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Dedicated to the memory of Professor Abbas Bahri who left us on January 10, 2016.

We consider a nonlinear critical problem involving the fractional Laplacian operator arising in conformal
geometry, namely the prescribed σ -curvature problem on the standard n-sphere, n ≥ 2. Under the
assumption that the prescribed function is flat near its critical points, we give precise estimates on the
losses of the compactness and we provide existence results. In this first part, we will focus on the case
1< β ≤ n− 2σ , which is not covered by the method of Jin, Li, and Xiong (2014, 2015).

1. Introduction and main results

Fractional calculus has attracted the interest of a lot of scientists during the last decades. This is
essentially due to its numerous applications in various domains: medicine, population modeling, biology,
earthquakes, optics, signal processing, astrophysics, water waves, porous media, nonlocal diffusion, image
reconstruction problems; see [Hajaiej et al. 2011] and the references [1, 2, 6, 7, 13, 14, 19, 22, 25, 36, 38,
41, 43, 45, 46, 58] therein.

Many important properties of the Laplacian are not inherited, or are only partially satisfied, by its
fractional powers. This gave birth to many challenging and rich mathematical problems. However, the
literature remained quite silent until the publication of the breakthrough paper of Caffarelli and Silvester
[2007]. This seminal work has hugely contributed to unblocking a lot of difficult problems and opening
the way for the resolution of many other ones. In this paper, we study another important fractional PDE
whose resolution also requires some novelties because of the nonlocal properties of the operator present
in it. More precisely, we investigate the existence of solutions for the Nirenberg fractional nonlinear
equation

Pσu = c(n, σ )K u(n+2σ)/(n−2σ) for u > 0 on Sn , (1-1)

where σ ∈ (0, 1), K is a positive function defined on (Sn, g
Sn ),

Pσ =
0
(
B+ 1

2 + σ
)

0
(
B+ 1

2 − σ
) , B =

√
−1g

Sn +

(n−1
2

)2
,
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0 is the gamma function, c(n, σ ) = 0
( n

2 + σ
)
/0
( n

2 − σ
)
, and 1g

Sn is the Laplace–Beltrami operator
on (Sn, g

Sn ). The operator Pσ can be seen more concretely on Rn using stereographic projection. The
stereographic projection from Sn

\ {N } to Rn is the inverse of F : Rn
→ Sn

\ {N } defined by

F(x)=
(

2x
1+ |x |2

,
|x |2− 1
|x |2+ 1

)
,

where N is the north pole of Sn . For all f ∈ C∞(Sn), we have

(Pσ ( f )) ◦ F =
(

2
1+ |x |2

)−(n+2σ)/2

(−1)σ
((

2
1+ |x |2

)(n−2σ)/2

( f ◦ F)
)
, (1-2)

where (−1)σ is the fractional Laplacian operator (see page 117 of [Stein 1970], for example).
For σ = 1, the classical Nirenberg problem consists of the following question: which function K on

(Sn, g
Sn ) is the scalar curvature of a metric g that is conformal to g

Sn ? This is equivalent to solving

P1v+ 1=−1g
Sn v+ 1= K e2v on S2 (1-3)

and
P1w+ 1=−1g

Snw+ b(n)R0w = b(n)Kw(n+2)/(n−2) on Sn , n ≥ 3, (1-4)

where g = e2vg
Sn , b(n)= (n− 2)/(4(n− 1)), and w = e(n−2)v/4, and where R0 = n(n− 1) is the scalar

curvature of (Sn, g
Sn ).

To our knowledge, the very first contribution to this topic is due to D. Koutroufiotis [1972]. He has
been able to solve the above Nirenberg problem (1-3) when K is an antipodally symmetric function
which is close to 1. However, his approach only applies to S2. Following a self-contained method, Moser
[1973] has solved the Nirenberg problem on S2 for all antipodally symmetric functions K which are
just positive somewhere. Later on, Chang and Yang [1988] have succeeded in removing the symmetry
assumption on K in dimension 2 and Bahri and Coron [1991] have extended these results to dimension 3.

Another important issue related to the study of the classical Nirenberg problem is the compactness of
the solutions. This has first been addressed by Chang, Gursky and Yang [Chang et al. 1993], Han [1990]
and Schoen and Zhang [1996], for n = 2 or n = 3.

Compactness and existence of solutions in higher dimensions have been established in the breakthrough
papers of Li [1995; 1996]. Let us point out that the situation is completely different in higher dimensions
(n > 3). More precisely, when n = 2 or n = 3, a sequence of solutions of the Nirenberg problem cannot
blow up at more than one point. If n > 3, there could be blow ups at many points, which considerably
complicates the study of the problem. Many aspects of this very interesting situation have been addressed
in [Ambrosetti et al. 1999; Ben Ayed et al. 1996; Ben Mahmoud and Chtioui 2012; Chen and Lin 2001;
Li 1995; 1996].

Another stimulating situation is the study of higher orders and fractional order conformally invariant
pseudodifferential operators Pg

k on (Sn, g
Sn ), which exist for all positive integers k if n is odd and for

k =
{
1, . . . , n

2

}
if n is even. These operators were first introduced by Graham, Jenne, Mason and Sparling

[Graham et al. 1992]. Beyond the case Pg
1 which corresponds to the operator associated to the classical

Nirenberg problem discussed above, the operator Pg
2 is the well known Paneitz operator; see [Abdelhedi
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and Chtioui 2006; Djadli et al. 2000; Paneitz 2008; Wei and Xu 2009] and references therein. Up to
positive constants, Pg

1 (1) is the scalar curvature associated to g and Pg
2 (1) is the so-called Q-curvature.

In the last two decades, it has been realized that the conformal Laplacian Pg
1 , and more generally Pg

k ,
play a central role in conformal geometry. As mentioned previously, the classical Nirenberg problem is
naturally associated to the conformal Laplacian. Consequently, the higher order Nirenberg problems are
associated to Graham, Jenne, Mason and Sparling operators (known as the GJMS operators). Recently, a
recursive formula for GJMS operators and Q-curvature has been found by Juhl [2014; 2013] (see also
[Fefferman and Graham 2013]). Moreover, Graham and Zworski [2003] have introduced a family of
fractional order conformally invariant operators on the conformal infinity of asymptotically hyperbolic
manifolds thanks to a scattering theory.

After this seminal paper, new interpretations of the fractional operators and their associated Q-curvatures
have been the subject of many studies; see for example [Chang and González 2011]. For the Q-curvature
of order σ on general manifolds, we refer to [Chang and González 2011; González et al. 2012; González
and Qing 2013; Graham and Zworski 2003; Qing and Raske 2006] and references therein. Prescribing
Q-curvature of order σ on Sn can be interpreted as a generalization of the Nirenberg problem, called in
this context the fractional Nirenberg problem.

For 0< σ < 1, this challenging problem was first addressed in [Jin et al. 2014; 2015]. In these two
groundbreaking papers, the authors were able to show the existence of solutions of (1-1) and to derive
some compactness properties. More precisely, thanks to a very subtle approach based on approximation
of the solutions of (1-1) by a blow-up subcritical method, they proved the existence of solutions for the
critical fractional Nirenberg problem (1-1) (see Theorems 1.1 and 1.2 of [Jin et al. 2014]). Their method is
based on tricky variational tools; in particular, they have established many interesting fractional functional
inequalities. Their main hypothesis is the so-called flatness condition. Namely, let K : Sn

→ R be a
C2 positive function. We say that K satisfies the flatness condition ( f )β if for each critical point y of K
there exist bi = bi (y) ∈ R∗ for i ≤ n, with

∑n
i=1 bi 6= 0, such that in some geodesic normal coordinate

centered at y we have

K (x)= K (y)+
n∑

i=1

bi |(x − y)i |β + R(x − y), (1-5)

where
∑[β]

s=0 |∇
s R(y)||y|−β−s

= o(1) as y tends to zero. Here ∇s denotes all possible derivatives of
order s and [β] is the integer part of β. However, they were only able to handle the case n− 2σ < β < n
in the flatness hypothesis. This excludes some very interesting functions K . In fact, note that an important
class of functions, which is worth including in any results of existence for (1-1), are the Morse functions
(C2 having only nondegenerate critical points). Such functions can be written in the form ( f )β with
β = 2. Since Jin, Li and Xiong require n− 2σ < β < n (0< σ < 1), their theorems do not apply to this
relevant class of functions. Moreover, they require some additional technical assumptions (K antipodally
symmetric in Theorem 1.1 and K ∈ C1,1 positive in Theorem 1.2 of [Jin et al. 2014]).

Motivated by [Jin et al. 2014; 2015] and aiming to include a larger class of functions K in the existence
results for (1-1), we develop in this paper a self-contained approach which enables us to include all the
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plausible cases (1 < β < n). Our method hinges on a readapted characterization of critical points at
infinity. The approach is different for 1< β ≤ n− 2σ and n− 2σ ≤ β < n. In this work, we handle the
first case.

The spirit of our method goes back to the work of Bahri [1989] and Bahri and Coron [1991]. Never-
theless, the nonlocal properties of the fractional Laplacian involve many additional obstacles and require
some novelties in the proofs. Note that in [Abdelhedi and Chtioui 2013], the first two authors have given
an existence result for n = 2, 0 < σ < 1, through an Euler–Hopf-type formula. In their paper, they
assumed that K is a Morse function satisfying the nondegeneracy condition

1K (y) 6= 0 whenever ∇K (y)= 0. (nd)

We point out that the criterion of [Abdelhedi and Chtioui 2013] has an equivalent in dimension 3 (see
[Abdelhedi and Chtioui ≥ 2016]). However, the same method cannot be generalized to higher dimensions
n ≥ 4 under the condition (nd), since the corresponding index counting criteria, when taking into account
all the critical points at infinity, are always equal to 1. Recently, Y. Chen, C. Liu and Y. Zheng [Chen et al.
2016] proved an existence result for n ≥ 4, under the (nd) condition and another topological condition, in
the case where the index counting criteria, when taking into account all the critical points at infinity, are
equal to 1, but a partial one is not equal to 1.

Convinced that the nondegeneracy assumption would exclude some interesting class of functions K ,
we opted for the flatness hypothesis used in [Jin et al. 2014; 2015]. But again, in order to include all
plausible cases (both 1< β ≤ n− 2σ and n− 2σ ≤ β < n), we need to develop a new line of attack with
new ideas. This is essentially due to the structure of the multiple blow-up points, which is much more
complicated than in the classical setting. Many new phenomena emerge. More precisely, it turns out that
the strong interaction between the bubbles, in the case where n− 2σ < β < n, forces all blow-up points
to be single, while in the case where 1< β < n−2σ such an interaction of two bubbles is negligible with
respect to the self interaction, and if β = n− 2σ there is a phenomenon of balance that is the interaction
of two bubbles of the same order with respect to the self interaction. In order to state our results, we need
the following notations and assumptions. Let

K = {y ∈ Sn
| ∇K (y)= 0}, Kn−2σ = {y ∈ K | β = β(y)= n− 2σ },

K+ =
{

y ∈ K
∣∣∣− n∑

k=1

bk(y) > 0
}
, ĩ(y)= ]{bk = bk(y) | 1≤ k ≤ n and bk < 0}.

For each p-tuple, 1 ≤ p ≤ ]K, of distinct points τp := (yl1, . . . , ylp) ∈ (Kn−2σ )
p, we define a p × p

symmetric matrix M(τp)= (mi j ) by

mi i =
n−2σ

n
c̃1
−
∑n

k=1 bk(yli )

K (yli )
n/(2σ) ,

mi j = 2(n−2σ)/2 c1
−G(yli , yl j )

(K (yli )K (yl j ))
(n−2σ)/(4σ) ,

(1-6)
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where
G(yli , yl j )=

1
(1−cos d(yli , yl j ))

(n−2σ)/2 ,

c1 =

∫
Rn

dx
(1+ |x |2)(n+2σ)/2 and c̃1 =

∫
Rn

|x1|
n−2

(1+ |x |2)n
dx .

(1-7)

Here x1 is the first component of x in some geodesic normal coordinate system. Let ρ(τp) be the least
eigenvalue of M(τp).

Assume that ρ(τp) 6= 0 for each τp ∈ (Kn−2σ )
p, 1≤ p ≤ ]K. (A1)

Now, we introduce the following sets:

C∞n−2σ := {τp = (yl1, . . . , ylp) ∈ (Kn−2σ )
p
| 1≤ p ≤ ]K, yi 6= y j for all i 6= j and ρ(τp) > 0},

C∞<n−2σ := {τp = (yl1, . . . , ylp) ∈ (K
+
\Kn−2σ )

p
| 1≤ p ≤ ]K and yi 6= y j for all i 6= j}.

For any τp = (yl1, . . . , ylp) ∈ (K)p, we write

i(τp)∞ = p− 1+
p∑

j=1

(n− ĩ(yl j )).

Theorem 1.1. Assume that K satisfies (A1) and ( f )β with 1< β ≤ n− 2σ . If∑
τp∈C∞n−2σ

(−1)i(τp)∞ +

∑
τ ′p∈C∞<n−2σ

(−1)i(τ
′
p)∞ −

∑
(τp,τ ′p)∈C∞n−2σ×C

∞

<n−2σ

(−1)i(τp)∞+i(τ ′p)∞ 6= 1,

then (1-1) has at least one solution.

In Part II, we will address the case n− 2σ ≤ β < n, following another approach and recovering the
main existence results of [Jin et al. 2014; 2015]. More precisely, we will prove:

Theorem 1.2. Assume that K satisfies (A1) for each p ≥ 1 and ( f )β with n− 2σ ≤ β < n. If∑
y∈K+\Kn−2σ

(−1)i(y)∞ +
∑

τp∈C∞n−2σ

(−1)i(τp)∞ 6= 1,

then (1-1) has at least one solution.

We organize the remainder of our paper as follows. Section 2 is devoted to recalling some preliminary
results related to the variational structure associated to problem (1-1). In Section 3, we characterize the
critical points at infinity of the associated variational problem. In Section 4, we give the proofs of the
main results. The characterization of critical points at infinity requires some technical results, which, for
the convenience of the reader, are given in the Appendix.



1290 WAEL ABDELHEDI, HICHEM CHTIOUI AND HICHEM HAJAIEJ

2. Preliminary results

Problem (1-1) has a variational structure; see Section 3 of [Jin et al. 2015], as well as [Chen and Zheng
2014; 2015; Chen et al. 2016; Jin et al. 2014]. The Euler–Lagrange functional associated to (1-1) is

J (u)=
‖u‖2(∫

Sn K u2n/(n−2σ)
)(n−2σ)/n for u ∈ Hσ (Sn), (2-1)

where Hσ (Sn) is the completion of C∞(Sn) by means of the norm

‖u‖ =
(∫

Sn
Pσuu

)1/2

. (2-2)

Problem (1-1) is equivalent to finding the critical points of J subjected to the constraint u ∈6+, where

6+ = {u ∈6 | u ≥ 0} and 6 = {u ∈ Hσ (Sn) | ‖u‖ = 1}.

The exponent 2n/(n− 2σ) is critical for the Sobolev embedding Hσ (Sn)→ Lq(Sn). This embedding is
continuous and not compact. The functional J does not satisfy the Palais–Smale condition on 6+, but
the sequences which violate the Palais–Smale condition are known. In order to describe them, let us
introduce some notation. For a ∈ Sn and λ > 0, let

δa,λ(x)= c
λ(n−2σ)/2(

1+ 1
2(λ

2− 1)
(
1− cos(d(x, a))

))(n−2σ)/2 , (2-3)

where d( · , · ) is the distance induced by the standard metric of Sn and c is chosen so that δa,λ is the
family of solutions for

Pσu = u(n+2σ)/(n−2σ) for u > 0 on Sn; (2-4)

see page 1113 of [Jin et al. 2014]. For ε > 0 and p ∈ N∗, we define the set V (p, ε) of potential critical
points at infinity to be the set of u ∈ 6 for which there exist a1, . . . , ap ∈ Sn , α1, . . . , αp > 0, and
λ1, . . . , λp > ε

−1 satisfying ∥∥∥∥u−
p∑

i=1

αiδai ,λi

∥∥∥∥< ε,∣∣J (u)n/(n−2σ)α
2/(n−2σ)
i K (ai )− 1

∣∣< ε for all i, j = 1, . . . , p,

εi j < ε for all i 6= j,

where

εi j =

(
λi

λ j
+
λ j

λi
+ λiλ j |ai − a j |

2
)(2σ−n)/2

.

Following [Li and Zhu 1995; Brezis and Coron 1985], the failure of the Palais–Smale condition can be
described as follows.
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Proposition 2.1. Assume that J has no critical points 6+. Let (uk) be a sequence in 6+ such that J (uk)

is bounded and ∂J (uk) goes to zero. Then there exist an integer p ∈ N∗, a sequence (εk) > 0 which tends
to zero, and an extracted subsequence of the uk , again denoted (uk), such that uk ∈ V (p, εk).

If u is a function in V (p, ε), one can find an optimal representation, following the ideas introduced in
[Bahri 1996]. Namely, we have:

Proposition 2.2. For any p∈N∗, there is εp>0 such that if ε≤ εp and u ∈V (p, ε), then the minimization
problem

min
αi>0,λi>0,ai∈Sn

∥∥∥∥u−
p∑

i=1

αiδ(ai ,λi )

∥∥∥∥
has a unique solution (α, λ, a) up to a permutation.

If we denote

v := u−
p∑

i=1

αiδ(ai ,λi ),

then v belongs to Hσ (Sn) and, arguing as in page 175 of [Bahri 1989], satisfies the condition

〈v, ϕi 〉 = 0 for ϕi = δi ,
∂δi

∂λi
,
∂δi

∂ai
and i = 1, . . . , p, (V0)

where δi = δai ,λi and 〈 · , · 〉 denotes the inner product in Hσ (Sn) defined by

〈u, v〉 =
∫

Sn
vPσu.

We say v ∈ (V0) if v satisfies (V0). The following Morse lemma completely gets rid of the v-contributions.

Proposition 2.3. There is a C1 map which, to each (αi , ai , λi ) such that
∑p

i=1 αiδ(ai ,λi ) belongs to
V (p, ε), associates v = v(α, a, λ) such that v is unique and satisfies

J
( p∑

i=1

αiδ(ai ,λi )+ v

)
= min
v∈(V0)

{
J
( p∑

i=1

αiδ(ai ,λi )+ v

)}
.

Moreover, there exists a change of variables v− v→ V such that

J
( p∑

i=1

αiδ(ai ,λi )+ v

)
= J

( p∑
i=1

αiδ(ai ,λi )+ v

)
+‖V ‖2.

Furthermore, under the assumption ( f )β , 1< β ≤ n, there exists c > 0 such that the following holds:

‖v‖ ≤ c
p∑

i=1

(
1

λ
n/2
i

+
1

λ
β

i

+
|∇K (ai )|

λi
+
(log λi )

(n+2σ)/(2n)

λ
(n+2σ)/2
i

)

+ c


∑
k 6=r

ε
(n+2σ)/(2(n−2σ))
kr (log ε−1

kr )
(n+2σ)/(2n) if n ≥ 3,∑

k 6=r

εkr (log ε−1
kr )

(n−2σ)/n if n < 3.



1292 WAEL ABDELHEDI, HICHEM CHTIOUI AND HICHEM HAJAIEJ

To conclude this section, we state the definition of critical point at infinity.

Definition 2.4. A critical point at infinity of J on 6+ is a limit of a flow-line u(s) of the equation

∂u
∂s
=−∂J (u(s)), u(0)= u0,

such that u(s) remains in V (p, ε(s)) for s ≥ s0. Here ε(s) > 0 and → 0 when s → +∞. Using
Proposition 2.2, u(s) can be written as

u(s)=
p∑

i=1

αi (s)δ(ai (s),λi (s))+ v(s).

Defining α̃i := lim
s→+∞

αi (s) and ỹi := lim
s→+∞

ai (s), we denote a critical point at infinity by

p∑
i=1

α̃iδ(ỹi ,∞) or (ỹ1, . . . , ỹp)∞.

3. Characterization of the critical points at infinity for 1< β ≤ n − 2σ

This section is devoted to the characterization of the critical points at infinity in V (p, ε), p ≥ 1, under the
β-flatness condition with 1< β ≤ n− 2σ . This characterization is obtained through the construction of a
suitable pseudogradient at infinity for which the Palais–Smale condition is satisfied along the decreasing
flow-lines, as long as these flow-lines do not enter the neighborhood of a finite number of critical points yi ,
i = 1, . . . , p, of K such that

(y1, . . . , yp) ∈ P∞ := C∞<n−2σ ∪ C
∞

n−2σ ∪ (C
∞

<n−2σ × C∞n−2σ ).

Note that we say (y1, . . . , yp)∈C∞<n−2σ×C
∞

n−2σ if there exists 1≤ s≤ p−1 such that (y1, . . . , ys)∈C∞<n−2σ
and (ys+1, . . . , yp) ∈ C∞n−2σ . More precisely:

Theorem 3.1. Assume that K satisfies (A1) for each p ≥ 1 and ( f )β , 1< β ≤ n− 2σ . Let

β :=max{β(y) | y ∈ K}.

For each p ≥ 1, there exists a pseudogradient W in V (p, ε) and a constant c > 0 independent of
u =

∑p
i=1 αiδ(ai ,λi ) ∈ V (p, ε) such that

(i) 〈∂J (u),W (u)〉 ≤ −c
( p∑

i=1

1

λ
β

i

+

p∑
i=1

|∇K (ai )|

λi
+

∑
j 6=i

εi j

)
,

(ii)
〈
∂J (u+ v),W (u)+ ∂v

∂(αi , ai , λi )
(W (u))

〉
≤−c

( p∑
i=1

1

λ
β

i

+

p∑
i=1

|∇K (ai )|

λi
+

∑
j 6=i

εi j

)
.

Furthermore, |W | is bounded in V (p, ε) and the only case where the maximum of the λi is not bounded
is when ai ∈ B(yli , ρ) with yli ∈ K for all i = 1, . . . , p, (yl1, . . . , ylp) ∈ P∞ and ρ is a positive constant
small enough such that for any y ∈ K, the expansion ( f )β holds in B(y, ρ).
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In order to prove Theorem 3.1, we state the following two results, which deal with two specific cases
of Theorem 3.1. Let δi = δ(ai ,λi ) and

V1(p, ε)=
{

u =
p∑

i=1

αiδi ∈ V (p, ε)
∣∣∣ ai ∈ B(yli , ρ), yli ∈ K \Kn−2σ for all i = 1, . . . , p

}
,

V2(p, ε)=
{

u =
p∑

i=1

αiδi ∈ V (p, ε)
∣∣∣ ai ∈ B(yli , ρ), yli ∈ Kn−2σ for all i = 1, . . . , p

}
.

Proposition 3.2. For p ≥ 1, there exists a pseudogradient W1 in V1(p, ε) and c > 0 independent of
u =

∑p
i=1 αiδi ∈ V1(p, ε) such that

〈∂J (u),W1(u)〉 ≤ −c
( p∑

i=1

1

λ
β

i

+

∑
i 6= j

εi j +

p∑
i=1

|∇K (ai )|

λi

)
.

Furthermore, |W1| is bounded in V1(p, ε) and the only case where the maximum of the λi is not bounded
is when ai ∈ B(yli , ρ) with yli ∈ K+ for all i = 1, . . . , p, with (yl1, . . . , ylp) ∈ C∞<n−2σ .

Proposition 3.3. For p ≥ 1 there exists a pseudogradient W2 in V2(p, ε) and c > 0 independent of
u =

∑p
i=1 αiδi ∈ V2(p, ε) such that

〈∂J (u),W2(u)〉 ≤ −c
( p∑

i=1

1

λn−2
i

+

∑
i 6= j

εi j +

p∑
i=1

|∇K (ai )|

λi

)
.

Furthermore, |W2| is bounded in V2(p, ε) and the only case where the maximum of the λi is not bounded
is when ai ∈ B(yli , ρ) with yli ∈ K+ for all i = 1, . . . , p, with (yl1, . . . , ylp) ∈ C∞n−2σ .

In constructing the pseudogradient W , we will use the following notation. Let u=
∑p

i=1 αiδi ∈ V (p, ε),
such that ai ∈ B(yli , ρ) and yli ∈K for all i = 1, . . . , p. For simplicity, if ai is close to a critical point yli ,
we will assume that the critical point is at the origin, so we will confuse ai with (ai − yli ). Now, let
i ∈ {1, . . . , p} and let M1 be a positive large constant. We say that

i ∈ L1 if λi |ai | ≤ M1,

i ∈ L2 if λi |ai |> M1.

For each i ∈ {1, . . . , p}, we define the vector fields

Zi (u)= αiλi
∂δi

∂λi
, (3-1)

X i = αi

n∑
k=1

1
λi

∂δi

∂(ai )k

∫
Rn

bk
|xk + λi (ai )k |

β

(1+ λi |(ai )k |)β−1

xk

(1+ |x |2)n+1 dx, (3-2)
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where (ai )k is the k-th component of ai in some geodesic normal coordinate system. We claim that X i is
bounded. Indeed, the claim is trivial if i ∈ L1. If i ∈ L2, by elementary computation we have the estimate∫

Rn

|xk + λi (ai )k |
βxk

(1+ |x |2)n+1 dx = (λi |(ai )k |)
β

∫
Rn

∣∣∣∣1+ xk

λi ((ai )k)

∣∣∣∣β xk

(1+ |x |2)n+1 dx

= c(sign λi (ai )k)(λi |(ai )k |)
β−1(1+ o(1)) (3-3)

for any k, 1≤ k ≤ n, such that λi |(ai )k |> M1/
√

n. Hence our claim is valid.

Proof of Theorem 3.1. In order to complete the construction of the pseudogradient W suggested in
Theorem 3.1, it only remains (using Propositions 3.2 and 3.3) to focus attention on the two following
subsets of V (p, ε).

Subset 1. We consider here the case of u =
∑p

i=1 αiδi =
∑

i∈I1
αiδi +

∑
i∈I2

αiδi such that

I1 6=∅, I2 6=∅,
∑
i∈I1

αiδi ∈ V1(]I1, ε), and
∑
i∈I2

αiδi ∈ V2(]I2, ε).

Without loss of generality, we can assume here and in the sequel that

λ1 ≤ · · · ≤ λp.

We distinguish three cases.

Case 1: u1 :=
∑
i∈I1

αiδi 6∈ V 1
1 (]I1, ε)

=

{
u =

]I1∑
j=1

α jδ j

∣∣∣ a j ∈ B(yl j , ρ), yl j ∈ K
+ for j = 1, . . . , ]I1 and yl j 6= ylk for all j 6= k

}
.

In this case, the pseudogradient W̃1(u) :=W1(u1), where W1 is as defined in Proposition 3.2, does not
increase the maximum of the λi , i ∈ I1. Using Proposition 3.2, we have

〈∂J (u), W̃1(u)〉 ≤ −c
(∑

i∈I1

1

λ
βi
i

+

∑
j 6=i

i, j∈I1

εi j +
∑
i∈I1

|∇K (ai )|

λi

)
+ O

( ∑
i∈I1, j∈I2

εi j

)
. (3-4)

An easy calculation implies that

εi j = o
(

1

λ
βi
i

)
+ o

(
1

λ
β j
j

)
for all i ∈ I1 and all j ∈ I2. (3-5)

Fixing i0 ∈ I1, we define

J1 :=
{
i ∈ I2 | λ

n−2
i ≥

1
2λ
βi0
i0

}
and J2 := I2 \ J1.

Using (3-4) and (3-5), we find that

〈∂J (u), W̃1(u)〉 ≤ −c
( ∑

i∈I1∪J1

1

λ
βi
i

+

∑
i∈I1

|∇K (ai )|

λi
+

∑
j 6=i∈I1

εi j

)
+ o

( p∑
i=1

1

λ
βi
i

)
. (3-6)
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Let ki be an index such that

|(ai )ki | = max
1≤ j≤n

|(ai ) j |. (3-7)

From Lemma 3.4 we have〈
∂J (u),

∑
i∈J1

−2i Zi (u)
〉
≤ c

∑
j 6=i∈J1

2iλi
∂εi j

∂λi
+ O

(∑
i∈J1

1

λ
βi
i

)
+ O

( ∑
i∈J1∩L2

|(ai − yli )ki |
βi−2

λ2
i

)
. (3-8)

Observe that for i < j , we have

2iλi
∂εi j

∂λi
+ 2 jλ j

∂εi j

∂λ j
≤−cεi j . (3-9)

In addition, for i ∈ J1 and j ∈ J2 we have λ j ≤ λi , so by (3-18) we obtain λi
∂εi j

∂λi
≤−cεi j . These estimates

yield〈
∂J (u),

∑
i∈J1

−2i Zi (u)
〉

≤−c
∑
j 6=i

i∈J1, j∈J1∪J2

εi j + O
(∑

i∈J1

1

λ
βi
i

)
+ O

( ∑
i∈J1∩L2

|(ai − yli )ki |
βi−2

λ2
i

)
+ O

( ∑
i∈J1, j∈I1

εi j

)
.

Taking m1 > 0 small enough, using Lemma 3.5, (3-21), and (3-16) we get〈
∂J (u),

∑
i∈J1

−2i Zi (u)+m1
∑

i∈J1∩L2

X i (u)
〉

≤−c
( ∑

j 6=i
i∈J1, j∈J1∪J2

εi j +
∑
i∈J1

|∇K (ai )|

λi

)
+ O

(∑
i∈J1

1

λ
βi
i

)
+ o

( p∑
i=1

1

λ
βi
i

)
,

and by (3-6) we obtain〈
∂J (u), W̃1(u)+m1

(∑
i∈J1

−2i Zi (u)+m1
∑

i∈J1∩L2

X i (u)
)〉

≤−c
( ∑

i∈I1∪J1

1

λ
βi
i

+

∑
i 6= j∈I1

εi j +
∑
j 6=i

i∈J1, j∈J1∪J2

εi j

∑
i∈I1∪J1

|∇K (ai )|

λi

)
+ o

( p∑
i=1

1

λ
βi
i

)
. (3-10)

We need to add the remainding indices i ∈ J2. Note that ũ :=
∑

j∈J2
α jδ j ∈ V2(]J2, ε). Thus, the

pseudogradient W̃2(u)=W2(ũ), where W2 is as defined in Proposition 3.3, satisfies

〈∂J (u), W̃2(u)〉 ≤−c
(∑

j∈J2

1

λ
β j
j

+

∑
i 6= j

i, j∈J2

εi j +
∑
j∈J2

|∇K (a j )|

λ j

)
+O

( ∑
i∈J1, j∈J2

εi j

)
+o

( p∑
i=1

1

λ
βi
i

)
, (3-11)

since |ai − a j | ≥ ρ for i ∈ I1 and j ∈ J2.
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From (3-10) and (3-11), for W = W̃1+m1
(
W̃2+

∑
i∈J1
−2i Zi +m1

∑
i∈J1∩L2

X i
)

we obtain

〈∂J (u),W (u)〉 ≤ −c
( p∑

i=1

1

λ
βi
i

+

p∑
i=1

|∇K (ai )|

λi
+

∑
i 6= j

εi j

)
.

Case 2: u1 :=
∑
i∈I1

αiδi ∈ V 1
1 (]I1, ε) and u2 :=

∑
i 6∈I2

αiδi 6∈ V 1
2 (]I2, ε),

where

V 1
2 (]I2, ε) :=

{
u =

]I2∑
j=1

α jδ j

∣∣∣ a j ∈ B(yl j , ρ), yl j ∈K
+ for all j = 1, . . . , ]I2 and ρ(yl1, . . . , y]I2) > 0

}
.

Let V1(u) :=W2(u2). By Proposition 3.3, we get

〈∂J (u), V1(u)〉 ≤ −c
(∑

i∈I2

1

λ
βi
i

+

∑
i∈I2

|∇K (ai )|

λi
+

∑
i 6= j

i, j∈I2

εi j

)
+ O

( ∑
i∈I2, j∈I1

εi j

)
. (3-12)

Observe that V1(u) does not increase the maximum of the λi , i ∈ I2, since u2 6∈ V 1
2 (]I2, ε). Fix i0 ∈ I2

and let

J̃1 =
{
i ∈ I1 | λ

βi
i ≥

1
2λ

n−2
i0

}
and J̃2 = I1 \ J̃1.

Using (3-12) and (3-5), we get

〈∂J (u), V1(u)〉 ≤ −c
( ∑

i∈I2∪ J̃1

1

λ
βi
i

+

∑
i∈I2

|∇K (ai )|

λi
+

∑
i 6= j

i, j∈I2

εi j

)
+ o

( p∑
i=1

1

λ
βi
i

)
. (3-13)

We need to add the indices i for i ∈ J̃2. Let ũ :=
∑

j∈ J̃2
α jδ j and let V2(u) :=W1(ũ). By Proposition 3.2,

we have

〈∂J (u), V2(u)〉 ≤ −c
(∑

j∈ J̃2

1

λ
β j
j

+

∑
j∈ J̃2

|∇K (a j )|

λ j
+

∑
i 6= j

i, j∈ J̃2

εi j

)
+ O

( ∑
j∈ J̃2, i 6∈ J̃2

εi j

)
.

Observe that I1 = J̃1∪ J̃2 and we are in the case where for all i 6= j ∈ I1, we have |ai −a j | ≥ ρ. Thus by
(3-16) and (3-5), we get

O
( ∑

j∈ J̃2, i 6∈ J̃2

εi j

)
= o

( p∑
i=1

1

λ
βi
i

)
,

and hence

〈∂J (u), V1(u)+ V2(u)〉 ≤ −c
( p∑

i=1

1

λ
βi
i

+

∑
i∈I2∪ J̃2

|∇K (ai )|

λi
+

∑
i 6= j

εi j

)
.
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Let in this case W = V1 + V2 + m1
∑

i∈ J̃1
X i (u), m1 small enough. Using the above estimate and

Lemma 3.5, we find that

〈∂J (u),W (u)〉 ≤ −c
( p∑

i=1

1

λ
βi
i

+

p∑
i=1

|∇K (ai )|

λi
+

∑
i 6= j

εi j

)
.

Case 3: u1 ∈ V 1
1 (]I1, ε) and u2 ∈ V 1

2 (]I2, ε).

For i = 1, 2, let Ṽi be the pseudogradient in V (p, ε) defined by Ṽi (u)=Wi (ui ) where Wi is the vector
field defined by Proposition 3.2 (for i = 1) or 3.3 (for i = 2) in V 1

i (]Ii , ε), and let in this case W = Ṽ1+ Ṽ2.
Using Proposition 3.3, Proposition 3.2, and (3-5) we get

〈∂J (u),W (u)〉 ≤ −c
( p∑

i=1

1

λ
βi
i

+

p∑
i=1

|∇K (ai )|

λi
+

∑
i 6= j

εi j

)
.

Notice that in the first and second cases, the maximum of the λi , 1≤ i ≤ p, is a bounded function and
hence the Palais–Smale condition is satisfied along the flow-lines of W . However in the third case all the
λi , 1≤ i ≤ p, will increase and go to +∞ along the flow-lines generated by W .

Subset 2. We consider the case of u =
∑p

i=1 αiδi ∈ V (p, ε), such that there exist ai not contained in⋃
y∈K B(y, ρ). Let i1 be such that for any i < i1, we have ai ∈ B(y`i , ρ), y`i ∈K and ai1 /∈

⋃
y∈K B(y, ρ).

Let us define

u1 =
∑
i<i1

αiδi .

Observe that u1 must be contained in V1(i1− 1, ε) or V2(i1− 1, ε), or else u1 satisfies the condition of
Subset 1. Thus we can apply the associated vector field, which we will denote by Y , and we then have
the estimate

〈∂J (u), Y (u)〉 ≤ −c
(∑

i<i1

1

λ
βi
i

+

∑
i<i1

|∇K (ai )|

λi
+

∑
i 6= j

i, j<i1

εi j

)
+ O

( ∑
i<i1, j≥i1

εi j

)
.

Now we define the vector field

Y ′ =
1
λi1

∂δi1

∂ai1

∇K (ai1)

|∇K (ai1)|
− c′

∑
i≥i1

2i Zi .

Using Propositions 3.3, 3.2, and the fact that |∇K (ai1)| ≥ c > 0, we derive

〈∂J (u), Y ′(u)〉 ≤ −c
1
λi1

+ O
(∑

i 6=i1

εi j

)
− c′

∑
j 6=i, i≥i1

εi j + o
(∑

i≥i1

1
λi

)
.

Taking c′ > 0 large enough, we find

〈∂J (u), Y ′(u)〉 ≤ −c
( p∑

i=i1

1

λ
βi
i

+

p∑
i=i1

|∇K (ai )|

λi
+

∑
i 6= j, i≥i1

εi j

)
.
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Now let W := Y ′+m1Y , where m1 is a small positive constant; then we have

〈∂J (u),W (u)〉 ≤ −c
( p∑

i=1

1

λ
βi
i

+

p∑
i=1

|∇K (ai )|

λi
+

∑
i 6= j

εi j

)
.

Finally, observe that our pseudogradient W in V (p, ε) satisfies Theorem 3.1(i), and it is bounded since
‖λi ∂δi/∂λi‖ and ‖(1/λi )∂δi/∂ai‖ are bounded. From the definition of W , the λi , 1 ≤ i ≤ p, decrease
along the flow-lines of W as long as these flow-lines do not enter the neighborhood of a finite number
of critical points yli , i = 1, . . . , p, of K such that (yl1, . . . , ylp) ∈ P∞. Now, arguing as in Appendix 2
of [Bahri 1996], Theorem 3.1(ii) follows from (i) and Proposition 2.3. This complete the proof of
Theorem 3.1. �

Proof of Proposition 3.2. In our construction of the pseudogradient W1, we need the following lemmas.
Write 1A for the characteristic function of a set A.

Lemma 3.4. Let u =
∑p

i=1 αiδi ∈ V (p, ε) be such that ai ∈ B(yli , ρ), yli ∈ K for all i = 1, . . . , p. We
then have

〈∂J (u), Zi (u)〉 = −2c2 J (u)
∑
j 6=i

αiα j
∂εi j

∂λi
+ O

(
1

λ
βi
i

)

+ 1L2(i)O
(
|(ai − yli )ki |

βi−2

λ2
i

)
+ o

(∑
j 6=i

εi j

)
+ o

( p∑
j=1

1

λ
β j
j

)
,

with ki defined as in (3-7).

Proof. Observe that for k ∈ {1, . . . , n}, if λi |(ai − yli )k |> M1/
√

n, we have∫
Rn

|xk + λi (ai − yli )k |
βi−1xk

(1+ |x |2)n
dx = O

(
(λi |(ai − yli )k |)

βi−2) (3-14)

if M1 is sufficiently large. If not, we have∫
Rn

|xk + λi (ai − yli )k |
βi−1
|xk |

(1+ |x |2)n
dx = O(1).

Using the fact that the ki defined in (3-7) satisfies λi |(ai − yli )ki |> M1/
√

n if i ∈ L2, Lemma 3.4 follows
from Proposition A.1. �

Lemma 3.5. Let u =
∑p

i=1 αiδi ∈ V (p, ε) be such that ai ∈ B(yli , ρ), yli ∈ K for all i = 1, . . . , p. We
then have

〈∂J (u), X i (u)〉≤O
(∑

j 6=i

1
λi

∣∣∣∣∂εi j

∂ai

∣∣∣∣ )+1L1(i)O
(

1

λ
βi
i

)
−1L2(i)c

(
1

λ
βi
i

+
|(ai − yli )ki |

βi−1

λi

)
+o
( p∑

j=1

1

λ
β j
j

)
,

with ki defined as in (3-7).
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Proof. Using Proposition A.2, we have

〈∂J (u), X i (u)〉 ≤ −c
1
λi
βi

(∫
Rn

bki

|xk + λi (ai − yli )ki |
βi

(1+ λi |(ai − yli )ki |)
(βi−1)/2

xki

(1+ |x |2)n+1 dx
)2

+ O
(∑

j 6=i

1
λi

∣∣∣∣∂εi j

∂ai

∣∣∣∣)+ o
( p∑

j=1

1

λ
β j
j

)
. (3-15)

Using (3-3) and the fact that

λi |(ai − yli )ki |>
M1
√

n
if i ∈ L2,

Lemma 3.5 follows. �

In order to construct the required pseudogradient, we have to divide the set V1(p, ε) into four different
regions, construct an appropriate pseudogradient in each region, and then glue up through convex
combinations. Let Z1 and Z2 be two vector fields. A convex combination of Z1 and Z2 is given by
θ Z1+ (1− θ)Z2, where θ is a cutoff function. Let

V 1
1 (p, ε) :=

{
u =

p∑
i=1
αiδ(aiλi ) ∈ V1(p, ε)

∣∣ yli 6= yl j for all i 6= j,−
n∑

k=1
bk(yli ) > 0,

and λi |ai − yli |< δ for all i = 1, . . . , p
}
,

V 2
1 (p, ε) :=

{
u =

p∑
i=1
αiδ(aiλi ) ∈ V1(p, ε)

∣∣ yli 6= yl j for all i 6= j, λi |ai − yli |< δ for all i = 1, . . . , p

and −
n∑

k=1
bk(yli ) < 0 for some i

}
,

V 3
1 (p, ε) :=

{
u =

p∑
i=1
αiδ(aiλi ) ∈ V1(p, ε)

∣∣ yli 6= yl j for all i 6= j and λ j |a j − yl j | ≥
δ

2
for some j

}
,

V 4
1 (p, ε) :=

{
u =

p∑
i=1
αiδ(aiλi ) ∈ V1(p, ε)

∣∣ yli = yl j for some i 6= j
}
.

Pseudogradient in V 1
1 (p, ε). Let u =

∑p
i=1 αiδi ∈ V 1

1 (p, ε). For any i 6= j , we have |ai − a j | > ρ;
therefore

εi j = O
(

1
(λiλ j )(n−2σ)/2

)
= o

(
1

λ
βi
i

)
+ o

(
1

λ
β j
j

)
, (3-16)

since βi , β j < n− 2σ . Let W 1
1 (u)=

∑p
i=1 Zi (u). Using the fact that |∇K (ai )|/λi is small with respect

to 1/λi
β , we obtain from Proposition A.1

〈∂J (u),W 1
1 (u)〉 ≤ −c

( p∑
i=1

1

λ
βi
i

+

p∑
i=1

|∇K (ai )|

λi
+

∑
i 6= j

εi j

)
.

Pseudogradient in V 2
1 (p, ε). Let u =

∑p
i=1 αiδi ∈ V 2

1 (p, ε). Without loss of generality, we can assume
that i = 1, . . . , q are the indices which satisfy −

∑n
k=1 bk(yli ) < 0. Let

I =
{
i ∈ {1, . . . , p} | λβi

i ≤
1

10 min
1≤ j≤q

λ
β j
j

}
.
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In this region we define W 2
1 (u)=

∑q
i=1(−Zi )(u)+

∑
i∈I Zi (u). Using a calculation similar to [Ben Mah-

moud and Chtioui 2012], we obtain

〈∂J (u),W 2
1 (u)〉 ≤ −c

( p∑
i=1

1

λ
βi
i

+

p∑
i=1

|∇K (ai )|

λi
+

∑
i 6= j

εi j

)
.

Pseudogradient in V 3
1 (p, ε). Let u =

∑p
i=1 αiδi ∈ V 3

1 (p, ε). Without loss of generality, we can assume
that λβ1

1 =min{λβ j
j | λ j |a j − yl j | ≥ δ}. Let

J :=
{
i | 1≤ i ≤ p and λβi

i ≥
1
2λ
β1
1

}
.

Observe that if i /∈ J we have λi |ai − yli | ≥ δ. We write u =
∑

i∈J C αiδi +
∑

i∈J αiδi = u1+u2. Observe
that u1 has to satisfy one of the two above cases, that is, u1 ∈ V 1

1 (]J C , ε) or u1 ∈ V 2
1 (]J C , ε). Let W̃

be a pseudogradient on V 3
1 (p, ε) defined by W̃ (u)=W 1

1 (u1) if u1 ∈ V 1
1 (]J C , ε), or W̃ (u)=W 2

1 (u1) if
u1 ∈ V 2

1 (]J C , ε). In this region let W 3
1 (u)= W̃ (u)+X1(u)+

∑
i∈J∩L2

X i (u)−M1 Z1(u). By Propositions
A.1 and A.2, we have

〈∂J (u),W 3
1 (u)〉 ≤ −c

( p∑
i=1

1

λ
βi
i

+

p∑
i=1

|∇K (ai )|

λi
+

∑
i 6= j

εi j

)
.

Pseudogradient in V 4
1 (p, ε). Finally, let u =

∑p
i=1 αiδi ∈ V 4

1 (p, ε). Consider

Bk = { j | 1≤ j ≤ p and a j ∈ B(ylk , ρ)}.

In this case, there is at least one Bk which contains at least two indices. Without loss of generality, we
can assume that 1, . . . , q are the indices such that the set Bk , 1≤ k ≤ q , contains at least two indices. We
will decrease the λi for i ∈ Bk with different speed. For this purpose, let

χ : R→ R+, t 7→
{

0 if |t | ≤ γ̃ ,
1 if |t | ≥ 1.

Here γ̃ is a small constant. For j ∈ Bk , set χ(λ j )=
∑

i 6= j, i∈Bk
χ(λ j/λi ). Let

I1 = {i | 1≤ i ≤ p and λi |ai − yli | ≥ δ}.

We distinguish two cases:

Case 1: I1 6=∅. Let in this case

J =
{

j | 1≤ j ≤ p and λβ j
j ≥

1
2 min

i∈I1
λ
βi
i

}
.

Observe that, if ai ∈ B(yli , ρ), we have |∇K (ai )| ∼
∑n

k=1 |bk ||(ai − yli )k |
βi−1. So, if i ∈ L1 we have

|∇K (ai )|/λi ≤ c/λβi
i , and if i ∈ L2 we have

|∇K (ai )|

λi
≤ c
|(ai − yli )k |

βi−1

λi
.
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Thus by Lemma 3.5 we obtain〈
∂J (u),

∑
i∈I1

X i (u)
〉
≤−cδ

(∑
i∈J

1

λ
βi
i

+

∑
i∈J

|∇K (ai )|

λi
+

∑
i∈I1∩L2

|(ai − yli )|
βi−1

λi

)

+ O
( ∑

i 6= j, i∈I1

∣∣∣∣ 1
λi

∂εi j

∂ai

∣∣∣∣)+ o
( p∑

i=1

1

λ
βi
i

)
.

Let C̃ = {(i, j) | γ ≤ λi/λ j ≤ 1/γ }, where γ is a small positive constant. Observe that∣∣∣∣ 1
λi

∂εi j

∂ai

∣∣∣∣= o(εi j ) for all (i, j) ∈ C̃, i 6= j.

This with (3-3) yields〈
∂J (u),

∑
i∈I1

X i (u)
〉
≤−cδ

(∑
i∈J

1

λ
βi
i

+

∑
i∈J

|∇K (ai )|

λi
+

∑
i∈I1∩L2

|(ai − yli )|
βi−1

λi

)

+o
( q∑

k=1

∑
i 6= j∈Bk

(i, j)∈C̃, i∈I1

εi j

)
+ O

( q∑
k=1

∑
i 6= j∈Bk

(i, j) 6∈C̃, i∈I1

εi j

)
+ o

( p∑
i=1

1

λ
βi
i

)
. (3-17)

For any k = 1, . . . , q, let λik =min{λi | i ∈ Bk}. Define

Z =−
q∑

k=1

∑
j∈Bk

(ik , j)/∈C̃

χ(λ j )Z j − γ1

q∑
k=1

∑
j∈Bk

(ik , j)∈C̃

χ(λ j )Z j ,

where γ1 is a small positive constant. Using Lemma 3.4, we find that

〈∂J (u), Z(u)〉 ≤ c
q∑

k=1

∑
i 6= j

j∈Bk , ( j,ik) 6∈C̃

χ(λ j )λ j
∂εi j

∂λ j

+ cγ1

q∑
k=1

∑
i 6= j

j∈Bk , ( j,ik)∈C̃

χ(λ j )λ j
∂εi j

∂λ j
+ O

( q∑
k=1

∑
j∈Bk∩L2
( j,ik) 6∈C̃

(
1

λ
β j
j

+
|(a j − yl j )|

β j−2

λ2
j

))

+ γ1O
( q∑

k=1

∑
j∈Bk∩L2
( j,ik)∈C̃

(
1

λ
β j
j

+
|(a j − yl j )|

β j−2

λ2
j

))
.

Observe that by using a direct calculation, we have

λi
∂εi j

∂λi
≤−cεi j if λi ≥ λ j , λi ∼ λ j , or |ai − a j | ≥ δ0 > 0. (3-18)
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Let j ∈ Bk , 1≤ k ≤ q , and let i , 1≤ i ≤ p, be such that i 6= j . If i 6∈ Bk , or i ∈ Bk with (i, j) ∈ C̃ , then
we have by (3-18)

λi
∂εi j

∂λi
≤−cεi j and λ j

∂εi j

∂λ j
≤−cεi j .

In the case where i ∈ Bk with (i, j) 6∈ C̃ (assuming λi � λ j ), we have χ(λ j )−χ(λi )≥ 1. Thus,

χ(λ j )λ j
∂εi j

∂λ j
+χ(λi )λi

∂εi j

∂λi
≤ λ j

∂εi j

∂λ j
≤−cεi j .

We therefore have

〈∂J (u), Z(u)〉 ≤ −c
( q∑

k=1

∑
i 6= j

j∈Bk , ( j,ik) 6∈C̃

εi j + γ1

q∑
k=1

∑
i 6= j

j∈Bk , ( j,ik)∈C̃

εi j

)

+ O
( q∑

k=1

∑
j∈Bk∩L2
( j,ik) 6∈C̃

(
1

λ
β j
j

+
|(a j − yl j )|

β j−2

λ2
j

))

+ γ1O
( q∑

k=1

∑
j∈Bk∩L2
( j,ik)∈C̃

(
1

λ
β j
j

+
|(a j − yl j )|

β j−2

λ2
j

))
. (3-19)

Observe that if j ∈ Bk with ( j, ik) ∈ C̃ , we have j or ik ∈ I1. Thus for M1 large enough and γ1 very small,
we obtain from (3-17) and (3-19)〈
∂J (u),

∑
i∈I1

X i +M1 Z(u)
〉
≤−c

(∑
i∈J

1

λ
βi
i

+

∑
i∈J

|∇K (ai )|

λi
+

q∑
k=1

∑
i 6= j
j∈Bk

εi j

)
+ O

( q∑
k=1

∑
j∈Bk

(ik , j)/∈C̃

1

λ
β j
j

)
, (3-20)

since
|(ai − yli )ki |

βi−2

λ2
i

= o
(
|(ai − yli )ki |

βi−1

λi

)
for any i ∈ L2 (3-21)

(as M1 is large enough). Now, let in this region

W 4
1 := M1

(∑
i∈I1

X i +M1 Z
)
+

∑
i /∈J

(
−

n∑
k=1

bk

)
Zi .

We obtain from the above estimates

〈∂J (u),W 4
1 (u)〉 ≤ −c

( p∑
i=1

1

λ
βi
i

+

p∑
i=1

|∇K (ai )|

λi
+

∑
i 6= j

εi j

)
.

Case 2: I1 =∅. Let
I2 = {1} ∪ {i | 1≤ i ≤ p and λi ∼ λ1}.
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We write

u =
∑
i∈I2

αiδi +
∑
i /∈I2

αiδi := u1+ u2.

Observe that, for all i 6= j ∈ I2 such that i 6= j , we have |ai−a j | ≥ δ. Indeed, if |ai−a j |< δ, so i, j ∈ Bk ,
we get |ai − a j | ≤ |ai − yli | + |a j − yli | ≤ 2δ/λi , since I1 =∅ and λi ∼ λ j for all i, j ∈ I2. This implies
that (

λi

λ j
+
λ j

λi
+ λiλ j |ai − a j |

2
)(n−2σ)/2

≤ c1,

and hence εi j ≥ c, which is a contradiction. Thus u1 ∈ V j
1 (]I2, ε), j = 1 or 2 or 3. Applying the associated

pseudogradient denoted by W , we obtain

〈∂J (u),W (u)〉 ≤ −c
(∑

i∈I2

1

λ
βi
i

+

∑
i∈I2

|∇K (ai )|

λi
+

∑
i 6= j

i, j∈I2

εi j

)
+ O

( ∑
i∈I2, j /∈I2

εi j

)
.

Let

J2 =
{
i | 1≤ i ≤ p, λβi

i ≥min
j∈I2

λ
β j
j

}
.

We can add to the above estimates all indices i such that i ∈ J2. So, using the estimate (3-16) we obtain

〈∂J (u),W (u)〉 ≤ −c
(∑

i∈J2

1

λ
βi
i

+

∑
i∈J2

|∇K (ai )|

λi
+

∑
i 6= j

i, j∈I2

εi j

)
+ o

( p∑
i=1

1

λ
βi
i

)
+ O

( ∑
i, j∈Bk

i∈I2, j /∈I2

εi j

)
.

Let M1 > 0 be large enough, then the above estimate and (3-19) yields

〈∂J (u),M1 Z(u)+W (u)〉

≤ −c
(∑

i∈J2

1

λ
βi
i

+

∑
i∈J2

|∇K (ai )|

λi
+

q∑
k=1

∑
i 6= j∈Bk

εi j +
∑
i 6= j

i, j∈I2

εi j

)
+ O

( q∑
k=1

∑
i∈Bk

(ik ,i)/∈C̃

1

λ
βi
i

)
. (3-22)

By Step 3 in the proof of Proposition 3.3 below and (3-16), we have〈
∂J (u),

∑
i /∈J2

(
−

n∑
k=1

bk

)
Zi (u)

〉
≤−c

(∑
i /∈J2

1

λ
βi
i

+

∑
i /∈J2

|∇K (ai )|

λi

)
+ O

( q∑
k=1

∑
i 6= j∈Bk

i /∈J2

εi j

)
+ o

( p∑
i=1

1

λ
βi
i

)
. (3-23)

Define

W 4
1 (u)= M1(M1 Z(u)+W (u))+

∑
i /∈J2

(
−

n∑
k=1

bk

)
Zi (u).
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Using (3-23), we get

〈∂J (u),W 4
1 (u)〉 ≤ −c

( p∑
i=1

1

λ
βi
i

+

p∑
i=1

|∇K (ai )|

λi
+

∑
i 6= j

εi j

)
,

since 1/λβi
i = o(1/λ

βik
ik
) for all i ∈ Bk such that (i, ik) 6∈ C̃ .

The vector field W1 in V1(p, ε) will be a convex combination of W j
1 , j = 1, . . . , 4. From the definitions

of W j
1 , j = 1, . . . , 4, the only case where the maximum of the λi increases is when ai ∈ B(yli , ρ),

yli ∈ K+ for all i = 1, . . . , p, with yli 6= yl j for all i 6= j . This concludes the proof of Proposition 3.2. �

Proof of Proposition 3.3. We divide the set V2(p, ε) into five sets:

V 1
2 (p, ε)=

{
u =

p∑
i=1

αiδaiλi ∈ V2(p, ε)
∣∣∣ yli 6= yl j for all i 6= j, −

n∑
k=1

bk(yli ) > 0,

λi |ai − yli |< δ for all i = 1, . . . , p and ρ(yli , . . . , ylp) > 0
}
,

V 2
2 (p, ε)=

{
u =

p∑
i=1

αiδaiλi ∈ V2(p, ε)
∣∣∣ yli 6= yl j for all i 6= j, −

n∑
k=1

bk(yli ) > 0,

λi |ai − yli |< δ for all i = 1, . . . , p and ρ(yli , . . . , ylp) < 0
}
,

V 3
2 (p, ε)=

{
u =

p∑
i=1

αiδaiλi ∈ V2(p, ε)
∣∣∣ yli 6= yl j for all i 6= j, λi |ai − yli |< δ for all i = 1, . . . , p,

and there exist j such that −
n∑

k=1

bk(yl j ) < 0
}
,

V 4
2 (p, ε)=

{
u =

p∑
i=1

αiδaiλi ∈ V2(p, ε)
∣∣∣ yli 6= yl j for all i 6= j,

and there exist j (at least) such that λ j |a j − yl j | ≥
δ

2

}
,

V 5
2 (p, ε)=

{
u =

p∑
i=1

αiδaiλi ∈ V2(p, ε)
∣∣∣ such that there exist i 6= j satisfying yli = yl j

}
.

We break up the proof into five steps.

Step 1. First, we consider the case u =
∑p

i=1 αiδaiλi ∈ V 1
2 (p, ε). We have, for any i 6= j , |ai − a j |> ρ

and therefore,

εi j =

(
2

(1−cos d(ai , a j ))λiλ j

)(n−2σ)/2

(1+ o(1))= 2(n−2σ)/2 G(ai , a j )

(λiλ j )(n−2σ)/2 (1+ o(1)).

Here G(ai , a j ) is defined in (1-7). Thus,

λi
∂εi j

∂λi
=−

n−2σ
2
· 2(n−2σ)/2

·
G(ai , a j )

(λiλ j )(n−2σ)/2 (1+ o(1)).
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Using Proposition A.1 with β = n− 2σ and the fact that α4σ/(n−2σ)
i K (ai )J (u)n/(n−2σ)

= 1+ o(1) for all
i = 1, . . . , p, we derive that〈
∂J (u), αiλi

∂δi

∂λi

〉
=

n−2σ
2

J (u)1−n/2

(
n−2σ

n
· c̃1 ·

∑p
i=1 bk

K (ai )n/(2σ)

1

λn−2σ
i

+ c12(n−2σ)/2
∑
i 6= j

G(yli , yl j )

(K (ai )K (a j ))(n−2σ)/(4σ)

1
(λiλ j )(n−2σ)/2

)

+ o
( p∑

i=1

1

λn−2σ
i

+

∑
i 6= j

εi j

)
.

Here c̃1 = c2n/(n−2σ)
0

∫
Rn

|(x1)|
n−2σ

(1+ |x |2)n
dx . Hence, using the fact that |ai − yli |< δ for δ very small, we get

〈
∂J (u),

p∑
i=1

αi Zi

〉
≤−c t3M(yl1, . . . , ylp)3+ o

( p∑
i=1

1

λn−2σ
i

+

∑
i 6= j

εi j

)

≤−cρ(yl1, . . . , ylp)|3|
2
+ o

( p∑
i=1

1

λn−2σ
i

+

∑
i 6= j

εi j

)
,

where3= t(1/λ(n−2σ)/2
1 , . . . , 1/λ(n−2σ)/2

p
)
. Here M(yl1, . . . , ylp) is as defined in (1-6) and ρ(yl1, . . . , ylp)

is the least eigenvalue of M(yl1, . . . , ylp). Using the fact that for all i 6= j , we have εi j ≤ c/(λiλ j )
(n−2σ)/2,

since |ai − a j | ≥ δ, we then obtain〈
∂J (u),

p∑
i=1

αi Zi

〉
≤−c

( p∑
i=1

1

λn−2σ
i

+

∑
i 6= j

εi j

)
.

In addition, for all i = 1, . . . , p, if λi |ai |< δ then we have |∇K (ai )|/λi ∼ |(ai )k |
β−1/λi ≤ c/λβi . Thus,

we derive, for W 1
2 :=

∑p
i=1 αi Zi ,

〈∂J (u),W 1
2 〉 ≤ −c

( p∑
i=1

1

λn−2σ
i

+

p∑
i=1

|∇K (ai )|

λi
+

∑
i 6= j

εi j

)
.

Step 2. Secondly, we study the case u =
∑p

i=1 αiδaiλi ∈ V 2
2 (p, ε). Since ρ := ρ(yl1, . . . , ylp) is the least

eigenvalue of M(yl1, . . . , ylp), it satisfies

ρ = inf
X∈Rp\{0}

{ t X M(yl1, . . . , ylp)X
‖X‖2

}
. (3-24)

Therefore, there exists an eigenvector e = (ei )i=1,...,p associated to ρ such that |e| = 1 with ei > 0,
for all i = 1, . . . , p. Indeed,

ρ = teM(yl1, . . . , ylp)e =
p∑

i=1

mi i e2
i +

∑
i 6= j

mi j ei e j ≥

p∑
i=1

mi i |ei |
2
+

∑
i 6= j

mi j |ei ||e j |, (3-25)



1306 WAEL ABDELHEDI, HICHEM CHTIOUI AND HICHEM HAJAIEJ

since mi j < 0 for i 6= j . Observe that if there exists i0 6= j0 such that ei0e j0 < 0, then the inequality in
(3-25) will be strict. This is a contradiction with (3-24). Therefore ei e j ≥ 0 for all i 6= j . Hence, we can
work with e = (e1, . . . , ep) such that ei ≥ 0, for all i = 1 . . . , p. Now, if there exists i0 such that ei0 = 0,
then M(yl1, . . . , ylp)e= ρe would imply that

∑
j 6=i0

m j i0e j = 0 and e j = 0, a contradiction. Thus, ei > 0
for all i = 1, . . . , p.

Let γ > 0 such that for any x ∈ B(e, γ )= {y ∈ S p−1
| |y− e| ≤ γ }, we have

tx M(yl1, . . . , ylp)x ≤
1
2ρ(yl1, . . . , ylp).

Two cases may occur.

Case 1: 3/|3| ∈ B(e, γ ), where 3= t(1/λ(n−2σ)/2
1 , . . . , 1/λ(n−2σ)/2

p
)
.

In this case, we define W 2
2 =−

∑p
i=1 αi Zi . As in Step 1, we find that

〈∂J (u),W 2
2 (u)〉 ≤ −c

( p∑
i=1

1

λn−2σ
i

+

p∑
i=1

|∇K (ai )|

λi
+

∑
i 6= j

εi j

)
.

Case 2: 3/|3| /∈ B(e, γ ).
In this case, we define

W 2
2 =−

2
n−2σ

|3|

p∑
i=1

αiλ
n/2
i

(
|3|ei −3i

|3|
−
3i 〈|3|e−3,3〉

|3|3

)
∂δaiλi

∂λi
.

Using Proposition A.1, we find that

〈∂J (u),W 2
2 (u)〉 = −c|3|2 ∂

∂t
( t3(t)M3(t))

∣∣
t=0+ o

( p∑
i=1

1

λn−4
i

)
+ o

(∑
i 6= j

εi j

)
,

where M = M(yl1, . . . , ylp) and 3(t)=
(1− t)3+ t |3|e∣∣(1− t)3+ t |3|e

∣∣3. Observe that

t3(t)M3(t)= ρ+
(1− t)2∣∣(1− t)3+ t |3|e

∣∣( t3M3− ρ|3|2).

Thus we obtain ∂

∂t
( t3(t)M3(t)) <−c and therefore,

〈∂J (u),W 2
2 (u)〉 ≤ −c

( p∑
i=1

1

λn−2σ
i

+

p∑
i=1

|∇K (ai )|

λi
+

∑
i 6= j

εi j

)
.

Step 3. Now, we deal with the case u =
∑p

i=1 αiδaiλi ∈ V 3
2 (p, ε). Without loss of generality, we can

assume that 1, . . . , q are the indices which satisfy −
∑n

k=1 bk(yli ) < 0 for all i = 1, . . . , q . Let

W̃ 1
2 =

q∑
i=1

−αi Zi .
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By Proposition A.1 and (3-18), we obtain

〈∂J (u), W̃ 1
2 (u)〉 ≤ −c

( q∑
i=1

1

λn−2σ
i

+

∑
i 6= j, 1≤i≤q

εi j

)
.

Set

I =
{
i | 1≤ i ≤ p and λi ≤

1
10 min

1≤ j≤q
λ j
}
.

It is easy to see that we can add to the above estimates all indices i such that i /∈ I . Thus

〈∂J (u), W̃ 1
2 (u)〉 ≤ −c

(∑
i /∈I

1

λn−2σ
i

+

∑
i 6= j, i /∈I

εi j

)
.

If I 6=∅, in this case, we write

u = u1+ u2, u1 =
∑
i∈I

αiδaiλi , u2 =
∑
i /∈I

αiδaiλi .

Observe that u1 must be contained in either V 1
2 (]I, ε) or V 2

2 (]I, ε). Thus we can apply the associated
vector field which we denote by W̃ 2

2 . We then have

〈∂J (u), W̃ 2
2 (u)〉 ≤ −c

(∑
i∈I

1

λn−2σ
i

+

∑
i 6= j, i∈I

εi j +

p∑
i=1

|∇K (ai )|

λi

)
+ O

( ∑
i 6= j, i /∈I

εi j

)
.

Let in this subset W 3
2 = W̃ 1

2 +m1W̃ 2
2 for m1 a small positive constant. We get

〈∂J (u),W 3
2 (u)〉 ≤ −c

( p∑
i=1

1

λn−2σ
i

+

p∑
i=1

|∇K (ai )|

λi
+

∑
i 6= j

εi j

)
.

Step 4. We consider next the case u =
∑p

i=1 αiδaiλi ∈ V 4
2 (p, ε). Let

λi1 = inf{λ j | λ j |a j | ≥ δ}.

For m1 > 0 small enough, we claim that

〈∂J (u), (X i1 −m1 Zi1)(u)〉 ≤ −c
( p∑

i=i1

1

λn−2σ
i

+

∑
j 6=i1

εi1 j +

p∑
i=1

|∇K (ai1)|

λi1

)
.

Indeed, for i 6= j , we have |ai − a j |> ρ, thus in Proposition A.2 the term
∣∣∣ 1
λi

∂εi j

∂(ai )k

∣∣∣ is very small with
respect to εi j . Hence,

〈∂J (u), X i1(u)〉 ≤−
c

λn−2σ
i1

(∫
Rn

bki1

|xki1
+ λi1(ai1)ki1

|
β

(1+ λi1 |(ai1)ki1
|)(β−1)/2

xki1

(1+ |x |2)n+1 dx
)2

+o
(

1

λn−2σ
i1

+

∑
j 6=i1

εi1 j

)
.
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If i1 ∈ L1, in which case δ ≤ λi1 |ai1 | ≤ M1, then an elementary calculation gives(∫
Rn

bki

|xki + λi (a1)ki |
β

(1+ λi |(a1)ki |)
(β−1)/2

xki

(1+ |x |2)n
dx
)2

≥ c > 0. (3-26)

Using (3-26), we get

〈∂J (u), X i1(u)〉 ≤ −
c

λn−2σ
i1

+ o
(∑

j 6=i1

εi1 j

)
≤−c

p∑
i=i1

1

λ
β

i

+ o
(∑

j 6=i1

εi1 j

)
. (3-27)

On the other hand, we have, by Proposition A.1 and (3-18),

〈∂J (u), Zi1(u)〉 ≤ −c
∑
j 6=i1

εi1 j + O
(

1

λn−2σ
i1

)
. (3-28)

Using (3-27) and (3-28) our claim follows in this case.
If i1 ∈ L2, using (3-3), we find

〈∂J (u), X i1(u)〉 ≤ −c
(

1

λn−2σ
i1

+
|(ai1)ki1

|
β−1

λi1

)
+ o

(∑
j 6=i1

εi1 j

)

≤−c
( p∑

i=i1

1

λn−2σ
i

+
|(ai1)ki1

|
β−1

λi1

)
+ o

(∑
j 6=i1

εi1 j

)
,

and by Proposition A.1 and (3-3), we have

〈∂J (u),−Zi1(u)〉 ≤ −c
∑
j 6=i1

εi1 j + O
(
|(ai1)ki1

|
β−2

λ2
i1

)
.

Now using (3-21), we obtain

〈∂J (u), (X i1 −m1 Zi1)(u)〉 ≤ −c
( p∑

i=i1

1

λn−2σ
i

+

∑
j 6=i1

εi1 j +
|(ai1)k |

β−1

λi1

)

≤−c
( p∑

i=i1

1

λn−2σ
i

+

∑
j 6=i1

εi1 j +
|∇K (ai1)|

λi1

)
,

since |∇K (ai1)| ∼ |(ai1)ki |
β−1. Thus, our claim follows.

Now let

I =
{
i | 1≤ i ≤ p and λi <

1
10λi1

}
.

We have

〈∂J (u), (X i1 −m1 Zi1)(u)〉 ≤ −c
(∑

i /∈I

1

λn−2σ
i

+

∑
j 6=i, i /∈I

εi j +
|∇K (ai1)|

λi1

)
.
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Furthermore, using (3-3), we have〈
∂J (u),

(
X i1 −m1 Zi1 +

∑
i /∈I, i∈L2

X i

)
(u)
〉
≤−c

(∑
i /∈I

1

λn−2σ
i

+

∑
i /∈I

|∇K (ai )|

λi
+

∑
i 6= j, i /∈I

εi j

)
,

since for i /∈ I and i ∈ L1, we have |∇K (ai )|/λi ≤ c/λβi . We need to add the remainder terms (if I 6=∅).
Let u1 =

∑
i∈I αiδaiλi . For all i ∈ I we have λi |ai |< δ. Thus, u1 ∈ V j

2 (]I, ε) for j = 1 or 2 or 3, so we
can apply the associated vector field which we will denote W̃ 4

2 . We then have

〈∂J (u), W̃ 4
2 〉 ≤ −c

(∑
i∈I

1

λn−2σ
i

+

∑
i 6= j, i, j∈I

εi j +
∑
i∈I

|∇K (ai )|

λi

)
+ O

( ∑
i∈I, j /∈I

εi j

)
.

Let W 4
2 = X i1 −m1 Zi1 +

∑
i /∈I, i∈L2

X i +m2W̃ 4
2 for m2 > 0 small enough. We get

〈∂J (u),W 4
2 (u)〉 ≤ −c

( p∑
i=1

1

λn−2σ
i

+

p∑
i=1

|∇K (ai )|

λi
+

∑
i 6= j

εi j

)
.

Step 5. We study now the case u =
∑p

i=1 αiδaiλi ∈ V 5
2 (p, ε). Let

Bk = { j | 1≤ j ≤ p and a j ∈ B(ylk , ρ)}.

In this case, there is at least one Bk which contains at least two indices. Without loss of generality, we
can assume that 1, . . . , q are the indices such that the set Bk , 1≤ k ≤ q , contains at least two indices. We
will decrease the λi for i ∈ Bk with different speed. For this purpose, let

χ : R→ R+, t 7→
{

0 if |t | ≤ γ ′,
1 if |t | ≥ 1.

Here γ ′ is a small constant.
For j ∈ Bk , set χ(λ j )=

∑
i 6= j, i∈Bk

χ(λ j/λi ). Define

W̃ 5
2 =−

q∑
k=1

∑
j∈Bk

α jχ(λ j )Z j .

Using Proposition A.1 and (3-3), we obtain

〈∂J (u), W̃ 5
2 (u)〉 ≤ c

q∑
k=1

( ∑
i 6= j, j∈Bk

χ(λ j )λ j
∂εi j

∂λ j

+

∑
j∈Bk , j∈L1

χ(λ j )O
(

1

λn−2σ
j

)
+

∑
j∈Bk , j∈L2

χ(λ j )O
(
|(a j )ki |

β−2

λ2
j

))
.

For j ∈ Bk , with k ≤ q, if χ(λ j ) 6= 0, then there exists i ∈ Bk such that 1/λn−2σ
j = o(εi j ) (for ρ small

enough). Furthermore, for j ∈ Bk , if i /∈ Bk (or i ∈ Bk with λi ∼ λ j ), then we have, by (3-18),

λ j
∂εi j

∂λ j
≤−cεi j and λi

∂εi j

∂λi
≤−cεi j .
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In the case where i ∈ Bk (assuming λi � λ j ), we have χ(λ j )−χ(λi )≥ 1. Thus

χ(λ j )λ j
∂εi j

∂λ j
+χ(λi )λi

∂εi j

∂λi
≤ λ j

∂εi j

∂λ j
≤−cεi j .

Thus we obtain

〈∂J (u), W̃ 5
2 (u)〉 ≤ −c

q∑
k=1

∑
j∈Bk

χ(λ j )

(∑
i 6= j

εi j +
1

λn−2σ
j

)
+

q∑
k=1

∑
j∈Bk , j∈L2

χ(λ j )O
(
|(a j )ki |

β−2

λ2
j

)
. (3-29)

We need to add the indices j ∈
(⋃q

K=1 Bk
)C
∪ { j ∈ Bk | χ(λ j )= 0}. Let

λi0 = inf{λi | i = 1, . . . , p}.

We distinguish two cases.

Case 1: There exists j such that χ(λ j ) 6= 0, λi0 ∼ λ j , and γ ′ ≤ λi0/λ j ≤ 1; then we observe in the above
estimate −1/λn−2σ

i0
and therefore −

∑p
i=1 1/λn−2σ

i and −
∑

k 6=r εkr . Thus we obtain

〈∂J (u), W̃ 5
2 (u)〉 ≤ −c

( p∑
i=1

1
λn−2σ

i

+

∑
i 6= j

εi j

)
+ O

( q∑
k=1

∑
j∈Bk , j∈L2

|(a j )ki |
β−2

λ2
j

)
.

Now let
W 5

2 = W̃ 5
2 +m1

p∑
i=1

X i .

Using the above estimates with Proposition A.2 and (3-21), we obtain

〈∂J (u),W 5
2 (u)〉 ≤ −c

( p∑
i=1

1
λn−2σ

i

+

∑
i 6= j

εi j +

p∑
i=1

|∇K (ai )|

λi

)
.

Case 2: For each j ∈ Bk , 1≤ k ≤ q , we have λi0� λ j (i.e., λi0/λ j <γ
′), or if λi0 ∼ λ j we have χ(λ j )= 0.

In this case we define

D =
(
{i | χ(λi )= 0} ∪

( q⋃
k=1

Bk

)C)
∩

{
i
∣∣∣ λi

λi0

<
1
γ ′

}
.

It is easy to see that i0 ∈ D and if i 6= j ∈ {i | χ(λi ) = 0} ∪
(⋃q

k=1 Bk
)C we have ai ∈ B(yli , ρ) and

a j ∈ B(yl j , ρ) with yli 6= yl j . Let

u1 =
∑
i∈D

αiδaiλi .

Then u1 has to satisfy one of the four subsets above, that is, u1 ∈ V j
2 (]I, ε) for j = 1, 2, 3, or 4. Thus we

can apply the associated vector field, which we will denote Y , and we have

〈∂J (u), Y (u)〉 ≤ −c
(∑

i∈D

1

λn−2σ
i

+

∑
i∈D

|∇K (ai )|

λi
+

∑
i 6= j

i, j∈D

εi j

)
+ O

( ∑
i∈D, j /∈D

εi j

)
.
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Observe that in the above estimates, we have the term −1/λn−2σ
i0

, thus we have −
∑p

i=1 1/λn−2σ
i .

Concerning the term −
∑

i 6= j εi j for i ∈ D and j ∈ DC , we have

DC
=

{
i
∣∣∣ λi

λi0

>
1
γ ′

}
∪

(
{i | χ(λi ) 6= 0} ∩

( q⋃
k=1

Bk

))
.

If j ∈ {i | χ(λi ) 6= 0} ∩
⋃q

k=1 Bk , then we have (−εi j ) in the estimates (3-29). If j ∈
{

i
∣∣ λi
λi0

>
1
γ ′

}
, we

can prove in this case that |ai − a j | ≥ ρ. Thus

εi j ≤
c

(λiλ j )(n−2σ)/2 <
cγ ′(n−2σ)/2

(λi0λi )(n−2σ)/2 = o(εi0i )

for γ ′ small enough. We derive that〈
∂J (u), (W̃ 5

2 +m1Y )(u)
〉

≤−c
(∑

i∈D

|∇K (ai )|

λi
+

p∑
i=1

1

λn−2σ
i

+

∑
i 6= j

εi j

)
+

q∑
K=1

∑
j∈Bk , j∈L2

χ(λ j )O
(
|(a j )ki |

β−2

λ2
j

)
,

and hence, by (3-21), we get〈
∂J (u),

(
W̃ 5

2 +m1Y +m2
∑

i=1, i∈L2

X i

)
(u)
〉
≤−c

( p∑
i=1

1

λn−2σ
i

+

∑
i 6= j

εi j +

p∑
i=1

|∇K (ai )|

λi

)
,

for m1 and m2 two small positive constants. In this case we define

W 5
2 := W̃ 5

2 +m1Y +m2
∑

i=1, i∈L2

X i .

The vector field W2 in V2(p, ε) will be a convex combination of W j
2 , j = 1, . . . , 5. This concludes the

proof of Proposition 3.3. �

Corollary 3.6. Let p ≥ 1. The critical points at infinity of J in V (p, ε) correspond to

(yl1, . . . , ylp)∞ :=

p∑
i=1

1
K (yli )

(n−2σ)/2 δ(yli ,∞)
,

where (yl1, . . . , ylp) ∈ P∞. Moreover, such a critical point at infinity has an index equal to

i(yl1, . . . , ylp)∞ = p− 1+
p∑

i=1

n− ĩ(y).

4. Proof of Theorem 1.1

Using Corollary 3.6, the only critical points at infinity associated to problem (1-1) correspond to
w∞ = (yi1, . . . , yi p) ∈ P∞. We prove Theorem 1.1 by contradiction. Therefore, we assume that (1-1) has
no solution. For any w∞ ∈ P∞, let c(w)∞ denote the associated critical value at infinity. Here we choose
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to consider a simplified situation where for any w∞ 6=w′∞, we have c(w)∞ 6= c(w′)∞ and thus order the
c(w)∞ with w∞ ∈ P∞ as

c(w1)∞ < · · ·< c(wk0)∞.

For any c ∈ R, let Jc = {u ∈6+ | J (u)≤ c}. By using a deformation lemma (see [Bahri and Rabinowitz
1991]), we know that if c(wk−1)∞ < a < c(wk)∞ < b < c(wk+1)∞, then

Jb ' Ja ∪W∞u (wk)∞, (4-1)

where W∞u (wk)∞ denotes the unstable manifolds at infinity of (wk)∞ (see [Bahri 1996]) and ' denotes
retracts by deformation.

Taking the Euler–Poincaré characteristic of both sides of (4-1), we find that

χ(Jb)= χ(Ja)+ (−1)i(wk)∞, (4-2)

where i(wk)∞ denotes the index of the critical point at infinity (wk)∞. Let

b1 < c(w1)∞ = min
u∈6+

J (u) < b2 < c(w2)∞ < · · ·< bk0 < c(wk0)∞ < bk0+1.

Since we have assumed that (1-1) has no solution, Jbk0+1 is a retract by deformation of 6+. Therefore
χ(Jbk0+1)= 1, since 6+ is a contractible set. Now using (4-2), after recalling that χ(Jb1)= χ(∅)= 0,
we derive

1=
k0∑

j=1

(−1)i(w j )∞ . (4-3)

So, if (4-3) is violated, then (1-1) has a solution.
If there exists w∞ 6= w′∞ such that a < c(w)∞ = c(w′)∞ < b, then

Jb ' Ja ∪W∞u (w)∞ ∪W∞u (w
′)∞. (4-4)

By taking the Euler–Poincaré characteristic of both sides, we find that

χ(Jb)= χ(Ja)+ (−1)i(w)∞ + (−1)i(w
′)∞ . (4-5)

Repeating the same argument used above, we get a contradiction, completing the proof of Theorem 1.1.

Appendix

This appendix is devoted to some useful expansions of the gradient of J near a potential critical point
at infinity consisting of p masses. These propositions are proved under some technical estimates of the
different integral quantities, extracted from [Bahri 1989] (with some changes).

Proposition A.1. Assume that K satisfies ( f )β , 1 < β < n. For any u =
∑p

j=1 α jδ j in V (p, ε), the
following expansions hold:
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(i)
〈
∂J (u), λi

∂δi

∂λi

〉
=−2c2 J (u)

∑
i 6= j

α jλi
∂εi j

∂λi
+ o

(∑
i 6= j

εi j

)
+ o

( 1
λi

)
,

where c2 = c2n/(n−2σ)
0

∫
Rn

dy
(1+ |y|2)(n+2σ)/2 .

(ii) If ai ∈ B(y ji , ρ), y ji ∈ K and ρ is a positive constant small enough, we have〈
∂J (u), λi

∂δi

∂λi

〉
= 2J (u)

(
−c2

∑
j 6=i

α jλi
∂εi j

∂λi
+

n−2σ
2n

c2n/(n−2σ)
0 β

αi

K (ai )

1

λ
β

i

×

n∑
k=1

bk

∫
Rn

sign(xk + λi (ai − y ji )k)|xk + λi (ai − y ji )k |
β−1 xk

(1+ |x |2)n
dx

+ o
(∑

j 6=i

εi j +

p∑
j=1

1

λ
β

j

))
. (A-1)

(iii) Furthermore, if λi |ai − y ji |< δ, for δ very small, we then have〈
∂J (u), λi

∂δi

∂λi

〉
= 2J (u)

(
n−2σ

2n
βc3

αi

K (ai )

∑n
k=1 bk

λ
β

i

− c2
∑
j 6=i

α jλi
∂εi j

∂λi
+ o

(∑
j 6=i

εi j +

p∑
j=1

1

λ
β

j

))
, (A-2)

where c3 = c2n/(n−2σ)
0

∫
Sn

|x1|
β

(1+ |x |2)n
dx.

Proposition A.2. Under condition ( f )β , 1< β < n, for each u =
∑p

j=1 α jδ j ∈ V (p, ε), we have:

(i)
〈
∂J (u),

1
λi

∂δi

∂ai

〉
=−c5 J (u)2α(n+2σ)/(n−2σ)

i
∇K (ai )

λi
+ O

(∑
i 6= j

1
λi

∣∣∣∣∂εi j

∂ai

∣∣∣∣)+ o
(∑

i 6= j

εi j +
1
λi

)
,

where c5 =

∫
Rn

dy
(1+ |y|2)n

.

(ii) If ai ∈ B(y ji , ρ), y ji ∈ K, we have〈
∂J (u),

1
λi

∂δi

∂(ai )k

〉
=−2(n− 2σ)c2n/(n−2σ)

0 α
(n+2σ)/(n−2σ)
i J (u)2

1

λ
β

i

∫
Rn

bk |xk + λi (ai − y ji )k |
β xk

(1+ |x |2)n+1 dy

+ o
(∑

i 6= j

εi j

)
+ o

( p∑
i=1

1

λ
β

i

)
+ O

(∑
i 6= j

1
λi

∣∣∣∣∂εi j

∂ai

∣∣∣∣),
where k = 1, . . . , n and (ai )k is the k-th component of ai in some geodesic normal coordinate system.
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