ANALYSIS & PDEVolume 9No. 72016

PHUOC-TAI NGUYEN

ISOLATED SINGULARITIES OF POSITIVE SOLUTIONS OF ELLIPTIC EQUATIONS WITH WEIGHTED GRADIENT TERM

ISOLATED SINGULARITIES OF POSITIVE SOLUTIONS OF ELLIPTIC EQUATIONS WITH WEIGHTED GRADIENT TERM

PHUOC-TAI NGUYEN

Let $\Omega \subset \mathbb{R}^N$ (N > 2) be a C^2 bounded domain containing the origin 0. We study the behavior near 0 of positive solutions of equation (E) $-\Delta u + |x|^{\alpha}u^p + |x|^{\beta}|\nabla u|^q = 0$ in $\Omega \setminus \{0\}$, where $\alpha > -2$, $\beta > -1$, p > 1, and q > 1. When $1 and <math>1 < q < (N + \beta)/(N - 1)$, we provide a full classification of positive solutions of (E) vanishing on $\partial\Omega$. On the contrary, when $p \ge (N + \alpha)/(N - 2)$ or $(N + \beta)/(N - 1) \le q \le 2 + \beta$, we show that any isolated singularity at 0 is removable.

1.	Introduction	1671
2.	A priori estimates	1675
3.	Weakly singular solutions	1679
4.	Strongly singular solutions	1683
5.	Classification and removability of isolated singularities	1686
Acknowledgements		1690
References		1691

1. Introduction

Let $\Omega \subset \mathbb{R}^N$ (N > 2) be a C^2 bounded domain containing the origin 0. In this paper, we study isolated singularities at 0 of nonnegative solutions of the quasilinear equation

$$-\Delta u + |x|^{\alpha} u^{p} + |x|^{\beta} |\nabla u|^{q} = 0$$

$$\tag{1-1}$$

in $\Omega \setminus \{0\}$ where $\alpha > -2$, $\beta > -1$, p > 1, and q > 1. By a nonnegative solution of (1-1) we mean a nonnegative function $u \in C^2(\Omega \setminus \{0\})$ which satisfies (1-1) in the classical sense.

Equation (1-1) consists of two mechanisms: the semilinear equation

$$-\Delta u + |x|^{\alpha} u^{p} = 0 \tag{1-2}$$

in $\Omega \setminus \{0\}$ and the quasilinear equation

$$-\Delta u + |x|^{\beta} |\nabla u|^{q} = 0 \tag{1-3}$$

in $\Omega \setminus \{0\}$. For the sake of simplicity, in the sequel, we use the notation

$$(F \circ u)(x) = |x|^{\alpha} u(x)^{p} + |x|^{\beta} |\nabla u(x)|^{q}.$$
 (1-4)

MSC2010: 35A20, 35J60.

Keywords: gradient terms, weak singularities, strong singularities, removability.

In the literature, many results concerning isolated singularities for (1-2) with $\alpha = 0$ have been published, among which we refer to [Brézis and Véron 1980/81; Vázquez and Véron 1985; Véron 1981; 1996; Baras and Pierre 1984, Marcus 2013] and references therein. Marcus and Véron [2014] provided a full description of isolated singularities of positive solutions of (1-2) (with $\alpha > -2$) when 1 with

$$p_{c,\alpha} := \frac{N+\alpha}{N-2}.$$
(1-5)

More precisely, in this range, if v is a positive solution of (1-2) vanishing on $\partial \Omega$, then:

• either $v = v_k^{\Omega}$ (k > 0), the solution of

$$-\Delta v + |x|^{\alpha} v^{p} = k \delta_{0} \qquad \text{in } \Omega, \text{ with } v = 0 \text{ on } \partial \Omega$$
(1-6)

(here δ_0 is the Dirac measure concentrated at the origin) and $v(x) = kc_N(1+o(1))|x|^{2-N}$ as $|x| \to 0$ where $c_N = 1/(N(N-2)\omega_N)$ with ω_N being the volume of the unit ball in \mathbb{R}^N ;

• or $v = v_{\infty}^{\Omega} := \lim_{k \to \infty} v_k^{\Omega}$ and $v(x) = \vartheta (1 + o(1)) |x|^{-\frac{2+\alpha}{p-1}}$ as $|x| \to 0$ with $\vartheta := \left[\left(\frac{2+\alpha}{p-1}\right) \left(\frac{2p+\alpha}{p-1} - N\right) \right]^{\frac{1}{p-1}}.$ (1-7)

When
$$p \ge p_{c,\alpha}$$
, they showed that there is no positive solution of (1-2) vanishing on $\partial \Omega$.

Classification of interior isolated singularities in the general framework (where the nonlinearity does not depend on gradient term) was established in [Friedman and Véron 1986], in [Cîrstea and Du 2010] (for the *p*-laplacian), and in [Cîrstea 2014] (for elliptic equations with inverse square potentials). A deep existence and uniqueness result for a more general class of semilinear equations was given in [Marcus 2013].

Much less work concerning the behavior near the origin of positive solutions of equations with the nonlinearity depending mostly on the gradient term has been investigated. See Serrin [1965] and, more recently, Bidaut-Véron, García-Huidobro, and Véron [Bidaut-Véron et al. 2014].

Recently, boundary trace problem for semilinear equation with gradient terms were studied by P. T. Nguyen and L. Véron [2012] and by M. Marcus and Nguyen [2015].

When the nonlinearity is of the form (1-4), i.e., it depends on both u and ∇u , as well as weights, one encounters the following difficulties:

- (i) The first one stems from the competition of two terms $|x|^{\alpha}u^{p}$ and $|x|^{\beta}|\nabla u|^{q}$. When $\frac{2+\alpha}{p-1} \neq \frac{2+\beta-q}{q-1}$, (1-1) admits no *similarity transformation* (see Section 2). Moreover, in this framework, the Keller-Osserman estimate is no longer a sharp upper bound for solutions of (1-1).
- (ii) The second one comes from the lack of monotonicity property of the nonlinearity. Furthermore, it is noteworthy that in general the sum of two solution of (1-1) is not a supersolution.
- (iii) The presence of the weights $|x|^{\alpha}$ and $|x|^{\beta}$, which may vanish or be singular at 0 according to the value of α and β , make the asymptotic behavior near 0 of solutions of (1-1) more intricate.

Fix $d_1 \in (0, 1)$ such that $B_{3d_1}(0) \in \Omega$ and put $d_2 = \text{diam}(\Omega)$. Set

$$\tau = \min\left\{\frac{2+\alpha}{p-1}, \frac{2+\beta-q}{q-1}\right\} \quad \text{with } q < 2+\beta.$$
(1-8)

We first give sharp estimates on solutions of (1-1) and their gradient. These estimates are obtained due to a combination of Bernstein's method, Keller–Osserman estimates, and a transformation argument.

Proposition 1.1. Let $\alpha > -2$, $\beta > -1$, p > 1, and $1 < q < 2 + \beta$. There exists a positive constant $c_i = c_i(\alpha, \beta, N, p, q, d_1, d_2)$ (i = 1, 2) such that if u is a positive solution of (1-1) in $\Omega \setminus \{0\}$ vanishing on $\partial\Omega$, then

$$u(x) \le c_1 |x|^{-\tau} \quad for \ all \ x \in \Omega \setminus \{0\}, \tag{1-9}$$

and

$$|\nabla u(x)| \le c_2 |x|^{-\tau - 1} \quad \text{for all } x \in \overline{B_{d_1}(0)} \setminus \{0\}.$$

$$(1-10)$$

Estimates (1-9) and (1-10) give an upper bound of $F \circ u$ but do not ensure that $F \circ u \in L^1(\Omega)$. While investigating the integrability of $F \circ u$ we are led to the following definition.

Definition 1.2. A nonnegative solution u of (1-1) is called a *weakly singular solution* if $F \circ u \in L^1(B_{\varepsilon})$ for some $\varepsilon > 0$. Otherwise, u is called a *strongly singular solution*.

We next introduce the definition of solutions to

$$\begin{cases} -\Delta u + F \circ u = k \delta_0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$
(1-11)

Definition 1.3. Let $k \ge 0$. A nonnegative function u is a solution of (1-11) if $u \in L^1(\Omega)$, $F \circ u \in L^1(\Omega)$, and

$$\int_{\Omega} \left(-u\Delta\zeta + (F \circ u)\zeta \right) dx = k\zeta(0) \quad \text{for all } \zeta \in C_0^2(\overline{\Omega}).$$
(1-12)

Remark. Clearly, if u is a solution of (1-11) then u is a weakly singular solution of (1-1).

Let Γ_N (N > 2) be the Newtonian kernel in \mathbb{R}^N defined by

$$\Gamma_N(x) := c_N |x|^{2-N} = \frac{1}{N(N-2)\omega_N} |x|^{2-N}, \quad x \neq 0$$
(1-13)

with ω_N the volume of the unit ball in \mathbb{R}^N . Denote by G^{Ω} the Green kernel of $(-\Delta)$ in Ω and by \mathbb{G}^{Ω} the corresponding operator.

The study of (1-1) is strongly linked to that of (1-3). As we will see in the sequel there exists an exponent

$$q_{c,\beta} = \frac{N+\beta}{N-1} \tag{1-14}$$

such that if $1 < q < q_{c,\beta}$, the problem (1-3) admits weakly and strongly singular solutions; while if $q_{c,\beta} < q < 2 + \beta$, then such solutions don't exist. When both equations (1-2) and (1-3) are combined in (1-1), the existence result for (1-1) is valid in the range $(p,q) \in (1, p_{c,\alpha}) \times (1, q_{c,\beta})$. This is reflected in the following theorems.

Theorem A. Assume $\alpha > -2$, $\beta > -1$, $1 , and <math>1 < q < q_{c,\beta}$. For any k > 0, there exists a unique solution $u_k^{\Omega} \in C^2(\Omega \setminus \{0\}) \cap C(\overline{\Omega} \setminus \{0\})$ of (1-11). Moreover,

$$u_k^{\Omega}(x) = k G^{\Omega}(x, 0) - \mathbb{G}^{\Omega}[F \circ u_k^{\Omega}](x) \quad \text{for all } x \in \Omega \setminus \{0\},$$
(1-15)

$$u_k^{\mathcal{U}}(x) = k(1+o(1))\,\Gamma_N(x) \quad \text{as } x \to 0, \tag{1-16}$$

$$\lim_{|x|\to 0} \left(|x|^{N-1} \nabla u_k^{\Omega}(x) + \frac{k}{N\omega_N} \frac{x}{|x|} \right) = 0.$$
 (1-17)

Due to (1-16) and the comparison principle [Gilbarg and Trudinger 2001, Theorem 9.2], the sequence $\{u_k^{\Omega}\}$ is increasing. Denote $u_{\infty}^{\Omega} := \lim_{k \to \infty} u_k^{\Omega}$. The asymptotic behaviors of u_{∞}^{Ω} and its gradient are given in the following theorem.

Theorem B. Assume $\alpha > -2$, $\beta > -1$, $1 , and <math>1 < q < q_{c,\beta}$. Then u_{∞}^{Ω} is a strongly singular solution of (1-1) vanishing on $\partial\Omega$. Moreover,

$$\lim_{|x|\to 0} |x|^{\tau} u_{\infty}^{\Omega}(x) = \Theta, \qquad (1-18)$$

$$\lim_{|x|\to 0} \left(|x|^{\tau+1} \nabla u_{\infty}^{\Omega}(x) + \Theta \tau \frac{x}{|x|} \right) = 0,$$
(1-19)

where τ is defined in (1-8) and Θ is a positive constant depending on N, α, β, p, q .

Remark. The value of Θ varies according to the relationship between the parameters α , β , p, and q. For simplicity, set

$$D := \frac{2+\alpha}{p-1} \times \frac{q-1}{2+\beta-q} \quad \text{with } q < 2+\beta.$$

$$(1-20)$$

In Theorem B, Θ is the unique solution of

$$\lambda t^{p-1} + j \tau^q t^{q-1} - \tau (\tau + 2 - N) = 0, \qquad (1-21)$$

where *j* and λ are given by

$$\begin{cases} j = 0 \text{ and } \lambda = 1 & \text{if } D < 1 \text{ (hence } \Theta = \vartheta \text{ defined in (1-7))}; \\ j = 1 \text{ and } \lambda = 0 & \text{if } D > 1 \text{ (hence } \Theta = \theta_0 \text{ defined in (4-3))}; \\ j = \lambda = 1 & \text{if } D = 1 \text{ (hence } \Theta = \theta_1, \text{ the solution of } g_1(t) = 0, \\ & \text{where } g_\lambda \text{ is defined defined in (4-2))}. \end{cases}$$
(1-22)

Theorem B shows the competition between two terms $|x|^{\alpha}u^{p}$ and $|x|^{\beta}|\nabla u|^{q}$: if D < 1 then $|x|^{\alpha}u^{p}$ plays a dominant role, otherwise $|x|^{\beta}|\nabla u|^{q}$ plays a dominant role.

As a consequence of Theorems A and B, we obtain a description of nonnegative singular solutions of (1-1) vanishing on $\partial \Omega$.

Theorem C. Assume $\alpha > -2$, $\beta > -1$, $1 , and <math>1 < q < q_{c,\beta}$. Let $u \in C^2(\Omega \setminus \{0\}) \cap C(\overline{\Omega} \setminus \{0\})$ be a nonnegative solution of (1-1) in $\Omega \setminus \{0\}$ vanishing on $\partial\Omega$. Then either $u \equiv 0$, or $u \equiv u_k^{\Omega}$ for some k > 0, or $u \equiv u_{\infty}^{\Omega}$.

On the contrary, the next theorem states that when $p \ge p_{c,\alpha}$ or $q_{c,\beta} \le q < 2 + \beta$ there exists no positive singular solution.

Theorem D. Assume $\alpha > -2$, $\beta > -1$, p > 1, and $1 < q \le 2 + \beta$. If $p \ge p_{c,\alpha}$ or $q \ge q_{c,\beta}$ then any nonnegative solution $u \in C^2(\Omega \setminus \{0\}) \cap C(\overline{\Omega} \setminus \{0\})$ of (1-1) in $\Omega \setminus \{0\}$ vanishing on $\partial\Omega$ must be zero.

The paper is organized as follows. In Section 2, we prove Proposition 1.1 by treating successively the equations (1-3) and (1-1). Section 3 is devoted to the proof of Theorem A. Construction of weakly singular solutions u_k^{Ω} is based on an approximation method and delicate estimates on approximating solutions and on their gradient. In Section 4, the existence of a strongly singular solution u_{∞}^{Ω} (Theorem B) is obtained due to the monotonicity of the sequence $\{u_k^{\Omega}\}$ and a priori estimates established in Section 2. In Section 5, by combining Harnack's inequality, a scaling argument, and the asymptotic behavior of weakly singular solutions and a strongly singular solution, we obtain a complete description of isolated singularities (Theorem C). Finally, Theorem D is proved thanks to a nonexistence result for suitable equations on the unit sphere S^{N-1} .

Notation and terminology. Denote by $B_r(x_0)$ the ball of center $x_0 \in \mathbb{R}^N$ and radius *r*. Henceforth, we simply write B_r for $B_r(0)$. Unless otherwise stated, Ω is a C^2 bounded domain containing the origin 0. Fix $d_1 \in (0, 1)$ such that $B_{3d_1} \Subset \Omega$ and put $d_2 = \text{diam}(\Omega)$.

Define, for $\ell > 0$ and $x \in \Omega_{\ell} := \ell^{-1}\Omega$,

$$R_{\ell}[u](x) = \ell^{N-2}u(\ell x), \quad S_{\ell}[u](x) = \ell^{\frac{2+\alpha}{p-1}}u(\ell x), \quad T_{\ell}[u](x) = \ell^{\frac{2+\beta-q}{q-1}}u(\ell x).$$
(1-23)

If *u* is a solution of (1-2) (resp., (1-3)) in $\Omega \setminus \{0\}$ then $S_{\ell}[u]$ (resp., $T_{\ell}[u]$) is a solution of (1-2) (resp., (1-3)) in $\Omega_{\ell} \setminus \{0\}$. If $\Omega = \Omega_{\ell}$ and $u = S_{\ell}[u]$ (resp., $u = T_{\ell}[u]$) for every $\ell > 0$, we say that S_{ℓ} (resp., T_{ℓ}) is a *similarity transformation* and *u* is a *self-similar solution* of (1-2) (resp., (1-3)).

2. A priori estimates

2.1. A priori estimates on solutions of (1-3). Let us start this section by recalling the comparison principle [Gilbarg and Trudinger 2001, Theorem 10.1].

Proposition 2.1. Let \mathcal{O} be a bounded domain in \mathbb{R}^N . Assume $H : \mathcal{O} \times \mathbb{R}_+ \times \mathbb{R}^N \to \mathbb{R}_+$ is nondecreasing with respect to u for any $(x, \xi) \in \mathcal{O} \times \mathbb{R}^N$, continuously differentiable with respect to ξ , and H(x, 0, 0) = 0. Let $u_1, u_2 \in C^2(\mathcal{O}) \cap C(\overline{\mathcal{O}})$ be two nonnegative functions satisfying

$$-\Delta u_1 + H(x, u_1, \nabla u_1) \le -\Delta u_2 + H(x, u_2, \nabla u_2) \quad in \ \mathcal{O}$$

and $u_1 \leq u_2$ on ∂O . Then $u_1 \leq u_2$ in O.

We shall establish a priori estimates on solutions of (1-3) and on their gradients. By using Bernstein's method (see [Lasry and Lions 1989; Lions 1985]), we derive estimates on the gradients of solutions of (1-3).

Lemma 2.2. Assume $\beta > -1$ and q > 1. There exists $c_3 = c_3(N, q, \beta)$ such that if $u \in C^2(\Omega \setminus \{0\})$ is a solution of (1-3) in $\Omega \setminus \{0\}$ then

$$|\nabla u(x)| \le c_3 |x|^{-\frac{1+\beta}{q-1}} \quad for \ all \ x \in \overline{B}_{d_1} \setminus \{0\}.$$
(2-1)

Proof. Pick an arbitrary point $x_0 \in \overline{B_{d_1}} \setminus \{0\}$ and denote $\rho_0 = |x_0|$. Take $\eta \in C^{\infty}(\mathbb{R}^N)$ such that $0 \le \eta \le 1$, supp $\eta \subset B_{1/2}$ and $\eta \equiv 1$ in $B_{1/3}$. Put $\phi(x) = \eta(\rho_0^{-1}(x-x_0))$; then $|D^2\phi| \le c'_3\rho_0^{-2}$ and $|\nabla\phi| \le c'_3\rho_0^{-1}\phi^{\frac{1}{2}}$ with $c'_3 = c'_3(N)$. Set $w = \phi^{2m} |\nabla u|^2$ with $m = \frac{1}{2(q-1)}$ and define the operator

$$\mathcal{L}[w] := -\Delta w + q|x|^{\beta} |\nabla u|^{q-2} \nabla u \cdot \nabla w.$$

Due to (1-3) we get

$$\begin{aligned} \mathcal{L}[w] &= -2m(2m-1)\phi^{2(m-1)}|\nabla\phi|^{2}|\nabla u|^{2} - 2m\phi^{2m-1}\Delta\phi|\nabla u|^{2} - 8m\phi^{2m-1}\sum_{i,j}\partial_{i}\phi\,\partial_{j}u\,\partial_{ij}u\\ &- 2\phi^{2m}|D^{2}u|^{2} - 2\beta|x|^{\beta-2}\phi^{2m}|\nabla u|^{q}x\,\nabla u + 2mq|x|^{\beta}\phi^{2m-1}|\nabla u|^{q}\nabla\phi\nabla u. \end{aligned}$$

By virtue of the inequality $N|D^2u|^2 \ge (\Delta u)^2$ and the inequality $2ab \le a^2 + b^2$ for any $a, b \in \mathbb{R}$, we obtain, in $B_{\rho_0/2}(x_0)$,

$$\mathcal{L}[w] \le c_4 \left(\rho_0^{-2} \phi^{2m-1} |\nabla u|^2 + \rho_0^{\beta-1} \phi^{2m} |\nabla u|^{q+1} + \rho_0^{\beta-1} \phi^{2m-\frac{1}{2}} |\nabla u|^{q+1} \right) - \frac{\phi^{2m} |x|^{2\beta} |\nabla u|^{2q}}{N} \quad (2-2)$$

where $c_4 = c_4(\beta, q, N)$. Denote by x^* a maximizer of w then $\mathcal{L}[w](x^*) \ge 0$. In light of the relation $|\nabla u| = \phi^{-m} w^{\frac{1}{2}}$, the fact that $\frac{1}{2}\rho_0 \le |x| \le \frac{3}{2}\rho_0$ with $x \in B_{\rho_0/2}(x_0)$ and (2-2), we deduce

$$w(x^*)^{q-1} \le c_5 \left(\rho_0^{-2(\beta+1)} + \rho_0^{-(\beta+1)} w(x^*)^{\frac{q-1}{2}} \right),$$

where $c_5 = c_5(\beta, q, N)$. Consequently,

$$\max_{x \in B_{\rho_0/2}(x_0)} (\phi^{2m} |\nabla u|^2) \le w(x^*) \le c_5' \rho_0^{-\frac{2(1+\beta)}{q-1}}.$$

Therefore, $|\nabla u(x_0)| \le c_6 |x_0|^{-\frac{1+\beta}{q-1}}$, where c_6 depends on N, q, and β .

Remark. From Lemma 2.2, one can verify that if $u \in C^2(\Omega \setminus \{0\})$ is a positive solution of (1-3) then, for every $x \in B_{d_1} \setminus \{0\}$,

$$u(x) \le \max\{u(x) : x \in \partial B_{d_1}\} + c_3 \frac{q-1}{2+\beta-q} \left(|x|^{-\frac{2+\beta-q}{q-1}} - d_1^{-\frac{2+\beta-q}{q-1}}\right)$$

if $q \neq 2 + \beta$, and

$$u(x) \le \max\{u(x) : x \in \partial B_{d_1}\} + c_3(\ln d_1 - \ln|x|)$$
(2-3)

if $q = 2 + \beta$. Consequently, when $q > 2 + \beta$, we can conclude that *u* remains bounded. Therefore, in the sequel, we consider the case $q \le 2 + \beta$.

We next derive an upper bound for subsolutions of (1-3) with $\beta \ge 0$.

Lemma 2.3. Assume K > 0, $\beta \ge 0$, and $1 < q < 2 + \beta$. If $u \in C^2(\Omega \setminus \{0\}) \cap C(\overline{\Omega} \setminus \{0\})$ is a positive function such that

$$-\Delta u + K|x|^{\beta} |\nabla u|^{q} \le 0 \tag{2-4}$$

1676

in $\Omega \setminus \{0\}$ and vanishing on $\partial \Omega$, then

$$u(x) \le c_7 |x|^{-\frac{2+\beta-q}{q-1}}$$
(2-5)

for every $x \in \Omega \setminus \{0\}$, where $c_7 = K^{-\frac{1}{q-1}} (1+\beta)^{\frac{1}{q-1}} (q-1)^{\frac{q-2}{q-1}} (2+\beta-q)^{-1}$.

Proof. Let $\epsilon > 0$ be small, and put $\Phi_{\epsilon}(x) = c_7(|x| - \epsilon)^{-\frac{2+\beta-q}{q-1}} + \epsilon$ with $x \in B_{\epsilon}^c$. By a simple computation, we get $-\Delta \Phi_{\epsilon} + K|x|^{\beta} |\nabla \Phi_{\epsilon}|^q \ge 0$ in $\Omega \setminus \overline{B}_{\epsilon}$. Since Φ_{ϵ} dominates u on $\partial \Omega \cup \partial B_{\epsilon}$, it follows from Proposition 2.1 that $\Phi_{\epsilon} \ge u$ in $\Omega \setminus B_{\epsilon}$. Letting $\epsilon \to 0$ leads to (2-5).

Combining Lemmas 2.2 and 2.3 we get:

Lemma 2.4. Let $\beta > -1$ and $1 < q < 2 + \beta$. There exists a constant $c_8 = c_8(N, q, \beta, d_1, d_2)$ such that if $u \in C^2(\Omega \setminus \{0\}) \cap C(\overline{\Omega} \setminus \{0\})$ is a solution of (1-3) vanishing on $\partial\Omega$ then

$$u(x) \le c_8 |x|^{-\frac{2+\beta-q}{q-1}} \quad for \ all \ x \in \Omega \setminus \{0\}.$$

$$(2-6)$$

Proof. If $\beta \ge 0$ then (2-6) follows from (2-5). Next we consider $\beta \in (-1, 0)$. Fix $x \in B_{d_1} \setminus \{0\}$ and pick $z \in \partial B_{d_1}$ such that $|z - x| = d_1 - |x|$. By Lemmas 2.2 and 2.3,

$$u(x) \le c_7 d_1^{-\frac{2+\beta-q}{q-1}} + c_3 \frac{q-1}{2+\beta-q} |x|^{-\frac{2+\beta-q}{q-1}} \le c_9 |x|^{-\frac{2+\beta-q}{q-1}} \quad \text{for all } x \in B_{d_1} \setminus \{0\},$$
(2-7)

where $c_9 = c_9(N, q, \beta, d_1, d_2)$. Next put $c'_9 > \max\{c_9, c_7\}$ so that the function $x \mapsto c'_9 |x|^{-\frac{2+p-q}{q-1}}$ is a supersolution of (1-3) in $\Omega \setminus B_{d_1/2}$ which dominates u on $\partial \Omega \cup \partial B_{d_1/2}$. By Proposition 2.1, $u(x) \le c'_9 |x|^{-\frac{2+\beta-q}{q-1}}$ for every $x \in \Omega \setminus B_{d_1/2}$. This, together with (2-7), implies (2-6).

By a similar argument, we obtain the following result.

Lemma 2.5. Let $\beta > -1$ and $1 < q < 2 + \beta$. There exist $c_i = c_i(N, q, \beta)$ with i = 10, 11 such that if $u \in C^2(\mathbb{R}^N \setminus \{0\})$ is a solution of (1-3) in $\mathbb{R}^N \setminus \{0\}$ satisfying $\lim_{|x|\to\infty} u(x) = 0$ then

$$u(x) \le c_{10}|x|^{-\frac{2+\beta-q}{q-1}} \quad and \quad |\nabla u(x)| \le c_{11}|x|^{-\frac{1+\beta}{q-1}} \quad for \ all \ x \in \mathbb{R}^N \setminus \{0\}.$$
(2-8)

2.2. A priori estimates on solutions of (1-1). We recall that τ is defined in (1-8). Due to the Keller–Osserman estimate and the above result, we obtain a sharp upper bound for solutions of (1-1).

Lemma 2.6. Let $\alpha > -2$, $\beta > -1$, p > 1, and $1 < q < 2 + \beta$. There exists $c_{12} = c_{12}(\alpha, \beta, N, p, q, d_1, d_2)$ such that if u is a positive solution of (1-1) in $\Omega \setminus \{0\}$ vanishing on $\partial \Omega$ then

$$u(x) \le c_{12}|x|^{-\tau} \quad for \ all \ x \in \Omega \setminus \{0\}.$$

$$(2-9)$$

Proof. Since *u* is a positive subsolution of (1-2), due to Keller–Osserman estimate, there exists a constant $c_{13} = c_{13}(N, p, \alpha)$ such that

$$u(x) \le c_{13}|x|^{-\frac{2+\alpha}{p-1}}$$
 for all $x \in \Omega \setminus \{0\}$.

We consider two cases: $D \le 1$ and D > 1 where D is defined in (1-20).

Case 1: $D \le 1$. In this case, $\tau = \frac{2+\alpha}{p-1}$ and hence we obtain (2-9).

Case 2: D > 1. Notice that in this case $\tau = \frac{2+\beta-q}{q-1}$. For $\epsilon \in (0, d_1)$, let w_{ϵ} be the solution of

$$-\Delta w + |x|^{\beta} |\nabla w|^{q} = 0 \quad \text{in } \Omega \setminus \overline{B}_{\epsilon}, \quad \text{such that } w = \begin{cases} u & \text{on } \partial B_{\epsilon}, \\ 0 & \text{on } \partial \Omega. \end{cases}$$
(2-10)

By Proposition 2.1, $u \leq w_{\epsilon}$ in $\Omega \setminus B_{\epsilon}$. Therefore, $u \leq w_{\epsilon'} \leq w_{\epsilon}$ in $\Omega \setminus B_{\epsilon'}$ for $0 < \epsilon < \epsilon'$. It can be checked that the function $x \mapsto c_{14}|x|^{-\frac{2+\alpha}{p-1}}$ (with $c_{14} > c_{13}$ large, depending on N, p, q, α , β , and d_2) is a supersolution of (1-3) which dominates w_{ϵ} on $\partial \Omega \cup \partial B_{\epsilon}$. By the comparison principle, $w_{\epsilon}(x) \leq c_{14}|x|^{-\frac{2+\alpha}{p-1}}$ for $x \in \Omega \setminus B_{\epsilon}$. Consequently, the sequence $\{w_{\epsilon}\}$ is locally uniformly bounded in $\Omega \setminus \{0\}$. In light of local regularity results for elliptic equations [DiBenedetto 1983], for every compact subset $\mathcal{O} \Subset \Omega \setminus \{0\}$, there exist constants M > 0 and $\mu \in (0, 1)$ depending on N, p, q, α , β , d_2 , and dist $(0, \mathcal{O})$ such that $||w_{\epsilon}||_{C^{1,\mu}(\mathcal{O})} \leq M$. Therefore, $\{w_{\epsilon}\}$ converges to a function \tilde{w} in $C^{1}_{\text{loc}}(\Omega \setminus \{0\})$ which is a solution of (1-3) in $\Omega \setminus \{0\}$, vanishing on $\partial \Omega$, and satisfying $\tilde{w} \geq u$ in $\Omega \setminus \{0\}$. By virtue of Lemma 2.4, $\tilde{w} \leq c_8 |x|^{-\frac{2+\beta-q}{q-1}}$ for every $x \in \Omega \setminus \{0\}$. Consequently, $u \leq c_8 |x|^{-\frac{2+\beta-q}{q-1}}$ for every $x \in \Omega \setminus \{0\}$. This completes the proof.

We next establish a sharp estimate from above for the gradient of solutions of (1-1).

Proposition 2.7. Let $\alpha > -2$, $\beta > -1$, p > 1, and $1 < q < 2 + \beta$. There exists $c_{15} = c_{15}(\alpha, \beta, N, p, q, d_1, d_2)$ such that if u is a nonnegative solution of (1-1) in $\Omega \setminus \{0\}$ vanishing on $\partial\Omega$ then

$$|\nabla u(x)| \le c_{15} |x|^{-(\tau+1)}$$
 for all $x \in B_{d_1} \setminus \{0\}.$ (2-11)

Proof. Let x_0 , ρ_0 , η , ϕ , w, m, $\mathcal{L}[w]$, and x^* as in the proof of Lemma 2.2. Then we get

$$\mathcal{L}[w] = -2m(2m-1)\phi^{2(m-1)} |\nabla\phi|^2 |\nabla u|^2 - 2m\phi^{2m-1} \Delta\phi |\nabla u|^2 - 8m\phi^{2m-1} \sum_{i,j} \partial_i \phi \, \partial_j u \, \partial_{ij} u \\ -2\phi^{2m} |D^2 u|^2 - 2\alpha |x|^{\alpha-2} \phi^{2m} u^p \, x \, \nabla u - 2p |x|^{\alpha} \phi^{2m} u^{p-1} |\nabla u|^2 \\ -2\beta |x|^{\beta-2} \phi^{2m} |\nabla u|^q \, x \, \nabla u + 2mq |x|^{\beta} \phi^{2m-1} |\nabla u|^q \, \nabla \phi \, \nabla u.$$

Case 1: $D \ge 1$. In this case, we have

$$\frac{(\beta+1)(1-2q)}{q-1} \le \alpha - 2\beta - 1 - \tau p, \tag{2-12}$$

where τ is defined in (1-8). By Lemma 2.6 and Young's inequality, proceeding as in the proof of Lemma 2.2, we obtain in $B_{\rho_0/2}(x_0)$

$$w(x^*)^{q-\frac{1}{2}} \le c_{16} \left(\rho_0^{-2(\beta+1)} w(x^*)^{\frac{1}{2}} + \rho_0^{\alpha-2\beta-1-\tau p} + \rho_0^{-(\beta+1)} w(x^*)^{\frac{q}{2}} \right),$$
(2-13)

where $c_{16} = c_{16}(\alpha, \beta, p, q, N, d_1, d_2)$. By Young's inequality, we get

$$\rho_0^{-2(\beta+1)} w(x^*)^{\frac{1}{2}} \le \frac{1}{q} \rho_0^{-(\beta+1)} w(x^*)^{\frac{q}{2}} + \frac{q-1}{q} \rho_0^{\frac{(\beta+1)(1-2q)}{q-1}}.$$
(2-14)

From (2-12), (2-13), and (2-14), we deduce

$$w(x^*)^{q-\frac{1}{2}} \le c_{17} \Big(\rho_0^{-(\beta+1)} w(x^*)^{\frac{q}{2}} + \rho_0^{\frac{(\beta+1)(1-2q)}{q-1}} \Big), \tag{2-15}$$

which implies

$$\rho_0^{\beta+1} w(x^*)^{\frac{q-1}{2}} \le c_{17} \Big(\rho_0^{-\frac{(\beta+1)q}{q-1}} w(x^*)^{-\frac{q}{2}} + 1 \Big), \tag{2-16}$$

where $c_{17} = c_{17}(\alpha, \beta, p, q, N, d_1, d_2)$. Consequently, $w(x^*) \le c_{18}\rho_0^{-\frac{2(1+\beta)}{q-1}}$, and therefore

$$|\nabla u(x)| \le c_{19}|x|^{-\frac{1+\beta}{q-1}}$$
 for all $x \in B_{d_1} \setminus \{0\},$ (2-17)

where $c_i = c_i(\alpha, \beta, N, p, q, d_1, d_2)$ with i = 18, 19. Notice that $\frac{1+\beta}{q-1} = \tau + 1$; hence we obtain (2-11).

Case 2: D < 1. Take $x_0 \in B_{d_1} \setminus \{0\}$. Put $\ell = |x_0| \in (0, d_1)$ then $S_{\ell}[u]$ is a solution of

$$-\Delta v + |x|^{\alpha} v^{p} + \ell^{\frac{p(2+\beta-q)-\alpha(q-1)-q-\beta}{p-1}} |x|^{\beta} |\nabla v|^{q} = 0 \quad \text{in } \Omega_{\ell} \setminus \{0\}.$$
(2-18)

By the regularity result in [DiBenedetto 1983], there exists $c_{20} = c_{20}(\alpha, \beta, p, q)$ such that

$$\sup\{|\nabla S_{\ell}[u](x)|: x \in B_{3/2} \setminus B_{3/4}\} \le c_{20}.$$

Consequently,

$$\ell^{\frac{1+p+\alpha}{p-1}} |\nabla u(\ell x)| \le c_{21} \quad \text{for all } x \in B_{3/2} \setminus B_{3/4}.$$

By choosing $x = \ell^{-1}x_0$, we derive $|\nabla u(x_0)| \le c_{22}|x_0|^{-\frac{1+p+\alpha}{p-1}}$. This completes the proof since

$$\frac{1+p+\alpha}{p-1} = \tau + 1.$$

Proof of Proposition 1.1. Estimates (1-9) and (1-10) follow directly from Lemmas 2.2, 2.4, and 2.6, as well as Proposition 2.7.

3. Weakly singular solutions

We start with the existence of weakly singular solutions of (1-1). The construction is based on approximation method.

Proof of Theorem A. We prove the theorem in five steps.

Step 1: Construction of solutions. Let k > 0. For every $\epsilon > 0$, let $u_{k,\epsilon}^{\Omega}$ be the unique solution of

$$\begin{cases} -\Delta u + |x|^{\alpha} u^{p} + |x|^{\beta} |\nabla u|^{q} = 0 & \text{in } \Omega \setminus \overline{B}_{\epsilon}, \\ u = 0 & \text{on } \partial \Omega, \\ u = k \Gamma_{N}(\epsilon) & \text{on } \partial B_{\epsilon}. \end{cases}$$
(3-1)

The existence of $u_{k,\epsilon}^{\Omega}$ can be obtained by using an argument similar to the proof of [Gilbarg and Trudinger 2001, Theorem 11.4] and the uniqueness follows from the comparison principle Proposition 2.1. Moreover, by the comparison principle, $0 \le u_{k,\epsilon}^{\Omega} \le k\Gamma_N$ in $\overline{\Omega} \setminus B_{\epsilon}$ and $u_{k,\epsilon}^{\Omega} \le u_{k,\epsilon'}^{\Omega}$ in $\overline{\Omega} \setminus B_{\epsilon'}$ for every $0 < \epsilon < \epsilon'$. Therefore, $u_k^{\Omega} := \lim_{\epsilon \to 0} u_{k,\epsilon}^{\Omega}$ satisfies

$$u_k^{\Omega}(x) \le k \Gamma_N(x) \quad \text{for all } x \in \Omega \setminus \{0\}.$$
 (3-2)

By regularity results for elliptic equations, u_k^{Ω} is a solution of (1-1) in $\Omega \setminus \{0\}$ vanishing on $\partial \Omega$.

Fix an arbitrary point $x_0 \in \overline{B_{d_1}} \setminus \overline{B_{\epsilon}}$ and put $\ell = |x_0| \in (\epsilon, d_1]$. Note that $R_{\ell}[u_{k,\epsilon}^{\Omega}]$ solves

$$\begin{cases} -\Delta v + \ell^{N+\alpha-p(N-2)} |x|^{\alpha} v^{p} + \ell^{N+\beta-q(N-1)} |x|^{\beta} |\nabla v|^{q} = 0 & \text{in } \Omega_{\ell} \setminus \overline{B_{\epsilon/\ell}}, \\ v = 0 & \text{on } \partial \Omega_{\ell}, \\ v = k \Gamma_{N} \left(\frac{\epsilon}{\ell}\right) & \text{on } \partial B_{\epsilon/\ell}. \end{cases}$$
(3-3)

Since $1 and <math>1 < q < q_{c,\beta}$, it follows that

$$\ell^{N+\alpha-p(N-2)}|x|^{\alpha} < \max\{1, 3^{\alpha}\}$$
 and $\ell^{N+\beta-q(N-1)}|x|^{\beta} < \max\{1, 3^{\beta}\}$ for all $x \in B_3 \setminus B_1$.

By the maximum principle, $R_{\ell}[u_{k,\epsilon}^{\Omega}] \leq k \Gamma_N$ in $\Omega_{\ell} \setminus \overline{B_{\epsilon/\ell}}$, which implies $R_{\ell}[u_{k,\epsilon}^{\Omega}] \leq k \Gamma_N(1)$ in $B_3 \setminus B_1$. Due to local regularity for elliptic equations (see, e.g., [DiBenedetto 1983]), there exist constants $c_{23} = c_{23}(N, \alpha, \beta, p, q, k)$ and $\mu = \mu(N, \alpha, \beta, p, q, k) \in (0, 1)$ such that

$$\|R_{\ell}[u_{k,\epsilon}^{\Omega}]\|_{C^{1,\mu}(B_{5/2}\setminus\overline{B_{3/2}})} \leq c_{23}.$$

Again by the regularity results (see [Lieberman 1988, Theorem 1] and [DiBenedetto 1983]), there exists $c_{24} = c_{24}(\alpha, \beta, N, p, q, k)$ such that

$$\ell^{N-1}\sup\{|\nabla u_{k,\epsilon}^{\Omega}(\ell x)|:|x|=1\}\leq c_{24}.$$

By choosing $x = \ell^{-1}x_0$, we deduce $|\nabla u_{k,\epsilon}^{\Omega}(x_0)| \le c_{24}|x_0|^{1-N}$. Thus

$$|\nabla u_{k,\epsilon}^{\Omega}(x)| \le c_{25}|x|^{1-N} \quad \text{for all } x \in \Omega \setminus B_{\epsilon}$$
(3-4)

with $c_{25} = c_{25}(\alpha, \beta, N, p, q, k, d_1, d_2)$.

Step 2: Proof of (1-16). The solution $u_{k,\epsilon}^{\Omega}$ can be written in the form

$$u_{k,\epsilon}^{\Omega}(x) = k \Gamma_N(\epsilon) - \mathbb{G}^{\Omega \setminus \overline{B_{\epsilon}}}[F \circ u_{k,\epsilon}^{\Omega}](x),$$

where $\mathbb{G}^{\Omega \setminus \overline{B_{\epsilon}}}$ is the Green operator in $\Omega \setminus \overline{B_{\epsilon}}$ [Marcus and Véron 2014, Theorem 1.2.2]. Hence, by (3-4),

$$k\Gamma_N(x) \ge u_{k,\epsilon}^{\Omega}(x) \ge k\Gamma_N(x) - c_{26}\mathbb{G}^{\Omega}[|\cdot|^{\alpha+p(2-N)} + |\cdot|^{\beta+q(1-N)}](x) \quad \text{for all } x \in \Omega \setminus \overline{B_{\epsilon}}.$$

By letting $\epsilon \to 0$, we get

$$k\Gamma_N(x) \ge u_k^{\Omega}(x) \ge k\Gamma_N(x) - c\mathbb{G}^{\Omega}[|\cdot|^{\alpha + p(2-N)} + |\cdot|^{\beta + q(1-N)}](x) \quad \text{for all } x \in \Omega \setminus \{0\}.$$
(3-5)

It is classical (see [op. cit.]) that

$$G^{\Omega}(x, y) \sim \min\{|x-y|^{2-N}, \rho(x)\rho(y)|x-y|^{-N}\}$$

for every $x, y \in \Omega, x \neq y$, where $\rho(x) = \text{dist}(x, \partial \Omega)$. Therefore there exists $c_{27} = c_{27}(N, \Omega)$ such that, for x near 0,

$$\frac{\mathbb{G}^{\Omega}[|\cdot|^{\alpha+p(2-N)}+|\cdot|^{\beta+q(1-N)}](x)}{\Gamma_{N}(x)} \leq c_{27}|x|^{N-2}\int_{\Omega}|x-y|^{2-N}(|y|^{\alpha-p(N-2)}+|y|^{\beta-q(N-1)})\,dy. \quad (3-6)$$

Choose α' and β' such that $p(N-2) - N < \alpha' < \min\{\alpha, p(N-2) - 2\}$ and $q(N-1) - N < \beta' < \min\{\beta, q(N-1) - 2\}$. Then by [Lieb and Loss 1997, Corollary 5.10],

$$\int_{\Omega} |x-y|^{2-N} |y|^{\alpha-p(N-2)} dy \le c_{28} d_2^{\alpha-\alpha'} |x|^{2+\alpha'-p(N-2)},$$

$$\int_{\Omega} |x-y|^{2-N} |y|^{\beta-q(N-1)} dy \le c_{28} d_2^{\beta-\beta'} |x|^{2+\beta'-q(N-1)}.$$
(3-7)

Combining (3-6) and (3-7) yields

$$\lim_{|x|\to 0} \frac{\mathbb{G}^{\Omega}[|\cdot|^{\alpha+p(2-N)}+|\cdot|^{\beta+q(1-N)}](x)}{\Gamma_N(x)} = 0.$$
(3-8)

From (3-5) and (3-8), we obtain (1-16).

Step 3: Proof of (1-17). For $\ell \in (0, 1)$, put $v_{\ell} = R_{\ell}[u_k^{\Omega}]$ then v_{ℓ} is the solution of

$$\begin{cases} -\Delta v + \ell^{N+\alpha-p(N-2)} |x|^{\alpha} v^{p} + \ell^{N+\beta-q(N-1)} |x|^{\beta} |\nabla v|^{q} = 0, & \text{in } \Omega_{\ell} \setminus \{0\} \\ v = 0 & \text{on } \partial \Omega_{\ell}. \end{cases}$$
(3-9)

Since $0 < u_k^{\Omega} < k \Gamma_N$ in $\Omega \setminus \{0\}$, it follows that $0 < v_\ell < k \Gamma_N$ in $\Omega_\ell \setminus \{0\}$.

Since $1 and <math>1 < q < q_{c,\beta}$, by local regularity for elliptic equations [DiBenedetto 1983], the Arzelà–Ascoli theorem, and a standard diagonalization argument, there exists a subsequence $\{v_{\ell_n}\}$ converging to a positive harmonic function in $C^1_{\text{loc}}(\mathbb{R}^N \setminus \{0\})$ as $\ell_n \to 0$. On the other hand, from (1-16), we deduce that $\{v_\ell\}$ converges to $k\Gamma_N$ uniformly in $B_2 \setminus B_{1/2}$ as $\ell \to 0$. Therefore, the whole sequence $\{v_\ell\}$ converges to $k\Gamma_N$ in $C^1_{\text{loc}}(\mathbb{R}^N \setminus \{0\})$ as $\ell \to 0$. In particular, $\nabla v_\ell \to k\nabla\Gamma_N$ in $B_2 \setminus B_{1/2}$, which implies (1-17).

Step 4: u_k^{Ω} is a weak solution of (1-11). By a similar argument as in Step 1, we derive

$$|\nabla u_k^{\Omega}(x)| \le c_{29} k |x|^{1-N} \quad \text{for all } x \in \Omega \setminus \{0\}$$
(3-10)

where $c_{29} = c_{29}(\alpha, \beta, N, p, q, d_1, d_2)$. This, together with (3-2), implies $u_k^{\Omega} \in L^1(\Omega)$ and $F \circ u_k^{\Omega} \in L^1(\Omega)$. For every $\epsilon > 0$, by Green's formula, one gets

$$\int_{\Omega \setminus \overline{B_{\epsilon}}} \left(-u_k^{\Omega} \Delta \zeta + (F \circ u_k^{\Omega}) \zeta \right) dx = -\int_{\partial B_{\epsilon}} \frac{\partial u_k^{\Omega}}{\partial n} \zeta \, dS + \int_{\partial \overline{B_{\epsilon}}} u_k^{\Omega} \frac{\partial \zeta}{\partial n} \, dS, \tag{3-11}$$

where *n* is the outward normal unit vector on ∂B_{ϵ} . Due to (1-17), the right-hand side of (3-11) converges to $k\zeta(0)$. Therefore, thanks to dominated convergence theorem, by letting $\epsilon \to 0$, we obtain (1-12). Finally, by [Marcus and Véron 2014, Theorem 1.2.2], we get (1-15).

Step 5: Uniqueness. Assume u' is a positive solutions of (1-1) satisfying (1-16); then

$$\lim_{|x|\to 0} \frac{u_k^{\Omega}(x)}{u'(x)} = 1.$$

Hence, for every $\delta > 0$, there exists $r(\delta) > 0$ such that $(1 + \delta)u_k^{\Omega} + \delta \ge u'$ on $\partial B_{r(\delta)}$. The function $(1+\delta)u_k^{\Omega} + \delta$ is a supersolution of (1-1) which dominates u' on $\partial \Omega \cup \partial B_{r(\delta)}$; therefore, by the comparison

principle, $(1 + \delta)u_k^{\Omega} + \delta \ge u'$ in $\Omega \setminus B_{r(\delta)}$. Letting $\delta \to 0$ yields $u_k^{\Omega} \ge u'$ in $\Omega \setminus \{0\}$. By permuting u_k^{Ω} and u', we derive $u' = u_k^{\Omega}$.

If Ω is replaced by \mathbb{R}^N , we have the following variant of Theorem A.

Proposition 3.1. Assume $\alpha > -2$, $\beta > -1$, $1 , and <math>1 < q < q_{c,\beta}$. Then for any k > 0, there exists a unique solution $u_k^{\mathbb{R}^N} \in C^2(\mathbb{R}^N \setminus \{0\})$ of (1-1) in $\mathbb{R}^N \setminus \{0\}$ satisfying

$$\lim_{|x| \to \infty} u_k^{\mathbb{R}^N}(x) = 0 \quad and \quad u_k^{\mathbb{R}^N}(x) = k \, (1 + o(1)) \Gamma_N(x) \, as \, |x| \to 0.$$
(3-12)

Moreover, $u_k^{\mathbb{R}^N} \in L^1_{\text{loc}}(\mathbb{R}^N)$, $F \circ u_k^{\mathbb{R}^N} \in L^1_{\text{loc}}(\mathbb{R}^N)$, and there holds

$$\int_{\mathbb{R}^N} \left(-u_k^{\mathbb{R}^N} \Delta \zeta + (F \circ u_k^{\mathbb{R}^N}) \zeta \right) dx = k \zeta(0) \quad \text{for all } \zeta \in C_c^2(\mathbb{R}^N).$$
(3-13)

Proof. For each R > 0, let $u_k^{B_R}$ be the unique solution of (1-1) in $B_R \setminus \{0\}$, vanishing on ∂B_R and satisfying

$$\lim_{|x| \to 0} \frac{u_k^{B_R}(x)}{\Gamma_N(x)} = k.$$
(3-14)

By the comparison principle, $u_k^{B_R} \le u_k^{B_{R'}} \le k \Gamma_N$ in $B_R \setminus \{0\}$ for every R < R'. In light of local regularity [DiBenedetto 1983] and a standard argument,

$$u_k^{\mathbb{R}^N} := \lim_{R \to \infty} u_k^{B_R} \in C^2(\mathbb{R}^N \setminus \{0\})$$

is a solution of (1-1) in $\mathbb{R}^N \setminus \{0\}$. By combining (3-14) and the fact that $u_k^{B_R} \le u_k^{\mathbb{R}^N} \le k\Gamma_N$ in $B_R \setminus \{0\}$ for every R > 0, we derive (3-12). Uniqueness follows from the comparison principle. By proceeding as in the proof of Theorem A, one can verify (3-13).

By a similar, and more simpler, argument as in the proof of Theorem A, one can easily obtain the existence of weakly singular solutions of (1-3).

Proposition 3.2. Assume $\beta > -1$ and $1 < q < q_{c,\beta}$ with $q_{c,\beta}$ defined in (1-14). For any k > 0, there exists a unique solution $w_k^{\Omega} \in C^2(\Omega \setminus \{0\}) \cap C(\overline{\Omega} \setminus \{0\})$ of

$$-\Delta w + |x|^{\beta} |\nabla w|^{q} = k \delta_{0} \quad in \quad \Omega, \text{ with } w = 0 \text{ on } \partial\Omega.$$
(3-15)

Moreover,

$$w_k^{\Omega} = k G^{\Omega}(\cdot, 0) - \mathbb{G}^{\Omega}[|\cdot|^{\beta} |\nabla w_k^{\Omega}|^q];$$
(3-16)

$$w_k^{\Omega}(x) = k(1+o(1))\Gamma_N(x) \quad as \ |x| \to 0;$$
 (3-17)

$$\lim_{|x|\to 0} \left(|x|^{N-1} \nabla w_k^{\Omega}(x) + \frac{k}{N\omega_N} \frac{x}{|x|} \right) = 0.$$
(3-18)

Remark. In addition, by proceeding as in the proof of Proposition 3.1, we obtain the existence of the weak singular solutions $w_k^{\mathbb{R}^N}$ of (1-3) in $\mathbb{R}^N \setminus \{0\}$.

4. Strongly singular solutions

Denote by S^{N-1} the unit sphere in \mathbb{R}^N and let $(r, \sigma) \in (0, \infty) \times S^{N-1}$ be the spherical coordinates in $\mathbb{R}^N \setminus \{0\}$. Let ∇' and Δ' denote respectively the covariant gradient and the Laplace–Beltrami operator on S^{N-1} . In order to characterize strongly singular solutions of (1-1), we study the following quasilinear equation on S^{N-1} :

$$-\Delta'\omega + \lambda\omega^{\frac{\alpha(q-1)+q+\beta}{2+\beta-q}} + \left(\left(\frac{2+\beta-q}{q-1}\right)^2\omega^2 + |\nabla'\omega|^2\right)^{\frac{q}{2}} - \Lambda\omega = 0, \tag{4-1}$$

where

$$\lambda \ge 0$$
, and $\Lambda = \Lambda(N, q, \beta) := \frac{2 + \beta - q}{q - 1} \left(\frac{q + \beta}{q - 1} - N \right)$

We introduce an auxiliary function

$$g_{\lambda}(t) = \lambda t^{\frac{(2+\alpha)(q-1)}{2+\beta-q}} + \left(\frac{2+\beta-q}{q-1}\right)^{q} t^{q-1} - \Lambda, \quad t \in (0,\infty), \quad \lambda \ge 0.$$
(4-2)

It is easy to see that if $1 < q < q_{c,\beta}$ then $\Lambda > 0$; therefore, the algebraic equation $g_{\lambda}(t) = 0$ admits a unique positive solution θ_{λ} . Obviously, θ_{λ} is a positive solution of (4-1), and θ_0 is explicitly given by

$$\theta_0 = \frac{q-1}{2+\beta-q} \left(\frac{q+\beta}{q-1} - N \right)^{\frac{1}{q-1}}.$$
(4-3)

Proposition 4.1. Let $\alpha > -2$, $\beta > -1$, $1 < q < 2 + \beta$, and $\lambda \ge 0$. Denote by \mathcal{E}_{λ} the set of C^2 positive solutions of (4-1) in S^{N-1} .

- (i) If $q \ge q_{c,\beta}$, then $\mathcal{E}_{\lambda} = \emptyset$.
- (ii) If $1 < q < q_{c,\beta}$, then $\mathcal{E}_{\lambda} = \{\theta_{\lambda}\}$.

Proof. (i) Suppose by contradiction that ω is a positive solution of (4-1) and $\omega(\sigma_{\max}) = \max_{S^{N-1}} \omega > 0$ with $\sigma_{\max} \in S^{N-1}$. From (4-1), we get

$$\lambda\omega(\sigma_{\max})^{\frac{\alpha(q-1)+q+\beta}{2+\beta-q}} + \left(\frac{2+\beta-q}{q-1}\right)^{q}\omega(\sigma_{\max})^{q} - \Lambda\omega(\sigma_{\max}) \le 0.$$
(4-4)

Since $q \ge q_{c,\beta}$, we know $\Lambda \le 0$. Therefore, the left hand side is positive, which is a contradiction.

(ii) If ω is a positive solution of (4-1), let $\sigma_{\max}, \sigma_{\min} \in S^{N-1}$ such that

$$\omega(\sigma_{\max}) = \max_{S^{N-1}} \omega \ge \min_{S^{N-1}} \omega = \omega(\sigma_{\min}) > 0.$$

Clearly, σ_{max} satisfies (4-4) and σ_{min} satisfies

$$\lambda\omega(\sigma_{\min})^{\frac{\alpha(q-1)+q+\beta}{2+\beta-q}} + \left(\frac{2+\beta-q}{q-1}\right)^{q}\omega(\sigma_{\min})^{q} - \Lambda\omega(\sigma_{\min}) \ge 0.$$
(4-5)

Consequently, $g_{\lambda}(\omega(\sigma_{\max})) \leq 0 \leq g_{\lambda}(\omega(\sigma_{\min}))$. Since g_{λ} is strictly increasing in $(0, \infty)$, it follows that $\omega(\sigma_{\max}) \leq \theta_{\lambda} \leq \omega(\sigma_{\min})$. Thus, $\omega \equiv \theta_{\lambda}$. This completes the proof.

The next lemma states existence result for both equations (1-3) and (1-1).

Lemma 4.2. Let Ω be either a smooth bounded domain containing the origin 0 or \mathbb{R}^N .

- (i) Assume $\beta > -1$ and $1 < q < q_{c,\beta}$. Then $w_{\infty}^{\Omega} := \lim_{k \to \infty} w_{k}^{\Omega}$ is a nonnegative solution of (1-3) in $\Omega \setminus \{0\}$ satisfying either $w_{\infty}^{\Omega} = 0$ on $\partial\Omega$ if Ω is bounded or $\lim_{|x|\to\infty} w_{\infty}^{\Omega}(x) = 0$ if $\Omega = \mathbb{R}^{N}$.
- (ii) Assume $\alpha > -2$, $\beta > -1$, $1 , and <math>1 < q < q_{c,\beta}$. Then $u_{\infty}^{\Omega} := \lim_{k \to \infty} u_k^{\Omega}$ is a nonnegative solution of (1-1) in $\Omega \setminus \{0\}$ satisfying either $u_{\infty}^{\Omega} = 0$ on $\partial \Omega$ if Ω is bounded or $\lim_{|x|\to\infty} u_{\infty}^{\Omega}(x) = 0$ if $\Omega = \mathbb{R}^N$.

Proof. We only demonstrate (ii) since the proof of (i) is similar and simpler. It follows from Theorem A and Proposition 3.1 that $\{u_k^{\Omega}\}$ is increasing and bounded from above by the function $\overline{U}(x) = c_{30} |x|^{-\frac{2+\alpha}{p-1}}$ where c_{30} is a large positive constant depending on N, p, and α . Therefore, $u_{\infty}^{\Omega} := \lim_{k \to \infty} u_k^{\Omega}$ is a solution of (1-1) in $\Omega \setminus \{0\}$ and $u_{\infty}^{\Omega} \le \overline{U}$ in $\Omega \setminus \{0\}$.

The asymptotic behavior of w_{∞}^{Ω} near the origin 0 is analyzed in the following result.

Proposition 4.3. Assume $\beta > -1$, $1 < q < q_{c,\beta}$, and Ω is either a smooth bounded domain containing the origin 0 or \mathbb{R}^N . Let w_{∞}^{Ω} be the solution in Lemma 4.2(i). Then w_{∞}^{Ω} is a strongly singular solution of (1-3). Moreover, with θ_0 as in (4-3),

$$\lim_{|x|\to 0} |x|^{\frac{2+\beta-q}{q-1}} w_{\infty}^{\Omega}(x) = \theta_0$$
(4-6)

$$\lim_{|x|\to 0} \left(|x|^{\frac{1+\beta}{q-1}} \nabla w_{\infty}^{\Omega}(x) + \left(\frac{q+\beta}{q-1} - N\right)^{\frac{1}{q-1}} \frac{x}{|x|} \right) = 0.$$
(4-7)

Proof. The proof is based upon the similarity argument.

Case 1: $\Omega = \mathbb{R}^N$. For k > 0, recall that w_k^{Ω} is the weakly singular solution of (1-3) in \mathbb{R}^N . For every $\ell > 0$, $T_{\ell}[w_k^{\mathbb{R}^N}]$ is a solution of (1-3) in $\mathbb{R}^N \setminus \{0\}$ which satisfies

$$\lim_{|x| \to 0} \frac{T_{\ell}[w_k^{\mathbb{R}^N}](x)}{\Gamma_N(x)} = \ell^{\frac{2+\beta-q}{q-1}+2-N} k.$$

Due to the uniqueness,

$$T_{\ell}[w_k^{\mathbb{R}^N}] = w_{\ell^{(2+\beta-q)/(q-1)+2-N_k}}^{\mathbb{R}^N}.$$

By letting $k \to \infty$, we deduce that $T_{\ell}[w_{\infty}^{\mathbb{R}^N}] = w_{\infty}^{\mathbb{R}^N}$, i.e., $w_{\infty}^{\mathbb{R}^N}$ is self-similar. Consequently, $w_{\infty}^{\mathbb{R}^N}$ can be written in the form

$$w_{\infty}^{\mathbb{R}^{N}}(x) = |x|^{-\frac{2+\beta-q}{q-1}}\omega(x/|x|) \quad \text{for all } x \neq 0,$$
(4-8)

where ω is a positive solution of (4-1) with $\lambda = 0$. Since $1 < q < q_{c,\beta}$, by Proposition 4.1, $\omega \equiv \theta_0$. Therefore,

$$w_{\infty}^{\mathbb{R}^N}(x) = \theta_0 |x|^{-\frac{2+\beta-q}{q-1}} =: W_0(x) \text{ for all } x \neq 0,$$

the unique self-similar solution of (1-3) in $\mathbb{R}^N \setminus \{0\}$.

Case 2: Ω *is a bounded smooth domain.* Since $T_{\ell}[w_k^{\Omega}] = w_{\ell^{(2+\beta-q)/(q-1)+2-N_k}}^{\Omega_{\ell}}$ by uniqueness, it follows that

$$T_{\ell}[w_{\infty}^{\Omega}] = w_{\infty}^{\Omega_{\ell}}.$$
(4-9)

Since $w_{\infty}^{\Omega}(x) \leq c_8 |x|^{-\frac{2+\beta-q}{q-1}}$ in $\Omega \setminus \{0\}$, $w_{\infty}^{\Omega_{\ell}}$ satisfies the same estimate in $\Omega_{\ell} \setminus \{0\}$ for every $\ell \in (0, 1)$. By local regularity for elliptic equations and Arzelà–Ascoli theorem, there exists a subsequence $\{w_{\infty}^{\Omega_{\ell n}}\}$ converging in $C_{\text{loc}}^1(\mathbb{R}^N \setminus \{0\})$ to a function w_0 which is a solution of (1-3) in $\mathbb{R}^N \setminus \{0\}$.

If Ω is star-shaped with respect to the origin 0 then we get $w_k^{\Omega_\ell} \leq w_k^{\Omega_{\ell'}}$ for every k > 0 and $0 < \ell' < \ell < 1$, which implies that $w_{\infty}^{\Omega_\ell} \leq w_{\infty}^{\Omega_{\ell'}}$ for every $0 < \ell' < \ell < 1$. Therefore, the whole sequence $\{w_{\infty}^{\Omega_\ell}\}$ converges to w_0 in $C_{\text{loc}}^1(\mathbb{R}^N \setminus \{0\})$ as $\ell \to 0$. By (4-9), for any $\ell, \ell' > 0$,

$$T_{\ell}[T_{\ell'}[w_{\infty}^{\Omega}]] = T_{\ell}[w_{\infty}^{\Omega_{\ell'}}] = w_{\infty}^{\Omega_{\ell'\ell}}.$$

By letting $\ell' \to 0$, we obtain $T_{\ell}[w_0] = w_0$ for every $\ell > 0$, namely w_0 is a self-similar solution of (1-3) in $\mathbb{R}^N \setminus \{0\}$. Therefore, $w_0 = w_{\infty}^{\mathbb{R}^N} = W_0$ and consequently,

$$\lim_{\ell \to 0} \ell^{\frac{2+\beta-q}{q-1}} w_{\infty}^{\Omega}(\ell x) = \theta_0 |x|^{-\frac{2+\beta-q}{q-1}}.$$

By putting $y = \ell x$ with |x| = 1, we get (4-6).

In general, if Ω is not necessarily star-shaped with respect to the origin 0, since $\overline{B_{3d_1}} \subset \Omega \subset B_{d_2}$, it follows that $w_{\infty}^{B_{3d_1}} \leq w_{\infty}^{\Omega} \leq w_{\infty}^{B_{d_2}}$. As (4-6) holds for $w_{\infty}^{B_{3d_1}}$ (i.e., Ω is replaced by B_{3d_1}) and $w_{\infty}^{B_{d_2}}$, we derive (4-6). Consequently, for every $x \neq 0$,

$$w_0(x) = \lim_{n \to \infty} w_{\infty}^{\Omega_{\ell_n}}(x) = \lim_{n \to \infty} \ell_n^{\frac{2+\beta-q}{q-1}} w_{\infty}^{\Omega}(\ell_n x) = \theta_0 |x|^{-\frac{2+\beta-q}{q-1}} = W_0(x).$$

Hence the whole sequence $\{w_{\infty}^{\Omega_{\ell}}\}_{\ell}$ converges to W_0 in $C^1_{\text{loc}}(\mathbb{R}^N \setminus \{0\})$ as $\ell \to 0$. By using a similar argument as in Step 3 of the proof of Theorem A, we obtain (4-7). This implies $|x|^{\beta} |\nabla w_{\infty}^{\Omega}|^q \notin L^1(B_{\epsilon})$ for every $\epsilon > 0$. Thus w_{∞}^{Ω} is a strongly singular solution of (1-3).

Note that (1-1) does not admit any similarity transformation, except when D = 1. However, due to the asymptotic behavior of v_{∞}^{Ω} (the strongly singular solution of (1-2)) and of w_{∞}^{Ω} near 0, we can establish the asymptotic behavior of u_{∞}^{Ω} . Put

$$\Theta = \begin{cases} \vartheta & \text{if } D < 1, \\ \theta_1 & \text{if } D = 1, \\ \theta_0 & \text{if } D > 1, \end{cases}$$

$$(4-10)$$

where ϑ is as in (1-7) and θ_{λ} ($\lambda = 0, 1$) is given in (4-2).

Now we are ready to deal with strongly singular solution of (1-1).

Proposition 4.4. Assume $\alpha > -2$, $\beta > -1$, $1 , and <math>1 < q < q_{c,\beta}$. Let Ω be either a smooth bounded domain containing the origin 0 or \mathbb{R}^N and u_{∞}^{Ω} be the solution of (1-1) defined in Lemma 4.2. Then u_{∞}^{Ω} is a strongly singular solution of (1-1). Moreover (1-18) and (1-19) hold.

Proof. We consider three cases.

Case 1: D = 1. In this case, S_{ℓ} is a similarity transformation for (1-1). Therefore, (1-18) and (1-19) can be obtained by proceeding as in the proof of Proposition 4.3 and consequently u_{∞}^{Ω} is a strongly singular solution of (1-1). Notice that if $\Omega = \mathbb{R}^N$ then $\Omega_{\ell} = \mathbb{R}^N$ and u = 0 on $\partial \Omega_{\ell}$ is understood as $u(x) \to 0$ as $|x| \to \infty$.

Case 2:
$$D > 1$$
. For every $\ell \in (0, 1)$, put $W_{\ell} = T_{\ell}[u_{\infty}^{\Omega}]$. Then W_{ℓ} is a solution of
 $-\Delta u + \ell^{\frac{\alpha(q-1)+q+\beta-p(2+\beta-q)}{q-1}} |x|^{\alpha} u^{p} + |x|^{\beta} |\nabla u|^{q} = 0$ in $\Omega_{\ell} \setminus \{0\}$, with $u = 0$ on $\partial \Omega_{\ell}$. (4-11)

By the regularity result [DiBenedetto 1983], for every R > 1 there exist $M = M(\alpha, \beta, p, q, N, R, d_1, d_2)$ and $\mu = \mu(\alpha, \beta, p, q, N, d_1, d_2) \in (0, 1)$ such that

$$\|W_{\ell}\|_{C^{1,\mu}(B_R \setminus B_{R^{-1}})} < M.$$

Consequently, there exists a subsequence $\{W_{\ell_n}\}$ which converges to a function \widetilde{W} in $C^1_{\text{loc}}(\mathbb{R}^N \setminus \{0\})$ as $\ell_n \to 0$. The function \widetilde{W} is a solution of (1-3) in $\mathbb{R}^N \setminus \{0\}$ satisfying $\lim_{|x|\to\infty} \widetilde{W}(x) = 0$. By Proposition 2.1, $w_{\infty}^{\mathbb{R}^N} \ge \widetilde{W} \ge u_k^{\mathbb{R}^N}$ for every k > 0. Therefore, thanks to (3-12), we get

$$\liminf_{x \to 0} \frac{\widetilde{W}(x)}{w_k^{\mathbb{R}^N}(x)} = \liminf_{x \to 0} \frac{\widetilde{W}(x)}{k\Gamma_N(x)} = \liminf_{x \to 0} \frac{\widetilde{W}(x)}{u_k^{\mathbb{R}^N}(x)} \ge 1.$$

By using a similar argument as in the proof Proposition 3.1, together with the comparison principle, we deduce that $\widetilde{W} \ge w_k^{\mathbb{R}^N}$ in $\mathbb{R}^N \setminus \{0\}$ for every k > 0. It follows that $\widetilde{W} \ge w_{\infty}^{\mathbb{R}^N}$ in $\mathbb{R}^N \setminus \{0\}$ and hence $\widetilde{W} = w_{\infty}^{\mathbb{R}^N}$ in $\mathbb{R}^N \setminus \{0\}$. Thus the whole sequence $\{W_\ell\}$ converges to $w_{\infty}^{\mathbb{R}^N}$ in $C_{\text{loc}}^1(\mathbb{R}^N \setminus \{0\})$ as $\ell \to 0$. This leads to (1-18) and (1-19). Consequently u_{∞}^{Ω} is a strongly singular solution.

Case 3: D < 1. For every $\ell \in (0, 1)$, put $V_{\ell} = S_{\ell}[u_{\infty}^{\Omega}]$. Similarly, we can show that the sequence $\{V_{\ell}\}$ converges to $v_{\infty}^{\mathbb{R}^{N}}$ (the strongly singular solution of (1-2)) in $C_{\text{loc}}^{1}(\mathbb{R}^{N} \setminus \{0\})$ as $\ell \to 0$. This yields the desired result.

Proof of Theorem B. The theorem follows from Lemma 4.2 and Proposition 4.4.

5. Classification and removability of isolated singularities

5.1. *Classification of isolated singularities.* The following lemma plays an important role in proving the classification result.

Lemma 5.1. Assume Ω is a bounded domain containing the origin $0, \alpha > -2, \beta > -1, 1 ,$ $and <math>1 < q < q_{c,\beta}$. Let $u \in C^2(\Omega \setminus \{0\}) \cap C(\overline{\Omega} \setminus \{0\})$ be a nonnegative solution of (1-1) in $\Omega \setminus \{0\}$ vanishing on $\partial \Omega$. Then there exists $c_{31} = c_{31}(N, \alpha, \beta, p, q, d_1, d_2)$ such that for any $\delta \in (0, \frac{1}{4}d_1)$, there holds

$$\sup\{u(x): x \in \partial B_{\delta}\} \le c_{31} \inf\{u(x): x \in \partial B_{\delta}\}.$$
(5-1)

Proof. Fix $\delta \in (0, \frac{1}{4}d_1)$ and take $x_0 \in \partial B_{\delta} \setminus \{0\}$. Put $r_0 = |x_0|, y_0 = r_0^{-1}x_0 \in \partial B_1$,

$$\varphi_{r_0} = \begin{cases} S_{r_0}[u] & \text{if } D \le 1, \\ T_{r_0}[u] & \text{if } D > 1. \end{cases}$$

It is easy to see that φ_{r_0} is a nonnegative solution of one of the following equations

$$\begin{cases} -\Delta \varphi + |x|^{\alpha} \varphi^{p} + r_{0}^{\frac{p(2+\beta-q)-\alpha(q-1)-q-\beta}{p-1}} |x|^{\beta} |\nabla \varphi|^{q} = 0 & \text{if } D < 1, \\ -\Delta \varphi + r_{0}^{\frac{\alpha(q-1)+q+\beta-p(2+\beta-q)}{q-1}} |x|^{\alpha} \varphi^{p} + |x|^{\beta} |\nabla \varphi|^{q} = 0 & \text{if } D > 1, \\ -\Delta \varphi + |x| \alpha \varphi^{p} + |x|^{\beta} |\nabla \varphi|^{q} = 0 & \text{if } D = 1. \end{cases}$$

in $\Omega_{r_0} = r_0^{-1}\Omega$. By Lemma 2.6, for every $y \in B_{1/4}(y_0)$,

$$\varphi_{r_0}(y) = r_0^{\tau} u(r_0 y) \le c_{12} |y|^{-\tau} < c_{12} 2^{\tau}.$$

By Harnack's inequality (see, e.g., [Trudinger 1980; 1967]) there exists $c_{32} = c_{32}(\alpha, \beta, p, q, N, d_1, d_2)$ such that

$$\sup\{\varphi_{r_0}(y): y \in B_{1/8}(y_0)\} \le c_{32} \inf\{\varphi_{r_0}(y): y \in B_{1/8}(y_0)\}.$$

As ∂B_{δ} can be covered by a finite number (depending only on *N*) of balls of center on ∂B_{δ} and of radius $\frac{1}{4}\delta$, we obtain (5-1).

Proof of Theorem C. The proof is based on Lemma 5.1, scaling argument and asymptotic behavior of weakly singular solutions and strongly singular solutions. Put

$$L := \limsup_{|x| \to 0} \frac{u(x)}{\Gamma_N(x)} \ge 0.$$
(5-2)

Case 1: L = 0. Then for every $\epsilon > 0$, there exists $\delta = \delta(\epsilon) > 0$ such that $\delta \to 0$ as $\epsilon \to 0$ and $u \le \epsilon \Gamma_N$ on ∂B_{δ} . Thanks to Proposition 2.1, $u \le \epsilon \Gamma_N$ in $\Omega \setminus B_{\delta}$. Letting $\epsilon \to 0$ yields $u \equiv 0$.

Case 2: $L = \infty$. By (5-1),

$$\liminf_{|x|\to 0} \frac{u(x)}{\Gamma_N(x)} = \infty,$$

which along with (1-16) implies

$$\liminf_{|x|\to 0} \frac{u(x)}{u_k^{\Omega}(x)} = \infty \quad \text{for all } k > 0.$$

By the comparison principle, $u \ge u_k^{\Omega}$ in $\Omega \setminus \{0\}$ for every k > 0. Hence $u \ge u_{\infty}^{\Omega}$ in $\Omega \setminus \{0\}$. Consequently, by Theorem B, we derive

$$\liminf_{|x|\to 0} |x|^{\tau} u(x) \ge \lim_{|x|\to 0} |x|^{\tau} u_{\infty}^{\Omega}(x) = \Theta.$$
(5-3)

We next prove that¹

$$\limsup_{|x| \to 0} |x|^{\tau} u(x) \le \Theta.$$
(5-4)

For any $\epsilon > 0$, it can be checked that there exists $\Theta_{\epsilon} > 0$ with $\Theta_{\epsilon} \to \Theta$ as $\epsilon \to 0$ such that $\Theta_{\epsilon}|x|^{-\tau-\epsilon}$ is a supersolution of (1-1) in $B_{d_1} \setminus \{0\}$ when D = 1 (respectively, of (1-2) in $B_{d_1} \setminus \{0\}$ when D < 1 and of

¹The proof of (5-4) was proposed by a referee.

(1-3) in $B_{d_1} \setminus \{0\}$ when D > 1). Then by (2-9) and the comparison principle, we find that

$$u(x) \le \Theta_{\epsilon} |x|^{-\tau - \epsilon} + \max_{\partial B_{d_1}} u$$

in $B_{d_1} \setminus \{0\}$ for every $\epsilon > 0$. Letting $\epsilon \to 0$ for fixed $x \in B_{d_1} \setminus \{0\}$, then $|x| \to 0$, we obtain (5-4).

Case 3: $0 < L < \infty$. In light of (5-1), there is a positive number k such that

$$\liminf_{|x| \to 0} \frac{u(x)}{\Gamma_N(x)} = k > c_{34}^{-1}L,$$
(5-5)

here $c_{34} = c_{34}(N, \alpha, \beta, p, q, d_1, d_2) > 1$, which implies

$$\liminf_{|x| \to 0} \frac{u(x)}{u_k^{\Omega}(x)} = 1.$$
(5-6)

By Proposition 2.1, $u \ge u_k^{\Omega}$ in $\Omega \setminus \{0\}$. From (5-6), there exists a sequence $\{x_n\}$ converging to 0 such that

$$\lim_{n \to \infty} \frac{u(x_n)}{u_k^{\Omega}(x_n)} = 1$$

Put $r_n = |x_n|$, $v_{k,n} = R_{r_n}[u_k^{\Omega}]$ and $v_n = R_{r_n}[u]$ in $\Omega_{r_n} = r_n^{-1}\Omega$. Then both $v_{k,n}$ and v_n are solutions of

$$-\Delta v + r_n^{N+\alpha-p(N-2)} |x|^{\alpha} v^p + r_n^{N+\beta-q(N-1)} |x|^{\beta} |\nabla v|^q = 0 \quad \text{in } \Omega_{r_n} \setminus \{0\}.$$

By the Arzelà–Ascoli theorem, regularity theory of elliptic equations and a standard diagonalization argument, up to subsequences, $\{v_{k,n}\}$ and $\{v_n\}$ converge respectively in $C^1_{\text{loc}}(\mathbb{R}^N \setminus \{0\})$ to nonnegative harmonic functions V_k^* and V^* in $\mathbb{R}^N \setminus \{0\}$. Since $u \ge u_k^{\Omega}$, it follows that $V^* \ge V_k^*$. Put

$$\kappa_n = \sup\left\{\frac{u(x)}{u_k^{\Omega}(x)} : x \in \partial B_{r_n}\right\} \in [1, c_{34}]$$

and $y_n = r_n^{-1} x_n \in \partial B_1$. Therefore, up to subsequences, $\kappa_n \to \kappa \in [1, c_{34}]$ and $y_n \to y^* \in \partial B_1$. Consequently, $V^*(y^*) = V_k^*(y^*)$. By the strong maximum principle, we deduce that $V^* = V_k^*$ in $\mathbb{R}^N \setminus \{0\}$, which implies $\kappa = 1$. Thus, for every $\epsilon > 0$, there exists $n_{\epsilon} > 0$ such that

$$n \ge n_{\epsilon} \implies u_k^{\Omega} \le u \le (1+\epsilon)u_k^{\Omega} \text{ in } \partial B_{r_n}.$$

The comparison principle implies $u \leq (1 + \epsilon)u_k^{\Omega}$ in $\Omega \setminus B_{r_n}$. Letting $\epsilon \to 0$ yields $u \leq u_k^{\Omega}$ in $\Omega \setminus \{0\}$. Thus $u \equiv u_k^{\Omega}$.

5.2. *Removability.* We shall treat successively two cases: $q_{c,\beta} \le q < 2 + \beta$ and $q = 2 + \beta$.

Proof of Theorem D with $q_{c,\beta} \le q < 2 + \beta$. The proof is divided into three cases and strongly based upon Proposition 4.1 and self-similarity arguments.

Case 1: If D = 1 then $p \ge p_{c,\alpha}$ and $q \ge q_{c,\beta}$. For $0 < \delta < \frac{1}{2}d_1$ and $R > d_2 = \text{diam}(\Omega)$, let $u_{\delta,R}$ be the solution of

$$\begin{cases} -\Delta u + F \circ u = 0 & \text{in } B_R \setminus B_\delta, \\ u = c_{33} \delta^{-\tau} & \text{on } \partial B_\delta, \\ u = 0 & \text{on } \partial B_R, \end{cases}$$
(5-7)

where $c_{33} = \max\{c_8, c_{12}, \Theta\}$. By the comparison principle, $u \le u_{\delta,R} \le u_{\delta',R'}$ in $\Omega \setminus B_{\delta'}$ for every $0 < \delta \le \delta'$ and $0 < R \le R'$. Put $\tilde{u} := \lim_{R \to \infty} \lim_{\delta \to 0} u_{\delta,R}$; then \tilde{u} is a solution of (1-1) in $\mathbb{R}^N \setminus \{0\}$ and $u \le \tilde{u}$ in $\Omega \setminus \{0\}$. By uniqueness, $T_{\ell}[u_{\delta,R}] = u_{\delta/\ell,R/\ell}$ for every $\ell > 0$. Letting $\delta \to 0$ and $R \to \infty$ successively implies $T_{\ell}[\tilde{u}] = \tilde{u}$ for every $\ell > 0$. Hence \tilde{u} is a self-similar solution of (1-1) in $\mathbb{R}^N \setminus \{0\}$ and can be represented in the form

$$\tilde{u}(x) = |x|^{-\frac{2+\beta-q}{q-1}}\omega(x/|x|) \text{ for all } x \in \mathbb{R}^N \setminus \{0\},$$

where ω is a solution of (4-1). Since $q_{c,\beta} \le q < 2 + \beta$, from Proposition 4.1 we deduce that $\omega \equiv 0$. It follows that $\tilde{u} \equiv 0$ and thus $u \equiv 0$.

Case 2: If D > 1 then we must have $q \ge q_{c,\beta}$. For any $0 < \delta < R$, let $w_{\delta,R}$ be the solution of

$$\begin{cases} -\Delta w + |x|^{\beta} |\nabla w|^{q} = 0 & \text{in } B_{R} \setminus \overline{B_{\delta}}, \\ w = c_{33} \delta^{-\frac{2+\beta-q}{q-1}} & \text{on } \partial B_{\delta}, \\ w = & \text{on } \partial B_{R}. \end{cases}$$
(5-8)

By the comparison principle, $u \leq w_{\delta,R} \leq w_{\delta',R'}$ in $\Omega \setminus B_{\delta'}$ for every $0 < \delta \leq \delta'$ and $0 < R \leq R'$. Put $\tilde{w} := \lim_{R \to \infty} \lim_{\delta \to 0} w_{\delta,R}$ then \tilde{w} is a solution of (1-3) in $\mathbb{R}^N \setminus \{0\}$ and $u \leq \tilde{w}$ in $\Omega \setminus \{0\}$. By uniqueness, $T_{\ell}[w_{\delta,R}] = w_{\delta/\ell,R/\ell}$ for every $\ell > 0$. Letting $\delta \to 0$ and $R \to \infty$ successively implies $T_{\ell}[\tilde{w}] = \tilde{w}$ for every $\ell > 0$. Hence \tilde{w} is a self-similar solution of (1-3) in $\mathbb{R}^N \setminus \{0\}$ and can be represented in the form

$$\tilde{w}(x) = |x|^{-\frac{2+\beta-q}{q-1}}\omega(x/|x|) \text{ for all } x \in \mathbb{R}^N \setminus \{0\},$$

where ω is a solution of (4-1) with $\lambda = 0$. Since $q_{c,\beta} \le q < 2 + \beta$, from Proposition 4.1 we deduce that $\omega \equiv 0$. It follows that $\tilde{w} \equiv 0$ and thus $u \equiv 0$.

Case 3: If D < 1 then we must have $p \ge p_{c,\alpha}$. One can use an argument similar to the proof in Case 2 to obtain $u \equiv 0$.

Remark. Theorem D with $q < 2 + \beta$ can be obtained by a different way which is suggested by the referee. The proof, that we present below, is more direct, independent of Proposition 4.1 and does not require any self-similarity arguments.

Assume that either $p \ge p_{c,\alpha}$ or $q \ge q_{c,\beta}$. We distinguish two cases:

Case 1: If $D \ge 1$ then we must have $q \ge q_{c,\beta}$.

Case 2: If D < 1 then we must have $p \ge p_{c,\alpha}$.

If $q > q_{c,\beta}$ in Case 1 or $p > p_{c,\alpha}$ in Case 2, then by (1-13) and (2-9), we deduce that

$$\lim_{|x|\to 0} \frac{u(x)}{\Gamma_N(x)} = 0$$

Since u = 0 on $\partial \Omega$, the comparison principle gives that $u \equiv 0$ in $\Omega \setminus \{0\}$.

If $q = q_{c,\beta}$ in Case 1 or $p = p_{c,\alpha}$ in Case 2 then by (1-13) and (2-9), we deduce that

$$\lim_{|x|\to 0}\frac{u(x)}{\Gamma_N(x)}<\infty$$

For every $\epsilon > 0$ small, it can be easily checked that there exists $C_{\epsilon} > 0$ with $C_{\epsilon} \to 0$ as $\epsilon \to 0$ such that $S_{\epsilon}(x) := C_{\epsilon}|x|^{2-N-\epsilon}$ is a supersolution of (1-3) in $B_1 \setminus \{0\}$ when $q = q_{c,\beta}$ in Case 1 (respectively, a supersolution of (1-2) in $B_1 \setminus \{0\}$ when $p = p_{c,\alpha}$ in Case 2). Since

$$\lim_{|x|\to 0}\frac{u(x)}{S_{\epsilon}(x)}=0,$$

by the comparison principle, $u(x) \leq S_{\epsilon}(x) + \max_{\partial B_{d_1}} u$ in $B_{d_1} \setminus \{0\}$. Letting $\epsilon \to 0$, we get $u \leq \max_{\partial B_{d_1}} u$. Since u = 0 on $\partial \Omega \setminus \{0\}$, we find that $u \equiv 0$ in $\Omega \setminus \{0\}$.

In order to prove Theorem D in the case $q = 2 + \beta$ we need the following lemma.

Lemma 5.2. Let $\beta > -1$. If $w \in C^2(\Omega \setminus \{0\}) \cap C(\overline{\Omega} \setminus \{0\})$ is a nonnegative solution of

$$-\Delta w + |x|^{\beta} |\nabla w|^{2+\beta} = 0 \quad in \ \Omega \setminus \{0\},$$
(5-9)

which vanishes on $\partial \Omega$ then $w \equiv 0$.

Proof. By (2-3), there exists a positive constant $c_{35} = c_{35}(N, q, \beta, d_1, d_2, ||w||_{L^{\infty}(\partial B_{d_1})})$ such that $w(x) \le c_{35} - c_3 \ln|x|$ in $B_{d_1} \setminus \{0\}$. The constant c_{35} can be chosen such that $\Phi(x) := c_{35} - c_3 \ln|x|$ is a positive superharmonic function in $\Omega \setminus \{0\}$.

For $\epsilon \in (0, d_1)$, let h_{ϵ} be the harmonic function in $\Omega \setminus B_{\epsilon}$ such that $h_{\epsilon} = w$ on ∂B_{ϵ} and $h_{\epsilon} = 0$ on $\partial \Omega$. By the comparison principle, $w \leq h_{\epsilon}$ in $\Omega \setminus B_{\epsilon}$ for every $\epsilon \in (0, d_1)$. Consequently, $h_{\epsilon} \leq h_{\epsilon'}$ for $0 < \epsilon' < \epsilon$. On the other hand, since Φ is a positive superharmonic function in $\Omega \setminus B_{\epsilon}$ which dominates h_{ϵ} on $\partial \Omega \cup \partial B_{\epsilon}$, by the comparison principle, $h_{\epsilon} \leq \Phi$ in $\Omega \setminus B_{\epsilon}$. Therefore, $\{h_{\epsilon}\}$ converges, as $\epsilon \to 0$, to a harmonic function \hat{h} in $\Omega \setminus \{0\}$ which vanishes on $\partial \Omega$ and satisfies $w \leq \hat{h} \leq \Phi$ in $\Omega \setminus \{0\}$. Since N > 2, we deduce that $\hat{h}(x) = o(\Gamma_N(x))$ as $|x| \to 0$. Therefore $\hat{h} \equiv 0$. Thus $w \equiv 0$.

Proof of Theorem D with $q = 2 + \beta$ *.*

For $\epsilon \in (0, d_1)$, let w_{ϵ} be the solution of (2-10) with $q = 2 + \beta$. The sequence $\{w_{\epsilon}\}$ converges, as $\epsilon \to 0$, to a solution \hat{w} of (5-9) in $\Omega \setminus \{0\}$ which vanishes on $\partial \Omega$. Since $u \le w_{\epsilon}$ for every $\epsilon \in (0, d_1)$, it follows that $u \le \hat{w}$. By Lemma 5.2, $\hat{w} \equiv 0$ and thus $u \equiv 0$.

Acknowledgements

This research was supported by Fondecyt Grant 3160207. The author would like to thank the anonymous referees for a careful reading of the manuscript and helpful comments.

References

- [Baras and Pierre 1984] P. Baras and M. Pierre, "Singularités éliminables pour des équations semi-linéaires", Ann. Inst. Fourier (Grenoble) **34**:1 (1984), 185–206. MR 743627
- [Bidaut-Véron et al. 2014] M.-F. Bidaut-Véron, M. Garcia-Huidobro, and L. Véron, "Local and global properties of solutions of quasilinear Hamilton–Jacobi equations", *J. Funct. Anal.* **267**:9 (2014), 3294–3331. MR 3261111
- [Brézis and Véron 1980/81] H. Brézis and L. Véron, "Removable singularities for some nonlinear elliptic equations", *Arch. Rational Mech. Anal.* **75**:1 (1980/81), 1–6. MR 592099
- [Cîrstea 2014] F. C. Cîrstea, A complete classification of the isolated singularities for nonlinear elliptic equations with inverse square potentials, Mem. Amer. Math. Soc. 227, 2014. MR 3135311
- [Cîrstea and Du 2010] F. C. Cîrstea and Y. Du, "Isolated singularities for weighted quasilinear elliptic equations", *J. Funct. Anal.* **259**:1 (2010), 174–202. MR 2610383
- [DiBenedetto 1983] E. DiBenedetto, " $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations", *Nonlinear Anal.* **7**:8 (1983), 827–850. MR 709038
- [Friedman and Véron 1986] A. Friedman and L. Véron, "Singular solutions of some quasilinear elliptic equations", *Arch. Rational Mech. Anal.* **96**:4 (1986), 359–387. MR 855755
- [Gilbarg and Trudinger 2001] D. Gilbarg and N. S. Trudinger, *Elliptic partial differential equations of second order*, Springer, Berlin, 2001. MR 1814364
- [Lasry and Lions 1989] J.-M. Lasry and P.-L. Lions, "Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints, I: The model problem", *Math. Ann.* **283**:4 (1989), 583–630. MR 990591
- [Lieb and Loss 1997] E. H. Lieb and M. Loss, *Analysis*, Graduate Studies in Mathematics **14**, American Mathematical Societyi, Providence, RI, 1997. MR 1415616
- [Lieberman 1988] G. M. Lieberman, "Boundary regularity for solutions of degenerate elliptic equations", *Nonlinear Anal.* **12**:11 (1988), 1203–1219. MR 969499
- [Lions 1985] P.-L. Lions, "Quelques remarques sur les problèmes elliptiques quasilinéaires du second ordre", *J. Analyse Math.* **45** (1985), 234–254. MR 833413
- [Marcus 2013] M. Marcus, "Remarks on nonlinear equations with measures", *Commun. Pure Appl. Anal.* **12**:4 (2013), 1745–1753. MR 2997539
- [Marcus and Nguyen 2015] M. Marcus and P.-T. Nguyen, "Elliptic equations with nonlinear absorption depending on the solution and its gradient", *Proc. Lond. Math. Soc.* (3) **111**:1 (2015), 205–239. MR 3404781
- [Marcus and Véron 2014] M. Marcus and L. Véron, *Nonlinear second order elliptic equations involving measures*, De Gruyter Series in Nonlinear Analysis and Applications **21**, De Gruyter, Berlin, 2014. MR 3156649
- [Nguyen Phuoc and Véron 2012] T. Nguyen Phuoc and L. Véron, "Boundary singularities of solutions to elliptic viscous Hamilton–Jacobi equations", J. Funct. Anal. 263:6 (2012), 1487–1538. MR 2948222
- [Serrin 1965] J. Serrin, "Isolated singularities of solutions of quasilinear equations", Acta Math. 113 (1965), 219–240. MR 0176219
- [Trudinger 1967] N. S. Trudinger, "On Harnack type inequalities and their application to quasilinear elliptic equations", *Comm. Pure Appl. Math.* **20** (1967), 721–747. MR 0226198
- [Trudinger 1980] N. S. Trudinger, "Local estimates for subsolutions and supersolutions of general second order elliptic quasilinear equations", *Invent. Math.* **61**:1 (1980), 67–79. MR 587334
- [Vázquez and Véron 1985] J. L. Vázquez and L. Véron, "Isolated singularities of some semilinear elliptic equations", J. *Differential Equations* **60**:3 (1985), 301–321. MR 811769
- [Véron 1981] L. Véron, "Singular solutions of some nonlinear elliptic equations", *Nonlinear Anal.* **5**:3 (1981), 225–242. MR 607806
- [Véron 1996] L. Véron, *Singularities of solutions of second order quasilinear equations*, Pitman Research Notes in Mathematics Series **353**, Longman, Harlow, 1996. MR 1424468

Received 20 Oct 2015. Revised 21 Apr 2016. Accepted 6 Jun 2016.

PHUOC-TAI NGUYEN: nguyenphuoctai.hcmup@gmail.com

Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 6904441 Santiago, Chile

Analysis & PDE

msp.org/apde

EDITORS

EDITOR-IN-CHIEF

Patrick Gérard

patrick.gerard@math.u-psud.fr

Université Paris Sud XI

Orsay, France

BOARD OF EDITORS

Nicolas Burq	Université Paris-Sud 11, France nicolas.burq@math.u-psud.fr	Werner Müller	Universität Bonn, Germany mueller@math.uni-bonn.de
Massimiliano Berti	Scuola Intern. Sup. di Studi Avanzati, Italy berti@sissa.it	Gilles Pisier	Texas A&M University, and Paris 6 pisier@math.tamu.edu
Sun-Yung Alice Chang	Princeton University, USA chang@math.princeton.edu	Tristan Rivière	ETH, Switzerland riviere@math.ethz.ch
Michael Christ	University of California, Berkeley, USA mchrist@math.berkeley.edu	Igor Rodnianski	Princeton University, USA irod@math.princeton.edu
Charles Fefferman	Princeton University, USA cf@math.princeton.edu	Wilhelm Schlag	University of Chicago, USA schlag@math.uchicago.edu
Ursula Hamenstaedt	Universität Bonn, Germany ursula@math.uni-bonn.de	Sylvia Serfaty	New York University, USA serfaty@cims.nyu.edu
Vaughan Jones	U.C. Berkeley & Vanderbilt University vaughan.f.jones@vanderbilt.edu	Yum-Tong Siu	Harvard University, USA siu@math.harvard.edu
Vadim Kaloshin	University of Maryland, USA vadim.kaloshin@gmail.com	Terence Tao	University of California, Los Angeles, USA tao@math.ucla.edu
Herbert Koch	Universität Bonn, Germany koch@math.uni-bonn.de	Michael E. Taylor	Univ. of North Carolina, Chapel Hill, USA met@math.unc.edu
Izabella Laba	University of British Columbia, Canada ilaba@math.ubc.ca	Gunther Uhlmann	University of Washington, USA gunther@math.washington.edu
Gilles Lebeau	Université de Nice Sophia Antipolis, France lebeau@unice.fr	ce András Vasy	Stanford University, USA andras@math.stanford.edu
Richard B. Melrose	Massachussets Inst. of Tech., USA rbm@math.mit.edu	Dan Virgil Voiculescu	University of California, Berkeley, USA dvv@math.berkeley.edu
Frank Merle	Université de Cergy-Pontoise, France Frank.Merle@u-cergy.fr	Steven Zelditch	Northwestern University, USA zelditch@math.northwestern.edu
William Minicozzi II	Johns Hopkins University, USA minicozz@math.jhu.edu	Maciej Zworski	University of California, Berkeley, USA zworski@math.berkeley.edu
Clément Mouhot	Cambridge University, UK c.mouhot@dpmms.cam.ac.uk		

PRODUCTION

production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/apde for submission instructions.

The subscription price for 2016 is US \$235/year for the electronic version, and \$430/year (+\$55, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Analysis & PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

APDE peer review and production are managed by EditFlow[®] from MSP.

PUBLISHED BY mathematical sciences publishers nonprofit scientific publishing

http://msp.org/

© 2016 Mathematical Sciences Publishers

ANALYSIS & PDE

Volume 9 No. 7 2016

The final-state problem for the cubic-quintic NLS with nonvanishing boundary conditions ROWAN KILLIP, JASON MURPHY and MONICA VISAN	1523
Magnetic wells in dimension three BERNARD HELFFER, YURI KORDYUKOV, NICOLAS RAYMOND and SAN VŨ NGỌC	1575
An analytical and numerical study of steady patches in the disc FRANCISCO DE LA HOZ, ZINEB HASSAINIA, TAOUFIK HMIDI and JOAN MATEU	1609
Isolated singularities of positive solutions of elliptic equations with weighted gradient term PHUOC-TAI NGUYEN	1671
A second order estimate for general complex Hessian equations DUONG H. PHONG, SEBASTIEN PICARD and XIANGWEN ZHANG	1693
Parabolic weighted norm inequalities and partial differential equations JUHA KINNUNEN and OLLI SAARI	1711
A double well potential system JAEYOUNG BYEON, PIERO MONTECCHIARI and PAUL H. RABINOWITZ	1737