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We prove a mean ergodic theorem for amenable discrete quantum groups. As an application, we prove a
Wiener-type theorem for continuous measures on compact metrizable groups.
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1. Introduction

A countable discrete group 0 is called amenable if there exists a sequence {Fn}
∞

n=1 (called a right Følner
sequence) consisting of finite subsets Fn of 0 such that

lim
n→∞

1
|Fn|
|Fns1Fn| = 0

for every s ∈ 0.
Let (X,B, µ, 0) be a dynamical system consisting of a countable discrete amenable group 0 with a

measure-preserving action on a probability space (X,B, µ).
Recall that von Neumann’s mean ergodic theorem for amenable group actions on measure spaces says

the following:

Theorem 1.1 (measure space version of von Neumann’s mean ergodic theorem [Glasner 2003, Theo-
rem 3.33]). Let {Fn}

∞

n=1 be a right Følner sequence of 0. Then, for every f ∈ L2(X, µ), the sequence
(1/|Fn|)

∑
s∈Fn

s · f converges to P f with respect to the L2 norm, where P is the orthogonal projection
from L2(X, µ) onto the space {g ∈ L2(X, µ) | s · g = g for all s ∈ 0}.

R. Duvenhage [2008, Theorem 3.1] proves a generalization of von Neumann’s mean ergodic theorem
for coactions of amenable quantum groups on von Neumann algebras (noncommutative measure spaces).
Later, a more general version was proved by V. Runge and A. Viselter [2014, Theorem 2.2].
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There is also a version of von Neumann’s mean ergodic theorem for amenable group actions on Hilbert
spaces, which says the following:

Theorem 1.2 (Hilbert space version of von Neumann’s mean ergodic theorem). Let {Fn}
∞

n=1 be a right
Følner sequence of a countable discrete amenable group 0 and π :0→ B(H) be a unitary representation
of 0 on a Hilbert space H. Set H0 = {x ∈ H | π(s)x = x for all s ∈ 0}. Then

lim
n→∞

1
|Fn|

∑
s∈Fn

π(s)= P

under the strong operator topology on B(H), where P is the orthogonal projection from H onto H0.

The group C∗-algebra C∗(0) equals C(G) for a coamenable compact quantum group G with the dual
group Ĝ = 0. The counit ε of G is given by ε(δs)= 1 for all s ∈ 0. Hence,

H0 = {x ∈ H | π(a)x = ε(a)x for all a ∈ C∗(0)}.

With these in mind, the Hilbert space version of von Neumann’s mean ergodic theorem can be reformulated
in the framework of compact quantum groups as follows.

Suppose G is a coamenable compact quantum group such that the dual Ĝ is a countable discrete
amenable group 0. Let {Fn}

∞

n=1 be a right Følner sequence of 0 and π : C(G)= C∗(0)→ B(H) be a
representation of C∗(0) on a Hilbert space H . Then

lim
n→∞

1
|Fn|

∑
s∈Fn

π(s)= P

under the strong operator topology on B(H), where P is the orthogonal projection from H onto H0 =
{x ∈ H | π(a)x = ε(a)x for all a ∈ C∗(0)}.

D. Kyed proves that a compact quantum group G is coamenable if and only if there exists a right Følner
sequence {Fn}

∞

n=1 of finite subsets in its dual Ĝ, that is to say, G is a coamenable compact quantum group
if and only if Ĝ is an amenable discrete quantum group [2008, Definition 4.9.].1 So it is natural to ask for
a generalization of the Hilbert space version of von Neumann’s mean ergodic theorem to all amenable
discrete quantum groups. This is the main result of the paper.

Theorem 3.1 (mean ergodic theorem for amenable discrete quantum groups). Let G be a coamenable
compact quantum group with counit ε and let {Fn}

∞

n=1 be a right Følner sequence of Ĝ. Set Hinv =

{x ∈ H | π(a)x = ε(a)x for all a ∈ A}. For a representation π : A = C(G)→ B(H), we have

lim
n→∞

1
|Fn|w

∑
α∈Fn

dαπ(χ(α))= P (1-1)

under the strong operator topology, where P is the orthogonal projection from H onto Hinv.

1The existence of a Følner sequence for Kac-type compact quantum groups is shown by Z. Ruan [1996]. Also see [Tomatsu
2006].
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Here |Fn|w stands for the weighted cardinality of Fn . Definitions of |Fn|w, dα and χ(α) are in Section 2.
The left-hand side of (1-1) involves both a representation of a coamenable compact quantum group G

and that of its discrete quantum group dual Ĝ, so it illustrates some interactions between them.
The rest of the paper aims at an application of Theorem 3.1. Namely, we prove a Wiener-type theorem

for finite Borel measures on compact metrizable groups.
A finite Borel measure µ on a compact metrizable space X is called continuous or nonatomic if

µ{x} = 0 for every x ∈ X .
The following theorem of N. Wiener [1933] expresses finite Borel measures on the unit circle via their

Fourier coefficients.

Theorem 1.3 (Wiener’s theorem [Katznelson 2004, Chapter 1, Theorem 7.13]). For a finite Borel measure
µ on the unit circle T and every z ∈ T, one has

lim
N→∞

1
2N+1

N∑
n=−N

µ̂(n)z−n
= µ{z} and lim

N→∞

1
2N+1

N∑
n=−N

|µ̂(n)|2 =
∑
x∈T

µ{x}2.

Hence, µ is continuous if and only if

lim
N→∞

1
2N+1

N∑
n=−N

|µ̂(n)|2 = 0,

where µ̂(n) :=
∫

T
zn dµ(z) for n ∈ Z are the Fourier coefficients of µ.

There are various generalized Wiener’s theorems (we call such generalizations Wiener-type theorems),
including a version for compact manifolds [Taylor 1981, Chapter XII, Theorem 5.1], a version for compact
Lie groups by M. Anoussis and A. Bisbas [2000, Theorem 7], and a version for compact homogeneous
manifolds by M. Björklund and A. Fish [2009, Lemma 2.1].

We apply the above mean ergodic theorem (Theorem 3.1) to get a Wiener-type theorem on compact
metrizable groups. This version differs from previous ones mainly in two aspects: firstly we don’t require
smoothness on spaces; secondly we use a different Følner condition.

Theorem 4.1 (Wiener-type theorem for compact metrizable groups). Let G be a compact metrizable
group. Given y in G and a right Følner sequence {Fn}

∞

n=1 of Ĝ, for a finite Borel measure µ on G one has

lim
n→∞

1
|Fn|w

∑
α∈Fn

dα
∑

1≤i, j≤dα

µ(uαi j )u
α
i j (y)=µ{y} and lim

n→∞

1
|Fn|w

∑
α∈Fn

dα
∑

1≤i, j≤dα

|µ(uαi j )|
2
=

∑
x∈G

µ{x}2.

Hence, µ is continuous if and only if

lim
n→∞

1
|Fn|w

∑
α∈Fn

dα
∑

1≤i, j≤dα

|µ(uαi j )|
2
= 0.

Here the uαi j are the matrix coefficients of the irreducible unitary representation α of G; see Section 2
for the precise definition.

The paper is organized as follows.
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In Section 2, we collect some basic facts in compact quantum group theory. In Section 3, we prove the
mean ergodic theorem, i.e., Theorem 3.1. As a consequence, we obtain Corollary 3.7, which is used in
Section 4 to prove Theorem 4.1.

2. Preliminaries

Conventions. Within this paper, we use B(H, K ) to denote the space of bounded linear operators from a
Hilbert space H to another Hilbert space K , and B(H) stands for B(H, H).

A net {Tλ} ⊂ B(H) converges to T ∈ B(H) under the strong operator topology (SOT) if Tλx→ T x
for every x ∈ H , and {Tλ} converges to T ∈ B(H) under the weak operator topology (WOT) if
〈Tλx, y〉 → 〈T x, y〉 for all x , y ∈ H .

The notation A⊗ B always means the minimal tensor product of two C∗-algebras A and B.
For a state ϕ on a unital C∗-algebra A, we use L2(A, ϕ) to denote the Hilbert space of Gelfand–

Neimark–Segal (GNS) representations of A with respect to ϕ. The image of a ∈ A in L2(A, ϕ) is denoted
by â.

In this paper all C∗-algebras are assumed to be unital and separable.

Some facts about compact quantum groups. Compact quantum groups are noncommutative analogues
of compact groups. They were introduced by S. L. Woronowicz [1987; 1998].

Definition 2.1. A compact quantum group is a pair (A,1) consisting of a unital C∗-algebra A and a
unital ∗-homomorphism

1 : A→ A⊗ A

such that

(1) (id⊗1)1= (1⊗ id)1;

(2) 1(A)(1⊗ A) and 1(A)(A⊗ 1) are dense in A⊗ A.

One may think of A as C(G), the C∗-algebra of continuous functions on a compact quantum space G
with a quantum group structure. In the rest of the paper we write a compact quantum group (A,1) as G.
The ∗-homomorphism 1 is called the coproduct of G.

There exists a unique state h on A such that

(h⊗ id)1(a)= (id⊗h)1(a)= h(a)1A

for all a in A. The state h is called the Haar measure of G. Throughout this paper, we use h to denote it.
For a compact quantum group G, there is a unique dense unital ∗-subalgebra A of A such that:

(1) 1 maps from A to A�A (the algebraic tensor product).

(2) There exists a unique multiplicative linear functional ε :A→ C and a linear map κ :A→A such
that (ε⊗ id)1(a) = (id⊗ε)1(a) = a and m(κ ⊗ id)1(a) = m(id⊗κ)1(a) = ε(a)1 for all a ∈A,
where m : A�A→ A is the multiplication map. The functional ε is called the counit and κ the
coinverse of C(G).
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Note that ε is only densely defined and not necessarily bounded. If ε is bounded and h is faithful
(h(a∗a)= 0 implies a = 0), then G is called coamenable [Bédos et al. 2001]. Examples of coamenable
compact quantum groups include C(G) for a compact group G and C∗(0) for a discrete amenable
group 0.

A nondegenerate (unitary) representation U of a compact quantum group G is an invertible (unitary)
element in M(K (H)⊗ A) for some Hilbert space H satisfying that U12U13 = (id⊗1)U . Here K (H) is
the C∗-algebra of compact operators on H and M(K (H)⊗ A) is the multiplier C∗-algebra of K (H)⊗ A.

We write U12 and U13, respectively, for the images of U by two maps from M(K (H) ⊗ A) to
M(K (H)⊗ A⊗ A), where the first one is obtained by extending the map x 7→ x ⊗ 1 from K (H)⊗ A
to K (H)⊗ A⊗ A, and the second one is obtained by composing this map with the flip on the last two
factors. The Hilbert space H is called the carrier Hilbert space of U . From now on, we always assume
representations are nondegenerate. If the carrier Hilbert space H is of finite dimension, then U is called a
finite-dimensional representation of G.

For two representations U1 and U2 with the carrier Hilbert spaces H1 and H2, respectively, the set of
intertwiners between U1 and U2, Mor(U1,U2), is defined by

Mor(U1,U2)= {T ∈ B(H1, H2) | (T ⊗ 1)U1 =U2(T ⊗ 1)}.

Two representations U1 and U2 are equivalent if there exists a bijection T in Mor(U1,U2). A representation
U is called irreducible if Mor(U,U )∼= C.

Moreover, we have the following well-established facts about representations of compact quantum
groups:

(1) Every finite-dimensional representation is equivalent to a unitary representation.

(2) Every irreducible representation is finite-dimensional.

Let Ĝ be the set of equivalence classes of irreducible unitary representations of G. For every γ ∈ Ĝ, let
U γ
∈ γ be unitary and Hγ be its carrier Hilbert space with dimension dγ . After fixing an orthonormal

basis of Hγ , we can write U γ as (uγi j )1≤i, j≤dγ with uγi j ∈ A, and

1(uγi j )=

dγ∑
k=1

uγik ⊗ uγk j

for all 1≤ i, j ≤ dγ .
The matrix U γ is still an irreducible representation (not necessarily unitary) with the carrier Hilbert

space Hγ . It is called the conjugate representation of U γ and the equivalence class of U γ is denoted
by γ .

Given two finite-dimensional representations α and β of G, fix orthonormal bases for α and β and
write α and β as Uα and Uβ in matrix forms, respectively. Define the direct sum, denoted by α+β, as
the equivalence class of unitary representations of dimension dα + dβ given by(

Uα 0
0 Uβ

)
,
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and the tensor product, denoted by αβ, is the equivalence class of unitary representations of dimension dαdβ
whose matrix form is given by Uαβ

=Uα
13Uβ

23.
The character χ(α) of a finite-dimensional representation α is given by

χ(α)=

dα∑
i=1

uαi i .

Note that χ(α) is independent of the choice of representatives of α. Also we have ‖χ(α)‖ ≤ dα, since∑dα
k=1 uαik(u

α
ik)
∗
= 1 for every 1≤ i ≤ dα. Moreover,

χ(α+β)= χ(α)+χ(β), χ(αβ)= χ(α)χ(β) and χ(α)∗ = χ(α)

for finite-dimensional representations α and β.
Every representation of a compact quantum group is a direct sum of irreducible representations. For

two finite-dimensional representations α and β, denote by N γ

α,β the number of copies of γ ∈ Ĝ in the
decomposition of αβ into a sum of irreducible representations. Hence,

αβ =
∑
γ∈Ĝ

N γ

α,βγ.

We have the Frobenius reciprocity law [Woronowicz 1987, Proposition 3.4; Kyed 2008, Example 2.3]

N γ

α,β = Nα

γ,β
= Nβ

α,γ

for all α, β, γ ∈ Ĝ.
Throughout, we assume that A = C(G) is a separable C∗-algebra, which amounts to saying Ĝ is

countable.

Definition 2.2 [Kyed 2008, Definition 3.2]. Given two finite subsets S and F of Ĝ, the boundary of F
relative to S, denoted by ∂S(F), is defined by

∂S(F)= {α ∈ F | Nβ
α,γ > 0 for some γ ∈ S, β /∈ F} ∪ {α /∈ F | Nβ

α,γ > 0 for some γ ∈ S, β ∈ F}.

The weighted cardinality |F |w of a finite subset F of Ĝ is given by

|F |w =
∑
α∈F

d2
α.

D. Kyed proves a compact quantum group G is coamenable if and only if there exists a Følner sequence
in Ĝ.

Theorem 2.3 (Følner condition for amenable discrete quantum groups [Kyed 2008, Corollary 4.10]). A
compact quantum group G is coamenable if and only if there exists a sequence {Fn}

∞

n=1 (a right Følner
sequence) of finite subsets of Ĝ such that

lim
n→∞

|∂S(Fn)|w

|Fn|w
= 0

for every finite nonempty subset S of Ĝ.
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3. Mean ergodic theorem for amenable discrete quantum groups

In this section we prove the generalized mean ergodic theorem.

Theorem 3.1. Let G be a coamenable compact quantum group with counit ε and {Fn}
∞

n=1 be a right
Følner sequence of Ĝ. For a representation π : A = C(G)→ B(H), we have

lim
n→∞

1
|Fn|w

∑
α∈Fn

dαπ(χ(α))= P (3-1)

under the strong operator topology, where P is the orthogonal projection from H onto

Hinv = {x ∈ H | π(a)x = ε(a)x for all a ∈ A}.

We divide the proof into two major steps:

Step 1. We show that Hinv = K for K = {x ∈ H | π(χ(α))x = dαx for all α ∈ Ĝ}.

Step 2. The sequence
{
(1/|Fn|w)

∑
α∈Fn

dαπ(χ(α))
}∞

n=1 converges to the projection from H onto K .

Proof of Step 1 for Theorem 3.1. We proceed via two lemmas:

Lemma 3.2. If a state ϕ on A = C(G) for a compact quantum group G satisfies that ϕ(χ(α))= dα for
all α ∈ Ĝ, then ϕ = ε.

Proof. It suffices to show that ϕ(uαi j )= δi j for every α ∈ Ĝ and an arbitrary unitary U = (uαi j )1≤i, j≤dα ∈ α.
Let ϕ(U ) be the matrix (ϕ(uαi j )) in Mdα (C). Note that ϕ is a state, hence completely positive. By a

generalized Schwarz inequality of M. Choi [1974, Corollary 2.8], we have

ϕ(U )ϕ(U∗)≤ ϕ(UU∗)= 1.

Let Tr be the normalized trace of Mdα (C). Since ϕ(χ(α))= dα, we get Tr(ϕ(U ))= 1. It follows that

0≤ Tr
(
(ϕ(U )− 1)(ϕ(U )− 1)∗

)
= Tr(ϕ(U )ϕ(U )∗−ϕ(U )∗−ϕ(U )+ 1)

= Tr(ϕ(U )ϕ(U )∗)− 1

= Tr(ϕ(U )ϕ(U∗))− 1

≤ Tr(ϕ(UU∗))− 1= 0.

Hence, Tr
(
(ϕ(U )− 1)(ϕ(U )− 1)∗

)
= 0, which implies that ϕ(U )= 1. This ends the proof. �

Lemma 3.3. Let π : A = C(G)→ B(H) be a representation. Then

Hinv = K = {x ∈ H | π(χ(α))x = dαx for all α ∈ Ĝ}.

Proof. Note that ε(χ(α))= dα for all α ∈ Ĝ [Woronowicz 1998, Formula (5.11)]. Hence Hinv ⊆ K .
To show K ⊆ Hinv, we can assume K 6= 0 without loss of generality.
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Let x ∈K be an arbitrarily chosen unit vector. By Lemma 3.2, the state ϕx defined by ϕx(a)=〈π(a)x, x〉
for all a ∈ A is ε, since ϕx(χ(α))= dα for all α ∈ Ĝ.

For every a ∈ A, we have

‖π(a)x − ε(a)x‖2 = 〈π(a)x − ε(a)x, π(a)x − ε(a)x〉

= 〈π(a)x, π(a)x〉− 〈ε(a)x, π(a)x〉− 〈π(a)x, ε(a)x〉+ 〈ε(a)x, ε(a)x〉

= 〈π(a∗a)x, x〉− 〈ε(a)π(a∗)x, x〉− ε(a)〈π(a)x, x〉+ |ε(a)|2

= ε(a∗a)− ε(a)ε(a∗)− |ε(a)|2+ |ε(a)|2

= 0.

This proves that K ⊆ Hinv, and so concludes the proof of Step 1. �

Proof of Step 2 for Theorem 3.1. We start with a lemma:

Lemma 3.4. The orthogonal complement H⊥inv of Hinv is

V := Span
{
π(χ(α))x − dαx | α ∈ Ĝ, x ∈ H

}
.

We need the following well-known fact in functional analysis:

Proposition 3.5. Suppose {T j } j∈J is a family of bounded operators on a Hilbert space H. Then the
orthogonal complement of

⋂
j∈J ker T j is

ran{T ∗j | j ∈ J },

the closed linear span of the ranges ran T ∗j of T ∗j for all j in J .

Proof of Lemma 3.4. Consider the family of operators {π(χ(α))−dα}α∈Ĝ in B(H). These are self-adjoint
operators, since

(π(χ(α))− dα)∗ = π(χ(α))− dα,

Applying Proposition 3.5 to {π(χ(α))− dα}α∈Ĝ gives the proof. �

Now we are ready to finish the proof of Theorem 3.1.
For every x ∈ Hinv and all n, we have

1
|Fn|w

∑
α∈Fn

dαπ(χ(α))x =
1
|Fn|w

∑
α∈Fn

d2
αx = x .

Next we show that
1
|Fn|w

∑
α∈Fn

dαπ(χ(α))z→ 0

for all z ∈ V as n→∞. By Lemma 3.4, we only need to prove it for z of the form π(χ(γ ))y− dγ y for
every y ∈ H and γ ∈ Ĝ.
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For every y ∈ H and γ ∈ Ĝ, we have

lim
n→∞

1
|Fn|w

∑
α∈Fn

dαπ(χ(α))(π(χ(γ ))y− dγ y)

= lim
n→∞

1
|Fn|w

( ∑
α∈Fn\∂γ Fn

+
∑

α∈Fn∩∂γ Fn

)
dαπ(χ(α)χ(γ ))y− dαdγπ(χ(α))y

(by Theorem 2.3 and since χ(α)χ(γ )= χ(αγ ))

= lim
n→∞

1
|Fn|w

∑
α∈Fn\∂γ Fn

dαπ(χ(αγ ))y− dαdγπ(χ(α))y
(
αγ =

∑
β∈Fn

Nβ
α,γβ when α ∈ Fn \ ∂γ Fn

)
= lim

n→∞

1
|Fn|w

( ∑
α∈Fn\∂γ Fn

∑
β∈Fn

dαNβ
α,γπ(χ(β))y−

∑
α∈Fn\∂γ Fn

dαdγπ(χ(α))y
)
(Nβ

α,γ = Nα
β,γ and dγ = dγ )

= lim
n→∞

1
|Fn|w

( ∑
α∈Fn\∂γ Fn

∑
β∈Fn

dαNα
β,γπ(χ(β))y−

∑
α∈Fn\∂γ Fn

dαdγπ(χ(α))y
)

= lim
n→∞

1
|Fn|w

( ∑
α∈Fn\∂γ Fn

∑
β∈Fn

dαNα
β,γπ(χ(β))y−

∑
α∈Fn\∂γ Fn

[ ∑
β∈Fn

+
∑
β /∈Fn

]
Nβ

α,γ dβπ(χ(α))y
)

(exchange α and β in the second term)

= lim
n→∞

1
|Fn|w

( ∑
α∈Fn\∂γ Fn

∑
β∈Fn

dαNα
β,γπ(χ(β))y−

∑
β∈Fn\∂γ Fn

[ ∑
α∈Fn

+
∑
α/∈Fn

]
Nα
β,γ dαπ(χ(β))y

)
(common terms are canceled)

= lim
n→∞

1
|Fn|w

( ∑
α∈Fn\∂γ Fn

∑
β∈Fn∩∂γ Fn

dαNα
β,γπ(χ(β))y

−
∑

β∈Fn\∂γ Fn

∑
α∈Fn∩∂γ Fn

Nα
β,γ dβπ(χ(β))y−

∑
β∈Fn\∂γ Fn

∑
α/∈Fn

Nα
β,γ dαπ(χ(β))y

)
= 0.

Note that the last equality above holds since, by Theorem 2.3, we have the following:

(1)
1
|Fn|w

∥∥∥ ∑
α∈Fn\∂γ Fn

∑
β∈Fn∩∂γ Fn

dαNα
β,γπ(χ(β))y

∥∥∥≤ 1
|Fn|w

∑
β∈Fn∩∂γ Fn

∑
α∈Fn

dαNα
β,γ dβ‖y‖

≤
1
|Fn|w

∑
β∈Fn∩∂γ Fn

d2
βdγ ‖y‖→ 0;

(2)
1
|Fn|w

∥∥∥ ∑
β∈Fn\∂γ Fn

∑
α∈Fn∩∂γ Fn

Nα
β,γ dαπ(χ(β))y

∥∥∥≤ 1
|Fn|w

∑
β∈Fn\∂γ Fn

∑
α∈Fn∩∂γ Fn

Nα
β,γ dαdβ‖y‖

=
1
|Fn|w

∑
β∈Fn\∂γ Fn

∑
α∈Fn∩∂γ Fn

Nβ
α,γ dαdβ‖y‖

≤
1
|Fn|w

∑
α∈Fn∩∂γ Fn

d2
αdγ ‖y‖→ 0;
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(3)
1
|Fn|w

∥∥∥ ∑
β∈Fn\∂γ Fn

∑
α/∈Fn

Nα
β,γ dαπ(χ(β))y

∥∥∥≤ 1
|Fn|w

∑
β∈Fn\∂γ Fn

∑
α/∈Fn

Nα
β,γ dαdβ‖y‖

=
1
|Fn|w

∑
β∈Fn\∂γ Fn

∑
α/∈Fn, Nα

β,γ>0
Nα
β,γ dαdβ‖y‖

≤
1
|Fn|w

∑
β∈∂γ Fn

∑
α∈Ĝ

Nα
β,γ dαdβ‖y‖

=
1
|Fn|w

∑
β∈∂γ Fn

d2
βdγ ‖y‖→ 0 as n→∞.

This completes proof of Step 2 and therefore of Theorem 3.1. �

For a representation π : B→ B(H) of a unital C∗-algebra B, define the commutant π(B)′ of π(B) by

π(B)′ = {T ∈ B(H) | Tπ(b)= π(b)T for all b ∈ B}.

Corollary 3.6. In the setting of Theorem 3.1, the projection P is in π(A)′ ∩π(A)SOT.

Proof. The left-hand side of (3-1) is in π(A)SOT; hence, so is P . Moreover, for all x , y ∈ H and a ∈ A,
we have

〈π(a)Px, y〉 = ε(a)〈Px, y〉

and
〈Pπ(a)x, y〉 = 〈π(a)x, Py〉 = 〈x, π(a∗)Py〉 = 〈x, ε(a∗)Py〉 = ε(a)〈Px, y〉.

This proves P ∈ π(A)′. �

As a consequence, we have the following:

Corollary 3.7. Assume that ϕ is a pure state on A = C(G) for a coamenable compact quantum group G
and {Fn}

∞

n=1 is a right Følner sequence of Ĝ. Then

lim
n→∞

1
|Fn|w

∑
α∈Fn

dαϕ(χ(α))=
{

1 if ϕ = ε,
0 if ϕ 6= ε.

Proof. When ϕ = ε, we have ε(χ(α))= dα for all α ∈ Ĝ [Woronowicz 1998, Formula (5.11)]. Hence,

lim
n→∞

1
|Fn|w

∑
α∈Fn

dαε(χ(α))= 1.

Suppose ϕ 6= ε.
Consider the GNS representation πϕ : A→ B(L2(A, ϕ)). We have

lim
n→∞

1
|Fn|w

∑
α∈Fn

dαϕ(χ(α))= lim
n→∞

1
|Fn|w

∑
α∈Fn

dα
〈
πϕ(χ(α))(1̂), 1̂

〉
= 〈P(1̂), 1̂〉.

Hence, limn→∞(1/|Fn|w)
∑

α∈Fn
dαϕ(χ(α)) 6= 0 if and only if P(1̂) 6= 0.

To prove limn→∞(1/|Fn|w)
∑

α∈Fn
dαϕ(χ(α))= 0 for ϕ 6= ε, it suffices to prove P(1̂)= 0.
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Suppose P(1̂) 6=0. Then Hinv 6=0. By Corollary 3.6, the space Hinv is an invariant subspace of L2(A, ϕ).
Note that πϕ is irreducible since ϕ is a pure state. Hence Hinv = L2(A, ϕ). In particular, 1̂ ∈ Hinv. Thus,
for all a ∈ A, we have πϕ(a)(1̂)= ε(a)1̂. It follows that

ϕ(a)= 〈πϕ(a)(1̂), 1̂〉 = 〈ε(a)1̂, 1̂〉 = ε(a)

for all a ∈ A, which contradicts that ϕ 6= ε. �

4. A Wiener-type theorem for compact metrizable groups

In this section, we prove the following Wiener-type theorem:

Theorem 4.1. Let G be a compact metrizable group. Given y in G and a right Følner sequence {Fn}
∞

n=1
of Ĝ, for a finite Borel measure µ on G one has

lim
n→∞

1
|Fn|w

∑
α∈Fn

dα
∑

1≤i, j≤dα

µ(uαi j )u
α
i j (y)=µ{y} and lim

n→∞

1
|Fn|w

∑
α∈Fn

dα
∑

1≤i, j≤dα

|µ(uαi j )|
2
=

∑
x∈G

µ{x}2.

Hence, µ is continuous if and only if

lim
n→∞

1
|Fn|w

∑
α∈Fn

dα
∑

1≤i, j≤dα

|µ(uαi j )|
2
= 0.

Here (uαi j )1≤i, j≤dα ∈ Mdα (C(G)) stands for a unitary matrix presenting α ∈ Ĝ.

From now on G stands for a compact metrizable group. When thinking of G as a compact quantum
group, the coproduct

1 : C(G)→ C(G)⊗C(G)

is given by 1( f )(x, y)= f (xy), the coinverse κ : C(G)→ C(G) is given by κ( f )(x)= f (x−1) and the
counit ε : C(G)→ C is given by ε( f )= f (eG) for all f ∈ C(G) and x , y ∈ G. Here, eG is the neutral
element of G.

Definition 4.2. Given a finite Borel measure µ on G, the conjugate µ of µ is defined by

µ( f )=
∫

G
f (x−1) dµ(x)= µ(κ( f ))

for all f ∈ C(G), and µ is also a finite Borel measure on G. In other words, µ(E)= µ(E−1) for every
Borel subset E of G.

For x ∈ G, use δx to denote the Dirac measure at x .
The convolution µ ∗ ν of two finite Borel measures µ and ν on G is defined by

µ ∗ ν( f )= (µ⊗ ν)1( f )=
∫

G

∫
G

f (xy) dµ(x) dν(y)

for all f ∈ C(G). For every Borel subset E of G, we have

µ ∗ ν(E)=
∫

G
ν(x−1 E) dµ(x)=

∫
G
µ(Ey−1) dν(y).
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If either µ or ν is continuous, then so is µ ∗ ν.
We can write a finite Borel measure µ on G as µ=

∑
i λiδxi +µC for every atom xi with µ{xi } = λi

and a finite continuous Borel measure µC .

Lemma 4.3. Let µ be a finite Borel measure on G and {Fn}
∞

n=1 be a right Følner sequence of Ĝ. Then

lim
n→∞

1
|Fn|w

∑
α∈Fn

dαµ(χ(α))= µ{eG}.

Proof. By Corollary 3.7, the sequence
{
(1/|Fn|w)

∑
α∈Fn

dαχ(α)(x)
}
⊆C(G) converges pointwise to 1eG

(the characteristic function of {eG}). The terms of the sequence are bounded by 1 for all x ∈ G; hence, by
Lebesgue’s dominated convergence theorem [Rudin 1987, Theorem 1.34], we have

lim
n→∞

1
|Fn|w

∑
α∈Fn

dαµ(χ(α))= lim
n→∞

∫
G

1
|Fn|w

∑
α∈Fn

dαχ(α)(x) dµ(x)

=

∫
G

lim
n→∞

1
|Fn|w

∑
α∈Fn

dαχ(α)(x) dµ(x)

=

∫
G

1eG dµ= µ{eG}. �

Proof of Theorem 4.1. Given a finite Borel measure µ on G and y ∈ G, consider the measure µ∗ δy−1 . By
Lemma 4.3, we have

lim
n→∞

1
|Fn|w

∑
α∈Fn

dαµ ∗ δy−1(χ(α))= µ ∗ δy−1{eG}.

Note that

µ ∗ δy−1(χ(α))=

∫
G

∫
G
χ(α)(xz) dµ(x) dδy−1(z)

=

∫
G
χ(α)(xy−1) dµ(x)

=

∫
G

∑
1≤i≤dα

uαi i (xy−1) dµ(x)

=

∫
G

∑
1≤i≤dα

∑
1≤ j≤dα

uαi j (x)u
α
j i (y
−1) dµ(x)

=

∫
G

∑
1≤i≤dα

∑
1≤ j≤dα

uαi j (x)u
α
i j (y) dµ(x).

Moreover,

µ ∗ δy−1{eG} =

∫
G

∫
G

1eG (xz) dµ(x) dδy−1(z)=
∫

G
1eG (xy−1) dµ(x)= µ{y}.

This completes the proof of the first part.
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Applying Lemma 4.3 to µ ∗µ, we have

lim
n→∞

1
|Fn|w

∑
α∈Fn

dαµ ∗µ(χ(α))= µ ∗µ{eG}.

Since µ=
∑

xi atoms λiδxi +µC with λi = µ{xi } and µC a finite continuous Borel measure, we have

µ=
∑

xi atoms

λiδxi +µC =
∑

xi atoms

λiδx−1
i
+µC .

Hence,

µ ∗µ=
∑

i

∑
j

λiλ jδxi ∗ δx−1
j
+

∑
i

λiδxi ∗µC +
∑

j

λ jµC ∗ δx−1
j
+µC ∗µC .

Note that
∑

i λiδxi ∗µC +
∑

j λ jµC ∗ δx−1
j
+µC ∗µC is a finite continuous measure and∑

i, j

λiλ jδxi ∗ δx−1
j
=

∑
i, j

λiλ jδxi x−1
j
.

It follows that
µ ∗µ{eG} =

∑
xi atoms

λ2
i =

∑
xi atoms

µ{xi }
2
=

∑
x∈G

µ{x}2.

On the other hand,

µ ∗µ(χ(α))=

∫
G

∫
G
χ(α)(xy) dµ(x) dµ(y)

=

∫
G

∫
G
χ(α)(xy−1) dµ(x) dµ(y)

=

∫
G

∫
G

∑
1≤i≤dα

uαi i (xy−1) dµ(x) dµ(y)

=

∫
G

∫
G

∑
1≤i≤dα

∑
1≤ j≤dα

uαi j (x)u
α
j i (y
−1) dµ(x) dµ(y)

=

∑
1≤i≤dα

∑
1≤ j≤dα

∫
G

uαi j (x) dµ(x)
∫

G
uαi j (y) dµ(y)

=

∑
1≤i, j≤dα

|µ(uαi j )|
2.

This ends the proof of the first part, and the second follows immediately. �
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