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REGULARITY FOR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS
WITH VERY IRREGULAR KERNELS

RUSSELL W. SCHWAB AND LUIS SILVESTRE

We prove Hölder regularity for a general class of parabolic integro-differential equations, which (strictly)
includes many previous results. We present a proof that avoids the use of a convex envelope as well as
give a new covering argument that is better suited to the fractional order setting. Our main result involves
a class of kernels that may contain a singular measure, may vanish at some points, and are not required to
be symmetric. This new generality of integro-differential operators opens the door to further applications
of the theory, including some regularization estimates for the Boltzmann equation.

1. Introduction 727
2. Classes of kernels and extremal operators 734
3. Viscosity solutions 740
4. Relating a pointwise value with an estimate in measure: the growth lemma 741
5. A special barrier function 750
6. An estimate in L" — the weak Harnack inequality 761
7. Hölder continuity of solutions 765
8. C 1; regularity for nonlinear equations 768
Appendix: The crawling ink spots theorem 769
References 771

1. Introduction

We study the Hölder regularity for solutions of integro-differential equations of the form

ut C b.x; t/ � ru�

Z
Rd

�
u.xC h; t/�u.x; t/

�
K.x; h; t/ dhD f .x; t/: (1-1)

The integral may be singular at the origin and must be interpreted in the appropriate sense. These equations
now appear in many contexts. Most notably, they appear naturally in the study of stochastic processes with
jumps, which traditionally has been the main motivation for their interest. In the same way that pure jump
processes contain the class of diffusions (processes with continuous paths) as particular limiting cases,
(1-1) contains the usual second-order parabolic equations as particular limiting cases. This is due to the fact
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that the integral term becomes a second-order operator aij .x; t/ @iju as the order ˛ (to be defined below)
converges to 2. We note that the simplest choice ofK isK.h/DCd;˛jhj�d�˛ , which results in the equation

ut C .��/
˛=2uD 0;

and converges to the usual heat equation ut ��u D 0 as ˛! 2 (recall that .��/˛=2 is the operator
whose Fourier symbol is j�j˛).

The Hölder estimates that we obtain in this article are an integro-differential version of the celebrated
result by Krylov and Safonov [1980] for parabolic equations with measurable coefficients. There are, in
fact, several versions of these Hölder estimates for integro-differential equations, which were obtained in
the last 10 years, and we briefly review them in Section 1A. Besides the elliptic/parabolic distinction, the
difference between each version of the estimates is in the level of generality in the possible choices of the
kernels K.x; h; t/. In this article, we obtain the estimates for a very generic class of kernels K, including
nearly all previous results of this type.

The most common assumption in the literature is that for all x and t , the kernel K is comparable
pointwise in terms of h to the kernel for the fractional Laplacian. More precisely,

.2�˛/
�

jhjdC˛
�K.x; h; t/� .2�˛/

ƒ

jhjdC˛
: (1-2)

This is often accompanied by the symmetry assumption K.x; h; t/DK.x;�h; t/. It is important for the
applications of these estimates that no regularity condition may be assumed for K with respect to x or t .

In this paper, we only assume a much weaker version of (1-2). The upper bound for K, in (1-2), is
relaxed to hold only in average when we integrate all the values of h on an annulus, and it appears as
assumption (A2). Also, for our work, the lower bound in (1-2) only needs to hold in a subset of values
of h that has positive density, given as assumption (A3). We also make an assumption, (A4), which says
that the odd part of K is under control if ˛ is close to 1. The exact conditions are listed in Section 2. We
prove that solutions of (1-1) are uniformly Hölder continuous, which we state in an informal way here
and revisit more precisely in Section 7.

Theorem 1.1. Let u solve (1-1). Assume that for every x 2 B1 and t 2 Œ�1; 0�, the kernel K.x; � ; t /
satisfies the assumptions (A1), (A2), (A3) and (A4) in Section 2. Assume also that f is bounded, b is
bounded, and for ˛ < 1, we have b � 0. Then for some  > 0,

Œu�C .Q1=2/ � C.kukL1.Rd�Œ�1;0�/Ckf kL1.Q1//:

The constants C and  depend on the constants �, � and ƒ in (A1)–(A4), on the dimension d , on a
lower bound for ˛ (in particular, ˛ can be arbitrarily close to 2), and on kbkL1 .

Our purpose in developing Theorem 1.1 is not merely for the sake of generalization. An estimate with
the level of generality given here can be used to obtain a priori estimates for the homogeneous Boltzmann
equation. This is a novel application. None of the previous Hölder estimates for integral equations are
appropriate to be applied to the Boltzmann equation.

As a byproduct of our proof of Theorem 1.1, we simplify and clarify some of the details regarding para-
bolic covering arguments (see the crawling ink spots of Section 6) as well as present a proof that does not
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invoke a convex envelope. Rather, we circumvent the oft-used gradient mapping of the convex envelope by
using a mapping that associates points via their correspondence through parameters in an inf-convolution,
modeled on the arguments of [Imbert and Silvestre 2013a], originating in [Cabré 1997; Savin 2007].

In Section 8, we apply this result to derive the C 1;˛ regularity for the parabolic Isaacs equation. This is
a rather standard application of Hölder estimates for equations with rough coefficients, as in Theorem 1.1.

1A. Comparison with previous results and some discussion of (1-1). The Hölder estimates for integro-
differential equations that take the form of (1-1) are a fractional-order version of the classical theorem
by Krylov and Safonov [1980]. This is a fundamental result in the study of regularity properties of
parabolic equations in nondivergence form, and has consequences for many aspects of the subsequent
PDE theory. The classical theorem of De Giorgi, Nash and Moser concerns second-order parabolic
equations in divergence form, in contrast with the theorem of Krylov and Safonov. The basic results
for integro-differential equations in divergence form were developed earlier, and a small survey of this
subject can be found in [Kassmann and Schwab 2014].

The simplest case of K would be K.h/D .2�˛/jhj�d�˛ , and this choice gives the operator Lu.x/D
�Cd;˛.��/

˛=2u.x/, which is a multiple of the fractional Laplacian of order ˛ (the operator whose Fourier
symbol is j�j˛). This operator (and its inverse, the Riesz potential of order ˛) have a long history, and have
been fundamental to potential theory for about a century; see, for example, Landkof’s book [1966]. In fact,
the appearance of nonlocal operators similar to the one in (1-1) is in some sense generic among all linear
operators that satisfy the positive global maximum principle (that is, the operator is nonpositive whenever
it is evaluated at a positive maximum of a C 2 function). This has been known since the work of Courrège
[1965]. He proved that any linear operator with the positive maximum principle must be of the form

Lu.x/D�c.x/u.x/Cb.x/�ru.x/CTr
�
A.x/D2u.x/

�
C

Z
Rd

�
u.xCh/�u.x/�1B1.h/ru.x/�h

�
�.x;dh/;

where c � 0 is a function, A � 0 is a matrix, b is a vector, all of A, b, c are bounded, and �.x; � / is a
Lévy measure that satisfies

sup
x

Z
Rd

min.jhj2; 1/�.x; dh/ <C1:

Heuristically from the point of view of jump-diffusion stochastic processes, b records the drift, A records
the local covariance (or

p
A is the diffusion matrix), and � records the jumps.

The first Hölder regularity result for an equation of the form (1-1) was obtained in [Bass and Levin
2002a]. In that paper, the authors consider the elliptic equation (u constant in time), with symmetric
kernels satisfying the pointwise bound (1-2) and without drift. Their proof uses probabilistic techniques
involving a related Markov (pure jump) stochastic process. Other results using probabilistic techniques
were [Bass and Kassmann 2005; Song and Vondraček 2004], where different assumptions on the kernels
are considered. The first purely analytical proof was given in [Silvestre 2006]. This first generation of
results consists only of elliptic problems. They are not robust in the sense that as order approaches 2,
the constants in the estimates blow up (hence they do not recover the known second-order results).
Furthermore, they all require a pointwise bound below for the kernels as in (1-2).
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The first robust Hölder estimate for the elliptic problem was obtained in [Caffarelli and Silvestre 2009],
which means that the estimate they proved has constants that do not blow up as the order ˛ of the equation
goes to 2. In that sense, it is the first true generalization of the theorem of Krylov and Safonov. It was
the first of the series of papers [Caffarelli and Silvestre 2009; 2011a; 2011b] recreating the regularity
theory for fully nonlinear elliptic equations in the nonlocal setting. As above, these results are only for
the elliptic problem, and they require symmetric kernels that satisfy the pointwise assumption (1-2).

The first estimate for parabolic integro-differential equations, in nondivergence form, appeared, to the
best of our knowledge, in [Silvestre 2011] (the divergence case had some earlier results such as [Bass and
Levin 2002b; Chen and Kumagai 2003]). In this case, the kernels are symmetric and satisfy (1-2) with
˛ D 1. The focus of [Silvestre 2011] is on the interaction between the integro-differential part and the
drift term. The proof can easily be extended to arbitrary values of ˛, but the estimate is not robust (it
blows up as ˛! 2), and the details of this proof are explained in the lecture notes by one of the authors
[Silvestre 2012b]. It is even possible to extend this proof to kernels that satisfy the upper bound in average
like in our assumption (A2) below (see [Silvestre 2014b]). However, the estimates are not robust, and the
lower bound in (1-2) is required.

The first robust estimate for parabolic equations appeared in [Chang Lara and Dávila 2014], which is a
parabolic version of the result in [Caffarelli and Silvestre 2009]. The kernels are required to be symmetric
and to satisfy the two pointwise inequalities (1-2) as an assumption.

Elliptic integro-differential equations with nonsymmetric kernels are studied in the articles [Chang Lara
2012; Chang Lara and Dávila 2012]. There, the kernels are decomposed into the sum of their even
(symmetric) and odd parts. The symmetric part is assumed to satisfy (1-2), and there are appropriate
assumptions on the odd part so that the symmetric part of the equations controls the odd part. This
effectively makes the contribution to the equation from the odd part of the kernel a lower-order term.

The only articles where the lower bound in the kernels (1-2) is not required to hold at all points
are [Bjorland et al. 2012; Guillen and Schwab 2012; Kassmann and Mimica 2013a; Kassmann et al.
2014]. These papers concern elliptic equations and the upper bound in (1-2) is still assumed to hold.
It is important to point out that under the conditions in [Bjorland et al. 2012; Kassmann et al. 2014],
the Harnack inequality is not true. There is, in fact, a counterexample in [Bogdan and Sztonyk 2005]
(also discussed in [Kassmann et al. 2014]). The assumption in these works that was made to replace the
pointwise lower bound on the kernels is more restrictive than our assumption (A3) below.

The main result in this article (see Theorems 7.1 and 7.2) generalizes nearly all previous Hölder
estimates (for both elliptic and parabolic equations) for integro-differential equations with rough kernels in
nondivergence form. It strictly contains the Hölder regularity results in [Bass and Levin 2002a; Bjorland
et al. 2012; Caffarelli and Silvestre 2009; Chang Lara 2012; Chang Lara and Dávila 2012; 2014; Guillen
and Schwab 2012; Kassmann et al. 2014]. There is an interesting new result given in [Kassmann and
Mimica 2013b] that allows for kernels with a logarithmic growth at the origin (among other cases),
corresponding in our context to the limit ˛! 0, and it is not contained in the result of this paper.

Our approach draws upon ideas from several previous papers. Moreover, we haven been able to simplify
the ideas substantially, especially how to handle parabolic equations, and we do not follow the method in
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[Chang Lara and Dávila 2014]. Our method allows us to make more general assumptions on the class of
possible kernels. We would like to point out that we do not make any assumption for simplicity in this
paper. Extending these results to a more singular family of kernels would require new ideas.

There are two possible directions that we did not pursue in this paper. We did not try to analyze
singularities of the kernels of order more general than a power of jhj, as in [Kassmann and Mimica
2013b]. Also, it might be possible to extend our regularity results for equations with Hölder continuous
drifts and ˛ < 1, as in [Silvestre 2012a]; although, we do point out that this technique does not work right
away with the methods in this paper. We also point out that the results in this paper and all of the others
mentioned (except for [Kassmann and Schwab 2014]), require that the Lévy measure — referred to above
as �.x; dh/— has a nontrivial absolutely continuous part, K dh, with respect to Lebesgue measure (our
work allows for a measure with a density plus some singular part). Verifying the validity of, and finding
a proof for, results similar to Theorem 1.1 in the case when � may not have a density with respect to
Lebesgue measure remains a significant open question in the integro-differential theory.

The importance of not assuming any regularity in x and t for the ingredients of (1-1) — the case of
so-called bounded measurable coefficients — is for much more than simply mathematical generality.
For example, because equations such as (1-1) often lack a “divergence structure” — i.e., admitting a
representation as a weak formulation for functions in an energy space such as H˛=2 — they can usually
only be realized as classical solutions or as viscosity solutions (weak solutions). (We note that uniqueness
for equations related to (1-1) is still an open question for the theory of viscosity solutions of integro-
differential equations, and recent progress has been made in [Mou and Święch 2015].) That means that one
of the few tools available for compactness arguments involving families of solutions are those provided
in the space of continuous functions via Theorem 1.1. This is relevant for both the possibility of proving
the existence of classical solutions as well as for analyzing fully nonlinear equations in a way that doesn’t
depend on the regularity of the coefficients. Indeed, both situations can be viewed as morally equivalent
to studying linear equations with bounded measurable coefficients. For studying regularity of translation
invariant equations, this arises by effectively differentiating the equation, which results in coefficients that
depend upon the solution. In the fully nonlinear case, many situations involve operators that are a min-max
of linear operators, and so the bounded measurable linear coefficients arise from choosing the operators that
achieve the min-max for the given function at each given point — a situation in which you cannot assume
any regular dependence in the x-variable. Such min-max representations turn out to be somewhat generic
for fully nonlinear elliptic equations, as was noted in the recent work [Guillen and Schwab 2014, Section 4].

1B. Application: the homogeneous non-cut-off Boltzmann equation. In this section, we briefly explain
an important application of our main result, which is not possible to obtain with any of the previously
known estimates for integro-differential equations. This result is explained in detail in [Silvestre 2014a].

The Boltzmann equation is a well-known integral equation that models the evolution of the density of
particles in dilute gases. In the space homogeneous case, the equation is

ft DQ.f; f / WD

Z
Rn

Z
@B1

�
f .v0; t /f .v0?; t /�f .v?; t /f .v; t/

�
B.jv� v?j; �/ d� dv?: (1-3)
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Here v0, v0? and � are defined by the relations

r D jv�� vj D jv
0
�� v

0
j; v0 D 1

2
.vC v�/C

1
2
r�;

cos � D � � v��v
jv��vj

; v0�D
1
2
.vC v�/�

1
2
r�:

There are several modeling choices for the cross-section functionB . From some physical considerations,
it makes sense to considerB.r; �/�r j� jn�1C˛ , with  >�n and ˛2 .0; 2/. Note that this cross sectionB
is never integrable with respect to the variable � 2 @B1. In order to avoid this difficulty, sometimes a (non-
physical) cross section is used that is integrable. This assumption is known as Grad’s cut-off assumption.

Until the middle of the 1990s, most works on the Boltzmann equation used Grad’s cut-off assumption.
The non-cut-off case, despite its relevance for physical applications, was not studied so much due to its
analytical complexity. An important result that caused a better understanding of the non-cut-off case came
with the paper of Alexandre, Desvillettes, Villani, and Wennberg [Alexandre et al. 2000], in which they
obtained a lower bound on the entropy dissipation in terms of the Sobolev norm kf k˛=2loc . All regularity
results for the non-cut-off case that came afterwards are based on a coercivity estimate that is a small
variation of this entropy dissipation argument. So far, this was the only regularization mechanism that
was known for the Boltzmann equation.

It turns our that we can split the right-hand side of the Boltzmann equation, (1-3), in two terms. The
first one is an integro-differential operator, and the second is a lower-order term:

ft DQ1.f; f /CQ2.f; f /

WD

Z
Rn

Z
@B1

f .v0?; t /
�
f .v0; t /�f .v; t/

�
B.jv� v?j; �/ d� dv?

Cf .v; t/

Z
Rn

Z
@B1

�
f .v0?; t /�f .v?; t /

�
B.jv� v?j; �/ d� dv?

D

Z
Rn

�
f .v0; t /�f .v; t/

�
Kf .v; v

0; t / dv0C cf .v; t/Œjvj �f �.v/:

The kernelKf depends on f through a complicated change of variables given using the integral identity
above. If one knew that f was a smooth positive function vanishing at infinity, then indeed it could be
proved that Kf .v; v0; t /� jv� v0j�n�˛, and the first term would correspond to an integro-differential
operator of order ˛ in the usual sense satisfying (1-2). Unfortunately, this is not practical for obtaining
basic a priori estimates for (1-3). In fact, there is very little we can assume a priori from the solution f
to the Boltzmann equation, and it is not enough to conclude that Kf satisfies (1-2). Instead, all we
know a priori about f is given by its macroscopic quantities: its mass (the integral of f ), the energy
(its second moment), and its entropy. The first two quantities are constant in time, whereas the third
is monotone decreasing. It can be shown that Kf satisfies the hypotheses (A1), (A2), (A3) and (A4),
depending on these macroscopic quantities only. Therefore, the results in this article can be used to obtain
a priori estimates for solutions of the homogeneous, non-cut-off, Boltzmann equation, which is explained
in [Silvestre 2014a]. It is a new regularization effect for the Boltzmann equation that is not based on
coercivity estimates, as in [Alexandre et al. 2000].
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Interestingly enough, the macroscopic quantities do not give much more information about Kf than
what our assumptions (A1), (A2) and (A3) say. The kernels Kf will be symmetric, so, in fact, (A4)
is redundant. In terms of this generalization, almost the full power of our main result is needed. The
only nonessential points are that the kernels can be assumed to be symmetric, and the robustness of the
estimates does not necessarily play a role.

1C. Notation.
� Our space variable x belongs to Rd .

� The annulus is Rr WD B2r nBr .

� The parabolic cylinder Qr is defined as

Qr WD Br � .�r
˛; 0�; and with a different center, Qr.x; t/DQr C .x; t/:

� The “˛-growth” class is

Growth.˛/D
˚
v W Rd ! R

ˇ̌
jv.x/j � C.1Cjxj/˛�" for some C; " > 0

	
:

� Pointwise C 1;1 is defined as

C 1;1.x/ WD
˚
v WRd!R

ˇ̌
9M.x/ and " so that jv.xCh/�v.x/�rv.x/�hj �M.x/jhj2 for jhj<"

	
;

and over Rd , we have

C 1;1.Rd / WD
˚
v WRd!R

ˇ̌
kvkL1.Rd /<1; krvkL1.Rd /<1;

and v 2C 1;1.x/8x with M.x/ independent of x
	
:

� The difference operator for the different possibilities of ˛ is

ıyu.x/ WD

8<:
u.xCy/�u.x/ if ˛ < 1;
u.xCy/�u.x/�1B1.y/ru.x/ �y if ˛ D 1;
u.xCy/�u.x/�ru.x/ �y if ˛ > 1:

� The class of kernels and corresponding linear operators are

K WD fK W Rd ! R jK satisfies assumptions (A1)–(A4)g;

L WD
�
Lu.x/D

Z
Rd
ıhu.x/K.h/ dh

ˇ̌̌̌
K 2 K

�
:

We will try to stick to the following conventions for constants:

� Large constants will be upper case letters, e.g., C , and small constants will be lower case letters, e.g., c.

� If the value of a constant is not relevant for later arguments, then we will freely use the particular letter
for the constant without regard to whether or not it was used previously or will be used subsequently.

� If the value of a constant is relevant to later arguments (e.g., in determining values of subsequent
constants), then we will label the constant with a subscript, e.g., C0, C1, C2, etc.

Note 1.2. The following observation is useful and applies for all values of ˛: if u.x/D '.x/ and u� '
everywhere, then ıhu.x/ � ıh'.x/ for all h. This implicitly assumes that for ˛ � 1, both u and ' are
differentiable at x.
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2. Classes of kernels and extremal operators

The kernel K.x; h; t/ in (1-1) is not assumed to have any regularity with respect to x or t . The best way
to think about it is that for every value of x and t , we have a kernel (Kx;t .h/DK.x; � ; t /) that belongs
to a certain class. This class of kernels is what we describe below.

2A. Assumptions on K . For each value of �, ƒ, � and ˛, we consider the family of kernelsK WRd!R

satisfying the following assumptions:

(A1) K.h/� 0 for all h 2 Rd .

(A2) For every r > 0, Z
B2rnBr

K.h/ dh� .2�˛/ƒr�˛: (2-1)

(A3) For every r > 0, there exists a set Ar such that

� Ar � B2r nBr ,
� Ar is symmetric in the sense that Ar D�Ar ,
� jAr j � �jB2r nBr j,
� K.h/� .2�˛/�r�d�˛ in Ar .

Equivalently,ˇ̌˚
y 2 B2r nBr jK.h/� .2�˛/�r

�d�˛ and K.�h/� .2�˛/�r�d�˛
	ˇ̌
� �jB2r nBr j: (2-2)

(A4) For all r > 0, ˇ̌̌̌Z
B2rnBr

hK.h/ dh
ˇ̌̌̌
�ƒj1�˛jr1�˛: (2-3)

2B. Discussion of the assumptions. We stress that although our kernels can be zero for large sets of h,
their corresponding integral operators are not rightfully described as “degenerate”. One can draw an
analogy with the second-order case in the context of diffusions. A diffusion process will satisfy uniform
hitting-time estimates for measurable sets of positive measure whenever the diffusion matrix is comparable
to the identity from below and above. In the context of our pure jump processes related to (1-1), these
jump processes will still satisfy such uniform hitting-time estimates even though the kernels can be zero
in many points (meaning that at the occurrence of any one jump, the process will have zero probability of
jumping with certain values of h).

The first assumption, (A1), is unavoidable if one hopes to study examples of (1-1) that satisfy a
comparison principle between sub- and supersolutions.

The second assumption, (A2), is mostly used to estimate an upper bound for the application of the
operator, L, to a smooth test function. It is more general than assuming a pointwise upper bound, as was
done in [Caffarelli and Silvestre 2009; Kassmann et al. 2014] and many others. It is also slightly more
general than a corresponding bound obtained by integrating on spheres asZ

@Br

K.h/ dS.h/� .2�˛/ƒr�1�˛:
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It is, however, a stronger hypothesis thanZ
Br

jhj2K.h/ dh�ƒr2�˛:

It is worth pointing out that (A2) impliesZ
RdnBr

K.h/ dh�
2˛

2˛ � 1
.2�˛/ƒr�˛:

The first factor blows up as ˛! 0 but not as ˛! 2. In fact, the proofs of all our regularity results fail
for ˛� 0 exactly because the tails of the integrals become infinite. The question of what happens as ˛! 0

is interesting for the nonlocal theory, and some results are obtained in [Kassmann and Mimica 2013b]
(note, there they do not use the typical normalization constant as in potential theory, where Cd;˛ � ˛
as ˛! 0, so the limit operator is not a multiple of the identity). We also haveZ

Rd
.1^ jhj2/K.h/ dh� C.˛/ƒ (2-4)

for a constant C.˛/ that stays bounded as ˛! 2, and (2-1) can be thought of as a scale invariant, of
order ˛, version of (2-4).

Note that the assumption (A2) does not preclude the kernel K from containing a singular measure. For
example, the measure given byZ

A

K.h/ dhD
Z
A\fh1Dh2D���Dhd�1D0g

.2�˛/
�

jhnj1C˛
dhd

is a valid kernel K that satisfies (A2) (but not (A3)). In this case, K is a singular measure, but we abuse
notation by writing it as if it was absolutely continuous with a density K.h/.

The example above corresponds to the operator

�

Z
Rd
ıhu.x/K.h/ dhD .�@dd /

˛=2u:

As we mentioned before, this kernel satisfies the assumption (A2) but not (A3). However, the kernel of
the operator

�

Z
Rd
ıhu.x/K.h/ dh WD .�@dd /

˛=2u.x/C .��/˛=2u.x/

would satisfy both (A2) and (A3).
The third assumption, (A3), is stated in a form that does not require the kernel K to be positive along

some prescribed rays or cone-like sets, as was done in [Kassmann et al. 2014]. The relaxation to (A3) from
previous works is important to allow for situations where the positivity set of K may change from radius
to radius. As mentioned above, it is equivalent to (2-2), which is the form we will actually invoke later on.

Finally, note that the assumption (A4) is automatic for symmetric kernels (i.e., when K.h/DK.�h/),
since in that case the left-hand side is identically zero. This assumption is made in order to control the
odd part of the kernels in a fashion that does not require us to split up L into two pieces involving the
even and odd parts of K. It is also worth pointing out that even for ˛ < 1, the kernel K can have some
asymmetry, but it must die out as r!1.
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There are two final facts that are important to point out. The first one is the observation that although
each K may not be such that

Lu.x/D

Z
Rd
ıhu.x/K.h/ dh

results in an operator that is scale invariant, i.e., Lu.r � /.x/D r˛Lu.rx/, the family of K that satisfy
(A1)–(A4) is scale invariant. The second one is that some authors have worked with assumptions where
the lower bound in (1-2) is only required for jhj � 1. This does not effect our overall result because we
can add and subtract the term

f .uI x/ WD .2�˛/

Z
Rd
ıhu.x/1RdnB1

.h/jhj�d�˛ dh

from (1-1). AssumingK satisfies the lower bound of (1-2) only for jhj � 1, this would result in an operator
governed by zK.h/DK.h/C 1RdnB1

.h/jhj�d�˛, and now zK does satisfy the lower bound of (1-2) for
all h. Furthermore, the term f .uI � / is controlled by kukL1 and possibly C jruj (depending on ˛) due
to the fact that 1RdnB1

.h/jhj�d�˛ is integrable, and hence these terms can be absorbed into the equation
as a gradient term and bounded right-hand side. This pertains to, e.g., the results in [Chang Lara 2012].

2C. Extremal operators and useful observations. As mentioned above, L is the class of all integro-
differential operators Lu of the form

Lu.x/D

Z
Rd
ıhu.x/K.h/ dh;

where K is a kernel satisfying the assumptions (A1)–(A4) specified above. Sometimes we wish to refer to
a kernel, K, instead of the operator, L, and so we also use K to denote the collection of all such kernels.
Correspondingly, we define the extremal operators MCL and M�L as in [Caffarelli and Silvestre 2009]:

MCL u.x/D sup
L2L

Lu.x/;

M�L u.x/D inf
L2L

Lu.x/:

In order to avoid notational clutter, we omit the subscript L in the rest of the paper. We note that when
(1-1) holds for some kernel K satisfying the assumptions and with a bounded b and f , this also implies
that the pair of inequalities

ut CC0jruj �M
�u� �C0;

ut �C0jruj �M
Cu� C0

is simultaneously satisfied. The advantage of this new formulation is that it can be understood in the
viscosity sense, whereas the original equation (1-1) only makes sense for classical solutions. Unless
otherwise noted, we use the terms solution, subsolution, and supersolution to be interpreted in the viscosity
sense (made precise below, in Definition 3.2). There may be instances when we need equations to hold in
a classical sense, and in those cases, we will explicitly mention that need.
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Remark 2.1. We emphasize that although (1-1) allows for K that are x-dependent, the class L— and
hence the definition of M˙— contains only those K that are independent of x. The desired inequalities
are obtained because L contains all possible such K, and hence, for each x fixed, K.x; � / 2 L.

It will be useful to know an important feature ofM˙ regarding translations, rotations, and scaling. This
is an important feature to keep in mind in the sense that for any one choice of a kernel to determine (1-1),
K may not have any symmetry or scaling properties on its own. However, it is controlled by an extremal
operator that does enjoy these properties. This is particularly relevant for intuition on what to expect from
solutions of these equations.

Lemma 2.2. MC (and hence M�) obey the following:

(i) If z 2 Rd is fixed, and T u WD u. � C z/, then MCT u.x/DMCu.xC z/ (translation invariance).

(ii) If R is a rotation or reflection on Rd , then MCu.R � /.x/DMCu.Rx/ (rotation invariance).

(iii) If r > 0, then MCu.r � /.x/D r˛MCu.rx/ (scaling).

Proof of Lemma 2.2. Property (i) follows from a direct equality in LTu.x/DLu.xCz/ whenever K 2L
(importantly, note that K 2 L requires K.x; h/DK.h/). Property (ii) follows because L is closed under
composing K with a rotation or reflection. Property (iii) follows from the observation that if K 2 L, then

zK.h/ WD r�d�˛K
�
h

r

�
2 L

as well, combined with the fact that for L, zL corresponding to K, zK, we have Lu.r � /.x/D r˛ zLu.rx/.
It is worth remarking that when ˛D 1, one must be careful with rescaling the integral due to the presence
of 1B1.h/. However, in this case the rescaling still holds because (A4) implies thatZ

B1nBr

hK.h/ dhD 0;

and this allows to keep the term 1B1.h/ fixed in zL without effecting its value. �
In the rest of this section, we make some elementary estimates that give us some bounds on Lu.x/

in terms of bounds for u and its derivatives. These estimates explain the need for the assumptions (2-1)
and (2-3). We start with the following lemma.

Lemma 2.3. LetK be a kernel satisfying assumptions (A2) and (A4). Then the following inequalities hold:Z
Br

jhj2K.h/ dh� Cƒr2�˛; (2-5)ˇ̌̌̌Z
Br

hK.h/ dh
ˇ̌̌̌
� Cƒr1�˛ if ˛ < 1; (2-6)ˇ̌̌̌Z

RdnBr

hK.h/ dh
ˇ̌̌̌
� Cƒr1�˛ if ˛ > 1; (2-7)Z

RdnBr

K.h/ dh� Cƒ2�˛
˛
r�˛: (2-8)

In this lemma, the constant C is independent of all the other constants.



738 RUSSELL W. SCHWAB AND LUIS SILVESTRE

Proof. The four assertions are all proved in a similar fashion, and they follow from a straightforward
decomposition of the integrals in dyadic rings B2kC1r nB2kr followed by applications of (2-1) and (2-3).
We will only write down explicitly the proof of (2-7) as an example.

Assume ˛ > 1. We use (2-3) and decompose the integral in dyadic rings B2kC1r nB2kr :ˇ̌̌̌Z
RdnBr

hK.h/ dh
ˇ̌̌̌
�

1X
kD0

ˇ̌̌̌Z
B
2kC1r

nB
2kr

hK.h/ dh
ˇ̌̌̌

�

1X
kD0

ƒj1�˛j.2kr/1�˛

�ƒr1�˛
j1�˛j

1� 21�˛
:

Since the last factor on the right is bounded uniformly for ˛ 2 .1; 2/, we have finished the proof. �

Lemma 2.4. Assume ˛ � ˛0. LetK be any kernel that satisfies (2-1) and (2-3). Let u be a function that is
C 2 around the point x and pDru.x/. Moreover, assume that u satisfies the following bounds globally:

D2u� AI; juj � B:

Then, Z
Rd
ıhu.x/K.h/ dh� C

�
B

A

��˛=2�
BC

�
B

A

�1=2
jpj
�
:

Here C is a constant that depends on ƒ and ˛0. Moreover, when ˛ D 1, we can drop the term depending
on p and get Z

Rd
ıhu.x/K.h/ dy � C.AB/1=2:

Proof. Since ıhu.x/ has a different form depending on ˛ > 1, ˛D 1 and ˛ < 1, we must divide the proof
into these three cases.

We start with the case ˛ < 1. In this case ıhu.x/D u.xC h/�u.x/. Let r > 0 be arbitrary. ThenZ
Rd
ıhu.x/K.h/ dy D

Z
Br

ıhu.x/K.h/ dhC
Z

RdnBr

ıhu.x/K.h/ dh

�

Z
Br

.p � hCAjhj2/K.h/dhC
Z

RdnBr

2BK.h/ dh: (2-9)

Using (2-6), (2-5) and (2-8), we get

� C
�
jpjr1�˛CAr2�˛CBr�˛

�
: (2-10)

We finish the proof in the case ˛ < 1 by picking r D .B=A/1=2.
The case ˛ > 1 is similar. In this case ıhu.x/D u.xC h/�u.x/�p � h and we getZ

Rd
ıhu.x/K.h/ dhD

Z
Br

ıhu.x/K.h/ dhC
Z

RdnBr

ıhu.x/K.h/ dh

�

Z
Br

Ajhj2K.h/ dhC
Z

RdnBr

.p � hC 2B/K.h/ dh:
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This time using (2-5), (2-7) and (2-8), we again arrive at (2-10), and conclude by picking the same
r D .B=A/1=2.

We are left with the case ˛ D 1. In this case,

ıhu.x/D u.xC h/�u.x/�p � h 1B1.h/:

For arbitrary r > 0, we haveZ
Rd
ıyu.x/K.h/ dhD

Z
Br

�
u.xC h/�u.x/�p � h

�
K.y/ dh

C

Z
RdnBr

�
u.xC h/�u.x/

�
K.h/ dh˙

Z
B14Br

h �pK.h/ dh:

The last term on the right-hand side is equal to zero because of the assumption (2-3). Therefore, we can
drop this term and use the other two to estimate the integral:Z

Rd
ıhu.x/K.h/ dh�

Z
Br

Ajhj2K.h/ dhC
Z

RdnBr

2BK.h/ dh:

� C.Ar CBr�1/;

where the second inequality follows from (2-5) and (2-8). Picking r D .B=A/1=2, we obtainZ
Rd
ıhu.x/K.h/ dh� C.AB/1=2: �

Remark 2.5. Lemma 2.4 requires an inequality to hold for D2u in the full space Rd . This does not
require the function u to be C 2 globally. What it means is that u.x/� 1

2
Ajxj2 is concave.

Corollary 2.6. Let MCL and M�L be the extremal operators defined above. Let p Dru.x/ and assume
that u satisfies the global bounds

�A�I �D
2u� ACI; juj � B:

Then

MCL u.x/� C
�
B

AC

��˛=2�
BC

�
B

AC

�1=2
jpj
�
;

M�L u.x/� �C
�
B

A�

��˛=2�
BC

�
B

A�

�1=2
jpj
�
:

Moreover, if ˛ D 1, the estimate can be reduced to

MCL u.x/� C.BAC/
1=2;

M�L u.x/� �C.BA�/
1=2:

Proof. The estimate for MCL follows from taking the supremum in K in Lemma 2.4. The estimate for
M�L follows then since

M�L u.x/D�M
C
L Œ�u�.x/: �
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3. Viscosity solutions

We use a standard definition of viscosity solutions for integral equations that is the parabolic version of
the one in [Caffarelli and Silvestre 2009] and equivalent under most conditions to the parabolic version of
[Barles and Imbert 2008].

Definition 3.1 (cf. [Caffarelli and Silvestre 2011b, Definition 21 and (1.2)]). We say I is a nonlocal
operator that is elliptic with respect to the class of operators in this article if Iu.x/ is well-defined for
any function u 2 Growth.˛/ such that u 2 C 2.x/ and moreover,

M�.u1�u2/.x/�C jr.u1�u2/.x/j � Iu1.x/� Iu2.x/�M
C.u1�u2/.x/CC jr.u1�u2/.x/j:

The constant C must be equal to zero if ˛ � 1.
We say that I is translation invariant if I Œu. � � x0/�D Iu. � � x0/.

Note that the operatorsMC andM� in particular are nonlocal operators, uniformly elliptic with respect
to this class. These are the only operators that are needed for the main result in this article (Theorem 1.1).
The main result has implications to nonlinear equations in terms of operators, as in Definition 3.1, which
are given in Section 8.

Definition 3.2 (cf. [Caffarelli and Silvestre 2009, Definition 2.2; Caffarelli and Silvestre 2011b, Def-
inition 25]). Let I be a nonlocal operator as in Definition 3.1. Assume that u 2 Growth.˛/. We say
u W Rd � ŒT1; T2� satisfies the following inequality in the viscosity sense, and also refer to it as a viscosity
supersolution of

ut � Iu� 0 in �� Rd �R

if every time there exist a C 1;1 function ' WD ��! R so that '.x0; t0/D u.x0; t0/ and also u� ' in
D\ft � t0g, then the auxiliary function

v.x/D

�
'.x; t0/ if .x; t0/ 2D;
u.x; t0/ if .x; t0/ …D

satisfies
vt .x0; t0/� Iv.x0; t0/� 0:

One of the most characteristic properties of viscosity solutions is that they obey the comparison
principle. In the context of this article, we state it as follows.

Proposition 3.3. Let I be a translation invariant nonlocal operator that is uniformly elliptic in the sense
of Definition 3.1. Let u; v 2 Rn � Œ0; T � be two continuous functions such that

� for all x 2 Rn, we have u.x; 0/� v.x; 0/,

� for all x 2 Rn nB1 and t 2 Œ0; T �, we have u.x; t/� v.x; t/,

� ut � Iu� 0 and vt � Iv � 0 in B1 � Œ0; T �.

The u.x; t/� v.x; t/ for all x 2 B1 and t 2 Œ0; T �.
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The proof of Proposition 3.3 is by now standard. We refer the reader to [Chang Lara and Dávila
2014, Corollary 3.1; Silvestre 2011, Lemmas 3.2, 3.3; Caffarelli and Silvestre 2009, Theorem 5.2; Barles
and Imbert 2008] for the main ideas. For the purposes of this article, we do not use the full power of
Proposition 3.3. We only use the comparison principle to compare a supersolution u with a special barrier
function constructed in Section 5. This barrier function is explicit and is smooth, except on a sphere
where it has an angle singularity. The comparison principle follows easily from Definition 3.2 when v is
this special barrier function or any smooth subsolution of the equation.

In [Caffarelli and Silvestre 2009], and many subsequent works, it was frequently used that wherever a
viscosity solution u can be touched with a C 2 test function from one side, the equation can be evaluated
classically with the original u at that particular point (a notable departure from the second-order theory!).
This fact plays a role in some measure estimates used to prove the regularity results in those works. With
our current setting, it is not possible to evaluate the equation pointwise in u because of the gradient terms;
however, many possible useful variations on that theme can be shown — similar to [Kassmann et al. 2014,
Appendix 7.2]. In this case, the following lemma is what we will use to obtain pointwise evaluation of
the regularized supersolution.

Lemma 3.4. Assume u satisfies the following inequality in the viscosity sense:

ut CC0jruj �M
�u� �C in �:

Assume also that there is a test function ' W Rd � Œt1; t2� ! R so that '.x0; t0/ D u.x0; t0/ and
'.x; t/� u.x; t/ for all t 2 .t0� "; t0�.

Then, the following inequality holds:

't .x0; t0/CC0jr'.x0; t0/j�M
�'.x0; t0/�inf

�Z
Rd

�
u.xCy; t0/�'.xCy; t0/

�
K.y/dy W K 2K

�
��C:

Proof. We can use ' as the test function for Definition 3.2 in any small domain D DBr.x0/� .t0� "; t0�.
Constructing the auxiliary function v, we observe that

vt .x0; t0/D 't .x0; t0/; rv.x0; t0/Dr'.x0; t0/;

M�v.x0; t0/D inf
�Z

Rd
ıy'.x/K.y/ dyC

Z
RdnBr

�
u.xCy/�'.xCy/

�
K.y/ dy W K 2 K

�
�M�'.x0; t0/C inf

�Z
RdnBr

�
u.xCy/�'.xCy/

�
K.y/ dy W K 2 K

�
:

Observe that the last term is monotone increasing as r! 0.
From Definition 3.2, for any r > 0, we have that vt .x0; t0/CC0jrv.x0; t0/j �M�v.x0; t0/� �C1.

The result of the lemma follows by taking r! 0. �

4. Relating a pointwise value with an estimate in measure: the growth lemma

In order to obtain the Hölder continuity of u, we need to show the following point-to-measure lemma,
which seems to originate in the work of Landis [1971] (in some circles, it is known as the growth lemma).
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It is a cornerstone of regularity theory, it leads to the weak Harnack inequality, and it is one of the few
places where the equation plays a fundamental role.

Lemma 4.1. There exist positive constants A0 and ı0 depending on �, ƒ, d , ˛0 and C0 so that if ˛ > ˛0
and if u W Rd � .�1; 0�! R is a function such that

(1) u� 0 in the whole space Rd � .�1; 0�,

(2) u is a supersolution in Q1, i.e.,

ut CC0jruj �M
�u.x/� 0 in Q1; (4-1)

(3) minQ1=4 u� 1,

then
jfu� A0g\Q1j � ı0:

The following function, q, plays an important role in the proof of Lemma 4.1. It is actually an
inf-convolution of u with a quadratic, and it is defined as

q.x; t/D min
y2B1

u.y; t/C 64jx�yj2: (4-2)

Note that q is a nonnegative function. We will prove a collection of properties of the function q, which
will lead us to the proof of Lemma 4.1.

The next barrier is used to find a bound for the rate at which q can decrease with respect to t .

Lemma 4.2. For a universal constant C1, the function

'.x; t/Dmax.0; f .t/� 64jxj2/

is a subsolution to
't CC0jr'j �M

�' � 0 in Rn � .�1; 0�:

The inequality holds classically at all points where ' > 0.
Here f .t/ is the (unique) positive solution to the (backward) ODE�

f .0/ D 0;

f 0.t/D�C1
�
f .t/1=2Cf .t/1�˛=2

�
;

(4-3)

where C1 is a constant depending on ƒ and ˛0 (such that ˛ � ˛0).

Proof. Note that for every fixed value of t 2 .�1; 0�, it holds that

k'kL1 D f .t/; kr'kL1 � C
p
f .t/; and 0�D2' � �128I:

Applying Corollary 2.6,
M�' � �Cf .t/1�˛=2:

Then, at all points where ' > 0, we have

't CC0jr'j �M
�' � f 0.t/CC0Cf .t/

1=2
CCf .t/1�˛=2:

The lemma then follows by choosing C1 so that f 0 dominates the right-hand side. �
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It is worth commenting that the ODE for f in Lemma 4.2 has a unique solution that is strictly positive
for t < 0. This function f is differentiable and locally Lipschitz. The universal constant C2 of the
following result is the Lipschitz constant of f in the interval Œ�T; 0�, where f .T /D�4.

Corollary 4.3. Assume x 2 B1=8 and q.x; t/ < 3. Then there are positive universal constants � and C2
such that for s 2 .t � �; t/, we have q.x; s/� q.x; t/ < C2.t � s/.

Proof. We let x, t , and s be fixed as stated. Let y be the point where the minimum for q.x; t/ is achieved in
(4-2). Using the definition of q, we note that for all values of z 2B1, we have u.z; s/�q.x; s/�64jx�zj2.

The point of the proof is to use the fact that u and ' are respectively super- and subsolutions of (4-1) on
the time interval .s; 0�. In order to invoke a comparison result between them, we will make various choices
involving � and f to enforce ' to be below u at the initial time, s, and on the boundary, which is Rd nB1.

We define the function
N'. Nx; Nt / WD '. Nx� x; Nt � sC t0/;

where t0 is a fixed time, yet to be chosen. We fix the constant � so that

� < f �1.3/�f �1.4/;

and we fix the time t0 < 0 so that
f .t0/Dmin.q.x; s/; 4/:

Checking the boundary condition for Nx 62 B1 and Nt > s, we see that jx� Nxj � 7
8

(as x 2 B1=8), and hence
since f .t0/� 4� 49, we have (note f is decreasing)

N'. Nx; Nt /D '. Nx� x; Nt � sC t0/Dmax
�
0; f .Nt � sC t0/� 64jx� Nxj

2
�
�max.0; f .t0/� 49/� 0:

Checking the initial condition at Nt D s, we have (by the definition of t0)

N'. Nx; s/D '. Nx� x; t0/Dmax.0; f .t0/� 64jx� Nxj2/�max.0; q.x; s/� 64jx� Nxj2/� u. Nx; s/;

from the definition of q.
Comparison therefore tells us that u� N' on B1 � .s; 0/, and, in particular, for Nx D y and Nt D t ,

u.y; t/� '.x�y; t � sC t0/� f .t � sC t0/� 64jx�yj
2:

Hence
q.x; t/D u.y; t/C 64jx�yj2 � f .t � sC t0/;

and we will use
q.x; t/� f .t � sC t0/� f .t0/� jf

0.t0/j.t � s/:

In the case that f .t0/D q.x; s/, we can conclude the corollary with C2 WDmaxff 0.t/ W t 2 .�f �1.4/; 0/g.
However, � was chosen specifically so that it is impossible for f .t0/ < q.x; s/. Indeed we see that if it
occurred that f .t0/D 4 then because f is decreasing and t � s � � , it holds that

3 > q.x; t/� f .t � sC t0/� f .t0/Cf .� C t0/�f .t0/� 4Cf .f
�1.3//� 4D 3;

which is a contradiction. Thus f .t0/D q.x; s/ is the only possibility, and we conclude. �
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Corollary 4.3 should be interpreted as qt � �C2 everywhere. The next lemma gives us a bound above
for qt in a set of positive measure.

Lemma 4.4. Under the assumptions of Lemma 4.1, (but assuming here u.0; 0/D 1) the function q from
(4-2) satisfies jfqt � A1g\Q1j � ı1 > 0, where A1 and ı1 are universal constants.

Proof. Since u.0; 0/D 1, for any x 2 B1=4, we have q.x; 0/� 1C 64jxj2 < 5. Moreover, the minimum
is achieved at some y 2 B1=2 since 1C 64jy � xj2 > 5 if jyj > 1

2
. By similar reasoning, we also have

that for every x 2 B1=8, it holds that q.x; 0/ < 2. Corollary 4.3 implies that for t 2 .��; 0�,

q.x; t/� q.x; 0/CC2jt j< 2CC2jt j:

Thus if we restrict t 2 .�� 0; 0�, where � 0 D 1=C2, then we have that q.x; t/ < 3 and a second application
of Corollary 4.3 shows that q.x; t/CC2t is monotone increasing. Thus qt .x; t/ exists pointwise for
a.e. t 2 .�� 0; 0� and qt exists as a signed measure. Furthermore,

qt .x; t/� �C2 for a.e. t 2 .�� 0; 0�:

Integrating the measure qt .x; t/ and ignoring its singular part shows (note, q � 0 always)

C D 2jB1=8j �

Z
B1=8

q.x; 0/� q.x;�� 0/ dx

�

Z 0

�� 0

Z
B1=8

qt .x; s/ dx ds

� A1
ˇ̌�
.�� 0; 0��B1=8

�
\fqt > A1g

ˇ̌
�C2

ˇ̌�
.�� 0; 0��B1=8

�
n fqt > A1g

ˇ̌
D�C2�

0
jB1=8jC .A1CC2/

ˇ̌�
.�� 0; 0��B1=8

�
\fqt > A1g

ˇ̌
:

Therefore, rearranging shows thatˇ̌�
.�� 0; 0��B1=8

�
\fqt > A1g

ˇ̌
�
C CC2�

0

A1CC2
:

We can make the right-hand side arbitrarily small by choosing A1 large. In particular, we choose A1
sufficiently large (depending only on universal constants) so that we haveˇ̌�

.�� 0; 0��B1=8
�
\fqt � A1g

ˇ̌
�
1
2
� 0jB1=8j DW ı1: �

After Corollary 4.3 and Lemma 4.4, we obtain a set of positive measure where jqt j is bounded. At this
point, we can use ideas from the stationary case to proceed with the rest of the proof.

The next lemma replaces Lemma 8.1 in [Caffarelli and Silvestre 2009]. We, in fact, prove a slightly
modified version of the lemma, which enforces a quadratic growth of ıhu simultaneously on two rings. In
the proofs of Theorem 8.7 and Lemma 10.1 in [Caffarelli and Silvestre 2009], there is a cube decomposition
plus a covering argument. It could be replaced by a double covering argument. In this paper, we will
have a simpler covering argument using Vitali’s lemma only once. This is possible thanks to the stronger
measure estimate in the next lemma (in two simultaneous rings).
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Lemma 4.5. Let � be the constant in (2-2) and c0 < 1 be an arbitrary constant. Let y be the point
in B1=2 where the minimum of (4-2) is achieved and u satisfies (4-1). Assume that x 2 B1=4, q.x; t/ < 3
and qt .x; t/ < A1. Then, for A2 sufficiently large (depending on C1, �1, �, ƒ, c0 and ˛0 but not on ˛),
we have that there exists some r � r0 so that bothˇ̌˚

h 2 B2r nBr W ıhu.y; t/� A2r
2 and ı�hu.y; t/� A2r

2
	ˇ̌
�
1
2
�jB2r nBr j (4-4)

andˇ̌˚
h 2 B2c0r nBc0r W ıhu.y; t/� A2.c0r/

2 and ı�hu.y; t/� A2.c0r/
2
	ˇ̌
�
1
2
�jB2c0r nBc0r j (4-5)

hold simultaneously for r and c0r . Here r0 D 4�1=.2�˛/, and we note that r0! 0 as ˛! 2.

In Lemma 4.5, we abuse notation by writing

ıhu.y; t/D u.yC h; t/�u.y; t/� 128.x�y/ � h;

even though ru.y; t/ may not exist. Note that if u happens to be differentiable at .y; t/, then ru.y; t/D
128.x�y/ because of (4-2). The value of c0 will be selected as a universal constant in Lemma 4.7.

Proof. From the construction of x and y, we have that u.y; t/ D q.x; t/ � 64jx � yj2. Moreover,
u.z; s/ � q.x; s/� 64jx � zj2 for any z 2 Rn and s � t . Since we are assuming that qt .x; t/ < A1 (in
particular, that qt exists at that point), there is an ">0 so that q.x; s/> q.x; t/�A1.t�s/ for s 2 .t�"; t �.
Consequently, u.z; s/� q.x; t/� 64jx� zj2�A1.t � s/ for s 2 .t � "; t �.

Let
'.z; s/ WDmax

�
q.x; t/� 64jx� zj2�A1.t � s/;�256

�
:

The choice of the number �256 is made so that the maximum is always achieved by the paraboloid every
time z 2 B1. From the analysis above, we have that u� ' in Rn � .t � "; t � and u.y; t/D '.y; t/. Note
that since q.x; t/ < 3, we have jr'.y; t/j � 16

p
3. Also, from Lemma 2.4, since D2' � �128I , we

have M�'.y; t/� �C for some universal constant C . We apply Lemma 3.4 and we get

0� 't .y; t/CC0jr'.y; t/j �M
�'.y; t/� inf

�Z
Rd

�
u.yC h; t/�'.yC h; t/

�
K.h/ dh WK 2 K

�
� A1CC0jr'.y; t/j �M

�'.y; t/� inf
�Z

Rd

�
u.yC h; t/�'.yC h; t/

�
K.h/ dh WK 2 K

�
� C � inf

�Z
Rd

�
u.yC h; t/�'.yC h; t/

�
K.h/ dh WK 2 K

�
:

Note that u.yC h; t/�'.yC h; t/� 0 for all values of h 2 Rn. We abuse notation by saying

ıhu.y; t/D u.yC h; t/�u.y; t/� h � r'.y; t/:

Note that
u.yC h; t/�'.yC h; t/D ıhu.y; t/� ıh'.y; t/;

and ıh'.y; t/D�64jhj2 whenever yC h 2 B1.
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Using that the integrand is positive, we can reduce its domain of integration to an arbitrary subset of Rn:

C � inf
�Z
Br0

�
u.yC h; t/�'.yC h; t/

�
K.h/ dh WK 2 K

�
D inf

�Z
Br0

�
ıhu.y; t/C 64jhj

2
�
K.h/ dh WK 2 K

�
:

Let us define

w.h/ WD ıhu.x; t/C 64jhj
2
� 0

for h 2 Br0 . We have that there exists an admissible kernel K such that

C �

Z
Br0

w.h/K.h/ dh: (4-6)

Let r � r0 D 4�1=.2�˛/. From (2-2), we know thatˇ̌˚
h 2 B2r nBr W K.h/ > .2�˛/�r

�d�˛ and K.�h/ > .2�˛/�r�d�˛
	ˇ̌
> �jB2r nBr j: (4-7)

To obtain a contradiction, let us assume that the result of the lemma is false. That is, for all r � r0, eitherˇ̌˚
h 2 B2r nBr W w.h/ > .AC 64/r

2 or w.�h/ > .AC 64/r2
	ˇ̌
>
�
1� 1

2
�
�
jB2r nBr j (4-8)

orˇ̌˚
h2B2c0rnBc0r Ww.h/>.AC64/.c0r/

2 or w.�h/>.AC64/.c0r/2
	ˇ̌
>
�
1�1

2
�
�
jB2c0rnBc0r j: (4-9)

Therefore, the intersection of the set in (4-7) — with r appropriately chosen in each case — with either
of that in (4-8) or (4-9) must have measure at least 1

2
�jB2r nBr j or 1

2
�jB2c0r nBc0r j, depending on which

of the two possibilities occurred. Let us set Qr to be either r or c0r , depending upon whether we will invoke
(4-8) or (4-9). Let us call GQr this intersection between the sets (4-7) and either (4-8) or (4-9). Note that
GQr �B2Qr nBQr andGQr is symmetric (i.e., GQr D�GQr ). Moreover, for all h2GQr , either w.h/> .AC64/ Qr2

and K.h/ > .2�˛/� Qr�d�˛ or w.�h/ > .AC 64/ Qr2 and K.�h/ > .2�˛/� Qr�d�˛. ThereforeZ
B2QrnBQr

w.h/K.h/ dh�
Z
GQr

w.h/K.h/ dh

D
1

2

Z
GQr

w.h/K.h/Cw.�h/K.�h/ dh

�
1

2

Z
GQr

A�.2�˛/ Qr�dC2�˛ dh

� A�.2�˛/ Qr2�˛�!d ;

where !d is a constant depending on dimension only.
We invoke the contradiction assumption for each of the radii rj D 2�j�1r0, with j D 0; 1; 2; : : : . For

each rj , we get the estimates corresponding to Qrj , which is either rj or c0rj , depending on the case of



REGULARITY FOR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS WITH VERY IRREGULAR KERNELS 747

the contradiction assumption. Partitioning Br0 , we getZ
Br0

w.h/K.h/ dhD
1X
jD0

Z
B2rj nBrj

w.h/K.h/ dh

�
1

2

1X
jD0

Z
B2Qrj nBQrj

w.h/K.h/ dh

� .AC 64/�.2�˛/�!d

1X
jD0

. Qrj /
2�˛

� .AC 64/�.2�˛/�!d

1X
jD0

.c02
�j�1r0/

2�˛

D C.d/c2�˛0 .AC 64/��
2�˛

1� 2˛�2
:

We get a contradiction with (4-6) if A is large enough. Note that the last factor is bounded away from
zero, independently of ˛ as long as ˛ 2 .0; 2/. Thus the value of AD A2 is independent of ˛, and it is
chosen to obtain this contradiction. �

The following geometric statement about functions will play a role in the proof of Lemma 4.1.

Lemma 4.6. Let u W Rd ! R be a continuous bounded function such that ru.0/ exists. Let q.x/ D
miny2B1 u.y/C 64jx�yj

2. Assume the following conditions hold true:

� There is at least one point x02Rd for which q.x0/Du.0/C64jx0j2Dminy2B1fu.y/C64jx0�yj
2g.

� If we consider the (symmetric) set

G WD
˚
h 2 B2 nB1 W ıhu.0/� A and ı�hu.0/� A

	
;

then jGj � 1
2
�jB2 nB1j. (Here, as in Lemma 4.5, ıhu.y; t/D u.yCh; t/�u.y; t/�128.x�y/ �h.)

Then there are constants c0 and C4 depending on A and � and d so that if for some pair of points
x1, y1 we have

q.x1/D u.y1/C 64jx1�y1j
2;

then jy1j< c0 implies jx1� x0j< C4.

Proof. Assume jy1j< c0. Let p0 and p1 be the quadratic polynomials

p0.z/D q.x0/� 64jx0� zj
2;

p1.z/D q.x1/� 64jx1� zj
2:

From the definition of q, we have that p0.z/ � u.z/ and p1.z/ � u.z/ for all z 2 Rd . Moreover,
p0.y0/D u.y0/ and p1.y1/D u.y1/.

Observe that p1�p0 is the affine function

p1.z/�p0.z/D q.x1/� q.x0/C 64.jx0j
2
� jx1j

2/C 128.x1� x0/ � z:
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Since p1.y1/D u.y1/� p0.y1/, we have

p1.y1C z/�p0.y1C z/� 128.x1� x0/ � z:

Using that u.y1C z/� p1.y1C z/� p0.y1C z/C 128.x1� x0/ � z, we get that

ı.y1Cz/u.0/� ı.y1Cz/p0.0/C 128.x1� x0/ � z

� �64C 128.x1� x0/ � z for z 2 B1:

Let us consider the following set, which is the intersection of a cone (whose vertex is at y1, recall that
jy1j< c0) and the ring B2 nB1:

H D
˚
h 2 B2 nB1 W hD y1C z with z � .x1� x0/ > c0jzjjx1� x0j

	
:

Observe that as c0! 0, the set H approximates the intersection of the ring B2 nB1 with the half-space
fz W z � .x1� x0/ > 0g. More preciselyˇ̌

B2 nB1 nH n�H
ˇ̌
� Cc0

for some constant C depending on dimension only.
Let us choose c0 so that Cc0< 1

2
�jB2nB1j. Then H \G must have a positive measure (also G\�H ,

recall that G is symmetric), and so there exists some h 2H \G. Then

A� ıhu.0/� �64C 128.x1� x0/ � z

> �64C 128c0jx1� x0jjzj

� �64C 64c0jx1� x0j:

Therefore jx1� x0j<
�
1
64
AC 1

�
=c0 DW C4. �

In the proof of Lemma 4.1, we will use the map m W y 7! x, which assigns the point x where the
minimum is achieved in the definition of q. This maps plays the same role as the gradient map of the
convex envelope of u in Br does in an ABP-based proof of the growth lemma. This would be the purpose
of [Caffarelli and Silvestre 2009, Lemma 8.4] or [Bjorland et al. 2012, Lemma 3.6]. In those cases, we
would need to adjust u by a supporting hyperplane and argue using a convex envelope. In our approach,
we work without invoking a convex envelope.

Note that after Corollary 4.3 and Lemma 4.4, where we obtain that jqt j is bounded in a set of positive
measure, the rest of the proof of Lemma 4.1 should be interpreted as a nonlocal version of the method in
[Savin 2007]. It is more flexible, and arguably more natural, than an ABP-based proof.

We are now in a position to prove Lemma 4.1.

Proof of Lemma 4.1. We assume u.0; 0/D 1. The result follows for the assumption minQ1=2 uD 1 by a
simple translation argument.

LetG be the set of points .x; t/2B1=8�.��; 0� so that qt �A1. From Lemma 4.4, we have a universal
lower bound on its measure: jGj> ı1. For each point .x; t/ 2G, there is at least one point y 2 B1 that
realizes the minimum value for q.x; t/ in (4-2). For each fixed value of t , we define the map m W y 7! x.
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This is a well-defined function if u 2 C 1. In general, the function nature of m is not necessary, and we
should think of m as a set mapping that sends values of y into a set of possible values of x (like the
subdifferential of a convex function).

We note that if y 2m�1.G/, we have qt .x; t/� A1 for some x 2G, and we can apply Lemma 4.5,
which was presented above. This gives a ball around y and a collection of points where u does not grow
too much. For example, we can control the set

Ey WD fz 2 Bc0r.y/ W u.z; t/ < A2C 43g: (4-10)

This is possible by starting with the ring from Lemma 4.5 and then noting that r � 1, u.y/ < 3 (since
q.x/ � 3, see first line of the proof of Lemma 4.5), ı˙hu.y/ � A2r2, jhj � 1

2
, jx � yj � 5

8
, and

128jx�yjjhj � 40. Thus from Lemma 4.5, we see that

jEy j D
ˇ̌˚
z 2 Bc0r.y/ W u.z; t/ < A2C 43

	ˇ̌
> ıjBc0r j: (4-11)

Here ı is a constant that depends on dimension and the � from Lemma 4.5. We note that we use the
r2-growth of ıhu from Lemma 4.5 in a very rough fashion at this step. The importance of the r2 comes
later, in relationship to an upper bound on jm.Br/j. We also note that we have used the ball Bc0r instead
of Br . At this stage, both balls have the same estimate regarding the growth of u on a universal proportion
of the set. However, only Bc0r also has the necessary estimate for the size of m.Bc0r/. This choice will
be further illuminated below.

We need to estimate a set where u is not too large, and given the choice of Ey above, we see that a
good candidate is

NL WD
[

y2m�1.G/

Ey :

Thanks to (4-10) and (4-11), the measure of NL can be equivalently estimated via the size of

NLB WD
[

y2m�1.G/

Bc0r.y/.y/;

where Bc0r.y/.y/ is the good ball given in Lemma 4.5. Therefore, the only question is whether or not the
set, NLB , has a measure that is comparable to B1.

If fBj g is a Vitali subcovering of the collection fBr.y/.y/gy2m�1.G/, then we have[
j

5Bj �m
�1.G/;

and hence

m

�[
j

5Bj

�
�m.m�1.G//:

Also by subadditivity, we have that ˇ̌̌̌
m

�[
j

Bj

�ˇ̌̌̌
�

X
j

jm.Bj /j:
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In order to conclude, it would suffice to know that

jm.Bj /j � C3jBj j; (4-12)

which allows us to compare jNLBj back to jGj.
The inequality (4-12) follows from the following lemma.

Lemma 4.7. Under the same conditions as in Lemma 4.5, jm.Bc0r.y//j � C3r
d . Here r is the same

value as in Lemma 4.5, c0 is fixed from Lemma 4.6 and depends only on other universal constants, and C3
depends on c0, C4 (of Lemma 4.6) and the constant A1 of Lemma 4.5.

In order to prove Lemma 4.7, we only use the equation through Lemma 4.5. Indeed, after fixing a
time t and rescaling, it reduces to Lemma 4.6.

We simply sketch the main idea to show how Lemma 4.7 follows from Lemma 4.6.

Sketch of the proof of Lemma 4.7. Assume that u and q are as given in the statements of Lemmas 4.5
and 4.7. After a translation, we can assume that y D 0. We would then define the rescaled functions

Ou.z/D r�2u.rz/ and Oq.z/D r�2q.rz/ for z 2 B2:

We note the definition of Oq will be through a minimum over B1=r , but, in fact, restricting the minimum
to B1 changes nothing since y D 0 is such a point that gives the minimum for OxD x=r . Then Lemma 4.6
is applicable with the functions Ou and Oq, with the point x0 D Ox D x=r , and the set OG D r�1G, with G
being the set arising from the outcome of Lemma 4.5. �

Lemma 4.7 gives (4-12) via the result of Lemma 4.5 and the choice of c0r.y/.
We will use the fact that m maps onto G as well as the fact that by construction of the subcover fBj g,

m�1.G/ is contained in its union. Thus we see that

G Dm.m�1.G//�m

�[
j

Bj

�
D

[
j

m.Bj /;

and hence by the choice of c0r.y/ and the definition of Ey , with Lemmas 4.5 and 4.7, it holds that

jGj �

ˇ̌̌̌[
j

m.Bj /

ˇ̌̌̌
�

X
j

jm.Bj /j �
X
j

C3jBj j �
X
j

C3

ı
jEyj j:

Since the Bj were chosen to be disjoint, so are the corresponding Eyj , and thus we can conclude

jNLj �

ˇ̌̌̌[
j

Eyj

ˇ̌̌̌
D

X
j

jEyj j �
ı

C3
jGj �

ıı1

C3
:

This finishes the proof of Lemma 4.1. �

5. A special barrier function

This section is concerned with the construction of a barrier function that is essential for all of the results
regarding regularity of parabolic (and elliptic) equations in nondivergence form. In principle, one would
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expect our construction to be similar to the one presented in [Chang Lara and Dávila 2014, Lemma 4.2],
but this is not actually the case. We deviate in some significant respects due to the additional generality
allowed by assumptions (A2) and (A3). In this regard, our construction is more accurately described as a
parabolic version of the barrier from [Kassmann et al. 2014, Section 5], where similar lower bounds on
only small sets were allowed. Significant detail is required to carry over the ideas from [loc. cit.] to the
parabolic setting. These additional difficulties involved in the construction of the barrier are, in fact, also
related to the conditions under which the Harnack inequality fails for equations such as (1-1).

Because of the relative strength of the terms jrpj and M�p under rescaling, it is necessary to break
the construction of the special barrier function into two cases: one with ˛ � 1 and the other with ˛ < 1.
For the second case, we must remove the gradient term from the equation.

5A. The main lemmas and the barrier.

Lemma 5.1. Let ˛ 2 Œ1; 2/ and suppose r 2 .0; 1/ is given. There exists "0 > 0, q0 > 0 and a function
p W Rd � .0;1/! R such that for all ˛ � 1,

pt CC0jrpj �M
�p � 0 in

�
B1 � .0;1/

�
n
�
Br � .0; r

˛�
�
; (5-1)

p � 1 in Br � .0; r˛�; (5-2)

p � 0 in
�
Rd nB1

�
� .0;1/ and

�
Rd nBr

�
� f0g; (5-3)

p � "0r
q0e�C5.T�r

˛/ in B3=4 � Œr
˛; T �: (5-4)

The constants "0 and q0 depend only on �, ƒ, �, C0, ˛0 and dimension.

Lemma 5.2. Let ˛ 2 Œ˛0; 2/ and suppose r 2 .0; 1/ is given. Then the same statement of Lemma 5.1
remains true except (5-1) is replaced by

pt �M
�p � 0 in

�
B1 � .0;1/

�
n
�
Br � .0; r

˛�
�
: (5-5)

Remark 5.3. Note that the same constants "0 and q0 can be chosen to work for both Lemmas 5.1 and 5.2.

Remark 5.4. The existence of the barrier is closely related to uniform estimates on hitting times of a
Markov process, which are crucial to the proofs of the weak Harnack inequality and Hölder regularity
in the probabilistic framework. These hitting-time estimates appear in the original work of Krylov and
Safonov [1980; 1979], and they have become a standard technique in the probability literature (see the
presentation in, e.g., the lecture notes [Bass 2004]). In other contexts, there exists an explicit barrier and
this lemma looks deceivingly simple. For nonlocal equations whose kernels are allowed to vanish, this
step is, in fact, highly nontrivial. Lemmas 5.1 and 5.2 have a probabilistic interpretation as the lower
bound for the probability of the process to hit a ball between time 0 and r˛.

The strategy for this construction is to start with a yet-to-be-determined function, ˆ, supported in B1,
and rescale ˆ on the time interval t 2 .0; r˛/ as

p.x; t/D t�q0ˆ

�
rx

t1=˛

�
; (5-6)
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and then to use

p.x; t/D e�C5.t�r
˛/p.x; r˛/D e�C5.t�r

˛/r�˛q0ˆ.x/ (5-7)

for t 2 .r˛;1/. The choice of rx=t1=˛ is to make sure that p will be positive for all jxj< 1 when t � r˛ .
The constants q0 and C5 are there to force the subsolution property in the regions where M�p cannot be
made to be as large as we like. We now make some initial computations to illuminate our subsequent
choices (note the use of Lemma 2.2):

pt D�q0t
�q0�1ˆ

�
rx

t1=˛

�
�
1
˛
t�q0�1=˛�1rˆ

�
rx

t1=˛

�
� rx; (5-8)

rp D rt�q0�1=˛rˆ

�
rx

t1=˛

�
; (5-9)

M�p D t�q0�1r˛M�ˆ

�
rx

t1=˛

�
: (5-10)

We want to satisfy (5-1), which then can be transformed to the new goal (at least for t 2 .0; r˛/):

t�q0�1
�
�q0ˆ

�
rx

t1=˛

�
�
1
˛
t�1=˛rˆ

�
rx

t1=˛

�
�rxCrt1�1=˛C0

ˇ̌̌̌
rˆ

�
rx

t1=˛

�ˇ̌̌̌
�r˛M�ˆ

�
rx

t1=˛

��
� 0:

(5-11)
Switching out variables

z D
rx

t1=˛
;

for an appropriate set of z, we want

t�q0�1
�
�q0ˆ.z/�

1
˛
rˆ.z/ � zC rt1�1=˛C0jrˆ.z/j � r

˛M�ˆ.z/
�
� 0: (5-12)

We can now turn to the requirement for p to satisfy (5-1) when t � r˛ . The computations are similar
to the case of t 2 Œ0; r˛�. Using (5-6),

pt D�C5e
�C5.t�r

˛/r�˛q0ˆ.x/;

rp D r�˛q0e�C5.t�r
˛/
rˆ.x/;

M�p D r�˛q0e�C5.t�r
˛/M�ˆ.x/:

Then the goal (5-12) becomes

e�C5.t�r
˛/r�˛q0

�
�C5ˆ.x/CC0jrˆ.x/j �M

�ˆ.x/
�
� 0: (5-13)

The function ˆ and subsequently p will be built in a many-staged process. One of the key components
is a special bump function, which acts as a barrier in the stationary setting. This construction proceeds
similarly to that of [Kassmann et al. 2014], and we would like to point out that there, just as here, there are
significant challenges for this construction due to the generality of the lower bound assumption in (2-2)
(cf. the bump function in [Caffarelli and Silvestre 2009], where the lower bound on K holds globally).
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b;q

jyj�q

�q

 1� c1 1� c1
2

Figure 1. The function b;q .

We start with a two-parameter family of auxiliary functions

b;q.y/D Ob.jyj/

and

Ob.r/D

8̂<̂
:
r�q if r � 1� c1

2
;

m;q.r/ if 1� c1 � r � 1� c1
2
;

�q if r � 1� c1;

(5-14)

with m;q smooth and monotonically decreasing (so there will be a restriction between  and c1 both
being small enough), and without loss of generality m;q will be such that

b;q.y/�minf�q; jyj�qg for all y 2 Rd :

See Figure 1 for the graph of b;q .
The key part of the construction is that there are choices of  and q that make b a subsolution in a

given small strip (and a subsequent truncation allows the equation to hold in a large set). We state this
result for the choices of  and q, and then we will prove it in Section 5B.

Lemma 5.5. Let C >0 be given. Then there exist a small constant c1 and choices of 1 and q1 (depending
on C plus all other universal objects) such that

M�b1;q1.x/� Cq1jxj
�q1�˛ for all 1�

c1

2
� jxj � 1; (5-15)

for all ˛ 2 .˛0; 2/. The constant c1 depends on the lower bound of K in (2-2).

Remark 5.6. Lemma 5.5 provides a subsolution to a stationary problem. It is a generalized version of
[Caffarelli and Silvestre 2009, Corollary 9.2; Bjorland et al. 2012, Lemma 3.10; Kassmann et al. 2014,
Lemmas 5.2 and 5.3] to the more general class of kernels in this article.

Now that we know the details of an equation for b D b;q , we will continue the calculations, which
will be useful to construct p. For the following, we assume that 1� c1

2
� jzj � 1. We also note that
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1, q1, and C will be determined subsequently:

b.z/D b1;q1.z/D jzj
�q1 if 1� c1

2
< jzj; (5-16)

rb.z/D�q1zjzj
�q1�2; (5-17)

�
1
˛
rb.z/ � z D 1

˛
q1jzj

�q1 ; (5-18)

C0jrb.z/j D C0q1jzj
�q1�1; (5-19)

�M�b.z/� �Cq1jzj
�q1�˛: (5-20)

Now that we have sorted out the details regarding b1;q1 , we can proceed with the proof of Lemma 5.1.
Some complications arise from the need to satisfy the boundary conditions in (5-3).

We will give the proof of Lemma 5.1 and then afterwards indicate the few steps that are modified to
prove Lemma 5.2.

Proof of Lemma 5.1. We proceed with defining p in terms of ˆ as described in (5-6) and (5-7). Note that
this construction gives a function p that is unbounded around the origin .0; 0/. To fix that, at the end of
the proof, we have an extra truncation step.

In order to satisfy the boundary conditions (5-3), ˆ will be the following truncated version of b;q:

ˆ.z/Dmaxfb;q.z/� b;q.e1/; 0g:

This function ˆ is zero outside of B1 and strictly positive inside B1. The properties of the function b
will be used to make the value of M�ˆ large in B1 nB1�c2=2.

Recall the variable z,
z D

rx

t1=˛
: (5-21)

We need to verify (5-12) and (5-13) in order to account for the regions t 2 Œ0; r˛� and t 2 .r˛;1/. We
will need to select parameters and constants to work for both ranges of t . But we note that all of the
parameters are such that they can be chosen to satisfy both conditions simultaneously.

Part 1: t 2 Œ0; r˛�.
Note the following relations for z 2 B1:

rˆ.z/Drb.z/;

M�ˆ.z/�M�b.z/:

We need to find parameters so that (5-12) holds. The computation will be different in the three regions
jzj � 1� c1

2
, 1� c1

2
< jzj< 1, and jzj � 1.

Replacing (5-17), (5-18), (5-19) and (5-20) in the left-hand side of (5-12), we get

�q0ˆ.z/�
1
˛
rˆ.z/ � zC rt1�1=˛C0jrˆ.z/j � r

˛M�ˆ.z/

� �q0ˆ.z/�
1
˛
rb.z/ � zC rC0jrb.z/j � r

˛M�b.z/: (5-22)

For the last inequality, we used that t1�1=˛ � 1. This is because t � r˛ � 1 and ˛ � 1. When ˛ < 1, the
negative power of t cannot be controlled and that is why we assume C0 D 0 in those cases.
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When 1� c1
2
< jzj< 1, we can ignore �q0b.z/, and instead focus on

�
1
˛
rb.z/ � zC rC0jrb.z/j � r

˛M�b.z/� 0: (5-23)

In light of (5-18), (5-19), (5-20), it will suffice to choose b so that

1
˛
q1jzj

�q1 C rC0q1jzj
�q1�1�Cq1r

˛
jzj�q1�˛ � 0;

or more succinctly

q1jzj
�q1

�
1
˛
C rC0jzj

�1
�Cr˛jzj�˛

�
� 0: (5-24)

After C is chosen to obtain (5-24) (recall jzj � 1), then b D b1;q1 can be fixed by Lemma 5.5. The
resulting b will be smooth and bounded.

Switching now to the set jzj � 1� c1
2

, inequality (5-22) then follows from�
�q0ˆ.z/�

1
˛
rb.z/ � zC rC0jrb.z/j � r

˛M�b.z/
�
� 0: (5-25)

The function ˆ is strictly positive in B1 and, in particular, it is bounded below by a positive constant in
B1�c1=2. Since C , 1, q1 have all been fixed and all of the terms are bounded, we can then choose q0
large enough so that (5-25) will also hold.

We are only left with the case jzj � 1. Note that because of the angle singularity of the function ˆ on
jzjD1, we cannot touch the functionˆ from above with any smooth function at those points. Therefore, the
points jzjD1 play no role inˆ satisfying (5-12) in the viscosity sense. If jzj>1, thenˆ.z/Djrˆ.z/jD0
and M�ˆ.z/� 0 because z will be at a global minimum of ˆ, and so (5-12) trivially holds.

Part 2: t 2 .r˛;1/.
We now need to make sure (5-13) holds. The procedure is similar to the first part.
In the region 1� c1

2
< jxj< 1, using (5-19) and (5-20), we get

�C5ˆ.x/CC0jrˆ.x/j �M
�ˆ.x/D�C5ˆ.x/CC0q1jzj

�q1�1�Cq1jzj
�q1�˛:

We ignore the term �C5ˆ.x/� 0 and use

�C5ˆ.x/CC0jrˆ.x/j �M
�ˆ.x/� q1jxj

�q1.C0jxj
�1
�C jxj�˛/� 0:

The last inequality holds provided that we choose C large enough (which can be done by choosing
appropriate values of  and q from Lemma 5.5).

In the region jxj<1� c1
2

, we use that b (note that  and q are fixed in the previous step) is a given smooth
function and ˆ.x/�

ˇ̌
1� c1

2

ˇ̌�q
�1 > 0. Therefore, picking a large enough C5, we can make (5-13) hold.

If jxj� 1, then the equation holds just as in the first part of this proof, owing to the fact that z will be at a
global minimum of ˆ. Note that the constant C , which we use for picking 1 and q1 in Lemma 5.5, needs
to be large enough to satisfy the requirements of both Part 1 (t 2 Œ0; r˛�) and Part 2 (t > r˛) of this proof.

Part 3: The truncation step.
Now there is one last step of truncation. At this stage, the function t�q0ˆ.rx=t1=˛/ has a singularity

at x D 0 and t ! 0, which of course violates requirement (5-2).
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We define the function

Qp.x; t/ WD t�q0ˆ

�
rx

t1=˛

�
;

and p will be defined as a truncation of Qp to be compatible with (5-2). Importantly, in this truncation
we need to not destroy the equation satisfied by our choice of Qp outside of Br � Œ0; r˛�. That means that
we should only truncate at a small enough t so that the support of Qp. � ; t / is contained in Br . This way,
for such x outside of Br , the desired equation is trivially satisfied because the equation will be evaluated
where Qpt D 0 and Qp.x; t/D 0, which is the global minimum for Qp, giving r QpD 0 and M� Qp � 0. Given
the scaling zD rx=t1=˛ and that the support of ˆ is in B1, we see that a convenient choice for truncation
will be when the graph of t D .r jxj/˛ intersects the line jxj D r ; hence at t D r2˛.

Accordingly, we define (note for each t , we know that Qp has its max at x D 0)

p.x; t/D
minf Qp.x; t/; Qp.0; r2˛/g

Qp.0; r2˛/

D .r�2˛q0ˆ.0//�1 minf Qp.x; t/; r�2˛q0ˆ.0/g:

This now gives a complete description of p for t in both .0; r˛/ and Œr˛;1/ via (5-6) and (5-7) respectively.
The inequality (5-4) follows by a direct inspection using the expression (5-7) for Qp. We get that for

t > r˛ and jxj � 3
4

,

p.x; t/D
�
r�2˛q0ˆ.0/

��1
e�C5.t�r

˛/r�˛q0ˆ.x/� r˛q0e�C5.t�r
˛/ min
B3=4

ˆ:

We note that the truncation expression has shown that the choice of q for the lower bound requirement
in (5-4) will be q D ˛q0. The choice of radius 3

4
in (5-4) is irrelevant, since a similar lower bound would

hold if 3
4

is replaced by any other number smaller than 1.
This completes the proof of Lemma 5.1. �

We now mention where the proof of Lemma 5.2 deviates from the previous one.

Proof of Lemma 5.2. One needs to go back and remove the term C0jrpj from all of the calculations.
Note this was the only term affected by the factor t1�˛=2, which would be unbounded if ˛ < 1. �

5B. The proof of Lemma 5.5. Lemma 5.5 will be attained in two stages, Lemmas 5.10 and 5.11. First
we develop some auxiliary results related to b. We begin by making a useful observation about the
behavior of ıhb.

Lemma 5.7. Assume ˛ 2 Œ1; 2/. If b D b;q is as in (5-14), then for some universal r0 and C.q/, where
jhj � r0 and 1� c1

2
< jxj< 1, we have

ıhb.x/� �q
jhj2

jxjqC2
C q.qC 2/

.h1/
2

jxjqC2
�C.q/jhj3

(this is only relevant, and only invoked, for ˛ > 1; otherwise we would use a different expansion for ˛ < 1).

Proof. This follows from Taylor’s theorem. Note that h is restricted to be in a small set, Br0 , and so
actually b.x/D jxj�q and b.xC h/� jxC hj�q . �
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The next lemma says that our assumptions allow that for all r � r1, the set Ar intersects annuli centered
at �e1 in a uniformly nontrivial fashion. This feature is essential to be able to utilize the lower bounds
on K in (2-2).

Lemma 5.8. There exist constants c1, c2 and r1 (all small), so that

(i) for any x so that 1� c1 < jxj< 1,ˇ̌
Ar1 \B1�c1.�x/

ˇ̌
�
1
4
�
ˇ̌
B2r1 nBr1

ˇ̌
;

(ii) for all r , ˇ̌
Ar \fh W .h1/

2
� c2jhj

2
g
ˇ̌
�
1
2
�
ˇ̌
B2r nBr

ˇ̌
:

Proof. We first note that by the symmetry of Ar ,ˇ̌
Ar \ .B2r nBr/\fh W h � x � 0g

ˇ̌
�
1
2
�
ˇ̌
B2r nBr

ˇ̌
: (5-26)

Now we will establish (i). We first choose r1 small enough so thatˇ̌�
.B2r1 nBr1/\fh W h � x � 0g

�
nBjxj.�x/

ˇ̌
�
1
8
�
ˇ̌
.B2r1 nBr1/\fh W h � x � 0g

ˇ̌
:

Note that this choice of r1 can be done uniformly for all 1� c1 < jxj< 1.
Let us define the failed set where Ar cannot reach B1�c1.�x/ as

F WD
�
.B2r1 nBr1/\fh W h � x � 0g

�
nB1�c1.�x/:

With r1 fixed, we can choose c1 small enough so that

jF j � 1
4
�
ˇ̌
.B2r1 nBr1/\fh W h � x � 0g

ˇ̌
: (5-27)

This is possible because

jF j �
ˇ̌�
.B2r1 nBr1/\fh W h � x � 0g

�
nBjxj.�x/

ˇ̌
C
ˇ̌
Bjxj nB1�c1

ˇ̌
�
1
8
�
ˇ̌
.B2r1 nBr1/\fh W h � x � 0g

ˇ̌
CC.1� .1� c1/

d /:

Finally, combining (5-26) with (5-27) we obtain (i).
To establish (ii), we note thatˇ̌

Ar \fh W .h1/
2
� c2jhj

2
g
ˇ̌
� jAr j �

ˇ̌
fh 2 B2r nBr W h

2
1 < c2jhj

2
g
ˇ̌

� .��Cc2/jB2r nBr j

for a universal constant C . Thus, we simply take c2 small enough so that .��Cc2/� 1
2
�. �

Note 5.9. If 1 < 2 and q is fixed, then for all y,

b1;q.y/� b2;q.y/;

and the two functions are equal when jyj � 1� c1
2

; hence

M�b1;q.x/�M
�b2;q.x/

for all jxj � 1� c1
2

.
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Next we make the first choice of parameter for b. It is the selection of the exponent, q, and it only
uses the information about the family K for ˛ very close to 2.

Lemma 5.10. Let  � 0 D 1
4

be fixed. Let C > 0 be given. Then, there exist a q1 � 1 and an ˛1,
depending only on C , 0, C0, �, d , �, ƒ, such that

M�b;q1.x/� Cq1jxj
�q1�˛ for all 1� c1

2
< jxj< 1;

for all orders, ˛ 2 .˛1; 2/ and for all  � 0.

Then once the q has been chosen, we can finish the definition of b by fixing the truncation height, �q ,
to be large enough (so  small enough). This allows us to fix one function that satisfies the special
subsolution property for all ˛ 2 Œ˛0; 2/.

Lemma 5.11. Let C > 0 and q1 be as in Lemma 5.10. Then there exists a 1 � 0 D 1
4

such that

M�b1;q1.x/� Cq1jxj
�q1�˛ for all 1� c1

2
< jxj< 1;

for all orders, ˛ 2 .˛0; ˛1�.

First we give the proof of Lemma 5.10.

Proof of Lemma 5.10 . Let x be any point such that 1� c1
2
< jxj< 1. We begin with a few simplifying

observations. First of all, there is no loss of generality in assuming ˛ > 1 for this lemma — indeed the
end of the proof culminates with a choice of ˛1 that is sufficiently close to 2 (hence ıhb.x/ uses only one
case for ˛ > 1). Second, to simplify notation, we drop the ; q dependence and denote b;q by b.

To obtain the bound we want, we only need the contribution of ıhb.x/ to M�b.x/ in a small ball,
h 2 Br2 , for some r2 fixed with, say, r2 Dmin

˚
r0;

c1
2

	
, where r0 originates in Lemma 5.7 and c1 comes

from Lemma 5.8. This is because the large curvature of the graph of b in the h1-direction can be used to
dominate the integral at the expense of all the other terms.

We also note that for h 2 Rd nBr2 , we have

ıhb.x/� inf
h2RdnBr2

�
b.xC h/� b.x/� qjxj�q�2x � h

�
� �Cq

�
1C

x

jxj
� h
�
:

Here Cq Dmax
�
q
�
1� c1

2

��q�1
;
�
1� c1

2

��q�.
Therefore, by Lemma 2.3, we see thatZ

RdnBr2

ıhb.x/K.h/ dh� �.2�˛/Cqƒ
�
r�˛2
˛
C r1�˛2

�
: (5-28)

Furthermore, combining Lemmas 5.8 and 5.7, we see that on each ring, B2�kr nB2�k�1r , we can enhance
the positive contribution to M�f .x/ by manipulating the term

q.qC 2/

jxjqC2

Z
B
2�kr

nB
2�k�1r

.h1/
2K.h/ dh:
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By Lemma 5.8 and assumption (A3), we see thatZ
B
2�kr

nB
2�k�1r

.h1/
2K.h/ dh�

Z
A
2�k�1r

.h1/
2K.h/ dh

�

Z
A
2�k�1r

\fhW.h1/2�c2jhj2g

c2jhj
2K.h/ dh

� c2.2
�k�1r/2�.2�˛/.2�k�1r/�d�˛

ˇ̌
A2�k�1r\

˚
h W .h1/

2
� c2jhj

2
	ˇ̌

� c2.2
�k�1r/2�.2�˛/.2�k�1r/�d�˛ 1

2
�
ˇ̌
B2�krnB2�k�1r

ˇ̌
D c2�.2�˛/�2c.d/r

2�˛2�k.˛�2/;

where c.d/ is a purely dimensional constant that we use temporarily during this proof. Hence adding up
the contribution along all of the rings, we seeZ

Br2

.h1/
2K.h/ dhD

1X
kD0

Z
B
2�kr2

nB
2�k�1r2

.h1/
2K.h/ dh�

�
��c2c.d/

�
r2�˛2 ; (5-29)

where we have collected various dimensional constants into c.d/ in such a way that is uniform for
˛ 2 .0; 2/. Note that

1X
kD0

.2�˛/2k.˛�2/ D
2�˛

1� 2˛�2
� 2

for all ˛ 2 .1; 2/.
We also estimate the following integral using assumption (A2):Z

Br2

jhj3K.h/ dhD
X
k

Z
B
2�kr2

nB
2�k�1r1

jhj3K.h/ dh�
.2�˛/2˛

1� 2˛�3
r3�˛2 ƒ: (5-30)

Now we need to put all of the pieces together. We will use Lemma 5.7 to balance the terms of different
orders in both jhj and q. We will be invoking Lemma 2.3 as well as the bounds from (5-28)–(5-30):Z

Rd
ıhb.x/K.h/dh

D

Z
Br2

ıhb.x/K.h/dhC
Z

RdnBr2

ıhb.x/K.h/dh

�
q.qC2/

jxjqC2

Z
Br2

.h1/
2K.h/dh�

q

jxjqC2

Z
Br2

jhj2K.h/dh�C.q/
Z
Br2

jhj3K.h/dhC
Z

RdnBr2

ıhf .x/K.h/dh

�
q

jxjqC2

�
.qC2/.��c2c.d//�Cdƒ

�
r2�˛2 �.2�˛/

�
Cqƒ

�
r�˛2
˛
Cr1�˛2

�
�C.q/

2˛

1�2˛�3
r3�˛2 ƒ

�
:

(5-31)
At this point, we note that the first term is the one that does not have the factor .2�˛/ in front. We will
first choose q large to control the sign of this term. Hence we can choose qD q1 large enough, depending
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only on the given constant C and the universal parameters, so that (recall C , with no subscript, was the
parameter given in the statement of this lemma and jxj< 1)

q

jxjqC2

�
.qC 2/.��c2c.d//�Cdƒ

�
r2�˛2 � 3Cqjxj�q�˛r2�˛2 :

Once q1 has been fixed, we can now choose ˛1 close enough to 2 so that the rest of the expression in
(5-31) is small:

.2�˛/

�
Cqƒ

�
r�˛2
˛
C r1�˛2

�
�C.q/

2˛

1� 2˛�3
r3�˛2 ƒ

�
� Cq1jxj

�q1�˛r2�˛2 :

(Recall that r2 Dmin
˚
r0;

c1
2

	
.) Thus we have achievedZ

Rd
ıhb.x/K.h/ dh� 2Cq1jxj�q1�˛r2�˛2 :

The chosen value of ˛ is sufficiently close to 2. We may choose ˛ even closer to 2 so that r2�˛2 > 1
2

andZ
Rd
ıhb.x/K.h/ dh� Cq1jxj�q1�˛:

Taking an infimum over K yields the result. �

Remark 5.12. The underlying reason why the previous proof works is because if we fix the values of
ƒ, � and �, the following limit holds:

lim
˛!2

M�b.x/DM�
Q�; Qƒ
.D2b.x//;

where M� is the classical minimal Pucci operator of order 2 and Q�, Qƒ are ellipticity constants that depend
on �, ƒ, � and dimension. The proof of this fact goes along the same lines as the proof of Lemma 5.10.

Remark 5.13. We note that the statement and proof of Lemma 5.10 here, combined with step 1 of the
proof of Lemma 5.1, corrects an error in the construction of the similar barrier used in [Kassmann et al.
2014, Section 5], where the truncation step should have been done first, not at the end of the construction.

Now we can conclude this section with the proof of Lemma 5.11.

Proof of Lemma 5.11. Let x be any point such that 1� c1
2
< jxj< 1. First of all, we note that q1 has been

fixed already, so we will drop it from the notation. Since we will be manipulating the choice of  to
obtain the desired bound on M�b;q1.x/, it will be convenient to have bounds that transparently do not
depend on  . Therefore, as above, we keep 0 D 1

4
fixed and we will use an auxiliary function to make

some of the estimates. Let ' be any function in C 2.Rd / such that

0� ' � b0;q1 in Rd ;

and
'.x/D jxj�q1 8 jxj � 1� c1

2
:

We note that these definitions imply k'kC2 can be chosen to be independent of  (depending on universal
parameters plus 0, q1).
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We now estimate the contributions from the positive and negative parts of .ıhb.x//˙ separately. The
first estimate below is simply a use of the fact that by construction, ' touches b from below at x, and the
second one uses (5-28):Z

Rd
.ıhf .x//

�K.h/ dh�
Z
Br1

C.d/
�
k'kC1;1.B1=2.x//

�
jhj2K.h/ dhC

Z
RdnBr1

.ıhf .x//
�K.h/ dh

� CdC.d/k'kC1;1.B1=2.x//ƒr
2�˛
1 CCd

ƒ

˛
r�˛1 C q0Cdƒr

1�˛
1 : (5-32)

Now we move to .ıhb.x//C. Here we will use Lemma 5.8(i), the important feature being that there is
at least one good ring where .ıhb.x//C will see the influence of the value of b on the set B1�c2 . We
alert the reader to a strange term in line (5-33) below, which arises simply as a worst case scenario of the
three definitions of ıh, and, for example, if ˛ < 1, the term would not even be necessary. It does not harm
the computation, and so we leave it there for any of the possible three cases of ıh via ˛. Finally we note
the important feature that we may only integrate on the set h 2 B1�c1.�x/, which allows us to avoid the
singularity of K at hD 0. Also note if h 2 B1�c1.�x/, then jhj � 2:Z

Rd
.ıhf .x//

CK.h/dh

�

Z
Ar1\B1�c1 .�x/

.ıhf .x//
CK.h/dh

�

Z
Ar1\B1�c1 .�x/

.�q1�jxj�q1/K.h/dh�q1jxj�q1�1
Z
B1�c1 .�x/

jhjK.h/dh (5-33)

�
�
�q1�

�
1�c1

2

��q1�.2�˛/�Z
Ar1\B1�c1 .�e1/

jhj�d�˛ dh�q1
�
1�c1

2

��q1�1Z
B1�c1 .�e1/

2K.h/dh

(5-34)

�
�
�q1�

�
1�c1

2

��q1�.2�˛/�r�d�˛1
1
4
�
ˇ̌
B2r1nBr1

ˇ̌
�q1

�
1�c1

2

��q1�1.2�˛/C.d;˛0/: (5-35)

We note the use of (2-8) in the transition between the last two lines.
Recall that the values of c1 and q1 were fixed in Lemmas 5.8 and 5.10. In order to conclude the proof,

we see that we can choose  D 1 large enough so that when we add together the contributions from (5-32)
and (5-35), the final estimate becomes greater than C >q1 for all ˛ 2 .˛0; ˛1/. We note that it is crucial to
have ˛ � ˛1 < 2 in this case in order to keep ˛ uniformly away from 2, which would cause problems. �

6. An estimate in L"— the weak Harnack inequality

The purpose of this section is to combine the point-to-measure estimate with the special barrier to prove
the L" estimate, also called the weak Harnack inequality.

Theorem 6.1 (the L" estimate). Assume ˛ � ˛0 > 0. Let u be a function such that

u� 0 in Rd � Œ�1; 0�;

ut CC0jruj �M
�u� C in Q1;
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and for the case ˛ < 1, further assume C0 D 0. Then there are constants C6 and " such that�Z
B1=4�Œ�1;�2�˛�

u"dx dt
�1="
� C6. inf

Q1=4
uCC/:

The constants C6 and " depend on ˛0, �, ƒ, C0, d and �.

Note that the L" norm of u is computed in the cylinder B1=4� Œ�1;�2�˛�. This cylinder lies earlier in
time than the cylinder Q1=2, where the infimum is taken in the right-hand side of the inequality. This is
natural due to the causality effect of parabolic equations. What should be noted in this case is that, due to
the scaling of the equation, the size of these cylinders varies. Indeed, if ˛ 2 .1; 2/, then the time interval
Œ�1;�2�˛� is longer than 1

2
and certainly longer than Œ�4�˛; 0�, which is the time span ofQ1=4. However,

for small values of ˛, the length of Œ�1;�2�˛� becomes arbitrarily small and the time span of Q1=4 is
almost 1. We still have uniform choices of the constants C and " because of the assumption ˛ � ˛0 > 0.

The basic building block of this proof is Lemma 4.1, which needs to be combined with Lemmas 5.1
and 5.2 as well as a covering argument. Since the work of Krylov and Safonov [1980], it is known that
these ingredients lead to Theorem 6.1. However, there are several ways to organize the proof and there
are some subtleties that we want to point out. Thus, we describe the full proof explicitly. We start with
some preparatory lemmas.

The following lemma plays the role of Corollary 4.26 in [Imbert and Silvestre 2013b], which the
reader can compare with [Chang Lara and Dávila 2014, Corollary 5.2]. Recall the notation Qr.x; t/D
Br.x/� Œt � r

˛; t �. We now define a time shift of the cylinder Q, which we call Qm. For any positive
number m, we write Qm to denote

Qm D Br.x/� .t; t Cmr
˛/:

The cylinder Qm starts exactly where Q ends (see Figure 3). Moreover, its time span is enlarged by a
factor m. Because of the order of causality, the information we have about the solution u in Q propagates
to Qm. This is reflected in the following lemma.

Lemma 6.2 (stacked point estimate). Letm be a positive integer. There exist ı2 >0 andN >0 depending
only on �, ƒ, d , ˛0 and m such that if for some cylinder QDQ�.x0; t0/�Q1, we have

u� 0 in Rd � Œ�1; 0�; (6-1)

ut CC0jruj �M
�u� 0 in Q1; (6-2)ˇ̌

fu�N g\Q�.x0; t0/
ˇ̌
� .1� ı2/jQ�j; (6-3)

B2�.x0/� Œt0� �
˛; t0Cm�

˛��Q1; (6-4)

then u� 1 in Qm D B�.x0/� Œt0; t0Cm�˛�.

Proof. Let Qu be the scaled function

Qu.x; t/D
A0

N
u.�xC x0; �

˛t C t0/;

where A0 is the constant from Lemma 4.1.
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Q1

Q1=4

B1=4 � Œ�1;�2
�˛�

Q1

Q1=4

B1=4 � Œ�1;�2
�˛�

Figure 2. The cylinders Q1=4 and B1=4 � Œ�1;�2�˛� with large ˛ (left) and small ˛ (right).

Both u and Qu satisfy (6-2). From our assumption (6-3), we have thatˇ̌
f Qu > A0g\Q1

ˇ̌
� .1� ı2/jQ1j:

Applying the contrapositive of Lemma 4.1, we obtain that Qu� 1 in Q1=4. Thus,

u�
N

A0
in Q�=4.x0; t0/:

Recall that u is a supersolution in Q1 and u� 0 everywhere. We apply Lemmas 5.1 or 5.2 with r D 1
2

to obtain the subsolution, p, and we can compare the functions Qu and p. Writing this in terms of u gives

u.x; t/�
N

M
p

�
.x� x0/

�
;
.t � t0C .�=4/

˛/

�˛

�
:

The conclusion follows from taking N large enough, combined with the lower bound for p given in
Lemma 5.1. �

The point of the previous lemma is that it can be combined with the crawling ink spots theorem. This
is a covering argument that can be used as an alternative to the Calderón–Zygmund decomposition, and it
is close to the original argument by Krylov and Safonov in [1980]. It has the cosmetic advantage that it
does not use cubes but only balls. Moreover, the Calderón–Zygmund decomposition uses that we can tile
the space with cubes, which is only true for ˛ D 1. In [Chang Lara and Dávila 2014], this difficulty is
overcome by a special tiling with variable scaling, which is explained by the beginning of Section 4.2. It
is a cumbersome construction to define rigorously. The use of the crawling ink spots theorem completely
avoids this difficulty.

QDQ�.x0; t0/

Qm D B�.x0/� Œt0; t0Cm�
˛�

Q1

Figure 3. The cylinders involved in Lemma 6.2.
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Theorem 6.3 (crawling ink spots). Let E � F � B1=2 �R. We make the following two assumptions:

� For every point .x; t/2F , there exists a cylinderQ�B1�R so that .x; t/2Q and jE\Qj� .1��/jQj.

� For every cylinder Q � B1 �R such that jE \Qj> .1��/jQj, we have Qm � F .

Then
jEj �

mC1

m
.1� c�/jF j:

Here c is an absolute constant depending on dimension only.

The proof of Theorem 6.3 will be presented in the Appendix. The crawling ink spots theorem is used
with a value of m sufficiently large so that mC1

m
.1� cı/ < 1. In order to prove the L" estimate, we would

want to apply Theorem 6.3 with

E D fu�N kC1
g\B1=2\ .�1;�2

�˛/ and F D fu�N k
g\B1=2\ .�1;�2

�˛/:

The problem is that the assumption of Theorem 6.3 is not implied by Lemma 6.2 because there is no way
to ensure that t Cmr˛ � �2�˛ . This is a difficulty that is nonexistent in the elliptic setting. Because of
the time shift in all the point estimates, the conclusion of the crawling ink spots theorem may be spilling
outside of the time interval Œ�1;�2�˛�. There is no trivial workaround for this.

The purpose of the following lemma is to show that the cylinders Q�.x0; �0/ that satisfy the condition
of the crawling ink spots theorem are necessarily small, and consequently the amount of measure that
leaks outside the cylinder B1=4 � Œ�1;�2�˛� will decay exponentially.

Lemma 6.4. Assume that
inf
Q1=4

u� 1;

u� 0 in Rd � Œ�1; 0�;

ut CC0jruj �M
�u� 0 in Q1;

and that there is a cylinder Q�.x0; t0/ such that

Q�.x0; t0/� B1=4 � Œ�1;�2
�˛�;ˇ̌

fu�N g\Q�.x0; t0/
ˇ̌
� .1� ı2/jQ�j:

Then � < C N� for some universal  > 0 and C > 0.

Proof. Applying Lemma 4.1 rescaled to Q�.x0; t0/, we obtain that u�N=M in Q�=4.x0; t0/. Just as in
the proof of Lemma 6.2, we get

u.x; t/�
N

M
p
�
4
3
.x� x0/;

�
4
3

�˛�
t � t0C

�
1
4
�
�˛��

;

where p is the function from Lemmas 5.1 or 5.2 with r D 1
3
�. The reason for the factor 4

3
is that since

x0 2 B1=4, we know that B3=4.x0/� B1.
We have that x0 2B1=4, t0 2 Œ�1;�2�˛� and ��min

�
1
4
; .1�2�˛/1=˛

�
. Since infQ1=4 u� 1, we have

M

N
� inf

˚
p.x; t/ W x 2 B2=3 ^ t 2

�
.3�˛.2˛ � 1/C

�
1
3
�
�˛
;
�
4
3

�˛
C
�
1
3
�
�˛�	
� c�q;
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which holds by (5-4) in Lemmas 5.1 and 5.2. Therefore � < CN� , where  D 1
q

and q is the exponent
from Lemma 5.1 or 5.2. �

Proof of Theorem 6.1. We start by noting that we can assume C D 0. Otherwise we consider Qu.x; t/D
u.x; t/�Ct instead. For every positive integer k, let

Ak WD fu > N
k
g\ .B1=4 � .�1;�2

�˛//;

where N is the constant from Lemma 6.2. We apply Theorem 6.3 with

E D fu�N kC1
g\

�
B1=4� .�1;�2

�˛/
�

and F D fu�N k
g\

�
B1=4� .�1;�2

�˛
CCmN�˛k/

�
;

where C and  are the constants from Lemma 6.4.
Let us verify that both assumptions of Theorem 6.3 are satisfied. The first assumption in Theorem 6.3

is implied by Lemma 6.4 (at least when N and/or k are large). Indeed, any point

.x; t/ 2 B1=4 � .�1;�2
�˛
CmN�˛k/

is contained in some cylinderQr.x0; t0/ with large enough � so that �>CN�k . Because of Lemma 6.2,
whenever there is a cylinder Q such that jAkC1 \Qj � .1� ı/jQj, we know that Qm � fu > N kg.
Moreover, because of Lemma 6.4, the length in time of Qm is less than mCN�k . Therefore Qm � F .
Thus, the second assumption of Theorem 6.3 holds as well.

Note that we allow the result of the crawling ink spots theorem to spill to the time interval

Œ�2�˛;�2�˛CCmN�˛k�:

Therefore,

jAkC1j �
mC1

m
.1� cı/

�
jAkjCCmN

�˛k
�
:

We first pick m sufficiently large so that

mC1

m
.1� cı/ WD 1�� < 1:

Thus, we have
jAkC1j � .1��/

�
jAkjCCmN

�˛k
�
:

This already implies an exponential decay on jAkj, which proves the theorem. �

7. Hölder continuity of solutions

We first state a Hölder continuity for parabolic integral equations without drift. In this case, ˛ 2 .0; 2/
can be arbitrarily small, although the estimates depend on its lower bound ˛0.

Theorem 7.1 (Hölder estimates without drift). Assume ˛ � ˛0 > 0. Let u be a bounded function in
Rd � Œ�1; 0� such that

ut �M
Cu� C in Q1;

ut �M
�u� �C in Q1:
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Then there are constants C7 and  , depending on n, �, ƒ and ˛0, such that

kukC .Q1=2/ � C7
�
kukL1.Rd�Œ�1;0�/CC

�
:

We can also include a drift term in the equation when ˛ � 1. This is stated in the next result.

Theorem 7.2 (Hölder estimates with drift). Assume ˛ � 1. Let u be a bounded function in Rd � Œ�1; 0�

such that
ut �C0jruj �M

Cu� C in Q1;

ut CC0jruj �M
�u� �C in Q1:

Then there are constants C7 and  , depending on n, �, ƒ, C0, such that

kukC .Q1=2/ � C7
�
kukL1.Rd�Œ�1;0�/CC

�
:

The proofs of these two theorems are essentially the same. The only difference is that when ˛ � 1,
we can include a nonzero drift term in Theorem 6.1. Because of this, we write the proof only once, for
Theorem 7.2, which applies to both theorems.

Proof of Theorem 7.2. We start by observing that we can reduce to the case C � "0 and kukL1 � 1
2

by
considering the function

1

C="0C 2kukL1
u.x; t/:

We choose "0 sufficiently small, which will be specified below.
Our objective is to prove that for some  > 0, which will also be specified below,

osc
Qr
u� 2r (7-1)

for all r 2 .0; 1/. This proves the desired modulus of continuity at the point .0; 0/. Since there is nothing
special about the origin, we obtain the result of the theorem at every point in Q1=2 using a standard
scaling and translation argument. Note that since kukL1 � 1

2
, we know a priori that (7-1) holds for all

r < 2�1= . We can make this threshold arbitrarily small by choosing a small value of  .
In order to prove that (7-1) holds for all values of r 2 .0; 1/, we use induction. We assume that it holds

for all r � 8�k and we show that it then holds for all r � 8�.kC1/. Because of the observation in the
previous paragraph, we can guarantee this inequality for the first few values of k by choosing a small
value of  . Thus, we are left to prove the inductive step.

Let

Qu.x; t/D
1

2

1

8.k�1/
u

�
8�.k�1/

2
x;
8�˛.k�1/

2˛
t

�
:

This function Qu is a scaled version of u so that the values of Qu in Q2 correspond to the values of u
in Q8�kC1 . Moreover, since (7-1) holds for r � 8�k , we have that

osc
Q2r
Qu�min.r ; 1/ for all r � 1

8
: (7-2)

Since oscQ2 Qu� 1, for all .x; t/ 2Q2, we have that Qu.x; t/�maxQ2 Qu�
1
2

or Qu.x; t/�minQ2 QuC
1
2

.
There may be points where both inequalities hold. The important thing is that at least one of the two in-
equalities holds at every point .x; t/2Q2. Therefore, one of the two inequalities will hold in at least half of
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the points (in measure) of the cylinder B1=4�Œ�1;�2�˛�. Without loss of generality, let us assume it is the
first of these inequalities that holds for most points (a similar argument works otherwise). That is, we haveˇ̌˚

Qu�max
Q2
Qu� 1

2

	
\
�
B1=4 � Œ�1;�2

�˛�
�ˇ̌
�
1
2
jB1=4j � .1� 2

�˛/:

Let v be the truncated function

v.x; t/ WD
�
Qu.x; t/�max

Q2
QuC 1

�C
:

Note that v � 0 everywhere and v D Qu.x; t/�maxQ2 QuC 1 in Q2. If x … B2 and t 2 Œ�1; 0�, it can
happen that v.x; t/ > Qu.x; t/�maxQ2 QuC 1. We can estimate their difference using (7-2):

v.x; t/�
�
Qu.x; t/�max

Q2
QuC 1

�
� osc
Bjxj�Œ�1;0�

Qu� 1�

�
jxj

2

�
� 1 for any x … B2; t 2 Œ�1; 0�: (7-3)

Note that for any fixed R, the right-hand side converges to zero uniformly for 2� jxj �R as  ! 0.
Inside Q1, the function v satisfies the equation

vt CC0jrvj �M
�v � Qut CC0jr Quj �M

�
QuCM�. Qu� v/

� �"0CM
�. Qu� v/

D�"0CM
�
�
. Qu�max QuC 1/� v

�
� �"0� c./:

Here c./D�minQ1M
�
�
. Qu�max QuC1/�v

�
DmaxQ1M

C
�
v�. Qu�max QuC1/

�
. We can estimate c./

using (7-3) and assumption (A2), because

L
�
v� . Qu�max QuC 1/

�
.x/D

Z
Rd
ıh
�
v� . Qu�max QuC 1/

�
.x/K.h/ dh

D

Z
jhj�2

�
v� . Qu�max QuC 1/

�
.h/K.h/ dh

� C

Z
2�jhj�R

.jhj � 1/K.h/ dhC
Z
jhj�R

2k QukL1K.h/ dh; (7-4)

where we note the use of the fact that v � . Qu�max QuC 1/ � 0 and also r
�
v � . Qu�max QuC 1/

�
� 0

in Q2. Thus given any �, we can make c./ < � by first choosing R large enough so that the tails of K
are negligible outside of BR — hence controlling the second term of (7-4) — and then choosing  small
enough so that second term of (7-4) is small enough. Since none of these choices depend upon the
kernel, K, they hold for MC, and hence c./, as well.

Applying Theorem 6.1,

min
Q1=4

vC "0C c./�
1

C6

�Z
B1=4�Œ�1;�2�˛�

v"dx dt
�1="

�
1

C6

�
1

2
jB1=4j.1� 2

�˛/
�1=" 1

2
:

Let us choose "0 > 0 and  > 0 sufficiently small so that

ı WD
1

C6

�
1

2
jB1=4j.1� 2

�˛/
�1=" 1

2
� "0� c./ > 0:
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Therefore, we obtained minQ1=4 v � ı, which implies that oscQ1=4 Qu � 1� ı. In terms of the original
variables, this means that

osc
Q
8�k

u� 2� 8�.k�1/.1� ı/:

Consequently, for any r 2 .8�k�1; 8�k/,

osc
Qr
u� 2� 8�.k�1/.1� ı/:

Choosing  sufficiently small so that
8�2 � .1� ı/

implies that (7-1) holds for all r > 2�k�1. This finishes the inductive step, and hence the proof.
Note that there is no circular dependence between the constants  and "0. All conditions required

in the proof are satisfied for any smaller value. We choose "0 and  sufficiently small so that all these
conditions are met. �

8. C 1; regularity for nonlinear equations

It is by now standard that a Hölder regularity result as in Theorem 1.1 for kernels K that have rough
dependence in x and t implies a C 1;˛ estimate for solutions to nonlinear equations. The following is a
more precise statement.

Theorem 8.1. Assume ˛0 > 1, ˛ 2 Œ˛0; 2� and I is a translation-invariant nonlocal operator that
is uniformly elliptic with respect to the class of kernels that satisfy (A1), (A2), (A3) and (A4). Let
u W Rn � Œ�T; 0�! R be a bounded viscosity solution of the equation

ut � IuD f in B1 � Œ�T; 0�:

Then u. � ; t / 2 C 1C .B1=2/ for all t 2 Œ�T=2; 0� and u.x; � / 2 C .1C/=˛.Œ�T=2; 0�/ for all x 2 B1=2.
Moreover, the following regularity estimate holds:

sup
t2Œ�T=2;0�

ku. � ; t /kC1C .B1=2/C sup
x2B1=2

ku.x; � /kC .1C/=˛.Œ�T=2;0�/

� C
�
kukL1.Rn�Œ�T;0�/Ckf kL1.B1�Œ�T;0�/C I

�
:

The constants C and  depend only on �, ƒ, �, n and ˛0. Here  > 0 is the minimum between ˛0 � 1
and the constant  from Theorem 1.1 (or Theorem 7.2).

The proof of Theorem 8.1 is given in [Serra 2015] for the smaller class of symmetric kernels satisfying
(1-2). His proof uses the main result in [Chang Lara and Dávila 2014], and the proof of Theorem 8.1
follows simply by replacing it with Theorem 7.2 in this paper. There is only one comment that needs to be
made. In [Serra 2015], the following quantity is used a few times to control the tail of an integral operator

kukL1.Rn;!0/ WD

Z
Rn
u.x/.1Cjxj/�n�˛0 dx:

Because of our assumption (2-1), this quantity is not sufficient and needs to be replaced by

max
˚
x 2 Rn W .1Cjxj/"�˛0u.x/
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for some arbitrary small " > 0. After this small modification, the proof in [Serra 2015] straightforwardly
applies to prove Theorem 8.1 using Theorem 7.2.

The main example of a nonlinear integral operator I is the Isaacs operator from stochastic games:

Iu.x/D inf
i

sup
j

Z
Rn
ıhu.x; t/K

ij .h/ dh:

Here, the kernels Kij must satisfy the hypotheses (A1), (A2), (A3) and (A4) uniformly in i and j .
The result can also be extended to kernels Kij .x; h; t/ that are not translation-invariant provided that

they are continuous with respect to x and t . See [Serra 2015] for a discussion on this extension.

Appendix: The crawling ink spots theorem

We prove a version of the crawling ink spots theorem for fractional parabolic equations, which is a covering
argument that first appeared in the original work of Krylov and Safonov [1979]. There it is indicated that the
result was previously known by Landis, and it was Landis himself who came up with its suggestive name.

Let d˛ be the parabolic distance of order ˛. By definition, it is

d˛
�
.x0; t0/; .x1; t1/

�
Dmax

�
.2jt1� t2j/

1=˛; jx1� x2j
�
:

The parabolic cylinders Qr.x; t/ are balls of radius r centered at
�
x; t � 1

2
r˛
�

with respect to the
distance d˛ . The importance of this characterization is that it allows us to use the Vitali covering lemma,
since this result is valid in arbitrary metric spaces.

Lemma A.1. Let �> 0 and E �F �B1�R be two open sets that satisfy the following two assumptions:

� For every point .x; t/2F , there exists a cylinderQ�B1�R so that .x; t/2Q and jE\Qj� .1��/jQj.

� For every cylinder Q � B1 �R such that jE \Qj> .1��/jQj, we have Q � F .

Then jEj � .1� c�/jF j, where c is a constant depending on dimension only.

Proof. For every point .x; t/2F , letQ0 be the cylinder such that .x; t/2Q0 and jE\Q0j<.1��/jQ0j.
Recall that F is an open set. Let us choose a maximal cylinder Q.x;t/ such that .x; t/ 2 Q.x;t/,

Q.x;t/ �Q0 and Q.x;t/ �F . Two things may happen; either Q.x;t/DQ0, in which case jQ.x;t/\Ej<
.1��/jQ.x;t/j; or for any larger cylinderQ.x;t/�Q�Q0, we would haveQ 6�F . In the latter case, we
would have jE\Qj� .1��/jQj for any cylinderQ so thatQ.x;t/�Q�Q0. In particular, the inequality
holds for a decreasing sequence converging to Q.x;t/ and therefore jE \Q.x;t/j � .1��/jQ.x;t/j:

In any case, we have constructed a cover Q.x;t/ of the set F so that for all .x; t/ 2 F ,

� .x; t/ 2Q.x;t/,

� Q.x;t/ � F ,

� jQ.x;t/\Ej � .1��/jQ.x;t/j.

Using the Vitali covering lemma, we can select a countable subcollection of cylinders Qj such that
F �

S1
jD1 5Qj . Here each Qj is one of the cylinders Q.x;t/. We write 5Qj to denote the cylinder

expanded as a ball with respect to the metric d˛ with the same center and five times the radius.
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Since Qj � F and jE \Qj j � .1��/jQj j, we have jQj \ .F nE/j � �jQj j. Therefore,

jF nEj �

1X
jD1

jQj \ .F nE/j

�

1X
jD1

�jQj j

D 5�d�˛�

1X
jD1

j5Qj j � 5
�d�˛�jF j:

The lemma follows with c D 5�d�˛. �

Lemma A.1 is not applicable directly to parabolic equations. What we need is a covering lemma so
that if jE \Qj � .1��/jQj, then a time-shift of the cylinder Q is included in F instead of Q itself.
This time-shift is given by the cylinders Qm, which we defined in Section 6.

We now give the proof of the crawling ink spots theorem.

Proof of Theorem 6.3. Let Q be the collection of cylindersQ�B1�R such that jE\Qj>.1��/jQj. Let
GD

S
Q2QQ. By construction, E and G satisfy the assumptions of Lemma A.1; thus jEj � .1�c�/jGj.

In order to prove this theorem, we are left to show that jGj � .mC 1/=mjF j. For that, we will see thatˇ̌̌̌ [
Q2Q

Qm
ˇ̌̌̌
�

m

mC1

ˇ̌̌̌ [
Q2Q

Q[Qm
ˇ̌̌̌
�

m

mC1
jGj:

The second inequality above is trivial by the inclusion of the sets. The first inequality is not obvious since
the cylinders may overlap. We justify this first inequality below.

From Fubini’s theorem, the measure of any set A 2 B1 �R is given by

jAj D

Z
B1

L1.A\ .fxg �R// dx;

where L1 stands for the one-dimensional Lebesgue measure.
We finish the proof applying Fubini’s theorem and noticing that for all x 2 B1,

L1
� [
Q2Q

Qm\ .fxg �R/

�
�

m

mC1
L1
� [
Q2Q

.Q[Qm/\ .fxg �R/

�
:

This inequality follows from Lemma A.2, which is described below. �

The following lemma is copied directly from [Imbert and Silvestre 2013b, Lemma 2.4.25]. An
elementary proof is given there, which is independent of the rest of the text.

Lemma A.2. Consider two (possibly infinite) sequences of real numbers .ak/NkD1 and .hk/NkD1 for
N 2 N[f1g with hk > 0 for k D 1; : : : ; N . Thenˇ̌̌̌ N[

kD1

.ak; akC .mC 1/hk/

ˇ̌̌̌
�

m

mC1

ˇ̌̌̌ N[
kD1

.akC hk; akC .mC 1/hk/

ˇ̌̌̌
:
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