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MULTIDIMENSIONAL ENTIRE SOLUTIONS FOR AN
ELLIPTIC SYSTEM MODELLING PHASE SEPARATION

NICOLA SOAVE AND ALESSANDRO ZILIO

For the system of semilinear elliptic equations

1Vi = Vi

∑
j 6=i

V 2
j , Vi > 0 in RN ,

we devise a new method to construct entire solutions. The method extends the existence results already
available in the literature, which are concerned with the 2-dimensional case, also to higher dimen-
sions N ≥ 3. In particular, we provide an explicit relation between orthogonal symmetry subgroups,
optimal partition problems of the sphere, the existence of solutions and their asymptotic growth. This
is achieved by means of new asymptotic estimates for competing systems and new sharp versions for
monotonicity formulae of Alt–Caffarelli–Friedman type.

1. Introduction

The elliptic systems {
1Vi = Vi

∑
j 6=i V 2

j ,

Vi ≥ 0,
in RN, i = 1, . . . , k, (1-1)

which arise in the blow-up analysis of phase-separation phenomena in coupled Schrödinger equations,
has attracted increasing attention in recent years, and by now many results concerning existence and
qualitative properties of the solutions are available. For a detailed explanation about how (1-1) appears, we
refer to [Berestycki et al. 2013a; 2013b; Soave and Zilio 2016]. We prove the existence of N-dimensional
solutions to (1-1) in RN for any N ≥ 2. By this, we mean that we construct solutions in RN which cannot
be obtained from solutions in lower dimensions by adding a dependence on some “mute” variable. Our
results extend the construction developed in [Berestycki et al. 2013b], which concerns the planar case
N = 2. In this perspective, we mention that previous results contained in [Berestycki et al. 2013a; 2013b]
only regard the existence of solutions in dimension N = 1 or 2, and the question of the existence in higher
dimensions was up to now open.

In order to state our main results, we introduce some notation. We denote by O(N ) the orthogonal
group of RN and by Sk the symmetric group of permutations of {1, . . . , k}. Let us assume that there
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exists a homomorphism h : G→Sk , where G <O(N ) is a nontrivial subgroup. We define the equivariant
right action of G on H 1(RN ,Rk) in the following way:

G× H 1(RN ,Rk)→ H 1(RN ,Rk),

(g, u) 7→ g · u := (u(h(g))−1(1) ◦ g, . . . , u(h(g))−1(k) ◦ g),
(1-2)

where ◦ denotes the usual composition of functions, and we used the vector notation u := (u1, . . . , uk).
The set

H(G,h) := {u ∈ H 1(RN ,Rk) : u = g · u for all g ∈ G}

is the subspace of the (G, h)-equivariant functions.

Definition 1.1. For k ∈N, a nontrivial subgroup G <O(N ), and a homomorphism h : G→Sk , we write
that the triplet (k,G, h) is admissible if there exists a (G, h)-equivariant function u with the following
properties:

(i) ui ≥ 0 and ui 6≡ 0 for every i ;

(ii) ui u j ≡ 0 for every i 6= j ;

(iii) there exist g2, . . . , gk ∈ G such that

ui = u1 ◦ gi for i = 2, . . . , k.

Remark 1.2. Notice that, if (k,G, h) is admissible triplet, then all the (G, h)-equivariant functions satisfy
(iii) in the previous definition with the same symmetries gi ; indeed, by (iii) and equivariance we deduce
that (h(gi ))

−1(i)= 1 for every i , so that any equivariant function satisfies

vi = v(h(gi ))−1(i) ◦ gi = v1 ◦ gi for all i = 1, . . . , k. (1-3)

This tells us that any equivariant function associated to an admissible triplet is completely determined by
its first component: if we know that v is (G, h)-equivariant and that (k,G, h) is an admissible triplet, then
(1-3) holds true, and hence v2, . . . , vk can be obtained by knowing v1 and g2, . . . , gk .

We also underline the fact that there may exist symmetries in G whose corresponding permutation is
the identity. In this case, these symmetries are imposed on the single components.

Finally, we observe that the definition of admissible triplet implicitly imposes several restrictions on
(k,G, h). For instance, by (iii) we immediately deduce that h can never be the trivial homomorphism
G→Sk , g 7→ id for all g. Moreover, we also deduce that G has at least k different elements.

Let (k,G, h) be an admissible triplet. We let 3(G,h) be the set of those ϕ ∈ H 1(SN−1,Rk) such that

ϕ is the restriction on SN−1 of a (G, h)-equivariant function fulfilling Definition 1.1(i)–(iii). (1-4)

We consider the minimization problem

`(k,G,h) := inf
ϕ∈3(G,h)

1
k

k∑
i=1

(√(N−2
2

)2
+

∫
Sn−1 |∇θϕi |

2∫
Sn−1 ϕ

2
i
−

N−2
2

)
, (1-5)

where ∇θ denotes the tangential gradient on SN−1.
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Theorem 1.3. For any admissible pair (k,G, h), there exists a solution V of (1-1) with k components
in RN satisfying the following properties:

• V is (G, h)-equivariant;

• we have

lim
r→+∞

1
r N−1+2`(k,G,h)

∫
∂Br

k∑
i=1

V 2
i ∈ (0,+∞). (1-6)

Here and in the rest of the paper Br (x0) denotes the ball of centre x0 and radius r ; when x0 = 0, we
simply write Br for the sake of simplicity.

Since the theorem is quite general, we think that it is worthwhile to spend some time making some
explicit examples. This will be done in Section 2.1. For the moment, we anticipate that with our result
we can recover Theorems 1.3 and 1.6 in [Berestycki et al. 2013b], and moreover we can produce a wealth
of new solutions existing only in dimensions N ≥ 3.

We also observe that condition (1-6) establishes that the solution V grows at infinity, in quadratic
mean, like the power |x |`(k,G,h) . It is worth remarking that for any solution V to (1-1) it is possible to
define the growth rate as the uniquely determined value d ∈ (0,+∞] such that

lim
r→+∞

1
r N−1+2m

∫
∂Br

k∑
i=1

V 2
i =

{
+∞ if m < d,
0 if m > d;

see Proposition 1.5 in [Soave and Terracini 2015] and its proof. Therein, it is also shown that V has
algebraic growth, i.e., it satisfies the pointwise upper bound

V1(x)+ · · ·+ Vk(x)≤ C(1+ |x |α) for all x ∈ RN (1-7)

for some C , α≥ 1, if and only if its growth rate d is finite; we point out moreover that, as shown in [Soave
and Zilio 2014], the system does indeed admit solutions with exponential (i.e., nonalgebraic) growth.

Theorem 1.3 not only specifies the growth rate of the function (d = `(k,G, h)), but also states that, for
this precise growth rate, the limit

lim
r→+∞

1
r N−1+2d

∫
∂Br

k∑
i=1

V 2
i

is positive and finite. In this perspective we can prove that the solutions of Theorem 1.3 have minimal
growth rate among all the possible (G, h)-equivariant solutions.

Theorem 1.4. Let (k,G, h) be an admissible pair and let V be a (G, h)-equivariant solution of (1-1).
Then the growth rate of V is at least `(k,G, h).

Both the proofs of Theorems 1.3 and 1.4 exploit the hidden relationship between the elliptic system (1-1)
and optimal partition problems of type (1-5). This relationship arises for instance by means of the validity
of the following modification of the celebrated Alt–Caffarelli–Friedman monotonicity formula, tailor-made
for the study of (G, h)-equivariant solutions.
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For V ∈ H 1(RN ,Rk) and i = 1, . . . , k we define

Ji (r) :=
∫

Br

|∇Vi |
2
+ V 2

i
∑

j 6=i V 2
j

|x |N−2 .

Proposition 1.5. Let (k,G, h) be an admissible triplet. There exists a constant C > 0 depending only
on N and (k,G, h) such that, for any (G, h)-equivariant solution V of (1-1), the function

r 7→
1

r2k`(k,G,h) e
−Cr−1/2

J1(r) · · · Jk(r)

is monotone nondecreasing for r > 1 (we recall that `(k,G, h) has been defined in (1-5)).

The expert reader will have already recognized the similarity with the original Alt–Caffarelli–Friedman
monotonicity formula, proved in [Alt et al. 1984]; monotonicity formulae of Alt–Caffarelli–Friedman
type for competing systems are key ingredients for the results in [Conti et al. 2005; Farina and Soave
2014; Noris et al. 2010; Soave and Terracini 2015; Soave and Zilio 2015; Wang 2014]. The previous
result is, to our knowledge, the first example of a monotonicity formula under a symmetry constraint.

We review now the main known results regarding entire solutions of the system (1-1) which were
already available, starting with the system with k = 2 components. The 1-dimensional problem was
studied in [Berestycki et al. 2013a], where it is proved that there exists a solution satisfying the symmetry
property V2(x)= V1(−x), the monotonicity condition V ′1 > 0 and V ′2 < 0 in R, and having at most linear
growth, in the sense that there exists C > 0 such that

V1(x)+ V2(x)≤ C(1+ |x |) for all x ∈ RN .

Up to translations, scaling and exchange of the components, this is the unique solution in dimension N = 1;
see [Berestycki et al. 2013b, Theorem 1.1]. The linear growth is the minimal admissible growth for
nonconstant positive solutions of (1-1). Indeed, in any dimension N ≥ 1, if (V1, V2) is a nonnegative
solution of (1-1) (which means that the condition Vi > 0 is replaced by Vi ≥ 0) and satisfies the sublinear
growth condition

V1(x)+ V2(x)≤ C(1+ |x |α) in RN

for some α ∈ (0, 1) and C > 0, then one of V1 and V2 is 0 and the other has to be constant. This
Liouville-type theorem has been proved by B. Noris et al. [2010, Proposition 2.6].

Differently from the problem in R, in dimension N = 2, and hence in any dimension N ≥ 2, the
system (1-1) with k = 2 has infinitely many “geometrically distinct” solutions, i.e., solutions which cannot
be obtained from each other by means of rigid motions, scalings or exchange of the components; see
[Berestycki et al. 2013b, Theorem 1.3; Soave and Zilio 2014, Theorems 1.1 and 1.5]. These solutions can
be distinguished according to their growth rates and symmetry properties. In particular, Berestycki et al.
[2013b] proved the existence of solutions having algebraic growth, while the results in [Soave and Zilio
2014] concern solutions having exponential growth in x that are periodic in y.

Regarding systems with several components, the aforementioned existence results admit analogous
counterparts for any k ≥ 3; see [Berestycki et al. 2013b, Theorem 1.6; Soave and Zilio 2014, Theorem 1.8].
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It is important to stress that the proofs in [Berestycki et al. 2013b; Soave and Zilio 2014] use the fact
that the problem is posed in dimension N = 2, and apparently cannot be extended to higher dimensions
(see Remark 4.4 for a more detailed discussion).

In parallel to the existence results, great efforts have been devoted to the analysis of the 1-dimensional
symmetry of solutions under suitable assumptions; this, as explained in [Berestycki et al. 2013a], is
inspired by some analogy with the derivation of (1-1) and of the Allen–Chan equation, for which symmetry
results in the spirit of the celebrated De Giorgi’s conjecture have been widely studied. In this context, we
recall that, assuming k = 2 and N = 2, A. Farina [2014] proved that, if (V1, V2) has algebraic growth and
∂2V1 > 0 in R2, then (V1, V2) is 1-dimensional. In the higher-dimensional case N ≥ 2 with k = 2, Farina
and the first author proved a Gibbons-type conjecture for (1-1); see [Farina and Soave 2014]. Furthermore,
K. Wang [2014; 2015], as a product of his main results, showed that any solution of (1-1) with k = 2
having linear growth is 1-dimensional. We mention also [Berestycki et al. 2013a, Theorem 1.8; 2013b,
Theorem 1.12], which are now included in Wang’s result.

As far as the 1-dimensional symmetry for systems with k > 2 is concerned, we refer to [Soave and
Terracini 2015, Theorem 1.3], where the main results in [Farina and Soave 2014; Wang 2014; 2015]
are extended to systems with many components by means of improved Liouville-type theorems for
multicomponent systems, which relate the number of nontrivial components of a nonnegative solution
of the first equation in (1-1) and its growth rate. In this perspective, Theorem 1.4 is the counterpart of
[Soave and Terracini 2015, Theorem 1.7] in a (G, h)-equivariant setting. As a product of these two results,
we can also derive the following:

Corollary 1.6. For k, N ∈ N, let

Lk(S
N−1) := inf

(ω1,...,ωk)∈Pk
sup

i=1,...,k
λ1(ωi ),

where Pk is the set of partitions of SN−1 in k open disjoint and connected sets, and λ1 denotes the
first eigenvalue of the Laplace–Beltrami operator on SN−1. Also, let (k,G, h) be any admissible triplet
with G <O(N ). Then

Lk(S
N−1)≤ `(k,G, h).

It is tempting to conjecture that equality holds for an appropriate choice of (G, h), at least for some
values of k, N . Indeed, in light of the known results in the literature, this is the case for k = 2 and k = 3,
for every N . For k = 2, the only (up to isometries) optimal partition for L2(S

N−1)= 1 is the partition
of the sphere into two equal spherical cups [Alt et al. 1984]. This is clearly also an optimal partition
for `(2,G, h) if G is equal to the group generated by the reflection T with respect to a hyperplane through
the origin and h(T ) is defined as the permutation exchanging the indices 1 and 2. In the case k = 3, an
optimal partition for L3(S

N−1)= 3
2

(
N − 1

2

)
is the so-called Y -partition (see [Helffer et al. 2010; Soave

and Terracini 2015]) which is then optimal also for `(3,G, h) if G is equal to the group generated by the
rotation R of angle 2

3π around the xN axis and h(R) is the permutation mapping 1 into 2, 2 into 3 and
3 into 1.
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To conclude, we mention also the contribution of Wang and Wei [2014], who considered the fractional
analogue of (1-1). Such problems exhibit new interesting phenomena with respect to the local case.
Moreover, we observe that our results, as those in [Berestycki et al. 2013b], seem to be somehow
connected with those in [Wei and Weth 2007], which concern finite energy decaying solutions of a
different problem.

Structure of the paper. in Section 2 we recall some known results needed for the rest of work, and which
permit us to show, in Section 2.1, several concrete applications of Theorem 1.3. Section 3 is devoted to
the proof of the equivariant Alt–Caffarelli–Friedman monotonicity formula, Proposition 1.5; finally, in
Section 4, we give the proofs of the other main results, Theorems 1.3 and 1.4.

2. Preliminaries and application of Theorem 1.3

We introduce some notation and review some known results. Let β > 0, and let U be a solution to{
1Ui = βUi

∑
j 6=i U 2

j in BR,

Ui > 0 in BR.
(2-1)

For 0< r < R, we set

H(U, r) :=
1

r N−1

∫
∂Br

k∑
i=1

U 2
i ,

E(U, r) :=
1

r N−2

∫
Br

k∑
i=1

|∇Ui |
2
+β

∑
1≤i< j≤k

U 2
i U 2

j ,

N (U, r) :=
E(U, r)
H(U, r)

(the Almgren frequency function).

Under the previous notation, by Proposition 5.2 in [Berestycki et al. 2013b] it is known that N (U, · ) is
monotone nondecreasing for 0< r < R,

d
dr

H(U, r)= 2
r

E(U, r)+
2β

r N−1

∫
Br

∑
i< j

U 2
i U 2

j > 0,

and, for any such r , ∫ r

1
2β

∫
Bs

∑
i< j U 2

i U 2
j

s N−1 H(U, s)
ds ≤ N (U, r). (2-2)

The frequency function, also called Almgren’s quotient, gives information about the behaviour of the
solutions with respect to radial dilations. Indeed, the possibility of defining a growth rate for any solution
to (1-1) is a direct consequence of the monotonicity of N (V , · ). We recall that, as proved in [Soave
and Terracini 2015, Proposition 1.5], for any solution V to (1-1) there exists a value d ∈ (0,+∞] such
that

lim
r→+∞

(1/r N−1)
∫
∂Br

∑k
i=1 V 2

i

r2d ′ =

{
+∞ if d ′ < d,
0 if d ′ > d,

(2-3)
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and d < +∞ if and only if V has algebraic growth. We write that d is the growth rate of V , and it is
remarkable that

d = lim
r→+∞

N (V , r); (2-4)

again see [Soave and Terracini 2015, Proposition 1.5] (the result is stated in [Soave and Terracini 2015]
for solutions with algebraic growth, but its proof works also without this assumption). Notice that on
the left-hand side of (2-3) we have the quadratic average of V on spheres of increasing radius divided
by a power of r2; thus the name growth rate.

In the previous discussion β > 0 was fixed. Let us now consider a sequence of parameters β→+∞
and a corresponding sequence {Uβ} of solutions to (2-1). The asymptotic behaviour of the family {Uβ}
has been studied in [Berestycki et al. 2013a; Dancer et al. 2012; Noris et al. 2010; Soave and Zilio
2015; 2016; Tavares and Terracini 2012; Wei and Weth 2008] and many results are available. We only
recall that, if the sequence is bounded in L∞(BR), then it is in turn uniformly bounded in Lip(BR),
and hence up to a subsequence it converges to a limit U in C0,α(BR) and in H 1

loc(BR) (see [Soave and
Zilio 2015; Noris et al. 2010]). If U 6≡ 0, then U is Lipschitz continuous and {U = 0} has Hausdorff
dimension N − 1. Moreover, H(U, r) is nondecreasing and is nonzero for every r > 0 (see [Tavares and
Terracini 2012]).

An important application of this asymptotic theory lies in the possibility of defining blow-down limits
of entire solutions to (1-1). We recall part of [Berestycki et al. 2013b, Theorem 1.4] (k = 2) and [Soave
and Terracini 2015, Theorem 1.4] (k arbitrary). Let V be a solution to (1-1), and for any R > 0 let us
define the blow-down family

VR(x) :=
1

H(V , R)1/2
V (Rx).

If V has algebraic growth, i.e., its growth rate d = N (V ,+∞) is finite, then {VR} converges, in C0,α
loc (R

N )

and in H 1
loc(R

N ), as R→+∞ and up to a subsequence, to a homogeneous vector-valued function V∞
with homogeneity degree d and such that

• the components Vi,∞ are nonnegative and with disjoint support: Vi,∞V j,∞ ≡ 0 for every i 6= j ;

• Vi,∞− V j,∞ for any i 6= j is harmonic in the interior of its support.

When k=2, it then results that (V1,∞, V2,∞)= (9
+, 9−), where9 is a homogenous harmonic polynomial

in RN , and hence necessarily d is an integer.

2.1. A wealth of new solutions: applications of Theorem 1.3. We recall that, for any k≥2, problem (1-1)
has several solutions in R2. Clearly, these are also solutions in higher dimensions, and up to now it was
an open question whether or not there exist N -dimensional solutions of (1-1) in RN with N ≥ 3, i.e.,
solutions in RN which cannot be obtained as solutions in RN−1 by adding a dependence on a variable.
Theorem 1.3 gives a positive answer to these questions. In what follows we show how to use Theorem 1.3
as a recipe to construct entire solutions of (1-1).
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A concrete example in R3 for k = 2. To start with a very concrete example, we focus on problem (1-1)
in R3 with k = 2, and we examine the case where G is equal to the group of symmetries generated by
the reflections T1, T2 and T3 with respect to the planes {x = 0}, {y = 0} and {z = 0}, respectively, and
h : G→Sk is defined on the generators of G by h(Ti ) = (1 2) for every i . We used here the standard
notation (1 2) to denote the cycle mapping 1 to 2, and 2 to 1. In order to check that this is an admissible
triplet, we verify that

(u1, u2)= ((xyz)+, (xyz)−)

is a (G, h)-equivariant function satisfying (i)–(iii) in Definition 1.1. For the equivariance, we explicitly
observe that

Ti · (u1, u2)= (u2 ◦ Ti , u1 ◦ Ti ) (see (1-2))

= (u1, u2) (by definition of u)

for every i , and since G is generated by T1, T2, T3, this is sufficient to conclude that u is (G, h)-equivariant.
Points (i) and (ii) in Definition 1.1 are straightforward, and (iii) is satisfied since u2 = u1 ◦Ti for any i . As
a consequence, by Theorem 1.3 there exists a (G, h)-equivariant solution (V1, V2) of (1-1) in R3 with k= 2
having growth rate equal to `(k,G, h)= N (V ,+∞) (we recall that the growth rate is always equal to
the limit at infinity of the Almgren frequency function; see (2-4)). Since the symmetries of G involve
the 3 variables, this solution cannot be obtained by a 2-dimensional solution adding the dependence
of 1 variable: V1− V2 is not constant since V has growth rate `(2,G, h) > 0; moreover, thanks to the
symmetries T1, T2, T3, we have that the function V1− V2 vanishes on the set {x = 0} ∪ {y = 0} ∪ {z = 0}.
Since the projection of this set on any 2-dimensional subspace is equal to the entire subspace but V is
nontrivial, we immediately deduce that the solution cannot be 2-dimensional.

In this particular case we can also explicitly compute `(2,G, h), in the following way: by minimality,

`(2,G, h)≤ 1
2

(√
1
4
+

∫
S2 |∇θ (xyz)+|2∫

S2 |(xyz)+|2
−

1
2

)
+

1
2

(√
1
4
+

∫
S2 |∇θ (xyz)−|2∫

S2 |(xyz)−|2
−

1
2

)
,

and the right-hand side is equal to 3; indeed, since 8 := xyz is a homogeneous harmonic polynomial of
degree 3, its angular part 8|S2 solves

−1θ8|S2 = 128|S2 in S2,

and this permits us to carry out explicit computations. This means that 9 (the blow-down limit) is a
homogeneous harmonic polynomial of degree `(2,G, h) ≤ 3. It is then necessary that 9 = 8 = xyz;
to check this, we can simply consider all the homogeneous harmonic polynomials in R3 with degree at
most 3, which have been classified, and observe that the only one being (G, h) equivariant is 8. As a
consequence, the degree of homogeneity of 9 is 3= `(2,G, h).

General case in RN with k = 2. The very same argument as before can be considered by taking any
homogeneous harmonic polynomial8 in RN of degree d ∈N with a nontrivial finite group of symmetries G;
by this we mean that there exists a group of symmetries with generators T1, . . . , Tm such that8±◦Ti =8

∓.
To any Ti we associate the cycle (1 2). This induces a homomorphism h : G→S2, and it is not difficult to



MULTIDIMENSIONAL ENTIRE SOLUTIONS FOR AN ELLIPTIC SYSTEM MODELLING PHASE SEPARATION 1027

check that (2,G, h) is an admissible triplet. Indeed, by assumption the pair (u1, u2)= (8
+,8−) fulfills

(i)–(iii) in Definition 1.1, and is (G, h)-equivariant: the equivariance follows by

Ti · (u1, u2)= (u2 ◦ Ti , u1 ◦ Ti ) (see (1-2))

= (u1, u2)

for any i . Points (i) and (ii) in Definition 1.1 are trivial, and (iii) is satisfied since u2 = u1 ◦Ti for any i by
assumption. If, as in the example above, the group G is chosen from the beginning so that the symmetries
of G involve all the N variables, we obtain an N -dimensional solution to (1-1). Explicit cases where the
previous argument is applicable are the following:

• At first, we show how we can recover Theorem 1.3 in [Berestycki et al. 2013b]. In dimension N = 2,
we take 8d(x, y) := Re((x + iy)d), with d ∈ N. Then 8d is symmetric, in the previous sense, with
respect to the group of symmetries generated by the reflections T1, . . . , Td with respect to its nodal lines:
8±d ◦Ti =8

∓

d . By the previous argument, we find (G, h)-equivariant solutions of the problem with growth
rate `(2,G, h), which clearly are 2-dimensional. Reasoning as in our first example, it is not difficult in
this case to check that `(2,G, h)= d .

• Secondly, we construct infinitely many new solutions in R3. We take 8d(x, y) := Re((x + iy)d)z,
with d ∈ N. Let T1, . . . , Td denote the reflections with respect to the nodal planes of Re((x + iy)d), and
let Tz denote the reflection with respect to {z = 0}. Then 8±d ◦ Ti = 8

∓

d , so that the general argument
above is applicable, and hence we find a (G, h)-equivariant solution of (1-1) with growth rate `(2,G, h).
As in the first example, since the nodal set of V1− V2 has surjective projection on any 2-dimensional
subspace, V is necessarily 3-dimensional. We can also check that `(2,G, h)= d + 1. Since (8+d ,8

−

d ) is
a (G, h)-equivariant function, we have

`(2,G, h)≤ 1
2

(√
1
4
+

∫
S2 |∇θ8

+

d |
2∫

S2 |8
+

d |
2
−

1
2

)
+

1
2

(√
1
4
+

∫
S2 |∇θ8

−

d |
2∫

S2 |8
−

d |
2
−

1
2

)
.

As in the previous example, we can prove that the right-hand side is equal to d+1. On the other hand, using
the blow-down theorem and explicitly observing that the only (G, h)-equivariant homogeneous harmonic
polynomial in R3 with degree less than or equal to d + 1 is 8d , we conclude that `(2,G, h)= d + 1.

• We conclude with the observation that the previous constructions can be extended in any dimensions.
For instance we can consider the harmonic polynomial 8= x1 · · · xN , together with the symmetry group
generated by the reflections T1, . . . , TN with respect to the coordinate planes {xi = 0}, i = 1, . . . , N ;
notice that 8± ◦ Ti = 8

∓ for any i . In the same way we could consider the harmonic polynomial
9 = Re((x1 + i x2)

d)x3 · · · xN , together with symmetry group generated by the reflections T1, . . . , Td

with respect to the nodal hyperplanes of Re((x1+ i x2)
d), and by R3, . . . , RN , reflections with respect to

the coordinate planes {xi = 0}, i = 3, . . . , N .

The case k ≥ 3 in R2. For k ≥ 3 components, we first show how to recover Theorem 1.6 in [Berestycki
et al. 2013b]. We thus focus for the moment on the dimension N = 2. Let k ≥ 3 and, for any m ∈ N,
let d = 1

2 mk. We denote by Rd the rotation of angle π/d, by Ty the reflection with respect to {y = 0}
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(this corresponds to complex conjugation in C), and we consider the group G <O(N ) generated by Rd

and Ty . We define a homomorphism h : G→Sk (the group of permutations of {1, . . . , k}) letting

h(Rd) := (1 2 · · · d) and h(Ty) : i 7→ k+ 2− i,

where the indexes are counted modulus k. We can explicitly check that (k,G, h) is an admissible triplet.
Let us consider the function

u1 :=

{
rd cos(dθ) in

⋃m−1
i=0 Rik

d ({−π/2d < θ < π/2d}),
0 otherwise,

u2 := u1 ◦ Rd ,

...

uk := uk−1 ◦ Rd = u1 ◦ Rk−1
d .

It is (G, h)-equivariant, as

Rd · u = (uk ◦ Rd , u1 ◦ Rd , . . . , uk−1 ◦ Rd)= u,

Ty · u = (u1 ◦ Ty, uk ◦ Ty, uk−1 ◦ Ty, . . . , u3 ◦ Ty, u2 ◦ Ty)= u.

It clearly satisfies (i) and (ii) in Definition 1.1, and for (iii) it is sufficient to note that u j = u1 ◦ R j−1
d

for every j = 2, . . . , k. By Theorem 1.3, we obtain a (G, h)-equivariant solution V of (1-1); the
fact that V is 2-dimensional follows again from the symmetries: if V were 1-dimensional, then we
could say that

⋃
i 6= j {Vi − V j = 0} is the union of straight parallel lines. But, on the other hand,

{V2− V3 = 0} = Rd({V1− V2 = 0}), which cannot be parallel whenever d > 1, i.e., whenever k ≥ 3.
To complete the analogy with the results in [Berestycki et al. 2013b], we still would have to prove

that N (V ,+∞)= `(k,G, h) is equal to d . Since we are in dimension N = 2, this can be done by means
of explicit computations, following the line of reasoning already adopted in the previous examples. We
decided to not stress this point for the sake of brevity.

The general case k ≥ 3 in R3. The case k ≥ 3 and N ≥ 3 is intrinsically more involved, and hence we
focus on some particular examples given by the groups of symmetries of the Platonic polyhedra. Let us
consider for instance the group G4 <O(N ) associated to the tetrahedron T . It is known that this group is
isomorphic to S4. The isomorphism h4 is obtained labelling all the vertices of T , and associating to any
g ∈ G4 the permutation induced on the vertices themselves. In order to define the function ϕ satisfying
(i)–(iii) of Definition 1.1, we first take a tetrahedron with barycentre 0, and define on a face A a positive
function ϕ̃1 that is 0 on ∂A and symmetric with respect to all the transformations in G4 leaving A invariant.
By rotation, we can define ϕ̃2, ϕ̃3 and ϕ̃4 on the remaining faces. Now, considering the radial projection
of the tetrahedron into the unit sphere S2, we obtain a function (ϕ1, . . . , ϕ4) whose 1-homogeneous
extension is by construction (G4, h4)-equivariant, and satisfies (i)–(iii) of Definition 1.1. Thus (4,G4, h4)

is an admissible triplet, and Theorem 1.3 yields the existence of a (G4, h4)-equivariant solution for the
system with 4 components in R3. Since the symmetries of the tetrahedron involve the dependence on
3 variables, this solution is not 2-dimensional.
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In a similar way, one can construct (G6, h6)-equivariant solutions with respect to the group of symmetries
of the cube G6 (isomorphic to a subgroup of S8 through an isomorphism h6) for systems with k = 3
or k = 6 components. To this purpose, we consider a cube with barycentre 0 in R3, and we define on
a face A a positive function ϕ̃1 that is 0 on ∂A and symmetric with respect to all the transformations
in G6 leaving A invariant. By rotation, we can define ϕ̃2, . . . , ϕ̃6 on the remaining faces. Considering
the radial projection of the cube onto the unit sphere S2, we obtain a function (ϕ1, . . . , ϕ6) whose
1-homogeneous extension is (G6, h6)-equivariant and satisfies (i)–(iii) of Definition 1.1. Theorem 1.3
then gives a 3-dimensional (G6, h6)-equivariant solution to (1-1) with 6 components in R3. In order to
obtain a 3-component (G6, h6)-equivariant solution, we proceed as in the previous discussion replacing
ϕ̃1 with ψ̃1 = ϕ̃1 + ϕ̃4, where ϕ4 has support on the face opposite to A in the cube. By rotation, we
determine ψ̃2 and ψ̃3, each of them supported on the union of two opposite faces. As before, we can then
consider the radial projection onto S2, and afterwards its 1-homogeneous extension (ψ1, ψ2, ψ3), which
is (G6, h6)-equivariant and satisfies (i)–(iii) of Definition 1.1. For the equivariance, we recall that any
isometry of the cube is identified by the faces that three given adjacent faces are mapped to (this is why
we could construct solutions with cubical symmetry for systems with 3 components). In conclusion, by
Theorem 1.3 we obtain a (G6, h6)-equivariant solution of (1-1) with k = 3 components.

Arguing in a similar way, we may also obtain equivariant solutions with respect to the symmetries of
the octahedron for systems with k = 4 and k = 8 components, and so on.

3. An Alt–Caffarelli–Friedman monotonicity formula for equivariant solutions

In this section we aim at proving Proposition 1.5. We always suppose that (k,G, h) is an admissible triplet,
according to Definition 1.1. Moreover, we often omit the phrase “up to a subsequence” for simplicity. The
proof is divided into several steps, and, as usual when dealing with Alt–Caffarelli–Friedman monotonicity
formulae for competing systems, is based upon a control on an “approximated” optimal partition problem
on SN−1. For any u ∈ H 1(SN−1,Rk), we let

Iβ(u) :=
1
k

k∑
i=1

γ

(∫
Sn−1 |∇θui |

2
+

1
2βu2

i
∑

j 6=i u2
j∫

Sn−1 u2
i

)
,

where

γ (t) :=

√(N−2
2

)2
+ t −

(N−2
2

)
.

We denote by Ĥ(G,h) the subspace of (G, h)-equivariant functions in H 1(SN−1,Rk), and we introduce
the optimal value

`β(k,G, h) := inf
Ĥ(G,h)

Iβ .

In what follows, to keep the notation as simple as possible, we simply write ` and `β instead of `(k,G, h)
and `β(k,G, h), respectively.
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Lemma 3.1. Both ` and `β are positive and achieved ( for all β > 0). It follows that `β→ ` as β→+∞,
and there exists a minimizer for `β , which solves

−1θui,β = λβui,β −βui,β
∑

j 6=i u2
j in SN−1,

ui,β > 0 in SN−1,∫
SN−1 u2

i,β = 1 for all i,
(3-1)

where λβ ≥ 0 and 1θ denotes the Laplace–Beltrami operator on SN−1. Moreover, uβ ⇀ ϕ weakly
in H 1(SN−1,Rk) and ϕ is a nonnegative minimizer for `.

Proof. Restricting ourselves to the subset of functions in Ĥ(G,h) whose components have prescribed
L2(SN−1)-norm equal to 1, it is easy to check that the functional Iβ is weakly lower semicontinuous and
coercive. Since Ĥ(G,h) is also weakly closed, the direct method of the calculus of variations ensures the
existence of a minimizer uβ for `β , which can be assumed to be nonnegative. By the Palais principle of
symmetric criticality (notice that Iβ is invariant under the action of any symmetry in O(N )), the Lagrange
multipliers rule, and the strong maximum principle, it follows that uβ satisfies{

−1θui,β +
∑

j 6=i
1
2(1+µ j,β/µi,β)βui,βu2

j,β = λi,βui,β in SN−1,

ui,β > 0 in SN−1,

where

µi,β := γ
′

(∫
Sn−1
|∇θui,β |

2
+

1
2βu2

i,β

∑
j 6=i

u2
j,β

)
.

The equation for ui,β is nothing but (3-1): indeed, thanks to the symmetries in Ĥ(G, h) (see Remark 1.2),
we have µi,β = µ j,β and λi,β = λ j,β ≥ 0 for every i 6= j . Finally, `β > 0 since otherwise uβ ≡ 0, in
contradiction with the normalization condition.

As far as ` is concerned, we introduce an auxiliary functional I∞ : Ĥ(G,h)→ (0,+∞], defined by

I∞(u) :=
{
(1/k)

∑k
i=1 γ

(∫
Sn−1 |∇ui |

2/
∫

Sn−1 u2
i

)
if ui u j = 0 a.e. on Sn−1 for any i 6= j,

+∞ otherwise.

It is easy to see that Iβ is increasing in β and converges pointwise to I∞, implying that I∞ is a weakly
lower semicontinuous functional in the weakly closed set Ĥ(G,h), and that Iβ 0-converges to I∞ in the
weak H 1-topology. Moreover, since the family {Iβ} is equicoercive, any sequence {uβ} of minimizers
for Iβ converges to a minimizer u of I∞. Finally, by definition, ` > `β for every β > 0, whence ` > 0
follows. �

Further properties of the sequence {uβ} are collected in the next two lemmas.

Lemma 3.2. The sequence {uβ} is uniformly bounded in Lip(SN−1). Moreover, the sequence (λβ) is
bounded.

Proof. Let {uβ} be a sequence of minimizers for `β satisfying (3-1), weakly converging to a minimizer u
for `. As Iβ(uβ)= `β ≤ `, there exists C > 0 such that∫

SN−1
βu2

i,β

∑
j 6=i

u2
j,β ≤ C.
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Moreover, by weak convergence, {uβ} is bounded in H 1(SN−1,Rk). Therefore, testing the first equation
in (3-1) against ui,β , we deduce that {λβ} is a bounded sequence of positive numbers, and this implies,
through a Brézis–Kato argument (see for instance [Tavares 2010, page 124] for a detailed proof and
[Brézis and Kato 1979] for the original argument), that {uβ} is uniformly bounded in L∞(SN−1,Rk). By
the main results in [Soave and Zilio 2015], we infer that {uβ} is uniformly bounded1 in Lip(SN−1). �

Lemma 3.3. We have uβ→ ϕ strongly in the H 1(SN−1) topology, in C0,α(SN−1) for every 0< α < 1,
and

lim
β→+∞

β

∫
SN−1

u2
i,βu2

j,β = 0.

Moreover, λβ→ `(`+ N − 2) and{
−1θϕi = `(`+ N − 2)ϕi in {ϕi > 0},∫

SN−1 ϕ
2
i = 1.

Proof. Thanks to Lemma 3.2, we can simply apply Theorem 1.4 in [Noris et al. 2010]. To check that
λβ→ `(`+ N − 2), we observe that, by boundedness, λβ→ λ∞ ≥ 0 as β→+∞. Therefore, recalling
that uβ ⇀ϕ in H 1(SN−1,Rk), for i = 1, . . . , k we have{

−1θϕi = λ∞ϕi in {ϕi > 0},∫
SN−1 ϕ

2
i = 1.

This implies that

`=
1
k

∑
i

√(N−2
2

)2
+

∫
SN−1
|∇θϕi |

2−
N−2

2
=

√(N−2
2

)2
+ λ∞−

N−2
2

,

whence the thesis follows. �

The following result is the counterpart of Lemma 4.2 in [Wang 2014] in a (G, h)-equivariant setting;
see also Theorem 5.6 in [Berestycki et al. 2013b] for an analogous statement in dimension N = 2.

Lemma 3.4. There exists a constant C > 0 such that

`β ≥ `−Cβ−1/4.

Before proving the lemma, we need a technical result. We recall that Ĥ(G,h) denotes the set of
(G, h)-equivariant functions in H 1(SN−1,Rk).

1It is worth mentioning that the results in [Soave and Zilio 2015] are proved for the Laplace operator in the interior of subsets
of RN , and their extension to a Riemannian setting presents some technical difficulties; the general extension of [Soave and Zilio
2015] to equations on manifolds will be the object a future contribution [Smit Vega Garcia et al. ≥ 2016]. We anticipate here the
main argument: the key ingredients for the regularity results in [Soave and Zilio 2015] are elliptic estimates, an Almgren-type
monotonicity formula and a sharp version of the Alt–Caffarelli–Friedman-type monotonicity formula. Thus, we need to extend
these three tools for systems on SN−1. The elliptic theory is already available, as is the Almgren-type monotonicity formula (see
for instance [Tavares and Terracini 2012, Section 7]). The Alt–Caffarelli–Friedman-type monotonicity formula represents the
only obstruction, but it can be obtained by combining the results in [Teixeira and Zhang 2011] (an Alt–Caffarelli–Friedman-type
monotonicity formula for scalar equations on Riemannian manifolds) and in [Soave and Zilio 2015] (the sharp version of the
Alt–Caffarelli–Friedman-type monotonicity formula for systems in the euclidean space). Once these three tools are available, the
proof proceeds as in [Soave and Zilio 2015].
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Lemma 3.5. Let u ∈ Ĥ(G,h). Then the function û, defined by

ûi = v
+

i :=

(
ui −

∑
j 6=i

u j

)+
,

also belongs to Ĥ(G,h).

Proof. As ui ∈ H 1(SN−1), it follows straightforwardly that û ∈ H 1(SN−1,Rk). We have to show that it
is also (G, h)-equivariant, and to this end it is sufficient to show that v is (G, h)-equivariant. This can be
checked directly:

v(h(g))−1(i)(g(x))= u(h(g))−1(i)(g(x))−
∑

j 6=(h(g))−1(i)

u j (g(x))= u(h(g))−1(i)(g(x))−
∑
j 6=i

u(h(g))−1( j)(g(x))

= vi (x),

where the last equality follows from the fact that u is (G, h)-equivariant. �

Proof of Lemma 3.4. In order to simplify the notation, only in this proof we write ∇ and 1 instead of ∇θ
and 1θ , respectively. Let us consider the functions ûβ , defined in Lemma 3.5. Since the components
of ûβ have disjoint supports, we can use it as a competitor for `. We aim at showing that ûβ is actually
close enough to uβ in the energy sense, and in doing this we shall use many times the properties proved
in Lemma 3.2. To be precise, we shall prove that there exists a constant C > 0 such that

1−Cβ−1/2
≤

∫
Sn−1

û2
i,β ≤ 1+Cβ−1/2, (3-2)∫

SN−1
|∇ûi,β |

2
≤

∫
SN−1
|∇ui,β |

2
+Cβ−1/4. (3-3)

Before we continue, let us point out that second estimate can be derived from an analogous one: there
exists C > 0 independent of β and δ̄ > 0 such that, for almost any δ ∈ (0, δ̄), we have∫

{ûi,β>δ}

|∇ûi,β |
2
≤

∫
SN−1
|∇ui,β |

2
+Cβ−1/4

+Cδ.

Indeed, if the previous estimate is satisfied,∫
SN−1
|∇ûi,β |

2
=

∫
{ûi,β>0}

|∇ûi,β |
2
= lim
δ→0+

∫
{ûi,β>δ}

|∇ûi,β |
2
≤

∫
SN−1
|∇ui,β |

2
+Cβ−1/4.

Notice that in principle the value δ̄ could depend on β, but this is not a problem since C is, on the contrary,
a universal constant.

Pointwise bounds. The boundedness of {uβ} in Lip(SN−1) (Lemma 3.2) implies that there exists a
constant C1 > 0 such that

β1/2ui,βu j,β ≤ C1 for all i 6= j. (3-4)

The proof is a straightforward adaptation of the one in [Soave and Zilio 2016, Theorem 1.1], which
regards the same estimate in subsets of RN .
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As a consequence we have that, for each θ ∈ SN−1 and each β > 0,

ui,β(θ)≥ 2kC1/2
1 β−1/4 for at most one index i, (3-5)

where C1 is the same constant as appears in (3-4). Indeed, assuming the contrary, there would exist two
distinct indices i 6= j satisfying the previous inequality, and hence

4k2C1β
−1/2
≤ ui,β(θ)u j,β(θ)≤ C1β

−1/2,

a contradiction.
Finally, we observe that

ûi,β(θ)= 0 =⇒ ui,β(θ)≤ 2k(k− 1)C1/2
1 β−1/4. (3-6)

If not, we have that (3-5) holds for i , and moreover

2k(k− 1)C1/2
1 β−1/4

≤ ui,β(θ)≤
∑
j 6=i

u j,β(θ)≤ (k− 1)max
j 6=i

u j,β(θ);

hence there exist two indexes for which (3-5) is satisfied in θ , a contradiction.

Integral bounds for the Laplacian. We prove that there exists a constant C > 0 (independent of β) such
that ∫

SN−1
|1ui,β | ≤ C. (3-7)

Indeed, directly from the equation and the divergence theorem,

0=
∫

SN−1
(−1ui,β)=

∫
SN−1

λβui,β −βui,β

∑
j 6=i

u2
j ;

that is,
0≤

∫
SN−1

βui,β

∑
j 6=i

u2
j,β =

∫
SN−1

λβui,β ≤ C,

as the functions ui,β are bounded in L∞(SN−1) and {λβ} is bounded. Consequently,∫
SN−1
|1ui,β | ≤

∫
SN−1

λβui,β +βui,β

∑
j 6=i

u2
j,β ≤ C.

Integral bounds for the competition term. Using (3-5) and the computations in the previous point, we
deduce that∫

SN−1
β
∑
i 6= j

u2
i,βu2

j,β

≤

∑
i 6= j

(
‖ui,β‖L∞({ui,β≤u j,β })

∫
{ui,β≤u j,β }

βui,βu2
j,β +‖u j,β‖L∞({u j,β<ui,β })

∫
{u j,β<ui,β }

βu j,βu2
i,β

)

≤ Cβ−1/4
k∑

i=1

∫
{ui,β≤u j,β }

βui,β

∑
j 6=i

u2
j,β ≤ Cβ−1/4.
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Integral bounds for the normal derivatives. For analogous reasons, we can show that there exists a
constant C > 0 and δ̄ > 0 small enough such that, for almost every δ ∈ (0, δ̄),∫

∂{ûi,β>δ}

|∂ν ûi,β | ≤ C.

Firstly, since the function ûi,β is regular for β fixed, the set ∂{ûi,β > δ} is regular for almost every δ > 0,
by Sard’s lemma. Moreover, since ûi,β is nonnegative and regular, if δ < δ̄ is small enough then∫

∂{ûi,β>δ}

|∂ν ûi,β | = −

∫
∂{ûi,β>δ}

∂ν ûi,β . (3-8)

Hence, for almost every δ ∈ (0, δ̄) the set ∂{ûi,β > δ} is regular, and (3-8) holds. With this choice we are
in position to apply the divergence theorem, and consequently∣∣∣∣∫

∂{ûi,β>δ}

∂ν ûi,β

∣∣∣∣= ∣∣∣∣∫
{ûi,β>δ}

1ûi,β

∣∣∣∣≤ ∫
{ûi,β>δ}

k∑
j=1

|1u j,β | ≤ C,

where C is independent of β by (3-7). With similar computations we also have the uniform estimate∣∣∣∣∫
∂{ûi,β>δ}

∂νui,β

∣∣∣∣≤ C.

Estimates for the L2(SN−1) norm. Thanks to (3-5) and (3-6), we have∫
Sn−1

(ûi,β − ui,β)
2
=

∫
{ûi,β>0}

(ûi,β − ui,β)
2
+

∫
{ûi,β=0}

(ûi,β − ui,β)
2

=

∫
{ui,β>

∑
j 6=i u j,β }

(∑
j 6=i

u j,β

)2

+

∫
{ûi,β=0}

u2
i,β ≤ Cβ−1/2,

whence (3-2) follows.

Estimates for the H1(SN−1) seminorm. As a last step, we wish to estimate the L2 norm of ∇ûi,β . Since
∂{ûi,β > δ} is regular, we can apply the divergence theorem, deducing that∫
{ûi,β>δ}

|∇ûi,β |
2
=

∫
{ûi,β>δ}

(−1ûi,β)ûi,β +

∫
∂{ûi,β>δ}

(∂ν ûi,β)ûi,β

=

∫
{ûi,β>δ}

(−1ui,β)ui,β︸ ︷︷ ︸
(I)

+

∫
{ûi,β>δ}

1ui,β

∑
j 6=i

u j,β

+

∫
{ûi,β>δ}

1

(∑
j 6=i

u j,β

)
ûi,β︸ ︷︷ ︸

(II)

+δ

∫
∂{ûi,β>δ}

∂ν ûi,β .
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The first term (I) can be bounded, also recalling that λβ ≥ 0, using the equation∫
{ûi,β>δ}

(−1ui,β)ui,β =

∫
{ûi,β>δ}

λβu2
i,β −βu2

i,β

∑
j 6=i

u2
j,β

≤

∫
SN−1

λβu2
i,β −βu2

i,β

∑
j 6=i

u2
j,β +

∫
SN−1\{ûi,β>δ}

βu2
i,β

∑
j 6=i

u2
j,β

=

∫
SN−1
|∇ui,β |

2
+

∫
SN−1\{ûi,β>δ}

βu2
i,β

∑
j 6=i

u2
j,β .

The term (II) can be expanded further as∫
{ûi,β>δ}

1

(∑
j 6=i

u j,β

)
ûi,β

=−

∫
{ûi,β>δ}

∇

(∑
j 6=i

u j,β

)
· ∇ûi,β + δ

∫
∂{ûi,β>δ}

∂ν

(∑
j 6=i

u j,β

)

=

∫
{ûi,β>δ}

(∑
j 6=i

u j,β

)
1ûi,β −

∫
∂{ûi,β>δ}

(∑
j 6=i

u j,β

)
∂ν ûi,β + δ

∫
∂{ûi,β>δ}

∂ν

(∑
j 6=i

u j,β

)
.

Recalling the previous computations, and using again (3-5), we have∫
{ûi,β>δ}

|∇ûi,β |
2

≤

∫
SN−1
|∇ui,β |

2
+

∫
SN−1\{ûi,β>δ}

βu2
i,β

∑
j 6=i

u2
j,β+

∫
{ûi,β>δ}

1ui,β

∑
j 6=i

u j,β+

∫
{ûi,β>δ}

(∑
j 6=i

u j,β

)
1ûi,β

−

∫
∂{ûi,β>δ}

(∑
j 6=i

u j,β

)
∂ν ûi,β + δ

∫
∂{ûi,β>δ}

∂νui,β

≤

∫
SN−1
|∇ui,β |

2
+Cβ−1/4

+Cδ,

which, as already observed, implies (3-3).
With (3-2) and (3-3) we are in position to complete the proof. By minimality, `≤ I∞(ûβ) for every β,

which gives

`≤
1
k

k∑
i=1

γ

(∫
SN−1 |∇ûi,β |

2∫
SN−1 û2

i,β

)
≤

1
k

k∑
i=1

γ

(∫
SN−1 |∇ui,β |

2
+Cβ−1/4

1−Cβ−1/2

)

≤
1
k

k∑
i=1

γ

(∫
SN−1
|∇ui,β |

2
+

1
2
βu2

i,β

∑
j 6=i

u2
j,β

)
+Cβ−1/4

= `β +Cβ−1/4. �

The proof of Proposition 1.5 can be obtained in a somewhat usual way.
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Sketch of the proof of Proposition 1.5. Arguing as in [Conti et al. 2005, Section 7], or [Noris et al. 2010,
Lemma 2.5], or else [Soave and Zilio 2015, Theorem 3.14], it is possible to check that

d
dr

log
(

J1(r) · · · Jk(r)
r2k`

)
=−

2k`
r
+

2
r

∑
i

γ

(r2
∫
∂Br
|∇ui |

2
+

1
2 u2

i
∑

j 6=i u2
j∫

∂Br
u2

i

)
.

Changing variables in the integrals (see Theorem 3.14 in [Soave and Zilio 2015] for the details), we
deduce that ∑

i

γ

(r2
∫
∂Br
|∇ui |

2
+

1
2 u2

i
∑

j 6=i u2
j∫

∂Br
u2

i

)
≥ k`r2,

where `r2 denotes the optimal value `β for β = r2. Coming back to the previous equation and using
Lemma 3.4, we conclude that

d
dr

log
(

J1(r) · · · Jk(r)
r2k`

)
≥

2k
r
(`r2 − `)≥−2kCr−3/2

and, integrating, the thesis follows. �

4. Construction of equivariant solutions

For an admissible triplet (k,G, h), we prove the existence of a (G, h)-equivariant solution to (1-1) with k
components. We partially follow the method introduced in [Berestycki et al. 2013b], which consists in
two steps:

• firstly, we prove the existence of a sequence of (G, h)-equivariant solutions VR , defined in balls of
increasing radii R→+∞;

• secondly, we show that this sequence converges locally uniformly in RN to a nontrivial solution.

With respect to [Berestycki et al. 2013b], we modify the construction conveniently choosing R from the
beginning; this substantially simplifies the proof of the convergence of {VR}, and we refer to Remark 4.4
for more details. Finally, in the last part of the proof we characterize the growth of the solution using the
Alt–Caffarelli–Friedman monotonicity formula for (G, h)-equivariant solutions.

By Lemma 3.1, we know that the optimal value ` (see (1-5)) is achieved by a nonnegative (G, h)-
equivariant function ϕ ∈ H 1(SN−1,Rk). Differently from the previous section, we take∫

SN−1
ϕ2

i =
1
k
⇐⇒

k∑
i=1

∫
SN−1

ϕ2
i = 1. (4-1)

This choice is possible, since the minimum problem for ` is invariant under scaling of type t 7→ tϕ
with t ∈ R, and simplifies some computations.

Lemma 4.1. For any β > 0 there exists a (G, h)-equivariant solution {Uβ} to the problem
1Ui,β = βUi,β

∑
j 6=i U 2

j,β in B1,

Ui,β > 0 in B1,

Ui,β = ϕi on ∂B1 = SN−1.
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Moreover,

(i) Ui,β(0)=U j,β(0) for all i , j = 1, . . . , k and β > 0;

(ii) letting

Eβ(U)=
∫

B1

k∑
i=1

|∇Ui |
2
+β

∑
i< j

U 2
i U 2

j ,

the uniform estimate Eβ(Uβ)≤ ` holds;

(iii) there exists a Lipschitz continuous function 0 6≡ U∞ such that, up to a subsequence, Uβ→ U∞ in
C0,α(B1) for every α ∈ (0, 1) and in H 1

loc(B1).

Proof. It is not difficult to check that the functional Eβ admits a minimizer Uβ in the H 1-weakly closed
set of the (G, h)-equivariant functions in H 1(B1,Rk) with the prescribed boundary conditions. The fact
that this minimizer solves the Euler–Lagrange equation is a consequence of Palais’ principle of symmetric
criticality. Property (i) follows straightforwardly by the equivariance (recall Remark 1.2). Concerning
property (ii), we introduce the `-homogeneous extension of ϕ, defined by

φ(x) := |x |`ϕ
( x
|x |

)
.

By minimality, Eβ(Uβ) ≤ Eβ(φ), so that it remains to check that Eβ(φ) ≤ `. At first, since ϕi is an
eigenfunction of −1θ on {ϕi > 0} associated to the eigenvalue `(`+ N − 2), the function φi is harmonic
in {φi > 0}. Furthermore, by definition, ∑

i

∫
∂B1

φ2
i = 1

for every i . Therefore, using the Euler formula for homogeneous functions, we deduce that

Eβ(φ)=
∑

i

∫
B1

|∇φi |
2
=

∑
i

∫
{φi>0}∩B1

|∇φi |
2
=

∑
i

∫
∂B1∩{φi>0}

φi∂νφi = `
∑

i

∫
∂B1∩{φi>0}

φ2
i = `.

It remains to prove (iii). By (ii) and the boundary conditions, the sequence {Uβ} is bounded in H 1(B1),
and hence it converges weakly to some limit U∞. By compactness of the trace operator, U∞ 6≡ 0. All the
functions Uβ are nonnegative, subharmonic and have the same boundary conditions, and hence by the
maximum principle they are uniformly bounded in L∞(B1). This, as recalled in Section 2, implies the
thesis. �

We plan to use the solutions of Lemma 4.1 in order to construct entire solutions to (1-1). Our method
is based on a simple blow-up argument. For a positive radius rβ to be determined, we introduce

Vi,β(x) := β1/2rβUi,β(rβx).

By definition, Vβ solves
1Vi,β = Vi,β

∑
j 6=i

V 2
j,β in B1/rβ .

A convenient choice of rβ is suggested by the following statement.
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Lemma 4.2. For any fixed β > 1 there exists a unique rβ > 0 such that∫
∂B1

k∑
i=1

V 2
i,β = 1.

Moreover rβ → 0, and consequently B1/rβ → RN , in the sense that for any compact K ⊂ RN we have
K b B1/rβ provided β is sufficiently large.

Proof. We have to find rβ > 0 such that βr2
βH(Uβ, rβ) = 1. The strict monotonicity of H(Uβ, · ) (see

Section 2) implies the strict monotonicity of the continuous function r 7→ βr2 H(Uβ, r). By regularity,
for any fixed β,

lim
r→0

βr2 H(Uβ, r)= lim
r→0

β
r2

r N−1

∫
∂Br

k∑
i=1

U 2
i,β = β lim

r→0
r2
·

k∑
i=1

U 2
i,β(0)= 0,

and, by the normalization (4-1), βH(Uβ, 1)= β > 1. This proves existence and uniqueness of rβ . If, by
contradiction, rβ ≥ r̄ > 0, then by Lemma 4.1(iii) and the monotonicity of H(Uβ, · ) we would have

1= βr2
βH(Uβ, rβ)≥ βr̄2 H(Uβ, r̄)≥

βr̄2

2
1

r̄ N−1

∫
∂Br̄

k∑
i=1

Ui,∞ ≥ βC,

which gives a contradiction for β > 1/C . In order to bound from below the second-to-last term, we recall
that since 0 6≡ U∞ we have H(U∞, r) 6= 0 for all 0< r < 1 (see Section 2). �

Lemma 4.3. Up to a subsequence, Vβ→ V in C2
loc(R

N ), and V is an entire (G, h)-equivariant solution
of (1-1) with N (V , r)≤ ` for every r > 0.

Proof. Since Eβ(Uβ) ≤ ` and H(Uβ, 1) = 1, by scaling and using the monotonicity of the Almgren
quotient we have

N (Vβ, r)≤ N
(

Vβ,
1
rβ

)
= N (Uβ, 1)≤

E(Uβ)
H(Uβ, 1)

≤ ` (4-2)

for every 0< r < 1/rβ , β > 0. Now let r > 0; then, for β sufficiently large,

d
dr

log H(Vβ, r)=
2
r

Nβ(vβ, r)+
2

r N−1 H(Vβ, r)

∫
Br

∑
i< j

V 2
i V 2

j ≤
2`
r
+

2
r N−1 H(Vβ, r)

∫
Br

∑
i< j

V 2
i V 2

j .

Integrating the inequality for r ∈ (1, R), and recalling (2-2), we infer that

H(Vβ, R)
R2` ≤ H(Vβ, 1)e` = e` for all R ≥ 1, (4-3)

independently of β. By subharmonicity and standard elliptic estimates, we deduce that Vβ converges
in C2(BR) to some limit V R , and since R has been chosen arbitrarily, a diagonal selection gives convergence
to an entire limit V , which is clearly (G, h)-equivariant. Since V solves (1-1) and∫

∂B1

k∑
i=1

V 2
i,β = 1 and Vi,β(0)= V j,β(0) for all i, j

(see Lemmas 4.1 and 4.2), all the components of V are nontrivial, and hence nonconstant. �
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We now show that the growth rate of the solution is exactly equal to `. In light of the upper bound on
the Almgren quotient proved in the previous lemma, this is a consequence of Theorem 1.4.

Proof of Theorem 1.4. Let us assume by contradiction that there exists a (G, h)-equivariant solution V
with growth rate less than `−ε for some ε > 0. By monotonicity it results N (V , r)≤ N (V ,+∞)≤ `−ε
for every r > 0. We consider the blow-down sequence

VR(x)=
1

√
H(V , R)

V (Rx).

By Theorem 1.4 in [Soave and Terracini 2015], it converges in C0,α
loc (R

N ) to a limit W , which is segregated,
nonnegative, homogeneous with homogeneity degree δ := N (V ,+∞)≤ `− ε, and such that 1Wi = 0
in {Wi > 0}. The uniform convergence entails the (G, h)-equivariance, and hence the trace ŵ of W on the
sphere SN−1 is an admissible competitor for `, in the sense that `≤ I∞(ŵ) (I∞ is defined in Lemma 3.1).
The value I∞(ŵ) can be computed explicitly; indeed, by harmonicity, homogeneity and symmetry, ŵi

is an eigenfunction of the Laplace–Beltrami operator −1θ on a subdomain of SN−1, associated to the
eigenvalue δ(δ + N − 2). This, by definition, implies that I∞(ŵ) = δ < `, in contradiction with the
minimality of `. �

So far we proved the existence of a (G, h)-equivariant solution having growth rate ` in the weak sense
of (2-3). It remains to show that the stronger condition (1-6) holds. First we make the following remark.

Remark 4.4. Both Theorem 1.3 and [Berestycki et al. 2013b, Theorem 1.6] are based upon the same
two-step procedure: construction of solutions in balls BR of increasing radius, and passage to the limit
as R → +∞. The main difference is in the fact that while in [Berestycki et al. 2013b] the authors
prescribed the value of the functions on the boundary ∂BR , we prescribed the value on ∂B1, conveniently
choosing rβ . This permits us to greatly simplify the proof of the convergence, since by the doubling
property (4-3) the normalization on ∂B1 is enough to have C2

loc(R
N )-convergence of our approximating

sequence. In [Berestycki et al. 2013b, page 123], this compactness is proved in a different way, using fine
tools such as Proposition 5.7 therein, which seems difficult to generalize to higher dimensions.

Lemma 4.5. We have
lim

r→∞

1
r2` H(V , r) ∈ (0,+∞).

Proof. It is easy to prove that the limit exists and it is less than 1. Indeed

d
dr

log
H(V , r)

r2` =
H ′(V , r)
H(V , r)

−
2`
r
=

2
r
(N (V , r)− `)≤ 0,

and by construction H(V , 1)= 1. Letting

L = lim
r→∞

H(V , r)
r2` ,

we are left to show that L > 0. Recalling that N (V ,+∞)= `, we have

L = lim
r→∞

(
E(V , r)

r2`

)
· lim

r→+∞

H(V , r)
E(V , r)

≥
1
`

lim inf
r→∞

E(V , r)
r2` ,
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and the thesis follows if

lim inf
r→∞

E(V , r)+ H(V , r)
r2` > 0.

To this aim, we note that with computations analogous to those in [Soave and Zilio 2016, conclusion of
the proof of Theorem 1.5] we can prove that

E(V , r)+ H(V , r)
r2` ≥

C
r2` (J1(r) · · · Jk(r))1/k

= C
(

1
r2`k J1(r) · · · Jk(r)

)1
k
,

where the integrals Ji are evaluated for the function V . Since V is a (G, h)-equivariant solution of (1-1),
we are in position to apply the Alt–Caffarelli–Friedman monotonicity formula of Proposition 1.5, whence

E(V , r)+ H(V , r)
r2` ≥ C(J1(1) · · · Jk(1))1/keCr−1/2

≥ CeCr−1/2

for every r > 1. �
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MIROSLAV BULÍČEK, LARS DIENING and SEBASTIAN SCHWARZACHER

1153On polynomial configurations in fractal sets
KEVIN HENRIOT, IZABELLA ŁABA and MALABIKA PRAMANIK

1185Free pluriharmonic functions on noncommutative polyballs
GELU POPESCU

1235Bohnenblust–Hille inequalities for Lorentz spaces via interpolation
ANDREAS DEFANT and MIECZYSŁAW MASTYŁO

1259On the negative spectrum of the Robin Laplacian in corner domains
VINCENT BRUNEAU and NICOLAS POPOFF

A
N

A
LY

SIS
&

PD
E

Vol.9,
N

o.5
2016


	1. Introduction
	2. Preliminaries and application of Theorem 1.3
	2.1. A wealth of new solutions: applications of Theorem 1.3

	3. An Alt–Caffarelli–Friedman monotonicity formula for equivariant solutions
	4. Construction of equivariant solutions
	References
	
	

