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STRUCTURE OF MODULAR INVARIANT SUBALGEBRAS
IN FREE ARAKI-WOODS FACTORS

REMI BOUTONNET AND CYRIL HOUDAYER

We show that any amenable von Neumann subalgebra of any free Araki—Woods factor that is globally
invariant under the modular automorphism group of the free quasifree state is necessarily contained in the
almost periodic free summand.

1. Introduction

Free Araki-Woods factors were introduced in [Shlyakhtenko 1997]. In the framework of Voiculescu’s
free probability theory, they can be regarded as the type III counterparts of free group factors using
the free Gaussian functor [Voiculescu 1985; Voiculescu et al. 1992]. Following Shlyakhtenko, to any
orthogonal representation U : R ~ Hr on a real Hilbert space, one associates the free Araki-Woods von
Neumann algebra I'(Hg, U)”. The von Neumann algebra I'(Hg, U)” comes equipped with a unique free
quasifree state oy which is always normal and faithful (see Section 2 for a detailed construction). We
have I'(Hgr, U)" = L(F4im(Hy)) When U = 1y, and T'(Hg, U)" is a full type III factor when U # 1.

Let U : R ~ Hr be any orthogonal representation. Using Zorn’s lemma, we may decompose
Hi = H[gp S HR" and U =U""@U™, where U : R~ H[gp is the almost periodic, and U"™ : R ~ HZ™
the weakly mixing, subrepresentation of U : R ~ Hg. Write M = I['(Hg, U)", N = I'(Hg", U®)” and
P =T (HR™, U"™)", so that we have the free product splitting

(M’ (PU) = (N7 ¢Uap) * (P’ @me).

Our main result provides a general structural decomposition for any von Neumann subalgebra Q C M
that is globally invariant under the modular automorphism group o %Y and shows that when Q is also
assumed to be amenable then Q sits inside N. It generalizes Theorem C of [Houdayer and Raum 2015]
to arbitrary free Araki—Woods factors.

Main Theorem. Keep the same notation as above. Let Q C M be any unital von Neumann subalgebra
that is globally invariant under the modular automorphism group o %V. Then there exists a unique central
projection 7 € Z(Q) C M¥V = N¥U* such that

e Qzis amenable and Qz C zNz, and

e Qz* has no nonzero amenable direct summand and (Q' N M®)z+ = (Q' N M)z is atomic for any
nonprincipal ultrafilter o € B(N) \ N.
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In particular, for any unital amenable von Neumann subalgebra Q C M that is globally invariant under
the modular automorphism group o %V, we have Q C N.

Our main theorem should be compared to [Houdayer 2014b, Theorem D], which provides a similar
result for crossed product II; factors arising from free Bogoljubov actions of amenable groups.

The core of our argument is Theorem 3.1 which generalizes [Houdayer and Raum 2015, Theorem 4.3] to
arbitrary free Araki-Woods factors. Let us point out that Theorem 3.1 is reminiscent of Popa’s asymptotic
orthogonality property in free group factors [Popa 1983] which is based on the study of central sequences
in the ultraproduct framework. Unlike other results on this theme [Houdayer 2014b; 2015; Houdayer
and Ueda 2016], we do not assume here that the subalgebra Q C M has a diffuse intersection with the
free summand N of the free product splitting (M, ¢y) = (N, @yw») * (P, gywm), and so we cannot exploit
commutation relations of Q-central sequences with elements in N. Instead, we use the facts that Q admits
central sequences that are invariant under the modular automorphism group o0 of the ultraproduct state
¢y, and that the modular automorphism group 0%V is weakly mixing on P.

2. Preliminaries

For any von Neumann algebra M, we denote by Z(M) the center of M, by U(M) the group of unitaries
in M, by Ball(M) the unit ball of M with respect to the uniform norm and by (M, L>(M), J,L*(M )+)
the standard form of M. We say that an inclusion of von Neumann algebras P C M is with expectation if
there exists a faithful normal conditional expectation Ep : M — P. All the von Neumann algebras we
consider in this paper are always assumed to be o -finite.

Let M be any o-finite von Neumann algebra with predual M, and ¢ € M, any faithful state. We
write ||x|l, = @(x*x)1/2 for all x € M. Recall that on Ball(M), the topology given by || - ||, coincides
with the o -strong topology. Denote by &, € L2(M), the unique representing vector of ¢. The mapping
M — L*(M) : x — x&, defines an embedding with dense image such that || x|, = IxEpllL2(ar) for all
x € M. We denote by 0¥ the modular automorphism group of the state ¢. The centralizer M¥ of the
state ¢ is by definition the fixed point algebra of (M, ¥).

Recall from [Houdayer 2014a, Section 2.1] that two subspaces E, FF C H of a Hilbert space are said
to be e-orthogonal for some 0 < e < 1 if [(§€, n)| < el||&||lIn|l for all £ € E and all n € F. We then simply
write E 1, F.

Ultraproduct von Neumann algebras. Let M be any o -finite von Neumann algebra and w € 8(N) \ N
any nonprincipal ultrafilter. Define

T (M) = {(xy)n € L°(M) : x,, — 0 x-strongly as n — w},
MO(M) = {(xp)n € L°(M) : (x)n Ly(M) C I,(M) and Z,(M) (x,)n C Zoy(M)}.
The multiplier algebra M®(M) is a C*-algebra and Z,(M) C M“(M) is a norm closed two-sided
ideal. Following [Ocneanu 1985, §5.1], we define the ultraproduct von Neumann algebra M by

M?® := M*(M)/Z,(M), which is indeed known to be a von Neumann algebra. We denote the image of
(Xn)n € M®(M) by (x,)” € M®.
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For every x € M, the constant sequence (x), lies in the multiplier algebra M®(M). We then identify
M with (M +Z,(M))/Z,(M) and regard M C M* as a von Neumann subalgebra. The map

E, : M® — M, (x,)”+— o-weak lim x,
n—w

is a faithful normal conditional expectation. For every faithful state ¢ € M., the formula ¢® := ¢ o E,,
defines a faithful normal state on M®. Observe that ¢ ((x,)*) = lim,_,,, ¢(x,) for all (x,,)® € M®.

Let Q C M be any von Neumann subalgebra with faithful normal conditional expectation Eg : M — Q.
Choose a faithful state ¢ € M, in such a way that 9 = @oEp. We have £°(Q) C £*(M), Z,(Q) CZ,(M)
and M®(Q) C M®(M). We then identify Q“ = M®(Q)/Z,(Q) with (M*(Q) +Z,(M))/Z,(M) and
may regard O C M® as a von Neumann subalgebra. Observe that the norm | - [[(yo)» on O is the
restriction of the norm || - ||, to Q. Observe moreover that (Eg(x,,)), € Z,(Q) for all (x,), € Z,(M)
and (Eg(x,)), € M®(Q) for all (x,), € M®(M). Therefore, the mapping Ego : M® — Q¢ given
by (x,) = (Eg(x,))? is a well-defined conditional expectation satisfying ¢ o Ego = ¢®. Hence,
Ego : M® — Q¢ is a faithful normal conditional expectation. For more on ultraproduct von Neumann
algebras, we refer the reader to [Ando and Haagerup 2014; Ocneanu 1985].

Free Araki-Woods factors. Let Hg be any real Hilbert space and U : R ~ Hr any orthogonal representa-
tion. Denote by H = Hr Qr C = Hi ®iHR the complexified Hilbert space, by I : H — H : £ +in+— & —in
the canonical anti-unitary involution on H and by A the infinitesimal generator of U : R ~ H, that is,
U, = A" for all t € R. Moreover, we have JAI = A~!. Observe that j : Hg — H : ¢+ (2/(A~'+1)/?¢
defines an isometric embedding of Hg into H. Put K := j (HR). It is easy to see that KrNiKg = {0} and
that Kp +iKp is dense in H. Write T = IA~!/2. Then T is a conjugate-linear closed invertible operator
on H satisfying T =T ~" and T*T = A~'. Such an operator is called an involution on H. Moreover, we
have dom(7) = dom(A~!/?) and Kp = {§ € dom(7T) : T = £}. In what follows, we simply write

E4+in:=TE+in)=&—1in, V& neKg.

We introduce the full Fock space of H:

(o.¢]
F(H)=CQae @ H®".
n=1
The unit vector €2 is known as the vacuum vector. For all £ € H, we define the left creation operator
L(E&): F(H) — F(H) by

{5(5)52:5,
LEER - ®E)=ER86Q - ®&,.

We have [|£(&)]lco = lI€]], and £(£) is an isometry if ||£]| = 1. For all £ € Kg, put W (&) := £(§) + £(§)*.
The crucial result of Voiculescu [Voiculescu et al. 1992, Lemma 2.6.3] is that the distribution of the
self-adjoint operator W (§) with respect to the vector state gy = (- €2, ) is the semicircular law of
Wigner supported on the interval [—||& ], ||§]l]-
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Definition 2.1 [Shlyakhtenko 1997]. Let Hg be any real Hilbert space and U : R ~ Hg any orthogonal
representation. The free Araki-Woods von Neumann algebra associated with U : R ~ Hp is defined by
[(Hg, U)":={W(&):& € K},

We denote by I'(Hg, U) the unital C*-algebra generated by 1 and by all the elements W (§) for & € K.

The vector state gy = (- Q, Q) is called the free quasifree state and is faithful on I'(Hg, U)". Let
&, n € Kr and write £ = & +in. Put
W) := W (E) +iW(m) = £(¢) + ()"

Note that the modular automorphism group o # of the free quasifree state ¢y is given by oV = Ad(F(U,)),
where F(U;) = lea ® D, U2". In particular, it satisfies

oV (W) =WUt), YieKr+iKp,VteR.

It is easy to see that for alln > 1 and all ¢1,...,¢, € Kp+iKg, {1 ® - - ® ¢, € I'(Hg, U)’Q2. When
1y ..., &y are all nonzero, we denote by W({1 ® - - ® ¢,) € I'(Hg, U)” the unique element such that

Such an element is called a reduced word. By [Houdayer and Raum 2015, Proposition 2.1(i)] (see also
[Houdayer 2014a, Proposition 2.4]), the reduced word W (¢ ® - - - ® ¢,) satisfies the Wick formula given
by

W@ Q- ®&) =) L) LG(Grs)* - LT

k=0
Note that since inner products are assumed to be linear in the first variable, for all £, n € H we
have £(£)*¢(n) = (£, n)1 = (n, &) 1. In particular, the Wick formula from [Houdayer and Raum 2015,
Proposition 2.1(ii)] is
WE R - @)W ®---®n;)
=WE Q- ®50m@ - @n)+E.mWE® Q& DWme-- ®n,)

for all &,...,&,n1,...,ns € Kr+1Kr. We repeatedly use this fact in the next section. We refer to
[Houdayer and Raum 2015, Section 2] for further details.

3. Asymptotic orthogonality property in free Araki—Woods factors

Let U : R~ Hg be any orthogonal representation. By Zorn’s lemma, we may decompose Hgr = H&p O HR™
and U =UY"@U?, where UP® : R~ Hﬁp is the almost periodic, and U™™ : R ~ HZ™ the weakly mixing,
subrepresentation of U : R ~ Hp. Write M = T'(Hg, U)", N =T'(H, U*)" and P = C(HR™, UM™)",
so that

(M, pu) = (N, py=) * (P, pywm).

For notational convenience, we simply write ¢ := ¢y .
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The main result of this section, Theorem 3.1 below, strengthens and generalizes [Houdayer and Raum
2015, Theorem 4.3].

Theorem 3.1. Keep the same notation as above. Let w € B(N) \ N be any nonprincipal ultrafilter. For
alae M&N,allbe Mandall x, y € (M®)*" N (M® & M), we have

e“(b*y*ax) =0.

Proof. Denote, as usual, by H := Hr ®g C the complexified Hilbert space and by U : R ~ H the
corresponding unitary representation. Put H% := Hﬁp ®r C and H¥™ := HZ"™ Q@ C. Put K := j(Hp),
Kg' = j(Hg') and K™ := j (HY™), where j is the isometric embedding & € Hg > (2/(1+A~")/26 € H.
Denote by H = F(H) the full Fock space of H. For every t € R, put k; = lcq & @, UZ" € U(H).
For every ¢t € R and every x € M, we have o, (x)Q = «;(x2). We implicitly identif_y the full Fock
space F(H) with the standard Hilbert space L?(M) and the vacuum vector € H with the canonical
representing vector &, € L2(M),.

Put Kun =, 151 ,,(A)(Kr+iKg). Observe that K, C Kr+1KR is a dense subspace of elements
n € Kr+1Kp for which the map R — Kr+iKp: t — U;n extends to a (Kg +iKg)-valued entire analytic
function, and that K,, = K,,. For all n € Kan, the element W () is analytic with respect to the modular
automorphism group o¢ and we have o (W (1)) = W (Ai“p) for all z € C.

Denote by W the set of reduced words of the form W (£, ®- - -®§&,) for whichn>1and &y, ..., &, € Ka.
By linearity/density, in order to prove Theorem 3.1, we may assume without loss of generality that a and
b are reduced words in W. Since moreover a € M © N, we can assume that at least one of its letters §;
lies in K™ + iK™, More precisely, we can write

a=dWE Q- ®&yd",
b=b'Wim®- - -®n,b"

with p > 1, ¢ > 0 and for reduced words a’, a”, b’, b” in N with letters in Ko N (Kg +iKg'), and for
&y bpt My Mg—1 € Kan and 1,8, 1, g € Kan N (K™ +1KR™). By convention, when g =0,
W(n ®---®nyg) is the trivial word 1, so that b = b'b".

Denote by L C Kp™ +i1Ky™ the finite dimensional subspace generated by &;, £, n1, n, and such that
L=L.TIf g =0, then L is simply the subspace generated by &1, §,, 51, ép. Denote by

e X(1, r) C H the closed linear subspace generated by all the reduced words of the form e; ® - - - ® e,
withr >0, n>r+1,eq,...,e, eKﬁp—i—iK%p and e, € L;

e X (2, r) C H the closed linear subspace generated by all the reduced words of the form e; ® - - - ® e,
withr >0,n>r+1,e,—r € Land e,_y41,...,€, € K&p+iK&p;

e YV C H the closed linear subspace generated by all the reduced words of the form e; ® - - - ® e, with

n>1ande, e, € L.

When r = 0, we simply write X} := X(1, 0) and X, := X (2, 0). Observe that we have the orthogonal

decomposition
H=CQRe M +X) D).
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Claim 3.2. Let ¢ > 0 and t € R such that U;(L) L./ gimr L. Then foralli € {1, 2} and all r > 0, we have
k(X (i, r)) Le X(i,r).

Proof of Claim 3.2. Choose an orthonormal basis ({1, . .., {dimz) of L. We first prove the claim for i = 1.
We identify X' (1, r) with L ® ((H*)®" ® H) using the unitary defined by

VA,r): HQH® QH) > H: tQuvi> n QL Q.
Observe that «,V(1,r) = V(1,r)(U; ® (U))® ;) for every t € R. Let &1, E; € X (1, r) be such that
B =Y "¢ ®0] and ;=Y (" ¢; ® ©2 with ©], ©2 € (H*)®" @ H. We have

dim L

k(B =Y Ui&) ®k,(8)),
i=1

and hence
dim L

(e (1), B2)l < D) WU, e 1O 111©7].

ij=1

Since [(U;(¢;), ¢j)| <&/ dim L, we obtain |(k;(E1), Ez)| <¢| E1]|||E2|| by the Cauchy—Schwarz inequality.
The proof of the claim for i = 2 is entirely analogous. U

Given a closed subspace L C H, we denote by Px : H — K the orthogonal projection onto K.
Claim 3.3. Tuke z = (z,)® € (M®)¥" and let wy, wy € N be any elements of the following forms:
o Eitherwi=1lorwi =W Q- Q&) withr >1and ¢y, ...,¢ € Kipn N (K[%p+iK[§p).

e Eitherwy=1lorwy, =W ® - - Qus)withs >1and uy, ..., us € Kanﬁ(Kﬂ%p—i—iK[%p).
Then for all i € {1, 2}, we have lim,,_, , || Px, (w12, w22) || = 0.
Proof of Claim 3.3. Observe that wz,w;Q2 = wJ afi /z(wg‘)J 7, 2. Firstly, we have
PX(],r)(JO'iDi/Q(UJ;)JZnQ) = Jo'fi/z(w;)JPX(l,r) (22 2),

Px2,5)(w12,82) = w1 Px2,5)(2,2).
Secondly, for all E € H, we have
Py, (w1 E) = Px, (w1 Px(1,n(E)),
Py, (Jo?, h(w3)JE) = Px,(Jo¥, (w3)J Pxe,5) (E)).
This implies that
P, (w12,w2R2) = Py, (w1J 0%, (w3)J Px(1,r) (24 ),
P, (w1z,wr€2) = sz(wlJﬂfi/z(wik)JPX(z,s)(ZnQ)),

and we are left to show that lim,,_,, || Px (1,5 (2, Q) || = lim,— 4 | Px2.5) (22 2) | = 0.
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Leti € {1,2} and k € {r, s}. Fix N > 0. Since the orthogonal representation U : R ~ HZ™ is weakly
mixing and L C H"™ is a finite dimensional subspace, we may choose inductively 71, ..., fy € R such
that Uy, (L) L(n dim(zy)-1 Us;, (L) forall 1 < ji < j» < N. By Claim 3.2, this implies that

i, (XA k) Liyn ke, (X0, k), V1<ji<jp=<N.
For all t € R and all n € N, we have

I Pty a2 1? = (P iy (2a2), 20 2)
= (k: (Px(i k) (20S2)), k1 (2,€2)) (since k; € U(H))
= (P, (x.0) (K1 (22 2)), k1 (2,82)).

By [Ando and Haagerup 2014, Theorem 4.1], for all ¢ € R, we have (z,)* =z = G;pw (2) = (0 (z2)®.
This implies that lim,_ ||o,‘0(z,,) —Znlly =0, and hence lim,,_,, ||k;(2,€2) — z,€2|| =0 for all € R. In
particular, since the sequence (z,€2), is bounded in H, we deduce that for all r € R,

lim [| Prga) (2o 1> = Gm (P, x50 (20 R), 2092).
n—-w n—w

Applying this equality to our well chosen reals (7;)1<;<y, taking a convex combination and applying
the Cauchy—Schwarz inequality, we obtain

n—w

N
. . 1
lim || P @)1 = lim > (P, () (n ). 2n )
1 N
= lim N<Z PKlj(X(i,k))(ZnQ)’ ZHQ>

1Znllp-

N
1
N Z P, (.1 (2n€2)

Then for all n € N, we have

2 N
= <PK,I.1 (X(i.k)) (2n€2), PK,jz(X(i,k))(ZnQ)>
J1. 2=l

N
> P, (2.1 (2n€2)
j=1

N 2
Iz
I P, ein GNP+ D —
1 J1# )2
lzn

< Nllzlly + N2 =

-

J

2N ||zall3-

Altogether, we have obtained the inequality lim,,_, , || Px (i k) (2,€2) % < ﬁ”z“ém /v/N. As N is arbitrarily
large, this finishes the proof of Claim 3.3. The above argument is inspired by [Wen 2016, Lemma 10].
Alternatively, we could have used [Houdayer 2014a, Proposition 2.3]. ]
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Claim 3.4. The subspaces W(§1 ® ---®£,)Y and Jafi/z(W(ﬁq ® ---®n1))JY are orthogonal in H.
Here, in the case q = 0, the vector space Jafi/z(W(ﬁq ®---®n1))JY is nothing but ).

Proof of Claim 3.4. Let m,n> 1 and ey, ..., en, f1,..., fu € H with e, e, f1, fu € L+, so that the
vectors 1 ®@ - - Qe and f1 ® - - - ® f, belong to V. Since ép 1 ey, fn 1 nand & L f1, we have

(WE®---®8) (e ® - ®en), Jo¥ L (Wi ®--- @) (fi®---® fn))
=(WE® - @)W e ® - ®en)RQ, Jo! (Wi, ® - @1 IW(/i® - ® f,)Q)
=(WE® - Q)WEr® @) W i® Q)W ®- - ®ny)R)
=(WE® Q0 ®en)QW(fi® QLM - Qny)Q)
=(61® QLR Rew, iI® R fL @M ®ny)
=0.
Note that in the case ¢ = 0, the above calculation still makes sense. Indeed, we have

(WEI® @) (1@ ®en). (/1® - f))=(61® - Q& Qe1® Qe 1Q® fr)=0.

Since the linear span of all such reduced words ¢; ® - - - ® e,,, generate )’ (and likewise the span of the
words f1 ®---® f,), we obtain that the subspaces W(§; ®---®§,)) and Ja‘_oiﬂ(W(ﬁq Q---@mNJY
are orthogonal in H. O

Let x, y € (M®)*" N (M® S M). We have
@ (b*y*ax) = (ax&ye, ybEyw)
= r}l_r)rcll)(axngtp, ynbé:w)
= I}E}(a/W(gl - ®§p)a”xng2’ Yn b/W(nl - ﬂq)b”Q)
= }gg)(W(sl ®---®&p)a"x, 0 ()R, Jo¥ ,(W(ily ® - ®11))J (@) yub' Q).
Put z, = a"x,0%,((b")*) and z], = (a’)*y,b’. By Claim 3.3, we have that
lim || Py, (z, Q)| = lim || Px. (z,Q)| =0, Vie{l,2}.
n—w n—w

Since moreover E,,(x) = E,(y) =0, we see that lim,,_,, || Pcq(z,2) || = lim,_,, || Pca(z, )| = 0. Since
H=CQD (X + X)) ®)Y, we obtain

. _ : o ’ —
nlgri) 12,2 — Py(z,2)|| =0 and r}gm@ Iz, 2 — Py(z, )| =0.
By Claim 3.4, we finally obtain
P by ax) = lim (W(E ® - ®8,) 2,2, Jo¥, ,(W(i, ® - @ 711)) Iz, 2)
n—-w
= nh—r>rzlu<W(§1 Q- ®$p)Py(ZnQ), Jo'fi/z(W(ﬁq - ﬁl))]Py(Z;zQ)) =0.

This finishes the proof of Theorem 3.1. ]
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4. Proof of the Main Theorem

We start by proving the following intermediate result.

Theorem 4.1. Let (M, ¢) = (I'(Hg, U)”, puy) be any free Araki-Woods factor endowed with its free
quasifree state. Keep the same notation as in the introduction. Let g € M? = N¥U*™ be any nonzero
projection. Write o, = ¢(q -q)/©(q). Then for any amenable von Neumann subalgebra Q C qMq that is
globally invariant under the modular automorphism group o %1, we have Q C gqNgq.

Proof. We may assume that Q has separable predual. Indeed, let x € Q be any element and denote by
Qo C Q the von Neumann subalgebra generated by x € Q that is globally invariant under the modular
automorphism group o%. Then Qg is amenable and has separable predual. Therefore, we may assume
without loss of generality that Q¢ = Q, that is, O has separable predual.

Special case. We first prove the result when Q C g Mg is globally invariant under 0% and is an irreducible
subfactor, meaning that Q' NgMq = Cgq.

Let a € Q be any element. Since Q is amenable and has separable predual, Q' N (gMq)® is diffuse
and sois O'N((gM q)‘”)‘pqw by [Houdayer and Raum 2015, Theorem 2.3]. In particular, there exists a
unitary u € U(Q' N ((qu)“’)‘”Z)) such that ¢¢ (u) = 0. Note that E,,(u) € Q' NgMgq = Cq, and hence
E,u) = (pg’(u) =0, so that u € (M®)¥" N (M® & M). Theorem 3.1 yields ¢®(a*u*(a — Ey(a))u) = 0.
Since moreover au = ua and u € L{((qu)wftu), we have

lall} = lauljo = ¢° W*a*au) = ¢ (a*u*au)
= ¢”(a*u* Ey(@)u) = ¢”(ua*u*Ey(a)) = ¢(a* Ey(a)) = | Ex (@[},
This shows that a = Ey(a) € N.

General case. We next prove the result when Q C g Mg is any amenable subalgebra globally invariant
under o %.

Denote by z € Z(Q) C N¥ the unique central projection such that Qz is atomic and Q(1 —z) is diffuse.
Since Qz is atomic and globally invariant under the modular automorphism group o %, we have that
®;] 0 1s almost periodic and hence Qz C N. It remains to prove that Q(1 —z) C N. Cutting down by
1 — z if necessary, we may assume that Q itself is diffuse.

Since Q C gMgq is diffuse and with expectation and since M is solid (see [Houdayer and Raum 2015,
Theorem A] and [Houdayer and Isono 2016, Theorem 7.1], which does not require separability of the
predual), the relative commutant Q' N g Mg is amenable. Up to replacing Q by Q vV Q' NgMgq, which is
still amenable and globally invariant under the modular automorphism group o%?, we may assume that
Q'NgMg = Z(Q). Denote by (z,), a sequence of central projections in Z(Q) such that ), z, =g¢,
(Qz0) NzoMzo = Z(Q)zy is diffuse and (Qz,) Nz, Mz, = Cz, for every n > 1.

By the special case above, we know that Oz, C N foralln > 1.

e Since Z(Q)zo® (1 —z9) N (1 —zp) is diffuse and with expectation in N, its relative commutant inside
M is contained in N by [Houdayer and Ueda 2016, Proposition 2.7(1)]. In particular, Qzo C N.

Therefore, we have Q C N. U
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Proof of the main theorem. Put ¢ := ¢y. Denote by z € Z(Q) C M¥ = N the unique central projection
such that Qz is amenable and Qz" has no nonzero amenable direct summand. By Theorem 4.1, we have
Qz C zNz. Fix any nonprincipal ultrafilter o € B(N) \ N. Then (Q' N\ M®)z+ = (Q' N M)z* is atomic,
by [Houdayer and Raum 2015, Theorem A] (see also [Houdayer and Isono 2016, Theorem 7.1]). O
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