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RESONANCE FREE REGIONS FOR NONTRAPPING MANIFOLDS WITH CUSPS

KIRIL DATCHEV

We prove resolvent estimates for nontrapping manifolds with cusps which imply the existence of arbitrarily
wide resonance free strips, local smoothing for the Schrödinger equation, and resonant wave expansions.
We obtain lossless limiting absorption and local smoothing estimates, but the estimates on the holomor-
phically continued resolvent exhibit losses. We prove that these estimates are optimal in certain respects.

1. Introduction

Resonance free regions near the essential spectrum have been extensively studied since the foundational
work of Lax and Phillips and of Vaı̆nberg. Their size is related to the dynamical structure of the set of
trapped classical trajectories. More trapping typically results in a smaller region, and the largest resonance
free regions exist when there is no trapping.

Example. Let H2 be the hyperbolic upper half plane. Let .X;g/ be a nonpositively curved, compactly
supported, smooth, metric perturbation of the quotient space hz 7! zC1inH2. As we show in Section 2D,
such a surface has no trapped geodesics (that is, all geodesics are unbounded).

Let .X;g/ be as in the example above, or as in Section 2A, with dimension nC1 and Laplacian �� 0.
The resolvent

�
�� 1

4
n2� �2

��1 is holomorphic for Im � > 0, except at any � 2 iR such that �2C
1
4
n2

is an eigenvalue, and has essential spectrum fIm � D 0g; see Figure 1.

Theorem. For all � 2 C1
0
.X /, there exists M0 > 0 such that for all M1 > 0 there exists M2 > 0 such

that the cutoff resolvent �
�
�� 1

4
n2��2

��1
� continues holomorphically to fjRe � j �M2; Im � ��M1g,

where it obeys the estimate

���� 1
4
n2
� �2

��1
�




L2.X /!L2.X /
�M2j� j

�1CM0jIm� j: (1-1)

In the example above, and in many of the examples in Section 2D, �
�
�� 1

4
n2��2

��1
� is meromorphic

in C. The poles of the meromorphic continuation are called resonances.
Logarithmically large resonance free regions go back to work of Regge [1958] on potential scattering.

In the setting of obstacle scattering they go back to work of Lax and Phillips [1989] and Vaı̆nberg [1989],
whose results were generalized by Morawetz, Ralston and Strauss [1977] and Melrose and Sjöstrand
[1982]. When X is Euclidean outside of a compact set, they have been established for very general
nontrapping perturbations of the Laplacian by Sjöstrand and Zworski in [2007, Theorem 1], which
extends earlier work of Martinez [2002] and Sjöstrand [1990]. More recently, Baskin and Wunsch [2013],
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Figure 1. We prove that the cutoff resolvent continues holomorphically to arbitrarily
wide strips and obeys polynomial bounds.

Galkowski and Smith [2015], and Galkowski [2015; 2016] have weakened slightly the sense in which
the perturbation must be nontrapping. These works give a larger resonance free region and a stronger
resolvent estimate than the Theorem above, but require asymptotically Euclidean geometry near infinity.
On the other hand, as shown in recent work of Datchev, Kang and Kessler [2015], nontrapping manifolds
with cusps which are merely C 1;1 (and not C1) do not have arbitrarily wide resonance free strips as in
the Theorem.

The manifolds considered in this paper are nontrapping, but the cusp makes them not uniformly so:
for a sufficiently large compact set K �X , we have

sup

2�

diam 
�1.K/DC1;

where � is the set of unit-speed geodesics in X . This is because geodesics may travel arbitrarily far into
the cusp before escaping down the funnel; this dynamical peculiarity makes it difficult to separate the
analysis in the cusp from the analysis in the funnel and is the reason for the relatively involved resolvent
estimate gluing procedure we use below.

Resonance free strips also exist in some trapping situations, with width determined by dynamical
properties of the trapped set. These go back to work of Ikawa [1982], with recent progress by Non-
nenmacher and Zworski [2009; 2015], Petkov and Stoyanov [2010], Alexandrova and Tamura [2011],
Wunsch and Zworski [2011], Dyatlov [2015b], and Dyatlov and Zahl [2015]. Resonance free regions and
resolvent estimates have applications to evolution equations, and this is an active area: examples include
resonant wave expansions and wave decay, local smoothing estimates, Strichartz estimates, geometric
control, wave damping, and radiation fields [Burq 2004; Burq and Zworski 2004; Bony and Häfner 2008;
Guillarmou and Naud 2009; Christianson 2009; Burq, Guillarmou and Hassell 2010; Dyatlov 2012;
2015a; Melrose, Sá Barreto and Vasy 2014; Christianson, Schenck, Vasy and Wunsch 2014; Wang 2014];
see also [Wunsch 2012] for a recent survey and more references. In Section 7 we apply (1-1) to local
smoothing and resonant wave expansions.

If .X;g/ is evenly asymptotically hyperbolic (in the sense of Mazzeo and Melrose [1987] and Guillar-
mou [2005]) and nontrapping, then for any M1 > 0 there is M2 > 0 such that

���� 1

4
n2
� �2

��1
�




L2.X /!L2.X /
�M2j� j

�1; jRe � j �M2; Im � � �M1; (1-2)
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by work of Vasy [2013, (1.1)] (see also the analogous estimate for asymptotically Euclidean spaces by
Sjöstrand and Zworski [2007, Theorem 10], and related but slightly weaker estimates for more general
asymptotically hyperbolic and conformally compact manifolds by Wang [2014] and Sá Barreto and
Wang [2015]).

The bound (1-1) is weaker than (1-2) due to the presence of a cusp. Indeed, by studying low angular
frequencies (which correspond to geodesics which travel far into the cusp before escaping down the
funnel) in Proposition 8.1 we show that if .X;g/D hz 7! zC 1inH2, then

���� 1

4
n2
� �2

��1
�




L2.X /!L2.X /
� e�C jIm� j

j� j�1C2jIm� j=C (1-3)

for � in the lower half-plane and near, but bounded away from, the real axis.
The lower bound (1-3) gives a sense in which (1-1) is optimal, but finding the maximal resonance free

region remains an open problem. The only known explicit example of this type is .X;g/Dhz 7! zC1inH2,
for which Borthwick [2007, §5.3] expresses the resolvent in terms of Bessel functions and shows there is
only one resonance and it is simple (see also Proposition 8.1). On the other hand, Guillopé and Zworski
[1997] study more general surfaces, and prove that if the 0-volume is not zero, then there are infinitely
many resonances and optimal lower and upper bounds hold on their number in disks. We apply their
result to our setting in Section 2D, giving a family of surfaces with infinitely many resonances to which
our Theorem applies, but it is not clear even in this case whether or not the resonance free region given
by the Theorem is optimal. The delicate nature of this question is indicated by the result in [Datchev,
Kang and Kessler 2015] showing that nontrapping manifolds with cusps which are merely C 1;1 (and not
C1) do not have arbitrarily wide resonance free strips.

Cardoso and Vodev [2002, Corollary 1.2], extending work of Burq [1998; 2002], proved resolvent
estimates for very general infinite-volume manifolds (including the ones studied here; note that the
presence of a funnel implies that the volume is infinite) which imply an exponentially small resonance
free region. Our Theorem gives the first large resonance free region for a family of manifolds with cusps.

For Im � D 0, (1-1) is lossless; that is to say it agrees with the result for general nontrapping operators
on asymptotically Euclidean or hyperbolic manifolds (see [Cardoso, Popov and Vodev 2004, (1.6)] and
references therein). However, if .X;g/ is asymptotically Euclidean or hyperbolic in the sense of [Datchev
and Vasy 2012a, §4], then the gluing methods of that paper show that such a lossless estimate for Im � D 0

implies (1-2) for some M1 > 0; see [Datchev 2012]. In this sense it is due to the cusp that O.j� j�1/

bounds hold for Im � D 0 but not in any strip containing the real axis.
The Theorem also provides a first step in support of the following:

Conjecture (fractal Weyl upper bound). Let � be a geometrically finite discrete group of isometries of
HnC1 such that X D �nHnC1 is a smooth noncompact manifold. Let R.X / denote the set of eigenvalues
and resonances of X included according to multiplicity, let K � T �X be the set of maximally extended,
bounded, unit speed geodesics, and let m be the Hausdorff dimension of K. Then for any C0 > 0 there is
C1 > 0 such that, for r 2 R,

#f� 2R.X / W j� � r j � C0g � C1.1Cjr j/
.m�1/=2:
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This statement is a partial generalization to the case of resonances of the Weyl asymptotic for eigenvalues
of a compact manifold; such results go back to work of Sjöstrand [1990]. If �nHnC1 has funnels but no
cusps, this is proved in [Datchev and Dyatlov 2013] (generalizing earlier results of Zworski [1999] and
Guillopé, Lin and Zworski [2004]); if X D �nH2 has cusps but no funnels, this follows from work of
Selberg [1990]. When nD 1 the remaining case is �nH2 having both cusps and funnels. The methods of
the present paper, combined with those of [Sjöstrand and Zworski 2007; Datchev and Dyatlov 2013],
provide a possible approach to the conjecture in this case. When n� 2, cusps can have mixed rank, and
in this case even meromorphic continuation of the resolvent was proved only recently by Guillarmou and
Mazzeo [2012].

In Section 2 we give the general assumptions on .X;g/ under which the Theorem holds, and deduce
consequences for the geodesic flow and for the spectrum of the Laplacian. We then give examples
of manifolds which satisfy the assumptions, including examples with infinitely many resonances and
examples with at least one eigenvalue.

In Section 3 we use a resolvent gluing method, based on one developed in [Datchev and Vasy 2012a],
to reduce the Theorem to proving resolvent estimates and propagation of singularities results for three
model operators. The first model operator is semiclassically elliptic outside of a compact set, and we
analyze it in Section 4 following [Sjöstrand and Zworski 2007] and [Datchev and Vasy 2012a].

In Section 5 we study the second model operator, the model in the cusp. We use a separation of
variables, a semiclassically singular rescaling, and an elliptic variant of the gluing method of Section 3 to
reduce its study to that of a family of one-dimensional Schrödinger operators for which uniform resolvent
estimates and propagation of singularities results hold. The rescaling causes losses for the resolvent
estimate on the real axis, and we remove these by a noncompact variant of the method of propagation of
singularities through trapped sets developed in [Datchev and Vasy 2012b]. The lower bound (1-3) shows
that these losses cannot be removed for the continued resolvent; see also [Bony and Petkov 2013] for
related and more general lower bounds in Euclidean scattering.

In Section 6 we study the third model operator, the model in the funnel, and we again reduce to a family
of one-dimensional Schrödinger operators. To obtain uniform estimates we use a variant of the method of
complex scaling of Aguilar and Combes [1971] and Simon [1972], following the geometric approach
of Sjöstrand and Zworski [1991]. The method of complex scaling was first adapted to such families of
operators by Zworski [1999], but we use here the approach of [Datchev 2010], which is slightly simpler
and is adapted to nonanalytic manifolds. The analysis in this section could be replaced by that of [Vasy
2013], which avoids separating variables; the advantage of our approach is that it gives an estimate in a
logarithmically large neighborhood of the real axis (although this does not make a difference here) and
also requires less preliminary setup.

In Section 7 we apply (1-1) to local smoothing and resonant wave expansions. For the latter we need
the additional assumption, satisfied in the example above and in many of the examples in Section 2D,
that �

�
� � 1

4
n2 � �2

��1
� is meromorphic in C. In Section 8 we prove (1-3) using Bessel function

asymptotics.
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2. Preliminaries

Throughout the paper C > 0 is a large constant which may change from line to line, and estimates are
always uniform for h 2 .0; h0�, where h0 > 0 may change from line to line.

2A. Assumptions. Let S be a compact manifold (without boundary) of dimension n, and let

X WD Rr �S:

Let Rg > 0, and let g be a Riemannian metric on X such that

gjf˙r>Rgg D dr2
C e2.rCˇ.r//dS˙; (2-1)

where dSC and dS� are metrics on S , Rg > 0 and ˇ 2 C1.R/. We call the region fr <�Rgg the cusp,
and the region fr >Rgg the funnel; see Figure 2.

Suppose there is �0 2
�
0; �

4

�
such that ˇ is holomorphic and bounded in the sectors where jzj>Rg

and minfjarg zj; jarg.�z/jg< 2�0. By Cauchy estimates, for all k 2 N there are C;Ck > 0, such that if
jzj>Rg and minfjarg zj; jarg.�z/jg � �0, then

jˇ.k/.z/j � Ck jzj
�k ; jImˇ.z/j � C jIm zj=jzj:

In particular, after possibly redefining Rg to be larger, we may assume without loss of generality that, for
all r 2 R,

jˇ0.r/jC jˇ00.r/j � 1
4
: (2-2)

In the example at the beginning of the paper ˇ� 0. When the funnel end is an exact hyperbolic funnel,
ˇ.r/D C C log.1C e�2r / for r >Rg.

We make two dynamical assumptions: if 
 W R!X is a maximally extended geodesic, assume 
 .R/
is not bounded and 
�1.fr < �Rgg/ is connected. See Section 2D for examples.

cuspD fr < �Rgg funnelD fr >Rgg

Figure 2. The manifold X .
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2B. Dynamics near infinity. Let pC 1 2 C1.T �X / be the geodesic Hamiltonian; that is,

p D �2
C e�2.rCˇ.r//�˙� 1

in the region f˙r >Rgg, where � is dual to r , and �˙ is the geodesic Hamiltonian of .S; dS˙/. From
this we conclude that, along geodesic flow lines, we have

Pr.t/DHp�D 2�.t/; P�.t/D�Hpr D 2Œ1Cˇ0.r.t//�e�2.rCˇ.r.t///�˙;

so long as the trajectory remains within f˙r >Rgg. In particular,

Rr.t/D 4Œ1Cˇ0.r.t//�e�2.rCˇ.r.t///�˙ � 0: (2-3)

Dividing the equation for P� by pC 1� �2, putting O�D �=
p

pC 1, and integrating we find

tanh�1
O�.t/� tanh�1

O�.0/D 2
p

pC 1

�
t C

Z t

0

ˇ0.r.s// ds

�
�

3

4

r.t/� r.0/

maxf O�.s/ W s 2 Œ0; t �g
; (2-4)

where the equality holds so long as the trajectory remains in f˙r > Rgg, and the inequality (which
follows from (2-2) and the equation for Pr ) holds when additionally t � 0, �.0/� 0.

2C. The essential spectrum and semiclassical formulation of the problem. The nonnegative Laplacian
is given by

�jf˙r>Rgg DD2
r � i n.1Cˇ0.r//Dr C e�2.rCˇ.r//�S˙

;

where Dr D�i@r , and �S˙
is the Laplacian on .S; dS˙/. Fix ' 2 C1.X / such that

'jfjr j>Rgg D
1
2
n.r Cˇ.r//: (2-5)

Then

.e'�e�'/
ˇ̌
f˙r>Rgg

DD2
r C e�2.rCˇ.r//�S˙

C
1
4
n2
CV .r/; (2-6)

where

V .r/D '00C'0
2
�

1
4
n2
D

1
2
nˇ00C 1

2
n2ˇ0C 1

4
n2ˇ0

2
:

This shows that the essential spectrum of � is
�

1
4
n2;1

�
(see for example [Reed and Simon 1978,

Theorem XIII.14, Corollary 3]); the potential perturbation V is relatively compact since ˇ0 and ˇ00 tend
to zero at infinity (see for example Rellich’s criterion [ibid., Theorem XIII.65]).

In this paper we study

P WD h2
�
e'�e�' � 1

4
n2
�
� 1: (2-7)

This is an unbounded selfadjoint operator on L2
'.X / WD fe

'u W u 2L2.X /g with domain

H 2
' .X / WD fu 2L2

'.X / W e
'�e�'u 2L2

'.X /g D fe
'u W u 2H 2.X /g:

Over the course of Sections 3–6 we will prove the following:
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Proposition 2.1. For every � 2 C1
0
.X /, E 2 .0; 1/ there exists C0 > 0 such that for every � > 0 there

exist C; h0 > 0 such that the cutoff resolvent �.P ��/�1� continues holomorphically from fIm� > 0g to
Œ�E;E�� i Œ0; �h� and satisfies

k�.P ��/�1�kL2
'.X /!L2

'.X /
� C h�1�C0jIm�j=h (2-8)

uniformly for � 2 Œ�E;E�� i Œ0; �h� and h 2 .0; h0�.

This implies the Theorem.

2D. Examples. In this section we give a family of examples of manifolds satisfying the assumptions
of Section 2A. I am very grateful to John Lott for suggesting this family of examples. In this section
dg.p; q/ denotes the distance between p and q with respect to the Riemannian metric g, and Lg.c/

denotes the length of a curve c with respect to g.
Let .HnC1;gh/ be hyperbolic space with coordinates

.r;y/ 2 R�Rn; gh WD dr2
C e2r dy2:

Let .X;gh/ be a parabolic cylinder obtained by quotienting the y variables to a torus:

X WD R�
�
hy 7! yC c1; : : : ;y 7! yC cninR

n
�
;

where the cj are linearly independent vectors in Rn. Let Rg > 0, put dSC D dS� D dy2, and take
ˇ 2 C1.R/ satisfying all assumptions of Section 2A, including (2-2). On fjr j>Rgg define g by (2-1),
and on fjr j �Rgg let g be any metric with all sectional curvatures nonpositive. The calculation in the
Appendix shows that the sectional curvatures in fjr j>Rgg are nonpositive so long as (2-2) holds.

The two dynamical assumptions in the last paragraph of Section 2A will follow from the following
classical theorem (see for example [Bridson and Haefliger 1999, Theorem III.H.1.7]).

Proposition 2.2 (stability of quasigeodesics). Let .HnC1;gh/ be the .nC1/-dimensional hyperbolic
space, let p; q 2 HnC1, and let 
h W Œt1; t2�! HnC1 be the unit-speed geodesic from p to q. Suppose
c W Œt1; t2�! HnC1 satisfies c.t1/D p, c.t2/D q, and there is C1 > 0 such that

1

C1

jt � t 0j � dgh
.c.t/; c.t 0//� C1jt � t 0j (2-9)

for all t; t 0 2 Œt1; t2�. Then

max
t2Œt1;t2�

dgh
.
h.t/; c.t//� C2; (2-10)

where C2 depends only on C1.

To apply this theorem, observe first that just as gh descends to a metric on X , so g lifts to a metric
on HnC1; call the lifted metric g as well. Observe there is Cg such that

1

Cg
gh.u;u/� g.u;u/� Cggh.u;u/; u 2 TxX; x 2X: (2-11)
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Indeed, for x varying in a compact set this is true for any pair of metrics, and on fjr j>Rgg it suffices if
Cg� e2 max jˇj. We will show that if c is a unit-speed g-geodesic in Hn, then (2-9) holds with a constant C1

depending only on Cg. Since both g and gh have nonnegative curvature and hence distance-minimizing
geodesics, it is equivalent to show that

1

C1

dg.p; q/� dgh
.p; q/� C1dg.p; q/ (2-12)

holds for all p; q 2 HnC1, with a constant C1 which depends only on Cg. For this last we compute as
follows: let 
 be a unit-speed g-geodesic from p to q. Then

dgh
.p; q/�Lgh

.
 /D

Z t2

t1

p
gh. P
 ; P
 / dt �

Z t2

t1

q
Cgg. P
 ; P
 / dt D

p
Cg Lg.
 /D

p
Cg dg.p; q/:

This proves the second inequality of (2-12), and the first follows from the same calculation since (2-11) is
unchanged if we switch g and gh.

Let 
 W R!X be a g-geodesic and 
h W R!X a gh-geodesic. For any x 2X we have

lim
t!1

dgh
.
h.t/;x/D lim

t!1
dg.
h.t/;x/D1;

and by (2-10) the same holds if 
h is replaced by 
 . In particular 
 .R/ is not bounded.
We check finally that 
�1.fr < �Rgg/ is connected. It suffices to check that if instead 
 W R!HnC1

is a g-geodesic, then 
�1.fr < �N g/ is connected for N large enough, with N independent of 
 . We
then conclude by redefining Rg to be larger than N .

We argue by way of contradiction. From (2-3) we see that Pr.t/ is nondecreasing along 
 in fr <�Rgg.
Hence, if 
�1.fr < �N g/ is to contain at least two intervals for some N >Rg, there must exist times
t1< t2< t3 such that r.
 .t1//; r.
 .t3//<�N and r.
 .t2//D�Rg. Now the gh-geodesic 
h W Œt1; t3�!Hn

joining 
 .t1/ to 
 .t3/ has r.
h.t// <�N for all t 2 Œt1; t3�. It follows that dgh
.
h.t2/; 
 .t2//�N �Rg,

and if N is large enough this violates (2-10).

2D1. Examples with infinitely many resonances. In this subsection we specialize to the case n D 1,
ˇ.r/D 0 for r <�Rg, ˇ.r/D ˇ0C log.1C e�2r / for r >Rg and for some ˇ0 2 R. Then the cusp and
funnel of X are isometric to the standard cusp and funnel obtained by quotienting H2 by a nonelementary
Fuchsian subgroup (see, e.g., [Borthwick 2007, §2.4]; note that the funnel end is slightly different here
than in the example at the beginning of the paper).

In particular there is l > 0 such that

X D Rr � .R= lZ/t ; gjfr>Rgg D dr2
C cosh2 r dt2:

If .X0;g0/D Œ0;1/� .R= lZ/, g0 D dr2C cosh2 r dt2, then the 0-volume of X is

0-vol.X / def
D volg.X \fr <Rgg/� volg0

.X0\fr <Rgg/:

Let R�.�/ denote the meromorphic continuation of �
�
� � 1

4
� �2

��1
�. In this case, R�.�/ is

meromorphic in C [Mazzeo and Melrose 1987; Guillopé and Zworski 1997], and near each pole �0 we
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have

R�.�/D �

� kX
jD1

Aj

.� � �0/j
CA.�/

�
�;

where the Aj WL
2
comp.X /!L2

loc.X / are finite rank and A.�/ is holomorphic near �0. The multiplicity
of a pole, m.�0/ is given by

m.�/
def
D rank

� kX
jD1

Aj

�
:

Proposition 2.3 [Guillopé and Zworski 1997, Theorem 1.3]. If 0-vol.X / ¤ 0, then there exists a con-
stant C such that

�2=C �
X
j� j��

m.�/� C�2; � > C:

We can ensure that 0-vol.X / ¤ 0 by adding, if necessary, a small compactly supported metric
perturbation to g. Then, as �!1, the meromorphic continuation of R� will have � �2-many poles in a
disk of radius �, but none of them will be in the strips (1-1).

2D2. Examples with at least one eigenvalue. In this subsection we consider examples of the form

X WD R� .Rn=Zn/; g WD dr2
C exp

�
2r C 2

Z r

�1

b

�
dy2; b 2 C10 .R/: (2-13)

As in (2-3), we have Rr D 4.1Cb.r//e�2.rC
R r

b/� , and this is nonnegative as long as b��1; consequently,
as long as b � �1 the assumptions of Section 2A hold. We will give a sufficient condition on b such that
X has at least one eigenvalue, and also infinitely many resonances.

By the calculation in Section 2C, if '.r/ WD 1
2

�
r C

R r
�1

b
�

for all r 2 R, then

e�'�e' DD2
r C e�2.rC

R r
b/�Rn=Zn C

1
4
n2
CV .r/; V .r/ WD 1

2
nb0.r/C 1

4
n2b.r/2C 1

2
n2b.r/:

Note V 2 C1
0
.R/, and consequently (see for example [Reed and Simon 1978, Theorem XIII.110])

D2
r CV .r/ has a negative eigenvalue provided V 6� 0 and

R
V � 0; it suffices for example to take b � 0.

But Zworski [1987, Theorem 2] has shown that if V 6� 0, then D2
r CV .r/ has infinitely many resonances:

indeed, the number in a disk of radius � is given by

2

�
.diam supp V /�C o.�/; �!1:

This eigenvalue and these resonances correspond to an eigenvalue and resonances for �: one multiplies
the eigenfunction and resonant states by e' and regards them as functions on X which depend on r only.

In summary, if .X;g/ is given by (2-13), then the assumptions of Section 2A hold if b � �1. It has
infinitely many resonances and at least one eigenvalue if additionally b 6� 0, b � 0.

2E. Pseudodifferential operators. In this section we review some facts about semiclassical pseudo-
differential operators, following [Dimassi and Sjöstrand 1999; Zworski 2012; Dyatlov and Zworski
2016].
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2E1. Pseudodifferential operators on Rn. For m 2 R, ı 2
�
0; 1

2

�
, let Sm

ı
.Rn/ be the symbol class of

functions aD ah.x; �/ 2 C1.T �Rn/ satisfying

j@˛x@
ˇ

�
aj � C˛;ˇh�ı.j˛jCjˇj/.1Cj�j2/.m�jˇj/=2 (2-14)

uniformly in T �Rn. The principal symbol of a is its equivalence class in Sm
ı
.Rn/=hSm�1

ı
.Rn/. Let

Sm.Rn/D Sm
0
.Rn/.

We quantize a 2 Sm
ı
.Rn/ to an operator Op.a/ using the formula

.Op.a/u/.x/D
1

.2�h/n

“
ei.x�y/��=hah.x; �/u.y/ dy d�; (2-15)

and put ‰m
ı
.Rn/D fOp.a/ W a 2 Sm

ı
.Rn/g, ‰m.Rn/D‰m

0
.Rn/. If AD Op.a/ then a is the full symbol

of A, and the principal symbol of A is the principal symbol of a. If A 2‰m
ı
.Rn/, then for any s 2 R we

have kAk
H

sCm
h

.Rn/!H s
h
.Rn/
� C , where (if �� 0)

kukH s
h
.Rn/ D k.1C h2�/s=2ukL2.Rn/:

If A2‰m
ı
.Rn/ and B 2‰m0

ı
.Rn/, then AB 2‰mCm0

ı
.Rn/ and ŒA;B�DAB�BA2h1�2ı‰mCm0�1

ı
.Rn/.

If a and b are the principal symbols of A and B, then the principal symbol of h2ı�1ŒA;B� is iHba, where
Hb is the Hamiltonian vector field of b.

If K � T �Rn has either K or T �Rn nK bounded in �, then a 2 Sm
ı
.Rn/ is elliptic on K if

jaj � .1Cj�j2/m=2=C (2-16)

uniformly for .x; �/ 2K. We say that A 2‰m
ı
.Rn/ is elliptic on K if its principal symbol is. For such K,

we say A is microsupported in K if the full symbol a of A obeys

j@˛x@
ˇ

�
aj � C˛;ˇ;N hN .1Cj�j2/�N (2-17)

uniformly on T �RnnK, for any ˛; ˇ;N . If A1 is microsupported in K1 and A2 is microsupported in K2,
then A1A2 is microsupported in K1\K2.

If A 2 ‰m
ı
.Rn/ is elliptic on K, then it is invertible there in the following sense: there exists G 2

‰�m
ı
.Rn/ such that AG� Id and GA� Id are both microsupported in T �Rn nK. Hence if B 2‰m0

ı
.Rn/

is microsupported in K and A is elliptic in an "-neighborhood of K for some "> 0, then, for any s;N 2R,

kBuk
H

sCm
h

.Rn/
� CkABukH s

h
.Rn/CO.h1/kukH�N

h
.Rn/: (2-18)

The sharp Gårding inequality says that if the principal symbol of A 2‰m
ı
.Rn/ is nonnegative near K

and B 2‰m0

ı
.Rn/ is microsupported in K, then

hABu;BuiL2.Rn/ � �C h1�2ı
kBuk2

H .m�1/=2.Rn/
�O.h1/kukH�N

h
.Rn/: (2-19)
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2E2. Pseudodifferential operators on a manifold. These results extend to the case of a noncompact
manifold X , provided we require our estimates to be uniform only on compact subsets of X . For
convenience we work in the setting of Section 2A, with the notation of Section 2C, but the discussion
below applies to any manifold; see also the discussions in [Datchev and Dyatlov 2013, §3.1] and [Dyatlov
and Zworski 2016, Appendix E]. Note that we take care to quantize a symbol which is compactly supported
in space to an operator which is compactly supported in space.

Write Sm
ı
.X / for the symbol class of functions a2C1.T �X / satisfying (2-14) on coordinate patches

(note that this condition is invariant under change of coordinates). The principal symbol of a is its
equivalence class in Sm

ı
.X /=hSm�1

ı
.X /, and let Sm.X /D Sm

0
.X /.

Let h1‰�1.X / be the set of linear operators R such that for any � 2 C1
0
.X /, we have

k�RkH�N
';h

.X /!H N
';h
.X /CkR�kH�N

';h
.X /!H N

';h
.X / � CN hN

for any N , where

kukH s
';h
.X / WD k.2CP /s=2ukL2

'.X /:
(2-20)

We quantize a 2 Sm
ı
.X / to an operator Op.a/ by using a partition of unity and the formula (2-15) in

coordinate patches. Let ‰m
ı
.X /D fOp.a/CR W a 2 Sm

ı
.X /;R 2 h1‰�1.X /g. The quantization Op

depends on the choices of coordinates and partition of unity, but the class‰m
ı
.X / does not. If A2‰m

ı
.X /

and � 2 C1
0
.X /, then �A and A� are bounded as operators H sCm

';h
.X /!H s

';h
.X /, uniformly in h. If

A 2‰m
ı
.X / and B 2‰m0

ı
.X /, then

AB 2‰mCm0

ı
.X / and h2ı�1ŒA;B� 2‰mCm0�1

ı
.X /:

If a and b are the principal symbols of A and B (the principal symbol is invariantly defined, although
the total symbol is not), then the principal symbol of h2ı�1ŒA;B� is iHba, where Hb is the Hamiltonian
vector field of b.

Let K � T �X have either K\T �U bounded for every bounded U �X , or T �U nK bounded for
every bounded U �X . We say a 2 Sm

ı
.X / is elliptic on K if (2-16) holds uniformly on T �U \K for

every bounded U �X . We say that A 2‰m
ı
.X / is elliptic on K if its principal symbol is. We say A is

microsupported in K if a full symbol a of A obeys (2-17) uniformly on T �U nK for every bounded
U �X and for any ˛; ˇ;N (note that if this holds for one full symbol of A, it also does for all the others).

If B 2‰m0

ı
.X / is microsupported in K and A is elliptic in an "-neighborhood of K for some " > 0,

then, for any s;N 2 R and � 2 C1
0
.X /,

kB�uk
H

sCm
';h

.X /
� CkAB�ukH s

';h
.X /CO.h1/k�ukH�N

';h
.X /: (2-21)

The sharp Gårding inequality says that if the principal symbol of A 2‰m
ı
.X / is nonnegative near K and

B 2‰m0

ı
.X / is microsupported in K, then for every � 2 C1

0
.X /, N 2 R,

hAB�u;B�uiL2
'.X /

� �C h1�2ı
kB�uk2

H
.m�1/=2

';h
.X /
�O.h1/k�ukH�N

';h
.X /: (2-22)
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2E3. Exponentiation of operators. For q 2 C1
0
.T �X /, QD Op.q/, and " 2 Œ0;C0h log.1=h/�, we will

be interested in operators of the form e"Q=h. By the discussion above, since q 2 Sm.X / for every m 2 R,
we have kQkH�N

';h
!H N

';h
� CN for every N 2 R.

We write

e"Q=h
WD

1X
jD0

."=h/j

j !
Qj ;

with the sum converging in the H s
';h
.X /!H s

';h
.X / norm operator topology, but the convergence is

not uniform as h! 0. Beals’s characterization [Zworski 2012, Theorem 9.12] can be used to show that
e"Q=h 2‰0

ı
.X / for any ı > 0, but we will not need this. Let s 2 R. Then

ke"Q=h
k �

1X
jD0

.C0 log.1=h//j

j !
kQkj D eC0 log.1=h/kQk

D h�C0kQk; (2-23)

where all norms are H s
';h
.X /!H s

';h
.X /.

If A 2‰m
ı
.X / is bounded as an operator H sCm

';h
.X /!H s

';h
.X /, uniformly in h, (without needing to

be multiplied by a cutoff), then, by (2-23),

ke"Q=hAe�"Q=h
k

H
sCm
';h

.X /!H s
';h
.X /
� C h�N (2-24)

for any s 2 R, where

N D C0.kQkH sCm
';h

.X /!H
sCm
';h

.X /
CkQkH s

';h
.X /!H s

';h
.X //:

But, writing adQ AD ŒQ;A� and e"Q=hAe�"Q=hDe" adQ =hA, for any J 2N we have the Taylor expansion

e"Q=hAe�"Q=h
D

JX
jD0

"j

j !

�
adQ

h

�j

AC
"JC1

J !

Z 1

0

.1� t/J e�"t adQ =h

�
adQ

h

�JC1

A dt: (2-25)

For any M 2 N, the integrand maps H M
';h
.X / to H�M

';h
.X / with norm O.h�2ı.JC1/�N /, where

N D C0.kQkH M
';h
.X /!H M

';h
.X /CkQkH�M

';h
.X /!H�M

';h
.X //:

Hence applying (2-25) with J sufficiently large we see that (2-24) can be improved to

ke"Q=hAe�"Q=h
k

H
sCm
';h

.X /!H s
';h
.X /
� C;

and the integrand in (2-25) maps H M
';h
.X / to H�M

';h
.X / with norm O.1/. Applying (2-25) with J !1

shows that e"Q=hAe�"Q=h 2‰m
ı
.X /, and applying (2-25) with J D 1 we find

e"Q=hAe�"Q=h
DA� "ŒA;Q=h�C "2h�4ıR; (2-26)

where R 2‰�1
ı

.X /.
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3. Reduction to estimates for model operators

3A. Resolvent gluing. In Section 2 we showed that the Theorem follows from (2-8). In this section, we
reduce (2-8) to several estimates for model operators using a variant of the gluing method of [Datchev
and Vasy 2012a], adapted to the dynamics on X .

We will use the following open cover of X :

�C WD fr < �Rgg; �K WD fjr j<RgC 3g; �F WD fr >Rgg:

Let PC ;PK ;PF be differential operators on X which are model operators for P , with respect to this
open cover, in the sense that they satisfy

Pj j�j D P j�j ; j 2 fC;K;Fg: (3-1)

So PC is a model in the cusp, PF is a model in the funnel, and PK is a model in a neighborhood of the
remaining region (see Figure 2).

More specifically, let WK 2C1.X I Œ0; 1�/ be 0 near fjr j �RgC3g, and 1 near fjr j �RgC4g, and let

PK D P � iWK I

let WC 2 C1.RI Œ0; 1�/ be 0 near fr � �Rgg, and 1 near fr � 0g, and let

PC D h2D2
r C h2e�2.rCˇ.r//�S� C h2V .r/� 1� iWC .r/I

let WF 2 C1.RI Œ0; 1�/ be 0 near fr �Rgg, and 1 near fr � 0g, nonincreasing, and let

PF D h2D2
r C h2.1�WF .r//e

�2.rCˇ.r//�SC C h2V .r/� 1� iWF .r/:

The functions Wj for j 2 fC;K;Fg, are called complex absorbing barriers and they make each Pj

semiclassically elliptic in the region where Wj D 1. Note that we have also chosen PC and PF so that
we can separate variables, and so that PF has no exponentially growing term.

Now observe that Pj C iWj is selfadjoint on L2
j , where

L2
K WDL2

'.X /; L2
C WDL2.X; dr dS�/; L2

F WDL2.X; dr dSC/:

Moreover, Wj � 0 implies hIm Pj u;uiL2
j
� 0, and hence

kukL2
j
� .Im�/�1

k.Pj ��/ukL2
j
; Im� > 0;

and, consequently (since Wj is bounded on L2
j ), when Im� > 0, we can define the resolvents

Rj .�/ WD .Pj ��/
�1
WL2

j !L2
j ; j 2 fC;K;Fg:

Using (2-20) and (3-1) gives, for any �j 2 C1.X /, bounded with all derivatives, and satisfying
supp�j ��j ,

max
j2fC;K ;F g

k�j Rj .�/�jkL2
'.X /!H 2

';h
.X / � C.j�jC .Im�/�1/; Im� > 0: (3-2)
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Below we will show that for every �j 2 C1
0
.X / with supp�j ��j , E 2 .0; 1/, there is C0 > 0 such

that for all � > 0 the cutoff resolvents �j Rj .�/�j continue holomorphically to �2 Œ�E;E�Ci Œ��h;1/,
where they satisfy

max
j2fC;K ;F g

k�j Rj .�/�jkL2
'.X /!H 2

';h
.X / � C h�1�C0jIm�j=5h: (3-3)

Here E, C0, and � are the same as in (2-8), but as elsewhere in the paper the constant C and the implicit
constant h0 may be different.

We will also show that the Rj .�/ propagate singularities forward along bicharacteristics, in the
following limited sense. Let �1 2 C1

0
.X / and let �2; �3 2‰

1.X / be compactly supported differential
operators.

� Suppose supp�1 ��K , supp�2 ��K \�F , and supp�3 ��F . If further supp�1[ supp�3 �

fr <RgC 2g and supp�2 � fr >RgC 2g, then, for any N 2 N,

k�3RF .�/�2RK .�/�1kL2
'.X /!L2

'.X /
DO.h1/ (3-4)

uniformly for jRe�j �E, Im� 2 Œ��h; h�N �.

� Suppose supp�1 ��C , supp�2 ��C \�K , and supp�3 ��K . If further supp�1[ supp�3 �

fr < �Rg � 2g and supp�2 � fr > �Rg � 2g, then, for any N 2 N,

k�3RK .�/�2RC .�/�1kL2
'.X /!L2

'.X /
DO.h1/ (3-5)

uniformly for jRe�j �E, Im� 2 Œ��h; h�N �.

Note that in either case there can exist no bicharacteristic passing through T � supp�1, T � supp�2,
T � supp�3 in that order. In the first case this is implied by (2-3), and in the second by (2-3) together
with the assumption that 
�1.fr < �Rgg/ is connected for any geodesic 
 W R!X . We will use these
facts in the proofs of (3-4) and (3-5) below. Before doing that, however, we will show that these estimates
imply the Theorem.

Proposition 3.1. The estimate (2-8) follows from (3-3), (3-4), and (3-5).

Proof. Let �C ; �K ; �F 2 C1.R/ satisfy �C C�K C�F D 1, supp�F � .RgC 1;1/, supp.1��F /�

.RgC 2;1/, and �C .r/D �F .�r/ for all r 2 R. Then define a parametrix for P �� by

G D �C .r � 1/RC .�/�C .r/C�K .jr � 1j/RK .�/�K .jr j/C�F .r C 1/RF .�/�F .r/:

Then G is defined for Im� > 0 and �G� continues holomorphically to � 2 Œ�E;E�� i Œ0; �h�. Define
operators AC ;AK ;AF by

.P ��/G D IdCŒ�C .r � 1/; h2D2
r �RC .�/�C .r/C Œ�K .jr � 1j/; h2D2

r �RK .�/�K .jr j/

C Œ�F .r C 1/; h2D2
r �RF .�/�F .r/

D IdCAC CAK CAF I
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AC

AK AK

AF

Figure 3. The remainders AC , AK , and AF are localized on the right in the region to
the back of the arrows, and on the left near the tips of the arrows (AC is localized on the
right at the support of �C and on the left at the support of �0

C
. � � 1/, and so on), and

this implies (3-6). They are microlocalized on the left in the indicated directions, and
this implies (3-7) (since, by (2-3), no geodesic can follow one of the AK arrows and then
the AF arrow, and so on).

see Figure 3. The estimates (3-2) and (3-3) only allow us to remove the remainders AC ;AK ;AF by
Neumann series for a narrow range of �. To obtain a parametrix with improved remainders, observe that
the support properties of the �j imply that

A2
C DA2

K DA2
F DAC AF DAF AC D 0I (3-6)

so, solving away using G, we obtain

.P ��/G.Id�AC �AK �AF /D Id�AK AC �AC AK �AF AK �AK AF :

Now the propagation of singularities estimates (3-4) and (3-5) imply

kAF AKkL2
'.X /!L2

'.X /
CkAC AK AC AKkL2

'.X /!L2
'.X /

DO.h1/: (3-7)

In this sense the AF AK remainder term is negligible. We again use (3-6) to write

.P ��/G.Id�AC �AK �AF CAK AC CAC AK CAK AF /

D Id�AF AK CAC AK AC CAF AK AC CAK AC AK CAC AK AF CAK AF AK :

Now all remainders but AC AK AC , AK AC AK , and AC AK AF are negligible in the sense of (3-7).
Solving away again gives

.P ��/G.Id�AC �AK �AF CAK AC CAC AK CAK AF �AC AK AC �AK AC AK �AC AK AF /

D Id�AF AK CAF AK AC CAK AF AK �AK AC AK AC

�AC AK AC AK �AF AK AC AK �AK AC AK AF :
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Now all remainders but AK AC AK AC are negligible. Solving away one last time gives

.P ��/G
�
Id�AC �AK �AF CAK AC CAC AK CAK AF

�AC AK AC �AK AC AK �AC AK AF CAK AC AK AC

�
D Id�AF AK CAC AK AC CAF AK AC CAK AF AK �AC AK AC AK

�AF AK AC AK �AK AC AK AF CAC AK AC AK AC CAF AK AC AK AC DW IdCR;

where R is defined by the equation, and kRkL2
'.X /!L2

'.X /
DO.h1/. So for h small enough we may

write, for Im� > 0,

.P ��/�1
DG

�
Id�AC �AK �AF CAK AC CAC AK CAK AF

�AC AK AC �AK AC AK �AC AK AF CAK AC AK AC

� 1X
kD0

.�R/k :

Combining this equation with (3-3), we see that �.P��/�1� continues to holomorphically to jRe�j �E,
Im�� ��h and obeys

k�.P ��/�1�kL2
'.X /!H 2

';h
.X / � C h�1�C0jIm�j=h: �

In summary, to prove (2-8) (and hence (1-1)), it remains to prove (3-3), (3-4) and (3-5).

3B. Statements of estimates for model operators. In this subsection we state six propositions: a resolvent
estimate and a propagation of singularities estimate, for each of RK , RC , and RF . Propositions 3.2, 3.4,
and 3.6 imply (3-3) for j DK, C , and F , respectively. As we discuss after the statements, Propositions
3.3, 3.5, and 3.7 imply (3-4) and (3-5). The first two propositions concern RK , and we prove them in
Section 4. The next two concern RC , and we prove them in Section 5. The last two concern RF , and we
prove them in Section 6. Hence at the end of Section 6 the proof of the Theorem will be complete.

Proposition 3.2. For any E 2 .0; 1/ there is C0> 0 such that for any M > 0 there are C; h0> 0 such that

kRK .�/kL2
'.X /!H 2

';h
.X / � C

�
h�1Cj�j; Im� > 0;

h�1eC0jIm�j=h; Im�� 0;
(3-8)

for jRe�j �E, Im�� �M h log.1=h/, h 2 .0; h0�.

Proposition 3.3. Let � 2R, E 2 .0; 1/. Let A;B 2‰0.X / have full symbols a and b with the projections
to X of supp a and supp b compact and suppose that

supp a\

�
supp b[

[
t�0

exp.tHp/
�
p�1.Œ�E;E�/\ supp b

��
D¿; (3-9)

where exp.tHp/ is the bicharacteristic flow of p. Then, for any N 2 N,

kARK .�/BkL2
'.X /!H 2

';h
.X / DO.h1/ (3-10)

for jRe�j �E, ��h� Im�� h�N .
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Proposition 3.4. For every � 2 C1
0
.X /, E 2 .0; 1/, there is C0 > 0 such that, for any M > 0, there

are h0;C > 0 such that the cutoff resolvent �RC .�/� continues holomorphically from fIm� > 0g to
fjRe�j �E, Im�� �M hg; h 2 .0; h0�, and obeys

k�RC .�/�kL2
'.X /!H 2

';h
.X / � C

�
h�1Cj�j; Im� > 0;

h�1�C0jIm�j=h; Im�� 0:
(3-11)

Proposition 3.5. Let r0<0, ��2C1
0
..�1; r0//, �C2C1

0
..r0;1//, '2C1.R/ supported in .�1; 0/

and bounded with all derivatives, E 2 .0; 1/, � > 0 be given. Then there exists h0 > 0 such that

k'.hDr /�C.r/RC .�/��.r/kL2
'.X /!H 2

';h
.X / DO.h1/ (3-12)

for jRe�j �E; ��h� Im�� h�N , h 2 .0; h0�.

Proposition 3.6. For every � 2 C1
0
.X /, E 2 .0; 1/, there is C0 > 0 such that, for any M > 0, there

are h0;C > 0 such that the cutoff resolvent �RF .�/� continues holomorphically from fIm� > 0g to
fjRe�j �E, Im�� �M h log.1=h/g; h 2 .0; h0�, where it satisfies

k�RF .�/�kL2
'.X /!H 2

';h
.X / � C

�
h�1Cj�j; Im� > 0;

h�1eC0jIm�j=h; Im�� 0:
(3-13)

Proposition 3.7. Let r0 > Rg, �� 2 C1
0
..�1; r0//, �C 2 C1

0
..r0;1//, ' 2 C1.R/ supported in

.0;1/ and bounded with all derivatives, E 2 .0; 1/, � > 0 be given. Then there exists h0 > 0 such that

k�C.r/RF .�/��.r/'.hDr /kL2
'.X /!H 2

';h
.X / DO.h1/ (3-14)

for jRe�j �E; ��h� Im�� h�N , h 2 .0; h0�.

We conclude the subsection by deducing (3-4) and (3-5) from the above propositions.
Take ' 2 C1.R/, bounded with all derivatives and supported in .0;1/, and take z�2; z�3 2 C1

0
.X /

such that supp z�2 � fr > Rg C 2g and z�3 � fr < Rg C 2g, and such that z�2�2 D �2z�2 D �2 and
z�3�3 D �3z�3 D �3. Then (3-4) follows from

kz�3RF z�2'.hDr /kL2
'.X /!H 2

';h
.X /Ckz�2.Id�'.hDr //RK�1kL2

'.X /!H 2
';h
.X / DO.h1/: (3-15)

The estimate on the first term follows from (3-14), while the estimate on the second term follows
from (3-10) if supp.1� '/ is contained in a sufficiently small neighborhood of .�1; 0�; it suffices to
take a neighborhood small enough that no bicharacteristic in p�1.Œ�E;E�/ goes from T � supp�1 to
.T � supp z�2/\supp.1�'.�//, where � is the dual variable to r in T �X , and such a neighborhood exists
by (2-4) because when a bicharacteristic leaves T � supp�1 it has � � 0, and (2-4) gives a minimum
amount by which � must grow in the time it takes the bicharacteristic to reach T � supp z�2. An analogous
argument reduces (3-5) to (3-12): the analog of (3-15) is

kz�3RK .Id�'.hDr //z�2kL2
'.X /!H 2

';h
.X /Ck'.hDr /z�2RC�1kL2

'.X /!H 2
';h
.X / DO.h1/;
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where ' 2 C1.R/ is bounded with all derivatives and supported in .�1; 0/, and z�2; z�3 2 C1
0
.X /

have supp z�2 � fr > �Rg � 2g and z�3 � fr < �Rg � 2g, and such that z�2�2 D �2z�2 D �2 and
z�3�3 D �3z�3 D �3.

4. Model operator in the nonsymmetric region

In this section we prove Propositions 3.2 and 3.3. Although the techniques involved are all essentially
well known, we go over them in some detail here because they are important in the more complicated
analysis of PC and PF below.

4A. Proof of Proposition 3.2. This is similar to the argument in [Sjöstrand and Zworski 2007, §4]. Fix

E0 2 .E; 1/; "D 10M h log.1=h/:

We will use the assumption that the flow is nontrapping to construct an escape function q 2 C1
0
.T �X /,

that is to say a function such that

Hpq � �1 near T � supp.1�WK /\p�1.Œ�E0;E0�/: (4-1)

The construction will be given below. Then let Q 2‰�1.X / be a quantization of q, and

PK ;" D e"Q=hPK e�"Q=h
D PK � "ŒPK ;Q=h�C "2R;

where R 2‰�1.X / (see (2-26)). We will prove that

k.PK ;"�E0/�1
kL2

'.X /!H 2
';h
.X / � 5="; E0 2 Œ�E0;E0�; (4-2)

from which it follows, using first the openness of the resolvent set and then (2-23), that

k.PK ��/
�1
kL2

'.X /!H 2
';h
.X / �

h�N

M log.1=h/
; jRe�j �E0; jIm�j �M h log.1=h/; (4-3)

where

N D 10M.kQkH 2
';h
.X /!H 2

';h
.X /CkQkL2

'.X /!L2
'.X /

/C 1:

Then we will show how to use complex interpolation to improve (4-3) to (3-8).

Construction of q 2C1
0
.T �X / satisfying (4-1). As in [Vasy and Zworski 2000, §4], we take q of the form

q D

JX
jD1

qj ; (4-4)

where each qj is supported near a bicharacteristic in T � supp.1�WK /\p�1.Œ�E0;E0�/.
First, for each } 2 T � supp.1�WK /\p�1.Œ�E0;E0�/, define the following escape time:

T} D inffT 2 R W jt j � T � 1 H) exp.tHp/} 62 T � supp.1�WK /g:
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Then put
T DmaxfT} W } 2 T � supp.1�WK /\p�1.Œ�E0;E0�/g:

Note that the nontrapping assumption in Section 2A implies that T <1. Let S} be a hypersurface
through }, transversal to Hp near }. If U} is a small enough neighborhood of }, then

V} D fexp.tHp/}
0
W }0 2 U} \S} ; jt j< T C 1g

is diffeomorphic to R2n�1 � .�T � 1;T C 1/ with } mapped to .0; 0/. Denote this diffeomorphism by
.y} ; t}/. Further shrinking U} if necessary, we may assume the inverse image of R2n�1 � fjt j � T g

is disjoint from T � supp.1 �WK /. Then take ' 2 C1
0
.R2n�1I Œ0; 1�/ identically 1 near 0, and � 2

C1
0
..�T � 1;T C 1// with �0 D�1 near Œ�T;T �, and put

q} D '.y}/�.t}/; Hpq} D '.y}/�
0.t}/:

Note Hpq} � 0 on T � supp.1�WK / because �0 D�1 there. Let V 0} be the interior of fHpq} D�1g,
note that the V 0} cover T �.1�WK /\ p�1.Œ�E0;E0�/, and extract a finite subcover fV 0}1

; : : : ;V 0}J
g.

Then put qj D q}j and define q by (4-4), so that

Hpq D

JX
jD1

'.y}j /�
0
}.t}j /:

Then Hpq ��1 near T �.1�WK /\p�1.Œ�E0;E0�/ because at each point at least one summand is, and
the other summands are nonpositive. �

Proof of (4-2). Let �0 2 C1
0
.X I Œ0; 1�/ be identically 1 on a large enough set that �0QDQ�0 DQ. In

particular we have .1��0/WK D 1��0, allowing us to write

k.1��0/uk
2

L2
'.X /

D� Imh.PK ;"�E0/.1��0/u; .1��0/uiL2
'.X /

:

Hence
k.1��0/ukL2

'.X /
� k.PK ;"�E0/ukL2

'.X /
CkŒPK ;"; �0�ukL2

'.X /
:

To estimate k�0ukL2
'.X /

and the remainder term kŒPK ;"; �0�ukL2
'.X /

we introduce a microlocal cutoff
� 2 C1

0
.T �X / which is identically 1 near T � supp.1�WK /\p�1.Œ�E0;E0�/ and is supported in the

interior of the set where Hpq � �1. Since the principal symbol of PK ;"�E0 is

pK ;"�E0 D p� iWK �E0� i"fp� iWK ; qg;

we have
jpK ;"�E0j � 1�E0 near supp.1��/

for jE0j � E0, provided h (and hence ") is sufficiently small. Then if ˆ 2 ‰�1.X / is a quantization
of �, we find using the semiclassical elliptic estimate (2-21) that

k.Id�ˆ/�0ukH 2
';h
.X / � C

�
k.PK ;"�E0/ukL2

'.X /
C hkukH 1

';h
.X /

�
:
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Re�

Im�

C�h

�M h log.1=h/
E ECE0

2
E0

jf j � hN jf j � 1 jf j � hN

Figure 4. Bounds on f used in the complex interpolation argument.

Since Hpq � �1 near supp� we see that

Im pK ;"�E0 D�WK � "fp; qg � �" near supp�:

Then, using the sharp Gårding inequality (2-22), we find that

k.PK ;"�E0/ˆ�0ukL2
'.X /
kˆ�0ukL2

'.X /
� �hIm.PK ;"�E0/ˆ�0u; ˆ�0uiL2

'.X /

� "kˆ�0uk2
L2
'.X /
�C hkuk2

H
1=2

';h
.X /
:

This implies that

kukL2
'.X /

� k.1��0/ukL2
'.X /
Ckˆ�0ukL2

'.X /
Ck.Id�ˆ/�0ukL2

'.X /

� Ck.PK ;"�E0/ukL2
'.X /
C "�1

k.PK ;"�E0/ukL2
'.X /
CC h1=2

kukH 1
';h
.X /:

As in the proof of (3-2), combining this with

kukH 2
';h
.X / � 3kukL2

'.X /
Ck.P �E0/ukL2

'.X /

� 4kukL2
'.X /
Ck.PK ;"�E0/ukL2

'.X /
CC "kukL2

'.X /
; (4-5)

we obtain (4-2) for h sufficiently small. �

Proof that (4-3) implies (3-8). We follow the approach of [Tang and Zworski 1998] as presented in
[Nakamura, Stefanov and Zworski 2003, Lemma 3.1]. Observe first that (3-2) implies (3-8) for Im��C�h

for any C� > 0.
Let f .�; h/ be holomorphic in � for � 2 � D Œ�E0;E0�C i Œ�M h log.1=h/;C�h� and bounded

uniformly in h there. Suppose further that, for � 2�,

jRe�j �E H) jf j � 1; jRe�j 2
�

1
2
.ECE0/;E0

�
H) jf j � hN :
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For example, we may take f to be a characteristic function convolved with a gaussian:

f .�; h/D
2
p
�

log.1=h/

Z zE
� zE

exp
�
� log2.1=h/.��y/2

�
dy

D erfc
�
log.1=h/.�� zE/

�
� erfc

�
log.1=h/.�C zE/

�
;

where zE D 1
4
.3E C E0/, erfc z D 2

R1
z e�t2

dt=
p
� . We bound jf j using the identity erfc.z/ C

erfc.�z/D 2 and the fact that erfc z D ��1=2z�1e�z2

.1CO.z�2// for jarg zj< 3�
4

.
Then the subharmonic function

g.�; h/D log k.PK ��/
�1
kL2

'.X /!H 2
';h
.X /C log jf .�; h/jC

N Im�

M h
obeys

g � C on @�\ .fjRe�j DE0g[ fIm�D�M h log.1=h/g/

and

g � C C log.1=h/ on @�\fIm�D C�hg:

From the maximum principle and the lower bound on jf j we obtain

log k.PK ��/
�1
kL2

'.X /!H 2
';h
.X /C

N Im�

M h
� C C log.1=h/;

for � 2�, jRe�j �E, from which (3-8) follows for � 2�. �

4B. Proof of Proposition 3.3. This is similar to [Datchev and Vasy 2012a, Lemma 5.1]. By (2-21),
without loss of generality we may assume that a is supported in a neighborhood of p�1.Œ�E;E�/\

supp.1�WK / which is as small as we please (but independent of h). In particular we may assume supp a

is compact.
We will show that if .PK��/uDBf with kf kL2

'.X /
D 1, and if kA0uk�C hk for some A0 2‰

0.X /

with full symbol a0 such that

a0 D 1 near supp a\p�1.Œ�E;E�/; supp a0\

[
t�0

exp.tHp/ supp b D¿;

then kA1uk � C hkC1=2 for each A1 2‰
0.X / with full symbol a1 satisfying a0 D 1 near supp a1. Then

the conclusion (3-10) follows by induction; the base step is given by (3-8).
Let q 2 C1

0
.T �X I Œ0;1// such that

a0 D 1 near supp q; Hp.q
2/� �.2�C 1/q2 near supp a1; (4-6)

Hpq � 0 on T � supp.1�WK /: (4-7)

The construction of q is very similar to that of the function q used in the proof of Proposition 3.2 above,
and is also given in [loc. cit.]. Write

Hp.q
2/D�`2

C r;
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where `; r 2 C1
0
.T �X / satisfy

`2
� .2�C 1/q2; supp r � fWK D 1g: (4-8)

Let Q;L;R 2‰�1.X / have principal symbols q; `; r respectively. Then

i ŒP;Q�Q�D�hL�LC hRC h2F CR1;

where F 2 ‰�1.X / has full symbol supported in supp q and R1 2 h1‰�1.X /. From this we
conclude that

kLuk2
L2
'.X /

D�
2

h
ImhQ�QPu;uiL2

'.X /
ChRu;uiL2

'.X /
C hhFu;uiL2

'.X /
CO.h1/kuk2

L2
'.X /

D�
2

h
ImhQ�Q.PK ��/u;uiL2

'.X /
�RehQ�QWK u;uiL2

'.X /
�

2

h
Im�kQuk2

L2
'.X /

ChRu;uiL2
'.X /
C hhFu;uiL2

'.X /
CO.h1/kuk2

L2
'.X /

: (4-9)

We now estimate the right-hand side of (4-9) term by term to prove that

kLuk2
L2
'.X /

� 2�kQuk2
L2
'.X /
CC hkA0uk2

L2
'.X /
CO.h1/kuk2

L2
'.X /

: (4-10)

Indeed, since supp q\ supp b D¿ and since .PK ��/uD Bf it follows that

hQ�Q.PK ��/u;uiL2
'.X /

DO.h1/kuk2
L2
'.X /

:

Next, we write

�RehQ�QWK u;uiL2
'.X /

D�RehWK Qu;QuiL2
'.X /
ChQ�ŒWK ;Q�u;uiL2

'.X /
;

and observe that the first term is nonpositive because WK � 0, and the second term is bounded by
C hkA0uk2

L2
'.X /

. Since Im�� ��h we have

�
2

h
Im�kQuk2

L2
'.X /

� 2�kQuk2
L2
'.X /

;

while since WK D 1 on supp r we have the elliptic estimate

hRu;uiL2
'.X /

D CkR.PK ��/ukL2
'.X /
kukL2

'.X /
CC hkA0uk2

L2
'.X /

;

and the first term is O.h1/kuk2
L2
'.X /

since supp r \ supp b D¿. Finally hhFu;uiL2
'.X /

� C hkA0uk2

by the inductive hypothesis, giving (4-10).
But by (4-8) and the sharp Gårding inequality we have

h.D�D� .2�C 1/Q�Q/u;ui � �C hkA0uk2�O.h1/kuk2:

Hence by the inductive hypothesis we have

kQuk2 � C h2kC1
kuk2;

completing the inductive step.
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5. Model operator in the cusp

In this section we prove Propositions 3.4 and 3.5. We begin by separating variables over the eigenspaces
of �S� , writing

PC D

1M
mD0

h2D2
r C .h�m/

2e�2.rCˇ.r//
C h2V .r/� 1� iWC .r/;

where 0D �0 < �1 � � � � are square roots of the eigenvalues of �S� . Roughly speaking, it suffices to
prove (3-11), (3-12) with PC replaced by P .˛/, with estimates uniform in ˛ 2 f0g[ Œh�1;1/, where

P .˛/D h2D2
r C˛

2e�2.rCˇ.r//
C h2V .r/� 1� iWC .r/:

The precise estimates for these operators which imply Propositions 3.4 and 3.5 are stated in Lemmas 5.1,
5.2, and 5.3 below.

5A. The case ˛D 0. The analysis of .P .0/��/�1 is very similar to that of RK in Section 4. The only
additional technical ingredient is the method of complex scaling, which for this operator works just as in
[Sjöstrand and Zworski 1991; 2007].

Lemma 5.1. For every � 2 C1
0
.X /, E 2 .0; 1/, there is C0 > 0 such that, for any M > 0, there exist

h0;C > 0 such that the cutoff resolvent �.P .0/��/�1� continues holomorphically from fIm� > 0g to
fjRe�j �E, Im�� �M h log.1=h/g; h 2 .0; h0�, and obeys

k�.P .0/��/�1�kL2.R/!H 2
h
.R/ � C h�1eC0jIm�j=h: (5-1)

Let r0 2 R, �� 2 C1
0
..�1; r0//, �C 2 C1

0
..r0;1//, ' 2 C1.R/ supported in .�1; 0/ and bounded

with all derivatives, � > 0 be given. Then there exists h0 > 0 such that

k'.hDr /�C.r/.P .0/��/
�1��.r/kL2.R/!H 2

h
.R/ DO.h1/ (5-2)

for jRe�j �E; ��h� Im�� h�N , h 2 .0; h0�.

Proof of (5-1). We use complex scaling to replace P .0/ by the complex scaled operator Pı.0/, de-
fined below. As we will see, Pı.0/ is semiclassically elliptic for jr j sufficiently large and obeys (5-1)
without cutoffs.

We have
P .0/D h2D2

r C h2V .r/� 1� iWC .r/:

Fix R>Rg sufficiently large that

supp�[ supp�C[ supp�� � .�R;1/: (5-3)

Let 
 2 C1.R/ be nondecreasing and obey 
 .r/D 0 for r � �R, 
 0.r/D tan �0 for r � �R� 1 (here
�0 is as in Section 2A), and impose further that ˇ.r/ is holomorphic near r C iı
 .r/ for every r < �R,
ı 2 .0; 1/. Below we will take ı� 1 independent of h.
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Now put

Pı.0/D
h2D2

r

.1C iı
 0.r//2
� h

ı
 00.r/hDr

.1C iı
 0.r//3
C h2V .r C iı
 .r//� 1� iWC .r C iı
 .r//:

If we define the differential operator with complex coefficients

zP .0/D h2D2
z C h2V .z/� 1� iWC .z/;

where z varies in fz D r C iı
 .r/ W r 2 R; ı 2 .0; 1/g, and where WC .z/ WD 0 whenever Im z ¤ 0, then
we have

P .0/D zP .0/jfzDr Wr2Rg; Pı.0/D zP .0/jfzDrCiı
 .r/Wr2Rg: (5-4)

We will show that if �0 2 C1.R/ has supp�0\ supp 
 D¿, then

�0.P .0/��/
�1�0 D �0.Pı.0/��/

�1�0; Im� > 0: (5-5)

From this it follows that if one of these operators has a holomorphic continuation to any domain, then so
does the other, and the continuations agree, so that it suffices to prove (5-1) and (5-2) with P .0/ replaced
by Pı.0/. To prove (5-5) we will prove that if

.P .0/��/uD v and .Pı.0/��/uı D v

for v 2L2.R/ with supp v � fr W 
 .r/D 0g, and u;uı 2L2.R/, then

ujfr W
.r/D0g D uıjfr W
.r/D0g:

Thanks to (5-4), it suffices to show that if Qu solves . zP .0/� �/ Qu D v with QujfzDr Wr2Rg 2 L2.R/, then
QujfzDrCiı
 .r/Wr2Rg 2L2.R/. For the proof of this statement we may take � fixed with Re�D 0 since the
general statement follows by holomorphic continuation.

Observe that for Re z < �R, we have

. zP .0/��/ Qu.z/D 0: (5-6)

We will use the WKB method to construct solutions u˙ to (5-6) which are exponentially growing or
decaying as Re z!�1. Define

f .z/D V .z/� .1C�/=h2; '.z/D .4f .z/f 00.z/� 5f 0.z/2/.16f .z//�5=2:

Now (see, e.g., [Olver 1974, Chapter 6, Theorem 11.1]) there exist two solutions to (5-6) given by

u˙.z/D f .z/
�1=4e

˙
R

z;�R

p
f .z0/dz0

.1C b˙.z//; Re z < �R;

taking principal branches of the roots and with the contour of integration 
z;�R taken from z to �R such
that
p

Re z0 is monotonic along 
z;�R. The functions b˙ obey

jb˙.z/j � exp.max.j'.z0/j W z0 2 
˙//� 1� C h
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when Re z >R, where 
C and 
� are contours from �1 to z and from z to �R, respectively, such that
p

Re z0 is monotonic along the contour. It follows that, for fixed h sufficiently small,

juC.z/j � CeRe z=C ; ju�.z/j � Ce�Re z=C

for Re z < �R. Hence QujfzDr Wr2Rg 2 L2.R/ implies that Qu is proportional to uC. This implies that
QujfzDrCiı
 .r/Wr2Rg 2L2.R/, completing the proof of (5-5).

Fix
E0 2 .E; 1/; "D 10M h log.1=h/:

The semiclassical principal symbol of Pı.0/ is

pı.0/D
�2

.1C iı
 0.r//2
� 1D �2.1CO.ı//� 1: (5-7)

In this case the escape function can be made more explicit: we take q 2 C1
0
.T �R/ with

q.r; �/D�4r�.1�E0/
�2; Hpı.0/q D�8�2.1�E0/

�2.1CO.ı// (5-8)

on fjr j �RC 1; j�j � 2g. Let Q 2‰�1.R/ be a quantization of q and put

Pı;".0/D e"Q=hPı.0/e
�"Q=h

D Pı.0/� "ŒPı.0/;Q=h�C "2R;

where R 2‰�1.R/ (see (2-26)). We will prove

k.Pı;".0/�E0/�1
kL2.R/!H 2

h
.R/ � 5="; E0 2 Œ�E0;E0�; (5-9)

from which it follows by (2-23) that

k.Pı.0/��/
�1
kL2.R/!H 2

h
.R/ �

h�N

M log.1=h/
; jRe�j �E0; jIm�j �M h log.1=h/; (5-10)

where N D10M.kQkH 2
h
.R/!H 2

h
.R/CkQkL2.R/!L2.R//C1. As before we will use complex interpolation

to improve (5-10) to
k.Pı.0/��/

�1
kL2.R/!H 2

h
.R/ � C h�1eC jIm�j=h (5-11)

for �E � Re��E, Im� > �M h log.1=h/. Combining (5-5) and (5-11) gives (5-1).
Let � 2C1

0
.RI Œ0; 1�/ have �.�/D 1 for j�j near Œ1�E0; 1CE0� and supp� �

˚
1
2
.1�E0/ < j�j< 2

	
.

By (5-7), if ı is small enough and h is small enough depending on ı, then on supp.1��.�// we have
jpı;".0/�E0j � ı.1C �2/=C , uniformly in E0 2 Œ�E0;E0� and in h, where pı;".0/ is the semiclassical
principal symbol of Pı;".0/. Hence, by the semiclassical elliptic estimate (2-18),

k.Id��.hDr //ukH 2
h
.R/ � Cı�1

k.Pı;".0/�E0/.Id��.hDr //ukL2.R/CO.h1/kukH�N
h

.R/:

On supp�.�/ we use the negativity of the imaginary part of the principal symbol of Pı;".0/. Indeed, on
f.r; �/ W � 2 supp�; jr j �RC 1g we have, using (5-8),

Im pı;".0/D Im pı.0/C Im i"Hpı;".0/q D
�2ı
 0.r/�2

j1C iı
 0.r/j4
�

8"�2

.1�E0/2
.1CO.ı//� �";
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provided ı is sufficiently small. Meanwhile, on f.r; �/ W � 2 supp�; jr j �RC 1g we have

Im pı;".0/D Im pı.0/C Im i"Hpı;".0/q D
�2ı tan �0�

2

j1C iı tan �0j
4
CO."/� �ı=C;

provided h (and hence ") is sufficiently small.
Then, using the sharp Gårding inequality (2-19), we have, for h sufficiently small,

k'.hDr /ukL2.R/k.Pı;".0/�E0/'.hDr /ukL2.R/ � �hIm.Pı;".0/�E0/'.hDr /u; '.hDr /uiL2.R/

� "k'.hDr /uk
2
L2.R/

�C hkuk2
H

1=2

h
.R/
:

We deduce (5-9) from this just as we did (4-2) above.
To improve (5-10) to (5-11) we use almost the same complex interpolation argument as we did to

improve (4-3) to (3-8). The only difference is that in the first step we note that

Im pı.0/D
�2ı
 0.r/

j1C iı
 0.r/j4
� 0;

so by the sharp Gårding inequality (2-19) we have, for some C� > 0,

hIm Pı.0/u;uiL2.R/ � �C�hkuk2
L2.R/

;

so that k.Pı.0/��/�1kL2.R/ � 1=C�h, when Im�� 2C�h. �

Proof of (5-2). Let .Pı.0/� �/uD f , where kf kL2.R/ D 1, suppf � supp�� and Pı.0/ is as in the
proof of (5-1). We must show that

k'.hDr /�C.r/ukH 2
h
.R/ DO.h1/I (5-12)

recall that the replacement of P .0/ by Pı.0/ is justified by (5-5). To prove (5-12) we use an argument by
induction based on a nested sequence of escape functions.

More specifically, take

q D 'r .r/'�.�/; Hpı.0/q D 2�'0r .r/'�.�/CO.ı/;

where 'r 2C1
0
.RI Œ0;1// with supp'r � .r0;1/, '0r � 0 near Œr0;RC1� (here R is as in (5-3)), '0r > 0

near supp�C. Take '� 2 C1
0
.RI Œ0;1// with supp'� � .�1; 0/, '0� � 0 near Œ�2; 0�, '� ¤ 0 near

supp'\ Œ�2; 0�. Impose further that
p
'

r
;
p
'
�
2C1

0
.R/, and that '0r � c'r for r �RC1, where c > 0

is chosen large enough that Hp0.ı/q � �.2�C 1/q on fr �RC 1; � � �2g; see Figure 5.
We will show that if kA0ukL2.R/ � C hk for A0 2‰

0.R/ with full symbol supported sufficiently near
supp q and for some k 2 R, then kA1ukL2.R/ � C hkC1=2 for A1 2 ‰

0.R/ with full symbol supported
sufficiently near fr 2 supp�C; � 2 supp'g. The conclusion (5-12) then follows by induction. (The base
step of the induction follows from (5-11) or even from (5-10).)

In the remainder of the proof all norms and inner products are in L2.R/ and we omit the subscript
for brevity.

We write
Hpı.0/q

2
D�b2

C e;
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�2

�

q D 0

r0

q D 0

q � 0

Hpı.0/
q � �.2�C 1/q

q > 0

Hpı.0/
q � �.2�C 1/q

supp�C

RC 1

supp'

r

Figure 5. The escape function q used to prove propagation of singularities (5-2) in
the case ˛ D 0. The derivative along the flow lines Hpı.0/q is negative and provides
ellipticity for our positive commutator argument near fr 2 supp�C; � 2 supp'g. We
allow Hpı.0/q > 0 (the unfavorable sign for us) only in fr >RC 1g and in f� < �2g,
because in this region pı.0/ is elliptic.

where b; e 2C1
0
.T �R/, b> 0 near fr 2 supp�C; � 2 supp';�2� �g, b2� .2�C1/q2 everywhere, and

supp e\.fr �RC1; ���2g[fr � r0g/D¿. Let Q;B;E be quantizations of q; b; e respectively. Then

i ŒPı.0/;Q
�Q�D�hB�BC hEC h2F;

where F 2‰0.R/ has full symbol supported in supp q. From this we conclude that

kBuk2 D�
2

h
ImhQ�Q.Pı.0/��/u;ui �

2

h
Im�kQuk2ChEu;uiC hhFu;uiCO.h1/kuk2:

From .Pı.0/ � �/u D f and WF0
h

Q \ T � suppf D ¿ it follows that the first term is O.h1/kuk2.
Similarly WF0

h
E \ .suppf [p�1

ı
.0//D ¿ implies by (2-18) that the third term is O.h1/kuk2. The

fourth term is bounded by C h2kC1kuk2 by the inductive hypothesis, giving

kBuk2 � 2�kQuk2CC h2kC1
kuk2:

By (2-19) we have

h.B�B � .2�C 1/Q�Q/u;ui � �C hkRuk2;

where R 2‰
0;0
0
.R/ is microsupported in an arbitrarily small neighborhood of WF0

h
Q. Hence kRuk �

C hkkuk and we have

kQuk2 � C h2kC1
kuk2;

completing the inductive step and also the proof. �
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5B. The case ˛� �1h. Propositions 3.4 and 3.5 follow from (5-1), (5-2) and the following two lemmas.

Lemma 5.2. For any E 2 .0; 1/ there is C0 > 0 such that for any M; �1 > 0 there are h0;C > 0 such
that if h 2 .0; h0�, ˛ � �1h, � 2 Œ�E;E�C i Œ�M h;1/, then

k.P .˛/��/�1
kL2.R/!H 2

h
.R/ � C log.1=h/h�1�C0jIm�j=h: (5-13)

If � 2 C1.R/ has �0 2 C1
0
.R/ and �.r/D 0 for r sufficiently negative, then

k�.P .˛/��/�1�kL2.R/!H 2
h
.R/ � C h�1�2C0jIm�j=h (5-14)

in the same range of h; ˛; �, and with the same C0 and h0 (but with different C ).

Lemma 5.3. Let r0 < 0, �� 2 C1
0
..�1; r0//, �C 2 C1

0
..r0;1//, ' 2 C1

0
..�1; 0//, E 2 .0; 1/,

�; �1;N > 0 be given. Then there exists h0 > 0 such that

k'.hDr /�C.r/.P .˛/��/
�1��.r/kL2.R/!H 2

h
.R/ DO.h1/ (5-15)

uniformly for ˛ � �1h, Re� 2 Œ�E;E�; ��h� Im�� h�N , h 2 .0; h0�.

Take ˛0> 0 such that if ˛�˛0 and r � 0 then ˛2e�2.rCˇ.r//� 3. We consider the cases �1h�˛�˛0

and ˛0 � ˛ separately.

Proof of (5-13), (5-14), and (5-15) for ˛0 � ˛. In this case P .˛/ is “elliptic” (although not pseudodiffer-
ential in the usual sense because of the exponentially growing term ˛2e�2.rCˇ.r//) and better estimates
hold. Use the fact that WC � 0 and ˛2e�2.rCˇ.r// � 3 for r � 0 to writeZ 0

�1

juj2 dr �
1

3

Z 1
�1

˛2e�2.rCˇ.r//
juj2 dr � 1

3
RehP .˛/u;uiL2.R/C

�
1
3
CO.h2/

�
kuk2

L2.R/
;Z 1

0

juj2 dr D

Z 1
0

WC juj
2dr �

Z 1
�1

WC juj
2 dr D� ImhP .˛/u;uiL2.R/:

Adding the inequalities gives

kuk2
L2.R/

� 2k.P .˛/��/ukL2.R/kukL2.R/C
�

1
3

Re�� Im�C 1
3
CO.h2/

�
kuk2

L2.R/
:

So long as Im�� 1
3

Re�C 2
3
� � for some � > 0, it follows that

kukL2.R/ � Ck.P .˛/��/ukL2.R/: (5-16)

To obtain (5-13) we observe that

kh2D2
r uk2

L2.R/

D k.h2D2
r C˛

2e�2.rCˇ.r///uk2
L2.R/

�k˛2e�2.rCˇ.r//uk2
L2.R/

� 2 Rehh2D2
r u; ˛2e�2.rCˇ.r//uiL2.R/;

while

�Rehh2D2
r u; ˛2e�2.rCˇ.r//uiL2.R/

D�k˛e�.rCˇ.r//hDr uk2
L2.R/

C 2 ImhhDr u; .1Cˇ0.r//h˛2e�2.rCˇ.r//uiL2.R/;
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so that

kh2D2
r ukL2.R/ � 2k.h2D2

r C˛
2e�2.rCˇ.r///ukL2.R/ � 2k.P .˛/��/ukL2.R/CC j�jkukL2.R/:

Together with (5-16), this implies (5-13) (and hence (5-14)) with the right-hand side replaced by C.1Cj�j/.
The estimate (5-15) follows from the stronger Agmon estimate

k�C.r/.P .˛/��/
�1��.r/kL2.R/!H 2

h
.R/ DO.e�1=.C h//I

see for example [Zworski 2012, Theorems 7.3 and 7.1]. �

Proof of (5-13) for �1h� ˛ � ˛0. For this range of ˛ we use the following rescaling (I’m very grateful to
Nicolas Burq for suggesting this rescaling):

Qr D r= log.2˛0=˛/; QhD h= log.2˛0=˛/: (5-17)

In these variables we have

P .˛/D . QhDQr /
2
C 4˛2

0e�2Œ.1CQr/ log.2˛0=˛/C Q̌.Qr/�C Qh2 zV . Qr/� 1� i zWC . Qr/;

where
Q̌. Qr/D ˇ.r/; zV . Qr/D log.2˛0=˛/

2V .r/; zWC . Qr/DWC .r/:

We will show that
k.P .˛/��/�1

kL2
Qr
!H 2

h;Qr
� C Qh�1eC0jIm�j= Qh (5-18)

for jRe�j �E; Im�� �M Qh log.1= Qh/, from which (5-13) follows.
We now use a variant of the gluing argument in Section 3A to replace the exponentially growing term

4˛2
0
e�2Œ.1CQr/ log.˛0=˛/C Q̌.Qr/� with a bounded one. Fix zR> 0 such that

Qr � � zR; ˛ � ˛0 H) ˛2
0e�2Œ.1CQr/ log.2˛0=˛/C Q̌.Qr/� > 1:

Take zVB; zVE 2 C1.R; Œ0;1// such that

zVE. Qr/D 4˛2
0e�2Œ.1CQr/ log.2˛0=˛/C Q̌.Qr/� for Qr � � zR

and zVE. Qr/� 4 for all Qr , while

zVB. Qr/D 4˛2
0e�2Œ.1CQr/ log.2˛0=˛/C Q̌.Qr/� for Qr � � zR� 3

and zVB is decreasing in Qr and bounded together with all derivatives, uniformly in ˛ (see Figure 6).
Let

PE.˛/D . QhDQr /
2
C zVE. Qr/C Qh

2 zV . Qr/� 1� i zWC . Qr/;

PB.˛/D . QhDQr /
2
C zVB. Qr/C Qh

2 zV . Qr/� 1� i zWC . Qr/;

and let RE D .PE.˛/��/
�1, RB D .PB.˛/��/

�1. Note that

kREkL2
Qr
!H 2

h;Qr
� C
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zVB

zVE

� zR� 3 � zR

Figure 6. The model potentials zVE and zVB . The former agrees with the function
4˛2

0
e�2Œ.1CQr/ log.2˛0=˛/C Q̌.Qr/� for Qr � � zR, and zVB agrees with the same function for

Qr � � zR� 3.

by the same proof as that of (5-13) for ˛ � ˛0. We will show that (5-18) follows from

kRBkL2
Qr
!H 2

h;Qr
� C Qh�1eC0jIm�j= Qh (5-19)

for jRe�j � E; Im� � �M Qh log.1= Qh/. Indeed, let �E 2 C1.RIR/ have �E. Qr/D 1 near Qr � � zR� 2

and �E. Qr/D 0 near Qr � � zR� 1, and let �B D 1��E . Let

G D �E. Qr � 1/RE�E. Qr/C�B. Qr C 1/RB�B. Qr/:

Then

.P .˛/��/G D IdCŒ Qh2D2
Qr ; �E. Qr � 1/�RE�E. Qr/C Œ Qh

2D2
Qr ; �B. Qr C 1/�RB�B. Qr/D IdCAE CAB:

As in Section 3A we have A2
E
DA2

B
D 0. We also have the Agmon estimate

kAEkL2
Qr
!L2

Qr
� e�1=.C Qh/

I

see for example [Zworski 2012, Theorems 7.3 and 7.1]. Solving away AB using G we find that

.P .˛/��/G.Id�AB/D IdCOL2
Qr
!L2

Qr
.e�1=.C Qh//; (5-20)

and since kG.Id�AB/kL2
Qr
!H 2

Qh;Qr

� C Qh�1eC jIm�j= Qh, this implies (5-18).

The proof of (5-19) follows that of (5-1) with these differences: the �i zWC . Qr/ term removes the need
for complex scaling, and the zVB. Qr/ term puts PB in a mildly exotic operator class and leads to a slightly
modified escape function q and microlocal cutoff �. Fix

E0 2 .E; 1/; "D 10M Qh log.1= Qh/: (5-21)

The Qh-semiclassical principal symbol of PB (note that PB 2‰
2
ı
.R/ for any ı > 0) is

pB D Q�
2
C zVB. Qr/� 1� i zWC . Qr/; (5-22)
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where Q� is dual to Qr . Take q 2 C1
0
.T �R/ such that on f� zR� Qr � 0; j Q�j � 2g we have

q. Qr ; Q�/D�Cq. Qr C zRC 1/ Q�;

Re HpB
q D�2Cq Q�

2
CCq. Qr C zRC 1/ zV 0B. Qr/� �Cq.Re pBC 1/;

where Cq > 0 is a large constant which will be specified below, and where for the inequality we used (2-2).
Let Q 2‰�1.R/ be a quantization of q with Qh as semiclassical parameter and put

PB;" D e"Q=
QhPBe�"Q=

Qh
D PB � "ŒPB;Q= Qh�C "

2 Qh�4ıR; (5-23)

where R 2‰�1
ı

.R/ by (2-26). The Qh-semiclassical principal symbol of PB;" is

pB;" D Q�
2
CVB. Qr/� 1� i zWC . Qr/C i"HpB

q:

We will prove
k.PB;"�E0/�1

kL2
Qr
!H 2

Qh;Qr

� 5="; E0 2 Œ�E0;E0�; (5-24)

from which it follows by (2-23) that

k.PB;"��/
�1
kL2
Qr
!H 2

Qh;Qr

�

Qh�N

M log.1= Qh/
; jRe�j �E0; jIm�j �M Qh log.1= Qh/; (5-25)

where
N D 10M.kQkH 2

Qh;Qr
!H 2

Qh;Qr

CkQkL2
Qr
!L2

Qr
/C 1:

The proof that (5-25) implies (5-19) is the same as the proof that (4-3) implies (3-8).
Let � 2 C1

0
.T �R/ be identically 1 near f. Qr ; Q�/ W � zR� Qr � 0; j Q�j � 2; jRe pB. Qr ; Q�/j �E0g and be

supported such that Re HpB
q < 0 on supp�. Let ˆ be the quantization of � with Qh as semiclassical

parameter. For h (and hence Qh and ") small enough, we have jpB;"�E0j � .1C Q�2/=C on supp.1��/,
uniformly in E0 2 Œ�E0;E0�, in ˛ � ˛0 and in h. Hence, by the semiclassical elliptic estimate (2-18),

k.Id�ˆ/ukH 2
Qh;Qr

� Ck.PB;"�E0/.Id�ˆ/ukL2
Qr
CO.h1/kukH�N

Qh;Qr

:

Using the fact that Re HpB
q < 0 on supp�, fix Cq large enough that on supp� we have

Im pB;" D�
zWC . Qr/C "Re HpB

q � �":

Then, using the sharp Gårding inequality (2-19), we have, for h sufficiently small,

kˆukL2
Qr
.R/k.PB;"�E0/ˆukL2

Qr
.R/ � �hIm.PB;"�E0/ˆu; ˆuiL2

Qr
.R/

� "kˆuk2
L2
Qr
.R/
�C Qh1�2ı

kuk2
H

1=2

Qh;Qr
.R/
:

We deduce (5-24) from this just as we did (4-2) above. �

Proof of (5-14) for �1h� ˛ � ˛0.. It suffices to show that

k�RB�kL2
r!H 2

h;r
� C=h (5-26)
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when jRe�j �E0; Im�� 0, with RB as in the proof of (5-13) for �1h� ˛ � ˛0, E0 as in (5-21).1 Then
k�.P .˛/� �/�1�kL2

r!H 2
h;r
� C=h (for the same range of parameters) follows by the same argument

that reduced (5-13) to (5-19) above. After this, (5-14) follows by complex interpolation as in the
proof that (4-3) implies (3-8) above. Indeed, take f .�; h/ holomorphic in �, bounded uniformly for
� 2�D Œ�E0;E0�C i Œ�M h log log.1=h/; 0�, and satisfying

jRe�j �E H) jf j � 1; jRe�j �
�

1
2
.ECE0/;E0

�
H) jf j � h2

for � 2�. Then define the subharmonic function

g.�; h/D log k�.P .˛/��/�1�kL2
r!H 2

h;r
C log jf .�; h/jC 2C0

Im�

h
log.1=h/;

and apply the maximum principle to g on �, observing that g � C C log.1=h/ on @�.
It now remains to prove (5-26), which we do using a “noncompact” variant of the positive commutator

method of [Datchev and Vasy 2012b]. Fix �R0 < inf supp� and take f 2L2
r with suppf � .�R0;1/.

Let uDRBf . We will show that k�ukH 2
h;r
� Ckf kL2

r
=h.

As an escape function take q 2 S0.R/ with q � 0 everywhere and such that

q.r; �/D

�
1C 2R0e�1=R0 ; �R0 � r;

1C 2R0e�1=R0 � �.r CR0C 1/e�1=.rCR0/; �R0 < r � 0 and j�j � 2:

We do not prescribe additional conditions on q outside of this range of .r; �/, as PB is semiclassically
elliptic there. The h-semiclassical principal symbol of PB is (see (5-22))

pB D �
2
CVB.r/� 1� iWC .r/;

where VB.r/ D zVB. Qr/. Making � zR more negative if necessary, we may suppose without loss of
generality that

r � �R0 H) VB.r/D ˛
2e�2.rCˇ.r//:

For r � �R0 we have HpB
q D 0, and for �R0 < r � 0, j�j � 2 we have

Re HpB
q.r; �/D

�
�2�2.1C 1=.r CR0//CV 0B.r/.r CR0C 1/

�
e�1=.rCR0/

� �.Re pBC 1/e�1=.rCR0/:

Consequently, we may write
Re HpB

.q2/D�b2
C a;

where a; b 2 C1
0
.T �R/ and supp a is disjoint from fr � �R0g and from f�R0 < r � 0g \ fj�j � 2g.

Note that
b ¤ 0 on fjpBj �E0g\T �.�R0; 0/: (5-27)

Let QD Op.q/ as in (2-15). Then

i ŒPB;Q
�Q�D�hB�BC hAC ŒWC ;Q

�Q�C h2Y; (5-28)

1Note that for this proof we do not use the variables Qr and Qh.
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where B;A;Y 2 ‰�1.R/ and B;A have semiclassical principal symbols b; a. Note that if �0 2

C1
0
..�R0;1//, then by (5-27) and (2-18) we have

k�0uk2
H 2

h;r

� C.kBuk2
L2

r
C log2.1=h/kf k2

L2
r
/; (5-29)

so it suffices to show that

kBuk2
L2

r
� C h�2

kf k2
L2

r
: (5-30)

Combining (5-28) with

hi ŒPB;Q
�Q�u;uiL2

r
D�2 ImhQ�Qu; f iL2

r
C 2hWC Q�Qu;uiL2

r
C 2 Im�kQuk2

L2
r

gives

kBuk2
L2

r
D hAu;uiL2

r
C

2

h
ImhQ�Qu; f iL2

r
�

1

h
h.WC Q�QCQ�QWC /u;uiL2

r

�
2 Im�

h
kQuk2

L2
r
C hhY u;uiL2

r
: (5-31)

We now estimate the right-hand side term by term to obtain (5-30). Since PB � � is semiclassically
elliptic on supp a, by (2-18) followed by (5-13) we have

jhAu;uiL2
r
j � Ckf k2

L2
r
CC h2

kuk2
L2

r
� C log2.1=h/kf k2

L2
r
:

For any � > 0 and �1 2 C1
0
.R/ with �1 D 1 near suppf we have

2

h
ImhQ�Qu; f iL2

r
� �k�1uk2

L2
r
C

C

h2�
kf k2

L2
r
:

By (5-27) and the elliptic estimate (2-18), if further inf supp�1 > �R0, then (5-29) gives

2

h
ImhQ�Qu; f iL2

r
� C�kBuk2

L2
r
C

C

h2�
kf k2

L2
r
:

Next we have, using WC � 0 and the fact that h�1ŒWC ;Q
��Q has imaginary principal symbol, followed

by (5-13),

�
1

h
h.WC Q�QCQ�QWC /u;uiL2

r
D�

2

h
hWC Qu;QuiL2

r
C

2

h
RehŒWC ;Q

��Qu;uiL2
r

� C hkuk2
L2

r
� C

log2.1=h/

h
kf k2

L2
r
:

Finally we observe that �2 Im�kQuk2
L2

r

=h� 0 since Im�� 0, while (5-13) implies

hhY u;uiL2
r
� C

log2.1=h/

h
kf k2

L2
r
:

This completes the estimation of (5-31) term by term, giving (5-30). �
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Proof of (5-15) for �1h � ˛ � ˛0. We begin this proof with the same rescaling to Qr and Qh, and the
same parametrix construction as for the proof of (5-13) for �1h� ˛ � ˛0 above, but with the additional
requirement that

� zR� r0= log 2:

Then if we put
z�C. Qr/D �C.r/; z��. Qr/D ��.r/;

we have

supp z�C � .r0= log.2˛0=˛/;1/� .r0= log 2;1/; supp�E � .�1;� zR� 1/;

and hence
z�C. Qr/�E. Qr � 1/D 0: (5-32)

Then, noting that (5-20) implies

.P .˛/��/�1
DG.Id�AB/.IdCOL2

Qr
!L2

Qr
.e�1=.C Qh///;

we use (5-32) to write

z�C. Qr/.P .˛/��/
�1
z��. Qr/D z�C. Qr/RB z��. Qr/COL2

Qr
!H 2

Qh;Qr

.e�1=.C Qh//:

Returning to the r and h variables, we see that it suffices to show that

k'.hDr /�C.r/RB��.r/kL2
r!H 2

h;r
DO.h1/: (5-33)

The proof of (5-33) is almost the same as that of (5-2). There are two differences.
The first difference is that as an escape function we use

q D 'r .r/'�.�/; Re HpB
q D 2�'0r .r/'�.�/�V 0C .r/'

0
r .r/'

0
�.�/;

where 'r 2 C1
0
.RI Œ0;1// with supp'r � .r0;1/, '0r � 0 near Œr0; 0�, '0r > 0 near supp�C. Take

'� 2 C1
0
.RI Œ0;1// with supp'� � .�1; 0/, '0� � 0 near Œ�2; 0�, '� ¤ 0 near supp'\ Œ�2; 0�. Impose

further that
p
'

r
;
p
'
�
2 C1

0
.R/, and that '0r � c'r for r � 0, where c > 0 is chosen large enough that

Re HpB
q � �.2�C 1/q on fr � 0; � � �2g.

The second difference is that the complex absorbing barrier WC produces a remainder term in the
positive commutator estimate, analogous to the one in the proof of (5-14) for �1h� ˛ � ˛0 above. The
same argument removes the remainder term in this case. �

6. Model operator in the funnel

In this section we prove Propositions 3.6 and 3.7. As in Section 5, we begin by separating variables over
the eigenspaces of �SC , writing

PF D

1M
mD0

h2D2
r C .1�WF .r//.h�m/

2e�2.rCˇ.r//
C h2V .r/� 1� iWF .r/;
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where 0D �0 < �1 � � � � are square roots of the eigenvalues of �SC . Roughly speaking, it suffices to
prove (3-13), (3-14) with PF replaced by P .˛/, with estimates uniform in ˛ � 0, where

P .˛/D h2D2
r C .1�WF .r//˛

2e�2.rCˇ.r//
C h2V .r/� 1� iWF .r/:

More specifically, with notation as in those two propositions, (3-13) follows from

k�.P .˛/��/�1�kL2.R/!H 2
h
.R/ � C

�
h�1Cj�j; Im� > 0;

h�1eC0jIm�j=h; Im�� 0;
(6-1)

and (3-14) follows from

k�C.r/.P .˛/��/
�1��.r/'.hDr /kL2.R/!H 2

h
.R/ DO.h1/; (6-2)

so in this section we will prove (6-1) and (6-2).
To do that we use a variant of the method of complex scaling presented in the proof of Lemma 5.1, but

with contours 
 depending on ˛ in such a way as to give estimates uniform in ˛; the ˛-dependence is
needed because the term ˛2.1�WF .r//e

�2.rCˇ.r//, although exponentially decaying, is not uniformly
exponentially decaying as ˛!1. Such contours were first used in [Zworski 1999, §4]; here we present
a simplified approach based on that in [Datchev 2010, §5.2].

Fix R>Rg sufficiently large that

supp�[ supp�C[ supp�� � .�1;R/

and that

Re z �R; 0� arg z � �0 H) jImˇ.z/j � 1
2
jIm zj; (6-3)

where �0 is as in Section 2A. Let 
 D 
˛.r/ be real-valued, smooth in r with 
 0.r/� 0 for all r , and obey

 .r/D 0 for r �R (here and below 
 0 D @r
 ). Suppose 
 00 2 C1

0
.R/ for each ˛, but not necessarily

uniformly in ˛. Now put

P
 .˛/D
h2D2

r

.1C i
 0.r//2
� h


 00.r/hDr

.1C i
 0.r//3
C˛2.1�WF .r//e

�2.rCi
.r/Cˇ.rCi
.r///

C h2V .r C i
 .r//� 1� iWF .r/:

If we define the differential operator with complex coefficients

zP .˛/D h2D2
z C˛

2.1�WF .z//e
�2.zCˇ.z//

C h2V .z/� 1� iWF .z/;

where z varies in fz D r C iı
 .r/ W r 2 R; ı 2 .0; 1/g, and where WF .z/ WD 0 whenever Im z ¤ 0, then
we have

P .˛/D zP .˛/jfzDr Wr2Rg; P
 .˛/D zP .˛/jfzDrCi
.r/Wr2Rg:

If �0 2 C1.R/ has supp�0\ supp 
 D¿, then

�0.P .˛/��/
�1�0 D �0.P
 .˛/��/

�1�0; Im� > 0;
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by an argument almost identical to that used to prove (5-5); the only difference is we construct WKB
solutions which are exponentially growing and decaying as Re z!C1 rather than �1, and we take
f .z/D .˛2e�2.zCˇ.z//C h2V .z/� 1��/=h2.

Consequently, to prove (6-1) and (6-2), it is enough to show that

k.P
 .˛/��/
�1
kL2.R/!H 2

h
.R/ � CeC0jIm�j=h (6-4)

and

k�C.r/.P
 .˛/��/
�1��.r/'.hDr /kL2.R/!H 2

h
.R/ DO.h1/ (6-5)

for a suitably chosen 
 , with estimates uniform in ˛ � 0.
Fix R� >R such that

jImˇ.z/j � 1
2

Im z (6-6)

for Re z �R�, 0� arg z � �0, with �0 as in Section 2A. Take ˛0 > 0 such that

˛2
0e�2.RC1/e�2 maxjReˇj

D 8; (6-7)

where maxjReˇj is taken over R[fjzj>Rg; 0� arg z � �0g. We consider the cases ˛ � ˛0 and ˛ � ˛0

separately.

Proof of (6-4) for 0� ˛ � ˛0. Fix

E0 2 .E; 1/; "D 10M h log.1=h/:

We use the same complex scaling as in the proof of Lemma 5.1. In this range 
 is independent of ˛
and we put 
 D ı
�, where 0 < ı� 1 will be specified later, and we require 
�.r/ D 0 for r � R�,

 0�.r/� 0 for all r , and 
 0�.r/D tan �0 for r �R�C 1.

The semiclassical principal symbol of P
 .˛/ is

p
 .˛/D
�2

.1C i
 0.r//2
C˛2.1�WF .r//e

�2.rCi
.r/Cˇ.rCi
.r///
� 1� iWF .r/

D �2
C˛2.1�WF .r//e

�2.rCˇ.r//
� 1� iWF .r/CO.ı/;

where the implicit constant in O is uniform in compact subsets of T �R. Moreover,

Re p
 .˛/C 1� �2
�O.ı/;

and, using (6-6),

Im p
 .˛/� �˛
2.1�WF .r//e

�2.rCReˇ.rCi
.r// sin.2.
 .r/C Imˇ.r C i
 .r///

� �˛2.1�WF .r//e
�2.rCReˇ.rCi
.r// sin 
 .r/

D�˛2.1�WF .r//e
�2.rCReˇ.rCi
.r//
 .r/.1CO.ı2//; (6-8)
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again uniformly on compact subsets of T �R. Take q 2C1
0
.T �R/ such that on f0� r �R�C1; j�j � 2g

we have

q D�Cq.r C 1/�;

Re Hp
 q

Cq
D�2�2

� .W 0F .r/C 2.1Cˇ0.r//.r C 1/˛2e�2.rCˇ.r//
CO.ı/

� �.Re p
 C 1/� ��2
CO.ı/;

where Cq > 0 will be specified later, and provided ı is sufficiently small. Let QD Op.q/ and put

P
;".˛/D e"Q=hP
 .˛/e
�"Q=h

D P
 .˛/� "ŒP
 .˛/;Q=h�C "2R;

where R 2‰�1.R/ (see (2-26)). As in the proof of Lemma 5.1, (6-4) follows from

k.P
;".˛/�E0/�1
kL2.R/!H 2

h
.R/ � 5=" (6-9)

for E0 2 Œ�E0;E0�.
The proof of (6-9) combines elements of the proofs of (5-9) and (5-24). Let � 2 C1

0
.T �R/ be

identically 1 near f0� r �R�C 1; j�j � 2; jRe p
 j �E0g and be supported such that Re Hp
 q < 0 on
supp�. Let ˆ be the quantization of �. For ı small enough, and h (and hence ") small enough depending
on ı, we have jp
;"�E0j � ı.1C �2/=C on supp.1��/, uniformly in E0 2 Œ�E0;E0�, in ˛ � ˛0 and
in h, where p
;".˛/ is the semiclassical principal symbol of P
;".˛/. Hence, by the semiclassical elliptic
estimate (2-18),

k.Id�ˆ/ukH 2
h
.R/ � Cı�1

k.P
;"�E0/.Id�ˆ/ukL2.R/CO.h1/kukH�N
h

.R/:

Using (6-8) and supp� � fRe Hpc
q < 0g, fix Cq large enough that on supp� we have

Im p
;" D Im p
 C "Re Hpc
q � �˛2.1�WF /e

�2.rCReˇ/
 .1CO.ı2//C "Re Hpc
q � �":

Then, using the sharp Gårding inequality (2-19), we have, for h sufficiently small,

kˆukL2.R/k.PC;"�E0/ˆukL2.R/ � �hIm.PC;"�E0/ˆu; ˆuiL2.R/

� "kˆuk2
L2.R/

�C hkuk2
L2.R/

:

This implies (6-9) just as in the proofs of (5-9) and (5-24). �

Proof of (6-4) for ˛ � ˛0. Define contours 
 D 
˛.r/ as follows. Take R˛ such that

˛2e�2R˛e2 maxjReˇj
Dmin

˚
1
4
; 1

2
tan �0

	
; (6-10)

where maxjReˇj is taken over R[fjzj>Rg; 0� arg z � �0g. Note that R˛ >RC 1 by (6-7). Take 

smooth and supported in .R;1/, with 0� 
 0.r/� 1

2
, and such that8̂<̂

:

 .r/� �

9
; r �RC 1;

�
18
� 
 .r/� �

6
; RC 1� r �R˛;


 0.r/Dmin
˚

1
2
; tan �0

	
; r �R˛:
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We prove that
jp
 .˛/�E0j � .1C �2/=C (6-11)

uniformly for �E � E0 � E and ˛ � ˛0, by considering each range of r individually. By (2-18) this
implies (6-4) for ˛ � ˛0.

(1) For r �RC 1 we have

Re p
 .˛/C 1D
�2.1� 
 0.r/2/

j1C i
 0.r/j4
C˛2.1�WF .r//Re e�2.rCi
.r/Cˇ.rCi
.r///

�
1
3
�2
C˛2.1�WF .r//e

�2.rCReˇ.rCi
.r/// cos.3
 .r//

�
1
3
�2
C 4.1�WF .r//; (6-12)

where for the first inequality we used 
 0 � 1
2

and (6-6), and for the second (6-7) and 
 � �
9

. Since
Im p
 D�WF whenever WF ¤ 0, this gives (6-11) for r �RC 1.

(2) For RC 1 � r �R˛ we have Re p
 .˛/ �
1
3
�2 � 1 by the same argument as in (6-12). This gives

(6-11) for RC 1� r �R˛ once we note that (6-6) and (6-10) imply

� Im p
 .˛/D
2�2
 0.r/

j1C i
 0.r/j4
�˛2 Im e�2.rCi
.r/Cˇ.rCi
.r///

� e�2 maxjReˇj sin
�
�
18

�
min

˚
1
2
; 1

2
tan �0

	
:

(3) For r �R˛ , note that ˛2je�2.rCi
.r/Cˇ.rCi
.r///j � 
 0.r/. We again deduce (6-11) by considering
two ranges of � individually. When �2=j1C i
 0.r/j4 � 1

2
we have

Re p
 .˛/D
�2.1� 
 0.r/2/

j1C i
 0.r/j4
C˛2 Re e�2.rCi
.r/Cˇ.rCi
.r///

� 1

�
1
2
C

1
4
� 1D�1

4
:

When �2=j1C i
 0.r/j4 � 1
2

we have

Im p
 .˛/D
�2�2
 0.r/

j1C i
 0.r/j4
C˛2 Im e�2.rCi
.r/Cˇ.rCi
.r///

�
�2�2
 0.r/

j1C i
 0.r/j4
C

1
2

 0.r/� �3

2

 0.r/D�min

˚
3
4
; 3

2
tan �0

	
: �

For ˛ � ˛0, (6-5) follows from an Agmon estimate just as in the proof of (5-15) for ˛ � ˛0 above. For
˛ � ˛0, (6-5) follows from the same positive commutator argument as was used for the proof of (5-33).

7. Applications

In this section we give applications of the Theorem to solutions to Schrödinger and wave equations. Since
such applications are well-known, we only sketch the arguments below, giving references to sources with
further details.
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We use the notation

kuks WD k.1C�/
s=2ukL2.X /; kAks!s0 WD sup

kuksD1

kAuks0 ; s; s0 2 R:

We begin by using (1-1) to deduce polynomial bounds on the resolvent between Sobolev spaces. If
�; z� 2 C1

0
.X / satisfy z��D �, then for any s 2 R, we have

k��uks � C.kz�uksCkz��uks/:

Hence, for any s; s0 2 R, we have, letting R�.�/ WD �
�
�� 1

4
n2� �2

��1
�,

kR�.�/ks!s � CkRz�.�/ks0!s0 ;

kR�.�/ks!s0C2 � C.1Cj� j2/
�
kRz�.�/ks!sCkRz�.�/ks!s0

�
;

kR�.�/ks!s0 � C.1Cj� j2/�1
�
kRz�.�/ks!s0C2CkRz�.�/ks!s0

�
:

Consequently, (1-1) implies that for any � 2 C1
0
.X /, there is M0 > 0 such that for any M1 > 0, s 2 R,

s0 � sC 2, there is M2 > 0 such that

kR�.�/ks!s0 �M2j� j
M0 jIm� jCs0�s�1 (7-1)

when jRe � j �M2, Im � � �M1.

7A. Local smoothing. By the self-adjoint functional calculus of�, the Schrödinger propagator is unitary
on all Sobolev spaces: for any s; t 2 R, if u 2H s.X /,

ke�it�uks D kuks:

The Kato local smoothing effect says that if we localize in space and average in time, then Sobolev
regularity improves by half a derivative: for any � 2 C1

0
.X /, T > 0, s 2 R there is C > 0 such that if

u 2H s.X /, Z T

0

k�e�it�uk2sC1=2 dt � Ckuk2s : (7-2)

This follows by a T T � argument from (7-1) applied with Im � D s D 0, s0 D 1 (see, e.g., [Burq 2004,
p. 424]); note that in this case the right-hand side of (7-1) is independent of � .

7B. Resonant wave expansions. Suppose �
�
�� 1

4
n2��2

��1
� is meromorphic for � 2C. For example

we may take .X;g/ as in Section 2D1. More generally, if the funnel end is evenly asymptotically
hyperbolic as in [Guillarmou 2005, Definition 1.2] then this follows as in the proof of Theorem 1.1 in
[Sjöstrand and Zworski 1991, p. 747], but in the interest of brevity we do not pursue this here.

Then (7-1) implies that, when the initial data is compactly supported, solutions to the wave equation�
@2

t C��
1
4
n2
�
uD 0 can be expanded into a superposition of eigenstates and resonant states, with a

remainder which decays exponentially on compact sets:



946 KIRIL DATCHEV

Let � 2 C1
0
.X /. There is M0 > 0 such that for any s 2 R, f 2 H sC1.X /, g 2 H s.X / satisfying

�f D f , �g D g, and for any M1 > 0 and

s0 < s�M0M1; (7-3)

there are C;T > 0 such that if t � T , H D
p
�� 1

4
n2, then



��cos.tH /f C

sin.tH /

H
g�

X
Im�j>�M1

M.�j /X
mD1

e�i�j t tm�1wj ;m

�




s0
� Ce�M1t ;

where the sum is taken over poles of R�.�/ (and is finite by the Theorem), M.�j / is the rank of the
residue of the pole at �j , and each wj ;m is a linear combination of the projections of f and g onto the
m-th eigenstate or resonant state at �j . This follows from (7-1) by an argument of [Lax and Phillips
1989; Vaı̆nberg 1989]; see also [Tang and Zworski 2000, Theorem 3.3] or [Datchev and Vasy 2012a,
Corollary 6.1].

Remark. The local smoothing estimate (7-2) is lossless in the sense that the result is the same if .X;g/
is nontrapping and asymptotically Euclidean or hyperbolic (see [Cardoso, Popov and Vodev 2004, (1.6)]
for a general result). This is because the resolvent estimates (1-1) and (1-2) agree when Im � D 0. The
resonant wave expansion exhibits a loss in the Sobolev spaces in which the remainder is controlled: the
improvement from (1-1) to (1-2) for Im � < 0 means that, when (1-2) holds, we can replace (7-3) with
s0 < s.

8. Lower bounds

In this section we prove that, in the setting of an exact quotient, the holomorphic continuation of the
resolvent grows polynomially. As in [Borthwick 2007, §5.3], we use the fact that in this case the integral
kernel of the resolvent can be written in terms of modified Bessel functions.

Proposition 8.1. Let .X;g/ be given by

X D R�S; g D dr2
C e2r dS;

where .S; dS/ is a compact Riemannian manifold without boundary of dimension n. Then for any
�2C1

0
.X / which is not identically 0, the cutoff resolvent �

�
�� 1

4
n2��2

��1
� continues holomorphically

from fIm � > 0g to C n 0, with a simple pole of rank 1 at � D 0.
Moreover, if �¤ 0 in a neighborhood of fr D 0g, for any " > 0 there exists C > 0 such that

���� 1

4
n2
� �2

��1
�




L2.X /!L2.X /
� e�C jIm� j

j� j2jIm� j�1=C (8-1)

when Im � � �", Re � � C , jIm � j � C jRe � j2=3.

Proof. As in Section 2C a conjugation and separation of variables reduce this to the study of the following
family of ordinary differential operators:

Pm DD2
r C�

2
me�2r ;
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where 0D�0<�1��2� � � � are square roots of the eigenvalues of�. We will show that �.Pm��
2/�1�

is entire in � for m > 0, and that it is holomorphic in C n 0 with a simple pole of rank 1 at � D 0 for
mD 0. We will further show that

k�.P1� �
2/�1�kL2.R/!L2.R/ � e�C jIm� j

j� j2jIm� j�1=C (8-2)

when Im � � �", Re � � C , jIm � j � jRe � j2=3.
We write the integral kernel of the resolvent of each Pm using the following variation of parameters

formula:

Rm.r; r
0/D� 1.maxfr; r 0g/ 2.minfr; r 0g/=W . 1;  2/; (8-3)

where  1 and  2 are linearly independent solutions to .Pm��
2/uD 0 and W . 1;  2/ is their Wronskian.

If mD 0 we take  1.r/D eir� and  2.r/D e�ir� (this is the choice for which the resolvent maps
L2 to L2 for Im � > 0), so that W . 1;  2/D 2i� . Now the asserted continuation is immediate from the
formula (8-3).

To study m> 0 we use, as in [Borthwick 2007, §5.3], the Bessel functions

 1.r/D I�.�me�r /;  2.r/DK�.�me�r /; � D�i�: (8-4)

We recall the definitions:

I�.z/ WD
z�

2�

1X
kD0

.z=2/2k

k!�.�C kC 1/
; (8-5)

K�.z/ WD
�

2 sin.��/
.I��.z/� I�.z//: (8-6)

This pair solves the desired equation (see for example [Olver 1974, Chapter 7, (8.01)]) and has
Wronskian W D 1 (see for example [ibid., Chapter 7, (8.07)]). When Im � > 0, we have Re � > 0 and
this resolvent maps L2 to L2 thanks to the asymptotic

I�.z/D
z�

2��.�C1/

�
1CO

�
z2

�

��
; (8-7)

which is a consequence of (8-5), and thanks to the fact that K�.z/ � e�z
p
�=2z as z !1 (see for

example [ibid., Chapter 7, (8.04)]). Because I and K are entire in �, we have the desired holomorphic
continuation of the resolvent for all m> 0.

To estimate the resolvent we use (8-6) and (8-7) to write

K�.z/D
�

2 sin.��/

�
z��

2���.��C1/
�

z�

2��.�C1/

��
1CO

�
z2

�

��
:

Using Euler’s reflection formula for the gamma function (see for example [ibid., Chapter 2, (1.07)]),

�

sin.��/�.�C 1/
D��.��/D

�.��C 1/

�
;
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it follows that

K�.z/D
�.�C1/

2�

�
z��

2��
�

z��.��C1/

2��.�C1/

��
1CO

�
z2

�

��
D
�.�C1/

2�

�
z��

2��
C
�z� sin.��/�.��/2

2��

��
1CO

�
z2

�

��
: (8-8)

To prove (8-1) we assume (without loss of generality) that there is a> 0 such that �� 1 on Œ�a; a�,
and fix such an a. Let f be the characteristic function of Œ0; a�, and let

u.r/ WD .P1� �
2/�1f .r/D�

Z a

0

R1.r; r
0/ dr 0 DK�.�1e�r /

Z a

0

I�.�1e�r 0/ dr 0:

Then k�.P1� �
2/�1�kL2.R/!L2.R/ � k�ukL2.R/=kf kL2.R/ and hence

k�.P1� �
2/�1�k2

L2.R/!L2.R/
�

1

a

Z a

�a

ju.r/j2 dr �
1

a

Z 0

�a

ˇ̌̌̌
K�.�1e�r /

Z a

0

I�.�1e�r 0/ dr 0
ˇ̌̌̌2

dr

D
1

a

ˇ̌̌̌Z a

0

I�.�1e�r 0/ dr 0
ˇ̌̌̌2 Z 0

�a

jK�.�1e�r /j2 dr:

Using (8-7) and (8-8) we obtain

k�.P1� �
2/�1�k2

L2.R/!L2.R/

�
1

8aj�j2

ˇ̌̌̌Z a

0

.�1e�r 0/�

2�
dr 0
ˇ̌̌̌2 Z 0

�a

ˇ̌̌̌
.�1e�r /��

2��
C
�.�1e�r /� sin.��/�.��/2

2��

ˇ̌̌̌2
dr; (8-9)

provided j�j is sufficiently large.
We now bound the two integrals from below one by one. First,ˇ̌̌̌Z a

0

.�1e�r 0/�

2�
dr 0
ˇ̌̌̌
D

�Re �
1

2Re � j�j
je�a�

� 1j � e�C jRe �j=C j�j; (8-10)

since Re � D Im � � �". Second, using Stirling’s formula (see for example [ibid., Chapter 8, (4.04)])

�.��/D e�.��/��
p
�2�=�.1CO.��1//;

with

arg.��/ WD
�

2
� arctan

jRe �j
jIm �j

taking values in
�
0; �

2

�
, and where the branch of .��/�� is real and positive when �� is, we write

j� sin.��/�.��/2j D �e� jIm �je�2jRe �j
j�j2jRe �je�2jIm �j arg.��/.1CO.jIm �j�1//;

D �e�2jRe �j
j�j2jRe �je2jIm �j arctanjRe �=Im �j.1CO.jIm �j�1//

D �j�j2jRe �je�
2
3
jRe �j3=jIm �j2.1CO.jRe �j5jIm �j�4

CjIm �j�1//:
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Hence, as long as jRe �j�3jIm �j2 is bounded and j�j is sufficiently large, and using Re � � �",ˇ̌̌̌
.�1e�r /��

2��
C
�.�1e�r /� sin.��/�.��/2

2��

ˇ̌̌̌
�

1
2
j�j�2 Re �e

2
3
.Re �/3=.Im �/2 .�1e�r /Re �

2Re � �
2Re �

.�1e�r /Re �

�
1

C
j�j2jRe �j

�
2er

�1

�jRe �j

for jr j � a. This impliesZ 0

a

ˇ̌̌̌
.�1e�r /��

2��
C
�.�1e�r /� sin.��/�.��/2

2��

ˇ̌̌̌2
dr �

1

C
j�j4jRe �j

�
2

�1

�2jRe �j
Z 0

�a

e2jRe �jr dr

� j�j4jRe �je�C Re �=C:

Combining this with (8-9) and (8-10), and using � D�i� , gives (8-2) and hence (8-1). �

Appendix: The curvature of a warped product

The result of this calculation is used in the examples in Section 2D, and although it is well known,
we include the details for the convenience of the reader. For this section only, let .S; Qg/ be a compact
Riemannian manifold, and let X D R�S have the metric

g D dr2
Cf .r/2 Qg;

where f 2 C1.RI .0;1//. Let p 2X , let P be a two-dimensional subspace of TpX , and let K.P / be
the sectional curvature of P with respect to g. We will show that if @r 2 P , then

K.P /D�f 00.r/=f .r/;

while if P � TpS and zK.P / is the sectional curvature of P with respect to Qg, then

K.P /D . zK.P /�f 0.r/2/=f .r/2:

We work in coordinates .x0; : : : ;xn/D .r;x1; : : : ;xn/, and write

g D g˛ˇdx˛dxˇ D dr2
Cgij dxi dxj

D dr2
Cf .r/2 Qgij dxi dxj ;

using the Einstein summation convention. We use Greek letters for indices which include 0, that is indices
which include r , and Latin letters for indices which do not. Then

@˛gr˛ D 0; @r gjk D 2f �1f 0gjk ; @igjk D f
2@i Qgjk :

We write � for the Christoffel symbols of g, and z� for those of Qg. These are given by

�r
r˛ D �

˛
rr D 0; �r

jk D�f
�1f 0gjk ; � i

j r D f
�1f 0ıi

j ; � i
jk D

z� i
jk :

Let R be the Riemann curvature tensor of g:

R˛ˇ

ı
D @˛�

ı
ˇ
 C�

"
ˇ
�

ı
˛"� @ˇ�

ı
˛
 ��

"
˛
�

ı
ˇ":
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Now if P � TpX is spanned by a pair of orthogonal unit vectors V ˛@˛ and W ˛@˛, then K.P / D

R˛ˇ
ıV
˛W ˇW 
V ı, and similarly for zR and zK. Then

Rijk
l
D zR

l

ijk
C�r

jk�
l
ir ��

r
ik�

l
j r D

zR
l

ijk
C .f �1/2.f 0/2.�ıl

i gjk C ı
l
j gik/;

Rrjk
r
D @r�

r
jk ��

m
rk�

r
jm D�.f

�1f 0gjk/
0
C .f �1f 0/2gjk D�f

�1f 00gjk :

If @r 2 P we take V D @r and W DW j@j any unit vector in TpX orthogonal to V . Then

K.P /DRrjkr W j W k
D�f �1f 00gjkW j W k

D�f �1f 00:

Meanwhile, if @r ? P , we may write V D V j@j and W DW j@j . Then

K.P /D
�
f 2 QRijkl C .f

�1/2.f 0/2.�gligjk Cglj gik/
�
V iW j W kV l :

Using the fact that f V and fW are orthogonal unit vectors for Qg, we see that

K.P /D f �2 QK.P /� .f �1/2.f 0/2:
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