11 ), L(e223

11 ) and L(e223
12 ) are linearly independent. �

Proof of Theorem 1.9 for dim M = 3. Let U ⊂ M for a compact manifold M . This time, O is the set
of Riemannian metrics on M for which there is at least one point p ∈ U such that the Cotton–York
tensor CYp of g at p has nonzero determinant. By Theorem 1.6, O is contained in the set of metrics that
do not admit an LCW on U .

Since the map that assigns its Cotton tensor to a Riemannian metric is continuous under C3-deformations
of the metric, O is open in the C3-topology.

For density, let ε > 0, fix an arbitrary point p0 ∈ U and consider a metric g such that its Cotton–
York tensor CY (g)p0 at p0 has zero determinant. Choose a symmetric traceless tensor with nonzero
determinant CY 0 and such that ‖CY 0

−CY (g)p0‖< ε.
We apply Lemma 6.5 to get a new metric g′ that satisfies ‖g′− g‖C3 6 C‖CY 0

−CY (g)p0‖< Cε and
whose Cotton–York tensor at p0 is CY 0. It follows that g′ is not in O, and since ε is arbitrary, we deduce
that O is dense. �
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