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ISOLATED SINGULARITIES OF POSITIVE SOLUTIONS
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PHUOC-TAI NGUYEN

Let �� RN (N > 2) be a C 2 bounded domain containing the origin 0. We study the behavior near 0 of
positive solutions of equation (E) ��uCjxj˛upCjxjˇjrujq D 0 in � n f0g, where ˛ > �2, ˇ > �1,
p > 1, and q > 1. When 1 < p < .N C ˛/=.N � 2/ and 1 < q < .N Cˇ/=.N � 1/, we provide a full
classification of positive solutions of (E) vanishing on @�. On the contrary, when p � .N C˛/=.N � 2/

or .N Cˇ/=.N � 1/� q � 2Cˇ, we show that any isolated singularity at 0 is removable.
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1. Introduction

Let �� RN (N > 2) be a C 2 bounded domain containing the origin 0. In this paper, we study isolated
singularities at 0 of nonnegative solutions of the quasilinear equation

��uCjxj˛up
Cjxjˇjrujq D 0 (1-1)

in � n f0g where ˛ > �2, ˇ > �1, p > 1, and q > 1. By a nonnegative solution of (1-1) we mean a
nonnegative function u 2 C 2.� n f0g/ which satisfies (1-1) in the classical sense.

Equation (1-1) consists of two mechanisms: the semilinear equation

��uCjxj˛up
D 0 (1-2)

in � n f0g and the quasilinear equation

��uCjxjˇ jrujq D 0 (1-3)

in � n f0g. For the sake of simplicity, in the sequel, we use the notation

.F ıu/.x/D jxj˛u.x/pCjxjˇ jru.x/jq: (1-4)
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In the literature, many results concerning isolated singularities for (1-2) with ˛ D 0 have been published,
among which we refer to [Brézis and Véron 1980/81; Vázquez and Véron 1985; Véron 1981; 1996;
Baras and Pierre 1984, Marcus 2013] and references therein. Marcus and Véron [2014] provided a full
description of isolated singularities of positive solutions of (1-2) (with ˛ > �2) when 1< p < pc;˛ with

pc;˛ WD
N C˛

N � 2
: (1-5)

More precisely, in this range, if v is a positive solution of (1-2) vanishing on @�, then:

� either v D v�
k

(k > 0), the solution of

��vCjxj˛vp
D kı0 in �; with v D 0 on @� (1-6)

(here ı0 is the Dirac measure concentrated at the origin) and v.x/DkcN .1Co.1//jxj2�N as jxj! 0

where cN D 1=.N.N � 2/!N / with !N being the volume of the unit ball in RN ;

� or v D v�1 WD limk!1 v
�
k

and v.x/D #.1C o.1//jxj�
2C˛
p�1 as jxj ! 0 with

# WD

��
2C˛

p� 1

��
2pC˛

p� 1
�N

�� 1
p�1

: (1-7)

When p � pc;˛, they showed that there is no positive solution of (1-2) vanishing on @�.
Classification of interior isolated singularities in the general framework (where the nonlinearity does not

depend on gradient term) was established in [Friedman and Véron 1986], in [Cîrstea and Du 2010] (for the
p-laplacian), and in [Cîrstea 2014] (for elliptic equations with inverse square potentials). A deep existence
and uniqueness result for a more general class of semilinear equations was given in [Marcus 2013].

Much less work concerning the behavior near the origin of positive solutions of equations with the
nonlinearity depending mostly on the gradient term has been investigated. See Serrin [1965] and, more
recently, Bidaut-Véron, García-Huidobro, and Véron [Bidaut-Véron et al. 2014].

Recently, boundary trace problem for semilinear equation with gradient terms were studied by
P. T. Nguyen and L. Véron [2012] and by M. Marcus and Nguyen [2015].

When the nonlinearity is of the form (1-4), i.e., it depends on both u and ru, as well as weights, one
encounters the following difficulties:

(i) The first one stems from the competition of two terms jxj˛up and jxjˇjrujq . When 2C˛
p�1
¤

2Cˇ�q
q�1

,
(1-1) admits no similarity transformation (see Section 2). Moreover, in this framework, the Keller–
Osserman estimate is no longer a sharp upper bound for solutions of (1-1).

(ii) The second one comes from the lack of monotonicity property of the nonlinearity. Furthermore, it is
noteworthy that in general the sum of two solution of (1-1) is not a supersolution.

(iii) The presence of the weights jxj˛ and jxjˇ, which may vanish or be singular at 0 according to the
value of ˛ and ˇ, make the asymptotic behavior near 0 of solutions of (1-1) more intricate.
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Fix d1 2 .0; 1/ such that B3d1
.0/b� and put d2 D diam.�/. Set

� Dmin
�

2C˛

p� 1
;
2Cˇ� q

q� 1

�
with q < 2Cˇ: (1-8)

We first give sharp estimates on solutions of (1-1) and their gradient. These estimates are obtained due
to a combination of Bernstein’s method, Keller–Osserman estimates, and a transformation argument.

Proposition 1.1. Let ˛ > �2, ˇ > �1, p > 1, and 1 < q < 2C ˇ. There exists a positive constant
ci D ci.˛; ˇ;N;p; q; d1; d2/ (i D 1; 2) such that if u is a positive solution of (1-1) in � n f0g vanishing
on @�, then

u.x/� c1jxj
�� for all x 2� n f0g; (1-9)

and
jru.x/j � c2jxj

���1 for all x 2 Bd1
.0/ n f0g: (1-10)

Estimates (1-9) and (1-10) give an upper bound of F ıu but do not ensure that F ıu 2L1.�/. While
investigating the integrability of F ıu we are led to the following definition.

Definition 1.2. A nonnegative solution u of (1-1) is called a weakly singular solution if F ıu 2L1.B"/

for some " > 0. Otherwise, u is called a strongly singular solution.

We next introduce the definition of solutions to�
��uCF ıuD kı0 in �;

uD 0 on @�:
(1-11)

Definition 1.3. Let k � 0. A nonnegative function u is a solution of (1-11) if u 2L1.�/, F ıu 2L1.�/,
and Z

�

�
�u��C .F ıu/�

�
dx D k�.0/ for all � 2 C 2

0 .�/: (1-12)

Remark. Clearly, if u is a solution of (1-11) then u is a weakly singular solution of (1-1).

Let �N (N > 2) be the Newtonian kernel in RN defined by

�N .x/ WD cN jxj
2�N
D

1

N.N � 2/!N

jxj2�N; x ¤ 0 (1-13)

with !N the volume of the unit ball in RN. Denote by G� the Green kernel of .��/ in � and by G�

the corresponding operator.
The study of (1-1) is strongly linked to that of (1-3). As we will see in the sequel there exists an

exponent
qc;ˇ D

N Cˇ

N � 1
(1-14)

such that if 1 < q < qc;ˇ, the problem (1-3) admits weakly and strongly singular solutions; while if
qc;ˇ < q < 2Cˇ, then such solutions don’t exist. When both equations (1-2) and (1-3) are combined
in (1-1), the existence result for (1-1) is valid in the range .p; q/ 2 .1;pc;˛/� .1; qc;ˇ/. This is reflected
in the following theorems.
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Theorem A. Assume ˛ > �2, ˇ > �1, 1 < p < pc;˛, and 1 < q < qc;ˇ . For any k > 0, there exists a
unique solution u�

k
2 C 2.� n f0g/\C.� n f0g/ of (1-11). Moreover,

u�k .x/D kG�.x; 0/�G�ŒF ıu�k �.x/ for all x 2� n f0g; (1-15)

u�k .x/D k.1C o.1//�N .x/ as x! 0; (1-16)

lim
jxj!0

�
jxjN�1

ru�k .x/C
k

N!N

x

jxj

�
D 0: (1-17)

Due to (1-16) and the comparison principle [Gilbarg and Trudinger 2001, Theorem 9.2], the sequence
fu�

k
g is increasing. Denote u�1 WD limk!1 u�

k
. The asymptotic behaviors of u�1 and its gradient are

given in the following theorem.

Theorem B. Assume ˛ > �2, ˇ > �1, 1< p < pc;˛ , and 1< q < qc;ˇ . Then u�1 is a strongly singular
solution of (1-1) vanishing on @�. Moreover,

lim
jxj!0

jxj� u�1.x/D‚; (1-18)

lim
jxj!0

�
jxj�C1

ru�1.x/C‚�
x

jxj

�
D 0; (1-19)

where � is defined in (1-8) and ‚ is a positive constant depending on N, ˛, ˇ, p, q.

Remark. The value of ‚ varies according to the relationship between the parameters ˛, ˇ, p, and q. For
simplicity, set

D WD
2C˛

p� 1
�

q� 1

2Cˇ� q
with q < 2Cˇ: (1-20)

In Theorem B, ‚ is the unique solution of

� tp�1
C j �qtq�1

� � .� C 2�N /D 0; (1-21)

where j and � are given by8̂̂̂<̂
ˆ̂:

j D 0 and �D 1 if D < 1 .hence ‚D # defined in (1-7)/I
j D 1 and �D 0 if D > 1 .hence ‚D �0 defined in (4-3)/I
j D �D 1 if D D 1 .hence ‚D �1, the solution of g1.t/D 0;

where g� is defined defined in (4-2)/:

(1-22)

Theorem B shows the competition between two terms jxj˛up and jxjˇ jrujq: if D < 1 then jxj˛up

plays a dominant role, otherwise jxjˇ jrujq plays a dominant role.
As a consequence of Theorems A and B, we obtain a description of nonnegative singular solutions

of (1-1) vanishing on @�.

Theorem C. Assume ˛ >�2, ˇ >�1, 1<p<pc;˛ , and 1< q< qc;ˇ . Let u2C 2.�nf0g/\C.�nf0g/

be a nonnegative solution of (1-1) in � n f0g vanishing on @�. Then either u� 0, or u� u�
k

for some
k > 0, or u� u�1.
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On the contrary, the next theorem states that when p�pc;˛ or qc;ˇ � q < 2Cˇ there exists no positive
singular solution.

Theorem D. Assume ˛ > �2, ˇ > �1, p > 1, and 1 < q � 2C ˇ. If p � pc;˛ or q � qc;ˇ then any
nonnegative solution u 2 C 2.� n f0g/\C.� n f0g/ of (1-1) in � n f0g vanishing on @� must be zero.

The paper is organized as follows. In Section 2, we prove Proposition 1.1 by treating successively
the equations (1-3) and (1-1). Section 3 is devoted to the proof of Theorem A. Construction of weakly
singular solutions u�

k
is based on an approximation method and delicate estimates on approximating

solutions and on their gradient. In Section 4, the existence of a strongly singular solution u�1 (Theorem B)
is obtained due to the monotonicity of the sequence fu�

k
g and a priori estimates established in Section 2.

In Section 5, by combining Harnack’s inequality, a scaling argument, and the asymptotic behavior of
weakly singular solutions and a strongly singular solution, we obtain a complete description of isolated
singularities (Theorem C). Finally, Theorem D is proved thanks to a nonexistence result for suitable
equations on the unit sphere SN�1.

Notation and terminology. Denote by Br .x0/ the ball of center x0 2 RN and radius r. Henceforth, we
simply write Br for Br .0/. Unless otherwise stated, � is a C 2 bounded domain containing the origin 0.
Fix d1 2 .0; 1/ such that B3d1

b� and put d2 D diam.�/.
Define, for ` > 0 and x 2�` WD `

�1�,

R`Œu�.x/D `
N�2u.`x/; S`Œu�.x/D `

2C˛
p�1 u.`x/; T`Œu�.x/D `

2Cˇ�q
q�1 u.`x/: (1-23)

If u is a solution of (1-2) (resp., (1-3)) in�nf0g then S`Œu� (resp., T`Œu�) is a solution of (1-2) (resp., (1-3))
in �` n f0g. If �D�` and uD S`Œu� (resp., uD T`Œu�) for every ` > 0, we say that S` (resp., T`) is a
similarity transformation and u is a self-similar solution of (1-2) (resp., (1-3)).

2. A priori estimates

2.1. A priori estimates on solutions of (1-3). Let us start this section by recalling the comparison
principle [Gilbarg and Trudinger 2001, Theorem 10.1].

Proposition 2.1. Let O be a bounded domain in RN. Assume H WO�RC �RN ! RC is nondecreasing
with respect to u for any .x; �/2O�RN, continuously differentiable with respect to � , and H.x; 0; 0/D 0.
Let u1, u2 2 C 2.O/\C.O/ be two nonnegative functions satisfying

��u1CH.x;u1;ru1/� ��u2CH.x;u2;ru2/ in O

and u1 � u2 on @O. Then u1 � u2 in O.

We shall establish a priori estimates on solutions of (1-3) and on their gradients. By using Bernstein’s
method (see [Lasry and Lions 1989; Lions 1985]), we derive estimates on the gradients of solutions of (1-3).

Lemma 2.2. Assume ˇ > �1 and q > 1. There exists c3 D c3.N; q; ˇ/ such that if u 2 C 2.� n f0g/ is a
solution of (1-3) in � n f0g then

jru.x/j � c3jxj
�

1Cˇ
q�1 for all x 2 Bd1

n f0g: (2-1)
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Proof. Pick an arbitrary point x0 2Bd1
nf0g and denote �0Djx0j. Take �2C1.RN / such that 0� �� 1,

supp ��B1=2 and �� 1 in B1=3. Put �.x/D �.��1
0
.x�x0//; then jD2�j � c0

3
��2

0
and jr�j � c0

3
��1

0
�

1
2

with c0
3
D c0

3
.N /. Set w D �2mjruj2 with mD 1

2.q�1/
and define the operator

LŒw� WD ��wC qjxjˇ jrujq�2
ru � rw:

Due to (1-3) we get

LŒw�D�2m.2m� 1/�2.m�1/
jr�j2 jruj2� 2m�2m�1��jruj2� 8m�2m�1

X
i;j

@i�@j u@ij u

� 2�2m
jD2uj2� 2ˇjxjˇ�2�2m

jrujqxruC 2mqjxjˇ�2m�1
jrujqr�ru:

By virtue of the inequality N jD2uj2 � .�u/2 and the inequality 2ab � a2C b2 for any a; b 2 R, we
obtain, in B�0=2.x0/,

LŒw�� c4

�
��2

0 �2m�1
jruj2C �ˇ�1

0 �2m
jrujqC1

C �ˇ�1
0 �2m� 1

2 jrujqC1
�
�
�2mjxj2ˇ jruj2q

N
(2-2)

where c4 D c4.ˇ; q;N /. Denote by x� a maximizer of w then LŒw�.x�/ � 0. In light of the relation
jruj D ��mw

1
2 , the fact that 1

2
�0 � jxj �

3
2
�0 with x 2 B�0=2.x0/ and (2-2), we deduce

w.x�/q�1
� c5

�
�
�2.ˇC1/
0

C �
�.ˇC1/
0

w.x�/
q�1

2

�
;

where c5 D c5.ˇ; q;N /. Consequently,

max
x2B�0=2.x0/

.�2m
jruj2/� w.x�/� c05�

�
2.1Cˇ/

q�1
0 :

Therefore, jru.x0/j � c6jx0j
�

1Cˇ
q�1, where c6 depends on N, q, and ˇ. �

Remark. From Lemma 2.2, one can verify that if u 2 C 2.� n f0g/ is a positive solution of (1-3) then,
for every x 2 Bd1

n f0g,

u.x/�max
˚
u.x/ W x 2 @Bd1

	
C c3

q�1

2Cˇ�q

�
jxj�

2Cˇ�q
q�1 � d�

2Cˇ�q
q�1

1

�
if q ¤ 2Cˇ, and

u.x/�maxfu.x/ W x 2 @Bd1
gC c3.ln d1� lnjxj/ (2-3)

if q D 2Cˇ. Consequently, when q > 2Cˇ, we can conclude that u remains bounded. Therefore, in the
sequel, we consider the case q � 2Cˇ.

We next derive an upper bound for subsolutions of (1-3) with ˇ � 0.

Lemma 2.3. Assume K > 0, ˇ � 0, and 1 < q < 2Cˇ. If u 2 C 2.� n f0g/\C.� n f0g/ is a positive
function such that

��uCKjxjˇ jrujq � 0 (2-4)
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in � n f0g and vanishing on @�, then

u.x/� c7jxj
�

2Cˇ�q
q�1 (2-5)

for every x 2� n f0g, where c7 DK�
1

q�1 .1Cˇ/
1

q�1 .q� 1/
q�2
q�1 .2Cˇ� q/�1.

Proof. Let � > 0 be small, and put ˆ�.x/D c7.jxj��/
�

2Cˇ�q
q�1 C� with x 2Bc

� . By a simple computation,
we get ��ˆ� CKjxjˇ jrˆ�j

q � 0 in � nB�. Since ˆ� dominates u on @�[ @B�, it follows from
Proposition 2.1 that ˆ� � u in � nB�. Letting �! 0 leads to (2-5). �

Combining Lemmas 2.2 and 2.3 we get:

Lemma 2.4. Let ˇ >�1 and 1< q < 2Cˇ. There exists a constant c8 D c8.N; q; ˇ; d1; d2/ such that if
u 2 C 2.� n f0g/\C.� n f0g/ is a solution of (1-3) vanishing on @� then

u.x/� c8jxj
�

2Cˇ�q
q�1 for all x 2� n f0g: (2-6)

Proof. If ˇ � 0 then (2-6) follows from (2-5). Next we consider ˇ 2 .�1; 0/. Fix x 2 Bd1
n f0g and

pick z 2 @Bd1
such that jz�xj D d1� jxj. By Lemmas 2.2 and 2.3,

u.x/� c7d�
2Cˇ�q

q�1
1 C c3

q�1
2Cˇ�q

jxj�
2Cˇ�q

q�1 � c9jxj
�

2Cˇ�q
q�1 for all x 2 Bd1

n f0g; (2-7)

where c9 D c9.N; q; ˇ; d1; d2/. Next put c0
9
> maxfc9; c7g so that the function x 7! c0

9
jxj�

2Cˇ�q
q�1

is a supersolution of (1-3) in � n Bd1=2 which dominates u on @� [ @Bd1=2. By Proposition 2.1,
u.x/� c0

9
jxj�

2Cˇ�q
q�1 for every x 2� nBd1=2. This, together with (2-7), implies (2-6). �

By a similar argument, we obtain the following result.

Lemma 2.5. Let ˇ > �1 and 1 < q < 2C ˇ. There exist ci D ci.N; q; ˇ/ with i D 10; 11 such that if
u 2 C 2.RN n f0g/ is a solution of (1-3) in RN n f0g satisfying limjxj!1 u.x/D 0 then

u.x/� c10jxj
�

2Cˇ�q
q�1 and jru.x/j � c11jxj

�
1Cˇ
q�1 for all x 2 RN

n f0g: (2-8)

2.2. A priori estimates on solutions of (1-1). We recall that � is defined in (1-8). Due to the Keller–
Osserman estimate and the above result, we obtain a sharp upper bound for solutions of (1-1).

Lemma 2.6. Let ˛ >�2, ˇ>�1, p> 1, and 1< q< 2Cˇ. There exists c12D c12.˛; ˇ;N;p; q; d1; d2/

such that if u is a positive solution of (1-1) in � n f0g vanishing on @� then

u.x/� c12jxj
�� for all x 2� n f0g: (2-9)

Proof. Since u is a positive subsolution of (1-2), due to Keller–Osserman estimate, there exists a constant
c13 D c13.N;p; ˛/ such that

u.x/� c13jxj
�

2C˛
p�1 for all x 2� n f0g:

We consider two cases: D � 1 and D > 1 where D is defined in (1-20).

Case 1: D � 1. In this case, � D 2C˛
p�1

and hence we obtain (2-9).
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Case 2: D > 1. Notice that in this case � D 2Cˇ�q
q�1

. For � 2 .0; d1/, let w� be the solution of

��wCjxjˇ jrwjq D 0 in � nB�; such that w D
�

u on @B�;
0 on @�:

(2-10)

By Proposition 2.1, u � w� in � n B�. Therefore, u � w�0 � w� in � n B�0 for 0 < � < �0. It can
be checked that the function x 7! c14jxj

�
2C˛
p�1 (with c14 > c13 large, depending on N, p, q, ˛, ˇ,

and d2) is a supersolution of (1-3) which dominates w� on @�[ @B�. By the comparison principle,
w�.x/� c14jxj

�
2C˛
p�1 for x 2� nB�. Consequently, the sequence fw�g is locally uniformly bounded in

� n f0g. In light of local regularity results for elliptic equations [DiBenedetto 1983], for every compact
subset O b � n f0g, there exist constants M > 0 and � 2 .0; 1/ depending on N, p, q, ˛, ˇ, d2, and
dist.0;O/ such that kw�kC 1;�.O/ �M. Therefore, fw�g converges to a function Qw in C 1

loc.�nf0g/ which
is a solution of (1-3) in�nf0g, vanishing on @�, and satisfying Qw�u in�nf0g. By virtue of Lemma 2.4,
Qw � c8jxj

�
2Cˇ�q

q�1 for every x 2 � n f0g. Consequently, u � c8jxj
�

2Cˇ�q
q�1 for every x 2 � n f0g. This

completes the proof. �

We next establish a sharp estimate from above for the gradient of solutions of (1-1).

Proposition 2.7. Let ˛>�2, ˇ>�1, p>1, and 1<q<2Cˇ. There exists c15Dc15.˛; ˇ;N;p; q; d1; d2/

such that if u is a nonnegative solution of (1-1) in � n f0g vanishing on @� then

jru.x/j � c15jxj
�.�C1/ for all x 2 Bd1

n f0g: (2-11)

Proof. Let x0, �0, �, �, w, m, LŒw�, and x� as in the proof of Lemma 2.2. Then we get

LŒw�D�2m.2m� 1/�2.m�1/
jr�j2 jruj2� 2m�2m�1��jruj2� 8m�2m�1

X
i;j

@i�@j u@ij u

� 2�2m
jD2uj2� 2˛jxj˛�2�2mup xru� 2pjxj˛�2mup�1

jruj2

� 2ˇjxjˇ�2�2m
jrujq xruC 2mqjxjˇ�2m�1

jrujqr�ru:

Case 1: D � 1. In this case, we have

.ˇC 1/.1� 2q/

q� 1
� ˛� 2ˇ� 1� �p; (2-12)

where � is defined in (1-8). By Lemma 2.6 and Young’s inequality, proceeding as in the proof of
Lemma 2.2, we obtain in B�0=2.x0/

w.x�/q�
1
2 � c16

�
�
�2.ˇC1/
0

w.x�/
1
2 C �

˛�2ˇ�1��p
0

C �
�.ˇC1/
0

w.x�/
q
2

�
; (2-13)

where c16 D c16.˛; ˇ;p; q;N; d1; d2/. By Young’s inequality, we get

�
�2.ˇC1/
0

w.x�/
1
2 �

1

q
�
�.ˇC1/
0

w.x�/
q
2 C

q�1

q
�
.ˇC1/.1�2q/

q�1
0 : (2-14)

From (2-12), (2-13), and (2-14), we deduce

w.x�/q�
1
2 � c17

�
�
�.ˇC1/
0

w.x�/
q
2 C �

.ˇC1/.1�2q/
q�1

0

�
; (2-15)
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which implies
�
ˇC1
0

w.x�/
q�1

2 � c17

�
��

.ˇC1/q
q�1

0 w.x�/�
q
2 C 1

�
; (2-16)

where c17 D c17.˛; ˇ;p; q;N; d1; d2/. Consequently, w.x�/� c18�
�

2.1Cˇ/
q�1

0
, and therefore

jru.x/j � c19jxj
�

1Cˇ
q�1 for all x 2 Bd1

n f0g; (2-17)

where ci D ci.˛; ˇ;N;p; q; d1; d2/ with i D 18; 19. Notice that 1Cˇ

q�1
D � C 1; hence we obtain (2-11).

Case 2: D < 1. Take x0 2 Bd1
n f0g. Put `D jx0j 2 .0; d1/ then S`Œu� is a solution of

��vCjxj˛vp
C `

p.2Cˇ�q/�˛.q�1/�q�ˇ
p�1 jxjˇ jrvjq D 0 in �` n f0g: (2-18)

By the regularity result in [DiBenedetto 1983], there exists c20 D c20.˛; ˇ;p; q/ such that

sup
˚
jrS`Œu�.x/j W x 2 B3=2 nB3=4

	
� c20:

Consequently,

`
1CpC˛

p�1 jru.`x/j � c21 for all x 2 B3=2 nB3=4:

By choosing x D `�1x0, we derive jru.x0/j � c22jx0j
�

1CpC˛
p�1 . This completes the proof since

1CpC˛

p� 1
D � C 1: �

Proof of Proposition 1.1. Estimates (1-9) and (1-10) follow directly from Lemmas 2.2, 2.4, and 2.6, as
well as Proposition 2.7. �

3. Weakly singular solutions

We start with the existence of weakly singular solutions of (1-1). The construction is based on approxi-
mation method.

Proof of Theorem A. We prove the theorem in five steps.

Step 1: Construction of solutions. Let k > 0. For every � > 0, let u�
k;�

be the unique solution of8<:
��uCjxj˛upCjxjˇ jrujq D 0 in � nB�;

uD 0 on @�;
uD k�N .�/ on @B�:

(3-1)

The existence of u�
k;�

can be obtained by using an argument similar to the proof of [Gilbarg and Trudinger
2001, Theorem 11.4] and the uniqueness follows from the comparison principle Proposition 2.1. Moreover,
by the comparison principle, 0� u�

k;�
� k�N in � nB� and u�

k;�
� u�

k;�0
in � nB�0 for every 0< � < �0.

Therefore, u�
k
WD lim�!0 u�

k;�
satisfies

u�k .x/� k�N .x/ for all x 2� n f0g: (3-2)

By regularity results for elliptic equations, u�
k

is a solution of (1-1) in � n f0g vanishing on @�.
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Fix an arbitrary point x0 2 Bd1
nB� and put `D jx0j 2 .�; d1�. Note that R`Œu

�
k;�
� solves8<:

��vC `NC˛�p.N�2/jxj˛vpC `NCˇ�q.N�1/jxjˇ jrvjq D 0 in �` nB�=`;

v D 0 on @�`;
v D k�N

�
�
`

�
on @B�=`:

(3-3)

Since 1< p < pc;˛ and 1< q < qc;ˇ, it follows that

`NC˛�p.N�2/
jxj˛ <maxf1; 3˛g and `NCˇ�q.N�1/

jxjˇ <maxf1; 3ˇg for all x 2 B3 nB1:

By the maximum principle, R`Œu
�
k;�
�� k�N in �` nB�=`, which implies R`Œu

�
k;�
�� k�N .1/ in B3 nB1.

Due to local regularity for elliptic equations (see, e.g., [DiBenedetto 1983]), there exist constants
c23 D c23.N; ˛; ˇ;p; q; k/ and �D �.N; ˛; ˇ;p; q; k/ 2 .0; 1/ such thatR`Œu

�
k;� �


C 1;�.B5=2nB3=2/
� c23:

Again by the regularity results (see [Lieberman 1988, Theorem 1] and [DiBenedetto 1983]), there exists
c24 D c24.˛; ˇ;N;p; q; k/ such that

`N�1 sup
˚
jru�k;�.`x/j W jxj D 1

	
� c24:

By choosing x D `�1x0, we deduce jru�
k;�
.x0/j � c24jx0j

1�N . Thus

jru�k;�.x/j � c25jxj
1�N for all x 2� nB� (3-4)

with c25 D c25.˛; ˇ;N;p; q; k; d1; d2/.

Step 2: Proof of (1-16). The solution u�
k;�

can be written in the form

u�k;�.x/D k�N .�/�G�nB� ŒF ıu�k;� �.x/;

where G�nB� is the Green operator in �nB� [Marcus and Véron 2014, Theorem 1.2.2]. Hence, by (3-4),

k�N .x/� u�k;�.x/� k�N .x/� c26G�Œj � j˛Cp.2�N /
Cj � j

ˇCq.1�N /�.x/ for all x 2� nB�:

By letting �! 0, we get

k�N .x/� u�k .x/� k�N .x/� cG�Œj � j˛Cp.2�N /
Cj � j

ˇCq.1�N /�.x/ for all x 2� n f0g: (3-5)

It is classical (see [op. cit.]) that

G�.x;y/�min
˚
jx�yj2�N; �.x/�.y/jx�yj�N

	
for every x;y 2�;x ¤ y, where �.x/D dist.x; @�/. Therefore there exists c27 D c27.N; �/ such that,
for x near 0,

G�Œj � j˛Cp.2�N /Cj � jˇCq.1�N /�.x/

�N .x/

� c27jxj
N�2

Z
�

jx�yj2�N
�
jyj˛�p.N�2/

Cjyjˇ�q.N�1/
�

dy: (3-6)
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Choose ˛0 and ˇ0 such that p.N � 2/�N < ˛0 < minf˛;p.N � 2/� 2g and q.N � 1/�N < ˇ0 <

minfˇ; q.N � 1/� 2g. Then by [Lieb and Loss 1997, Corollary 5.10],Z
�

jx�yj2�N
jyj˛�p.N�2/ dy � c28 d˛�˛

0

2 jxj2C˛
0�p.N�2/;Z

�

jx�yj2�N
jyjˇ�q.N�1/ dy � c28 d

ˇ�ˇ0

2
jxj2Cˇ

0�q.N�1/:

(3-7)

Combining (3-6) and (3-7) yields

lim
jxj!0

G�Œj � j˛Cp.2�N /Cj � jˇCq.1�N /�.x/

�N .x/
D 0: (3-8)

From (3-5) and (3-8), we obtain (1-16).

Step 3: Proof of (1-17). For ` 2 .0; 1/, put v` DR`Œu
�
k
� then v` is the solution of�

��vC `NC˛�p.N�2/jxj˛vpC `NCˇ�q.N�1/jxjˇ jrvjq D 0; in �` n f0g
v D 0 on @�`:

(3-9)

Since 0< u�
k
< k�N in � n f0g, it follows that 0< v` < k�N in �` n f0g.

Since 1 < p < pc;˛ and 1 < q < qc;ˇ, by local regularity for elliptic equations [DiBenedetto 1983],
the Arzelà–Ascoli theorem, and a standard diagonalization argument, there exists a subsequence fv`n

g

converging to a positive harmonic function in C 1
loc.R

N n f0g/ as `n! 0. On the other hand, from (1-16),
we deduce that fv`g converges to k�N uniformly in B2 nB1=2 as `! 0. Therefore, the whole sequence
fv`g converges to k�N in C 1

loc.R
N n f0g/ as `! 0. In particular, rv` ! kr�N in B2 nB1=2, which

implies (1-17).

Step 4: u�
k

is a weak solution of (1-11). By a similar argument as in Step 1, we derive

jru�k .x/j � c29 kjxj1�N for all x 2� n f0g (3-10)

where c29D c29.˛; ˇ;N;p; q; d1; d2/. This, together with (3-2), implies u�
k
2L1.�/ and Fıu�

k
2L1.�/.

For every � > 0, by Green’s formula, one getsZ
�nB�

�
�u�k ��C .F ıu�k /�

�
dx D�

Z
@B�

@u�
k

@n
� dS C

Z
@B�

u�k
@�

@n
dS; (3-11)

where n is the outward normal unit vector on @B� . Due to (1-17), the right-hand side of (3-11) converges
to k�.0/. Therefore, thanks to dominated convergence theorem, by letting � ! 0, we obtain (1-12).
Finally, by [Marcus and Véron 2014, Theorem 1.2.2], we get (1-15).

Step 5: Uniqueness. Assume u0 is a positive solutions of (1-1) satisfying (1-16); then

lim
jxj!0

u�
k
.x/

u0.x/
D 1:

Hence, for every ı > 0, there exists r.ı/ > 0 such that .1C ı/u�
k
C ı � u0 on @Br.ı/. The function

.1Cı/u�
k
Cı is a supersolution of (1-1) which dominates u0 on @�[@Br.ı/; therefore, by the comparison
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principle, .1C ı/u�
k
C ı � u0 in � nBr.ı/. Letting ı! 0 yields u�

k
� u0 in � n f0g. By permuting u�

k

and u0, we derive u0 D u�
k

. �

If � is replaced by RN, we have the following variant of Theorem A.

Proposition 3.1. Assume ˛ > �2, ˇ > �1, 1< p < pc;˛, and 1< q < qc;ˇ. Then for any k > 0, there
exists a unique solution uRN

k
2 C 2.RN n f0g/ of (1-1) in RN n f0g satisfying

lim
jxj!1

uRN

k .x/D 0 and uRN

k .x/D k .1C o.1//�N .x/ as jxj ! 0: (3-12)

Moreover, uRN

k
2L1

loc.R
N /, F ıuRN

k
2L1

loc.R
N /, and there holdsZ

RN

�
�uRN

k ��C .F ıuRN

k /�
�

dx D k�.0/ for all � 2 C 2
c .R

N /: (3-13)

Proof. For each R > 0, let uBR

k
be the unique solution of (1-1) in BR n f0g, vanishing on @BR and

satisfying

lim
jxj!0

uBR

k
.x/

�N .x/
D k: (3-14)

By the comparison principle, uBR

k
� uBR0

k
� k�N in BR nf0g for every R<R0. In light of local regularity

[DiBenedetto 1983] and a standard argument,

uRN

k WD lim
R!1

uBR

k 2 C 2.RN
n f0g/

is a solution of (1-1) in RN n f0g. By combining (3-14) and the fact that uBR

k
� uRN

k
� k�N in BR n f0g

for every R> 0, we derive (3-12). Uniqueness follows from the comparison principle. By proceeding as
in the proof of Theorem A, one can verify (3-13). �

By a similar, and more simpler, argument as in the proof of Theorem A, one can easily obtain the
existence of weakly singular solutions of (1-3).

Proposition 3.2. Assume ˇ > �1 and 1 < q < qc;ˇ with qc;ˇ defined in (1-14). For any k > 0, there
exists a unique solution w�

k
2 C 2.� n f0g/\C.� n f0g/ of

��wCjxjˇ jrwjq D kı0 in �; with w D 0 on @�: (3-15)

Moreover,

w�k D kG�. � ; 0/�G�Œj � jˇ jrw�k j
q �I (3-16)

w�k .x/D k.1C o.1//�N .x/ as jxj ! 0I (3-17)

lim
jxj!0

�
jxjN�1

rw�k .x/C
k

N!N

x

jxj

�
D 0: (3-18)

Remark. In addition, by proceeding as in the proof of Proposition 3.1, we obtain the existence of the
weak singular solutions wRN

k
of (1-3) in RN n f0g.
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4. Strongly singular solutions

Denote by SN�1 the unit sphere in RN and let .r; �/ 2 .0;1/ � SN�1 be the spherical coordinates
in RN n f0g. Let r 0 and �0 denote respectively the covariant gradient and the Laplace–Beltrami operator
on SN�1. In order to characterize strongly singular solutions of (1-1), we study the following quasilinear
equation on SN�1:

��0!C�!
˛.q�1/CqCˇ

2Cˇ�q C

��
2Cˇ� q

q� 1

�2

!2
Cjr

0!j2
�q

2

�ƒ! D 0; (4-1)

where

�� 0; and ƒDƒ.N; q; ˇ/ WD
2Cˇ� q

q� 1

�
qCˇ

q� 1
�N

�
:

We introduce an auxiliary function

g�.t/D �t
.2C˛/.q�1/

2Cˇ�q C

�
2Cˇ� q

q� 1

�q

tq�1
�ƒ; t 2 .0;1/; �� 0: (4-2)

It is easy to see that if 1 < q < qc;ˇ then ƒ > 0; therefore, the algebraic equation g�.t/ D 0 admits a
unique positive solution ��. Obviously, �� is a positive solution of (4-1), and �0 is explicitly given by

�0 D
q� 1

2Cˇ� q

�
qCˇ

q� 1
�N

� 1
q�1

: (4-3)

Proposition 4.1. Let ˛ > �2, ˇ > �1, 1 < q < 2Cˇ, and � � 0. Denote by E� the set of C 2 positive
solutions of (4-1) in SN�1.

(i) If q � qc;ˇ, then E� D∅.

(ii) If 1< q < qc;ˇ, then E� D f��g.

Proof. (i) Suppose by contradiction that ! is a positive solution of (4-1) and !.�max/Dmax
SN�1 ! > 0

with �max 2 SN�1. From (4-1), we get

�!.�max/
˛.q�1/CqCˇ

2Cˇ�q C

�
2Cˇ� q

q� 1

�q

!.�max/
q
�ƒ!.�max/� 0: (4-4)

Since q � qc;ˇ, we know ƒ� 0. Therefore, the left hand side is positive, which is a contradiction.

(ii) If ! is a positive solution of (4-1), let �max; �min 2 SN�1 such that

!.�max/Dmax
SN�1 ! �minSN�1 ! D !.�min/ > 0:

Clearly, �max satisfies (4-4) and �min satisfies

�!.�min/
˛.q�1/CqCˇ

2Cˇ�q C

�
2Cˇ� q

q� 1

�q

!.�min/
q
�ƒ!.�min/� 0: (4-5)

Consequently, g�.!.�max//� 0� g�.!.�min//. Since g� is strictly increasing in .0;1/, it follows that
!.�max/� �� � !.�min/. Thus, ! � ��. This completes the proof. �

The next lemma states existence result for both equations (1-3) and (1-1).
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Lemma 4.2. Let � be either a smooth bounded domain containing the origin 0 or RN.

(i) Assume ˇ > �1 and 1< q < qc;ˇ. Then w�1 WD limk!1w
�
k

is a nonnegative solution of (1-3) in
� n f0g satisfying either w�1 D 0 on @� if � is bounded or limjxj!1w�1.x/D 0 if �D RN.

(ii) Assume ˛ >�2, ˇ >�1, 1<p<pc;˛ , and 1< q< qc;ˇ . Then u�1 WD limk!1 u�
k

is a nonnegative
solution of (1-1) in�nf0g satisfying either u�1D 0 on @� if � is bounded or limjxj!1 u�1.x/D 0

if �D RN.

Proof. We only demonstrate (ii) since the proof of (i) is similar and simpler. It follows from Theorem A
and Proposition 3.1 that fu�

k
g is increasing and bounded from above by the function U .x/D c30 jxj

�
2C˛
p�1

where c30 is a large positive constant depending on N, p, and ˛. Therefore, u�1 WD limk!1 u�
k

is a
solution of (1-1) in � n f0g and u�1 � U in � n f0g. �

The asymptotic behavior of w�1 near the origin 0 is analyzed in the following result.

Proposition 4.3. Assume ˇ > �1, 1< q < qc;ˇ, and � is either a smooth bounded domain containing
the origin 0 or RN. Let w�1 be the solution in Lemma 4.2(i). Then w�1 is a strongly singular solution
of (1-3). Moreover, with �0 as in (4-3),

lim
jxj!0

jxj
2Cˇ�q

q�1 w�1.x/D �0 (4-6)

lim
jxj!0

�
jxj

1Cˇ
q�1 rw�1.x/C

�
qCˇ

q� 1
�N

� 1
q�1 x

jxj

�
D 0: (4-7)

Proof. The proof is based upon the similarity argument.

Case 1: �DRN. For k > 0, recall that w�
k

is the weakly singular solution of (1-3) in RN. For every `> 0,
T`Œw

RN

k
� is a solution of (1-3) in RN n f0g which satisfies

lim
jxj!0

T`Œw
RN

k
�.x/

�N .x/
D `

2Cˇ�q
q�1

C2�N k:

Due to the uniqueness,

T`Œw
RN

k �D wRN

`.2Cˇ�q/=.q�1/C2�N k
:

By letting k!1, we deduce that T`Œw
RN

1 �DwRN

1 , i.e., wRN

1 is self-similar. Consequently, wRN

1 can be
written in the form

wRN

1 .x/D jxj�
2Cˇ�q

q�1 !.x=jxj/ for all x ¤ 0; (4-8)

where ! is a positive solution of (4-1) with � D 0. Since 1 < q < qc;ˇ, by Proposition 4.1, ! � �0.
Therefore,

wRN

1 .x/D �0 jxj
�

2Cˇ�q
q�1 DWW0.x/ for all x ¤ 0;

the unique self-similar solution of (1-3) in RN n f0g.
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Case 2: � is a bounded smooth domain. Since T`Œw
�
k
�Dw

�`
`.2Cˇ�q/=.q�1/C2�N k

by uniqueness, it follows
that

T`Œw
�
1�D w

�`
1 : (4-9)

Since w�1.x/� c8jxj
�

2Cˇ�q
q�1 in � n f0g, w�`1 satisfies the same estimate in �` n f0g for every ` 2 .0; 1/.

By local regularity for elliptic equations and Arzelà–Ascoli theorem, there exists a subsequence fw�`n
1 g

converging in C 1
loc.R

N n f0g/ to a function w0 which is a solution of (1-3) in RN n f0g.
If� is star-shaped with respect to the origin 0 then we getw�`

k
�w

�`0

k
for every k>0 and 0<`0<`<1,

which implies that w�`1 �w
�`0
1 for every 0<`0<`< 1. Therefore, the whole sequence fw�`1 g converges

to w0 in C 1
loc.R

N n f0g/ as `! 0. By (4-9), for any `; `0 > 0,

T`ŒT`0 Œw
�
1��D T`Œw

�`0
1 �D w

�`0`
1 :

By letting `0! 0, we obtain T`Œw0�D w0 for every ` > 0, namely w0 is a self-similar solution of (1-3)
in RN n f0g. Therefore, w0 D w

RN

1 DW0 and consequently,

lim
`!0

`
2Cˇ�q

q�1 w�1.`x/D �0jxj
�

2Cˇ�q
q�1 :

By putting y D `x with jxj D 1, we get (4-6).
In general, if � is not necessarily star-shaped with respect to the origin 0, since B3d1

��� Bd2
, it

follows that wB3d1
1 �w�1 �w

Bd2
1 . As (4-6) holds for wB3d1

1 (i.e., � is replaced by B3d1
) and wBd2

1 , we
derive (4-6). Consequently, for every x ¤ 0,

w0.x/D lim
n!1

w
�`n
1 .x/D lim

n!1
`

2Cˇ�q
q�1

n w�1.`nx/D �0 jxj
�

2Cˇ�q
q�1 DW0.x/:

Hence the whole sequence fw�`1 g` converges to W0 in C 1
loc.R

N n f0g/ as `! 0. By using a similar
argument as in Step 3 of the proof of Theorem A, we obtain (4-7). This implies jxjˇjrw�1j

q 62L1.B�/

for every � > 0. Thus w�1 is a strongly singular solution of (1-3). �

Note that (1-1) does not admit any similarity transformation, except when D D 1. However, due to the
asymptotic behavior of v�1 (the strongly singular solution of (1-2)) and of w�1 near 0, we can establish
the asymptotic behavior of u�1. Put

‚D

8<:
# if D < 1;

�1 if D D 1;

�0 if D > 1;

(4-10)

where # is as in (1-7) and �� (�D 0; 1) is given in (4-2).
Now we are ready to deal with strongly singular solution of (1-1).

Proposition 4.4. Assume ˛ > �2, ˇ > �1, 1 < p < pc;˛, and 1 < q < qc;ˇ. Let � be either a smooth
bounded domain containing the origin 0 or RN and u�1 be the solution of (1-1) defined in Lemma 4.2.
Then u�1 is a strongly singular solution of (1-1). Moreover (1-18) and (1-19) hold.

Proof. We consider three cases.
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Case 1: D D 1. In this case, S` is a similarity transformation for (1-1). Therefore, (1-18) and (1-19) can
be obtained by proceeding as in the proof of Proposition 4.3 and consequently u�1 is a strongly singular
solution of (1-1). Notice that if �D RN then �` D RN and uD 0 on @�` is understood as u.x/! 0

as jxj !1.

Case 2: D > 1. For every ` 2 .0; 1/, put W` D T`Œu
�
1�. Then W` is a solution of

��uC `
˛.q�1/CqCˇ�p.2Cˇ�q/

q�1 jxj˛up
Cjxjˇ jrujq D 0 in �` n f0g; with uD 0 on @�`: (4-11)

By the regularity result [DiBenedetto 1983], for every R>1 there exist M DM.˛; ˇ;p; q;N;R; d1; d2/

and �D �.˛; ˇ;p; q;N; d1; d2/ 2 .0; 1/ such that

kW`kC 1;�.BRnBR�1 / <M:

Consequently, there exists a subsequence fW`n
g which converges to a function zW in C 1

loc.R
N n f0g/

as `n ! 0. The function zW is a solution of (1-3) in RN n f0g satisfying limjxj!1 zW .x/ D 0. By
Proposition 2.1, wRN

1 �
zW � uRN

k
for every k > 0. Therefore, thanks to (3-12), we get

lim inf
x!0

zW .x/

wRN

k
.x/
D lim inf

x!0

zW .x/

k�N .x/
D lim inf

x!0

zW .x/

uRN

k
.x/
� 1:

By using a similar argument as in the proof Proposition 3.1, together with the comparison principle, we
deduce that zW � wRN

k
in RN n f0g for every k > 0. It follows that zW � wRN

1 in RN n f0g and hence
QW D wRN

1 in RN n f0g. Thus the whole sequence fW`g converges to wRN

1 in C 1
loc.R

N n f0g/ as `! 0.
This leads to (1-18) and (1-19). Consequently u�1 is a strongly singular solution.

Case 3: D < 1. For every ` 2 .0; 1/, put V` D S`Œu
�
1�. Similarly, we can show that the sequence fV`g

converges to vRN

1 (the strongly singular solution of (1-2)) in C 1
loc.R

N n f0g/ as `! 0. This yields the
desired result. �

Proof of Theorem B. The theorem follows from Lemma 4.2 and Proposition 4.4. �

5. Classification and removability of isolated singularities

5.1. Classification of isolated singularities. The following lemma plays an important role in proving
the classification result.

Lemma 5.1. Assume � is a bounded domain containing the origin 0, ˛ > �2, ˇ > �1, 1< p < pc;˛,
and 1< q< qc;ˇ . Let u2C 2.�nf0g/\C.�nf0g/ be a nonnegative solution of (1-1) in�nf0g vanishing
on @�. Then there exists c31 D c31.N; ˛; ˇ;p; q; d1; d2/ such that for any ı 2

�
0; 1

4
d1

�
, there holds

supfu.x/ W x 2 @Bıg � c31 inffu.x/ W x 2 @Bıg: (5-1)

Proof. Fix ı 2
�
0; 1

4
d1

�
and take x0 2 @Bı n f0g. Put r0 D jx0j, y

0
D r�1

0
x

0
2 @B1,

'r0
D

�
Sr0

Œu� if D � 1;

Tr0
Œu� if D > 1:
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It is easy to see that 'r0
is a nonnegative solution of one of the following equations8̂̂<̂

:̂
��'Cjxj˛'pC r

p.2Cˇ�q/�˛.q�1/�q�ˇ
p�1

0
jxjˇ jr'jq D 0 if D < 1;

��'C r
˛.q�1/CqCˇ�p.2Cˇ�q/

q�1
0

jxj˛'pCjxjˇ jr'jq D 0 if D > 1;

��'Cjxj˛'pCjxjˇ jr'jq D 0 if D D 1:

in �r0
D r�1

0
�. By Lemma 2.6, for every y 2 B1=4.y0/,

'r0
.y/D r �0 u.r0y/� c12jyj

�� < c122� :

By Harnack’s inequality (see, e.g., [Trudinger 1980; 1967]) there exists c32 D c32.˛; ˇ;p; q;N; d1; d2/

such that
supf'r0

.y/ W y 2 B1=8.y0/g � c32 inff'r0
.y/ W y 2 B1=8.y0/g:

As @Bı can be covered by a finite number (depending only on N ) of balls of center on @Bı and of
radius 1

4
ı, we obtain (5-1). �

Proof of Theorem C. The proof is based on Lemma 5.1, scaling argument and asymptotic behavior of
weakly singular solutions and strongly singular solutions. Put

L WD lim sup
jxj!0

u.x/

�N .x/
� 0: (5-2)

Case 1: LD 0. Then for every � > 0, there exists ı D ı.�/ > 0 such that ı! 0 as �! 0 and u� ��N

on @Bı. Thanks to Proposition 2.1, u� ��N in � nBı. Letting �! 0 yields u� 0.

Case 2: LD1. By (5-1),
lim inf
jxj!0

u.x/

�N .x/
D1;

which along with (1-16) implies

lim inf
jxj!0

u.x/

u�
k
.x/
D1 for all k > 0:

By the comparison principle, u� u�
k

in �nf0g for every k > 0. Hence u� u�1 in �nf0g. Consequently,
by Theorem B, we derive

lim inf
jxj!0

jxj�u.x/� lim
jxj!0

jxj�u�1.x/D‚: (5-3)

We next prove that1

lim sup
jxj!0

jxj�u.x/�‚: (5-4)

For any � > 0, it can be checked that there exists ‚� > 0 with ‚�!‚ as �! 0 such that ‚�jxj���� is
a supersolution of (1-1) in Bd1

n f0g when D D 1 (respectively, of (1-2) in Bd1
n f0g when D < 1 and of

1The proof of (5-4) was proposed by a referee.
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(1-3) in Bd1
n f0g when D > 1). Then by (2-9) and the comparison principle, we find that

u.x/�‚�jxj
����Cmax

@Bd1

u

in Bd1
n f0g for every � > 0. Letting �! 0 for fixed x 2 Bd1

n f0g, then jxj ! 0, we obtain (5-4).

Case 3: 0<L<1. In light of (5-1), there is a positive number k such that

lim inf
jxj!0

u.x/

�N .x/
D k > c�1

34 L; (5-5)

here c34 D c34.N; ˛; ˇ;p; q; d1; d2/ > 1, which implies

lim inf
jxj!0

u.x/

u�
k
.x/
D 1: (5-6)

By Proposition 2.1, u� u�
k

in �nf0g. From (5-6), there exists a sequence fxng converging to 0 such that

lim
n!1

u.xn/

u�
k
.xn/

D 1:

Put rn D jxnj, vk;n DRrn
Œu�

k
� and vn DRrn

Œu� in �rn
D r�1

n �. Then both vk;n and vn are solutions of

��vC rNC˛�p.N�2/
n jxj˛vp

C rNCˇ�q.N�1/
n jxjˇ jrvjq D 0 in �rn

n f0g:

By the Arzelà–Ascoli theorem, regularity theory of elliptic equations and a standard diagonalization
argument, up to subsequences, fvk;ng and fvng converge respectively in C 1

loc.R
N n f0g/ to nonnegative

harmonic functions V �
k

and V � in RN n f0g. Since u� u�
k

, it follows that V � � V �
k

. Put

�n D sup
˚ u.x/

u�
k
.x/
W x 2 @Brn

	
2 Œ1; c34�

and yn D r�1
n xn 2 @B1. Therefore, up to subsequences, �n ! � 2 Œ1; c34� and yn ! y� 2 @B1.

Consequently, V �.y�/ D V �
k
.y�/. By the strong maximum principle, we deduce that V � D V �

k
in

RN n f0g, which implies � D 1. Thus, for every � > 0, there exists n� > 0 such that

n� n� H) u�k � u� .1C �/u�k in @Brn
:

The comparison principle implies u � .1C �/u�
k

in � nBrn
. Letting �! 0 yields u � u�

k
in � n f0g.

Thus u� u�
k

. �

5.2. Removability. We shall treat successively two cases: qc;ˇ � q < 2Cˇ and q D 2Cˇ.

Proof of Theorem D with qc;ˇ � q < 2Cˇ. The proof is divided into three cases and strongly based upon
Proposition 4.1 and self-similarity arguments.
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Case 1: If D D 1 then p � pc;˛ and q � qc;ˇ . For 0< ı < 1
2
d1 and R> d2 D diam.�/, let uı;R be the

solution of 8<:
��uCF ıuD 0 in BR nBı;

uD c33ı
�� on @Bı;

uD 0 on @BR;

(5-7)

where c33 D maxfc8; c12; ‚g. By the comparison principle, u � uı;R � uı0;R0 in � n Bı0 for every
0 < ı � ı0 and 0 < R � R0. Put Qu WD limR!1 limı!0 uı;R; then Qu is a solution of (1-1) in RN n f0g

and u� Qu in � n f0g. By uniqueness, T`Œuı;R �D uı=`;R=` for every ` > 0. Letting ı! 0 and R!1

successively implies T`Œ Qu�D Qu for every ` > 0. Hence Qu is a self-similar solution of (1-1) in RN n f0g

and can be represented in the form

Qu.x/D jxj�
2Cˇ�q

q�1 !.x=jxj/ for all x 2 RN
n f0g;

where ! is a solution of (4-1). Since qc;ˇ � q < 2Cˇ, from Proposition 4.1 we deduce that ! � 0. It
follows that Qu� 0 and thus u� 0.

Case 2: If D > 1 then we must have q � qc;ˇ. For any 0< ı <R, let wı;R be the solution of8̂<̂
:
��wCjxjˇ jrwjq D 0 in BR nBı;

w D c33ı
�

2Cˇ�q
q�1 on @Bı;

w D on @BR:

(5-8)

By the comparison principle, u � wı;R � wı0;R0 in � nBı0 for every 0 < ı � ı0 and 0 < R � R0. Put
Qw WD limR!1 limı!0wı;R then Qw is a solution of (1-3) in RN nf0g and u� Qw in�nf0g. By uniqueness,

T`Œwı;R �D wı=`;R=` for every ` > 0. Letting ı! 0 and R!1 successively implies T`Œ Qw�D Qw for
every ` > 0. Hence Qw is a self-similar solution of (1-3) in RN n f0g and can be represented in the form

Qw.x/D jxj�
2Cˇ�q

q�1 !.x=jxj/ for all x 2 RN
n f0g;

where ! is a solution of (4-1) with � D 0. Since qc;ˇ � q < 2C ˇ, from Proposition 4.1 we deduce
that ! � 0. It follows that Qw � 0 and thus u� 0.

Case 3: If D < 1 then we must have p � pc;˛ . One can use an argument similar to the proof in Case 2
to obtain u� 0. �
Remark. Theorem D with q < 2C ˇ can be obtained by a different way which is suggested by the
referee. The proof, that we present below, is more direct, independent of Proposition 4.1 and does not
require any self-similarity arguments.

Assume that either p � pc;˛ or q � qc;ˇ. We distinguish two cases:
Case 1: If D � 1 then we must have q � qc;ˇ.
Case 2: If D < 1 then we must have p � pc;˛.

If q > qc;ˇ in Case 1 or p > pc;˛ in Case 2, then by (1-13) and (2-9), we deduce that

lim
jxj!0

u.x/

�N .x/
D 0:
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Since uD 0 on @�, the comparison principle gives that u� 0 in � n f0g.
If q D qc;ˇ in Case 1 or p D pc;˛ in Case 2 then by (1-13) and (2-9), we deduce that

lim
jxj!0

u.x/

�N .x/
<1:

For every � > 0 small, it can be easily checked that there exists C� > 0 with C�! 0 as �! 0 such that
S�.x/ WD C�jxj

2�N�� is a supersolution of (1-3) in B1 n f0g when q D qc;ˇ in Case 1 (respectively, a
supersolution of (1-2) in B1 n f0g when p D pc;˛ in Case 2). Since

lim
jxj!0

u.x/

S�.x/
D 0;

by the comparison principle, u.x/�S�.x/Cmax@Bd1
u in Bd1

nf0g. Letting �! 0, we get u�max@Bd1
u.

Since uD 0 on @� n f0g, we find that u� 0 in � n f0g.

In order to prove Theorem D in the case q D 2Cˇ we need the following lemma.

Lemma 5.2. Let ˇ > �1. If w 2 C 2.� n f0g/\C.� n f0g/ is a nonnegative solution of

��wCjxjˇ jrwj2Cˇ D 0 in � n f0g; (5-9)

which vanishes on @� then w � 0.

Proof. By (2-3), there exists a positive constant c35 D c35.N; q; ˇ; d1; d2; kwkL1.@Bd1
// such that

w.x/� c35� c3 lnjxj in Bd1
n f0g. The constant c35 can be chosen such that ˆ.x/ WD c35� c3 lnjxj is a

positive superharmonic function in � n f0g.
For � 2 .0; d1/, let h� be the harmonic function in � n B� such that h� D w on @B� and h� D 0

on @�. By the comparison principle, w � h� in � nB� for every � 2 .0; d1/. Consequently, h� � h�0 for
0< �0 < �. On the other hand, since ˆ is a positive superharmonic function in �nB� which dominates h�

on @�[ @B� , by the comparison principle, h� �ˆ in � nB� . Therefore, fh�g converges, as �! 0, to a
harmonic function Oh in � n f0g which vanishes on @� and satisfies w � Oh�ˆ in � n f0g. Since N > 2,
we deduce that Oh.x/D o.�N .x// as jxj ! 0. Therefore Oh� 0. Thus w � 0. �

Proof of Theorem D with q D 2Cˇ.
For � 2 .0; d1/, let w� be the solution of (2-10) with qD 2Cˇ. The sequence fw�g converges, as �! 0,

to a solution Ow of (5-9) in � n f0g which vanishes on @�. Since u� w� for every � 2 .0; d1/, it follows
that u� Ow. By Lemma 5.2, Ow � 0 and thus u� 0. �
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