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ANALYSIS AND PDE
Vol. 10, No. 2, 2017

dx.doi.org/10.2140/apde.2017.10.253

SOME ENERGY INEQUALITIES
INVOLVING FRACTIONAL GJMS OPERATORS

JEFFREY S. CASE

Under a spectral assumption on the Laplacian of a Poincaré—Einstein manifold, we establish an energy
inequality relating the energy of a fractional GIMS operator of order 2y € (0, 2) or 2y € (2, 4) and the
energy of the weighted conformal Laplacian or weighted Paneitz operator, respectively. This spectral
assumption is necessary and sufficient for such an inequality to hold. We prove the energy inequalities by
introducing conformally covariant boundary operators associated to the weighted conformal Laplacian
and weighted Paneitz operator which generalize the Robin operator. As an application, we establish a new
sharp weighted Sobolev trace inequality on the upper hemisphere.

1. Introduction

Fractional GJMS operators are conformally covariant pseudodifferential operators defined on the boundary
of a Poincaré—FEinstein manifold via scattering theory which have principal symbol equal to that of the
fractional powers of the Laplacian [Graham and Zworski 2003]. Fractional GIMS operators can also be
understood as generalized Dirichlet-to-Neumann operators associated to weighted GIMS operators of a
suitable order defined in the interior [Branson and Gover 2001; Caffarelli and Silvestre 2007; Case and
Chang 2016; Chang and Gonzdlez 2011; Yang 2013]. In particular, one can identify the energy associated
to a fractional GJMS operator with the energy associated to a suitable weighted GIMS operator when
restricted to canonical extensions; see [Caffarelli and Silvestre 2007; Yang 2013] for the flat case and
[Case and Chang 2016; Chang and Gonzdlez 2011] for the curved case.

In this article, we are interested in obtaining, as a generalization of known results in the flat case
[Yang 2013], a general relationship between the energy associated to a fractional GIMS operator and
the energy associated to a suitable weighted GIMS operator for arbitrary extensions. One reason for
this interest is the role of such relationships in establishing sharp Sobolev trace inequalities (see [Ache
and Chang 2015; Escobar 1988]) and in studying the fractional Yamabe problem (see [Escobar 1992;
Gonzélez and Qing 2013]). Indeed, this article is partly motivated by a subtle issue which arises in the
works of Escobar [1992; 1994] and Gonzélez and Qing [2013] on the fractional Yamabe problem of
order y € (0, 1). In both works, one tries to find a metric on a compact manifold with boundary which
is scalar flat in the interior and for which the boundary has constant mean curvature (in a sense made
precise in Section 3) by minimizing an energy functional in the interior subject to a volume-normalization

MSC2010: primary 58J32; secondary 53A30, 58J40.

Keywords: fractional Laplacian, fractional GIMS operator, Poincaré—Einstein manifold, Robin operator, smooth metric measure
space.
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254 JEFFREY S. CASE

on the boundary. However, there is no guarantee that the energy functional is bounded below within this
class, an issue overlooked in [Escobar 1992; Gonzdlez and Qing 2013] and corrected in the special case
y = % in [Escobar 1994]. Proposition 5.1 corrects this issue by giving a spectral condition under which
the energy functional is bounded below.

The main results of this article are the following two theorems. These results establish, under spectral
assumptions on a Poincaré—FEinstein manifold, energy inequalities on suitable compactifications of the
Poincaré-Finstein manifold which relate the energy of the weighted conformal Laplacian and the weighted
Paneitz operator to the energy of the fractional GIMS operators P, in the cases y € (0, 1) and y € (1,2),
respectively. That equality holds for the special extensions U was established in [Case and Chang 2016].

Theorem 1.1. Fix y € (0, 1) and set m =1 —2y. Let (X"**1, M", g ) be a Poincaré—Einstein manifold
satisfying A1(—Ag, ) > %nz —y2. Let r be a geodesic defining function for M and let p be a defining
function such that, asymptotically near M,

p=r+0rt2 o1 t2)

for some ® € C°(M). Fix f € C°°(M) and denote by D}/ the set of functions Ue C®(X) N C%(X)
such that, asymptotically near M,

U=f+yp™ +o(p™)

for some y € C®(M). Set g = p*>g+ and h = g|Ta. Then
—1 2 -2
/ VU P4+ 2 ymy2) o ol > — 2L 99 Py f dvolh—udygg ®f2dvol,| (1-1)
X 2 dy LIm 2 M

forallUe D}/, where J(;)” is the weighted scalar curvature of (X, g, p,m, 1). Moreover, equality holds if
and only ifL’z"¢U =0.

Note that the left-hand side of (1-1) is the Dirichlet energy of the weighted conformal Laplacian LZ P
of (X, g,p,m,1). See Section 2 for a detailed explanation of the terminology and notation used in
Theorem 1.1. The spectral condition in Theorem 1.1 holds for Poincaré-Einstein manifolds for which the
conformal infinity (M", [h]) has nonnegative Yamabe constant [Lee 1995].

A key point is that the spectral assumption A1(—Ag, ) > %nz — y? is necessary; see Proposition 5.1.
This corrects the aforementioned mistake in [Gonzélez and Qing 2013]. Observe also that the left-hand
side of (1-1) involves the interior L2-norm of U. This contrasts with the sharp Sobolev trace inequalities of
Jin and Xiong [2013] which instead involve a boundary L2-norm of f =U]|p: Given a Poincaré—Einstein
manifold (X”+!, M" g.), a constant y € (0, 1), and a defining function p as in Theorem 1.1, there is a

constant A such that
n—2y

f|VU|2p1—2V dvolg +A¢ f? dvol > S(n,y)(gﬁ |f|ni’éy) ! (1-2)
X M M

for any U € DY := Uf D}/, where g = p?gy, f =U|p, and S(n, y) is the corresponding constant in
the upper half space [Gonzdlez and Qing 2013; Jin and Xiong 2013]. Under the spectral assumption
A(=Ag,)> %nz — ¥, one can use the adapted defining function [Case and Chang 2016, Subsection 6.1]
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in Theorem 1.1 to eliminate the interior L2-norm of U; indeed, combining this with (1-2) yields the sharp
fractional Sobolev inequality

§£M fPZVf+Af]§M f?z —%S(H,V)(gngflﬁ%)”y

for all f € C®°(M) (see [Hebey and Vaugon 1996; Jin and Xiong 2013]).

Theorem 1.2. Fix y € (1,2) and setm =3 —2y. Let (X" 1, M", g.) be a Poincaré—Einstein manifold
satisfying A1(—=Ag ) > %nz —(2—y)2 Let r be a geodesic defining function for M and let p be a defining
function such that, asymptotically near M,

p=r-+ p2r3 + ot 4 o(r1+2”)

for some pp, ® € C®°(M). Fix f € C°°(M) and denote by D}’ the set of functions Ue C®(X)NC%(X)

such that, asymptotically near M,

U= f+ f2p> + 90> +0(p™)
for some fo, € C®(M). Set g = p>g+ and h = g|rar. Then for any U € D}/ it holds that

/ ((A¢U)2 — (4P — (1 =2y + I )(VU.VU) + =l Q$U2)
v 2

8y(y —1) n—2y 2
(g, im0

where P is the Schouten tensor of g, J g’ and Qg’ are the weighted scalar curvature and the weighted

Q-curvature, respectively, of (X, g, p,m, 1), and integrals on X and M are evaluated with respect to
p™ dvolg and dvoly, respectively. Moreover, equality holds if and only if LT, ¢U =0.

Note that the left-hand side of (1-3) is the Dirichlet energy of the weighted Paneitz operator LZ P
of (X, g,p,m,1). See Section 2 for a detailed explanation of the terminology and notation used in
Theorem 1.1. The spectral condition in Theorem 1.2 holds for Poincaré—Einstein manifolds for which the
conformal infinity (M", [h]) has nonnegative Yamabe constant [Lee 1995].

The proofs of Theorem 1.1 and Theorem 1.2 rely on three observations. First, we introduce conformally
boundary-covariant operators associated to the weighted conformal Laplacian and the weighted Paneitz
operator in the same sense as the trace and Robin operators act as boundary operators associated to
the conformal Laplacian (cf. [Branson 1997; Branson and Gover 2001; Escobar 1990; 1992]). Second,
we show that our conformally covariant operators recover certain scattering operators when acting on
functions which lie in the kernel of the corresponding weighted GJIMS operator on a Poincaré—Einstein
manifold; this yields another approach to defining the fractional GJMS operators via extensions (cf.
[Ache and Chang 2015; Case and Chang 2016; Chang and Gonzélez 2011; Graham and Zworski 2003;
Guillarmou and Guillopé 2007]). Third, using conformal covariance, we characterize when the left-hand
sides of (1-1) and (1-3) are uniformly bounded below in terms of spectral data for the metric g4. When
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these spectral conditions are met, the left-hand sides of (1-1) and (1-3) can be minimized, and the
identification of the minimizers follows from our extension theorem.

The second step in the above outline is a refinement of previous work in [Case and Chang 2016].
In that work, it was shown that the fractional GJMS operators are generalized Dirichlet-to-Neumann
operators for the weighted GIMS operators. For example, under the assumptions of Theorem 1.1, it was
shown that if Lgfqu =0and Ulys = f, then

d)’ : m .
Py f = —533%(,0 nU —y(n—2y)®U);

see [Case and Chang 2016, Theorem 4.1]. In particular, equality holds in (1-1). The novelty introduced
in this article is to realize the right-hand side of the above display as the evaluation of a conformally
covariant boundary operator. This also allows us to establish the energy inequality of Theorem 1.1. A
similar comparison of our results to those in [Case and Chang 2016] holds in the case y € (1,2).

As an application of our results, we establish a sharp Sobolev trace inequality on the standard upper
hemisphere

Si‘“ = {x=(x0,....Xn41) € R* 12 | Xn41>0, [x|=1}

with the metric induced by the Euclidean metric. To that end, let y € (1, 2) and set

Y . Y
DY = U Dy
fece(sn)

for D}/ determined by the defining function x4 for $” =98 _'ﬁ“ as in Theorem 1.2.

Theorem 1.3. Fix y € (1,2), choose 2y <n €N, and let (S 1+1’ d0?) be the standard upper hemisphere.
Then

n—2y

c,(lzz, (¢ |f|ﬂ37%y dvol)
Sn
(n+3-2y)2-5

2 2
S/si+1[(A¢U) T s VU )

forall U € DY, where f = U|gn and

U2:|x,3lfly dvol (1-4)

c,(,zl), = 8x7

r@—y) T +2y)) (r(én))i
F(y) T(zm=2p)\ T )~

Moreover, equality holds if and only if

(Ap—2((m+3-2y)> = D) (Ap — 2(n+3-2y)>=9))U =0 (1-5)

and f(x) =c(l +a-x)_% for some ¢ € Rand a € R* T with |a| < 1.
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The corresponding result when y € (0, 1) is that

n—2y

n n r(tn+4-2 _
c,gl)), (¢ |f|,1372,, dvol) 5/ |:|VU|2 + (2(1 12) Uz}x;ﬁly dvol
T\ Jsn st T(3(n—2y))

for all U € DY with trace f = U|gn, where
r(1—y) T +2y)) (r(%n))%?
L) TEm—2y)\ T )

This follows easily from [Gonzalez and Qing 2013, Corollary 5.3] and conformal covariance.

cr(,l)), =27

The key observation in the proof of Theorem 1.3 is that the right-hand side of (1-4) is the energy of
the weighted Paneitz operator on (S _’f_H, do?, Xn+1,m, 1). The relation to the anigv—norrn of the trace
then follows from Theorem 1.2 and the sharp fractional Sobolev inequality [Beckner 1993; Cotsiolis and
Tavoularis 2004; Frank and Lieb 2012; Lieb 1983]. In fact, Theorem 1.3 can be extended to a much more
general class of functions U and a large class of conformally flat metrics on the upper hemisphere; see
Theorem 6.1.

This article is organized as follows:

In Section 2 we recall some facts about both the fractional GIMS operators as defined via scattering
theory [Graham and Zworski 2003] and smooth metric measure spaces as used to study fractional GIMS
operators via extensions [Case and Chang 2016].

In Section 3 we introduce conformally covariant boundary operators which, when coupled with the
weighted conformal Laplacian and weighted Paneitz operator, are formally self-adjoint.

In Section 4 we give formulae for our conformally covariant operators in terms of the asymptotics of
compactifications of Poincaré—Finstein manifolds and thereby obtain new interpretations of the fractional
GJMS operators via extensions.

In Section 5 we give characterizations for when the left-hand sides of (1-1) and (1-3) are uniformly
bounded below and also state and prove more refined versions of Theorem 1.1 and Theorem 1.2.

In Section 6 we prove the more general version of Theorem 1.3.

In the Appendix we prove a family of Sobolev trace theorems which are relevant to this article and
slightly different from the usual ones.

2. Background

Scattering theory. A Poincaré—Einstein manifold is a triple (X" 11, M™, g ) consisting of a complete
Einstein manifold (X" *1, g, ) with Ric(g4) = —ng and n > 3 such that X is diffeomorphic to the
interior of a compact manifold X with boundary M = 9X. We further require the existence of a defining
function for M i.e., a smooth nonnegative function p : X — R such that p~!(0) = M, the metric
g 1= p?g+ extends to a C"~ 1% metric on X, and |d,o|§, = 1on M. If p is a defining function for M,
then so too is €% p for any o € C°°(X), and hence only the conformal class [g|7as] on M is well-defined.
An element h € [g|Tar] is a representative of the conformal boundary, and to each such representative
there is a defining function r, unique in a neighborhood of M and called the geodesic defining function,
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such that gy = r=2(dr? + h,) near M for h, a one-parameter family of Riemannian metrics on M with
hy =h+ h(z)r2 +-o 4 h(n_l)r”_l +kr" +o(r™) if n is odd,
hy =h+ h(z)r2 +e 4 h(n_z)r"_2 +hyr" logr +kr" +o(r") if nis even,

where the terms /g for £ <n even are locally determined by / while the term k is nonlocal. For example,

1 1
he) = ———— (Ricj, ————— Ryh
@ n—2( T =) ”)

is the negative of the Schouten tensor of h. For further details, including a discussion of optimal regularity,
see [Chrusciel et al. 2005] and the references therein.

Given a Poincaré—Einstein manifold (X!, M", g.), a representative & of the conformal boundary,
and a parameter y € (O, %n) \ N such that %nz — 2 does not lie in the L2-spectrum of —A g+» We define
the fractional GIMS operator P, as follows: Let s = %n + y. For any f € C° (M), there exists a
unique solution v, denoted P(%n + )/) f, of the generalized eigenvalue problem

—Ag,v—s(n—s)v=0 (2-1a)
such that, asymptotically near M,
v=Fr" +Gr’ (2-1b)
for F,G € C®(X) and F|p = f. Then

T'(y)
I'(-y)
Among the key properties of the fractional GIMS operator P,y : C*°(M) — C*°(M) are that it is
formally self-adjoint, that its principal symbol is that of (—A)?, and that it is conformally covariant;

(2-2)

indeed, if h = 2%k is another representative of the conformal boundary, then

/)

for all f € C°°(M). In fact, this definition extends to the cases y € N by analytic continuation, and in
these cases the operators P»,, recover the GIMS operators. For further details, see [Graham and Zworski
2003].

A useful fact about the solution v of (2-1) is that, up to order rz, the Taylor series expansion of F

n+2y n—2y o

Pry(f)=e" 2 Py le 2

(resp. G) is even in r and depends only on /& and F|ps (resp. G|pr). For example,

F=f—l—;(—ﬁf—i—%(n—Zy)J_f)rz—i—o(rz), (2-3)
4(1-y)
where J is the trace (with respect to /) of the Schouten tensor P and we adopt the convention that barred
operators are defined with respect to the boundary (M", h).
The fractional GIMS operators P, can be interpreted as generalized Dirichlet-to-Neumann operators
associated to weighted GJMS operators. To state this precisely and in the widest generality in which we

are interested requires a discussion of smooth metric measure spaces.
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Smooth metric measure spaces. A smooth metric measure space is a five-tuple (X" +1, g, p, m, 1) formed
from a smooth manifold X! with (possibly empty) boundary M” = 39X, a Riemannian metric g on X,
a nonnegative function p € C(X) with p~!(0) = M, and a dimensional constant m € (1 —n, 00). Given
such a smooth metric measure space, we always denote by X the interior of X. Heuristically, the interior
of a smooth metric measure space represents the base of a warped product

(X" % S™ ¢ @ p?dh?) (2-4)

for (S™, dH?) the m-sphere with a metric of constant sectional curvature one; this is the meaning of
the 1 as the fifth element of the five-tuple defining a smooth metric measure space. The choice of the
standard m-sphere allows us to partially compactify (2-4), though not necessarily smoothly, by adding
the boundary M of X. The model case is the upper half space (R4 x R”, dy? @ dx?, y,m, 1) for y the
coordinate on R4 := (0, 00); in this case the warped product (2-4) is the flat metric on R* 1\ {0},
and the partial compactification obtained from [0, co) x R” is the whole of R? T +1,

The heuristic of passing through the warped product (2-4) is useful in that most geometric invariants
defined on a smooth metric measure space — and all which are considered in this article — can be formally
obtained by considering their Riemannian counterparts on (2-4) while restricting to the base X. More
precisely, when m € N, the warped product (2-4) makes sense and one can define invariants on X in
terms of Riemannian invariants on (2-4) by means of the canonical projection 7 : X" +1 x §7 — x7+1,
Invariants obtained in this way are polynomial in m, and can be extended to general m € (1 —n, c0) by
treating m as a formal variable. This is illustrated by means of specific examples below.

The weighted Laplacian Ay : C*°(X) — C*°(X) is defined by

AU := AU +mp~ 1 (Vp,VU).

This operator is formally self-adjoint with respect to the measure p™ dvolg ; the notation Ay is used for
consistency with the literature on smooth metric measure spaces, where one usually writes p"* = =%
and allows m to become infinite. In terms of (2-4), one readily checks that 7*AgyU = A(7*U) for A
the Laplacian of (2-4). The weighted Schouten scalar J q’;’ and the weighted Schouten tensor Pq’bn are the

tensors
1
Jhi=—— (R—2mp ' Ap— —Dp 2(IVp|> = 1)),
5 2(ern)( mp~ ' Ap—m(m—1)p~%(|Vp|> — 1))
o : —12
Pg’.—m+n_l(Rlc—mp Vp—J(;").

Denoting by P the Schouten tensor of (2-4) and by J its trace, one readily checks that J = *J q'b” and that
Pé" (Z,Z)=P(Z,Z)forall ZeTX, where Z is the horizontal lift of Z to X x S™. The weighted confor-
mal Laplacian Lg’(p 1 C®(X) — C*°(X) and the weighted Paneitz operator LT¢ C®(X) > C*®(X)
are defined by

LY sU :=—AgU + 5(m+n—1)JJU,

LY gU == (=0¢)*U + 84 (4P = (m +n—1)J'g)(VU)) + 5(m +n —3) 0§ U,
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where 83X = trg VX +mp~1 (X, Vp) is the negative of the formal adjoint of the gradient with respect

to p™ dvol,
m + n—

0F =g 2P~ gy + IR gy

is the weighted Q-curvature, and Y " = J g’ —trg Pg’. Observe that the weighted conformal Laplacian
and the weighted Paneitz operator are both formally self-adjoint with respect to o™ dvol. These definitions
recover the conformal Laplacian and the Paneitz operator, respectively, of (2-4) when restricted to the base.

An important property of the weighted conformal Laplacian and the weighted Paneitz operator is
that they are both conformally covariant. Two smooth metric measure spaces (X" 1, g, p,m, 1) and
(X"t g, p,m, 1) are pointwise conformally equivalent if there is a function o € C®(X) such that
g =e%%g and p = e“p. This is equivalent to requiring that the respective warped products (2-4) are
pointwise conformally equivalent with conformal factor independent of S™. Under this assumption, it
holds that

L/Zan)(U) _ e_m-‘r;-‘r GLm¢(em+n 10U), (2-5)
@(U) _ e_m+£1+SULgl’¢(em+2n BUU) (2-6)

for all U e C*°(X).

As defined above, the weighted conformal Laplacian and the weighted Paneitz operator are defined
only in the interior of a smooth metric measure space. The purpose of this article is to introduce and study
boundary operators associated to the weighted conformal Laplacian and the Paneitz operator, respectively,
which share their conformal covariance and formal self-adjointness properties. To do this in such a way
as to meaningfully study Poincaré—Einstein manifolds and the fractional GIMS operators requires us to
allow weaker-than-C ° regularity for both the metric g and the function p at the boundary of our smooth
metric measure spaces. This requires some definitions.

Definition 2.1. Let (X" g) be a Riemannian manifold with nonempty boundary M = 9X. Let
y € ( ) \ N and set k = |y | and m = 1 + 2k — 2y. The smooth metric measure space (X, g, 7, m, 1)
is geodesic if |[Vr|?> =1 in a neighborhood of M and if

k
g=dr’+ Y hopr¥ +o(r?) (2-7)
j=0
for sections /gy, ..., hx) of S2T*M.

The asymptotic expansion (2-7) is to be understood in the following way: Each point p € M admits
an open neighborhood U C X and a constant & > 0 such that the map

0,e)xV = U, (t,q) yq(1), (2-8)

is a diffeomorphism with image U, where V := U N M and y;; is the integral curve in the direction Vr
originating at ¢. By shrinking U if necessary, we may assume that |Vr|?> = 1in U, and hence r(y,4 (1)) =1;
note that if M is compact, then we may take U to be a neighborhood of M. The composition of the
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canonical projection [0, &) X V — V with the inverse of the diffeomorphism (2-8) givesamap 7 : U — V.
We then consider covariant tensor fields on V' as covariant tensor fields in U by pulling them back by 7.
Finally, since |Vr|? = 1 in a neighborhood of M, it is straightforward to check that there is a one-parameter
family &, of sections of S27*M such that g = dr? + h, near M. The assumption (2-7) imposes the
additional requirement that %, is even in r to order o(r??). In particular, if y > %, then M is totally
geodesic with respect to g; if also y > %, then the scalar curvature R of g satisfies d R = 0 along M.

Note that if 7 is a geodesic defining function for a Poincaré-Einstein manifold (X”+!, M", g ) and if
m,y are as in Definition 2.1, then ()? , r2g+, r,m, 1) is a geodesic smooth metric measure space.

Definition 2.2. Let X"*! be a smooth manifold with boundary M = 9X and let y € (0, %) \ N. Set
k = |y] and m = 1 4+ 2k —2y. A smooth metric measure space (X" +1, g, p,m, 1) is y-admissible if it is
pointwise conformally equivalent to a geodesic smooth metric measure space (X, go, 7, m, 1) such that

k
g = Z p(zj)ij +Or? +o(r?) (2-9)
j=0

for P0)s - -+ » P(2k)> deC®(M) and P0) = 1.

Note that if (X, g, p,m, 1) is a y-admissible smooth metric measure space and there are two geodesic
smooth metric measure spaces ()? ,gi,ri,m, 1), 1 €{1,2}, as in Definition 2.2, then r, = r; near M (see
[Graham and Lee 1991, Lemma 5.2] or [Lee 1995, Lemma 5.1]); in particular, all asymptotic statements
about y-admissible smooth metric measure spaces (e.g., (2-9)) are independent of the choice of geodesic
smooth metric measure space in Definition 2.2. Combining the expansions (2-7) and (2-9), we see that if
(X.g,p,m, 1) is a y-admissible smooth metric measure space with y > %, then M is totally geodesic
(with respect to g); if also y > % then d,R = 0 along M.

Given a Poincaré—Einstein manifold (X”T1, M" g,) and y € (0, %) \ N, a defining function p is
y-admissible if (X, p>gy,p,m,1), m=1=2|y|—2y, is a y-admissible smooth metric measure space.
In particular, the extension theorems established in [Case and Chang 2016, Theorems 4.1 and 4.4] are all
stated in terms of y-admissible smooth metric measure spaces. An important example of y-admissible
smooth metric measure spaces which arise as compactifications of Poincaré—Einstein manifolds and for
which the function ® in (2-9) is not necessarily zero are obtained from the adapted defining function
[Case and Chang 2016, Section 6.1].

In light of both our weakened regularity hypotheses and the asymptotics of solutions to the Poisson
equation (2-1), it is natural to introduce the following function spaces.

Definition 2.3. Fix y € (0,1), set m = 1 — 2y, and let (X"*1 g, p,m, 1) be a y-admissible smooth
metric measure space. Given f € C°° (M), denote by C}/ the set of all Ue C*°(X) N C%(X) such that,
asymptotically near M,

U= f+yp* +o(p*) (2-10)

for some ¥ € C*°(M). Set

= U c (2-11)
FeC>(M)
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The Sobolev spaces WOI’Z()? ,p™ dvol) and W12(X, p™ dvol) are the completions of C())’ and C?, respec-
tively, with respect to the norm

U200 = /X (VU + U?)p™ dvol.

For notational convenience, in the case y € (0, 1) we sometimes denote by D? the space C” and by
HY the space W12(X, p™ dvol).

When y € (0, 1), the Sobolev trace theorem (e.g., [Triebel 1978]) states that there is a surjective
bounded linear operator Tr: W 12(X, p™ dvol) — HY (M) such that TrU = f for every U € C}’, where
HY (M) denotes the completion of C°°(M) with respect to the norm obtained by pulling back

2
”f”Hy(Rn) —/ f2d +[n /n |f|)(cx)y|{-|(_§1)/| dx dy

to M via coordinate charts.

Definition 2.4. Fix y € (1,2), set m =3—2y, and let ()?”‘H, g, p,m, 1) be a y-admissible smooth metric
measure space. Given f, ¥ € C°°(M), denote by C f v the set of all U € C*°(X) N C%(X) such that,
asymptotically near M,

U=f+yp" 2+ f2p> + 920> +0(p*) (2-12)
for some f>, ¥p € C°(M). Set
Y ._ y _
= U (2-13)
fabeCo (M)
D= | Yo (2-14)
feC=(M)

The Sobolev spaces Woz’z()? ,p™ dvol), W22(X, p™ dvol), and H? are the completions of C())/,o’ c?,
and DY, respectively, with respect to the norm

U5 := /X(\VZU +mp 1 (8,U)2dp @ dp|* + |VU > + U?)p™ dvol. (2-15)

The particular modification of the Hessian used in (2-15) ensures that the integral is finite for all U € C?.

Given U € Cfn/f’

term in terms of the Z2-norm of Ay U, lower-order interior terms depending on curvature, and boundary

the weighted Bochner formula (see the Appendix) allows one to rewrite this Hessian
terms involving only f and .
When y € (1, 2), the Sobolev trace theorem (see the Appendix) states that there is a surjective bounded

linear operator Tr : W22(X, p™ dvol) — HY (M) @ H?>77 (M) such that Tr(U) = (f, ) for every
Ue C}’ v where HY (M) denotes the completion of C°°(M ) with respect to the norm obtained by pulling

back
é 0,/ =8 F )P
Zy o = 2 \vj 2 d J J dxd
1 Gy = [ P2+ P) x+;// Lok dxdy

to M via coordinate charts.
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We conclude with two useful observations. The first is the following relationship between a defining
function for a Poincaré—FEinstein manifold and certain weighted geometric invariants of the induced
compactification.

Lemma 2.5 [Case and Chang 2016, Lemma 3.2]. Let (X"T1, M™ g.) be a Poincaré—Einstein manifold
and p be a defining function. Fix m > 1 —n. The smooth metric measure space (X" *1, g:=p?gy,p.m, 1)

has
J+po Ap= 50+ 1)p >(IVel> = 1), (2-16)
m
JP=J——(J+p 'Ap), 2-17
& s [P Ap) (2-17)
Py =P (2-18)

Here P and J are the Schouten tensor of g and its trace, respectively.
The second is the following characterization of pointwise conformally equivalent y-admissible smooth
metric measure spaces in terms of the conformal factors.

Lemma 2.6. Fix y € (0,2)\ {1} and let (X", g, p,m, 1) be a y-admissible smooth metric measure
space withm = 1+ 2|y| —2y. Leto € C®(X) N C%X) and set § = ¢*°g and p = e°p. Then
(X" g, p,m, 1) is a y-admissible smooth metric measure space if and only if o € DY.

Proof. Let (X, go,r,m, 1) and (X, go.7,m, 1) be geodesic smooth metric measure spaces associated to
(X,g,p.m,1)and (X, g,7,m, 1), respectively, as in Definition 2.2. Suppose first that (X, g, p,m, 1) is
y-admissible. We readily check that
o0 T r
e’ = B -—.— €D,
Frop
whence o € D?. Conversely, if o € D?, we readily check that 7#/r € DY, whence (X" t1, g, p,m, 1) is

y-admissible. O

For the remainder of this article, unless otherwise specified, the measure with respect to which an
integral is evaluated is specified by context: if a smooth metric measure space (X" 1, g, p,m, 1) with
boundary M = 9X is given, all integrals over X are evaluated with respect to p” dvolg and all integrals
over M are evaluated with respect to the Riemannian volume element of g|7ps.

3. The conformally covariant boundary operators

In order to study boundary value problems associated to the weighted conformal Laplacian and the
weighted Paneitz operator — for instance, to study the fractional GJIMS operators as in [Case and Chang
2016] —it is useful to find conformally covariant boundary operators associated to these respective
operators. In the case of the weighted conformal Laplacian Lm with m = 1 — 2y, this means ﬁnding
conformally covariant operators Bg and B , such that s U V) = (L V, U) for all U V €ker B 2v
or forall U, V €ker B, y . That is, the boundary value problems (LY 5 Bzy) and (L% ¢; ) are formally
self-adjoint. In the case of the weighted Paneitz operator L7 10 with m =3 -2y, thrs means defining
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conformally covariant operators Bg v BZZ)’,'_Z, B;y, BZZJ): such that (LT ¢U, V)= (LZ1 ¢V, U)forall U,V
in the kernel of one of the pairs

2

B1 = (B, 2

2 2 2 2
Y. ByY), %2=(Boy,32yy_2), or %3=(32;_2,32;’).

That is, the boundary value problems (LT, & B;) for j € {1,2,3} are all formally self-adjoint. These
boundary value problems are all elliptic, as is apparent from the definitions of the operators given below,
and our definitions are such that the formal self-adjointness follows from simple integration-by-parts
identities; see Theorem 3.2 for the case of the weighted conformal Laplacian and Theorem 3.4 and
Theorem 3.7 for the case of the weighted Paneitz operator.

The existence of such operators when m = 0 is already known: B = n+ %H is a boundary operator
for the conformal Laplacian (see [Branson 1997; Escobar 1990]), while Branson and Gover [2001] have
constructed via the tractor calculus conformally covariant boundary operators associated to the noncritical
GJIMS operators and Grant [2003] derived the third-order boundary operator associated to the Paneitz
operator (see also [Chang and Qing 1997; Juhl 2009] for the case of critical dimension). As is apparent
from Definition 3.1, B{ = B, while the operators B} for k € {0,1,2,3} give explicit formulae for the
boundary operators associated to the Paneitz operator in the case of manifolds with totally geodesic
boundary; see [Case 2015] for the general case.

The case y € (0,1). The conformally covariant boundary operators associated to the weighted conformal
Laplacian are defined as follows.

Definition 3.1. Fix y € (0,1) and set m = 1 —2y. Let (X", g, p,m, 1) be a y-admissible smooth
metric measure space with boundary M = 90X and let (X, go.7,m, 1) be the geodesic smooth metric
measure space as in Definition 2.2. Set n = —ng r. As operators mapping C? to C*°(M),

—2y
BYU :=Uly. BXU:=lim p"(qU + ="Lusy).
0 M. By, Jim pT AU+ —, n
where 61 = trg V&n.
Note that n is the outward-pointing unit normal (with respect to g) vector field along the level sets
then 81|y = H is the mean curvature of M with

of r in a neighborhood of M. In particular, if y = %

respect to g. For this reason, we call
H,, := lim p"§
2y p—0 n

the y-mean curvature of M. Since ()?”‘H, go,7,m, 1) is uniquely determined near M by ()?, g, p,m,1),
the asymptotic assumptions of Definition 3.1 guarantee that the y-mean curvature and the operators Bg v
and BZZ;,’ are well-defined; indeed,

Hsy = —-2ny®,
2
B,YU = f,
BZU = —2y(y + L(n —21)®f),
where p and U satisfy (2-9) and (2-10), respectively, near M.
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That the operators Bg ¥ and BZZJ): are the conformally covariant boundary operators associated to the
weighted conformal Laplacian is a consequence of the following result.
Theorem 3.2. Fix y € (0,1) and set m = 1 —2y. Let (X"t g, p.m, 1) and (X"*1, g, p,m, 1) be two
pointwise conformally equivalent y-admissible smooth metric measure spaces with § = e2° g and p = e p.
Then for any U € CY it holds that

BY (U) = e~ "2 0 B (0" 70 1), (3-1)
B (W)= M B "2 00). (3-2)
Moreover, given U,V € CY, it holds that
/X VLY U + §£M ByY (V)BY(U) = Qa(U.V) (3-3)
for Qay, the symmetric bilinear form
n—2 n—2
0w )= [ (Vo + S gpuv) + 2 G 5 )87 ),

In particular, Q3 is conformally covariant.

Proof. Equation (3-1) follows immediately from the definition of Bg v,
By Lemma 2.6, we have that o € C?, and in particular o no is well-defined. On the other hand, if 7
and 7 are as in Definition 3.1, then /) = e~ °7. Hence
n—2y n+2y

pMAe” 2 U)=e" 2 “p"™(nU —L(n—2y)Uno),
™8 = e P (§n + nno).

Combining these two equations yields (3-2).
Finally, integration by parts yields (3-3). Combining (3-1) and (3-2) with (3-3) yields the conformal
covariance of Q. O

The case y € (1,2). The conformally covariant boundary operators associated to the weighted Paneitz
operator are defined as follows.

Definition 3.3. Fix y € (1,2) and set m = 3 —2y. Let (X"T1, g, p,m, 1) be a y-admissible smooth
metric measure space with boundary M = X and let 5 be as in Definition 3.1. As operators mapping
C’ to C®(M),

BYU :=U,
B3 _,U = p™yU,
2—y_ )
BYU = ——);AU—i—(VZU(n, 0 +mpLa,U) + . Y12y,
y_

n—2y
2

1 -
2 2
By U := —pmr)A¢U—ﬁApan+Szypan+ (P"nIgHU,
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where
2y _ 3-2y - _
Tfyz=—yJ—(P(n,n)——y(J+p 1Ap+P(n,n>)), (3-4)
y—1 n+1
n=2y n+2y—4\- n-2y—4 B=2y)(n—=2y+4) - _;
S .= T+—=2 " p(m.n)— T Ap+P(n, 3.5
2 ( 2 +2(y_1)) t— (n.m) 200 D) (J+p"Ap+P(n. 1) (3-5)

and we understand the right-hand sides to all be evaluated in the limit p — 0.

Due to the length of the computations, we break the proof that the operators given in Definition 3.3 are
conformally covariant boundary operators associated to the weighted Paneitz operator on y-admissible
smooth metric measure spaces into two parts. First, we show that they are conformally covariant of the
correct weight.

Theorem 3.4. Fix y € (1,2) and set m =3 —2y. Let (X"t g, p,m, 1) and (X", g, p,m, 1) be two
pointwise conformally equivalent y-admissible smooth metric measure spaces with § = e2° g and p = e p.
Then for any U € CY it holds that

By = "5 ol g2 ("5 o), (3-6)
~ n42y— n—
BY U =e"F 0Bl ("FT0U), (3-7)
BYU = "3 ol g2 (0" o), (3-8)
BU = "ol 2 (T 0), (3-9)

The proof of Theorem 3.4 is a somewhat lengthy computation. While such computations are routine in
conformal geometry (see [Branson 1985; Chang and Qing 1997]), they have not been carried out in this
form in the literature for smooth metric measure spaces, and so we sketch the details here.

Fix y € (1,2). An operator T : CY — C°°(M) defined on a y-admissible smooth metric measure space
(X", g, p,m, 1) with boundary M = 3X is natural if it can be expressed as a polynomial involving
the Levi-Civita connection and the Riemann curvature tensor of g, powers of p, the outward-pointing
normal 7 along M = 90X, and contractions thereof. A natural operator 7 is said to be homogeneous of
degree k € R if for any positive constant ¢ € R, the operators 7" and T defined on ()? n+l g,p,m, 1) and
(X"t1 g, p,m, 1), respectively, for § = c2g and p = cp, are related by

TW)=c*TW)

for all U in the domain Dom(7") of T'. Given a homogeneous operator 7" of degree k, a function o € DY,
and a fixed weight w € R, we define

9
(T(U)) = n (e-wHhral o (e¥1°0)), (3-10)
t=0

where T,20, denotes the operator 7" as defined with respect to the smooth metric measure space
(X" 1, e29g ¢%p,m, 1). One readily shows (see [Branson 1985, Corollary 1.14]) that, given a natural
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operator 7" which is homogeneous of degree k and a fixed weight w, it holds that
Tyoog(U) = W TR T (~woy)

for all 0 € DY and all U € Dom(T) if and only if (7 (U))’ = 0 for all 0 € DY and all U € Dom(T).

To prove Theorem 3.4, it thus suffices to compute the linearizations (3-10) of the operators given
in Definition 3.3 — which are all natural and homogeneous — with the fixed weight w = —%(n —2y).
We accomplish this through a pair of lemmas. We first consider operators which are homogeneous of
degree —2.

Lemma 3.5. Fixy € (1,2) and set m = 3 —2y. Let (X", g, p,m, 1) be a y-admissible smooth metric
measure space with boundary M = 3X. Let o € DY and let U € CY. Fix a weight w € R. Then

(AUY = (n + 2w —2)(VU, Vo) +wU Ao,
(V2U@,m) +mp~'3,U) = (m+1)(VU, Vo) + wU(V