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For a bounded corner domain �, we consider the attractive Robin Laplacian in � with large Robin
parameter. Exploiting multiscale analysis and a recursive procedure, we have a precise description of
the mechanism giving the bottom of the spectrum. It allows also the study of the bottom of the essential
spectrum on the associated tangent structures given by cones. Then we obtain the asymptotic behavior
of the principal eigenvalue for this singular limit in any dimension, with remainder estimates. The
same method works for the Schrödinger operator in Rn with a strong attractive δ-interaction supported
on ∂�. Applications to some Ehrling-type estimates and the analysis of the critical temperature of some
superconductors are also provided.
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1. Introduction

1A. Context: Robin Laplacian with large parameter. Let M be a Riemannian manifold of dimension n
without boundary and � an open domain of M (in practice one may think M = Rn or M = Sn). We are
interested in the eigenvalue problem {

−1u = λu on �,
∂νu−αu = 0 on ∂�.

(1)

Here α ∈ R is the Robin parameter and ∂ν denotes the outward normal to the boundary of �. We assume
that � belongs to a general class of corner domains defined recursively, such as in [Dauge 1988]. This
class of corner domains of M , precisely defined in Section 2, consists of open bounded sets �⊂ M such
that each point in ∂� can be associated with a tangent cone. We ask the sections of these tangent cones
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to satisfy the same property, that is, as open sets of Sn−1 to themselves be corner domains. The corner
domains of S0 being its nonempty subsets, this leads to a natural recursive definition of corner domains; see
[Dauge 1988; Bonnaillie-Noël et al. 2016a, Section 3] for a more complete description and examples. Note
that these domains include various possible geometries, like regular domains, polyhedra and circular cones.

We denote by Qα[�] the quadratic form of the Robin Laplacian on � with parameter α:

Qα[�](u) := ‖∇u‖2L2(�)
−α‖u‖2L2(∂�)

, u ∈ H 1(�). (2)

Since � is bounded and is the finite union of Lipschitz domains (see [Dauge 1988, Lemma AA.9]), the
trace injection from H 1(�) into L2(∂�) is compact and the quadratic form Qα[�] is lower semibounded.
We define Lα[�], its self-adjoint extension, whose spectrum is a sequence of eigenvalues, and we denote
by λ(�, α) the first one. It is the principal eigenvalue of the system (1).

The study of the spectrum of Lα[�] has received some attention in the past years, in particular for the sin-
gular limit α→+∞. This problem appeared first in a model of reaction diffusion for which the absorption
mechanism competes with a boundary term [Lacey et al. 1998], and more recently it was established that the
understanding of λ(�, α) provides information on the critical temperature of surface superconductivity un-
der zero magnetic field [Giorgi and Smits 2007]. Let us mention that such models are also used in the quan-
tum Hall effect and topological insulators to justify the appearance of edge states (see [Asorey et al. 2015]).

In view of the quadratic form, it is not difficult to see that λ(�, α)→ −∞ as α → +∞ (while
in the limit α → −∞ they converge to those of the Dirichlet Laplacian). When � ⊂ Rn is smooth,
λ(�, α)≤−α2 for all α ≥ 0; see [Giorgi and Smits 2007, Theorem 2.1]. More precisely, it is known that
λ(�, α)∼ C�α2 as α→+∞ for some particular domains: for smooth domains, C� =−1 (see [Lacey
et al. 1998; Lou and Zhu 2004] and [Daners and Kennedy 2010] for higher eigenvalues), and, for planar
polygonal domains with corners of opening (θk)k=1,...,N ,

C� =− max
0<θk<π

(
1, sin−2 1

2θk
)
.

This last formula, conjectured in [Lacey et al. 1998], is proved in [Levitin and Parnovski 2008]. For general
domains � having a piecewise smooth boundary it is natural to study the operator on tangent spaces and,
from homogeneity reasons (see Lemma 3.2), one expects that λ(�, α) ∼ C�α2 when α→+∞, with
some negative constant C�. Levitin and Parnovski [2008] consider domains with corners satisfying the
uniform interior cone condition. For each x ∈ ∂�, they introduce E(5x), the bottom of the spectrum of
the Robin Laplacian on an infinite model cone 5x (if x is a regular point, it is a half-space) and show

lim
α→+∞

λ(�, α)

α2 = inf
x∈∂�

E(5x). (3)

But we have no guarantee concerning the finiteness of E(5x) and, moreover, even if it is finite, we don’t
know if their infimum over ∂� is reached. Then an important question is to understand more precisely
the influence of the geometry (of the boundary) of � in the asymptotic behavior of λ(�, α) in order to
give meaning to (3) (in particular proving that infx∈∂� E(5x) is finite) and, if possible, to obtain some
remainder estimates.
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1B. Local energies on admissible corner domains. In this article, our purpose is to develop a framework
in the study of such asymptotics by introducing the local energy function x 7→ E(5x) on the recursive
class of corner domains (see [Dauge 1988]). The natural tangent structures are given by dilation-invariant
domains, more succinctly referred as cones. When the domain is a convenient cone 5, the quadratic form
in (2) may still be defined on H 1(5). By immediate scaling, Qα[5] is unitarily equivalent to α2Q1[5].
Therefore the case where the parameter is equal to 1 plays an important role and we write Q[5] =Q1[5].
For a general cone, we don’t know whether Q[5] is lower semibounded, and we define

E(5)= inf
u∈H1(5)

u 6=0

Q[5](u)
‖u‖2

,

the ground state energy of the Robin Laplacian on 5. For x ∈ �, denote by 5x the tangent cone at x .
When 5x is the full space (corresponding to interior points), there is no boundary and E(5x) = 0,
whereas, when 5x is a half-space (corresponding to regular points of the boundary), it is easy to see
that E(5x)= E(R+)=−1 (see [Daners and Kennedy 2010]). Moreover, when 5x is an infinite planar
sector Sθ of opening θ , E(5x) is given by

E(Sθ )=
{
− sin−2 1

2θ if θ ∈ (0, π),
−1 if θ ∈ (π, 2π);

(4)

see [Lacey et al. 1998; Levitin and Parnovski 2008]. No such explicit expressions are available for general
cones in higher dimensions. In view of (3), we introduce the infimum of local energy E(5x) for x ∈�,
which, from the above remarks, is also the infimum on the boundary:

E (�) := inf
x∈∂�

E(5x). (5)

Our goal is to prove the finiteness of E (�) (and firstly of E(5x) for x ∈�) for admissible corner domains
and to give an estimate of λ(�, α)−α2E (�) for α large. In view of the above particular cases, the local
energy is clearly discontinuous (even for smooth domains it is piecewise constant with values in {0,−1}).
We will use a recursive procedure in order to prove the finiteness and the lower semicontinuity of the
local energy in the general case. It relies also on a multiscale analysis to get an estimate of the first
eigenvalue, as developed in [Bonnaillie-Noël et al. 2016a] for the semiclassical magnetic Laplacian.
Unlike [Bonnaillie-Noël et al. 2016a], where the complexity of model problems limits the study to
dimension 3, for the Robin Laplacian we have a good understanding of the ground state energy on corner
domains in any dimension. Moreover these techniques allow an analog spectral study of the Schrödinger
operator with δ-interaction supported on closed corner hypersurfaces and on conical surfaces.

1C. Results for the Robin Laplacian. We define below generic notions associated with cones.

Definition 1.1. A cone 5 is a domain of Rn which is dilation invariant:

ρx ∈5 for all x ∈5, ρ > 0.
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The section of a cone 5 is 5 ∩ Sn−1, generically denoted by ω. We say that two cones 51 and 52

are equivalent, and we write 51 ≡52, if they can be deduced one from another by a rotation. Given a
cone 5, there exists d ∈ N with 0≤ d ≤ n such that

5≡ Rn−d
×0, with 0 a cone in Rd .

When d is minimal for such an equivalence, we say that 0 is the reduced cone of 5. When d = n, so
that 5= 0, we say that 5 is irreducible.

In the following, Pn denotes the class of admissible cones of Rn and D(M) denotes the class of
admissible corner domains on a given Riemannian manifold M without boundary. We refer to Section 2
for precise definitions of these classes of domains.

Theorem 1.2. Let 5 ∈Pn be an admissible cone.

(1) E(5) > −∞ and the Robin Laplacian L[5] is well defined as the Friedrichs extension of Q[5]
with form domain D(Q[5])= H 1(5).

(2) Let 0 be the reduced cone of 5. Then the bottom of the essential spectrum of L[0] is E (ω), where ω
is the section of 0.

This theorem generalizes to cones having no regular section the result of [Pankrashkin 2016], where
the bottom of the essential spectrum is proved to be −1 for cones with regular section (as discussed at the
end of Section 1A, in this case E (ω)=−1).

The crucial point of this theorem is to show that the Robin Laplacian on a cone, far from the origin,
can be linked to the Robin Laplacian on the section of the cone, with a parameter related to the distance
to the origin.

Notice that this theorem provides an effective procedure to compute the bottom of the essential spectrum
for Laplacians on cones. In particular, as shown by Remark 6.4, we obtain that [Levitin and Parnovski
2008, Theorem 3.5] is incorrect in dimension n ≥ 3; indeed, we construct a cone which contains an
hyperplane passing through the origin for which the bottom of the essential spectrum (then of the spectrum)
of the Robin Laplacian is below −1.

The next step is to minimize the local energy on a corner domain � and to prove that E (�) is finite.
Thanks to Theorem 1.2, we will be able to prove some monotonicity properties (on singular chains; see
Section 2B for the definition), which, combined with continuity of the local energy (for the topology of
singular chains), allow us to apply [Bonnaillie-Noël et al. 2016a, Section 3] and to obtain:

Theorem 1.3. For any corner domain�∈D(M), the energy function x 7→E(5x) is lower semicontinuous
on � and we have E (�) >−∞.

To get asymptotics of λ(�, α) with control of the remainders, we need to control error terms when
using change of variables and cut-off functions. However, the principal curvatures of the regular part
of a corner domain may be unbounded in dimension n ≥ 3 (think of a circular cone), so the standard
estimates when using approximation of metrics may blow up. We use a multiscale analysis to overcome
this difficulty and we get the following result:
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Theorem 1.4. Let � ∈D(M) with n ≥ 2 the dimension of M. Then there exists α0 ∈ R, two constants
C± > 0 and two integers 0≤ ν ≤ ν+ ≤ n− 2 such that

−C−α2−2/(2ν++3)
≤ λ(�, α)−α2E (�)≤ C+α2−2/(2ν+3) for all α ≥ α0.

The constant ν corresponds to the degree of degeneracy of the curvatures near the minimizers of the
local energy; its precise definition can be found in (29). The constant ν+ describes the degeneracy of the
curvatures globally in �; see Lemma 4.1. In particular, when � is polyhedral (that is, a domain with
bounded curvatures on the regular part), ν = ν+ = 0.

The proof of the lower bound relies on a multiscale partition of the unity where the size of the balls
optimizes the error terms. The upper bound is less classical: using the concept of singular chain, we
isolate a tangent “subreduced cone” for which the bottom of the spectrum corresponds to an isolated
eigenvalue (below the essential spectrum). Then we construct recursive quasimodes, coming from this
tangent “subreduced cone”.

Note finally that for regular domains more precise asymptotics involving the mean curvature can be
found ([Pankrashkin 2013; Helffer and Kachmar 2014] in dimension 2 and [Pankrashkin and Popoff 2015;
2016] for higher dimensions). A precise analysis is also done for particular polygonal geometries: the
tunneling effect in some symmetry cases [Helffer and Pankrashkin 2015], and reduction to the boundary
when the domain is the exterior of a convex polygon [Pankrashkin 2015]. In all these cases, the local
energy is piecewise constant, and new geometric criteria appear near the set of minimizers. In fact, the
local energy can be seen as a potential in the standard theory of the harmonic approximation [Dimassi
and Sjöstrand 1999] and, under additional hypotheses on the local energy, it is reasonable to expect more
precise asymptotics in higher dimensions. For polygons (dimension 2), another approach would consist
in comparing the limit problem to a problem on a graph, in the spirit of [Grieser 2008], the nodes (resp.
edges) corresponding to the vertices (resp. sides) of the polygons. But it is not clear how such an approach
could be generalized to any dimension.

1D. Applications of the method for the Schrödinger operator with δ-interaction. Let � ∈ D(M) be
a corner domain and let S = ∂� be its boundary. We consider Lδα[M, S], the self-adjoint extension
associated with the quadratic form

Qδ
α[M, S](u) := ‖∇u‖2L2(M)−α‖u‖

2
L2(S), u ∈ H 1(M).

The associated boundary problem is the Laplacian with the derivative jump condition across the closed
hypersurface S: [∂νu]∂� = αu. It is well known (see, e.g., [Brasche et al. 1994]) that, since S is bounded,
Lδα[R

n, S] is a relatively compact perturbation of L0 =−1 on L2(Rn), and then

σess(Lδα[R
n, S])= σess(L0)= [0,+∞).

Moreover, Lδα[R
n, S] has a finite number of negative eigenvalues. If we denote by λδ(S, α) the lowest

one, by applying our techniques developed for the Robin Laplacian all the above results are still valid,
replacing λ(�, α) by λδ(S, α). In particular, for x ∈ S, the tangent cone to � at x is 5x and its boundary
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is denoted by Sx . We still define the tangent operator as Lδ1[R
n, Sx ], and the associated local energy

Eδ(Sx) at x , and their infimum E δ(S). Then:

Theorem 1.5. Theorems 1.2–1.4 remain valid when replacing the Robin Laplacian Lα[�] by the
δ-interaction Laplacians Lδα[M, S], λ(�, α) by λδ(S, α), E(5x) by Eδ(Sx) and E (�) by E δ(S).

When x belongs to the regular part of S, Sx is an hyperplane and

Eδ(Rn, Sx)= Eδ(R, {0})=− 1
4 ; (6)

see [Exner and Yoshitomi 2002]. Therefore E δ(S) = − 1
4 when S is regular, and we obtain the known

main term of the asymptotic expansion of λδ(S, α) proved in dimension 2 or 3 (see [Exner and Yoshitomi
2002; Exner and Pankrashkin 2014; Dittrich et al. 2016]).

To our best knowledge the only studies for δ-interactions supported on nonsmooth hypersurfaces are for
broken lines and conical domains with circular section (see [Behrndt et al. 2014; Duchêne and Raymond
2014; Exner and Kondej 2015; Lotoreichik and Ourmières-Bonafos 2015]). In that case, we clearly
have σ(Lδα[R

n, S])= α2σ(Lδ1[R
n, S]) (see Lemma 3.2), and it is proved in the above references that the

bottom of the essential spectrum of Lδ[Rn, S] is − 1
4 . In view of our result, it remains true when the

section of the conical surface is smooth. Moreover, our work seems to be the first result giving the main
asymptotic behavior of λδ(S, α) for interactions supported by general closed hypersurfaces with corners.

Remark 1.6. For the Robin Laplacian and the δ-interaction Laplacian, we can add a smooth positive
weight function G in the boundary conditions. These conditions become, for the Robin condition,
∂νu = αG(x)u, and, for the δ-interaction case, [∂νu] = αG(x)u. In our analysis, for x ∈ ∂� fixed, we
have only to change α into αG(x) and, clearly, the results are still true by replacing E (�) and E δ(S) by

EG(�) := inf
x∈∂�

G(x)2 E(5x), E δG(S) := inf
x∈S

G(x)2 Eδ(Sx).

For the Robin Laplacian, these cases were already considered in [Levitin and Parnovski 2008; Colorado
and García-Melián 2011].

1E. Organization of the article. In Section 2, we recall the definitions of corner domains, in the spirit of
[Dauge 1988; Maz′ja and Plamenevskiı̆ 1977], and we give some properties proved in [Bonnaillie-Noël
et al. 2016a]. Section 3 is devoted to the effects of perturbations on the quadratic form of the Robin
Laplacian. It contains several technical lemmas used in the following sections.

Section 4 contains the proof of the lower bound of Theorem 1.4. It is based on a multiscale analysis in
order to counterbalance the possible blow-up of curvatures in corner domains. In particular it involves the
lower bound lim infα→+∞ λ(�, α)/α2

≥ E (�) in any dimension, which is also used in Sections 5 and 6.
Notice that in Section 4, at this stage of the analysis, the quantity E (�) is still not known to be finite; its
finiteness will be the recursive hypothesis of the next two sections.

Section 5 is a step in a recursive proof of Theorem 1.3 developed in Section 6. Then, when the
finiteness of E (�) is stated, Theorem 1.2 is a direct consequence of Lemmas 5.2 and 5.3 (see the end of
Section 6A).



ON THE NEGATIVE SPECTRUM OF THE ROBIN LAPLACIAN IN CORNER DOMAINS 1265

In Section 7, we prove the upper bound of Theorem 1.4. This is done by exploiting the results of
Section 6 in order to find a tangent problem that admits an eigenfunction associated with E (�). Then we
construct recursive quasimodes, qualified either as sitting or sliding, from the language of [Bonnaillie-Noël
et al. 2016a].

In Section 8 we give two possible applications of our results. A purely mathematical one concerns
optimal estimates in compact injections of Sobolev spaces. In the second one we recall how, from the
study of λ(�, α), we derive properties on the critical temperature for zero fields for systems with enhanced
surface superconductivity (where α−1 is related to the penetration depth).

2. Corner domains

Here we give some background of so-called admissible corner domains; see [Dauge 1988; Bonnaillie-Noël
et al. 2016a].

2A. Tangent cones and recursive class of corner domains. Let M be a Riemannian manifold without
boundary. We define recursively the class of admissible corner domains D(M) and admissible cones Pn ,
in the spirit of [Dauge 1988]:

Initialization: P0 has one element, {0}. D(S0) is formed by all nonempty subsets of S0.

Recurrence: For n ≥ 1,

(1) a cone 5 (see Definition 1.1) belongs to Pn if and only if the section of 5 belongs to D(Sn−1),

(2) � ∈D(M) if and only if � is bounded and, for any x ∈�, there exists a tangent cone 5x ∈Pn to �
at x .

By definition, 5x is the tangent cone to � at x ∈� if there exists a local map ψx : Ux 7→ Vx , where Ux

and Vx are neighborhoods (called map-neighborhoods) of x in M and of 0 in Rn , respectively, and ψx is
a diffeomorphism such that

ψx(x)= 0, (dψx)(x)= I, ψx(Ux ∩�)= Vx ∩5x and ψx(Ux ∩ ∂�)= Vx ∩ ∂5x . (7)

In dimension 2, cones are half-planes, sectors and the full plane. The corner domains are (curvilinear)
polygons on M with a finite number of vertices, each one of opening in (0, π)∪ (π, 2π). This includes,
of course, regular domains.

The key quantity in order to estimate errors when making a change of variables is

κ(x)= ‖dψ‖W 1,∞(Ux ). (8)

It depends not only on x , but also on the choice of the local map. Note that, unlike for a regular domain, the
curvature of the regular part of a corner domain may be unbounded (think of a circular cone). Therefore,
κ(x) is not bounded in general when picking an atlas of �. An important subclass of corner domains are
those who are polyhedral: a cone is said to be polyhedral if its boundary is contained in a finite union of
hyperplanes, and a domain is called polyhedral if all its tangent cones are polyhedral.
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As proven in [Bonnaillie-Noël et al. 2016a], for a polyhedral domain it is possible to find an atlas such
that κ is bounded. In the general case, we will have to control the possible blow-up of κ .

A list of examples can be found in [Bonnaillie-Noël et al. 2016a, Section 3.1]. Let us recall that, in
dimension 2, all cones are polyhedral and therefore so are all corner domains, but this is not true anymore
when n ≥ 3: circular cones are typical examples of cones which are not polyhedral.

2B. Singular chains. For x0∈�, we denote by 0x0 ∈Pd0 the reduced cone of5x0 — see Definition 1.1 —
and ωx0 the section of 0x0 . A singular chain X = (x0, . . . , x p) is a sequence of points, with x0 ∈ �,
x1 ∈ ωx0 , and so on. We denote by C(�) the set of singular chains (in �), Cx0(�) the set of chains
initiated at x0 and C∗x0

(�) the set of X ∈ Cx0(�) such that X 6= (x0). We denote by l(X) the integer p+ 1
that is the length of the chain. Note that 1≤ l(X)≤ n+ 1, and that l(X)≥ 2 when X ∈ C∗x0

(�).
With a chain X is canonically associated a cone, denoted by 5X, called a tangent structure:

• If X = (x0), then 5X =5x0 .

• If X = (x0, x1), write as above, in some adapted coordinates, 5x0 = Rn−d0 ×0x0 . Let Cx1 be the
tangent cone to ωx0 at x1. Then, in the adapted coordinates, 5X = Rn−d0 ×〈x1〉×Cx1 , where 〈x1〉 is
the vector space spanned by x1 in 0x0 .

• And so on for longer chains.

We refer to [Bonnaillie-Noël et al. 2016a, Section 3.4] for complete definitions. Since singular chains
are one of the tools of our analysis, we provide below some examples for a better understanding. In these
examples, we assume for simplicity that 5x0 is irreducible.

• If x1 ∈5x0 (an interior point), then 5(x0,x1) is the full space.

• If x1 is in the regular part of the boundary of ωx0 , then Cx1 is a half-space of Rn−1 and 5(x0,x1) is a
half-space of Rn . In particular, for a cone with regular section, all chains of length 2 are associated
either with a half-space or the full space. The chains of length 3 are associated with the full space,
and there are no longer chains.

• If 5x0 ⊂ R3 is such that its section is a polygon and if x1 is one of its vertices, then Cx1 is a
two-dimensional sector, and 5(0,x1) is a wedge. If x2 is on the boundary of the sector Cx1 , then
5(x0,x1,x2) is a half-space, but, if x2 is on the interior of the sector, then 5(0,x1,x2) = R3.

Given a cone 5 ∈Pn , we will also consider chains of 5, for example chains in C0(5) are of the form
(0, x1, . . . ), where x1 belongs to the closure of the section of the reduced cone of 5.

The main idea is to consider the local energy as a function not only defined on �, but also on singular
chains: C(�) 3 X 7→ E(5X). In order to show regularity properties of this function, we define a partial
order on singular chains: we say that X ≤ X′ if l(X)≤ l(X′) and xk = x ′k for all k ≤ l(X). We also define
a distance between cones through the action of isomorphisms:

D(5,5′)= 1
2

{
min

L∈BGLn
L5=5′

‖L − In ‖+ min
L∈BGLn
L5′=5

‖L − In ‖

}
, (9)
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where BGLn is the ring of linear isomorphisms L of Rn with norm ‖L‖ ≤ 1. Note that by definition the
distance between two cones is +∞ if they do not belong to the same orbit for the action of BGLn on Pn .

We then define the natural distance, inherited on C(�), by D(X,X′)= ‖x0− x ′0‖+D(5X,5X′); see
[Bonnaillie-Noël et al. 2016a, Definition 3.22]. Then [Bonnaillie-Noël et al. 2016a, Theorem 3.25] states
that any function F : C(�)→ R, monotonous and continuous with respect to D, is lower semicontinuous
when restricted to � (which corresponds to chains of length 1). We will show these two criteria; see
Corollaries 6.2 and 6.3.

3. Change of variables and perturbation of the metric

This section contains mainly technical lemmas, which are useful in the following sections. We define the
operator with metric and we show the influence of a change of variables from a corner domains toward
tangent cones on the quadratic form.

3A. Change of variables and operator with metrics. We need to know how a change of variables
transforms the quadratic form of the Robin Laplacian. Indeed, we will consider diffeomorphisms
ψ :O→O′, where O and O′ are open sets, in these two situations:

• O and O′ will be cones in Pn and ψ will be a linear map on Rn , or

• O and O′ will be map-neighborhoods, respectively of a point in a closure of a corner domain and
of 0 in the associated tangent cone.

This change of variables will induce a regular metric G :O′→GLn . In the case where ψ is linear, G will
be constant.

Let L2
G(O

′) be the space of the square-integrable functions for the weight |G|−1/2, endowed with its
natural norm ‖v‖L2

G
:=
∫
O′ |v|

2
|G|−1/2. Due to the previous hypotheses, L2

G(O
′)= L2(O′). Let g =G|∂O′

be the restriction of the metric to the boundary. We introduce the quadratic form

Qα[O′,G](v)=
∫
O′
〈G∇v,∇v〉|G|−1/2

−α

∫
∂O′
|v|2|g|−1/2.

Due to the above hypotheses on O′ and G, we can define this quadratic form on H 1(O′), endowed with
the weighted norm ‖ · ‖L2

G
.

Lemma 3.1. Let O and O′ be open sets and ψ :O 7→O′ a diffeomorphism as above. Let J := d(ψ−1) be
the Jacobian of ψ−1 and G := J−1(J−1)> the associated metric. Then, for all u ∈ H 1(O),

Qα[O](u)=Qα[O′,G](u ◦ψ−1) and ‖u‖L2(O) = ‖u ◦ψ
−1
‖L2

G(O′)
.

Said differently, if we define U : u 7→ u ◦ψ−1, then U is an isometry from L2(O) onto L2
G(O

′), and
Qα[O′,G]U=Qα[O]. We will also use scaling on cones:

Lemma 3.2. Let 5 be a cone and u ∈ H 1(5). For α > 0, we define uα(x) := α−n/2u(x/α). Then

‖uα‖L2 = ‖u‖L2 and Qα[5](u)= α2Q[5](uα).

In particular, Qα[5] and α2Q[5] are unitarily equivalent.
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3B. Approximation of metrics. We will be led to consider situations where J−I is small (and so is G−I).
Therefore, for v ∈ H 1(O′), we compute

Qα[O′,G](v)−Qα[O′](v)=
∫
O′
〈(G−I)∇v,∇v〉|G|−1/2

+

∫
O′
|∇v|2(|G|−1/2

−1)+α
∫
∂O′
|v|2(|g|−1/2

−1)

and therefore∣∣Qα[O′,G](v)−Qα[O′](v)
∣∣

≤
(
‖G− I ‖L∞v (‖|G|

−1/2
− 1‖L∞v + 1)+‖|G|−1/2

− I ‖L∞v

)
‖∇v‖2L2 +α‖|g|−1/2

− 1‖L∞v ‖v‖L2(∂O′),

where ‖ · ‖L∞v denotes the L∞ norm on supp v. Assume now that ‖J− I ‖L∞v ≤ 1; then there exists a
universal constant C > 0 such that∣∣Qα[O′,G](v)−Qα[O′](v)

∣∣≤ C‖J− I ‖L∞v (‖∇v‖
2
L2 +α‖v‖L2(∂O′)). (10)

This may be written as

(1−C‖J− I ‖L∞v )‖∇v‖
2
L2 −α(1+C‖J− I ‖L∞v )‖v‖L2(∂O′)

≤Qα[O′,G](v)≤ (1+C‖J− I ‖L∞v )‖∇v‖
2
L2 −α(1−C‖J− I ‖L∞v )‖v‖L2(∂O′)

That is, for ‖J− I ‖L∞v small enough:

(1−C‖J− I ‖L∞v )

(
‖∇v‖2L2 −α

1+C‖J− I ‖L∞v

1−C‖J− I ‖L∞v
‖v‖L2(∂O′)

)
≤Qα[O′,G](v)≤ (1+C‖J− I ‖L∞v )

(
‖∇v‖2L2 −α

1−C‖J− I ‖L∞v

1+C‖J− I ‖L∞v
‖v‖L2(∂O′)

)
. (11)

Similarly, we have a norm approximation: assuming that ‖J− I ‖L∞v ≤ 1,

(1−C‖J− I ‖L∞v )‖v‖L2 ≤ ‖v‖L2
G
≤ (1+C‖J− I ‖L∞v )‖v‖L2 for all v ∈ L2(O′). (12)

By applying the previous inequality to tangent geometries with a constant metric, we will deduce the
continuity of the local energy on strata in Section 6A.

3C. Functions with small support. The following lemma compares the quadratic form with a metric to
the one without metric for functions concentrated near the origin of a tangent cone:

Lemma 3.3. Let � ∈D(M), let x0 ∈�, and let ψx0 : Ux0 → Vx0 be a map-neighborhood of x0. Let G be
the associated metric, defined in Lemma 3.1. Then there exist universal positive constants c and C such
that, for all r ∈ (0, c/κ(x0)) with B(0, r)⊂ Vx0 , and all v ∈ H 1(5x0) compactly supported in B(0, r),

(1−Crκ(x0))Qα−[5x0](v)≤Qα[5x0,G](v)≤ (1+Crκ(x0))Qα+[5x0](v), (13)

where

α±(r, x0)= α
1∓Crκ(x0)

1±Crκ(x0)
(14)

and
|‖v‖L2 −‖v‖L2

G
| ≤ Crκ(x0)‖v‖L2 .
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Here κ(x) is as defined in (8).

Proof. Let J be the Jacobian of ψ−1
x0

. Since v is supported in a ball B(0, r) and J(0) = I, by the direct
Taylor inequality we get ‖J− I ‖L∞(B(0,r)) ≤ r‖J‖W 1,∞(O) = rκ(x0). We use (10), and we follow the same
steps leading to (11) and (12). �

Remark 3.4. When the quadratic forms are negative, the above inequality implies

Qα−[5x0](v)≤Qα[5x0,G](v)≤Qα+[5x0](v). (15)

The following lemma will be useful when studying the essential spectrum of tangent operators:

Lemma 3.5. Let�∈D(M) and choose x0 ∈� such that E(5x0) is finite. Let Ux0 be a map-neighborhood
of x0. Then

lim sup
α→+∞

inf
u∈H1(�), ‖u‖=1

supp u⊂Ux0

α−2Qα[�](u)≤ E(5x0).

This property is still true if � ∈Pn .

Proof. Obviously, E(5x0) < 0. Let ε > 0 be such that E(5x0)+ ε < 0. Note that

E(5x0)+ ε

E(5x0)+
1
2ε
∈ (0, 1). (16)

The functions in H 1(5x0)with compact support are dense in H 1(5x0), therefore there exists vε ∈H 1(5x0)

with compact support such that ‖vε‖= 1 and Q[5x0](vε) < E(5x0)+
1
2ε. Let Vx0 =ψx0(Ux0); we choose

r > 0 such that

B(0, r)⊂ Vx0 and r ≤ c
κ(x0)

, (17a)(
1−Crκ(x0)

1+Crκ(x0)

)2(
E(5x0)+

ε

2

)
< E(5x0)+ ε. (17b)

Conditions (17a) will allow us to apply Lemma 3.3. Note that (17b) is possible because of (16). The
reason for this last condition will appear later. The value α+ = α+(x0, r) is well defined in (14). The
(normalized) test function

vε,α+(x) := (α+)n/2vε(α+x)

satisfies
Qα+[5x0](vε,α+)= (α

+)2Q[5x0](vε) (18)

(see Lemma 3.2) and its support is

supp vε,α+ = (α+)−1 supp vε .

Therefore there exists α large enough such that

supp vε,α+ ⊂ B(0, r), (19)
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so we can apply Lemma 3.3. Therefore, by combining (18) with estimates (13), we get

Qα[5x0,G](vε,α+)≤ (1+ crκ(x0))Qα+[5x0](vε,α+)

= (1+ crκ(x0))(α
+)2Q[5x0](vε)

≤ (1+ crκ(x0))(α
+)2

(
E(5x0)+

1
2ε
)
.

Due to (17a) and (19), we can define

uε,α := vε,α+ ◦ψ−1
x0
,

with supp uε,α ⊂ Ux0 , and Lemma 3.1 gives Qα[�](uε,α) = Qα[5x0,G](vε,α). Moreover, ‖uε,α‖2 =
‖v‖2

L2
G
≤ 1+Crκ(x0); therefore, keeping in mind that for ε small enough E(5x0)+

1
2ε < 0, we get

Qα[�](uε,α)
‖uε,α‖2

≤ (α+)2
(

E(5x0)+
ε

2

)
=

(
1−Crκ(x0)

1+Crκ(x0)

)2

α2
(

E(5x0)+
ε

2

)
.

Setting u = uε,α/‖uε,α‖ and using (17b), we have proved

Qα[�](u)≤ E(5x0)+ ε

and we get the lemma. Since, locally, a cone of Pn satisfies the same properties as a corner domain, the
above proof works when � is a cone. �

Remark 3.6. As a direct consequence of the previous lemma, the min-max principle would provide a
rough upper bound for lim supα→+∞ λ(α,�)/α

2 by E (�). But, at this stage, we still don’t know whether
E (�) is finite or not when � is an n-dimensional corner domain.

4. Lower bound: multiscale partition of the unity

In this section, we prove the lower bound of Theorem 1.4 for any domain � ∈D(M). We note at this
point that this lower bound has interest only when E (�) >−∞, which is not proved yet.

It relies on a multiscale partition of the unity of the domain by balls. Near each of these balls, we will
perform a change of variables toward the tangent cone at the center of the ball, and we will estimate the
remainder. However, the curvature of the boundary near each center of a ball may be large as this one
is close to a conical point. We will counterbalance this effect by choosing balls of radius smaller with
regard to the distances to conical points.

The following lemma is a consequence of [Bonnaillie-Noël et al. 2016a, Section 3.4.4 and Lemma B.1]:

Lemma 4.1. Let � ∈D(M) and let ν+ be the smallest integer satisfying

l(X)≥ ν+ =⇒ 5X is polyhedral for all X ∈ C(�).

For each sequence of scales (δk)0≤k≤ν+ in (0,+∞) there exists h0 > 0, an integer L > 0 and a constant
c(�) > 0 such that, for all h ∈ (0, h0), there exists an h-dependent finite set of points P ⊂� such that,
for all p ∈ P , there exists 0≤ k ≤ ν+ such that:
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• The ball B(p, 2hδ0+...+δk ) is contained in a map-neighborhood of p.

• The curvature associated with this map-neighborhood (defined by (8)) satisfies

κ(p)≤
c(�)

hδ0+...+δk−1
.

• �⊂
⋃

p∈P B(p, hδ0+...+δk ), and each point of � belongs to at most L of these balls.

We will need the standard IMS formula;1 see for example [Simon 1983, Lemma 3.1]:

Lemma 4.2. Let χ1, . . . , χN ∈ C∞(�) be such that
∑N

l=1 χ
2
l = 1. Then

‖∇u‖2 =
N∑

l=1

‖∇(χlu)‖2−
N∑

l=1

‖u∇χl‖
2 for all u ∈ H 1(�).

We set h = α−1 and we now choose a partition of unity (χp)p∈P associated with the balls provided by
the previous lemma; each χp is C∞ and is supported in the ball B(p, 2α−(δ0+...+δk)), and{∑

p∈P χ
2
p = 1 on �,∑

p∈P ‖∇χp‖
2
∞
≤ C(�)α2δ with δ = δ0+ · · ·+ δν+ .

(20)

We apply Lemma 4.2 together with the uniform estimates of gradients (20):

Qα[�](u)=
∑
p∈P

Qα[�](χpu)−
∑
p∈P

‖u∇χp‖
2
≥

∑
p∈P

Qα[�](χpu)−C(�)α2δ
‖u‖2.

Therefore we are left with the task of estimating Qα[�](χpu) from below for each p ∈ P . Let ψp be
a local map on B(p, 2α−(δ0+...+δk)) and vp := (χpu) ◦ψ−1

p . Let Gp be the associated metric. Then we
deduce from Lemmas 3.1 and 3.3 that (recall that the quadratic forms are negative)

Qα[�](χpu)
‖χpu‖2

=
Qα[5p,Gp](vp)

‖vp‖
2
Gp

≥ (1+Cα−(δ0+...+δk)κ(p))
Qα−[5p](vp)

‖vp‖
2

≥ (1+Cα−(δ0+...+δk)κ(p))(α−)2 E(5c)≥ (1+C ′α−(δ0+...+δk)κ(p))α2E (�)

= α2E (�)+ O(α2−δk ),

where we have used Lemma 4.1 to control κ(p).
Lemma 4.2 provides

Qα[�](u)≥
(
α2E (�)+

ν+∑
k=0

O(α2−δk )+ O(α2δ)

)
‖u‖2 for all u ∈ H 1(�).

Recall that δ =
∑ν+

k=0 δk ; these remainders are optimized by choosing δ0 = · · · = δν+ and 2− δ0 = 2δ =
2(ν++ 1)δ0, that is, δ0 = 2/(2ν++ 3). We deduce from the min-max principle that there exists α0 ∈ R

1IMS stands for Ismagilov, Morgan and Simon.
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and C− > 0 such that

λ(�, α)≥ α2E (�)−C−α2−2/(2ν++3) for all α ≥ α0, (21)

which is the lower bound of Theorem 1.4.

5. Tangent operator

In this section we describe the Robin Laplacian on a cone 5, linking some parts of its spectrum with its
section ω.

5A. Semiboundedness of the operator on tangent cones.

Lemma 5.1. Let5∈Pn and let ω be its section. Let R≥ 0, and let u ∈ H 1(5) with support in B(0, R){.2

Then

Q[5](u)≥
(

inf
r>R

λ(ω, r)
r2

)
‖u‖2L2(5)

.

Proof. Let ϕ : (r, θ) 7→ rθ be the change of variables from R+×ω into 5 and denote by v(r, θ) := u ◦ϕ−1

the function associated with the change of variables. We have

‖∇u‖2L2(5)
=

∫
r>R

(
|∂rv|

2
+

1
r2 ‖∇θv(r, · )‖

2
L2(ω)

)
rn−1 dr;

therefore,

Q[5](u)≥
∫

r>R

1
r2 ‖∇θv(r, · )‖

2
L2(ω)

rn−1 dr −
∫

r>R
‖v(r, · )‖2L2(∂ω)

rn−2 dr

=

∫
r>R

1
r2Qr [ω](v(r, · ))rn−1 dr ≥

∫
r>R

1
r2λ(ω, r)‖v(r, · )‖

2
L2(ω)

rn−1 dr

≥ inf
r>R

λ(ω, r)
r2

∫
r>R
‖v(r, · )‖2L2(ω)

rn−1 dr

and the lemma follows. �

We now prove the following:

Lemma 5.2. Let5∈Pn be such that its section ω satisfies E (ω)>−∞. Then E(5)>−∞ and the Robin
Laplacian L[5] is well defined as the Friedrichs extension of Q[5] with form domain D(Q[5])= H 1(5).

Proof. Since E (ω) is supposed to be finite, (21) implies

lim inf
r→+∞

λ(ω, r)
r2 ≥ E (ω). (22)

Let χ1 and χ2 be two regular cut-off functions defined on R+ such that suppχ1 ⊂ [0, 2R), χ1 = 1
on [0, R] and χ2

1 +χ
2
2 = 1. Lemma 4.2 provides

Q[5](u)=
∑

i=1,2

Q[5](χi u)−
∑

i=1,2

‖∇χi u‖2. (23)

2 R = 0 is included, with B(0, 0)=∅.



ON THE NEGATIVE SPECTRUM OF THE ROBIN LAPLACIAN IN CORNER DOMAINS 1273

Denote by DR
0 the set of functions in H 1(5∩B(0, 2R)) supported in B(0, 2R). Since 5∩B(0, 2R) is a

corner domain, DR
0 has compact injection into L2(∂5∩B(0, 2R)); see [Dauge 1988, Corollary AA.15].

We deduce the existence of a constant C1(R) ∈ R such that

Q[5](χ1u)≥ C1(R)‖χ1u‖2L2(5∩B(0,2R)) = C1(R)‖χ1u‖2L2(5)
.

Let ε > 0; from (22) we deduce the existence of R > 0 such that

λ(ω, r)
r2 ≥ E (ω)− ε for all r > R

and therefore Lemma 5.1 gives

Q(χ2u)≥ (E (ω)− ε)‖χ2u‖2L2(5)
.

There exists C2 > 0 such that
∑

i ‖∇χi‖
2
≤ C2 R−2 for all R > 0. Therefore we deduce that there exists

C3 = C3(R, ε, ω) ∈ R such that

Q[5](u)≥ C3‖u‖2L2(5)
.

We deduce that the quadratic form is lower semibounded and the operator L[5] is well defined as the
self-adjoint extension of Q[5], and its form domain is H 1

[5]. �

5B. Bottom of the essential spectrum for irreducible cones. Let 5 ∈Pm with m ≥ n, and let 0 be its
reduced cone. In some suitable coordinates, we may write

5= Rm−n
×0

with 0 ∈Pn an irreducible cone. The associated Robin Laplacian admits the decomposition

L[5] = −1Rm−n ⊗ In + Im−n ⊗L[0]. (24)

In particular,

S(L[5])= [E(0),+∞).

Moreover, if E(0) is a discrete eigenvalue for L[0] and u is an associated eigenfunction (with exponential
decay), then I⊗u is called an L∞-generalized eigenfunction for L[5] (this is linked to the notion of
L∞-spectral pair). Therefore we are led to investigate the bottom of the essential spectrum of L[0].
We prove:

Lemma 5.3. Let 0 ∈5n be an irreducible cone of section ω such that E (ω) >−∞. Then the bottom of
the essential spectrum of L[5] is E (ω).

Proof. From Persson’s lemma [1960], the bottom of the essential spectrum of L[0] is the limit, as R→+∞,
of

6(R) := inf
9∈H1(0),9 6=0

supp(9)∩B(0,R)=∅

Q[0](9)
‖9‖2

.
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Lower bound. From Lemma 5.1, we get directly

lim inf
R→+∞

6(R)≥ lim inf
R→+∞

λ(ω, R)
R2

and we deduce from (22) that
lim inf
R→+∞

6(R)≥ E (ω).

Upper bound. By scaling — see Lemma 3.2 — we immediately have

6(R)= R−2 inf
9∈H1(0),9 6=0

supp(9)∩B(0,1)=∅

QR[0](9)

‖9‖2
.

Each point x in 0 \B(0, 1) has a tangent cone 5x . If we let x1 := x/|x | ∈ ω, and let Cx1 be the tangent
cone to ω at x1, then5x ≡R×Cx1 . Therefore, by tensor decomposition of the Robin Laplacian (see (24)),
E(Cx1)= E(5x). Thus the finiteness of E (ω) implies the finiteness of E(5x), and from Lemma 3.5 we
have

lim sup
R→+∞

6(R)≤ E(5x) for all x ∈ 0 \B(0, 1). (25)

Using moreover that
inf

x∈0\B(0,1)
E(5x)= inf

x1∈∂ω
E(Cx1)= E (ω), (26)

and taking the infimum in (25) over x ∈ 0 \B(0, 1), we deduce

lim sup
R→+∞

6(R)≤ E (ω),

and the lemma follows. �

6. Infimum of the local energies in corner domains

6A. Finiteness of the infimum of the local energies. In this section, we prove the finiteness of E (�) for
any�∈D(M) and for any n-dimensional manifold M without boundary, by induction on the dimension n.

In dimension 1, bounded domains are intervals and the associated tangent cones are either half-lines or
the full line whose associated energies are respectively −1 and 0 (by explicit computations), therefore the
infimum of the local energies is finite.

Let n ≥ 2 be fixed and let us assume that, for any corner domain ω of an n−1-dimensional Riemannian
manifold without boundary, we have

E (ω) >−∞.

We want to prove that the same holds in dimension n.
As a consequence of the recursive hypothesis, E(5) is finite for all 5 ∈Pn — see Lemma 5.2 — and

we can study the regularity of the local energy with respect to the geometry of a cone:

Proposition 6.1. Assume the recursive hypothesis in dimension n − 1. Then the map 5 7→ E(5) is
continuous on Pn for the distance D defined in (9).
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Proof. Let 5 ∈Pn and let (5k)k∈N be a sequence of cones with D(5k,5)→ 0 as k→+∞. This means
that there exists a sequence (Jk)k∈N in GLn with Jk(5k)=5, ‖Jk‖ ≤ 1 and ‖Jk − I‖→ 0 as k→+∞.
Then, as a direct consequence of (11) and (12), we deduce that

lim
k→+∞

Q[5,Gk](v)

‖v‖2
L2

Gk

=
Q[5](v)
‖v‖2

for all v ∈ H 1(5).

Recall that the form domain of Q[5,Gk] is H 1(5); see Section 5A. Since Q[5k] and Q[5,Gk] are
unitarily equivalent (see Lemma 3.1), we deduce that E(5k)→ E(5) as k→+∞. �

By definition of the distance on singular chains (see Section 2B), we get:

Corollary 6.2. Assume the recursive hypothesis in dimension n− 1. Let M be an n-dimensional manifold
as above, and let � ∈D(M) be a corner domain. Then the map X 7→ E(5X) is continuous on C(�) for
the distance D. In particular, x 7→ E(5x) is continuous on each stratum of �.

Let M be an n-dimensional manifold as above, let � ∈D(M) and let x0 ∈ ∂�; in what follows, 0x0 is
the reduced cone of 5x0 and ωx0 ∈D(S

d−1) is its section, with d ≤ n. We note that (26) may be written
as

E (ωx0)= inf
x1∈∂ωx0

E(5(x0,x1)).

Therefore, Lemmas 5.2 and 5.3 show that

E(5x0)≤ E(5(x0,x1)) for all x1 ∈ ωx0 .

We deduce by immediate recursion:

Corollary 6.3. Let X1 and X2 be two singular chains in C(�) satisfying X1 ≤ X2; we have

E(5X1)≤ E(5X2).

We combine this with Corollary 6.2 and we can apply [Bonnaillie-Noël et al. 2016a, Theorem 3.25] to
get the lower semicontinuity of the local energy function x 7→ E(5x), and, from the compactness of �,
we deduce that E (�) is finite. This concludes the proof of Theorem 1.3 by induction.

As a consequence, Lemmas 5.2 and 5.3 imply Theorem 1.2.

6B. Second energy level. Note that for a cone which is not irreducible, the spectrum consists in essential
spectrum, and Theorem 1.2 does not apply. However, there still exists a threshold in the spectrum: the
second energy level of the tangent operator of a cone 5 ∈Pn is defined as

E ∗(5) := inf
X∈C∗0(5)

E(5X),

where we recall that C∗0(5), defined in Section 2B, is the set of singular chains of 5 of the form
X = (0, . . . ) and with l(X)≥ 2, where l(X) is the length of the chain.
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Using Corollary 6.3 with X1 = (0), then taking the infimum over the chain X2 ≥ X1 with l(X2)≥ 2,
we get E(5)≤ E ∗(5). We also get E ∗(5)= infx1∈∂ω E(5(0,x1)) and therefore, by (26),

E (ω)= E ∗(5), (27)

where ω is the section of the reduced cone of 5. The quantity E ∗ will be the discriminating value in the
analysis carried out in Section 7.

6C. Examples. The inequality E(5)≤ E ∗(5) is strict if and only if the operator on the reduced cone
has eigenvalues below the essential spectrum. The presence (or absence) of a discrete spectrum is an
interesting question in itself, and we describe here some examples for which this question has been studied.
Due to the clear decomposition of the Robin Laplacian on a cone of the form Rm−n

×0— see (24) — we
only treat the case of irreducible cones.

When 0 is the half-line, E(0)=−1< 0= E ∗(0), and an associated eigenfunction is x 7→ e−x . The
case of sectors is given by (4): the inequality is strict if and only if the sector is convex. In that case, an
associated eigenfunction is (x, y) 7→ e−x/sin θ , where x denotes the variable associated with the axis of
symmetry of the sector, and θ is the opening angle.

Pankrashkin [2016] provides geometrical conditions on three-dimensional cones with regular section.
He shows that, when 0 ∈P3 is a cone such that R3

\0 is convex, E(0)= E ∗(0). On the other hand, if
R3
\0 is not convex, then E(0) is a discrete eigenvalue below the essential spectrum.
Note finally that Levitin and Parnovski [2008] use a geometrical parameter to give a more explicit

expression of E(5) when the section of 5 is a polygonal domain that admits an inscribed circle.

Remark 6.4. In [Levitin and Parnovski 2008, Theorem 3.5], it is stated that the bottom of the spectrum
of the Robin Laplacian on a cone which contains an hyperplane passing through the origin is −1. The
following example shows that this statement is incorrect because the bottom of the essential spectrum
could be below −1: Take a spherical polygon ω ⊂ S2 such that

• ω is included in a hemisphere,

• ω has at least a vertex of opening θ ∈ (π, 2π).

Let5⊂R3 be the cone of section ω, and let 5̃ be its complement in R3. The cone 5̃ contains a half-space,
has an edge with opening angle θ̃ = 2π − θ ∈ (0, π). Then, from Theorem 1.2 and (4), we get that the
bottom of the essential spectrum of L[5] is below − sin−2 1

2 θ̃ , and therefore E(5̃) <−1.

7. Upper bound: construction of quasimodes

In order to prove the upper bound of Theorem 1.4, we construct recursive quasimodes. The subsections
below correspond to the following plan:

(A) Use the analysis of Section 6 to find a chain Xν = (x0, . . . , xν) ∈ C(�) such that L(5Xν ) admits a
generalized eigenfunction associated with the value E (�), then construct a quasimode for Lα[5Xν ].
We do this by using scaling and cut-off functions in a standard way.

(B) Use a recursive procedure (together with a multiscale analysis) to construct a quasimode on 5x0 .
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(C) Use this quasimode to construct a final quasimode on �, and choose the scales to optimize the
remainders.

7A. A quasimode on a tangent structure. The next proposition uses the quantity E ∗ to state that there
always exist a tangent structure that admits an L∞-generalized eigenfunction associated with the ground
state energy.

Proposition 7.1. Let 5 ∈Pn . Then there exists X ∈ C0(5) satisfying

E(5X)= E(5) and E(5X) < E ∗(5X). (28)

Let 0X ∈Pd be the irreducible cone of 5X. Then there exists an L∞-generalized eigenfunction for L[5X]

associated with E(5). Moreover it has the form 1⊗9X, in coordinates associated with the decomposition
5X ≡ Rn−d

×0X, where 9X has exponential decay.

Proof. The proof of the existence of X is recursive over the dimension d of the reduced cone of 5. The
initialization is clear; indeed, when d = 1, we have that 5 is a half-plane, E(5) = E(R+) = −1 and
E ∗(5)= E(R)= 0. Moreover, ψX(x)= e−x provides an eigenfunction for L[R+].

We now prove the heredity. First we find a chain X satisfying (28):

• If E(5) < E ∗(5), then X = (0) and 5X =5.

• If E(5) = E ∗(5), we use Theorem 1.2: the function x1 7→ E(5x1) is lower semicontinuous on ω,
where ω is the section of the reduced cone of 5. Therefore there exists x1 ∈ ∂ω such that E ∗(5) =

E (ω) = E(5x1) = E(5(0,x1)). The dimension of the reduced cone of 5(0,x1) is lower than that of 5;
therefore, by the recursive hypothesis, there exists X′ ∈ C0(5(0,x1)) such that E(5X′) = E(5(0,x1))

and E(5X′) < E ∗(5X′). We write this chain in the form X′ = (0,X′′), and the chain X′ is pulled
back into an element of C0(5) by setting X = (0, x1,X′′) ∈ C0(5). Note that 5X = 5X′ , so that
E(5(0,x1))= E(5X)= E ∗(5)= E(5) and E(5X) < E (5X).

From Theorem 1.2 and (27), E(5X) < E ∗(5X) means that E(5X) is an eigenvalue of L(0X) below
the essential spectrum; therefore, there exists an associated eigenfunction 9X with exponential decay, and
(y, z) 7→9(z) for (y, z) ∈ Rn−d

×0X is clearly an L∞-generalized eigenfunction for L[Rn−d
×0X]. �

First, thanks to the lower semicontinuity of local energies, we choose x0 ∈ ∂� such that E(5x0)=E (�).
Then, using Proposition 7.1, we pick a singular chain Xν= (x0, . . . , xν) such that L[5Xν ] has a generalized
eigenfunction associated with E(5x0). We let Xk = (x0, . . . , xk) for 0≤ k ≤ ν, and 5k :=5Xk .

We define
ν := inf{k ≥ 0 :5k is polyhedral}. (29)

The index ν provides the shortest chain such that5ν is polyhedral, with ν=+∞when5ν is not polyhedral.
Moreover, when ν is finite the tangent structure 5k is polyhedral for all ν ≤ k ≤ ν, and ν ≤ n− 2, since
any chain of length strictly larger than n− 2 is associated either with a half-space or with the full space.

The tangent structure 5ν is (in some suitable coordinates) Rp
×0ν with 0ν irreducible. We denote by

π0ν the projection onto 0ν associated with this decomposition. Then, by Proposition 7.1, there exists an
eigenfunction u with exponential decay for L[0ν] associated with E(5ν).
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Let χ ∈ C∞(R+) be a cut-off function with compact support satisfying

χ(r)= 1 if r ≤ 1 and χ(r)= 0 if r ≥ 2.

We define the scaled cut-off function

χα(r)= χ(αδr),

where δ ∈ (0, 1) will be chosen later. The initial quasimode is

uν(x)= χα(|x |)u(π0(αx)), x ∈5Xν .

Standard computations show that

Qα[5ν](uν)
‖uν‖2

= α2E (�)+
‖∇(χα)uν‖2

‖uν‖2
;

in particular,
Qα[5ν](uν)
‖uν‖2

= α2E (�)+ O(α2δ). (30)

7B. Getting up along the chains. The previous section provides a quasimode uν for L[5ν]. The aim
of this section is a recursive decreasing procedure in order to get a quasimode for L[50]. Therefore,
this step is skipped if ν = 0. This case happens when E(5x0) < E ∗(5x0), and the quasimode is called
sitting, as was introduced in [Bonnaillie-Noël et al. 2016a]. Otherwise we suppose that ν ≥ 1, and we
will construct quasimodes uk defined on 5k , for 0≤ k ≤ ν. These quasimodes are called sliding.

In what follows, (dk(α))k=1,...,ν and (rk(α))k=0,...,ν are positive sequences of shifts and radii (to be
determined) going to 0 as α→+∞.

Let 1≤ k ≤ ν and assume that uk ∈ H 1(5k) is constructed and is supported in a ball B(0, rk(α)). This
is already done for k = ν; see the last section. For 1≤ k ≤ ν, we define

vk = dk(α)(0, xk) ∈5k−1,

where (0, xk) ∈5k−1 are cylindrical coordinates associated with the decomposition 5k−1 = Rpk ×0k−1.
Intuitively, vk is a point of 5k−1 satisfying ‖vk‖ = dk(α) and is collinear to (0, xk).

We construct uk−1 as follows:

• Local map at vk : The tangent cone to 5k−1 at vk is 5k itself. Let ψk : Uvk 7→ Vvk be a local map. The
map-neighborhoods Uvk and Vvk (of vk ∈5k−1 and 0∈5k , respectively) can be chosen of diameters smaller
than ckdk(α), where ck is the diameter of the map-neighborhood of xk . Moreover, when k ≥ ν, 5k is
polyhedral, so ψk is a translation. When this is not the case, by elementary scaling, κ(vk)≤ κ(xk)/dk(α);
see [Bonnaillie-Noël et al. 2016a, Section 3] for more details on this process. Since the (xk)0≤k≤ν are
fixed, we can choose ν fixed map-neighborhoods associated with these points, and a constant c(�) > 0
such that

κ(vk)≤

{
c(�)/dk(α) if k ≤ ν,
c(�) if k ≥ ν+ 1.

(31)
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We now add the constraint that

rk(α)

dk(α)
→ 0 as α→+∞ if k ≤ ν, (32)

so that rkκ(vk)→ 0 for all 1≤ k ≤ ν, and we can define, for α large enough,

τk :=
1−Crkκ(vk)

1+Crkκ(vk)
, (33)

where C is the constant appearing in Lemma 3.3.

• Change of variables: First we rescale uk (the reason for this will appear later): let

ũk(x)= τk(α)
n/2u(τk(α)x). (34)

This function satisfies

‖ũk‖ = ‖uk‖ and Qα+k
[5k](ũk)= τk(α)

2Qα[5k](uk), (35)

where α+k = τk(α)α. Recall that supp uk ⊂ B(0, rk(α)) by the recursive hypothesis on uk . Then, due
to (32), we have ckdk(α) > rk(α)/τk(α) for α large enough, and therefore

supp ũk ⊂ B(0, rk(α)/τk(α))⊂ Vk .

As a consequence, we can define on Uk ∩5k−1 the function

uk−1 = ũk ◦ψk . (36)

We can extend this function by 0 outside its support so that uk−1 ∈ H 1(5k−1). Its support is inside a ball
centered at 0 and of size dk + diam(Uk)= (1+ ck)dk , so we set

rk−1 := (1+ ck)dk . (37)

We derive from this recursive procedure a quasimode u0 on 50, localized in a ball B(0, r0(α)).

7C. Quasimode on the initial domain � and choice of the scales. Now we set v0 := x0, and we still
define τ0 by (33), then ũ0 by (34) and u−1 by (36). Note that κ(v0) is constant since v0 = x0 is fixed. We
compare Qα[5k−1](uk−1) with Qα[5k](uk) for 0≤ k ≤ ν. We have, from Lemma 3.1,

Qα[5k,Gk](ũk)=Qα[5k−1](uk−1), (38)

where Gk := J−1
k (J−1

k )> is the associated metric with Jk := dψ−1
k .

Since, by construction, rkκ(vk)→ 0, we can apply Lemma 3.3, in particular the inequality (15):

Qα[5k,Gk](ũk)≤Qα+k
[5k](ũk).

Combining this with (35) and (38) we get, for all 0≤ k ≤ ν,

Qα[5k−1](uk−1)≤ τk(α)
2Qα[5k](uk),
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and therefore

Qα[�](u−1)≤

ν∏
k=0

τk(α)
2Qα[5ν](uν).

Recall that κ(v0) is fixed; we get, from (31),

Qα[�](u−1)≤

(
1+C

(
r0+

r1

d1
+ · · ·+

rν
dν
+ rν+1+ · · ·+ rν

))
Qα[5ν](uν).

We now choose rk(α)= α
−
∑k

p=0 δk when k ≤ ν and rk = rν when k > ν, with δk > 0. The shifts are set
by (37), so that rk/dk = O(α−δk ) for all 1 ≤ k ≤ ν. Moreover, the scale δ of Section 7A is related by
δ =

∑ν
k=0 δk , and (30) provides

Qα[�](u−1)≤

(
1+

ν∑
k=0

O(α−δk )

)
(α2E (�)+ O(α2δ))= α2E (�)+

ν∑
k=0

O(α2−δk )+ O(α2δ).

The error terms are the same as in Section 7C; therefore, we make the same choice of scales δk=2/(2ν+3)
for all 0≤ k ≤ ν. By construction, u−1 is normalized, therefore the min-max theorem implies the upper
bound of Theorem 1.4.

8. Applications

In the applications below, one must keep in mind that the finiteness of E (�) is one of our results, and
that this quantity can be made more explicit for particular geometries; see [Levitin and Parnovski 2008].
Moreover, this quantity goes to−∞ as the corners of a domain� gets sharper: this is clear in dimension 2
since the local energy at a corner of opening θ goes to −∞ as θ→ 0; see (4). In higher dimension, it
could be possible to use the approach from [Bonnaillie-Noël et al. 2016b] in order to show that the local
energy goes to −∞ for sharp cones (see the definition of a sharp cone therein).

8A. On the optimal constant in relative bounds zero for the trace operator. The trace injection from
H 1(�) into L2(∂�) being compact, the following relative 0-bound holds: for all ε > 0, there exists
C(ε) > 0 such that

‖u‖2L2(∂�)
≤ ε‖∇u‖2L2(�)

+C(ε)‖u‖2L2(�)
for all u ∈ H 1(�). (39)

This inequality is a particular case of Ehrling’s lemma. It can be written as

Q1/ε[�](u)≥−
C(ε)
ε
‖u‖2L2(�)

for all u ∈ H 1(�).

Thus, by definition of λ(�, α), for each ε > 0 the best constant C(ε) in (39) is

C(ε)=−ελ
(
�,

1
ε

)
.

From Theorem 1.4, we obtain that this constant is essentially ε−1
|E (�)|. More precisely:
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Proposition 8.1. Let � ∈D(M) be an admissible corner domain. Then there exist ε0 > 0 and γ ∈
(
0, 2

3

)
such that, for all ε ∈ (0, ε0),

‖u‖2L2(∂�)
≤ ε‖∇u‖2L2(�)

+

(
|E (�)|

ε
+ O(εγ−1)

)
‖u‖2L2(�)

for all u ∈ H 1(�).

Let us recall that the finiteness of λ(�, α) is closely related to the compactness of the injection of
H 1(�) into L2(∂�) and, for some cusps, where λ(�, α) = −∞, this injection is not compact (see
[Nazarov and Taskinen 2011; Daners 2013]).

8B. Transition temperature of superconducting models. In the study of superconducting models, the
physics literature has explored over the years the possibility of increasing the critical fields. Another more
interesting and more recent idea is to increase the temperature below which the normal state (i.e., the critical
point of the Ginzburg–Landau energy for which the material is nowhere in the superconducting state) is
not stable. For zero fields associated to a superconducting body �, enhanced surface superconductivity
is modeled via a negative penetration depth b < 0 and, following [Giorgi and Smits 2007], this critical
temperature is given by

T b
c (�)= Tc0 − Tc0λ

(
�,

ξ(0)
|b|

)
, (40)

where ξ(0) > 0 is the so-called coherence length at zero temperature, Tc0 is the vacuum zero field critical
temperature for b =∞ (corresponding to a superconductor surrounded by vacuum) and λ(�, α) is the
first eigenvalue of the Robin problem.

Thanks to Theorem 1.4, for |b| small enough we have

T b
c (�)≥ Tc0 + Tc0

ξ(0)2

|b|2
(
|E (�)| + O(|b|γ )

)
for some γ ∈

(
0, 2

3

)
. Since |E (�)| ≥ 1 and goes to +∞ as the corners of ∂� become sharper, our

results are consistent with the general physical principle of increase of T b
c (�) due to confinement (see for

instance [Montevecchi and Indekeu 2000, Section 4] and see [Yampolskii and Peeters 2000; Baelus et al.
2002] concerning superconducting properties of nanostructuring materials).
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