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ADVECTION-DIFFUSION EQUATIONS WITH DENSITY CONSTRAINTS

ALPÁR RICHÁRD MÉSZÁROS AND FILIPPO SANTAMBROGIO

In the spirit of the macroscopic crowd motion models with hard congestion (i.e., a strong density constraint
ρ≤1) introduced by Maury et al. some years ago, we analyze a variant of the same models where diffusion
of the agents is also taken into account. From the modeling point of view, this means that individuals try
to follow a given spontaneous velocity, but are subject to a Brownian diffusion, and have to adapt to a
density constraint which introduces a pressure term affecting the movement. From the point of view of
PDEs, this corresponds to a modified Fokker–Planck equation, with an additional gradient of a pressure
(only living in the saturated zone {ρ = 1}) in the drift. We prove existence and some estimates, based on
optimal transport techniques.

1. Introduction

In the past few years modeling crowd behavior has become a very active field of applied mathematics.
Beyond their importance in real life applications, these modeling problems serve as basic ideas to
understand many other phenomena coming for example from biology (cell migration, tumor growth,
pattern formations in animal populations, etc.), particle physics and economics. A first nonexhaustive list
of references for these problems is [Chalons 2007; Colombo and Rosini 2005; Coscia and Canavesio
2008; Cristiani et al. 2014; Dogbé 2008; Helbing 1992; Helbing and Molnár 1995; Hughes 2002; 2003;
Maury and Venel 2009]. A very natural question in all these models is the study of congestion: in many
practical situations, a high number of individuals could try to occupy the same spot, which could be
impossible, or lead to strong negative effects on the motion, because of natural limitations on the crowd
density.

These phenomena have been studied by using different models, which could be either “microscopic”
(based on ODEs on the motion of a high number of agents) or “macroscopic” (describing the agents via
their density and velocity, typically with Eulerian formalism). Let us concentrate on the macroscopic
models, where the density ρ plays a crucial role. These very same models can be characterized either by
“soft congestion” effects (i.e., the higher the density, the slower the motion), or by “hard congestion” (i.e.,
an abrupt threshold effect: if the density touches a certain maximal value, the motion is strongly affected,
while nothing happens for smaller values of the density). See [Maury et al. 2011] for comparison between
the different classes of models. This last class of models, due to the discontinuity in the congestion
effects, presents new mathematical difficulties, which cannot be analyzed with the usual techniques from
conservation laws (or, more generally, evolution PDEs) used for soft congestion.
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A very powerful tool to attack macroscopic hard congestion problems is the theory of optimal transporta-
tion (see [Villani 2003; Santambrogio 2015]), as we can see in [Maury et al. 2010; 2011; Roudneff-Chupin
2011; Santambrogio 2012a]. In this framework, the density of the agents solves a continuity equation (with
velocity field taking into account the congestion effects), and can be seen as a curve in the Wasserstein
space.

Our aim in this paper is to endow the macroscopic hard congestion models of [Maury et al. 2010;
2011; Roudneff-Chupin 2011; Santambrogio 2012a] with diffusion effects. In other words, we will study
an evolution equation where particles

• have a spontaneous velocity field ut(x) which depends on time and on their position, and is the velocity
they would follow in the absence of the other particles;

• must adapt their velocity to the existence of an incompressibility constraint which prevents the density
to go beyond a given threshold;

• are subject to some diffusion effect.

This can be considered as a model for a crowd where a part of the motion of each agent is driven
by a Brownian motion. Implementing this new element into the existing models could give a better
approximation of reality; as usual when one adds a stochastic component, this can be a (very) rough
approximation of unpredictable effects which are not already handled by the model, and this could work
well when dealing with large populations.

Anyway, we do not want to discuss here the validity of this hard congestion model and we are mainly
concerned with its mathematical analysis. In particular, we will consider existence and regularity estimates,
while we do not treat the uniqueness issue. Uniqueness is considered in [Di Marino and Mészáros 2016],
and one can observe that the insertion of diffusion dramatically simplifies the picture as far as uniqueness
is concerned.

We also underline that one of the goals of the current paper (and of the work just cited) is to better
“prepare” these hard congestion crowd motion models for a possible analysis in the framework of mean
field games (see [Lasry and Lions 2006a; 2006b; 2007], and also [Santambrogio 2012b]). These MFG
models usually involve a stochastic term, also implying regularizing effects, which are useful in the
mathematical analysis of the corresponding PDEs.

The existing first-order models in light of the work of Maury, Roudneff-Chupin and Santambrogio.
Some macroscopic models for crowd motion with density constraints and “hard congestion” effects were
studied in [Maury et al. 2010; 2011]. We briefly present them as follows:

• The density of the population in a bounded (convex) domain�⊂Rd is described by a probability measure
ρ ∈ P(�). The initial density ρ0 ∈ P(�) evolves in time, and ρt denotes its value at each time t ∈ [0, T ].

• The spontaneous velocity field of the population is a given time-dependent field, denoted by ut . It
represents the velocity that each individual would like to follow in the absence of the others. Ignoring the
density constraint, this would give rise to the continuity equation ∂tρt +∇ · (ρt ut)= 0. We observe that in
the original work [Maury et al. 2010] the vector field ut(x) was taken of the form −∇D(x) (independent
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of time and of gradient form), but we try here to be more general (see [Roudneff-Chupin 2011], where
the nongradient case is studied under some stronger regularity assumptions).

• The set of admissible densities will be denoted by K := {ρ ∈ P(�) : ρ ≤ 1}. In order to guarantee that
K is neither empty nor trivial, we suppose |�|> 1.

• The set of admissible velocity fields with respect to the density ρ is characterized by the sign of the
divergence of the velocity field on the saturated zone. We need to suppose also that all admissible velocity
fields are such that no mass exists from the domain. So formally we set

adm(ρ) :=
{
v :�→ Rd

: ∇ · v ≥ 0 on {ρ = 1} and v · n ≤ 0 on ∂�
}
.

• We consider the projection operator P in L2(Ld):

Padm(ρ)[u] ∈ argminv∈adm(ρ)

∫
�

|u− v|2 dx .

Note that we could have used the Hilbert space L2(ρ) instead of L2(Ld); this would be more natural in this
kind of evolution equation, as L2(ρ) is interpreted in a standard way as the tangent space to the Wasserstein
space W2(�). Yet, these two projections turn out to be the same in this case, as the only relevant zone
is {ρ = 1}. This is just formal, and would require more rigorous definitions (in particular of the divergence
constraint in adm(ρ); see below). Anyway, to clarify, we choose to use the L2(Ld)-projection; in this
way the vector fields are considered to be defined Lebesgue-a.e. on the whole � (and not only on {ρ > 0})
and the dependence of the projected vector field on ρ only passes through the set adm(ρ).

• Finally we solve the modified continuity equation

∂tρt +∇ · (ρt Padm(ρt )[ut ])= 0 (1-1)

for ρ, where the main point is that ρ is advected by a vector field, compatible with the constraints, which
is the closest to the spontaneous one.

The problem in solving (1-1) is that the projected field has very low regularity; it is a priori only L2

in x , and it does not depend smoothly on ρ either (since a density 1 and a density 1−ε give very different
projection operators). By the way, its divergence is not well defined either. To handle this issue we need
to redefine the set of admissible velocities by duality. Taking a test function p ∈ H 1(�), p ≥ 0 a.e., we
obtain by integration by parts the equality∫

�

v · ∇ p dx =−
∫
�

(∇ · v)p dx +
∫
∂�

pv · n dHd−1(x).

For vector fields v which do not let mass go through the boundary ∂�, we have (in an a.e. sense) v ·n = 0.
This leads to the definition

adm(ρ)=
{
v ∈ L2(�;Rd) :

∫
�

v · ∇ p dx ≤ 0 for all p ∈ H 1(�) with p ≥ 0, p(1− ρ)= 0 a.e.
}
.

(Indeed, for a smooth vector field with vanishing normal component on the boundary, this is equivalent to
imposing ∇ · v ≥ 0 on the set {ρ = 1}.)
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Now, if we set
press(ρ) := {p ∈ H 1(�) : p ≥ 0, p(1− ρ)= 0 a.e.},

we observe that, by definition, adm(ρ) and ∇ press(ρ) are two convex cones which are dual to each other
in L2(�;Rd). Hence we always have a unique orthogonal decomposition

u = v+∇ p, v ∈ adm(ρ), p ∈ press(ρ),
∫
�

v · ∇ p dx = 0. (1-2)

In this decomposition (as is the case every time we decompose on two dual convex cones), v= Padm(ρ)[u].
These will be our mathematical definitions for adm(ρ) and for the projection onto this cone.

Via this approach (introducing the new variable p and using its characterization from the previous
line), for a given desired velocity field u : [0, T ]×�→Rd , the continuity equation (1-1) can be rewritten
as a system for the pair of variables (ρ, p), namely

∂tρt +∇ · (ρt(ut −∇ pt))= 0 in [0, T ]×�,
p ≥ 0, ρ ≤ 1, p(1− ρ)= 0 in [0, T ]×�,
ρt(ut −∇ pt) · n = 0 on [0, T ]× ∂�.

(1-3)

This system is endowed with the initial condition ρ(0, x) = ρ0(x) (for ρ0 ∈ K). As far as the spatial
boundary ∂� is concerned, we put no-flux boundary conditions to preserve the mass in �.

Note that in the above system we withdrew the condition
∫
(ut −∇ pt) ·∇ pt = 0, as it is a consequence

of the system (1-3) itself. Informally, this can be seen as follows. For an arbitrary p0 ∈ press(ρt0), we
have that t 7→

∫
�

p0ρt is maximal at t = t0 (where it is equal to
∫
�

p0). Differentiating this quantity with
respect to t at t = t0, using (1-3), we get the desired orthogonality condition at t = t0. For a rigorous
proof of this fact (which holds for a.e. t0), we refer to Proposition 4.7 in [Di Marino et al. 2016].

A diffusive counterpart. The goal of our work is to study a second-order model of crowd movements
with hard congestion effects, where beside the transport factor a nondegenerate diffusion is present as well.
The diffusion is the consequence of a randomness (a Brownian motion) in the movement of the crowd.

With the ingredients introduced so far, we modify the Fokker–Planck equation ∂tρt−1ρt+∇·(ρt ut)=0
in order to take into account the density constraint ρt ≤ 1. Assuming enough regularity for the velocity
field u, we observe that the Fokker–Planck equation is derived from a motion given by the stochastic
ODE dX t = ut(X t) dt +

√
2 dBt (where Bt is the standard d-dimensional Brownian motion), but is

macroscopically represented by the advection of the density ρt by the vector field−∇ρt/ρt+ut . Projecting
onto the set of admissible velocities raises a natural question: should we project only ut , and then apply
the diffusion, or project the whole vector field, including −∇ρt/ρt ? But this is not a real issue, since, at
least formally, ∇ρt/ρt = 0 on the saturated set {ρt = 1} and

Padm(ρt )[−∇ρt/ρt + ut ] = Padm(ρt )[−∇ρt/ρt ] + Padm(ρt )[ut ] = 0+ Padm(ρt )[ut ].

Rigorously, this corresponds to the fact that the heat kernel preserves the constraint ρ ≤ 1. As a
consequence, we consider the modified Fokker–Planck-type equation

∂tρt −1ρt +∇ · (ρt Padm(ρt )[ut ])= 0, (1-4)
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which can also be written equivalently for the variables (ρ, p) as{
∂tρt −1ρt +∇ · (ρt(ut −∇ pt))= 0 in [0, T ]×�,
p ≥ 0, ρ ≤ 1, p(1− ρ)= 0 in [0, T ]×�.

(1-5)

As usual, these equations are complemented by no-flux boundary conditions and by an initial datum
ρ(0, x)= ρ0(x).

Roughly speaking, we can consider this equation to describe the law of a motion where each agent
solves the stochastic differential equation

dX t = (ut(X t)−∇ pt(X t)) dt +
√

2 dBt .

This last statement is just formal and there are several issues defining a stochastic ODE like this. Indeed,
the pressure variable is also an unknown, and globally depends on the law ρt of X t . Hence, if we wanted
to see this evolution as a superposition of individual motions, each agent should somehow predict the
evolution of the pressure in order to solve his own equation. This calls to mind some notions from the
stochastic control formulation of mean field games, as introduced by J.-M. Lasry and P.-L. Lions, even if
here there are no strategic issues for the players. For mean field games with density constraints, we refer
to [Cardaliaguet et al. 2015; Mészáros and Silva 2015; Santambrogio 2012b].

However, in this paper we will not consider any microscopic or individual problems, but only study
the parabolic PDE (1-5).

Structure of the paper and main results. The main goal of the paper is to provide an existence result,
with some extra estimates, for the Fokker–Planck equation (1-5) via time discretization, using the so-called
splitting method (the two main ingredients of the equation, i.e., the advection with diffusion on one
hand, and the density constraint on the other hand, are treated one after the other). In Section 2 we will
collect some preliminary results, including what we need from optimal transport and from the previous
works about density-constrained crowd motion, in particular on the projection operator onto the set K. In
Section 3 we will provide the aforementioned existence result, by a splitting scheme and some entropy
bounds; the solution will be a curve of measures in AC2([0, T ];W2(�)) (absolutely continuous curves
with square-integrable speed). In Section 4 we will make use of BV estimates to justify that the solution
just built is also Lip([0, T ];W1(�)) and satisfies a global BV bound ‖ρt‖BV≤C (provided that ρ0 ∈BV);
this requires us to combine BV estimates on the Fokker–Planck equation (which are available depending
on the regularity of the vector field u) with BV estimates on the projection operator on K (which have
been recently proven in [De Philippis et al. 2016]). Section 5 presents a short review of alternative
approaches, all discretized in time, but based either on gradient-flow techniques (the JKO scheme, see
[Jordan et al. 1998]) or on different splitting methods. Finally, in the Appendix we detail the BV estimates
on the Fokker–Planck equation (without any density constraint) that we could find; this seems to be a
delicate matter, interesting in itself, and we are not aware of the sharp assumptions on the vector field u
to guarantee the BV estimate that we need.



620 ALPÁR RICHÁRD MÉSZÁROS AND FILIPPO SANTAMBROGIO

2. Preliminaries

Basic definitions and general facts on optimal transport. Here we collect some tools from the theory of
optimal transportation, Wasserstein spaces, its dynamical formulation and more, which will be used later
on. We formulate our problem either in a compact convex domain �⊂Rd with smooth boundary or in the
d-dimensional flat torus � := Td (although we will not adapt all our notation to the torus case). We refer
to [Villani 2003; Santambrogio 2015] for more details. Given two probability measures µ, ν ∈ P(�) and
p ≥ 1 we define the usual Wasserstein metric by means of the Monge–Kantorovich optimal transportation
problem

Wp(µ, ν) := inf
{∫

�×�

|x − y|p dγ (x, y) : γ ∈5(µ, ν)
}1/p

,

where 5(µ, ν) := {γ ∈ P(�×�) : (π x)#γ = µ, (π
y)#γ = ν} and π x and π y denote the canonical

projections from �×� onto �. This quantity happens to be a distance on P(�) which metrizes the weak-
∗ convergence of probability measures; we denote by Wp(�) := (P(�),Wp) the space of probabilities
on � endowed with this distance.

Moreover, in the quadratic case p = 2 and under the assumption µ� Ld (the d-dimensional Lebesgue
measure on �), Y. Brenier [1987; 1991] showed that actually the optimal γ in the above problem (the
existence of which is obtained simply by the direct method of calculus of variations) is induced by a
map which is the gradient of a convex function, i.e., there exists S :�→� and ψ :�→ R convex such
that S = ∇ψ and γ := (id, S)#µ. The function ψ is obtained as ψ(x) = 1

2 |x |
2
− ϕ(x), where ϕ is the

so-called Kantorovich potential for the transport from µ to ν, and is characterized as the solution of a dual
problem that we will not develop here. In this way, the optimal transport map S can also be written as
S(x)= x −∇ϕ(x). Later, in the 1990s, R. McCann [1997] introduced a notion of interpolation between
probability measures: the curve µt := ((T − t)x + t y)#γ , for t ∈ [0, T ] (T > 0 is given), gives a constant
speed geodesic in the Wasserstein space connecting µ0 := µ and µT := ν.

Based on this notion of interpolation, J.-D. Benamou and Y. Brenier [2000] used some ideas from fluid
mechanics to give a dynamical formulation to the Monge–Kantorovich problem. They showed that

1
pT p−1 W p

p (µ, ν)= inf{Bp(E, µ) : ∂tµ+∇ · E = 0, µ0 = µ, µT = ν}.

Here Bp is a functional defined on pairs (E, µ), where E is a d-dimensional vector measure on [0, T ]×�
and µ= (µt)t is a Borel-measurable family of probability measures on �. This functional is defined to
be finite only if E = Et ⊗dt (i.e., it is induced by a measurable family of vector measures on �: we have∫
[0,T ]×� ξ(t, x) · dE(t, x)=

∫ T
0 dt

∫
�
ξ(t, x) · dEt(x) for all test functions ξ ∈ C0([0, T ] ×�;Rd)) and

in this case it is defined through

Bp(E, µ) :=


∫ T

0

∫
�

1
p
|vt |

p dµt(x) dt if Et = vt ·µt ,

+∞ otherwise.

It is well known that Bp is jointly convex and lower semicontinuous with respect to the weak-∗ convergence
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of measures (see Section 5.3.1 in [Santambrogio 2015]) and that, if ∂tµ+∇ ·E = 0, then Bp(E, µ)<+∞
implies that t 7→ µt is a curve in ACp([0, T ];Wp(�)).1 In particular it is a continuous curve and the
initial and final conditions on µ0 and µT are well defined.

Coming back to curves in Wasserstein spaces, it is well known (see [Ambrosio et al. 2008] or Section 5.3
in [Santambrogio 2015]) that for any distributional solution µt (being a continuous curve in Wp(�)) of
the continuity equation ∂tµ+∇ · E = 0 with Et = vt ·µt , we have the relations

|µ′|Wp(t)≤ ‖vt‖L p
µt

and Wp(µt , µs)≤

∫ t

s
|µ′|Wp(τ ) dτ,

where we denote by |µ′|Wp(t) the metric derivative with respect to Wp of the curve µt (see for instance
[Ambrosio and Tilli 2004] for general notions about curves in metric spaces and their metric derivative).
For curves µt that are geodesics in Wp(�) we have the equality

Wp(µ0, µ1)=

∫ 1

0
|µ′|Wp(t) dt =

∫ 1

0
‖vt‖L p

µt
dt.

The last equality is in fact the Benamou–Brenier formula with the optimal velocity field vt being the
density of the optimal Et with respect to the optimal µt . This optimal velocity field vt can be computed as
vt := (S− id) ◦ (St)

−1, where St := (1− t) id+t S is the transport in McCann’s interpolation (we assume
here that the initial measure µ0 is absolutely continuous, so that we can use transport maps instead of
plans). This expression can be obtained if we consider that in this interpolation particles move with
constant speed S(x)− x , but x represents here a Lagrangian coordinate, and not an Eulerian one: if we
want to know the velocity at time t at a given point, we have to find out first the original position of the
particle passing through that point at that time.

In the sequel we will also need the notion of entropy of a probability density, and for any probability
measure % ∈ P(�) we define it as

E(%) :=


∫
�

%(x) log %(x) dx if %� Ld ,

+∞ otherwise.

We recall that this functional is lower semicontinuous and geodesically convex in W2(�).
As we will mainly be working with absolutely continuous probability measures (with respect to

Lebesgue), we often identify measures with their densities.

Projection problems in Wasserstein spaces. Our analysis strongly relies on the projection operator PK

in the sense of W2. Here K := {ρ ∈ P(�) : ρ ≤ 1} and

PK[µ] := argminρ∈K
1
2 W 2

2 (µ, ρ).

We recall the main properties of the projection operator PK (see [Maury et al. 2010; Santambrogio 2012a;
De Philippis et al. 2016]).

1Here ACp([0, T ];Wp(�)) denotes the class of absolutely continuous curves in Wp(�) with metric derivative in L p . See
the connection with the functional Bp .
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• As long as � is compact, for any probability measure µ, the minimizer in minρ∈K 1
2 W 2

2 (µ, ρ) exists
and is unique, and the operator PK is continuous (it is even C0,1/2 for the W2 distance).

• The projection PK[µ] saturates the constraint ρ ≤ 1, in the sense that for any µ ∈ P(�) there exists a
measurable set B ⊆� such that PK[µ] = 1B +µ

ac1Bc , where µac is the absolutely continuous part of µ.

• The projection is characterized in terms of a pressure field, in the sense that ρ = PK[µ] if and only if
there exists a Lipschitz function p ≥ 0, with p(1− ρ) = 0, and such that the optimal transport map S
from ρ to µ is given by S := id−∇ϕ = id+∇ p.

• There is (as proven in [De Philippis et al. 2016]) a quantified BV estimate: if µ ∈ BV (in the sense that
it is absolutely continuous and that its density belongs to BV(�)), then PK[µ] is also BV and

TV(PK[µ], �)≤ TV(µ,�).

This last BV estimate will be crucial in Section 4, and it is important to have it in this very form (other
estimates of the form TV(PK[µ], �)≤ a TV(µ,�)+b would not be as useful as this one, as they cannot
be easily iterated).

3. Existence via a splitting-type algorithm (Main Scheme)

Similarly to the approach in [Maury et al. 2011] (see the algorithm (13) and Theorem 3.5) for a general
nongradient vector field, we will build a theoretical algorithm, after time-discretization, to produce a
solution of (1-5). Let us remark that splitting-type methods have been widely used in other contexts as
well; see for instance [Clément and Maas 2011], which deals with splitting methods for Fokker–Planck
equations and for more general gradient flows in metric and Wasserstein spaces, or [Laborde 2015],
where a splitting-like approach is used to attack PDEs which are not gradient flows but “perturbations” of
gradient flows.

In this section the spontaneous velocity field is a general vector field u : [0, T ]×�→Rd (not necessarily
a gradient), which depends also on time. The only assumption we require on u is that

u ∈ L∞([0, T ]×�;Rd). (U)

We work on a time interval [0, T ] and in a bounded convex domain �⊂ Rd (the case of the flat torus is
even simpler and we will not discuss it in detail). We consider ρ0 ∈ Pac(�) to be given, which represents
the initial density of the population, and we suppose ρ0 ∈ K.

Splitting using the Fokker–Planck equation. Let us consider the following scheme.

Main Scheme. Let τ > 0 be a small time step with N := bT/τc. Let us set ρτ0 := ρ0. For every
k ∈ {1, . . . , N }, define ρτk+1 from ρτk by solving{

∂t%t −1%t +∇ · (%t ut+kτ )= 0, t ∈ ]0, τ ],
%0 = ρ

τ
k ,

(3-1)

equipped with the no-flux boundary condition (%t(∇%t−ut)·n=0 a.e. on ∂�), and setting ρτk+1= PK[ρ̃
τ
k+1],

where ρ̃τk+1 = %τ . See Figure 1 below.
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•ρτk

∂ t%
t−
1
% t+
∇
·(%

tu t+
kτ
)=

0
•

ρ̃τk+1 = %τ

id
+
τ
∇

p
τk
+

1
• ρτk+1

Figure 1. One time step.

Let us remark first that by classical results on parabolic equations (see for instance [Ladyzhenskaya et al.
1967]), since u satisfies the assumption (U), the equation (3-1) admits a unique distributional solution.

The above algorithm means to first follow the Fokker–Planck equation, ignoring the density constraint,
for a time τ , then project. In order to state and prove the convergence of the scheme, we need to define
some suitable interpolations of the discrete sequence of densities that we have just introduced.

First interpolation. We define the following curves of densities, velocities and momenta constructed with
the help of the ρτk . First set

ρτt :=

{
%2(t−kτ) if t ∈

[
kτ,

(
k+ 1

2

)
τ
[
,(

id+2((k+ 1)τ − t)∇ pτk+1

)
#ρ
τ
k+1 if t ∈

[(
k+ 1

2

)
τ, (k+ 1)τ

[
,

where %t is the solution of the Fokker–Planck equation (3-1) with initial datum ρτk and ∇ pτk+1 arises
from the projection of ρ̃τk+1, or more precisely, (id+τ∇ pτk+1) is the optimal transport from ρτk+1 to ρ̃τk+1.
What are we doing? We are fitting into a time interval of length τ the two steps of our algorithm. First
we follow the Fokker–Planck equation (3-1) at double speed, then we interpolate between the measure
we reached and its projection following the geodesic between them. This geodesic is easily described as
an image measure of ρτk+1 through McCann’s interpolation. By the construction it is clear that ρτt is a
continuous curve in P(�) for t ∈ [0, T ]. We now define a family of time-dependent vector fields through

vτt :=

−2∇%2(t−kτ)
%2(t−kτ)

+ 2ut if t ∈
[
kτ,

(
k+ 1

2

)
τ
[
,

−2∇ pτk+1 ◦
(
id+2((k+ 1)τ − t)∇ pτk+1

)−1 if t ∈
[(

k+ 1
2

)
τ, (k+ 1)τ

[
,

and, finally, we simply define the curve of momenta as Eτt := ρ
τ
t v

τ
t .

Second interpolation. We define another interpolation as follows. Set

ρ̃τt := %t−kτ if t ∈ [kτ, (k+ 1)τ [,

where %t is (again) the solution of the Fokker–Planck equation (3-1) on the time interval [0, τ ] with initial
datum ρτk . Here we do not double its speed. We define the curve of velocities

ṽτt := −
∇%t−kτ
%t−kτ

+ ut if t ∈ [kτ, (k+ 1)τ [,
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and we build the curve of momenta by Ẽτt := ρ̃
τ
t ṽ

τ
t .

Third interpolation. For each τ , we also define piecewise constant curves,

ρ̂τt := ρ
τ
k+1 if t ∈ [kτ, (k+ 1)τ [,

v̂τt := ∇ pτk+1 if t ∈ [kτ, (k+ 1)τ [,

and Êτt := ρ̂
τ
t v̂

τ
t . We remark that pτk+1(1− ρ

τ
k+1)= 0, hence the curve of momenta is just

Êτt := ∇ pτk+1 if t ∈ [kτ, (k+ 1)τ [.

Mind the differences in the construction of ρτt , ρ̃τt and ρ̂τt (and hence in the construction of vτt , ṽτt
and v̂τt , and Eτt , Ẽτt and Êτt ):

(1) The first one is continuous in time for the weak-∗ convergence, while the second and third ones are
not.

(2) In the first construction we have taken into account the projection operator explicitly, while in the
second one we see it just in an indirect manner (via the “jumps” occurring at every time of the
form t = kτ ). The third interpolation is piecewise constant, and at every time it satisfies the density
constraint.

(3) In the first interpolation the pair (ρτ , Eτ ) solves the continuity equation, while in the other two
it does not. This is not astonishing, as the continuity equation characterizes continuous curves
in W2(�).

In order to prove the convergence of the scheme above, we will obtain uniform AC2([0, T ];W2(�))

bounds for the curves ρτ . A key observation here is that the metric derivative (with respect to W2) of the
solution of the Fokker–Planck equation is comparable with the time differential of the entropy functional
along the same solution (see Lemma 3.2). Now we state the main theorem of this section.

Theorem 3.1. Let ρ0 ∈ K and u be a given desired velocity field satisfying (U). Let us consider the
interpolations introduced above. Then there exists a continuous curve t 7→ ρt ∈W2(�) for t ∈ [0, T ], and
some vector measures E, Ẽ, Ê ∈M([0, T ] ×�) such that the curves ρτ , ρ̃τ , ρ̂τ converge uniformly in
W2(�) to ρ and

Eτ ∗⇀ E, Ẽτ ∗⇀ Ẽ, Êτ ∗⇀ Ê in M([0, T ]×�)d as τ → 0.

Moreover E = Ẽ − Ê and for a.e. t ∈ [0, T ] there exist time-dependent measurable vector fields vt , ṽt , v̂t

such that

(1) E = ρv, Ẽ = ρṽ, Ê = ρv̂,

(2)
∫ T

0

(
‖vt‖

2
L2
ρt
+‖ṽt‖

2
L2
ρt
+‖v̂t‖

2
L2
ρt

)
dt <+∞,

(3) vt = ṽt − v̂t , ρt -a.e., Ẽt = ρt ut −∇ρt and v̂t =∇ pt , ρt -a.e.,
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where p ∈ L2([0, T ]; H 1(�)), p ≥ 0 and p(1− ρ) = 0 a.e. in [0, T ] ×�. As a consequence, the pair
(ρ, p) is a weak solution of the problem

∂tρt −1ρt +∇ · (ρt(ut −∇ pt))= 0 in [0, T ]×�,
pt ≥ 0, ρt ≤ 1, pt(1− ρt)= 0 in [0, T ]×�,
ρt(∇ρt − ut +∇ pt) · n = 0 on [0, T ]× ∂�,
ρ(0, · )= ρ0.

(3-2)

To prove this theorem we need the following tools.

Lemma 3.2. Let us consider a solution %t of the Fokker–Planck equation on [0, T ]×� with the velocity
field u satisfying (U) and with no-flux boundary conditions on [0, T ] × ∂�. Then for any time interval
]a, b[ we have the estimate

1
2

∫ b

a

∫
�

∣∣∣∣−∇%t
%t
+ ut

∣∣∣∣2%t dx dt ≤ E(%a)− E(%b)+
1
2

∫ b

a

∫
�

|ut |
2%t dx dt. (3-3)

In particular this implies

1
2

∫ b

a
|%′t |

2
W2

dt ≤ E(%a)− E(%b)+
1
2

∫ b

a

∫
�

|ut |
2%t dx dt, (3-4)

where |%′t |W2 denotes the metric derivative of the curve t 7→ %t ∈W2(�).

Proof. To prove this inequality, we first make computations in the case where both u and % are smooth,
and % is bounded from below by a positive constant. In this case we can write

d
dt

E(%t)=

∫
�

(log %t + 1)∂t%t dx =
∫
�

log %t(1%t −∇ · (%t ut)) dx

=

∫
�

(
−
|∇%t |

2

%t
+ ut · ∇%t

)
dx,

where we use the conservation of mass (i.e.,
∫
�
∂t%t dx = 0) and the boundary conditions in the integration

by parts. We now compare this with

1
2

∫
�

∣∣∣∣−∇%t
%t
+ ut

∣∣∣∣2%t dx − 1
2

∫
�

|ut |
2%t dx =

∫
�

(
1
2
|∇%t |

2

%t
−∇%t · ut

)
dx

≤

∫
�

(
|∇%t |

2

%t
−∇%t · ut

)
dx =− d

dt
E(%t).

This provides the first part of the statement, i.e., (3-3). If we combine this with the fact that the metric
derivative of the curve t 7→ %t is always less than or equal to the L2

%t
norm of the velocity field in the

continuity equation, we also get

1
2
|%′t |

2
W2
−

1
2

∫
�

|ut |
2%t ≤−

d
dt

E(%t),

and hence (3-4).
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In order to prove the same estimates without artificial smoothness and lower bound assumptions, we
can act by approximation. We approximate the density %a by smooth and strictly positive densities %k

a

(by convolution, so that we guarantee in particular E(%k
a)→ E(%a)), and the vector field u with smooth

vector fields uk (strongly in L4([a, b] ×�), keeping the L∞ bound). If we call %k the corresponding
solution of the Fokker–Planck equation, it satisfies (3-3). This implies a uniform bound (with respect to k)
for

√
%k in L2([a, b]; H 1(�)), and hence a uniform bound on %k in L2([a, b]×�). From these bounds

and the uniqueness of the solution of the Fokker–Planck equation with L∞ drift, we deduce %k
→ %.

The semicontinuity of the left-hand side in (3-3) and of the entropy term at t = b, together with the
convergence of the entropy at t = a and the convergence

∫ b
a

∫
�
|uk
|
2%k dx dt→

∫ b
a

∫
�
|u|2% dx dt (because

we have a product of weak and strong convergence in L2), allow us to pass (3-3) to the limit. �

Corollary 3.3. From the inequality (3-4) we deduce that

E(%b)− E(%a)≤
1
2

∫ b

a

∫
�

|ut |
2%t dx dt,

and hence in particular for u satisfying (U), we have

E(%b)− E(%a)≤
1
2
‖u‖2L∞(b− a).

As a consequence, if %a ≤ 1, then we have

E(%b)≤
1
2
‖u‖2L∞(b− a).

The same estimate can be applied to the curve ρ̃τ , with a = kτ and b ∈ ]kτ, (k + 1)τ [, thus obtaining
E(ρ̃τt )≤ Cτ for every t.

Lemma 3.4. For any ρ ∈ P(�) we have E(PK[ρ])≤ E(ρ).

Proof. We can assume ρ� Ld , otherwise the claim is straightforward. As we pointed out in Section 2,
we know that there exists a measurable set B ⊆� such that

PK[ρ] = 1B + ρ1Bc .

Hence it is enough to prove that∫
B
ρ log ρ dx ≥ 0=

∫
B

PK[ρ] log PK[ρ] dx,

as the entropies on Bc coincide. As the mass of ρ and PK[ρ] are the same on all of �, and they coincide
on Bc, we have ∫

B
ρ(x) dx =

∫
B

PK[ρ] dx = |B|.

Then, by Jensen’s inequality we have

1
|B|

∫
B
ρ log ρ dx ≥

(
1
|B|

∫
B
ρ dx

)
log
(

1
|B|

∫
B
ρ dx

)
= 0.

The entropy decay follows. �
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To analyze the pressure field we need the following result.

Lemma 3.5. Let {pτ }τ>0 be a bounded sequence in L2([0, T ]; H 1(�)) and {ρτ }τ>0 a sequence of
piecewise constant curves valued in W2(�) which satisfy W2(ρ

τ (a), ρτ (b)) ≤ C
√

b− a+ τ for all
a < b ∈ [0, T ] for a fixed constant C. Suppose that

pτ ≥ 0, pτ (1− ρτ )= 0, ρτ ≤ 1,

and that

pτ ⇀ p weakly in L2([0, T ]; H 1(�)) and ρτ → ρ uniformly in W2(�).

Then p(1− ρ)= 0 a.e. in [0, T ]×�.

The proof of this result is the same as in Step 3 of Section 3.2 of [Maury et al. 2010] (see also [Roudneff-
Chupin 2011] and Lemma 4.6 in [Di Marino et al. 2016]). We omit it in order not to overburden the paper.

The reader can note the strong connection with the classical Aubin–Lions lemma [Aubin 1963], applied
to the compact injection of L2 into H−1. Indeed, from the weak convergence of pτ in L2([0, T ]; H 1(�)),
we just need to provide strong convergence of ρτ in L2([0, T ]; H−1(�)). If instead of the quasi-Hölder
assumption of the above lemma we suppose a uniform bound of {ρτ }τ in AC2([0, T ];W2(�)) (which is not
so different), then the statement really can be deduced from the Aubin–Lions lemma. Indeed, the sequence
{ρτ } is bounded in L∞([0, T ]; L2(�)) and its time derivative would be bounded in L2([0, T ]; H−1(�)).
This strongly depends on the fact that the H−1 distance can be controlled by the W2 distance as soon as
the measures have uniformly bounded densities (see [Loeper 2006; Maury et al. 2010]), a tool which is
also crucial in the proofs in [Maury et al. 2010; Roudneff-Chupin 2011; Di Marino et al. 2016]. Then, the
Aubin–Lions lemma guarantees compactness in C0([0, T ]; H−1(�)), which is more than what we need.

Lemma 3.6. Let us consider the previously defined interpolations. Then we have the following facts.

(i) For every τ > 0 and k we have

max
{
W 2

2 (ρ
τ
k , ρ̃

τ
k+1),W 2

2 (ρ
τ
k , ρ

τ
k+1)

}
≤ τC(E(ρτk )− E(ρτk+1))+Cτ 2,

where C > 0 only depends on ‖u‖L∞ .

(ii) There exists a constant C , only depending on ρ0 and ‖u‖L∞ , such that

B2(Eτ , ρτ )≤ C, B2(Ẽτ , ρ̃τ )≤ C and B2(Êτ , ρ̂τ )≤ C.

(iii) For the curve [0, T ] 3 t 7→ ρτt we have that∫ T

0
|(ρτt )

′
|
2
W2

dt ≤ C,

for a C > 0 independent of τ . Here we denote by |(ρτt )
′
|W2 the metric derivative of the curve ρτ at t

in W2. In particular, we have a uniform Hölder bound on ρτ , namely W2(ρ
τ (a), ρτ (b))≤ C

√
b− a

for every b > a.

(iv) Eτ , Ẽτ , Êτ are uniformly bounded sequences in M([0, T ]×�)d .
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Proof. (i) First, by the triangle inequality and by the fact that ρτk+1 = PK[ρ̃
τ
k+1] we have that

W2(ρ
τ
k , ρ

τ
k+1)≤W2(ρ

τ
k , ρ̃

τ
k+1)+W2(ρ̃

τ
k+1, ρ

τ
k+1)≤ 2W2(ρ

τ
k , ρ̃

τ
k+1). (3-5)

We use (as before) the notation %t , t ∈ [0, τ ] for the solution of the Fokker–Planck equation (3-1) with
initial datum ρτk ; in particular we have %τ = ρ̃τk+1. Using Lemma 3.2 and since %0 = ρ

τ
k and %τ = ρ̃τk+1

we have by (3-4) and W2(ρ
τ
k , ρ̃

τ
k+1)≤

∫ τ
0 |%

′
t |W2 dt that

W 2
2 (ρ

τ
k , ρ̃

τ
k+1)≤

(
τ 1/2

(∫ τ

0
|%′t |

2
W2

dt
)1/2 )2

≤ 2τ(E(%0)− E(%τ ))+ τ
∫ τ

0

∫
�

|ukτ+t |
2%t dx dt

≤ 2τ(E(ρτk )− E(ρ̃τk+1))+Cτ 2
≤ 2τ(E(ρτk )− E(ρτk+1))+Cτ 2,

where C > 0 is a constant depending just on ‖u‖L∞ . We have also used the fact that E(ρτk+1)≤ E(ρ̃τk+1),
a consequence of Lemma 3.4.

Now by means of (3-5) we obtain

W 2
2 (ρ

τ
k , ρ

τ
k+1)≤ τC(E(ρτk )− E(ρτk+1))+Cτ 2.

(ii) We use Lemma 3.2 on the intervals of type
[
kτ,

(
k+ 1

2

)
τ
[

and the fact that on each interval of type[(
k+ 1

2

)
τ, (k+ 1)τ

[
the curve ρτt is a constant speed geodesic. In particular, on these intervals we have

|(ρτ )′|W2 = ‖v
τ
t ‖L2

ρτt
= 2τ‖∇ pτk+1‖L2

ρτk+1

= 2W2(ρ
τ
k+1, ρ̃

τ
k+1).

On the other hand we also have

τ 2
‖∇ pτk+1‖

2
L2
ρτk+1

=W 2
2 (ρ

τ
k+1, ρ̃

τ
k+1)≤W 2

2 (ρ
τ
k , ρ̃

τ
k+1)≤ τC(E(ρτk )− E(ρτk+1))+Cτ 2.

Hence we obtain∫ (k+1)τ

kτ
‖vτt ‖

2
L2(ρτt )

dt

=

∫ (k+1/2)τ

kτ

∫
�

4
∣∣∣−∇%2(t−kτ)

%2(t−kτ)
+ u2t−kτ

∣∣∣2%2(t−kτ)(x) dx dt + 4
∫ (k+1)τ

(k+1/2)τ

∫
�

|∇ pτk+1|
2ρτk+1 dx dt

≤ C(E(ρτk )− E(ρτk+1))+Cτ + 2τ‖∇ pτk+1‖
2
L2
ρτk+1

≤ C(E(ρτk )− E(ρτk+1))+Cτ.

Hence by adding up we obtain

B2(Eτ , ρτ )≤
∑

k

(
C(E(ρτk )− E(ρτk+1))+Cτ

)
= C(E(ρτ0 )− E(ρτN+1))+CT ≤ C.

The estimates on B2(Ẽτ , ρ̃τ ) and B2(Êτ , ρ̂τ ) are completely analogous and arise from the previous
computations.

(iii) The estimate on B2(Eτ , ρτ ) implies a bound on
∫ T

0 |(ρ
τ
t )
′
|
2
W2

dt because vτ is a velocity field for ρτ

(i.e., the pair (Eτ , ρτ ) solves the continuity equation).
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(iv) In order to estimate the total mass of E we write

|Eτ |([0, T ]×�)=
∫ T

0

∫
�

|vτt |ρ
τ
t dx dt ≤

∫ T

0

(∫
�

|vτt |
2ρτt dx

)1/2(∫
�

ρτt dx
)1/2

dt

≤
√

T
(∫ T

0

∫
�

|vτt |
2ρτt dx dt

)1/2

≤ C.

The bounds on Ẽτ and Êτ rely on the same argument. �

Proof of Theorem 3.1. We use the tools from Lemma 3.6.

Step 1. By the bounds on the metric derivative of the curves ρτt we get compactness, i.e., there exists
a curve [0, T ] 3 t 7→ ρt ∈ P(�) such that ρτ (up to subsequences) converges uniformly in [0, T ] with
respect to W2, in particular weakly-∗ in P(�) for all t ∈ [0, T ]. It is easy to see that ρ̃τ and ρ̂τ are
converging to the same curve. Indeed we have ρ̃τt = ρ

τ
s̃(t) and ρ̂τt = ρ

τ
ŝ(t) for |s̃(t)−t | ≤ τ and |ŝ(t)−t | ≤ τ ,

which implies W2(ρ
τ
t , ρ̃

τ
t ),W2(ρ

τ
t , ρ̂

τ
t )≤ Cτ 1/2. This provides the convergence to the same limit.

Step 2. By the boundedness of Eτ , Ẽτ and Êτ in M([0, T ] ×�)d , we have the existence of E, Ẽ, Ê
in M([0, T ]×�)d such that (up to a subsequence) Eτ ∗⇀ E, Ẽτ ∗⇀ Ẽ, Êτ ∗⇀ Ê as τ → 0. Now we show
that E = Ẽ − Ê . Indeed, let us show that for any test function f ∈ Lip([0, T ]×�)d we have

∣∣∣∣∫ T

0

∫
�

ft · (Eτt − (Ẽ
τ
t + Êτt ))(dx, dt)

∣∣∣∣→ 0

as τ → 0. First, for each k ∈ {0, . . . , N } we have that

∫ (k+1/2)τ

kτ

∫
�

ft · Eτt (dx, dt)=
∫ (k+1)τ

kτ

∫
�

f(t+kτ)/2 · (−∇%t−kτ + ut%t−kτ )(dx, dt)

=

∫ (k+1)τ

kτ

∫
�

ft · Ẽτt (dx, dt)+
∫ (k+1)τ

kτ

∫
�

( f(t+kτ)/2− ft) · Ẽτt (dx, dt)

and

∫ (k+1)τ

(k+1/2)τ

∫
�

ft · Eτt (dx, dt)

=

∫ (k+1)τ

kτ

∫
�

− f(t+(k+1)τ )/2 ◦
(
id+((k+ 1)τ − t)∇ pτk+1

)
· ∇ pτk+1ρ

τ
k+1(dx, dt)

=−

∫ (k+1)τ

kτ

∫
�

ft · Êτt (dx, dt)+
∫ (k+1)τ

kτ

∫
�

(
ft − f(t+(k+1)τ )/2 ◦ (id+((k+ 1)τ − t))

)
· v̂τt ρ̂

τ
t (dx, dt).
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This implies that∣∣∣∣∫ T

0

∫
�

ft · (Eτt − Ẽτt + Êτt )(dx, dt)
∣∣∣∣

≤

∑
k

∫ (k+1)τ

kτ
Lip( f )τ

∫
�

|Ẽτt |(dx, dt)+
∑

k

∫ (k+1)τ

kτ
Lip( f )τ

∫
�

(1+ |v̂τt |)|Ê
τ
t |(dx, dt)

≤ τC Lip( f )
(
|Ẽτ |([0, T ]×�)+ |Êτ |([0, T ]×�)+B2(Ê, ρ̂)

)
≤ τC Lip( f ),

for a uniform constant C > 0. Letting τ → 0, we prove the claim.

Step 3. The bounds on B2(Eτ , ρτ ), B2(Ẽτ , ρ̃τ ) and B2(Êτ , ρ̂τ ) pass to the limit by semicontinuity and
allow us to conclude that E , Ẽ and Ê are vector-valued Radon measures absolutely continuous with
respect to ρ. Hence there exist vt , ṽt and v̂t such that E = ρv, Ẽ = ρṽ and Ê = ρv̂.

Step 4. We now look at the equations satisfied by E, Ẽ and Ê . First we use ∂tρ
τ
+∇ · Eτ = 0, pass to

the limit as τ → 0 and get

∂tρ+∇ · E = 0.

Then, we use Ẽτ =−∇ρ̃τ + ut ρ̃
τ , pass to the limit again as τ → 0 and get

Ẽ =−∇ρ+ utρ.

To justify this limit, the only delicate point is passing to the limit the term ut ρ̃
τ , since u is only L∞,

and ρ̃τ converges weakly as measures, and we are a priori only allowed to multiply it by continuous
functions. Yet, we remark that by Corollary 3.3 we have that E(ρ̃τt )≤ Cτ for all t ∈ [0, T ]. In particular,
this provides, for each t , uniform integrability for ρ̃τt and turns the weak convergence as measures into
weak convergence in L1. This allows multiplication by ut in the weak limit.

Finally, we look at Êτ . There exists a piecewise constant (in time) function pτ (defined as pτk+1 on
every interval ]kτ, (k+ 1)τ ]) such that pτ ≥ 0, pτ (1− ρ̂τ )= 0,∫ T

0

∫
�

|∇ pτ |2(dx, dt)=
∫ T

0

∫
�

|∇ pτ |2ρ̂τ (dx, dt)=
∫ T

0

∫
�

|v̂τ |2ρ̂τ (dx, dt)≤ C (3-6)

and Êτ = ∇ pτ ρ̂τ = ∇ pτ . The bound (3-6) implies that pτ is uniformly bounded in L2(0, T ; H 1(�)).
Since for every t we have |{pτt = 0}| ≥ |{ρ̂τt < 1}| ≥ |�| − 1, we can use a suitable version of Poincaré’s
inequality, and get a uniform bound in L2([0, T ]; L2(�)) = L2([0, T ] ×�). Therefore, there exists
p ∈ L2([0, T ]×�) such that pτ ⇀ p weakly in L2 as τ → 0. In particular we have Ê =∇ p. Moreover
it is clear that p ≥ 0 and by Lemma 3.5 we obtain p(1− ρ)= 0 a.e. as well. Indeed, the assumptions of
the lemma are easily checked: we only need to estimate W2(ρ̂

τ (a), ρ̂τ (b)) for b > a, but we have

W2(ρ̂
τ (a), ρ̂τ (b))=W2(ρ

τ (kaτ), ρ
τ (kbτ))≤ C

√
kb− ka for kbτ ≤ b+ τ and ka ≥ a.
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Once we have Ê =∇ p with p(1− ρ)= 0, p ∈ L2([0, T ]; H 1(�)) and ρ ∈ L∞, we can also write

Ê =∇ p = ρ∇ p.

If we sum up our results, using E = Ẽ − Ê , we have

∂tρ−1ρ+∇ · (ρ(u−∇ p))= 0 with p ≥ 0, ρ ≤ 1, p(1− ρ)= 0 a.e. in [0, T ]×�.

As usual, this equation is satisfied in a weak sense, with no-flux boundary conditions. �

4. Uniform Lip([0, T ];W1) and BV estimates

In this section we provide uniform estimates for the curves ρτ , ρ̃τ and ρ̂τ in the form of uniform BV (in
space) bounds on ρ̃τ (which implies the same bound for ρ̂τ ) and uniform Lipschitz bounds in time for the
W1 distance on ρτ . This means a small improvement compared to the previous section concerning time
regularity, as we have Lipschitz instead of AC2, even if we need to replace W2 with W1. It is also important
for space regularity. Indeed, from Lemma 3.2 one could deduce that the solution ρ of the Fokker–Planck
equation (1-5) satisfies

√
ρ ∈ L2([0, T ]; H 1(�)) and, using ρ ≤ 1, also ρ ∈ L2([0, T ]; H 1(�)). Yet, this

is just an integrable estimate in t , while the BV estimate of this section is uniform in the time variable.
Nevertheless there is a price to pay for this improvement: we have to assume higher regularity for

the velocity field. These uniform-in-time W1-Lipschitz bounds are based both on BV estimates for the
Fokker–Planck equation (see Lemma A.1 in the Appendix) and for the projection operator PK (see
[De Philippis et al. 2016]). The assumption on u is, essentially, that we need to control the growth of the
total variation of the solutions of the Fokker–Planck equation (3-1), and we need to iterate this bound
along time steps.

We will discuss in the Appendix the different BV estimates on the Fokker–Planck equation that we
were able to find. The desired estimate is true whenever ‖ut‖C1,1(�) is uniformly bounded and ut · n = 0
on ∂�. It seems to be an open problem to obtain similar estimates under the sole assumption that u
is Lipschitz continuous. Of course, we will also assume ρ0 ∈ BV(�). Despite these extra regularity
assumptions, we think these estimates have their own interest, exploiting some finer properties of the
solutions of the Fokker–Planck equation and of the Wasserstein projection operator.

Before entering into the details of the estimates, we want to discuss why we concentrate on BV
estimates (instead of Sobolev ones) and on W1 (instead of Wp, p > 1). The main reason is the role of the
projection operator. Indeed, even if ρ ∈W 1,p(�), we do not have in general PK[ρ] ∈W 1,p because the
projection creates some jumps at the boundary of {PK[ρ] = 1}. This prevents us from obtaining any W 1,p

estimate for p > 1. On the other hand, [De Philippis et al. 2016] exactly proves a BV estimate on PK[ρ]

and paves the way to BV bounds for our equation. Concerning the regularity in time, we observe that
the velocity field in the Fokker–Planck equation contains a term in ∇ρ/ρ. Since the metric derivative in
Wp is given by the L p norm (with respect to ρt ) of the velocity field, it is clear that estimates in Wp for
p > 1 would require spatial W 1,p estimates on the solution itself, which are impossible for p > 1 in this
splitting scheme. We stress that this does not mean that uniform W 1,p are impossible for the solution
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of (1-5); it only means that they are not uniform along the approximation used in our Main Scheme to
build such a solution.

The precise result that we prove is the following.

Theorem 4.1. Let us suppose that ‖ut‖C1,1 ≤ C and ρ0 ∈ BV(�). Then using the notations from the
Main Scheme and Theorem 3.1 one has ‖ρ̃τt ‖BV ≤ C and W1(ρ

τ
k , ρ

τ
k+1)≤ Cτ . As a consequence we also

have ρ ∈ Lip([0, T ];W1)∩ L∞([0, T ];BV(�)).

To prove this theorem we need the following lemmas.

Lemma 4.2. Suppose ‖ut‖Lip ≤ C and ut · n = 0 on ∂�. Then for the solution % of (A-1) with velocity
field v = u we have the estimate

‖%t‖L∞ ≤ ‖%0‖L∞eCt ,

where C = ‖∇ · ut‖L∞ .

Proof. Standard comparison theorems for parabolic equations allow us to prove the results once we notice
that f (t, x) := ‖%0‖L∞eCt is a supersolution of the Fokker–Planck equation, i.e.,

∂t ft ≥1 ft −∇ · ( ft ut).

Indeed, in the above equation the Laplacian term vanishes as f is constant in x , ∂t ft = C ft and
∇ · ( ft ut)= ft∇ · ut +∇ ft · ut = ft∇ · ut ≤ C ft , where C = ‖∇ · ut‖L∞ . From this inequality, and from
ρ0 ≤ f0, we deduce ρt ≤ ft for all t . �

We remark that the above lemma implies in particular that after every step in the Main Scheme we
have ρ̃τk+1 ≤ eτc

≤ 1+Cτ , where c := ‖∇ · u‖L∞ . We note the following corollary as well.

Corollary 4.3. Along the iterations of our Main Scheme, for every k we have W1(ρ̃
τ
k+1, ρ

τ
k+1)≤ τC for a

constant C > 0 independent of τ .

Proof. With the saturation property of the projection (see Section 2 or [De Philippis et al. 2016]), we
know that there exists a measurable set B ⊆� such that ρτk+1 = ρ̃

τ
k+11B +1�\B . On the other hand we

know that

W1(ρ̃
τ
k+1, ρ

τ
k+1)= sup

f ∈Lip1(�)
0≤ f≤diam(�)

∫
�

f (ρ̃τk+1− ρ
τ
k+1) dx

= sup
f ∈Lip1(�)

0≤ f≤diam(�)

∫
�\B

f (ρ̃τk+1− 1) dx ≤ τC |�| diam(�).

We use the fact that the competitors f in the dual formula can be taken to be positive and bounded by
the diameter of �, just by adding a suitable constant. This implies as well that C is dependent on c, |�|
and diam(�). �

Proof of Theorem 4.1. First we take care of the BV estimate. Lemma A.1 guarantees, for t ∈ ]kτ, (k+1)τ [,
that we have TV(ρ̃τt )≤Cτ+eCτ TV(ρτk ). Together with the BV bound on the projection that we presented
in Section 2 (taken from [De Philippis et al. 2016]), this can be iterated, providing a uniform bound
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(depending on TV(ρ0), T and supt ‖ut‖C1,1) on ‖ρ̃τt ‖BV. Passing this estimate to the limit as τ → 0 we
get ρ ∈ L∞([0, T ];BV(�)).

Then we estimate the behavior of the interpolation curve ρ̂τ in terms of W1. We estimate

W1(ρ
τ
k , ρ̃

τ
k+1)≤

∫ (k+1)τ

kτ
|(ρ̃τt )

′
|W1 dt ≤

∫ (k+1)τ

kτ

∫
�

(
|∇ρ̃τt |

ρ̃τt
+ |ut |

)
ρ̃τt dx dt

≤

∫ (k+1)τ

kτ
‖ρ̃τt ‖BV dt +Cτ ≤ Cτ.

Hence, we obtain

W1(ρ
τ
k , ρ

τ
k+1)≤W1(ρ

τ
k , ρ̃

τ
k+1)+W1(ρ̃

τ
k+1, ρ

τ
k+1)≤ τC.

This in particular means, for b > a,

W1(ρ̂
τ (a), ρ̂τ (b))≤ C(b− a+ τ).

We can pass this relation to the limit, using that, for every t , we have ρ̂τt → ρt in W2(�) (and hence also
in W1(�), since W1 ≤W2), getting

W1(ρ(a), ρ(b))≤ C(b− a),

which means that ρ is Lipschitz continuous in W1(�). �

5. Variations on a theme: some reformulations of the Main Scheme

In this section we propose some alternative approaches to study the problem (1-5). The general idea
is to discretize in time, and give a way to produce a measure ρτk+1 starting from ρτk . Observe that the
interpolations ρτ , ρ̃τ and ρ̂τ proposed in the previous sections are only technical tools to state and prove
a convergence result, and the most important point is exactly the definition of ρτk+1.

The alternative approaches proposed here explore different ideas, more difficult to implement than
the one that we presented in Section 3, and/or restricted to some particular cases (for instance when u is
a gradient). They have their own modeling interest and this is the main reason justifying their sketchy
presentation.

Variant 1: transport, diffusion then projection. We recall that the original splitting approach for the
equation without diffusion [Maury et al. 2011; Roudneff-Chupin 2011] exhibited an important difference
compared to what we did in Section 3. Indeed, in the first phase of each time step (i.e., before the projection)
the particles follow the vector field u and ρ̃τk+1 was not defined as the solution of a continuity equation with
advection velocity given by ut , but as the image of ρτk via a straight-line transport: ρ̃τk+1 := (id+τukτ )#ρ

τ
k .

One can wonder whether it is possible to follow a similar approach here.
A possible way to proceed is as follows. Take a random variable X distributed according to ρτk , and

define ρ̃τk+1 as the law of X + τukτ (X)+ Bτ , where B is a Brownian motion, independent of X . This
exactly means that every particle moves starting from its initial position X , following a displacement
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ruled by u, but adding a stochastic effect in the form of the value at time τ of a Brownian motion. We
can check that this means

ρ̃τk+1 := ητ ∗ ((id+τukτ )#ρ
τ
k ),

where ητ is a Gaussian kernel with zero mean and variance τ , i.e., ητ (x) :=
1

(4τπ)d/2
e−|x |

2/(4τ). Then
we define

ρτk+1 := PK[ρ̃k+1].

Despite the fact that this scheme is very natural and essentially not that different from the Main Scheme,
we have to be careful with the analysis. First we have to quantify somehow the distance Wp(ρ

τ
k , ρ̃

τ
k+1)

for some p ≥ 1 and show that this is of order τ in some sense. Second, we need to be careful when
performing the convolution with the heat kernel (or adding the Brownian motion, which is the same).
This requires working either in the whole space (which was not our framework) or in a periodic setting
(�= Td , the flat torus, which is quite restrictive). Otherwise, the “explicit” convolution step should be
replaced with some other construction, such as following the heat equation (with Neumann boundary
conditions) for a time τ . But this brings us back to a situation very similar to the Main Scheme, with the
additional difficulty that we do not really have estimates on (id+τukτ )#ρ

τ
k .

Variant 2: gradient flow techniques for gradient velocity fields. In this section we assume that the
velocity field of the population is given by the opposite of the gradient of a function, ut = −∇Vt . A
typical example is given when we take for V the distance function to the exit (see the discussions in
[Maury et al. 2010] about this type of question). We start from the case where V does not depend on
time, and we suppose V ∈W 1,1(�). In this particular case — beside the splitting approach — the problem
has a variational structure, hence it is possible to show the existence by the means of gradient flows in
Wasserstein spaces.

Since the celebrated paper of Jordan, Kinderlehrer and Otto [Jordan et al. 1998], we know that the
solutions of the Fokker–Planck equation (with a gradient vector field) can be obtained with the help of
the gradient flow of a perturbed entropy functional with respect to the Wasserstein distance W2. This
formulation of the Jordan–Kinderlehrer–Otto (JKO) scheme was also used in [Maury et al. 2010] for the
first-order model with density constraints. It is easy to combine the JKO scheme with density constraints
to study the second-order/diffusive model. As a slight modification of the model from [Maury et al. 2010],
we can consider the following discrete implicit Euler (or JKO) scheme. As usual, we fix a time step τ > 0,
ρτ0 = ρ0 and for all k ∈ {1, 2, . . . , bN/τc} we just need to define ρτk+1. We take

ρτk+1 = argminρ∈P(�)

{∫
�

V (x)ρ(x) dx + E(ρ)+ IK(ρ)+
1

2τ
W 2

2 (ρ, ρ
τ
k )

}
, (5-1)

where IK is the indicator function of K, which is

IK(x) :=
{

0 if x ∈ K,
+∞ otherwise.
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The usual techniques from [Jordan et al. 1998; Maury et al. 2010] can be used to identify that the system
(1-5) is the gradient flow of the functional

ρ 7→ J (ρ) :=
∫
�

V (x)ρ(x) dx + E(ρ)+ IK(ρ)

and that the above discrete scheme converges (up to a subsequence) to a solution of (1-5), thus proving
existence. The key estimate for compactness is

1
2τ

W 2
2 (ρ

τ
k+1, ρ

τ
k )≤ J (ρτk )− J (ρτk+1),

which can be summed up (as on the right-hand side we have a telescopic series), thus obtaining the same
bounds on B2 that we used in Section 3.

Note that whenever D2V ≥ λI , the functional ρ 7→
∫
�

V (x)ρ(x) dx + E(ρ)+ IK(ρ) is λ-geodesically
convex. This allows us to use the theory in [Ambrosio et al. 2008] to prove not only existence, but
also uniqueness for this equation, and even stability (contractivity or exponential growth on the distance
between two solutions) in W2. Yet, we underline that the techniques of [Di Marino and Mészáros 2016]
also give the same result. Indeed, that article contains two parts. In the first part, the equation with density
constraints for a given velocity field u is studied, under the assumption that −u has some monotonicity
properties: (−ut(x) + ut(y)) · (x − y) ≥ λ|x − y|2 (which is the case for the gradients of λ-convex
functions). In this case standard Grönwall estimates on the W2 distance between two solutions are proved,
and it is not difficult to add diffusion to that result (as the heat kernel is already contractant in W2). In
the second part, via different techniques (mainly using the adjoint equation, and proving somehow L1

contractivity), the uniqueness result is provided for arbitrary L∞ vector fields u, but with the crucial help
of the diffusion term in the equation.

It is also possible to study a variant where V depends on time. We assume for simplicity that
V ∈ Lip([0, T ]×�) (this is a simplification; less regularity in space, such as W 1,1, could be sufficient).
In this case we define

Jt(ρ) :=

∫
�

Vt(x)ρ(x) dx + E(ρ)+ IK(ρ),

ρτk+1 = argminρ∈P(�)
{

Jkτ (ρ)+
1

2τ
W 2

2 (ρ, ρ
τ
k )
}
. (5-2)

The analysis proceeds similarly, with the only exception being that we get

1
2τ

W 2
2 (ρ

τ
k+1, ρ

τ
k )≤ Jkτ (ρ

τ
k )− Jkτ (ρ

τ
k+1),

which is no longer a telescopic series. Yet, we have Jkτ (ρ
τ
k+1)≥ J(k+1)τ (ρ

τ
k+1)+Lip(V )τ , and we can

go on with a telescopic sum plus a remainder of the order of τ . In the case where ut is the opposite of the
gradient of a λ-convex function Vt , one could consider approximation by functions which are piecewise
constant in time and use the standard theory of gradient flows.

We remark here that [Alexander et al. 2014] gave another approach for dealing with first-order crowd
motion models as limits of nonlinear-diffusion equations with gradient drift. This approach could plausibly
be used also in the case where we add a simple diffusion term to the models studied in that paper.
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Variant 3: transport then gradient flow-like step with the penalized entropy functional. We present
now a different scheme, which combines some of the previous approaches. It could formally provide a
solution of the same equation, but presents some extra difficulties.

We define now ρ̃τk+1 := (id+τukτ )#ρ
τ
k and with the help of this we define

ρτk+1 := argminρ∈K E(ρ)+ 1
2τ

W 2
2 (ρ, ρ̃

τ
k+1).

In the last optimization problem we minimize strictly convex and lower semicontinuous functionals,
and hence we have existence and uniqueness of the solution. The formal reason for this scheme being
adapted to the equation is that we perform a step of a JKO scheme in the spirit of [Jordan et al. 1998]
(without the density constraint) or of [Maury et al. 2010] (without the entropy term). This should let a
term −1ρ−∇ · (ρ∇ p) appear in the evolution equation. The term ∇ · (ρu) is due to the first step (the
definition of ρ̃τk+1). To explain a little bit more for the unexperienced reader, we consider the optimality
conditions for the above minimization problem. Following [Maury et al. 2010], we can say that ρ ∈ K is
optimal if and only if there exists a constant ` ∈ R and a Kantorovich potential ϕ for the transport from ρ

to ρτk such that

ρ =


1 on (ln ρ+ϕ/τ) < `,
0 on (ln ρ+ϕ/τ) > `,
∈ [0, 1] on (ln ρ+ϕ/τ)= `.

We then define p= (`− ln ρ−ϕ/τ)+ and we get p ∈ press(ρ). Moreover, ρ-a.e., ∇ p=−∇ρ/ρ−∇ϕ/τ .
We then use the fact that the optimal transport is of the form T = id−∇ϕ and obtain a situation as
sketched in Figure 2.

Notice that

(id+τukτ )
−1
◦ (id+τ(∇ p+∇ρ/ρ))= id−τ(u(k+1)τ −∇ p−∇ρ/ρ)+ o(τ )

provided u is regular enough. Formally we can pass to the limit τ → 0 and have

∂tρ−1ρ+∇ · (ρ(u−∇ p))= 0.

Yet, this turns out to be quite naïve, because we cannot get proper estimates on W2(ρ
τ
k , ρ

τ
k+1). Indeed, this

is mainly due to the hybrid nature of the scheme, i.e., a gradient flow for the diffusion and the projection
part on the one hand and a free transport on the other hand. The typical estimate in the JKO scheme

•ρτk

id+
τu kτ

•

ρ̃τk+1 id+τ (
∇ p+ ∇ρ

ρ
)
• ρτk+1

id−τ
(
u(k+1)τ −∇ p− ∇ρ

ρ

)
+ o(τ )

Figure 2. One time step.
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comes from the fact that one can bound W2(ρ
τ
k , ρ

τ
k+1)

2/τ with the opposite of the increment of the energy,
and that this gives rise to a telescopic sum. Yet, this is not the case whenever the base point for a new
time step is not equal to the previous minimizer. Moreover, the main difficulty here is the fact that the
energy we consider implicitly takes the value +∞, due to the constraint ρ ∈ K, and hence no estimate
is possible whenever ρ̃τk+1 /∈ K. As a possible way to overcome this difficulty, one could approximate
the discontinuous functional IK with some finite energies of the same nature (for instance power-like
entropies, even if the best choice would be an energy which is Lipschitz for the distance W2). These kinds
of difficulties are a matter of current study, in particular for mixed systems and/or multiple populations.

Appendix: BV-type estimates for the Fokker–Planck equation

Here we present some total variation (TV) decay results (in time) for the solutions of the Fokker–Planck
equation. Some are very easy, some trickier. The goal is to look at those estimates which can be easily
iterated in time and combined with the decay of the TV via the projection operator, as we did in Section 4.

Let us take a vector field v : [0,+∞[×�→ Rd (we will choose later which regularity we need) and
consider in � the problem

∂tρt −1ρt +∇ · (ρtvt)= 0 in ]0,+∞[×�,
ρt(∇ρt − vt) · n = 0 on [0,+∞[× ∂�,
ρ(0, · )= ρ0 in �,

(A-1)

for ρ0 ∈ BV(�)∩P(�).

Lemma A.1. Suppose ‖vt‖C1,1 ≤ C for all t ∈ [0,+∞[. Suppose that either �= Td , or that � is convex
and v · n = 0 on ∂�. Then we have the total variation decay estimate∫

�

|∇ρt | dx ≤ C(t − s)+ eC(t−s)
∫
�

|∇ρs | dx for all 0≤ s ≤ t , (A-2)

where C > 0 is a constant depending just on the C1,1 norm of v.

Proof. First we remark that by the regularity of v the quantity

‖v‖L∞ +‖Dv‖L∞ +‖∇(∇ · v)‖L∞

is uniformly bounded. Let us drop now the dependence on t in our notation and calculate in coordinates

d
dt

∫
�

|∇ρ| dx =
∫
�

∇ρ

|∇ρ|
· ∇(∂tρ) dx

=

∫
�

∇ρ

|∇ρ|
· ∇(1ρ−∇ · (vρ)) dx =

∫
�

∑
j

ρ j

|∇ρ|

(∑
i

ρi i j − (∇ · (vρ)) j

)
dx

=−

∫
�

∑
i, j,k

(
ρ2

i j

|∇ρ|
−
ρ jρkρkiρi j

|∇ρ|3

)
dx + B1−

∫
�

∑
j,i

ρ j

|∇ρ|
(vi

i jρ+ v
i
iρ j + v

i
jρi + v

iρi j ) dx

≤ B1+C +C
∫
�

|∇ρ| dx +
∫
�

|∇ρ||∇ · v| dx + B2 ≤ B1+ B2+C +C
∫
�

|∇ρ| dx .
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Here the Bi are the boundary terms, i.e.,

B1 :=

∫
∂�

∑
i, j

ρ j niρi j

|∇ρ|
dHd−1 and B2 := −

∫
∂�

(v · n)|∇ρ| dHd−1.

The constant C > 0 only depends on ‖v‖L∞ +‖∇ · v‖L∞ +‖∇(∇ · v)‖L∞ . We used as well the fact that

−

∫
�

∑
i, j,k

(
ρ2

i j

|∇ρ|
−
ρ jρkρkiρi j

|∇ρ|3

)
dx ≤ 0.

Now, it is clear that in the case of the torus the boundary terms B1 and B2 do not exist, hence we have
the desired conclusion by Grönwall’s lemma. In the case of the convex domain we have B2 = 0 (because
of the assumption v · n = 0) and B1 ≤ 0 because of the next lemma. �

Lemma A.2. Suppose that u : �→ Rd is a smooth vector field with u · n = 0 on ∂�, ρ is a smooth
function with ∇ρ · n = 0 on ∂� and �⊂ Rd is a smooth convex set that we write as �= {h < 0} for a
smooth convex function h with |∇h| = 1 on ∂� (so that n = ∇h on ∂�). Then we have, on the whole
boundary ∂�,

∑
i, j ui

jρ j ni
=−

∑
i, j ui hi jρ j .

In particular, we have
∑

i, j ρi jρ j ni
≤ 0.

Proof. The Neumann boundary assumption on u means u(γ (t)) · ∇h(γ (t))= 0 for every curve γ valued
in ∂� and for all t . Differentiating in t , we get∑

i, j

ui
j (γ (t))(γ

′(t)) j hi (γ (t))+
∑
i, j

ui (γ (t))hi j (γ (t))(γ ′(t)) j
= 0.

Take a point x0 ∈ ∂� and choose a curve γ with γ (t0)= x0 and γ ′(t0)=∇ρ(x0) (which is possible, since
this vector is tangent to ∂� by assumption). This gives the first part of the statement. The second part, i.e.,∑

i, j ρi jρ j ni
≤ 0, is obtained by taking u =∇ρ and using that D2h(x0) is a positive definite matrix. �

Remark A.3. If we look attentively at the proof of Lemma A.1, we can see that we did not really exploit
the regularizing effects of the diffusion term in the equation. This means that the given regularity estimate
is the same that we would have without diffusion; in this case, the density ρt is obtained from the initial
density as the image through the flow of v. Thus, the density depends on the determinant of the Jacobian
of the flow, hence on the derivatives of v. It is normal that, if we want BV bounds on ρt , we need
assumptions on two derivatives of v.

We would like to prove some form of BV estimates under weaker regularity assumptions on v, trying
to exploit the diffusion effects. In particular, we would like to treat the case where v is only C0,1. As we
will see in the following lemma, this degenerates in some sense.

Lemma A.4. Suppose that � is either the torus or a smooth convex set � = {h < 0} parametrized as
a level set of a smooth convex function h. Let vt : �→ Rd be a vector field for t ∈ [0, T ], Lipschitz
and bounded in space, uniformly in time. In the case of a convex domain, suppose v · n = 0 on ∂�. Let
H : Rd

→ R be given by H(z) :=
√
ε2+ |z|2. Now let ρt be the (sufficiently smooth) solution of the

Fokker–Planck equation with homogeneous Neumann boundary condition.
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Then there exists a constant C > 0 (depending on v and �) such that∫
�

H(∇ρt) dx ≤
∫
�

H(∇ρ0) dx +Cεt + C
ε

∫ t

0
‖ρs‖

2
L∞ ds. (A-3)

Proof. First let us discuss some properties of H . It is smooth, its gradient is ∇H(z) = z/H(z) and it
satisfies ∇H(z) · z ≤ H(z) for all z ∈ Rd . Moreover its Hessian matrix is given by

[Hi j (z)]i, j∈{1,...,d} =

[
δi j H 2(z)− zi z j

H 3(z)

]
i, j∈{1,...,d}

=
1

H(z)
Id −

1
H 3(z)

z⊗ z ∀z ∈ Rd ,

where

δi j
=

{
1 if i = j ,
0 if i 6= j ,

is the Kronecker symbol. Note that, from this computation, the matrix D2 H ≥ 0 is bounded from above
by 1/H , and hence by ε−1. Moreover we introduce a uniform constant C > 0 such that

‖v‖2L∞ |�| + ‖∇ · v‖L∞ +‖Dv‖L∞ ≤ C.

Now to show the estimate of this lemma we calculate

d
dt

∫
�

H(∇ρt) dx =
∫
�

∇H(∇ρt) · ∂t∇ρt dx =
∫
�

∇H(∇ρt) · ∇(1ρt −∇ · (vtρt)) dx

=

∫
�

∇H(∇ρt) · ∇1ρt dx −
∫
�

∇H(∇ρt) · ∇(∇ · (vtρt)) dx

=: (I )+ (II )

Now we study each term separately and for simplicity we drop the t subscripts in the following. We start
with the case of the torus, where there is no boundary term in the integration by parts:

(I )=
∫
�

∇H(∇ρ) · ∇1ρ dx =
∫
�

∑
j,i

H j (∇ρ)ρ j i i dx =−
∫
�

∑
j,i,k

Hk j (∇ρ)ρikρ j i dx,

(II )=−
∫
�

∇H(∇ρ) · ∇(∇ · (vρ)) dx =−
∫
�

∑
i, j

H j (∇ρ)(v
iρ)i j dx

=

∫
�

∑
i, j,k

H jk(∇ρ)ρkiv
i
jρ dx +

∫
�

∑
i, j,k

H jk(∇ρ)ρkiv
iρ j dx

=: (IIa )+ (IIb ).

First look at the term (IIa ). Since the matrix H jk is positive definite, we can apply a Young inequality
for each index i and obtain

(IIa )=

∫
�

∑
i, j,k

H jk(∇ρ)ρkiv
i
jρ dx ≤ 1

2

∫
�

∑
i, j,k

H jk(∇ρ)ρkiρi j dx + 1
2

∫
�

∑
i, j,k

H jk(∇ρ)v
i
jv

i
kρ

2 dx

≤
1
2
|(I )| +C‖ρ‖2L2‖D2 H‖L∞ .
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The L2 norm in the second term will be estimated by the L∞ norm for the sake of simplicity (see
Remark A.5 below).

For the term (IIb ) we first make a pointwise computation,∑
i, j,k

H jk(∇ρ)ρkiv
iρ j =

1
H 3(∇ρ)

∑
i

(
D2

i ρ · (ε
2 Id + |∇ρ|

2 Id −∇ρ⊗∇ρ) · ∇ρ
)
vi

=
ε2

H 3(∇ρ)

∑
i

vi D2
i ρ · ∇ρ =−ε

2
∑

i

vi∂i

(
1

H(∇ρ)

)
,

where D2
i ρ denotes the i-th row in the Hessian matrix of ρ, and we use (|∇ρ|2 Id −∇ρ⊗∇ρ) · ∇ρ = 0.

Integrating by parts, we obtain

(IIb )= ε
2
∫
�

(∇ · v)
1

H(∇ρ)
dx ≤ Cε2

‖1/H‖L∞ ≤ Cε,

where we use H(z)≥ ε.
Summing up all the terms and using ‖D2 H‖ ≤ ε−1, we get

d
dt

∫
�

H(∇ρt) dx ≤−1
2
|(I )| +C‖ρt‖

2
L∞‖D

2 H‖L∞ +Cε ≤ Cε+C‖ρt‖
2
L∞ε
−1,

which proves the claim.
If we switch to the case of a smooth bounded convex domain �, we have to handle boundary terms.

These terms are ∫
∂�

∑
i, j

H j (∇ρ)ρi j ni
−

∫
∂�

∑
i, j

H j (∇ρ)ρv
i
j n

i ,

where we ignore those terms which involve nivi (i.e., the integration by parts in (IIb ), and the term
H j (∇ρ)ρ j nivi in the integration by parts of (IIa )), since we have already supposed v · n = 0. We use
here Lemma A.2, which provides∑

i, j

H j (∇ρ)ρi j ni
− ρH j (∇ρ)v

i
j n

i
=

1
H(∇ρ)

∑
i, j

(ρ jρi j ni
− ρρ jv

i
j n

i )

=−
1

H(∇ρ)

∑
i, j

(ρ j hi jρi − ρρ j hi jv
i ).

If we use the fact that the matrix D2h is positive definite and a Young inequality, we get
∑

i, j ρ j hi jρi ≥ 0
and

ρ
∑
i, j

|ρ j hi jv
i
| ≤

1
2

∑
i, j

ρ j hi jρi +
1
2

∑
i, j

ρ2v j hi jv
i ,

which implies

1
H(∇ρ)

∑
i, j

(ρ jρi j ni
− ρρ jv

i
j n

i )≤
ρ2

H(∇ρ)
‖D2h‖L∞ |v|

2
≤

C‖ρ‖2L∞
ε

.

This provides the desired estimate on the boundary term. �
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L
1 µ

L
1 PK[µ]

Figure 3. A counterexample to the decay of
∫
�

H(∇ρ), which corresponds to the total
length of the graph.

Remark A.5. In the above proof, we needed to use the L∞ norm of ρ only in the boundary term. When
there is no boundary term, the L2 norm is enough to handle the term (IIa ). In both cases, the norm of ρ
can be bounded in terms of the initial norm multiplied by eCt , where C bounds the divergence of v. On
the other hand, in the torus case, one only needs to suppose ρ0 ∈ L2 and in the convex case ρ0 ∈ L∞.
Both assumptions are satisfied in the applications to crowd motion with density constraints.

We have seen that the constants in the above inequality depend on ε and explode as ε→ 0. This
prevents us from obtaining a clean estimate on the BV norm in this context, but at least it proves that
ρ0 ∈ BV⇒ ρt ∈ BV for all t > 0 (to achieve this result, we just need to take ε = 1). Unfortunately,
the quantity which is estimated is not the BV norm, but the integral

∫
�

H(∇ρ). This is not enough for
the applications to Section 4, as it is unfortunately not true that the projection operator decreases the
value of this other functional. (Here is a simple counterexample. Consider µ = g(x) dx a BV density
on [0, 2] ⊂ R, with g defined as follows. Divide the interval [0, 2] into 2K intervals Ji of length 2r
(with 2r K = 1); call ti the center of each interval Ji (i.e., ti = i2r + r , for i = 0, . . . , 2K − 1) and set
g(x)= L +

√
r2− (x − ti )2 on each Ji with i odd, and g(x)= 0 on Ji for i even, taking L = 1−πr/4.

It is not difficult to check that the projection of µ is equal to the indicator function of the union of all the
intervals Ji with i odd, and that the value of

∫
H(∇ρ) has increased by K (2−π/2)r = 1−π/4, i.e., by

a positive constant. See Figure 3.)
If we pursue the value of the BV norm, we can provide the following estimate.

Lemma A.6. Under the assumptions of Lemma A.4, if we suppose ρ0 ∈BV(�)∩ L∞(�), then, for t ≤ T ,
we have ∫

�

|∇ρt | dx ≤
∫
�

|∇ρ0| dx +C
√

t, (A-4)

where the constant C depends on v, on T and on ‖ρ0‖L∞ .

Proof. Using the L∞ estimate of Lemma 4.2, we will assume that ‖ρt‖L∞ is bounded by a constant
(which depends on v, on T and on ‖ρ0‖L∞). Then, we can write∫

�

|∇ρt | dx ≤
∫
�

H(∇ρt) dx ≤
∫
�

H(∇ρ0) dx +Cεt + Ct
ε
≤

∫
�

(|∇ρ0| + ε) dx +Cεt + Ct
ε
.

It is sufficient to choose, for fixed t , ε =
√

t , in order to prove the claim. �
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Unfortunately, this
√

t behavior is not suitable to be iterated, and the above estimate is useless for the
sake of Section 4. The existence of an estimate (for v Lipschitz) of the form TV(ρt) ≤ TV(ρ0)+Ct ,
or TV(ρt)≤ TV(ρ0)eCt , or even f (TV(ρt))≤ f (TV(ρ0))eCt for any increasing function f : R+→ R+,
seems to be an open question.
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