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MULTIPLE VECTOR-VALUED INEQUALITIES
VIA THE HELICOIDAL METHOD

CRISTINA BENEA AND CAMIL MUSCALU

We develop a new method of proving vector-valued estimates in harmonic analysis, which we call “the
helicoidal method”. As a consequence of it, we are able to give affirmative answers to several questions
that have been circulating for some time. In particular, we show that the tensor product BHT ® IT between
the bilinear Hilbert transform BHT and a paraproduct IT satisfies the same L7 estimates as the BHT itself,
solving completely a problem introduced by Muscalu et al. (Acta Math. 1&:2} (2004), 269-296). Then,
we prove that for “locally L2 exponents” the corresponding vector-valued BHT satisfies (again) the same
L? estimates as the BHT itself. Before the present work there was not even a single example of such
exponents.

Finally, we prove a biparameter Leibniz rule in mixed norm L? spaces, answering a question of Kenig
in nonlinear dispersive PDE.

1. Introduction

Vector-valued estimates for classical Calderon—Zygmund operators are known from the work of Burkholder
[1983], Benedek, Calderén and Panzone [Benedek et al. 1962], Rubio de Francia, Ruiz and Torrea [Rubio
de Francia et al. 1986], to mention a few. A customary way of proving such vector-valued estimates
is through weighted norm inequalities and extrapolation, as explained in [Garcia-Cuerva and Rubio de
Francia 1985]. Initially, the vector-valued approach unified the existing theory for maximal operators,
square functions, and singular integrals. Later on, the setting was generalized to Banach spaces which
have the unconditional martingale difference property, and it was shown by Bourgain [1986] that this is
in fact a necessary condition for this theory.

For bilinear operators, however, the theory is far from being fully understood, even in the scalar case. In
this paper, we study vector-valued estimates for the bilinear Hilbert transform and for paraproducts. Our
initial motivation was an AKNS system-related problem, which can be reduced to understanding a Rubio de
Francia operator for iterated Fourier integrals. Because of the specific nature of this question, our general
approach is concrete, rather than abstract. As much as possible, the present article aims to be self-contained.

Central to time-frequency analysis is the bilinear Hilbert transform operator, defined by

BHT(/. £)(x) = p.v /R Fornge+n S
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(0,0,1)

Figure 1. Range for BHT operator.

This operator was first introduced by Calderdn, in connection with his work on the Cauchy integral on
Lipschitz curves. L? estimates for BHT were proved nearly thirty years later, by M. Lacey and C. Thiele,
without establishing the optimality of the range.

Theorem 1 [Lacey and Thiele 1999]. BHT is a bounded bilinear operator from L? x L4 into L® for any
1< p.q < oo, 0<s<oo,satisfying%+%:%and%<s<oo.

The range of the operator Range(BHT) consists of the set of triples (p, ¢, s) satisfying the conditions
above. The question that remains open is whether the bilinear Hilbert transform is bounded also for
s € (% %] The Holder-type condition %-i—é = % reflects the scaling invariance of the operator, and it can
be reformulated as %%—%—I—% =1, where s’ is the conjugate exponent of s. Thus (p, ¢, s) € Range(BHT)
if (%, é, %) lies in the plane {(x,y,z) € R*® | x + y +z = 1}, and is contained inside the convex hull of
the points

(0.0,1), (1,0,0), (1.i,-3). (3.1.-3). (0.1,0)

(see Figure 1). Regarded as a bilinear multiplier operator, BHT becomes equivalent to

(f.9) , (&) g ¥ *EIM gg gy, (1)
<n

The method of the proof, which breaks down when % + é > %, consists of approximating BHT by a model
operator obtained through a Whitney decomposition of the frequency region {§ < n}. In essence, this
model operator is a superposition of “almost orthogonal” objects of a lower complexity, called discretized
paraproducts.

Paraproducts play an important role on their own, especially in the analysis of PDE. A paraproduct is
an expression of the form

(f.g) > /R [R Flx—0)g(x —s)k(s.1) ds dr. @)
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where k(s, 1) is a Calderén—Zygmund kernel in the plane R2 Alternatively, a paraproduct can be regarded
as a bilinear multiplier operator

(e [ mEnf©eomem=E4 agan,

where m is a classical Marcinkiewicz—Mikhlin—-H6rmander multiplier in two variables, sufficiently smooth
away from the origin. The singularity of the multiplier m consists of one point: (£, 7) = (0, 0). On the
other hand, we can see from (1) that the BHT multiplier is singular along the line & = 7.

We have the following result on paraproducts:

Theorem 2 [Meyer and Coifman 1997]. Any bilinear multiplier operator associated to a symbol m(&, n)
satisfying |0°m (&, n)| < (€, n)| ™% for sufficiently many multi-indices o, maps L (R) x L4 (R) into L5 (R)
1

; 1 1,1 _1
provided that 1 < p,q < o0, §<s<oo,and;—|—a_s,

Following the presentation in [Muscalu and Schlag 2013], any bilinear operator of this form can be
essentially written as a finite sum of paraproducts of the form

(18> D ((f * V1) (€% Vi) * o () = D Pl Qi f - Qi) ()
k k

(18> D ((f %00 (€ V1) * Vi (x) = D Ok (P f - Qkcg). (In)
k k

(L&) Y ((f * ) (€% @)) % Yic(x) = > Ok (Qic f - Prg)- (III)
k k

From now on, a paraproduct will designate any of the expressions (I), (Il) or (III), and will be denoted
by T1(f, g). Here Y (x) = 2y (2%x), @r(x) = 2Kp(2¥x), ¢(&) =1 on [—1, 1] and is supported on
[—1,1] and @(S) = @(&/2) —@(). The { Oy }i represent Littlewood—Paley projections onto the frequency
|| ~ 2K, while { P¢ }x are convolution operators associated with dyadic dilations of a nice bump function
of integral 1.

A classical application of Theorem 2 is the Leibniz rule

[D*(f - g)lls < ||Daf||p1 lgllg, + 11/ 1lp, ||Dag||q2’ 3)

which holds for any o > 0, as long as % + q—li = %, 1< pi,gi <oo,and 1/(14+a) <s < oco. In particular,
if s > 1, which is the case in most applications, the Leibniz rule holds for any o > 0.

For functions on R?, with (fractional) partial derivatives in both variables, a corresponding Leibniz
rule is

|DEDE(f-9)],
< 1DEDE fllp gl + 1 s IDEDE gllas + 1DE s IDE gllgs + 1D £ s IDEgllgs- 4

The proof of the above inequality relies on discrete biparameter paraproducts IT® I, which are expressions
of the form

DS * (e ® Y1) - (g% (Vi ® @1))) * Ve ® Yy (x. ). &)

k,l
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Muscalu, Pipher, Thiele, and Tao proved the following theorem:

Theorem 3 [Muscalu et al. 2004a]. 1 ® I1 is a bounded operator from LP (R?) x L4(R?) into L*(R?)
provided that 1 < p,q < oo, %—}—é = %,and0<s < 00.
This further implies that (4) is true whenever
1 1 1
- — =, 1 > i =< ) ( ) _> .
Pi+CIi P < pi.qi <00, and max T+ 148 <r<oo
If r > 1 the last condition is redundant, so (4) holds for any «, 8 > 0.

1

Related to this, Carlos Kenig asked the following question, which has been circulating for some time:

Question 1. Assuming that 1 < 51,52 < 00, and o, B > 0, is there a Leibniz rule for mixed norm L?
spaces of the form

| DEDECf @) 51152 SUDEDE Fllon o gl par paa + 1 s poa I DEDE €l a3 00
+ 1D £l 25 26 1DE gll a5 a6 + 105 fll 27 o5 DS gll a7 057

Here the mixed norms are defined by

1

1 legag = 0 Vaglog o= ([ [ 1resr dy)g i)’ ©)

A result of a similar type appeared in [Kenig et al. 1993], as an important tool in establishing local
well-posedness for the generalized Korteweg—de Vries equation. This is a dispersive, nonlinear equation
given by

u  Pu 4 0u

—+-——=+u"—=0, t,xeR keZt

ot + 0x3 + 0x 7
u(x,0) = uo(x).

In order to prove existence, the authors use the contraction principle, but to be able to do so, they need to
construct a suitable Banach space. The norm of the Banach space involves mixed L? norms of fractional
derivatives in the first variable DY, and the Leibniz rule employed in this paper is

IDY(/ &)= Dig = DY/ 8lLpsy S CUDY Sl prpgn ID8l 2o ®
_ 1,11 1., 1_1
Here w € (0,1), a1 +ap = and 5~ + - = %, L+ L = 2. Also, p, p1, p2, 4,41, 92 € (1,00), but

one can allow g; = oo if ] = 0.

The fractional derivatives appear as a consequence of the smoothness requirement on the initial data:
ug is assumed to be in some Sobolev space H%(R), where o depends on the value of k in (7).

Question 1 is an extension of (8), and we managed to provide an answer by proving estimates for
T ® IT in L? spaces with mixed norms.

Biparameter bilinear operators were first studied in [Journé 1985], where he introduced a new way of
generalizing Calder6n—Zygmund operators on product spaces. More exactly, in that work he proved that
“bicommutators of Calderén-Coifman-type” are bounded, which translates to “TT ® IT maps L?(R?) x
L>®(R?) into L2(R?)”. The full range of estimates for IT ® IT was established in [Muscalu et al. 2004a],
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where was also noticed that BHT ® BHT does not satisfy any L? estimates. What remained undecided
for some time was the following question:

Question 2. Does the tensor product BHT ® I1 satisfy any L? estimates? Would it be possible to prove it
satisfies the same estimates as the BHT itself?

Some significant progress in answering this question was made by Silva [2014]. It was showed that
BHT ® IT maps L? x L4 into L® under the constraints that % + % <2 and % + % < 2. Our helicoidal
method allows us to remove these restrictions, proving in this way that BHT ® IT satisfies indeed the
same L? estimates as BHT.

As it turned out, the study of Question 1 and Question 2 is related to proving (sometimes multiple)
vector-valued inequalities for IT and BHT. Let 7 = (r1, r2,7) be atuple so that 1 <ry,rp <oco, 1 <r <oo

1 1
and;—{——

= % We say that an inequality of the type

H@\Bm(fk,gk)}’); (?m”)ﬁ (;gkl”)m

represents L? estimates for vector-valued BHT, corresponding to the exponent 7; in short, we have
—
L? estimates for BHT;.

Some L7 estimates for vector-valued BHT have been proved recently by Silva [2014], provided r €

€))

N
s

p q

(%, 4). UMD-valued extensions for the quartile operator (the Fourier—Walsh analogue of BHT) were stud-
ied by Hytonen, Lacey and Parissis [Hytonen et al. 2013]. Their results, transferred to the L? setting, hold
under the same constraint that r € (%, 4). Moreover, through this method it is impossible to obtain vector-
valued extensions when L1 or L spaces are involved, as these are not UMD spaces. A similar abstract ap-
proach was taken in [Di Plinio and Ou 2015], where Banach-valued estimates for paraproducts were proved.

In spite of these results, some important questions remained unsettled:

Ed . . —_ .
Question 3. Are there any exponents r as before for which the corresponding vector-valued BHT}; satisfy
the same LP estimates as the BHT itself?

As the question suggests, until the present work, there was not even a single example of such an
exponent. We show that whenever 7 is in the “local £ range” (thatis, 0 < % % % < %) ]ﬁ)l"; satisfies
the same L? estimates as the BHT operator. Moreover, whenever 2 < p, g < oo, we show L? estimates
exist for any exponent 7 = (r1,72,7).

To summarize, the main task of the present work is to give affirmative answers to Question 1, Question 2,
and Question 3 described above. In what follows, we will present our main results, sometimes in a more

general setting.

Theorem 4. For any o, 8 > 0,
| DEDECf @) 51 152 SUDEDE fllon o gl par paa + 1 s poa I DEDE €l 3 00

o B B o
+ ”Dl f”LfSL;’é ”Dz g“LZ5Lz6 + “Dz f”L§7L§8 ”Dl g“LZ7Lz8

1

whenever 1 < p;,q; < o0, %<s1 <00, 1 <59 <00, with Ta

< §1 < 00, and the indices satisfy the
natural Holder-type conditions.



1936 CRISTINA BENEA AND CAMIL MUSCALU

This answers Question 1 in the affirmative. Of course, one may wonder if Theorem 4 holds in arbitrary
dimensions. As the careful reader will notice, our methods allow for such a generalization, with the
outer-most Lebesgue exponent possibly less than 1, if all the indices p;, g; involved are strictly between 1
and oco. However, in applications L°° norms appear, so it will be of interest to have a more general
theorem for 1 < p;,q; < oco. Although we cannot obtain this result in this paper due to some delicate
technical issues, we plan to return to this problem sometime in the future.

An n-dimensional version of a Leibniz rule was presented in [Torres and Ward 2015] for indices that
are again strictly between 1 and oc:

IDECf )51 152 e
SIDE £t 122 ey 1811291 12 oy + 17120 22 oy DS €91 .92 sy

This can be regarded as an n-dimensional generalization of (8), and it is simpler than our variant of the
Leibniz rule because it doesn’t require a multiparameter analysis.

Our Theorem 4 is a consequence, modulo technical but “classical” complications, of the following
result:

Theorem S (mixed norm estimates for paraproducts on the bidisc). Let 1 < p;,q; < oo, % <851 <00,

1 1 1 :
< 2 - = = < <
1 <859 < 00, so that ; + T 55 1 <j <2 Then

HH®H(f’g)”LfClL§,2 < ”f”Lf?lsz ”g”L)qung‘

The above theorem provides L? estimates for I1T ® IT in mixed norm L7 spaces. Through our

methods, we can also recover the results from [Muscalu et al. 2006a], stating that IT ® --- ® IT maps
LP(R") x L2(R") into L5(R") whenever 1 < p,q < oo, % < s < o0 and % + é = % Moreover, we

answer Question 2 by proving that BHT ® IT and BHT ® I1®” satisfy the same L? estimates as BHT:

Theorem 6. Foranyp,q,rwith%—i—%: %,with 1 <p,q§ooand% <r < oo,

IBHT® T ®--- @ ([, g)|

L7 (Rn+1) 5 ||f||LP(Rn+l) ||g||Lq([Rn+l).
The same is true for 1 Q@ ---QMIQBHT® N ® --- ® II.

For n > 2, no such results were known previously, and furthermore, a new approach was necessary for
n > 3. This will be explained later in part (3) of the Remark on page 1939.

Some mixed norm L? estimates for [1®9!1 @ BHT ® T1®92 can also be proved (see Section 5.1). For
IT ® BHT, they are similar to [Di Plinio and Ou 2015] in the case n = 1. We recently learned that in
[loc. cit.] mixed norm estimates for IT ® I, close to our Theorem 5, are also obtained.

In proving the results mentioned above, multiple vector-valued extensions for BHT and IT play a very
important role. Given a totally o-finite measure space (W, X, 1), and f, g : R xW — C, we define

d
BHT(f, g)(x,w) := p.V./Rf(x—t,w)g(x+t,w)Tt.

Note that for a fixed value w € W, we have BHT( f, g)(x, w) =BHT( f, gw)(x), where f, (x)= f(x,w).
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Figure 2. Range for vector-valued BHT when -1 T

Theorem 7. For any triple (r1,r2,r) with 1 <ry,rp <00, 1 <r < 00 and so that % + % = %, there

exists a nonempty set Dy, ,, » of triples (p, q. s) satisfying % + é = % for which
BHT : L?(R; L™ (W, n)) x LY(R; L"™(W, )) — L*(R; L" (W, )).

This means that there exists a constant C so that

[IBHT( . g)”L’(W,,u)|Ls(R) <C |1 Lo, “Lp(R) gl o, HLq(R)-

Depending on the values of ri,ra,r’, we can give an explicit characterization of Dy, r, r, as follows:
1 1
Q) If 5 ﬁ’ r2 .77 = 5> then Dy, r, r = Range(BHT).

(i) If + rz’ r, < % and % > % then Dy, r, r corresponds to the tuples (p,q, s) € Range(BHT) for which
0<g;<3—m
1

N

(iii) If - o r, < and = > 3, then the range of exponents is similar to the one in (ii), with the roles

of r1 and r2 mterchanged That is, Dy, r, r consists of tuples (p,q,s) € Range(BHT) for which

1 1
<_<___‘
()_p 72

N

av) If %, ri < % and 4 > % then Dy, ,, r corresponds to the tuples (p,q,s) € Range(BHT) for

2 r’
whichOf%,%<%+%and—%<s, <1

See Figures 2—4 for the ranges of BHT in the cases above.

We emphasize that whenever (p, g, s) are such that 0 < —, é < (and consequently 1 < s < 00),
vector-valued estimates exist for any tuple (71, r2, 7). These are the first examples of tuples (p, g, s)

which allow for any BHT; extension.
Theorem 7 can be further generalized to multiple vector-valued inequalities. For an n-tuple P =
(p1...., pn), the mixed L® norm on the product space

(W, 2, ) = (]_[W [1= l_[uj)

Jj=1 Jj=1 Jj=1
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Figure 3. Range for vector-valued BHT when % > %

(0,0,1)

—_—
=
o

N
—_~—

1
5

Figure 4. Range for vector-valued BHT when % >

is defined as

Pn—1 1
" rn D1
0= ([ ([ 7 i) ) ™ don) ™
Wi W
Consider the tuples R; = (rll, o7, Ry = (rzl, ...,r3)and R = (rl,....r") satisfying for every
l<j=n,
l<r/r <00, 1<r/ <o L-i-i:i
1°'2 — ’ — ’ 7 / j

(frorn now on, this will be written as 1 < Ry, R, <00, 1 < R < 00, and RLI + R% = %) Then we have
the following multiple vector-valued result:

Theorem 8. Let Ry, Ry and R be as above. If the tuples Ry, Ry, R satisfy the condition (rlj, r{, rj) €
Dr{“,r{*‘,rﬂrl forevery 1 < j <n—1, then there exists a set Dg, r,.r of triples (p.q.s) for which

BHT : L?(R; LR (W, n)) x LY(R; LR2(W, n)) — L*(R; LR(W, )).

In addition, DR, r,.R = ‘Drll,rzl,rl‘
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Remark. (1) The vector spaces L” (W;, X;, ;) can be both discrete £” spaces or the Euclidean L” (R)
spaces. For our applications, they are going to be either of these.

(2) If the exponents Ry = (rll, o), Ry = (rzl, ...,ry)and R = (rl,...,r™) are in the “local L?”
range, then the multiple vector-valued inequalities hold for any (p, ¢, s) € Range(BHT). As particular
cases, we mention

BHT : L2 (£2(£%°)) x L9 (£ (£?)) — L*(£%(£?)),
BHT : L?(£2(£%°)) x LY(£%(£?)) — L*(£'(£?))

for any (p, ¢, s) € Range(BHT).
Also, for proving an equivalent of Theorem 6 in mixed norm spaces, we need the more complex version

BHT : L2V (L>(£>°(£%))) x LY (L9 (€2 (£%))) — L3 (L2 (£2(L1))).

(3) As mentioned earlier, multiple vector-valued estimates for BHT play an important role in estimating
BHT ® I1®". In the case n = 1, one can obtain estimates for BHT ® IT in the Banach range by using
duality and vector-valued inequalities of the type

BHT : L?(£?) x LY({*®) — L*(#?) and BHT:L? (%) x L1({?) — L*({?).
However, £1-valued estimates cannot be avoided for n > 3, for example, if [T ® [T ® IT has the form
NDeOeI(f,g)(x,y,z2) = Z QO P (PLOTOMf - Ok PPOMN)(x.y.2).
k,l.m

This is in part the novelty of our approach in Theorem 6, and it contrasts with the situation of classical
Calderén—Zygmund operators, where £!-valued estimates cannot be expected.

(4) The optimality of the range in Theorem 7 or that in Theorem 8 remains without answer, for now.
Since we use in our proofs the model operator for BHT, the obstructions appearing are similar to those in
[Lacey and Thiele 1999]. These are described in the constraint C(rq, 2, r’) on page 1954.

Equally important are multiple vector-valued inequalities for paraproducts, as they are essential in
proving Theorem 4.

Theorem 9. For any tuples R1 = (rll,...,ri’), R, = (r21,...,r§’) and R = (r',... r") satisfying
componentwise 1 < Ry, R <00, 1 < R <00, and R% + RLz = %,

T2 L2 (R; LRY(W, ) x LY@®R; LR (W, @) — L*(R; LR(W, ),

provided 1 < p,q < o0, %<s<oo,and%+$=%.

In other words, vector-valued estimates for paraproducts exist within the same range as that of scalar
paraproducts. This is also the case with classical Calderén—Zygmund operators.
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Original motivation. We now describe the previously mentioned Rubio de Francia operator for iterated
Fourier integrals, and the context where it appeared. AKNS systems are systems of differential equations

of the form

u' =iADu + Au, (10)
where u = [uy,...,up]" is a vector-valued function defined on R, D is a diagonal n x n matrix with real
and distinct entries d1,d>, ..., dp, and A = (a;x (- ))7 k=1 18 a matrix-valued function defined on R and

such thata;; =0 forall 1 < j <n.
Then one would like to prove that the solutions u;1 (which depend on A as well) are bounded “for all
times”; that is,
||u;-l||oo<oo fora.e. Aandalll <j <n. 11

We want to have such an estimate under the weakest possible assumptions, so we only require the entries
of the potential matrix A to be integrable in some L? spaces:

ajx(-) € LP/F(R) forall 1 < jk <n, j #k.

In the case of an upper triangular matrix A, whose entries are functions gx € LP*, the solutions u; ()
at a fixed time ¢ are a finite sum of expressions of the form

C / gl(xl) e gm(xm)eix(alxl+"'+amxm) Xm .. dxm.
X] <-<Xm<t

Here m <n and o, # 0O for all k, as a consequence of dy # - - - # d,,. Hence the problem (11) reduces to
estimating

C%(g1,82, -, gm)(A) := Sltlp

/ g1(xy) - gm(xm)ei'l(“lxl"""""“mx’") dxy -+ dxm|.
X1 <<Xp <t

It was proved by Christ and Kiselv [2001a; 2001b] that E,% is a bounded operator:
m
Hcg(glv SRR gm)”sm < l—[ ”gk”pk
k=1

1 1 1
< i S R O
for all 1 < py < 2 such that S = 7 +e o
On the other hand, if the entries of the matrix 4 are L? functions, the previous expression becomes
equivalent to

sup / Fr(x0) e+ fon(em) e MEXTE NI Gy | (12)
t X <-<x<t

denoted Cy (f1..... fm)(A). For m = 1, this is exactly the Carleson operator, while m = 2 corresponds

to the bi-Carleson operator of [Muscalu et al. 2006b], both of which are known to be bounded operators

(with the remark that for the bi-Carleson, the o need to satisfy some nondegeneracy condition):

1G5 (h1.h2) s, < MAllpy h2llps

for 1 < p1, pp <0 L 14 L and%<s2<oo.

) P1 p2’
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Moreover, if instead of considering the sup in the expression (12), we look at the limiting behavior
lim; o u;(¢), then we encounter iterated Fourier integrals, for example, the BHT operator as seen in
(1), or the bi-est operator of [Muscalu et al. 2004b]:

fg o 60 o) e TG gy gy s

Now we consider the following mixed problem: The matrix A is the sum of a lower triangular matrix
with entries f; € L? and an upper triangular matrix with entries gz € L%, where 1 < p; < 2. Using
Picard iteration, the solutions u;(¢) can be expressed as a series of terms of the form

C /R Fi1E) - fimy Erm)€21(621) -+ 205 (X2ms) -+ fr1(E) -+ fim, (Eim,) dx dE,

where R = {§11 < - <&y <X21 <+ <Xop, <-+- <& <+ <&y, <t}
The simplest of these operators, where the sup is dropped, is given by

M(fi, f,8)(§) = / F1(x1) fa(x2)g(x3) 2T HEEHX2H53) 4y iy dixs, (13)

X1<X2<X3

where f1 € LP!, fr € LP2, 1 < py, pp <00, and g € L? with 1 < p < 2. The techniques from [Christ
and Kiselev 1998; 2001a; 2001b], akin to those used by Paley [1931], are based on a dyadic filtration
associated to one of the functions. This involves a structure on R similar to that of the dyadic mesh: on
every level of the filtration, one has a partition of R, and passing to the next level of the filtration means
refining the previous partition. We want to use g in order to obtain this structure and for simplicity we
assume || g||, = 1. Define the function

o(x) = / g)I7 dy.

—0oQ
Its image is the unit interval [0, 1], and the filtration will consist of preimages through ¢ of the collection D
of dyadic intervals in [0, 1]. Because ¢ is increasing, whenever x, < x3 we have 0 < ¢(x2) < ¢(x3) < 1.
Hence there exists a unique dyadic interval w C [0, 1] such that ¢(x») is contained in the left half of w,
which we denote wy, while ¢(x3) is contained in the right half wg. To simplify notation, we identify
¢~ Hw) with w.
Then the operator M can be written as

> F1(x1) fa(x2) g (x3) 2 HE 132423 Gy dxs dicy

X1<X2
WED Y X2€W[ ,X3EWR

=D X1 <x2 fi(x1) fo(x2)g(x3) @M EETX2133) gy dxy dxs (14)
w

X1,X2€WL ,X3€EWR
+Z/X <L) fl(xl)fz(xz)g(x3)e2nié(xl+x2+x3) dxydxydxs.  (15)
w xzela)L,x3éwR

Here L(wy) denotes the left endpoint of the interval wy,. We call the operators in (14) and (15) M;
and M, respectively. The first term M7 accounts for the occurrence of arbitrary intervals (they are in fact
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(0,0,1)

Figure 5. Range for 7, operator for 1 <r <2.

¢~ Y(wr)), and this combined with Holder’s inequality motivates the operator

N

Tr(f.8)(x) = (Z

k=1

)r. (16)

/ F (&) 8(62) 2T EHED) g ag,
ax<€1<€x<bi

We have the following result:

Theorem 10. If 1 <r <2, then
IT- (£ ls SN fNpligllq

whenever % + % = %, and p, q, s satisfy

1 1
0=%3
On the other hand, if r > 2, then T, is a bounded operator with the same range as the BHT operator;

see Figure 5.
In Section 7 we will show how both M; and M, are bounded operators:

Theorem 11. The operators My and M satisfy the following:
. LD P2 p q i 1,1, 1 _ 1
My LPVx LP2x LP —» L provzded1<p<20ndpl—l-pz-l-p/—q,

while
. .1 D2 b4 q ; 1,1 441411
My LP' x L2 x LP — LY provided1 < p <2, p2+p,<l and ntn T =g
Hence M = My + M is a bounded operator from LP' x LP2x LP — L9 provided 1 < p <2, é+ <1
1

1 1 1 _ 1
andp1+pz+p’_q'

1
P

However, as Robert Kesler [2015] noticed, the boundedness of the operator M can also be proved
by making use of a vector-valued extension for the “linear” operator BHT( f1, - ). The constraint for the
exponents is given by é + # < 1. Soeven if M splits as M = My + M, and the range of M is larger,
one gets the same range for M through both methods.
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Because the intervals {[ag, b ]}, are disjoint and arbitrary, we refer to T} as a bilinear Rubio de Francia
operator for iterated Fourier integrals. Recall that Rubio de Francia’s square function is the operator

N

2 3 )
) =(Z|P1kf(x)|2),
k=1

where {1y = [ak,bk]}1<k<n is a family of disjoint intervals, and Py (/') denotes the Fourier projection

N A .
£ > RE(f)(x) = (Z [ Feemieag
k=1'""k

of f onto the interval /. Using vector-valued singular integrals theory, Rubio de Francia [1985] proved the
boundedness of the RF operator on L? for p > 2. Interpolating this result with estimates for Carleson’s
operator [1966], one gets more generally that the operator

N 1
RE, (f)(x) := (Z |P1kf(x)|”)

k=1
. 1,1
is bounded on L7, as long as T < 1.

In the particular case of a lacunary family of intervals (that is, I = [2X~1,2¥] and k € Z), the above
operator corresponds to a Littlewood—Paley square function with sharp cutoffs, which is bounded on
L?(R) for any 1 < p < oo. Even more, the L? norm of the square function is comparable to the L? norm

1

Rubio de Francia’s theorem addresses the boundedness of a square function associated to an arbitrary

of the initial function:

G flp = =Gl fllp-

p

(X

kez

/R Lot 2o ooty £ (6) 277 d

family of intervals, and in this sense it is optimal: in the case v = 2, the condition p > 2 is necessary,
while for v > 2, we need the strict inequality v > p’.

Returning to our operator 7, note that it can also be regarded as a vector-valued bilinear Hilbert
transform

[

T (f.8)(x) = (Z\BHT(Pkaa Plkg)(x)\r)r’

k

because the multiplier of the BHT operator is equivalent to 1¢¢, <¢,1, as seen in (1).
Using solely Khintchine’s inequality, it was proved in [Grafakos and Li 2006] that

H(;\Bﬂm,gmzf (;mﬁf (pguz)é

This implies the boundedness of 7 for » > 2, p,q > 2. But this is a very limited range, and in order to

N
s

b4 q
obtain estimates in the case p < 2 or ¢ < 2, one needs the full power of vector-valued extensions.

We note that our estimates for the operator 7, are sharp, in the sense that the same estimates are
satisfied by

1
r

(f.8) (Z}sz f(x)- szg(x)\’) (17)
k
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In (17), BHT(Py, f. Py, g) is replaced by the product of the functions Py, f - Pr, g. In general, the best
one can hope for a bilinear Fourier multiplier operator is that it satisfies the same L? estimates as the
product ( f, g) — f - g, and this is the case for 7.

Moreover, in the special case of lacunary dyadic intervals, for any 1 < r < oo, we have that

(f.8) (Z )

k
is a bounded operator from L? x L9 to L® for any (p, ¢, s) € Range(BHT). The cases p = oo and ¢ = 0o

/ F® 2 =E g ay
2k <f<p<2k+1

cannot be obtained directly, but follow by duality.

Our initial proof of Theorem 10 did not involve vector-valued bilinear Hilbert transform operators,
but it was built around localizations of BHT, in conjunction with several stopping times. Afterwards we
realized that this method is suitable for other general situations, which eventually led to the development
of the helicoidal method. This applies to paraproducts, BHT, the Carleson operator, the Rubio de Francia
operator, etc. In the study of the 7, operator, the stopping times were dictated by level sets of linear
Rubio de Francia operators: RF,, (/) and RF,,(g). For the vector-valued BHT, the three stopping times
that are used for estimating the trilinear form are dictated by level sets of

(Zr)"s (D)™ o (Simr)”
k k k

The method of the proof is described in more detail in Section 2.5.

Lastly, we want to point out an interesting connection with another open problem in time-frequency
analysis: the boundedness of the Hilbert transform along vector fields. More exactly, if v : R — R? is a
nonvanishing measurable vector field, then one defines the Hilbert transform along v as

d
va(x,y>=p.v.Af(<x,y>—r-v(x,y))f.

It was conjectured by Stein that H,, is a bounded operator on L? whenever v is Lipschitz. Some partial
results in this direction are known in the case of a one-variable vector field. M. Bateman and C. Thiele
[2013] proved the L? boundedness of H, for % < p < 0o and provided that v(x, y) = v(x, 0).

The proof makes use of the Littlewood—Paley square function in the second variable and restrictions to
certain fixed sets G and H, together with single annulus estimates for H, from [Bateman 2013]. In the
special case when f(x, y) = g(x)h(y), estimates for the variational Carleson from [Oberlin et al. 2012]
yield the same result whenever p > %. It is still not known if this can be extended to general functions
f(x,y), or whether one can push the lower bound for p below %.

Silva [2014] uses ideas similar to the ones described above, obtaining in this way vector-valued
extensions for BHT whenever % < r < 4. Our methods allow us to prove that vector-valued extensions
exist for any 1 <r < oo (in fact, for any triple (r1, 2, r)). It would be interesting to understand whether
the localization argument that we are employing can be transferred to the study of the Hilbert transform
along vector fields.
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Besides having sharp estimates for the local version of the operator, the structure of the intervals chosen
through the triple stopping time can play a role in itself. The collections of intervals constitute a maximal
covering for the level sets of certain maximal operators, and for that reason, they form a sparse collection
of intervals (in the sense of [Lerner 2013]). From here, weighted estimates can be deduced, and a similar
approach was carried out in [Culiuc et al. 2016].

The rest of the paper is organized as follows: in Section 2 we recall some definitions and results
regarding multilinear operators. The helicoidal method is described in detail in Section 2.5. Multiple
vector-valued extensions for BHT are presented in Section 3, and those for paraproducts in Section 4.
Following in Section 5 are the estimates for BHT ® I1®". The Leibniz rules are a modification of mixed
norm L7 estimates for I1 ® IT and are discussed in Section 6. The Rubio de Francia theorem for iterated
Fourier integrals and its application to the AKNS system problem appear in Section 7.

2. Some classical results on the bilinear Hilbert transform

In this paper we use Chapter 6 of [Muscalu and Schlag 2013] as a black box, but we recall a few definitions
and results to ease the reading of the presentation. Essential here are the notions of size and energy, which
are quantities associated to certain subsets of the phase-frequency space.

Notation. For any interval / C R, define

dist(x, 1) )_100

X1 (x) = (l—l- 7|

The mesh of dyadic intervals is denoted by D.

Definition 12. A file is a rectangle P = Ip x wp with the property that /p, wp € D or wp is in a shifted
variant of D. We define a tritile to be a tuple P = (Py, P>, P3) where each P; is a tile as defined above
and the spatial intervals are the same: /p, = Ip forall 1 <i <3.

Definition 13 (order relation). Given two tiles P and P’, we say P’ < P if Ip» € Ip and wp C 3wp/,
and P/ < Pif PP<Por P'=P. Also, PP<Pif IprCIp and wp C100wp/,and P' < Pif P/ < P
but P’ £ P.

Definition 14. A collection P of tritiles is said to have rank I if for any P, P’ € P the following conditions
are satisfied:

o If the tritiles are distinct, i.e., P # P’, then ij # Pj forall 1 <j <3.

o If wp;, = a)PJ(O for some jo, then wp; = Wp; forall 1 <j <3.

o If PJfO < Pj, for some jjo, then Pj’ S Pjforalll <j <3.

e If in addition to Pj/0 < Pj, one also assumes |/p/| < |Ip|, then PJf < Pj forall j # jo.

Definition 15. Let [P be a sparse rank 1 collection of tritiles, and let 1 < j < 3. A subcollection T of P
is called a j -tree if and only if there exists a tritile Pr (called the rop of the tree) such that P; < Pr ;
forall P € T. We write It for Ip, and oT; for wp,,; and we say T is a tree if it is a j-tree for some
l<j=<3.
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Definition 16. Let 1 </ < 3. A finite sequence of trees 77, ..., Ty is said to be a chain of strongly
i-disjoint trees if and only if
(i) P; # P/ forevery P € T, and P’ € Tj,, with Iy # I»;

(ii) whenever P € T;, and P’ € Ty, with [; # [5 are such that 2wp, N 2wp/ # J, then if |wp, | < |(upl(|,
one has Ip/ N I, =&, and if |Cl)pl_/| < |wp; |, one has Ip N I, =@.

(ili) whenever P € T;, and P’ € T}, with [; <[5 are such that 2wp, N 20)Pl.’ # @ and |wp, | = |a)P’_/|, then
IprNI T, = <.

Definition 17. Let P be a tile. A wave packet on P is a smooth function ¢p which has Fourier support

inside %a)p and is L2-adapted to Ip in the sense that

; 1 dist(x, Ip)\ M
65 () = Co —— 1+ (18)
|I P | 2+l |I P |
for sufficiently many derivatives / and any M > 0.
2.1. Model operator for BHT. A discretized model operator for BHT is given by
1
BHTp(/.8)(x) = ) , —(f.dp,)(8- 5,005, (x). (19)
1 2 3

PeP Ip|2

where the family P of tritiles is sparse and has rank 1, while (¢ lj;j )pep are wave packets associated to
the tiles P;. In some sense, the bilinear Hilbert transform is the canonical example of such an operator.
Above we also included the definitions of trees and chains of strongly disjoint trees because they are
essential in understanding such singular bilinear operators.

The model operator from (19) was introduced in [Lacey and Thiele 1999], and the bilinear Hilbert
transform itself can be represented as an average of such shifted model operators. The detailed reduction
can be found in [Muscalu and Schlag 2013, Chapter 6]. As a consequence, the boundedness of the bilinear
Hilbert transform within Range(BHT) can be deduced from similar estimates for the model operator. Simi-
larly, estimates for vector-valued and for the localized bilinear Hilbert transform will follow once we prove
their equivalents for the model operator, and we will not insist on the exact distinction between the two.

It is worth mentioning however, that the model operator fails to be bounded for s < %
2,

Bilinear operators are often studied with the use of the associated trilinear form. In the case of the

leaving undecided
the boundedness of the bilinear Hilbert transform itself for % <s5<

(model operator for the) BHT operator, the trilinear form is given by
1
Apurp(f.g.h) = Y —(f,0p, )2 05, (1. $B,)- (20)
pep lIP|2

Definition 18. If P is a collection of tritiles and /g is a dyadic interval, we denote by P(/p) the tiles P
in P whose spatial interval Ip is contained in /p:

P(lo):={P eP:Ip C Iy}
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Definition 19. Let P be a finite collection of tritiles, let j € {1,2,3}, and let f be an arbitrary function.
We define the size of the sequence ( f, ¢ 1{,/_ )p by

size((f.9p,)p) := sup (| 1 2 |9, |2) 1)

PeT
where T ranges over all trees in [P that are i-trees for some i # j.
Lemma 20 [Muscalu and Schlag 2013, Lemma 6.13]. Let j € {1,2, 3} and let E be a set of finite measure.
Then for every | f| < 1g one has
size((f, ¢1{,j) < sup — Ip] / XIP

Pep
for all M > 0, with implicit constants depending on M.
Thanks to Lemma 20, which is a consequence of the John—Nirenberg inequality, we can work with the
simpler “sizes”

. 1 -
s1zef~supm/R|f|~)(%dx,

Pep
where M is some large number to be chosen later.

We will also need a size that behaves well with respect to localization. In the formula above we
consider the supremum over the spacial intervals Ip of the collection PP. In our proofs, we will need to
compare sizep(z,) f and (1/]1o|) [l f|- X1, dx, so the following definition is natural:

Definition 21. If / is a fixed dyadic interval, then we define
— 1 .
sizep(ry) f = sup — / | f] -)(]J” dx. (22)
NI R A
IPeP(lpy),IpCJ
We note that for any function f,
sizep(r,) f = sizep(ry) f-
Definition 22. Let P be a finite collection of tritiles, j € {1,2,3} and let /" be a fixed function. We
define the energy of the sequence ( f, ¢ ;,j )p by

D=

energy((f. ¢4, )p) = sup2" sup( > |1T|) , (23)

nez T TeT

where T ranges over all chains of strongly j-disjoint trees in P (which are i-trees for some i # j) having
the property that

Y. |
(X urshe) =2}
PeT

for all T € T and such that

1
. 2 |
(X wrege) <2t
PeT’ '
for all subtrees 7/ C T € T.
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We have the following estimates for the trilinear form and energy:

Proposition 23 [Muscalu and Schlag 2013, Proposition 6.12]. Let P be a finite collection of tritiles. Then
3

Ao (fio o So) 5 [T ine(( ;. 9p,10)” (enerey (415 67, )p) ™

j=1
for any 0 < 01,602,083 < 1 with 01 + 0, + 03 = 1; the implicit constants depend on the 8; but are

independent of the other parameters.

Lemma 24 [Muscalu and Schlag 2013, Lemma 6.14]. Let j € {1,2,3} and f € L*(R). Then
energy((f. 03, )7) < I/

However, for our specific problem we need more accurate estimates for the localized trilinear form.
This will follow in Sections 2.4 and 3.1.

2.2. Interpolation. Since this is a fundamental tool in harmonic analysis, we recall a few facts about
interpolation methods. We adapt the results from [Thiele 2006] and emphasize how the constants change
through interpolation. In our applications, we need to keep track of the constants. Many of the proofs in
the following sections are iterative, and the operatorial norm obtained after interpolation becomes a “size”
on the subsequent step of the induction. We recall a few definitions and results, but we will be mainly

using their generalization to Banach spaces.

Definition 25. For a subset E C R of finite measure, define

X(E)={f:1fl=1E ae].

We will denote by V' the linear span of all X(E), which plays an important role because it is a dense
subspace of all L? spaces for 1 < p < o0.

Definition 26. A tuple o = (a1, ..., ay) is called admissible if for all 1 <i <n,
—o<ai<1 and a1+, =1,
and there is at most one index jo so that a;, < 0. We call an index good if o; > 0 and bad if a; < 0.

Definition 27. A multilinear form A : V x---xV — C s of restricted type o = (@1, ..., o) with0 <q; <1
if there exists a constant C (possibly depending on «) such that for each tuple £ = (Eq,..., E;) of
measurable subsets of R and for each tuple f = (f1,..., fu) with f; € X(E;), we have

‘A(fla---sfn)} SCl_[|EJ~|“J'.
J

Theorem 28 (similar to [Thiele 2006, Theorem 3.2]). Let 8 = (B1, ..., Bn) be a tuple of real numbers
such that ) jBj =1and Bj >0 jorall j. Assume A is of restricted type o for all a in a neighborhood
of B satisfying > ;j &j = 1, with constant C(c) depending continuously on o.. Then A is of strong type 8
with constant C(fB):

Al =CB [T forall ;€ V.
j=1 ’
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For multilinear operators, it often happens that the target space is an L? space with 0 < p < 1. This is
not a Banach space, but we can conclude the desired outcome by interpolating weak-L4 estimates for g
in a neighborhood of p. Additionally, L9-°° norms are dualized in the following way:

Lemma 29 [Muscalu and Schlag 2013, Lemma 2.5]. Let 0 < r <1, and A > 0. Then the following
statements are equivalent:

@ [/ llr00 = A.
(ii) For every set E with 0 < |E| < oo, there exists a major subset E' C E (i.e., |E'| > |E|/2) so that

(i 1E)| < A|E|71/, where % + % = 1. (Note that for r # 1, we have r’ is a negative number.)

Definition 30. Let o be an n-tuple of real numbers and assume «; < 1 for all j. An n-linear form A is
called of generalized restricted type « if there is a constant C (possibly depending on «) such that for
all tuples £ = (E1,..., E,), there is an index jo and a major subset E]’.0 C Ej, so that for all tuples
f=(f1..... fa) with fj € X(Ej) for j # jo and fj, € X(E} ),

n
IACfio o ) =C TTIE ™. (24)
j=1
If a tuple @ = (a1, ..., 0p) is good, then generalized restricted-type estimates coincide with restricted-

type estimates:

Proposition 31 (similar to [Thiele 2006, Lemma 3.6]). If « = (1, ...,qy) is a good tuple, and A is of
generalized restricted type o with constant C(«) and the major subset corresponds to the index jg, then
A is of restricted type a with constant C () /(1 —2770),

Theorem 32 [Thiele 2006, Theorem 3.8]. Assume

A= (T(fl, ooy fn—1), fn)

is of generalized restricted type B, where Zj Bj = 1. Assume By > 0for1 <k <n—1and B, <0.
Assume A is also of generalized restricted type a with constant C () (continuously depending on ) for
all « in a neighborhood of B satisfying > ; @j = 1. Then the multilinear operator T' satisfies

(1—8n)

n—1
17 )| scw)_]'[lnf,-nﬁlj. (25)
b

2.3. Interpolation for Banach-valued functions. The Banach space interpolation theory is very similar
to the scalar version, the difference consisting in replacing the norm | - | on C by ||-||x on a Banach space X.
We say that F' € L?(R; X) provided

N =

IFllLresx) = ( [iFeons dx) <o

The question of integrability of F(x) is reduced to the Lebesgue integrability of x — || F(x)||x. The set
of vector-valued step functions is dense in L?(R; X) and for this reason, similarly to the scalar case, it
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will be enough to deal with function in
{F N F(x)|lx <1g(x) a.e. E C R subset of finite measure}.

The linear span of such sets will be denoted Vx.
The multilinear form associated with an operator is obtained through dualization. More exactly,

[R (G(x), F(x) dx

I Fllr@x):= sup
1G 11, oy oy <1

whenever 1 < p < oco.
We will deal with a vector-valued multilinear (or multisublinear) operator of the form

T:LP'(R; X1) X -+ x LP ' (R; Xp—1) — LP"(R; Xy).
The multilinear form associated with this operator, A : Vx, x---x Vx, | x Vyx» — C, is given by
A(F1, ..., Fu_1, Fy) = /(T(Fl,...,Fn_l)(x),F,,(x))dx.
R

The definitions and proofs from the scalar case are adaptable to the vector-valued situation. For complete-
ness, we present them here, adapting the equivalent statements from [Thiele 2006].

Definition 33. A tuple @ = («1,...,®y) is called admissible if &y +---+ o, =1, o1,...,a, <1 and
for at most one index jo we have a;, < 0.

A multisublinear form A as above is of restricted type & = (a1, . .., ®y) for a good admissible tuple o
if there exists a constant C so that for each tuple £ = (Ey, ..., E,) of measurable subsets of R, and for

each tuple F = (Fy,..., Fy,) with || Fj|x < 1g,, we have
|A(F1,....Fp)| S ClEL|* -+ | Ep|*n.

Proposition 34 (equivalent of [Thiele 2006, Theorem 3.2]). Let f = (B1, ..., Bn) be an admissible tuple
of real numbers such that B; > 0 for all j. Assume that A is of restricted type o for all admissible tuples o
in a neighborhood of B. Then there is a constant C such that for all Fj € Vx,

\A(F1, .o F)| < ClIFLll s exyy - 1 FnllL16n ox,)-

Definition 35. Let o be an admissible tuple; the n-sublinear form A is of generalized restricted type a if
there is a constant C such that for all tuples £ = (E1, ..., Ej,) there is an index jo and a major subset £ J/.o
of Ej,(that is, |EJ’.0| > | Ejy|/2) such that for all tuples F' = (F1,. .., Fy) with || Fj||x;, < 1g; for j # jo,
and ||Fjo||on < IE} , we have

0

|A(Fy,.... F)| 5CH|Ej|a.i_
J

Proposition 36. If A is of generalized restricted type o = (a1, . ..,0p), and aj > 0 for all j, then A is
of restricted type «.
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On the other hand, if one of the indices o/ is <0, the generalized restricted-type implies only weak-L?
estimates. This works in the case when the multisublinear form is given by

A(F1, ..., Fy) = /R(T*(Fl,...,Fn_l)(x),F,,(x))dx, (26)

and corresponds to an operator T defined on Vx, x---x Vx,_, and taking values in Vy,,.

Proposition 37. Let A be a multisublinear form as in (26), and o = (a1, ..., 0y,) an admissible tuple
with o, < 0. Assuming that A is of generalized restricted type o, we have

n—1
x| TFL . Py, > A} < 4 [T1E/1%
j=1

forall tuples F = (Fy, ..., Fy_1) with | f; ||X_,- <l1g,.

Proposition 38. Assume A is of generalized restricted type 3, where B is an admissible tuple with 8, <O.
Assume A is also of generalized restricted type « for all admissible tuples o in a neighborhood of B. Then
T satisfies

n—1

“f(Fl, ey Fn—l) HLI/(I—Bn)(R;Xn) <C 1_[1 ||Fj ||L1/ﬁj (R;X;)" (27)
j=

The proofs of the last two propositions follow exactly the same ideas as those corresponding to the

scalar case, with very minor differences.

2.4. A few technical lemmas. In this section, we present a few results that will be useful later on for
estimating a trilinear form associated to a collection [P of tritiles well-localized in space: Ip C Iy for all
P eP.

Lemma 39. If Iy is a fixed dyadic interval, k € 7+, and f is a function such that

k=1 dist(supp £, Ip) -

ok
- [ 1o] -

then

energyp(r) S S 251 £ -

Proof. Following Definition 22, there exists a collection T of j-disjoint trees T € T C P(/p), so that
2
(energyp(r) )~ Y Y |(fiop)]".
TeT PeT

We define 7 := | Jrer Uper P, the collection of all tiles in T, and estimate the right-hand side of the

expression above:
)P CTAED DD DR B (Xl

TeT PeT m=>0 I1CIy PeT
[I|=2"mIo| IP=1I
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The collection of tiles P € 7 with Ip = I for a fixed interval I are all disjoint in frequency. In fact,
since they are of the same scale, they are translations of some fixed tile and hence

dist(x, I)
> (e flf(x)|2(1+ 7 ) dx.

PeT
Ip=1I

This implies

I DI [ If(x)lz( d“t'(lxl ”) ix

Tel PeT m>0 ICI,
[1|=27""Io|

<Y e (R
~ 2 1]

m=>0 ICIy
[I|=27""1o|

SIfI3 272 My oM

m=>0

S|f13 272k, O

On the other hand, if f is supported inside 5/p, we know from Lemma 24, that energyp(s,) /' < [|.f |2
Since the collection P(/p) is localized in space on the interval /o, we have the following estimate for
the trilinear form Agyr;p(r,):

Lemma 40 (refinement of [Muscalu and Schlag 2013, Proposition 6.12]). The trilinear form Agyr;p(1,)
satisfies

|ABHT;P(IO) (/. 8 h)‘
< (size 01 (si 02 (si NN i Y % I - 1=6: (28
< (sizep(ry) 1) (sizep(ry) 8)% (sizep(r)y M 1L - Frolly " g - Frolly ™ 1 Firo (28)

for any 0 < 01,0,,03 < 1, with 01 + 0 + 03 = 1; the implicit constants depend on the 0;, but are
independent of the other parameters.

Proof. For any | > 1, we define Z; := 21"'110 \ 2110, and Zy := 2[y. In this way, for any x € Z;,
1+ dist(x, Io)/|1o| ~ 2L
We will be using the following decompositions:

=Y =Y s, 29)

k1=0 k1>0
and similarly,

= Z 8ko - = Z g'lzkz’ h:= Z iy = Z h'11k3'

k>>0 k>>0 k3>0 k3>0
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From Proposition 23, the trilinear form can be estimated by

ABHT;P(I()) (f; g, h)} 5 Z ‘ABHT;P(I()) (fkl » 8ko» hk3)‘
klak25k3

S Y (izengry) fi)? (sizep(ry) 8k,) % (sizep(rg) M)
kik2.k3 1-6, 1-6> ho 103
(energyp(zy) fi) ' (energyp(ry) 8k,) 2 (energyp(ry) hks)

We will only employ the extra decay in the energy; for the size, we have simply
sizep(1y) fi; < sizep(iy) f
uniformly in k1.
On the other hand, since f, is supported on 7y, Lemma 39 implies
energyp(r) fin 27| iy 2.

Hence we obtain

| Asrr:pre) (f 8 )| < (sizep(rg) )0 (sizep(rg) £) (sizep(rg) h)%

C Y QTM i ) @M gy 1) @R M By 1)
k1,k2,k3

The expressions in the last line are summable, via Holder’s inequality; more exactly, since 6; < 1,

146, 1-6;
1-64

o 1—6 CkMAiZf\ T2 kg M 2
T o) (T2 ) T (D)
k1 k1

~ 1-6
SN xnly ™

for M sufficiently large. Note the implicit constants will depend on 6; only. This proves inequality (28). [

Z sk M (2—k1

k1>0

2.5. The helicoidal method. With the intention of bringing to light the ideas behind our proofs, we
present the main strategy in a simplified setting. Unfortunately, we cannot avoid the specific terminology,
but one should think of the sizes as being averages, while the energies are L? quantities that reflect
orthogonality. For estimating the norms |BHT(f, g)||s, we use interpolation results for the trilinear
form Apur(f, g.h) = (BHT(f. g),h). In what follows, Af,(f, g, h) denotes a space localization of
Agur(f, g, h) to the fixed interval Iy. More specifically, it is the form associated to a model operator of
BHT as in (19), where the spatial intervals of the tiles lie inside the fixed dyadic interval I¢. Similarly,
A?O (f. g, h) denotes a space localization of the corresponding trilinear form in the multiple vector-valued
setting.

The helicoidal method is an iterated induction procedure suitable for proving vector-valued estimates
for linear and multilinear operators. We describe the main ideas in the case of the BHT operator, and
later on we will indicate the equivalent statements for paraproducts and the Carleson operator. At the
heart of our argument lies the following induction statement:
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Induction statement. Let n > 0. We fix Iy a dyadic interval, and F, G, H' subsets of R of finite
measure. Let Ry = (r{,....r1), R = (r},...,r%) and R’ = ((+")!,..., (+")") be n-tuples so that
Ril + Riz + % =1, while f, g and & are vector-valued functions satisfying

1/ rs oy < 1P, 180 Lra oy <16 () and RGO Lr oy 0 < 1 ().

Then we have the following estimate P(n) for the trilinear form A’I’O:

— [ —_— 2] —_— o
A% (fg.h)| S Gizery 1p) 22 ¢ Sizeg, 16) 2T % ¢ (Sizeg, L) 2+ 2 ¢ I
for every 0 < 0y, 65,03 <1, 01 + 0, + 03 = 1, satisfying an extra condition C(R1, Rz, R').

In the local L? case the condition C(R1, R», R’) is satisfied automatically: that is, the P(n) statement
is true for all 0 < 6y, 6, 03 as above. This condition is the main obstruction in obtaining for ﬁ; the
same range of L7 estimates as that of the scalar BHT; in (37) we point out the source of this constraint.
Now we present the proofs of the induction statements P(0) and P(n) = P(n + 1). Also, for the reader’s
convenience, we include the P(0) = P(1) step.

As we will see later on, the fact that P(n) implies our Theorems 7 and 8 is based on a standard triple
stopping time argument, involving the above localized sizes.

Check P(0): This is the scalar BHT case, with | f| <1f, |g| <1g and |k| < 1pg-. This situation is well
understood, and we have from Proposition 23:
Az (f.8. )| < (izer, /) (sizer, )% (sizer,h)® (energyy, f)' ™% (energy, €)' ~* (energyy, h)' =%

for any 0 < 61, 65,605 < 1 such that 61 + 6, + 63 = 1.
Since we are considering a localized model of BHT, where all the tiles have their spatial intervals Ip
lying in /o, one can refine Lemma 20 by replacing energy;, f with || /- 1, /2. Noticing that

~ - 1 1
I/ X1oll2 < (sizegy1F)2 102

1—-64 1—63 1—63
and |Io| 72 |lo|"2 |lo] 2 =|lo|, we obtain the desired P(0).

Check P(0) = P(1). Assume that

1 1
77

(2:|fk|rl)rl <1r, (2:|gk|r2)r2 <1lg and (Z|hk|r/) <1p. (30)
3 3 k

Given that we know P(0), we will prove P(1), given by

03

RV

=

-~ 1401 — 14,0 o —
< (31zelolp)2+ 2 6(8126101(;)2+ 2 € (51ze101Hf)

ZAlo(fk’gkﬂhk)

k

for any 0 < 601, 6,,65 <1, 61 + 0, + 03 = 1, satisfying the constraint C(ry,r,7’), given by

1+6 1 1+06 1 1+6 1
+1——>0, +2——>0, +3——>0
2 ri 2 1) 2 r’




MULTIPLE VECTOR VALUED INEQUALITIES VIA THE HELICOIDAL METHOD 1955

Asurpry) (fv-1r.gn-16.hn-1g7)

1 146, | 146, 1 1463 1
. (sizery 1p) 2 71 (sizer, 1g) 2 "2 (sizepy dgr) ™ 2 77
* ~ ~ ~

i '||1F'XI()”r| ||lG‘X10||r2 ||1H"X10||r’

Agurpo) (f21F, 821G, ha-1g7)

i

Agurpo) (f11F. 8116, hi-1g)

Iy
Figure 6. Output of the localization process.

Here an intermediate step is necessary in order to get a finer estimate for each Ay, ( fx. gk, hx). That is,
we need to prove

Ay (fk-1F. gk -1, hi - 1) S IAL I fx - Xaollry |18k - Xaollrs 12k - Xao 7 (31)

where the operatorial norm is given by

— 46, 1 . — 46 1 . — 14603 1
”AIO”:(SIZCIOIF) 2 "1 (SIZCIOIG) 2 2 (SIZCIOIH/) > 6.

Once we have such an estimate, we sum in k, use Holder’s inequality and (30) to further estimate (31) by

”AIO” ”1F ')?E”rl HIG ')?E”rz ||1H/ 'iio”r’ |IO|-
[ 1o| 1 [1o| "2 | 10| 7
This is illustrated in Figure 6 and it proves P(1).
The proof of (31) is a slight modification of the proof of the boundedness of the bilinear Hilbert
transform. Using interpolation methods, we can assume that | fx| < 1g,, |gx| < 1E,, |hx| < 1g;. So we
need to show

Ary(fi 17, 8k - 1G. hi - 1) S IIAL I E1|* |E2|*? | E3|*,

where (a1, a2, ®3) is an admissible tuple arbitrarily close to (% % %) In order to get the desired
expression for || Ay, ||, we need another stopping time inside /o. This is illustrated in Figure 7.

Let I C I be a subinterval of /3. Now we use P(0) as follows:
|Ar(fie-1F. gk 16 hi - 1m7)
1+93

— e 1o .
S(sizef(1p-1g))) 2 ~“(sizey(lg -1g,)) 2 ~“(sizef(1gr-1g5)) 2 ~€|1|

_— 40 e 40 e 1+63
< (sizer,1F) e € (sizeg,1G) L € (sizeg lgr) 2 "€

- (sizer 1) (Size 1 g,)*2 (sizer 1g,)* 1|
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Ar(fn-1Fr,gn1G,hn-1g1) Ap(fn1r,gn-1G,hn-1g) Apr(fn-1Fr,gn-1G,hn-1yr)
Ar(f2r1F,82:1G,h2 1g7) A (f21F,82:1G,h2 1) A (f21F,82:1G,h2 1)
Ar(fi-lp,g1-1G,hi-1g7) Ap(fi-lr,g1-1G,hi-1g7) A (fi-lr,g1-1G,h1-1g7)

I i F I, i F I”

Figure 7. Extra stopping time.

In order to obtain the last inequality, we have to make sure that the exponents

146, 146, 1+ 03
— 0] — €, — 0y —€, — 03 —€
2 2 2
are all positive, which is always the case in the local L? situation. Since (o1, @2, a3) are arbitrarily close
to (%, %, r—) this is the origin of the constraint C(rq, r»,7") on page 1954.

Summing over the intervals I given by the alluded to triple stopping time over the corresponding
averages, we recover | E1|%! | E2|*2 | E3|*3. We note that the operatorial norm given by interpolation is

1+91 1 1+92 1_5,..\_, 1463 1 -
(31261011:) (5126101g) (sizeg lgr)~ 2 ~ 7 ¢

where € is slightly larger than the initial €, but the difference between the two is irrelevant.

Check P(n) = P(n+1). Lastly, we present the general induction step, in the case of iterated £7 spaces.

We have multi-indices 71 = (r{,..., 1), F2 = (r3,....r}), r = ("L, ..., (")), and I £z, <1F,
lgllz, =1, lIhll; <1m’. Then iP(n) is equivalent to
A% (fg.h)| = ‘ / ZBHTP(IO)(J;,g,)(x) hi(x) dx
— — — 0
< (sizezolF)f+7‘€ (Sizer,16) 4+ 3 ¢ Gizesy L) 2+ 5 < 1), (32)

whenever [y is a dyadic interval. For P(n 4+ 1) we consider n + 1 iterated £ spaces, given by the
multi-indices: Ry = (r1,71), Ry = (ra,72) and R’ = (r’,r’), while f, g and h are vector-valued functions
satisfying

1 1
r /
||f||§15=(2||fk||;i) <tr. gl = (Z||gk||’2) <1, Jhlg:= (Znhknr) <1p
k

(33)
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We want a result similar to (32), so we need to estimate

NN (fog ) = /R YD BHTe() (fy j 8, )0 - hy 500 dx = D AF (fier gk ).
ko7 k

We can’t directly apply P(n), and instead we will need the following result, similar to (31):

| AT, (Sies gk i) | SIAT I S - Hrollr gk - o Nl ek - Tro 1 (34)
— 46 1 — 46 1 . — 1+63 1
where ||A’I’0|| = (sizef,1p) 2> 71 “(sizeplg) 2 "2 (sizer, 1) 2 T Once we have such

aresult, P(n + 1) follows easily by Holder, exactly as before.
We will prove (34) by using restricted-type interpolation. Instead of estimating the trilinear form A’}O,
we will deal with

AZ’)F’G’H/(fk, 8k-hi) = Ary(fie - 1F. 8k *1G. hic - 1m7). (35)

This is natural since condition (33) implies that the functions fj are supported on F, and similarly the
functions gy are supported on G and i on H'. By interpolation theory, we can assume that

I fellz, <1, 8kllz, <1E,. and  |hg|l; < 1E,,
and it suffices to prove

F.G,H'
AT (fis 8k hi)| S AT I E1|* | E2|*2 | E5|* (36)

L1 l). Similarly to the case P(0) = P(1), we will have

r’ B’ I ,
a stopping time inside /g, so in fact we need to estimate A'}’F’G’H (fx, &k hy) for some I C Iy. Ttis
here that we use hypothesis P(n):

,F,G,H’'
A} (fr-&k-hi)| = | AT (fi - 1F. gk - 1G. hi - 1)
with ”fk . 11:'”;1 < lmel, “gk 'lG”?z < lGﬂEz and ||hk 'lH/”’j’ < 1H/0E3- More precisely,

IAPECH (i )|

—_— 0 —_— ) — 4]
< (izef(1p - 1g,))2+ 2 7€ (Size (g - 1g,)) 2t 7 € (sizey (1gr - 1)) 2T 2 ||

for (o1, @2, @3) in a small neighborhood of (

’

_— 140 o — 1,9 _  _  — 1403 _
< (SIZCIOIF)2+ 2 T¥1T€ (SIZGIOIG)2+ 2% E(SIZCIOIH/)2+ 2 43¢
- (sizer 1g,)™ (sizer1g,)® (sizer15,)*3 |1 |

for (a1, @2, @3) in a neighborhood of (% % %) Due to the stopping time, which is performed with

respect to the three sizes, we know the expressions (EiEE:I 1£,)% add up to |E(|¥" and it is similar for the
sizes of 1g, and 1g,. Interpolating, we get the desired (36). From the above equation, we can see why
the operatorial norm has the form

-~ ﬂ_i_g —_— 1+02—L—g — ) 1
HA’;O H = (SIZCIOIF) 2 1 (SIZCIOIG) 2 "2 (SIZCIOIH/) 2 ¥ €,
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The € (which is a slight modification on the € in the P(n) statement), appears as an interpolation error;
moreover, the conditions

1+6 1 1+6 1 1+6 1
=+ 1 _ S O, + 2 _ > O, + 3 _ >0 (37)
2 r r 2 r’

are necessary, and they imply the constraint C(R1, Ry, R’). This ends the proof of the induction step.

The same method applies in the case of paraproducts. The difference here is that the energies are
L' quantities, and for that reason we don’t have any extra assumptions; the range of the multiple vector-
valued extensions is the same as that of the paraproducts. The model operator for paraproducts I1
corresponds to a “rank 0” family of tritiles; that is, once we know the spatial interval Ip, there is no other
degree of freedom and the frequency intervals are [1 /pl.2/|1p |] or [0, 1/|1p |]. The exact definitions
will be introduced in Section 4.

Induction statement (paraproducts case). Under the same assumptions as in the induction statement on
page 1954, the localized trilinear form for paraproducts satisfies P(n), given by

|A7 (f.g.h)| < (sizegy1 7)€ (sizegy 1) < (sizegy 1mr) ' €| Il
provided
LF ) Lz oy S1F). 18 ILra gy <16 (x) and ROy < 1a/(X).

Finally, we want to point out that the helicoidal method applies equally in the case of (sub)linear
operators. One last example is that of the Carleson operator

Crf(x) = sup / £(&)e277 g
N |J&<N

for which UMD-valued extensions are already known from the work of Hyt6nen and Lacey [2013].
Demeter and Silva [2015] gave an alternative proof for £2-valued inequalities for the Carleson operator.
In fact, they present a new principle, built around ideas from [Bateman and Thiele 2013], for dealing
with £2-valued inequalities for sublinear operators which are not of Calderén—Zygmund type.
We do not present all the details here, but the essential statement for proving multiple vector-valued
inequalities for the Carleson operator, using the helicoidal method, is the following:

Induction statement (Carleson operator). Under the same assumptions as in the induction statement on
page 1954, the localized bilinear form for the discretized Carleson operator satisfies P(n), given by

AL (O] S (sizery17)' ¢ (sizegy 1) | o).
provided that
I Lriwy =1F(x) and  [[g(X) LR (w ) = 16 (%)

Comparing the main statements of the above three examples, we can see from the exponents of the
sizes that the range of L? estimates for the vector-valued Carleson operator and for the vector-valued
paraproduct IT will coincide with the range of the scalar operator. However, for BHT things are more
complicated.



MULTIPLE VECTOR VALUED INEQUALITIES VIA THE HELICOIDAL METHOD 1959

3. Multiple vector-valued estimates for BHT

In this section we describe the detailed proof of our Theorems 7 and 8.

3.1. Estimates for localized BHT. Here we assume that F, G and H’ are fixed subsets of R of finite
measure and /¢ is a fixed dyadic interval. We are interested in finding estimates for the bilinear operator

BHT, “7 (f.g)x):= Y

Peply) | P|2

(S 1p.0p ) (g 1G.9p,) dp, (X)Lg/(x).
In doing so, we first study the associated trilinear form

F G,H’
Agimpay (S8 =Y

PeP(Ip) |

S 1p.dp ) (g 16.9,) (h-1h. ¢3.).

| 2

While this operator satisfies the same estimates as the bilinear Hilbert transform, the localization to the
sets F, G and H’, and the restriction to the tiles in P(/g) will bring some extra decay. First we prove a
result in the “local L? case”, when - o % % % In this situation the proof is simpler, because we are
employing “energies”, which are L2 expressions, and they can easily be related to L’ averages when

r > 2.

Proposition 41 (the case ry, 72, ' >2). Let P be a family of tritiles, Iy a dyadic interval and F, G, H' C R
sets of finite measure. Then one can find positive numbers a1, a» and as so that

F.G,H’
|ABHT;[FD(IO)(f’ & h)‘

< (SizeP(lo) 17)% (SiZCp([O) 1) (SizeP(lo) 1) f - Xiollr 1& - Xaollra - Xrollrr- (38)
We can choose aj = 1— % —¢€ > 0 for avery small € > 0.

Proof. In this case we are proving restricted-type estimates by applying directly Proposition 23: let

E1, E>, E3 be sets of finite measure, and | f| <1g,, |g| <1E,, |h| <1g,. We have

Aur(f - 1F.g-16.h-1g) < (sizep(rg) (f - 1) (sizep(10) (8 - 16)) ™ (sizen(zg) (- 1117)) %
-(energy(f - 17))' ™" (energy(g - 16))' % (energy(h - 1)) (39)

for any 0 < 601, 65, 03 < 1 such that 81 + 6, + 63 = 1. Recall that the sizes can be estimated by

sizep(r)(f -1F) < sup L / g, -1p - 71k dx,

Pep(ly) 1P| P
where M can be chosen as large as we wish. Then we observe that if E; is supported away from /o, the
sizes will decay fast, giving the desired || f - ¥1, |-, on the right-hand side. It is similar for £, and E3.
For this reason, we can assume that the sets £y, E», E3 are supported on 5/ and then we will need to
show only that

|Agur:po) (f1F. 816, h-1g)| < (sizep(ry) 17 )™ (sizep(ry) 16) 2 (sizep(ro) V)2 || f lry 1€ 22N



1960 CRISTINA BENEA AND CAMIL MUSCALU

We are using the energies precisely for estimating the norms of f, g and 4, so the sizes are playing the
role of a constant here. As we have seen in Lemma 24, the energies are bounded by L? norms, so from
(39), we have

1—63

F,G,H’ . . . 1—6; 1—65
Agirigey (& 1) 5 (izep(re) 1r) " (sizepqry) 16)% (sizep(ro) Lu)® |E1 |2 |Ea| 2 |E3| 2.

By varying 67, 6> and 603, we see that these restricted-type estimates are true in a very small neighborhood
of (%, %, %), and the interpolation, Theorem 28, yields strong-type estimates. Note that the constant in
this case is

(sizep(zo) 17)? (sizep(ro) 16)% (sizep(rq) 101)%.

which depends on the functions 1, 1g, 15/, the fixed interval Iy, the values of 61, 6>, and 83, but not
on the functions f, g, h. O

11

TRETE %) is an admissible tuple satisfying

Now we deal with the general Banach triangle case, where (

The proof is going to be more complicated because we will need to use the sizes as well for reconstructing
the norms of f, g, h. In addition, we will also need to use the sizes of 1z, 1g and 1 later on.

Proposition 42. Let F, G and H' be as above and let P(1y) be a family of tritiles localized to the dyadic
interval 1o. Then there exist positive numbers ay, a and as so that

App it (S8l

< (Sizep(1) LF) (sizep(10)16)* (sizepro) La ) f - F1olr I8 - Fro ol Frgllr.  (40)

1 1 1 _
where atnte= 1. In fact, for € > 0 small enough,

1+ 64 1 146, 1 1+63 1 @1
= ———€, ap= ———€, az= —— —¢,
2 r1 2 2 r 3 2 r’

ai

where 01, 05, 03 are so that 0 < 01, 0,,03 < 1, 01 + 6, + 03 = 1, and the expressions in (41) are positive.

Proof. In this case, we will use the interpolation, Theorem 32, and for this reason we cannot obtain directly
the expression in the right-hand side of (40), which represents localized LP norms. However, as we will
see soon, it will be enough to prove that Agyr;p(z,) is of generalized restricted type o = (a1, a2, «3) for
a in a small neighborhood of (% % L). Then the result in (40) will be a consequence of the fast decay
of the wave packets away from /.

We start with sets of finite measure Eq, E», E3 and define Q to be the exceptional set

~ E E
Q:={x: Mg, > Cg} U {x :M(1Eg,) > CM .
|E| |E3|
Let E} := E3\ Q. We want to prove that (40) holds for any functions f, g, hsothat | f| <1g,, |g| <1E,.,
and |h| < lEg- For simplicity, we assume that 1 + dist(Ip, Q€)/|Ip| ~ 22 for every tile P € P(Iy).
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Equivalently, we could decompose the collection of tiles into subcollections for which this property holds
for all d > 0. In the end, however, the estimate (40) will be independent of such a decomposition.
With the above assumption, for every P € P(/y), we have

1 / alE1l alE2|
— | 1g, -1 - )( dx <2 /IE ‘16 - )( dx 52
|Ip| ! e |E3| 1Ip| Jo ™ Ir |Es|’

2

This is important because now we can perform a stopping time which will allow us to estimate the “sizes
of the functions 1 E, - For each of the functions 1 -1g,, 16 -1g, and 15/ -1 E}» We will be looking for
maximal dyadic intervals J which are maximizers for

sup L/‘IEI‘IF')ZZJu dx. (42)
Jclo /] Jr
3PeP(ly), IpCJ

This is the reason we introduced the new size in Definition 21.

The selection of the intervals and tiles is described in more detail in Section 3.2, so here we only sketch
this process.

We start with the largest possible value 2~/ < 29|E||/|E,| and define J;, to be the collection of
maximal dyadic intervals / with the property that it contains some /p € P(/y) which is not contained in
any of the intervals previously selected, and I also has the property that

2_11_15L IEI'IF-)??ldX§2_ll
1] Jw

Then for each I € J;; we find the relevant tiles P with /p C I, and move them into P(/). Afterwards we
restart the algorithm for the collection P(/o) \ Ujeg 3 P(I).

The algorithm continues by decreasmg 211 until all tiles in (/o) are exhausted. In this way, for any
[y and any I € J;,, we have s1ze[p( ng, -1p) ~27 I, Similarly we define the collections of dyadic
intervals J;, associated with the functions 1g, - 1 as long as 2712 < 24| E,| /| E3). ~

For the third component the collections J;, are nonempty as long as 273 < 27Md and in that case,
forany I €J I3, We have s1zep( ng-1 E} 1) ~ 2773, The extra decay is due to the fact that E7 is actually
supported on €.

Given /1, [, [3 as above, we define gl . — J1, NI, NJp,. This is also going to be a collection of
dyadic intervals, and any tile in (/o) will be contained in some P(I), with I € 7/1-/2:3_1n fact, these
collections depend on the parameter d as well, which controls the distance from the exceptional set. We

ra=J U U P,

d 11,12,13 16321’12'13

have

but we suppress the dependency on d in the notation. Thus

AF.G.H' F,G,H'
Apirripg) (f- & 1) = Z Z Agirpcn (- & 1) (43)

11,02,13 T€J1:12:13
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F,G,H’

Every ABHT;P(I)

(f, g, h) is going to be estimated by Lemma 40:

Agiiy (. 8. ) S Gizep(ry (g, - 10)? Sizepr) (12, -16))” (Sizep(ry (g - 117)®

- 11-6 - 1-8 - 11-6
e, -1p-Frlly e, 16 - Frlly 2 11E; - 1a - Xl

For the particular function 1, -1 and an interval / € J h ’12’13, we have

1
2 b1 — 1 1
(/ 1, -1r - 17 dx) <27 2|12 S (sizepry(1g, - 1F)) 2|1 |2.
R

In this way, as long as

1+6 1 1+6, 1 1+6; 1
O oo X2 2L EB 1., (44)
2 r1 2 r 2 r’

F.G,H’
we can estimate A gy P(IO)(f, g, h) as

AFSG.H’
Agpr! [P(Io)(f g.h)

<Y Y Gizepay (1, 1r) " Gizepr) (15,16))* (Sizep() (1 10))

I,15,131€71:12:13

1-6; 1-6 1-63
1 2 1 2 1 2
( [lEl 1F XI dx) ( /IE2 IG XI dx) ( /IE/ IH/ XI dx) |I|
7] 7] 1]
'+9 1 46 1 1+63 1 _,
< Gizepagylr) 2 71 Gizepagle) 2 72 (Sizepggla) 2 7

n b
S Y 2 m Gy @)

11,02,131€7/1:12:13

The quantity

1+91 1 1+9 1 14031 _
7

(sizepr1F) 2 71 (izepagle) 2 72 (izepupla) 2 7

F.G,H’
BHT;P(Io)

F.,G,H

is going to represent the operatorial norm ||A BHT-P(Io)’

seen in (40).
We are left with estimating ) ; c41,.1,.15 |I |, which can be realized in three different ways; for example,

ORUEDBUES DIV

Iegl1-12.13 Ieyy, 1€y,

|| associated to the trilinear form A as

<D 2 mag) -1

IGJ[

< 2" Eq].

1,00

,oo
For this reason, whenever 0 < «; < 1, with a1 + a2 + a3 = 1, we have

> < @ED™ 22 Ea))* (253 ES))*.

Ie7l1:12.13
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This yields

l /
B B ]

1,105,153 Iejl112.13

Z 2—11(ﬁ—al)z—b(%—012)2—13(#4—6—0[1)|E1 |(x1 |E2|OL2 |E3|Ot3

11,012,153
1
Eq l Eal\2"% _iga (e
s(rm) (rE) s m e g
3 3

1 1 1
< 27100 By |70 | Ey| 72 | E5) 7.

Summing over d, this proves (40) in the particular case of characteristic functions. Upon interpolating,
we lose an e-power of sizep(;,)1F and sizep(;,)1G respectively, to get

F,G,H’' St St -~ ~ ~ ~
| A i 7o (1) S 8 M| S (izep(r) L) (sizep(10)16)*? (Sizep(o) L) | f 1o e 18- X0 vz 17 T |l
We note that the “weights” )y, will not affect the interpolation process; once we have an inequality
that holds for characteristic functions of finite sets, interpolation implies a similar result in full generality.
The exponents aj, a, and asz can be described as
1+ 6, 1 1+6, 1 1+ 63 1

- € dad2= —— —€, az=
2 r 2 ra 2 r

ap =

for some sufficiently small €, and for 0 < 61, 65, 03 < 1, satisfying 61 + 6 4+ 03 = 1, that will be chosen
later. O

Corollary 43 (the case r = 1). Let 1 <ry, ry <00 be such that +-++- =1, and 01, 0 satisfy 5 (1+61) > ;-
and %(1 + 6) > % Then

F,G,H’
”BHTP(IO) (£,

1+0 1 1+9 1
< (sizepr)1F) 2 € (sizep(rg)lg) 2 (SlzeP(Io)lH) 2N ol g Fro -

Proof. A careful inspection of (45) shows that one can choose any triple (81, B2, B3) with 81+ 82+ 83 =1,

even with 83 < 0, in the place of (ﬁ’ %, r—) In this case we get

A (f.g. )|

+
< (Fepaplr) 2 P Gzenanle) 2P oepag i) 2 €| Er|P|Ea|P2 | Es )P

The restrictions are that f; < ;(1 + 6;), which works well for very small or negative values of B3.
Interpolating between tuples (81, B2, f3) that lie in a small open neighborhood of ( 00 7 ,0) we get the
conclusion. In this case, the interpolation is used for estimating the L! norm of the operator, and not the

F,G,H'
trilinear form ABHT ‘P(ly)" O
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3.2. Proof of Theorem 7. Recall that the vector-valued BHT is defined by

dt
BHT(/g)(x,w) = [ f(r=twhg(x+ 1.0) - = BHT ) (0.
Then the trilinear form associated with it is
Agi(f.g.h) = f /W BHT(f, ¢)(x. w) h(x. w) du(w) dox.
R

First we prove generalized restricted-type estimates for Agat(f, £, /), and the general result will
follow from the vector-valued interpolation result presented in Proposition 38. Let F, G and H be sets of
finite measure. In what follows, we will construct a major subset H” € H and show

|Asrte (f. 8. W S|F|*G*[H|* (46)

whenever [ £(x.)l|r1 (g < Lr (). (. )llzra ) < 16 () and A, )|y < L/ (x). For
simplicity, assume |H | = 1. The exceptional set is defined as

Q:={x:M(1fr)>C|F|}U{x: M(1g) > C|G|}.

Because of the L! — L1:* boundedness of the maximal operator, for a constant C large enough, we
have Q2] < 1.
We partition the collection of tritiles according to the scaled distance from the exceptional set
dist(/p, 2°)
1P|

and we will prove estimates equivalent to (46) for the family P4, with an extra 27104 decay:

P =)pecp:1+ ~ 24

—10d 1 1 1
|Agiipa (f. g 0| 27| F |7 |Gl7 |H|v. 47)

We suppress the d-dependency for the moment, but all the subcollections er.lj and J"1-"2:"3 wil] actually
depend on this parameter. At the very end we sum in d, and use interpolation, so that the final estimate
depends only on the fixed interval ¢, and the fixed sets F, G, H'.

Now we construct a collection {J{''},, 7, of relevant dyadic intervals, according to the concentration
of 1p:

o Start with 71, such that 271 ~ 29| F| and let [Ij’:-ll_1 = [P (here I]j’;,1 will play the role of stock, or the
collection of available tiles).

¢ Define f]'z‘ to be the collection of maximal dyadic intervals / with the property that there exists at least
one tile P € [P”ﬁ1 with Ip C [ and

1 _
m/lp-;zf,‘ldx~2-”l. (48)

e For every such interval /, let P;, (/) be the collection of tiles P € I]j’%l with the property that Ip C I.
e Set [FD;—“ = P\Ulejfll [FDﬁl(I).
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¢ Repeat the procedure for all n; > ny. Let J ;” denote the collection of maximal dyadic intervals which
contain a time interval /p for some P € [P’;ll_l (which was not selected previously) and such that
1
il < T 1p- M dx <27,
* As before, Py, (1) :={P €P,, :Ip S I}.

* Set P, = Pu;—1 \U;ym1 Pn, (I) and notice that after a finite number of steps, P, = @.
1

¢ Note that we always have 271 < 24|F|.

For d sufficiently large, the intervals /p for P € P4 are going to be essentially disjoint and the intervals
I e J;“ can be selected in an easier way, but this is not the case, for example, when d = 0, which
corresponds to /p N Q¢ # &. However, for every ny, the intervals in J ;“ are going to be disjoint and this
is going to be used later in the proof.

Similarly, J; 2 denotes the collection of maximal dyadic intervals I containing at least some Ip C [
for some P € [P’d, and

1
m/lg-ﬁ” dx ~27"2 <24|G|.

For 1y, let J;’ 3 be the collection of maximal dyadic intervals / containing at least some Ip for some
P € P4 and such that

1
m/m/.z}” dx ~27"3 <o~Md

We define J7 1712513 ;= J@ 752N 7452, and we further partition P as P4 =, ., . Ujegninzans P(I).

For I €17 ;”, we have sizepnl )1F ~27"1. When we consider the intersection /’ of different intervals
in J7", 952 and J3°, all we can say is that STZEP( 1ny1p < 27" This fact is the technical obstruction in
obtaining vector-valued BHT estimates for any p, g, s in the whole range of BHT.

In a similar way, the relation (1/[71) [z 1F - )Z}"I dx ~ 27" for I € IJ;“ becomes for an interval
I' €37 NI32 NI33 an inequality: (1/[1']) [z 1F )E?’,[ dx <27M,

The trilinear form in (47) becomes

Z Z Agutp)(f. g h)

ni,n2,n3 [€Jn1:12.13

= 2 > /R/WBHTP(I)(fw,gw)(X)-hw(X)du(w)dx

ni,n2,n3 J€Jjni-n2-n3
= / ( > 2 / BHTp(r) (fu - 17 80+ 16) (%) Ly (%) - (x) dx) dp(w).
W ni,na,n3 regninz.nz IR
Note that the functions fy, are supported on F, the g, on G and the hy, on H', for a.e. w. We can apply
the localization, Proposition 42, to get

F.G.H
|ABHT;P(I)(fw’ gw’ hw)‘
< (sizep()1F)*! (sizep(r)16)*? (sizep) Lu ) | fw - X1 ey 18w - X1 iy 12w - S Nl

1 1 1 _
where;+g+7—1.
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Recall the expressions for a; from (41):

1+ 64 1 1+ 6, 1 1+63 1
= ———€, daz= —— —€, a4z =
2 r 2 r 2 r’

€,

ai

where the only conditions we have on 60y, 6> and 63 are that 6; + 6> 4+ 63 = 1 and a; > 0. Using Holder’s
inequality, the initial trilinear form can be estimated by

2. > /W‘ABHT;P(I)(fw,gw,hw)\

ni,n2,n3 [€jni-n2.n3

S D) Gizepgylp)® Gizep(r)le)® (sizepy 1a)®?

nih2,n3 [€jni-n2.n3 1
v

(/ - 211 du(w))” (/ IIgw-)?IIIZdM(w))rZ (/ ||hw-zz||:fdu(w))’
W W W

S ) . Gizepylr) (sizep)16)* (sizep(ryLar)™
ni,nz,n3 [€jn1-"2."3

A FE - xr e G - Xallry 11a - Z
1 1 1
(] [1]72 171+

1]

D D S e Gl )

ni,h2,n3 [€jni-n2.1n3

In the last inequality we need to assume % <a;+ % = %(1 + 61) and similarly % < %(1 + 65). We will
be summing |/ | when I € J*1""2:"3 Note that

YooM= Y U= u
1e7}!

<

~

1,00

> 2" M) -1; <2M|F|.

n
I€7;

Jegn1.n2.n3 IGJ’;I 1,00

Similarly, Y ;cgninams [I| < 2"2|G| and D ;cgnynpans | 1] < 2"3|H| and interpolating these three in-
equalities we get
> HIS@MFN @76 @™ H )™,

Iegn1n2.n3

where 0 <y; <1 and y1 + y2 + y3 = 1. Finally,

n n 146
Z Z Asiipa (f.8.h)| < Z R S ER (2" |F|)"1 (2"2|G )2 (2"3| H |)"3
n,n2,n3 [€jn-n2-n3 nin2,n3
< Z 2—n1(%—)’1)2—n2($—1’2) 2—713(14_293 —J/3) |F|1’1 |G|J/2_
n,n2,n3

The above series converges if we can pick y; such that

1 1 1+ 65
—>%, —>y2 and
q

4

> Y3.
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This will be possible as long as
1 1 n 1+ 05

P q 2
If the above conditions are satisfied, we get generalized restricted-type estimates

1 1
|Asut(f. g. W S |F|7 |G|,

> 1. (49)

There are four distinct cases:
6) ﬁ, E’ 7 < % In this case, if we pick 81 = 6, ~ 0 and 63 ~ 1, all the conditions hold and the range
of L? estimates for BHT}; is going to be the convex hull of the points

0.0.1), (1,0,0), (L.i,-3). (3.1.—3). (0.10).
1

: . 2 1,1 _
That is, we get the same range as that of the BHT operator: p,g > 1, s > 5 and >t =5
(ii) %, % < % and % > % For the condition %(1 +61)— % > 0 to hold, we have to choose 6; > %—1 and

this will imply that the range of the operator, described as a region in the hyperplane 81+ 2+ 83 =1,
is the convex hull of the points

0.0, (100, (Lh-3) (F3-L-b) 03-1.1-)

(iii) rl l/ <5 and - > 5. Similarly to the previous case, the range of the operator is the convex hull of
001, 010, (L5 G-AAid G-hoi-)
@iv) =— r1 , rz < 2 and L =7 % The range is the convex hull of
000 (+103-D. (+iioh Ga+bob 0+ii-d)

3.3. The cases r = 1or r; = co. The proof is similar to the one in the previous Section 3.2. We first
consider the case r = 1. Because the dual space of L1(W, i) is L% (W, ), the functions appearing in

the trilinear form satisfy
I/ ) eroww <1FX), g )z <16 (x),  [[A(x,)Lew,u) < 1a".

All the details are identical to the case r > 1; the restrictions are given by only two inequalities:

1+6; 1 1+6, 1
> >

2 7‘1’ 2 ry

In the case r; = rp =2 and r = 1, these are automatically satisfied and D;, ,, , = Range(BHT).
When | = oo, we use the fact that the adjoint BHT*! of BHT is a bilinear operator of the same kind,

which is bounded from L” x L™ — L'; more precisely,
Asar(fw, 8w, hw) = f BHT(fw, guw)(x) -hy(x)dx = / fuw(x) -BHT*!(gy, hy)(x) dx.
R R
In proving the boundedness of vector-valued BHT via interpolation, we assume

ILf () eeqw,wy =1F (X)), lgCes ) lLrowy <16 (), 1RG0 < a7
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Then

|AsuTp(r) (S 8w hw)|
< [BHTS, (8w - 16, hw - 10) - 17 |

- 40, — 46 1, — 403 1 ~ ~
< (sizep1p) 2 “C(sizepylg) 2 7 “(sizepnylu) 2 T Igw X llr Mhw - Xl

The rest follows as before. Note that in the case (0o, 2, 2) we have no constraints on p, ¢, and s except
those coming from the original BHT operator itself: indeed, for 6, 83 > 0, we have
146, 1 1465 1

—=>0, ——=>0.
2 2 2 2

3.4. Iterated LP (W, 1) spaces estimates for BHT. Previously, we proved that for any tuple (r1,r2, 1)
With%—l—% = %, l<r<oo,and 1 <rq,ry < oo, we have

BHT : L?(R; L™ (W, 1)) x L9(R; L™ (W, 12)) — L*(R; L" (W, )

whenever p, g, r are in a certain range D, , r, Which can be described in a precise manner. The general
ideas for proving multiple vector-valued estimates for BHT (as presented in Theorem 8) via the helicoidal
method were described in the Introduction. In this section, we present in more detail the proof in the case
of two iterated spaces £°(£") in order to simplify the notation. First, we prove the following localized
vector-valued result:

Proposition 44.

N
H ( Z |BHTp(z0) (fi - 1F. 8k - 1G)|’) g
k=1

’

q

N 1
~ o
< cH(Z |fk|”) o
s k

=1

N 1
rp -
(Z |gk|’2) o
k=1

p

~ P l+91_i_e P l+92_l_e — 1+93—L—6
where C = (sizep(j)1F) 2 7 " (sizeprylg) 2 ¢ (sizep(y)lm’) 2 ~ ¥

Proof. This is going to be a refinement of the proof of Theorem 7 from the previous section. In constructing
the collection of intervals J?j , we note that we only need to select intervals I that are already contained
in 1o, because all the tiles in P(/y) are such that Ip C Ij.

As before, we prove generalized restricted-type estimates, and we assume that the functions have the
properties

1
7

(; |fk|“)’l‘ <1g,. (; |fk|r2) :

The exceptional set is defined by

1
7

<te (Zind) st
k

Q= {M(1E1)> c@} U{M(IEZ) >C

|E2|}
| E3] ’

|E3|

and we assume the tiles to be such that 1 + dist(Ip, Q)/|Ip| ~ 2.
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For intervals [ € 3'1“ , we have

1 ~ ot — |E1|
m/ IE1 -IF-)du dx~51ze|pnl(1)(1El ~1F)~2 1 §2d—.
R

When we consider intervals I € J;” N J;' N J;’ 3, the above approximations become inequalities. We also
need to point out that

- - 1 = o
sizep(ry(1g, -1F) < sizep(j,) (1g, -1F) and m/ 1g, -1f -X}M dx <sizep1,)(1g, - 1F).
R

Now we add the trilinear forms in order to obtain generalized restricted-type estimates:

Z‘ABHT;P(IO)(fk'lF .8k1G hic1a7)
k

= Z Z Z‘ABHT;P(IOHI)(fk‘IF’gk'lG,hle/)

ni,n2,n3 [e€Jn1-12:13

— 1+64 —L—G — 1+92_L_€
N Z Z (sizepry(1g,-1p)) 2 1~ (sizepry(1gy,-lg)) 2 2
ni,n2,n3 [e€Jn-n2.13
631 e LF-J1lln 116 X1 llrs gsLagr e

1 1 1
ue HE 1]

(sizep(r)(1g;-1m7))

1]
Using the modified sizes from Definition 21, this implies

Z!ABHT;P(IO)(fk ‘1, gk 1. hi - 1g7)
K

_— 46 1, — 46 1 — 463 1
< (sizep(ro) (g, -1F)) 2 7 " (sizep(r) (1B, - 16)) 2 4 (sizep(rg)(1gy - 1m7) "2 ¥

Y Y e Py,

ni,n2,n3 [€Jn1-n2.13

The last part adds up to something < )-Md |E1] v |E2|$|E 3|§, which is precisely what we were aiming
in the beginning.

The cases when one of rq, 7, or r’ = oo follow in a similar manner. O

—
The above proposition is an intermediate step in the proof of L? estimates for BHT %> in the case of
two iterated vector spaces, which is presented below.
Proposition 45.

(] ) =l (S| (B(Ear))

Proof. Once again, we use generalized restricted-type interpolation; F, G, H are sets of finite measure,
with | H| = 1. The exceptional set is defined as usual, and H' = H \ Q. The sequences of functions will

p q
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be such that

s/ 1
./

(;(;vku”)x);‘fu, (;(; |gkz|’2)2);2510, (;(; puat”) ) <t

The collections J;j are going to be chosen in the same way as in the proof of Theorem 7, depending
on the sizes and averages of the characteristic functions 1f, 1g, 1g/. Proposition 44 yields the following:

> A St gt et |

k
1+6; 1 1+6> 1 1+63

< (sizepylp) 2 1 “(sizepylg) 2 2 “(sizeprylm) 2 V€ (50)
1 1 1
I 2 N\
H (Z |fkl|rl) XI (Z |gkl|r2) Xr (Z |hki|” ) X1
k k k

Then we sum (51) over [ as well, and apply Holder on the triple (s1, 52, s). In this way, we recover
|17 - yr1lls,, and the corresponding quantities for the second and third entries. We have

D

S1 52 s’

Z Asut(fri> 8ki-hir)
k,l

_— Mo 1 — 46 1 — 14631 _
S YY) Gieppylr) T “Gizepnle) 2 2 < (Sizepylm) 2 Y
ni,nz,n3 Jjn1.n2.n3

N E Xillsi 16 xrlls, e xrlls
1 1 1
1] 1] 7]+

1]

Wi s —i—E Wl ﬂ—l—é Wi m—i,—é
< Z Z (“size”pylp) 2 7 " (Ssize"pylg) 2 @ T (Ssizepyla) T2
ny,nz,n3 Jni-n2.n3

2 o d (T ).
Remark. The “sizes” appearing in the line above are not exactly the ones from Definition 19, but the
modified ones from Definition 21 . Note that

— 1 —
max(sizep(j)lF, m/ 1F- 77 dx) < “size”p()1F.
R

This is the step where we can prove also the localized version of the statement in Proposition 45. Assuming
all the tiles are sitting above an interval /o, we can obtain the same result with operatorial norm

1+64

—_— —_— 146
(izeaplr) 2 7 (izep(y1c) ’

_1_. — _1
@~ (sizep(ro)la) 2 7

1-4—292 e
The rest of the proof is identical to the simpler vector case of Theorem 7; the quantities on the left-hand
1 1
side add up to |F|7 |G|, provided
1+ 91 1 1+ 92 1 1+ 93 1

> —, > —, > —. O
2 p 2 q 2 s’
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4. Similar results for paraproducts: proof of Theorem 9

The paraproduct case is similar to BHT, even though the bilinear Hilbert transform is a much more
complicated object. The extra difficulties are hidden in Proposition 23, but we will see from the proof of
the vector-valued extensions that the complexity of the paraproduct case is comparable to the “local L?”
case for BHT. In both situations, we recover the maximal range for vector-valued estimates.

We will be working with the discretized paraproduct of the functions f and g, which is defined by

M0 = —— (.61 (2, 62) $3(x).

Te 112

Here J is a family of dyadic intervals, and the wave packets {¢{ }1eg are so that two of the families are
lacunary (qﬁ{ is a wave packet on I x [1/|I],2/|I|] ), and the third one is nonlacunary (qﬁ{o is a wave
packeton I x[0,1/|7]]). Again, we present the case of £ spaces for simplicity. The operator we are

interested in is
N 1

M, (f.g):= (Z|H(fk,gk>}’)r.

k=1

Remark. We could alternatively look at operators of the form

1
r
)

N
(f.9)~ (Z\Hk(fk,gk)v)
k=1

where each paraproduct ITj is associated to a family J; of dyadic intervals. The IT; don’t need to be
precisely the same, but they display a similar behavior. Similarly, for BHT we could have a “perturbation”
BHT,, for each w € W, and the method of the proof applies in that case as well.

4.1. A few results about paraproducts. The concepts of sizes and energies are similar to the correspond-
ing ones for the bilinear Hilbert transform; we don’t need to organize the tiles into trees because the
family of tiles is of rank 0. We recall some definitions below.

Definition 46. Let J be a family of dyadic intervals. For any 1 < j < 3, we define

(£, 7))

sizeg((f, ¢{)1€g) = ilgj) W if (¢;)1 is nonlacunary
d
B 1 (LoD )2
sizeg((f, (]5;)]63) = Isuepj E (Z # . 11) 1 if (¢;)1 is lacunary.
0 0 Ieg ,O00
Igelo

Similarly to the BHT case, energy is defined as

energy§ ((f. ¢{ Vres) == SUIZ> 2" s%p(
ne

Zm),

I€D



1972 CRISTINA BENEA AND CAMIL MUSCALU

where D ranges over all collections of disjoint intervals Iy with the property that

192781 .
—Ilo >2" if (¢7)s is nonlacunary
[10]2
and
j 1
1 ) J 2 2 .
WA (Z W07 11) >2" if (¢7)1 is lacunary.
[lolI\ 75 I 1,00
ICIy

We have estimates similar to Lemmas 20 and 24. However, because we don’t need to use orthogonality
of trees, the energy becomes an L' quantity.

Lemma 47 [Muscalu and Schlag 2013, Lemma 2.13]. If F is an L! functionand 1 < j <3, then

s1zej((F ¢1)]ej <sup — /|F| de
I€] |I|

for M > 0, with implicit constants depending on M.

Lemma 48 [Muscalu and Schlag 2013, Lemma 2.14]. If F is an L' function and 1 < j < 3, then

energyg ((F, ¢;>Iej) S

Proposition 49 [Muscalu and Schlag 2013, Proposition 2.12]. Given a paraproduct I1 associated with a
family J of intervals,

An(fi. f2. f3)| =

S e 82 8))
|

Ied |j

1_[ (size§ (£, 8 )ren) ™" (enerays” (7. ¢ )1en)”

for any 0 < 01, 6, 03 < 1 such that 81 + 0, + 63 = 1, where the implicit constant depends on 01, 65, 03
only.

While the above proposition is the main ingredient, we need “localized” estimates. If ¢ is some fixed
dyadic interval, then we define

M) (fm = Y %(f, o)) (8. 1) 67 ().

rer 12
I1CIy

Here again we need some localization results which play the role of Proposition 42 and Corollary 43
from the BHT case.
The trilinear form associated to the localized paraproduct is given by

G ’
Aga (g h) == Anug(f 1k g1, h-1h).
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Proposition 50. Ler Iy be a fixed dyadic interval and F,G, H' C R sets of finite measure. Then there
exist some positive numbers 0 < ay,a,,as < 1 so that

F,G,H’ - - -— ~ ~ ~
Atz (g m)| < Gizegrg) 1LF)® (sizegre)16) ™ (sizeacro) Lt ) | f ~ Kaollry 18 - Xao s I - Fro 1

whenever - + L + 1 = l,and 1 <rq,rp, 1’ < o0. Herea; = l—i,—e.
ri r2 r r;

Proof. The idea of the proof is very similar to that of Proposition 41. Restricted-type estimates are proved
by performing a triple stopping time and then the result follows by interpolation. We leave the routine
details to the reader. O

The case r = 1 is obtained through interpolation of restricted-type estimates only. This comes in
contrast with the r = 1 case for BHT, where generalized restricted-type interpolation is necessary. More
exactly, for the BHT operator, in order to conclude estimates for (%, %, 0), one needs to interpolate
between good (B; > 0) and bad (83 < 0) tuples S = (B1, B2, B3).

Proposition 51. If H' is a fixed set of finite measure,

|Aticro)(f2 8. 187)

whenever%—l—%z l,and 1 < p,q < o0.

< Si/\ZéJ(Io)lH’”f Xiollp g X10llq (52)

Proof. In this case Arz,)(f.g.15/) becomes a bilinear form with respect to the first two entries.
Because of the decay of jy,, it will be sufficient to prove the proposition in the case supp f, g € 5/p. By
Theorem 28, it will be enough to show restricted-type estimates for the bilinear form

(f.8) = Ay (f. & 187).

Let F and G be sets of finite measure and | /| < 1r and |g| < 1g. Using Proposition 49 with 83 =0
and estimating si’\zég(lo)f <1and si’\zég(lo)g <1, we get

| A1) (/- 8. 1H7)

where 01 + 6, = 1 and 0 < 61, 6 < 1. This proves restricted-type estimates in a small neighborhood
of (£, 1). O
D’ q

< sizegry1m | F|%1|G|%,

4.2. Proof of Theorem 8: a particular case. We will be using vector-valued interpolation theorems, as
usual. Hence, we fix sets of finite measure F, G and H and we assume |H|=1. Let f ={fr}r and

1 1
g = {8k} with g | fiI™) ™1 = 1F and (3o 18k 2 = 16.
The exceptional set will be
Q= {x: M1F)(x)>C|F|} U{x: M(g)(x) > C|G|}

1
7

and H' = H \ §. We have a sequence of functions {/; }z with (X" [hg|”")"
For every d > 0,

<1y

dist(7, Q°)

~24%
1]

9. =)1ed: 1+
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When estimating paraproducts associated to the collection 7%, we get an extra 27194 decay and thus the
d-dependency of the paraproducts can be assumed to be implicit. As before, for each of the sets F, G
and H' we define collections of disjoint maximal intervals 7', 7,'> and J5"* respectively. For example,
if 7 € 7", then

1
27mi—l < 0l 1p-jrdx <27" <|F]|.
R

Returning to the operator IT,, we have for the associated multilinear form

< > Yo D A Ui 8k o)

ni,n2,n3 Joegn-12:"3

> An(fi gk hi)
K

Now we use the localization results of Proposition 50 to estimate the above expression by

n
Z Z Z(Sizeg(lo)lp)bl (sizeg(lo)lc;)bz (Sizeg(lo) IH/)b3
ni,n2,n3 Joegn1:"2:13 k=1

Wi Xrollr g - X1olra i - Xao Ml

< ) D Gizegre)Lr) (sizeg(r) 1) (Sizeg(r) 1)

ni,n2,n3 Joe g -12:13

117 - X1ollr 116 - Xiollr 1ME - Kol
[Zo]| [1o| 2 [1o]"

Here we choose some 0 < b; <a;, which we can do because the sizes are subunitary. Whenever 0 <y; <1
are so that y1 +y2 +y3 =1,

> el S@MIFN @G (27| H])P.

IoGJ”l’”Z’”3

Adding all the pieces together we have

< Z 2—n1(b1+%—yl)2—n2(b2+%—y2)2—n3(b3+%—y3)|F|y1|G|y2

> An(fe. gk hi)
k

ni,n2,n3
1 1
<|FI7|G|7.

Of course, the last inequality is true provided we can choose y1, ¥2, ¥3 so that the series converges.
Choosing the 6; and «; carefully, one can prove that the restricted weak-type estimates hold arbitrarily
close to the points

(0,0,1), (1,0,0), (0,1,0), (1,1,-1).
Then the general result follows by interpolation.

Remark. With a few adjustments, the proof is valid in the case r =1 as well.
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5. Tensor products BHT @ IT®"
In this section, we will prove the boundedness of the tensor product

BHT® I®" =BHTQ I ®---Q I1: LP(R*" 1) x LIR" ™) — L7 (R"T1)
Whenever%=%+é,with%<r<oo, 1 <p,g<occ.
If7T): LP(R*") x LI1(R*") — L"(R"!) and T» : L?(R"2) x L4(R"2) — L"(R"2) are two bilinear
operators, then the tensor product

Ti ® Tp : LP(R"T72) x LY (R T72) — L (R"172)

will act as 77 in the first variable and as 75 in the second variable. In our case, the operators are given by
singular multipliers, and in this situation we can give a characterization of the tensor product. Assume

oW = [ FEnaEm g™ g ag,

and similarly

Raf0) = [ Fomeman,ma) e >4 dny d.
Then the multiplier of the tensor product is precisely m (&1, &2) - ma(n1, n2):

T'®T2(f.8)(x,y)
= f F(E1,11) §(E2, ) my (E1, E2) ma(n1, np) e ¥ E1HE) 2TIYMAN) gg) d g, dyy dy,.

The multiplier associated with BHT is sgn(£; — &2), while the multiplier of a paraproduct of two functions
on the real line is a classical Marcinkiewicz—Mikhlin—-Hormander multiplier m(§1, &3), smooth away from
the origin, satisfying the condition |0%m(£)| < |€]7!%! for sufficiently many multi-indices . The decay
in m and a Fourier series decomposition allows one to approximate the multiplier by a finite number of
sums of the form

Y e EDVE +E). D UkEDGED Vi1 +E) or D Yn(ED) Vi (E) Gr (1 + E2).
k k k

Recall that Qy, is the Littlewood—Paley projection onto {|€| ~ 2¥} (which is really the convolution
with ¥ (+)), and Py is the projection onto {|¢€| < 2%}, corresponding to the convolution with ¢j. Then
we can regard paraproducts as being expressions of the form

D 0k(Pief - 0k)x.¥). D O0r(Qif Prg)(x.y) or Y Pr(Qrf Qkg)(x.y). (53)
k k k

It is important in the following proofs that the outermost functions ¢y (§1 + &) and @k (&1 + &) are
identically equal to 1 on the supports of VUi (E1) - Ve (&2) and g (£1) - Ox (£2) respectively. This can always
be achieved with the price of an extra decomposition.
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Proposition 52. Let Ty, : L? (R") x LY(R") — L"(R") be a bilinear operator with smooth symbol m,
and T : LP(R) x L4(R) — L" (R) a paraproduct as described above.

(1) If T is given by 3 3 Ok (Pr f - Qi g)(x. y), then

(T @ (£, 8)(x,y) = Z Qi (Tm(PL £, 070))(x) = Z Tn(P] f. Q7 8)(x).

(2) If W is given by 3 i Px(Qk f - Qkg)(x.y), then
(Tm @ TD(f, g)(x, y)_ZPk Tm(Qkf ng) (x) = ZTm(Qkf ng)(x)

Here we need to explain the notation: Q,zC denotes the projection onto |&;| ~ 2K in the second variable,
and Pg f is a function of x only, with the variable y fixed. The exact formulas are

P2 f(x) = /R o) f(x.y—s)ds. P2f(x.y) = /R o (5) f(x.y —5) ds.
0! f(x) = /R V) f(y—s)ds. Q2 f(x.y) = /R V() f(x.y —s5) ds.

Proof. The proof is a series of direct computations, and we only present the case (1):
(T @ IT)(f, 8)(x, y)

_ / £ ) g6 )m(E . £2)
R2n+2

(Z G (1) Vi (12) Y (1 + nz))e”"“&*&)e“"ﬂ"l+"2’ dgdn
k

—Z / SELm)2E, m)mEr ) fr (m) vk (12)
(/ lﬂk(s)e 2mis(n1+n2) ds)eZHzx(Sl—i-Sz) 2wiy(n1+n2) dé d’]

= V() (Tm (P £. 01 2)(x)) ds
> A (TP £, 07 2)(x)) d
k

= 0FTw(PY .01 2) (). O
k

A final ingredient that we will need in the proof of Theorem 6 is the following lemma, which appears
in [Ruan 2010]:

Lemma 53. Let f € S(R?),and 1 <l <n,and {i1,...,i;} C{l,...,n}. Then

||f||LpsH( Z |Q "Qsz’z)%Hm

kla :

forany 0 < p < o0.
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Lemma 53 above states that the L? norm of f is bounded by the L? norm of a square function
associated with the variables x;,, ..., x;,, even when 0 < p < 1. In the case p > 1, it is well known that
the two norms are equivalent. When p < 1, the proof makes use of multiparameter Hardy spaces.

5.1. Proof of Theorem 6. We start with the proof in the case BHT ® I1, in order to make the presentation
clear.

(a) Assume that II( f, g) =) s Ok (Pk f-Qg). Then Proposition 52 implies that BHTQTI( £, g)(x, y) =
Dk Q,%BHT(P]gf, Q]{g)(x). Lemma 53 yields

||BHT &® I1 ||LS(R2) 5

(Llozeurry 1070l )
k

Ls(®2)

For the paraproducts that we are considering, Qr (P f - Org)(y) = Pr f(y)- Org(y), so we need to
estimate

” (ZIBHT(Pkyﬁ Q,{g)\z)z
k

Ls®2)

1
We first estimate the L* norm of x — (Z k |BHT(P]2’ o ]J; g) (x)|2) 2, and Fubini will imply the desired
result for BHT ® I1. Here we use the vector-valued extension for the bilinear Hilbert transform

BHT : L?(£™®) x L1({?) — L*(£?),

which holds whenever (p, ¢, s) € Range(BHT). More exactly,

nmn®nhw@5‘KzﬁmnﬁfQ&mmﬁz
k

A

llsgp 1Py fI L

(Z |Q,{g|2)2

k LYl

‘(Z |Qig|2)2
k

< lIS]gPIszfl\lL,e Lr

S lp gl

To get the conclusion, we are using Fubini again, and the boundedness of the maximal and square function
operators.

(b) The case I1(f. g) = D ; Px(Qk f. Org) is more direct, but the ideas are similar. The functions ¢ in
the paraproduct definition are such that TI(f. g) = > ", (Qk f - Qxg). so we have

BHT ® I1(f. g)(x,y) = Y BHT(Q} f. 0 8)(x).
k



1978 CRISTINA BENEA AND CAMIL MUSCALU

Now we use the vector-valued extension BHT : L? ({?) x L9 (£?) — L5 (£') (which is well-defined for
any (p, q,s) € Range(BHT)) together with Fubini and the boundedness of the square function to get

”BHT ® IT ”Ls (RZ) ,S

[BHT(Qy /. O 8)
k

A

(s,

1/ 1lp llgllg-

The general case of Theorem 6 is similar, but slightly more technical. We present it below for

(Z |ng|2)

X

Lé

A

completeness. The paraproducts can be of three types, as seen in (53). This generates a partition of
{1,...,n} into three subsets of indices Z1, 7, and Z3 so that if k € Z;, then

T(f,9)(») = Ok (Pif - 0r)(y).
k

and similarly for 7, and Z3.
Because the projections on different coordinates commute, i.e., Q};P/ = PIJ Q}'c and Q}'c QlJ = Qlj Q;'(,
we can assume

Ti={l,...0% D={+1,...0+d), Ty={+d+1,....n}.

Of course, we allow the possibility that one or even two of these sets of indices are empty. With this
assumption, Proposition 52 applied iteratively yields

BHTR M ®: --QII(f. g)(x,y1...., Yn)
Z Q]lcl"'Q]llel_i_l Ql+d l+d+1 "P]?no

kiy1 kita k1+d+1
kiyeokn
1 Y nYVi+1 J’n J’l+d Yi+d+1 Yn
BHT(P]!--- P} ot fQ . Pk]+1 ¥ A ka+d+1“'ang)(x)'

I Hl+1 I+d pl+d+1,
le Qk1+1 le+d kitat+1” )
Expressions of the type P will be associated with £! norms, and the Qj with {2 norms and square

The outer-most expressions Q ]i P]? are extremely important.

functions. Here we want to apply Lemma 53, so we need to deal with the Q. functions first. Once we do
this, we can estimate the L” norm of BHT R [1 ® - -- I1( £, g) by
2)5

>
y

Z Pl+d+1"'P]?”BHT(P]§/II"' le+1 f Q .. yl+1 le-‘rd-'rl .. )

ki+a+1 ki+1 k1+1 ki+a+1
,
Kitd+1s-skn

(S| = mmeyeopsnonr ol

kiyookiva kivati,-kn

ki,.kiva

r

S lp Nl
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For the last part we used the following vector-valued estimates for the BHT:

LP(£5 (P (PR (@) ) < LR (P (2 ()
! d n—l—d I d n—l—d
= LS(({Z(. .. (52(62(' .. (52(31(_ .. (151)) . )
! d n—l—d

together with the boundedness of the maximal operator and square function.

Similarly, we can obtain estimates for M®" @ BHT ® T1®“* within the same range as that of BHT.
Some partial results in mixed norm L? spaces can be obtained too, but the general case, for arbitrary
values of d; and d, remains open. We present a few particular cases that illustrate the main ideas, without
being too technical.

(i) Here, we prove mixed norm L” estimates for I1; ® BHT ® I3, where T} = >, QL(P!- 0}).
M=) Q?(Q? . Pl3)’ and the exponents p;,g; are in [2, 00). We note that
M @ BHT ® 3 (f, g)(x. y.2) = Y 04 OFBHT(PF QF f. QX P/ &)(1).
k,l

and we want to estimate the above expression in the space || - ||, s1 ;52 s3. The key observation is that
X y z
whenever 1 < 55, 53 < 00,

(54)

Y 0LOTF(x.y.2)
k,l

< H (Z!Q;Q?F(X,y,z)\z)z
k,l

which is a Banach-valued equivalent of Lemma 53. This result, for s; > 1, can be found in [Fernandez

b
A s N N s S
LML L3 LIS

1987; Rubio de Francia et al. 1986], and it follows from the boundedness of Calderén—Zygmund operators
(the dual of the square function is such an operator) on L2 spaces with mixed norms. The proof in the
case s1 < 1 is a Banach space adaptation of the proof of Lemma 53. Given the special properties of the
Q,lc and Ql3 operators, we obtain

%
| T @ BHT ® T3 (/. 8)|| 31 152155 S H (Z\BHT(P; 0 1. Ok Pfg)(y)\z) ‘
k.l

L L;ZL?'
The multiple vector-valued estimates
BHT : LI?(LE3(€%°(0%)))) x LI (LT (E2(€%)))) — L (LF (E(€2)))),
which exist in the local L? case at least, together with Holder’s inequality imply

|1, ® BHT ® TT3(f, 9|

LY L)LY
1
2
S‘;P(Z Py fo(y)lz)
!

< ||f“L£1L52Lf3 ”g”Lf,]Cl L32Lg3'

<

~

(Z}mllp IQ;’C‘Pfg(y)I\Z)2
k

LYVLy2LE3 Lo
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The last inequality follows again from Banach-valued extensions of convolution operators. Since our proof
makes use of multiple vector-valued estimates for BHT, we cannot obtain mixed norm L? estimates for
all the exponents in the Banach range. From the above example, one can see that besides the constraints
imposed by the square functions and maximal operators, we also need (p3,¢3,53) € Dp, 45.5-

(i) If d; = 0 and dp = 1, we have
BHT® IT: LY LY? x L' LI? — L5 L?

2
whenever 1 < p2,q2,52 <00, 1 < p1,q1 <00, 5 <s1 <00 and (p2.92.52) € Dp, q1.5:1-

(iii) If d1 = 1 and dp = 0, we have
IT®BHT: L2 LJ{’2 x L1 ng — L3} LJS,2

whenever 1 < p2,¢2,52 <00, 1 < p1,q1 <00, % < 81 < o0. Since the “target” spaces (that is, inner
spaces in the mixed norms) are strictly between 1 and oo, the outer L.°° cases (that is, p; = 0o or g1 = 00)
follow easily from similar estimates on the adjoints.

We note that mixed norm estimates for IT @ BHT appear also in [Di Plinio and Ou 2015], where all the
inner spaces involved are L? spaces with 1 < p < co (in our notation, that means 1 < pj, g2, 52 < 00).

6. Leibniz rules: Theorem 4

Now we present some ideas behind the proof of Theorem 4. Littlewood-Paley projections play an
important role when dealing with derivatives:

DEDY(f-)x.y) = [(f %ok ®¢1)- (g * Vi ® Y1) | % (DSyx ® DYy (x. )
k,l

=Y [(f* o @) (g% Vi ® Y] % Q5 @ 2P (x. ),
k,l

where

|n|#

i aa G =200,

Ska

Vi) =
Then one can move the 25 inside, and couple it with the ¥ because 2Ky (x) = DV (x). Here

2 oke
V() = Wl/fk(é)-

In this way, we obtain D‘I"Dzﬂ (f-g) =N QIS D‘l"Dgg) + eight other similar terms. We can
estimate IT ® IT in L? spaces with mixed norms, as long as the “outside” functions v and @y are
constantly equal to 1 on 282 < |¢] < 2%¥*2 and |¢| < 2K*2 respectively. The operators 11 are slightly
different, but using Fourier series we can write ﬁ(F ,G) as

(F,G) ch Z[F * (ox ® ¢p) - G * (Jk ®$z)] * Yk @ Y (X, y).

nez k1l
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Here the coefficients satisfy |c,| <n ™M, and Vien(x) =Y (x + 27%1). Now notice that the right-hand
side above becomes

S Y 0}I(P,F.07,6) ().
n I

which is a superposition of I ® I1 operators.
The proof of the Leibniz rule follows from

(1) (multiple) vector-valued estimates for the paraproduct
T(fg) =) [(f*e)- (V)] * V.
I
(2) the boundedness of the shifted maximal and square functions:

< log(n) [ fllp-
p

Isup1 g1l S t0g(m) 171 H (Z | * $l,n|2)2
I

Returning to the Leibniz rules, we have for 51,50 > 1,

L;l fZlcn|
n
SZICn|
n

[1D§DE (£ &)l |

> 03I}, 7.5},
l

52 s
L y L_xl

H (Z}ﬁﬂu&(Pl}:n F, Q:ly’nG)]z)2
l

L ||

L]

|(Zi2kor)
l

< D lenl [ lsup 127, F 1l g2
n

P
L 42
x Ly Lzl

SNz g2 1D DE gl a1 oo
Here we used the vector-valued estimates
2 L2 (LY (%) x LY (L (€) — L (LP ().

as well as the boundedness of the square function and maximal operator. We note that the square function
is in the y-variable, and for that reason at first we cannot allow p, = oo or g, = oco. However, this
obstruction can be removed by using duality.

The same proof works in the case % <81 < 1,if 1 < pa, g2 < oo. In this case, we use the subadditivity
of || -|Is!. The case % <51 < 1 and pp = oo requires a slightly different reasoning, and can be deduced
from the corresponding mixed norm estimates for IT ® IT. This will be presented at the end of this section.

A slightly more difficult case of the Leibniz rule is when one of the last components is a ¢-type

function:

DEDY(f-g)(x.y) =Y [(f * ¥k ®p)- (g * Vi ® ¥1)] * (D¥r ® DY) (x. )
k,l

=Y [(f* Ve ®@) - (g% Vi ® Y1) * 2*F @ 2Py (x. y).
k,l
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In this case

|§1*

(€)= g O ©).

but ¢ doesn’t behave as nicely as 1;; since ¢ is not smooth at the origin, the decay in ¢ is much slower:

- 1
lp(x)] < W-

We use a Fourier series decomposition of ¢ on its support

~ 2ming 1 A _ 2ming
(pk(é):ZCne 2k - @r(§), where cnzz—k/R(pk(g)e 2k dE.

nez

In this case we only have |c,| < 1/(1 + |n|)! 1%, but this is enough for the coefficients to sum up, if
s1 > 1/(1 4+ «). Since sp > 1, we will not have a similar issue when doing the decomposition in the
second variable.

Following the same line of ideas, the problem reduces to estimating

D en 3 PHI(O}, F. 0F ,G) ).
n k
and it would imply “mixed square functions” estimates of the form
%
(Zi0z.68)
n

This is bounded as long as 1 < ¢, g2 < 00, and in order to recover the case p; = oo or g; = 0o we want to

Lz

make sure that the square functions are in the innermost variable, which is y. So we need a decomposition
of v, as before. Also, we will need vector-valued estimates for the “generalized paraproduct”

(&) Y (f %V g * i) * i
k

where the last component @ has slow decay. The vector spaces involved are (£2,£%°, £?) or (£2,£2,(1),
and such estimates can be proved using ideas similar to those in Section 4, modulo standard technical
difficulties, as discussed in [Muscalu and Schlag 2013].

We now present the proof of the mixed norm estimates for the biparameter paraproducts:

Proof of Theorem 5. Since the other cases are very similar, we can assume that IT,,, the paraproduct acting
on the variable y, is of the form

() =Y Qu(Prl-). Qi(+)).
k
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( (P, 02)()| )

51

> oy, 0; )
k

Ly

Then we can write IT® IT as ITQ ITI(f, g)(x,y) =D & QiH(P]f, Q};)(x). Then we have
L3}

| (Xk:IQ,ﬁg(X)IZ)Z

In the above inequality we used the multiple vector-valued estimate

< |lIsuel ¢ £l g2

L
X Ly2 Lizcl

Iy : LY (LY2(€%%)) x LI (LI (€2)) — LY (L3 (€%)).

which is a consequence of Theorem 9.
Now we focus on the case p, = 00,1 < g =g < 00, since g = o0 is symmetric. We want to prove
that

O@M:L2LP x LULE — L3 LY,

by using Banach-valued restricted-type interpolation. That is, for any sets of finite measure F, G, H, we
can find a major subset H' C H, and we will prove that

‘ [ e o) e dx | 5 F1 161 ] (55)
R2

for any functions f, g and A satisfying

1f eI lzge = 1r(x), llgCx. )Ly =1g (). lh(x.)ll ¢ = 1ar (),

and (o1, a2, @3) any tuple satisfying o + o + a3 = 1, situated in the neighborhood of (— é pl)
A triple stopping time similar to the one appearing in the proof of Theorem 7 will allow us to recover
any exterior Lf;j norms, while the interior norms are fixed: L°, Lg, Lg.
We will consider localizations of the paraproduct acting on the x-variable. More exactly, the following
estimate, the proof of which is a combination of Proposition 50 and L? estimates for IT ® I, is key:
If I is a fixed dyadic interval, then HZ’G’H QIT: LPLY x LiLY — L%LY with operatorial norm
F,G,H'
(ReFA

® HHL°°L°°XL"L"—>L" g = H(HF G m*! ‘|L§’L§'><LZL3—>L}CL§'

The latter is bounded above by

F.G,H’ *,1 —~ 1_¢ —~ 1 e
| @, e m=t o L9 xpardpipy S (izero L)@ (sizery16) 7 (sizego 1) ™
which is a consequence of the localized multiple vector-valued estimates that always appear in the iterative

step of the helicoidal method.
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1984
More exactly, we have
F.G.H
0, 7% @TI(f, &) (x, y)h(x, y) dx dy|

€ (Si/\ZélolG)i
”Hh(x")HLg"XIOHLg’

¢ (sizeg, 1F) ' E
c)lLgerge-

-_— 1
< (SiZC[O IH’) 4

This implies, after performing the usual stopping times, that

2 Z/ @O @I/, ), y)h(x, y) dx dy

nin2,n3 Io
Z Z(SiZC[OIF)l_E(SiZC[OIG)l_E(SlZC[OIH/)l ||

ni,n2,n3 Iy
O

[ mem e dxdy| <

From here, the desired L? estimates follow almost immediately.

7. Rubio de Francia theorem for iterated Fourier integrals

We end by answering the initial question that motivated the study of vector-valued BHT. More exactly, we
-+ =1

prove Theorem 10, which is a consequence of Theorem 7, with ry, r» chosen carefully so that

Proof of Theorem 10. We start with the case r > 2; this follows from Theorem 7

1
n
H (Z IBHT(P;, /. szg)(x)lz) H (Z Py, f |") (Z |P1kg|’2) (56)
k
forany 1 < p, q<oo,%<s<oo
This is implied by Rubio de Francia’s theorem, if one can find r; and r, w1th + - % and
1 1 1 1

3 which coincides with the condition that we have

_ 1_1,1__3
=rTasHtHT2

This is possible as long as %

for the range of BHT.
The case 1 <r < 2 is similar; for p, g, and s as above, one needs to find r; and r» > 2 so that

Note that % < rl, =1- % + 12 < rl, + % and similarly for g. Because of this restriction, the operator 7,
1
is bounded as long as admissible triple (%, %, %) is in the convex hull of the points

) (A4 b-h),

(z+7.0.5-7)

~
N

(O’Oa 1)’ (%J’_%,%?_%
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Remark. An alternative way of proving the boundedness of 7, within the range mentioned in Theorem 10
is by interpolating between
LP' x L9 — LS1(¢?) with py,q1,s; in the range of the BHT operator, and (57)
LP2x L9 — [2(¢Y)  with pp, g2 > 1, 52 > 1. (58)

7.1. Boundedness of operators M1 and M. In what follows we prove the boundedness of operators M
and M presented in (14) and (15):

Mi(fi. )& =) / ey N1 fa(x2)g (x3) TECTHRI) iy dxy dixcs

X1,X2€W]1, ,X3€EWR
and

Ma(fi f2.8)(6) =) / ey N1 L(x2)g(x3) TECTX) Ay s ds,

(94 X2€W ,X3€EWR

For both operators, we are going to use the triangle inequality in L”, the target space for operators M1
and M,. However, if r < 1, this inequality is not available anymore for the quasinorm || - || and instead
we use the triangle inequality for | - ||%. This is the only difference between the Banach and quasi-Banach
case, and for simplicity we assume r > 1. Also, as previously stated, we assume ||g|[, = 1.

Proposition 54. Let 1 < p <2 and % = % + % = % + é + %. Then

IMi(f1. f2.0) |, S WAl 205 lIg -

Proof. Recall that w € D is the mesh of dyadic intervals contained in [0, 1], and we identify them with
their preimage: w ~ ¢~ ! (w). We rewrite M as

Mi(f1. f2.8)() =Y BHT(Po, f1. Po, /))& Ly (§).

Then

IMi(fi. 2], <3| D BHT(Po, f1. Po, 2) 8 Lan

k>0"|w|=2"*F r
1 1
<> ( > }BHT(Pwal,PwaZ)\P)”( 3 \E-’M\R”)p
k20" " w|=27* |lw|=2"% r

1
— AV
( 3 ||g-1wR||;,’/) |

lo|=2"F

N

52 ( Z }BHT(Pa)LfLPwaZ)’p)p
k>0

lo|=2"F

We estimate ||m|| p S g Loglly = 2_% using the Hausdorff—Young theorem. Also, there are
2k dyadic intervals of length 27 in [0, 1] and because of this

N =

|Mi(f1. f2.9)], S Z y—k(h=)

k>0

N

(X BHTCu, A 1)

jo]=2-%




1986 CRISTINA BENEA AND CAMIL MUSCALU

If we estimate the last term using the operator 7}, directly, we will not obtain the full range stated above,
as there will appear extra constraints of the type

1 1 3 1 1 3
p1+p<2’ p2+p<2'

Instead, using Holder and the fact that 1 < p < 2, we have
1_1
”BHT(PwL fl» Pa)L fZ)ng(w) =< ”BHT(PwL fl» Pa)L fZ)HgZ(w) 2k(p 27,

k(i1
Using the boundedness of T2, we have | M1(f1, f2, &)llr D k02 k(3 p’)||f1 11 /211 pa - O

Proposition 55. Let 1 < p <2 and % = % + pi = % + é + %. Then

|M2(f1, 2. ), < 1 fillpy N f2llps g .

- 1 1
provided 2T < 1.

Proof. First, we remark that

|Ma(f1, f2. )] < Y ICALE) | Poy, /()| |EDRE)],

w
where C is the Carleson operator, bounded on L? whenever 1 < p < oco. From here on the estimates are

similar to those in Proposition 54, but instead of the bilinear operator 75 ( f, g) we will have to use the
more restrictive Rubio de Francia operator RF,,:

1
7

Cfl( ) |Pwa2|P)’l’( )3 |§-’17R|P/)"

IMahie fo 0], < 3

k=0 |w|=2—k |w|=2—k r
1 1
D o —_— AV
<Y IChilp, ( )3 |Pwa2|P) ( ) ||g-1wR||;,’,)
k>0 lw|=2—k P2 N p|=2—F
1 1
k(L-1 v — _\ 7
<X 26l | T 1w sr) | (T 15Tl
k>0 lw|=2—% P2 N\ p|=2—k
—k(1-2L,
< 3 276G Al I RES ().
k>0

If p» > 2,we can take v = 2 and there are no other restrictions. In the case p, < 2, Rubio de Francia
requires % + i < 1. This and the condition % — % > 0 (so that the geometric series above is finite) can
. 1 1
be summarized as 5 + 27 < 1. O
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Note added in proof

We recently improved Theorems 4 and 5, allowing for the exponent s, to be < 1. This is a consequence
of new multiple quasi-Banach valued inequalities for I1. In [Benea and Muscalu 2016], we also prove
multiple quasi-Banach valued inequalities for the bilinear Hilbert transform operator, extending also
Theorem 7.
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