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EXACT CONTROLLABILITY FOR QUASILINEAR PERTURBATIONS OF KDV

PIETRO BALDI, GIUSEPPE FLORIDIA AND EMANUELE HAUS

We prove that the KdV equation on the circle remains exactly controllable in arbitrary time with localized
control, for sufficiently small data, also in the presence of quasilinear perturbations, namely nonlinearities
containing up to three space derivatives, having a Hamiltonian structure at the highest orders. We use
a procedure of reduction to constant coefficients up to order zero (adapting a result of Baldi, Berti
and Montalto (2014)), the classical Ingham inequality and the Hilbert uniqueness method to prove the
controllability of the linearized operator. Then we prove and apply a modified version of the Nash–Moser
implicit function theorems by Hörmander (1976, 1985).
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1. Introduction

A question in control theory for PDEs regards the persistence of controllability under perturbations. In
this paper we study the effect of quasilinear perturbations (namely nonlinearities containing derivatives
of the highest order) on the controllability of the KdV equation. We consider equations of the form

ut + uxxx +N (x, u, ux , uxx , uxxx)= 0 (1-1)

on the circle x ∈ T := R/2πZ, with t ∈ R, where u = u(t, x) is real-valued, and N is a given real-valued
nonlinear function which is at least quadratic around u = 0. For solutions of small amplitude, (1-1) is a
quasilinear perturbation of the Airy equation ut + uxxx = 0, which is the linear part of KdV; then the
KdV nonlinear term uux can be included in N.

Motivated by a question, which was posed in [Kappeler and Pöschel 2003], about the possibility of
including the dependence on higher derivatives in nonlinear perturbations of KdV, equations of the form
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(1-1) have recently been studied in [Baldi, Berti, and Montalto 2014; 2016a; 2016b] in the context of
KAM theory. In this paper we study (1-1) from the point of view of control theory, proving its exact
controllability by means of an internal control, in arbitrary time, for sufficiently small data (Theorem 1.1).

Most of the known results about controllability of quasilinear PDEs deal with first-order quasilinear
hyperbolic systems of the form ut + A(u)ux = 0 (including quasilinear wave, shallow water, and Euler
equations); see, for example, [Li and Zhang 1998; Coron 2007, Chapter 6.2; Li and Rao 2003; Coron,
Glass, and Wang 2010; Alabau-Boussouira, Coron and Olive 2015]. Recent results for different kinds of
quasilinear PDEs are contained in [Alazard, Baldi, and Han-Kwan 2015] about the internal controllability
of 2-dimensional gravity-capillary water waves equations, and in [Alazard 2015] about the boundary
observability of 2- and 3-dimensional (fully nonlinear) gravity water waves. For a general introduction
to the theory of control for PDEs, see, for example, [Lions 1988; Micu and Zuazua 2005; Coron 2007],
while for important results in control for hyperbolic PDEs, see, for example, [Bardos, Lebeau, and Rauch
1992; Burq and Gérard 1997; Burq and Zworski 2012].

Regarding the KdV equation, the first controllability results are due to Zhang [1990] and Russell
[1991]. Among recent results, we mention the work by Laurent, Rosier and Zhang [2010] for large data.
A beautiful review on the literature on control for KdV can be found in [Rosier and Zhang 2009]. For
more on KdV, see the rich survey [Guan and Kuksin 2014], and the many references therein.

1A. Main result. We assume that the nonlinearity N (x, u, ux , uxx , uxxx) is at least quadratic around
u = 0; namely the real-valued function N : T×R4

→ R satisfies

|N (x, z0, z1, z2, z3)| ≤ C |z|2 ∀z = (z0, z1, z2, z3) ∈ R4, |z| ≤ 1. (1-2)

We assume that the dependence of N on uxx , uxxx is Hamiltonian, while no structure is required on its
dependence on u, ux . More precisely, we assume that

N (x, u, ux , uxx , uxxx)=N1(x, u, ux , uxx , uxxx)+N0(x, u, ux), (1-3)

where

N1(x, u, ux , uxx , uxxx)= ∂x{(∂uF )(x, u, ux)}− ∂xx{(∂uxF )(x, u, ux)}

for some function F : T×R2
→ R. (1-4)

Note that the case N=N1, N0=0 corresponds to the Hamiltonian equation ∂t u = ∂x∇H(u), where the
Hamiltonian is

H(u)= 1
2

∫
T

u2
x dx +

∫
T

F(x, u, ux) dx (1-5)

and ∇ denotes the L2(T)-gradient. The unperturbed KdV is the case F =− 1
6 u3.

Notation. For periodic functions u(x), x ∈T, we expand u(x)=
∑

n∈Z uneinx, and, for s ∈R, we consider
the standard Sobolev space of periodic functions

H s
x := H s(T,R) := {u : T→ R : ‖u‖s <∞}, ‖u‖2s :=

∑
n∈Z

|un|
2
〈n〉2s, (1-6)
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where 〈n〉 := (1+ n2)1/2. We consider the space C([0, T ], H s
x ) of functions u(t, x) that are continuous

in time with values in H s
x . We will use the following notation for the standard norm in C([0, T ], H s

x ):

‖u‖T,s := ‖u‖C([0,T ],H s
x )
:= sup

t∈[0,T ]
‖u(t)‖s . (1-7)

For continuous functions a : [0, T ] → R, we will define

|a|T := sup{|a(t)| : t ∈ [0, T ]}. (1-8)

Theorem 1.1 (exact controllability). Let T > 0, and let ω ⊂ T be a nonempty open set. There exist
positive universal constants r , s1 such that, if N in (1-1) is of class Cr in its arguments and satisfies (1-2),
(1-3), (1-4), then there exists a positive constant δ∗ depending on T, ω, N with the following property.

Let uin, uend ∈ H s1(T,R) with
‖uin‖s1 +‖uend‖s1 ≤ δ∗.

Then there exists a function f (t, x) satisfying

f (t, x)= 0 for all x /∈ ω, for all t ∈ [0, T ],

belonging to C([0, T ], H s
x )∩C1([0, T ], H s−3

x )∩C2([0, T ], H s−6
x ) for all s < s1, such that the Cauchy

problem {
ut + uxxx +N (x, u, ux , uxx , uxxx)= f ∀(t, x) ∈ [0, T ]×T,

u(0, x)= uin(x)
(1-9)

has a unique solution u(t, x) belonging to C([0, T ], H s
x )∩C1([0, T ], H s−3

x )∩C2([0, T ], H s−6
x ) for all

s < s1 which satisfies
u(T, x)= uend(x). (1-10)

Moreover, for all s < s1,

‖u, f ‖C([0,T ],H s
x )
+‖∂t u, ∂t f ‖C([0,T ],H s−3

x )+‖∂t t u, ∂t t f ‖C([0,T ],H s−6
x ) ≤ Cs(‖uin‖s1 +‖uend‖s1) (1-11)

for some Cs > 0 depending on s, T, ω, N.

Remark 1.2. In Theorem 1.1 there is an arbitrarily small loss of regularity: if the initial and final data
uin, uend have Sobolev regularity H s1

x , then the control f and the solution u are continuous in time with
values in H s

x for all s < s1. Such loss of regularity is in some sense fictitious: it is due to our choice
of working with standard Sobolev spaces, but it could be avoided by working with the (slightly “worse-
looking”) weak spaces E ′a introduced by Hörmander [1985] (see Appendix B). What we actually prove is
that, if the initial and final data are in the weak space (H s1

x )
′ (i.e., the weak version à la Hörmander [1985]

of the Sobolev space H s1
x ), then f and u are continuous in time with values in the same space (H s1

x )
′. �

Remark 1.3. Our proof of Theorem 1.1 does not use results of existence and uniqueness for the Cauchy
problem (1-9). On the contrary, our method directly proves local existence and uniqueness for (1-9)
(see Theorem 1.4). This situation occurs quite often in control problems (see Remark 4.12 of [Coron
2007]). �
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1B. Description of the proof. It would be natural to try to solve the control problem (1-9)–(1-10) using
a fixed point argument or the usual implicit function theorem. However, this seems to be impossible
because of the presence of three derivatives in the nonlinear term. A similar difficulty was overcome
in [Alazard, Baldi, and Han-Kwan 2015] by using a suitable nonlinear iteration scheme adapted to
quasilinear problems. Such a nonlinear scheme requires solving a linear control problem with variable
coefficients at each step of the iteration, with no loss of regularity with respect to the coefficients (i.e.,
the solution must have the same regularity as the coefficients). In [Alazard, Baldi, and Han-Kwan 2015]
this is achieved by means of paradifferential calculus, together with linear transformations, Ingham-type
inequalities and the Hilbert uniqueness method.

As an alternative method, in this paper we use a Nash–Moser implicit function theorem. The Nash–
Moser approach also demands the solving of a linear control problem with variable coefficients, but it has
the advantage of requiring weaker estimates, allowing losses of regularity. The proof of such weaker esti-
mates is easier to obtain, and it does not require the use of powerful techniques like paradifferential calculus.
In this sense our Nash–Moser method is alternative to the method in [Alazard, Baldi, and Han-Kwan 2015]
(for a discussion about pseudo- and paradifferential calculus in connection with the Nash–Moser theorem,
see, for example, [Hörmander 1990; Alinhac and Gérard 2007]). On the other hand, the result that we obtain
with the Nash–Moser method is slightly weaker than the one in [Alazard, Baldi, and Han-Kwan 2015]
regarding the regularity of the solution of the nonlinear control problem with respect to the regularity of the
data: the arbitrarily small loss of regularity in Theorem 1.1 is discussed in Remark 1.2, while Theorem 1.1
of [Alazard, Baldi, and Han-Kwan 2015] has no loss of regularity also in the standard Sobolev spaces.

Nash–Moser schemes in control problems for PDEs have been used in [Beauchard 2005; 2008;
Beauchard and Coron 2006; Alabau-Boussouira, Coron and Olive 2015]. A discussion about Nash–Moser
as a method to overcome the problem of the loss of derivatives in the context of controllability for PDEs
can be found in [Coron 2007, Section 4.2.2]. Beauchard and Laurent [2010] were able to avoid the use
of the Nash–Moser theorem in semilinear control problems thanks to a regularizing effect. We remark
that Theorem 1.1 could also be proved without Nash–Moser (for example, by adapting the method of
[Alazard, Baldi, and Han-Kwan 2015]).

Now we describe our method in more detail. Given a nonempty open set ω ⊂ T, we first fix a
C∞ function χω(x) with values in the interval [0, 1] which vanishes outside ω, and takes value χω = 1
on a nonempty open subset of ω. Thus, given initial and final data uin, uend, we look for u, f that solve

P(u)= χω f,
u(0)= uin,

u(T )= uend,

(1-12)

where
P(u) := ut + uxxx +N (x, u, ux , uxx , uxxx). (1-13)

We define

8(u, f ) :=

P(u)−χω f
u(0)
u(T )

 (1-14)
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so that problem (1-12) is written as

8(u, f )= (0, uin, uend).

The crucial assumption to verify in order to apply any Nash–Moser theorem is the existence of a right
inverse of the linearized operator. The linearized operator 8′(u, f )[h, ϕ] at the point (u, f ) in the
direction (h, ϕ) is

8′(u, f )[h, ϕ] :=

P ′(u)[h] −χωϕ
h(0)
h(T )

. (1-15)

Thus we have to prove that, given any (u, f ) and any g := (g1, g2, g3) in suitable function spaces, there
exists (h, ϕ) such that

8′(u, f )[h, ϕ] = g. (1-16)

Moreover we have to estimate (h, ϕ) in terms of u, f , g in a “tame” way (an estimate is said to be tame
when it is linear in the highest norms; see (B-13) and (4-41)).

Problem (1-16) is a linear control problem. We observe that the linearized operator P ′(u)[h] is a
differential operator having variable coefficients also at the highest order (which is a consequence of
linearizing a quasilinear PDE). Explicitly, it has the form

P ′(u)[h] = ∂t h+ (1+ a3(t, x)) ∂xxx h+ a2(t, x) ∂xx h+ a1(t, x) ∂x h+ a0(t, x)h.

We solve (1-16) in Theorem 4.5. Note that the choice of the function spaces is not given a priori: to fix a
suitable functional setting is part of the problem.

Theorem 4.5 is proved by adapting a procedure of reduction to constant coefficients developed in
[Baldi, Berti, and Montalto 2014; 2016a]. Such a procedure conjugates P ′(u) to an operator L5 (see
(2-57)) having constant coefficients up to a bounded remainder. This conjugation is achieved by means of
changes of the space variable, reparametrization of time, multiplication operators, and Fourier multipliers.
Using the Ingham inequality and a perturbation argument we prove the observability of L5. Then we
prove the observability of P ′(u), exploiting the explicit formulas of the transformations that conjugate
P ′(u) to L5. The linear control problem (1-16) is solved in L2

x by the HUM (Hilbert uniqueness method).
Then further regularity of the solution (h, ϕ) of (1-16) is proved by adapting an argument used by Dehman
and Lebeau [2009], Laurent [2010], and Alazard, Baldi, and Han-Kwan [2015].

To conclude the proof of Theorem 1.1 we apply Theorem B.1, which is a modified version of two
Nash–Moser implicit function theorems (Theorem 2.2.2 in [Hörmander 1976] and the main theorem
in [Hörmander 1985]; see also [Alinhac and Gérard 2007]). With respect to the abstract theorem in
[Hörmander 1985], our Theorem B.1 assumes slightly stronger hypotheses on the nonlinear operator, and
it removes two conditions that are assumed in [Hörmander 1985], which are the compact embeddings in
the codomain scale of Banach spaces and the continuity of the approximate right inverse of the linearized
operator with respect to the approximate linearization point. This improvement is obtained by adapting the
iteration scheme introduced in [Hörmander 1976]. On the other hand, the Nash–Moser implicit function
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theorem in that work holds for Hölder spaces with noninteger indices, and it does not apply to Sobolev
spaces (in particular, Theorem A.11 of [Hörmander 1976] does not hold for Sobolev spaces).

This method is not confined to KdV, and it could be applied to prove controllability of other quasilinear
evolution PDEs.

The use of Ingham-type inequalities and the HUM is classical in control theory (see, for example,
[Haraux 1989; Micu and Zuazua 2005; Komornik and Loreti 2005; Kahane 1962] for Ingham-type
inequalities and [Lions 1988; Micu and Zuazua 2005; Coron 2007; Komornik 1994] for the HUM).
As mentioned above, the Nash–Moser theorem has also been used in control theory (see, for example,
[Beauchard 2005; 2008; Beauchard and Coron 2006; Alabau-Boussouira, Coron and Olive 2015]). It
was first introduced by Nash [1956], and then several refinements were developed afterwards; see, for
example, [Moser 1961; Zehnder 1975; 1976; Hamilton 1982; Gromov 1972; Hörmander 1976; 1985;
1990; Berti, Bolle, and Procesi 2010; Berti, Corsi, and Procesi 2015; Ekeland 2011; Ekeland and Séré
2015]. For our problem, Hörmander’s versions [1976; 1985] seem to be the best ones concerning the loss
of regularity of the solution with respect to the regularity of the data (see also Remark 1.2). As already
said, the theorems in [Hörmander 1976; 1985] cannot be applied directly, but they can be adapted to our
goal. This is the content of Appendix B.

1C. Byproduct: a local existence and uniqueness result. As a byproduct, with the same technique and
no extra work, we have the following existence and uniqueness theorem for the Cauchy problem of the
quasilinear PDE (1-1).

Theorem 1.4 (local existence and uniqueness). There exist positive universal constants r , s0 such that, if
N in (1-1) is of class Cr in its arguments and satisfies (1-2), (1-3), (1-4), then the following property holds.
For all T > 0 there exists δ∗ > 0 such that for all uin ∈ H s0

x and f ∈ C([0, T ], H s0
x )∩C1([0, T ], H s0−6

x )

(possibly f = 0) satisfying
‖uin‖s0 +‖ f ‖T,s0 +‖∂t f ‖T,s0−6 ≤ δ∗, (1-17)

the Cauchy problem{
ut + uxxx +N (x, u, ux , uxx , uxxx)= f, (t, x) ∈ [0, T ]×T,

u(0, x)= uin(x)
(1-18)

has one and only one solution u ∈ C([0, T ], H s
x )∩C1([0, T ], H s−3

x )∩C2([0, T ], H s−6
x ) for all s < s0.

Moreover, for all s < s0,

‖u‖C([0,T ],H s
x )
+‖∂t u‖C([0,T ],H s−3

x )+‖∂t t u‖C([0,T ],H s−6
x )

≤ Cs
(
‖uin‖s0 +‖ f ‖C([0,T ],H s0

x )
+‖∂t f ‖

C([0,T ],H
s0−6
x )

)
(1-19)

for some Cs > 0 depending on s, T, N.

Remark 1.5. Theorem 1.4 is not sharp: we expect that better results for the Cauchy problem (1-18) can
be proved by using a paradifferential approach. �

Remark 1.6. The loss of regularity in Theorem 1.4 is of the same type as the one in Theorem 1.1; see
the discussion in Remark 1.2. �
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1D. Organization of the paper. In Section 2 we describe the transformations that conjugate the linearized
operator P ′(u) to constant coefficients up to a bounded remainder, and we give quantitative estimates
on these transformations. In Section 3 we exploit these results to prove the observability of P ′(u). In
Section 4 we use observability to solve the linear control problem (1-16) via the HUM (Theorem 4.5) and
we fix suitable function spaces (4-36)–(4-37). In Section 5 we prove Theorems 1.1 and 1.4 by applying
Theorem B.1. In Appendix A we prove well-posedness with tame estimates for all the linear operators
involved in the reduction procedure. These well-posedness results are used many times in Sections 3,
4, and 5. In Appendix B we prove our Nash–Moser theorem, Theorem B.1. In Appendix C we recall
standard tame estimates that are used in the rest of the paper.

2. Reduction of the linearized operator to constant coefficients

In this section we consider some changes of variables that conjugate the linearized operator to constant
coefficients up to a bounded remainder. This reduction procedure closely follows the analysis in [Baldi,
Berti, and Montalto 2014; 2016a], with some adaptations.

The linearized operator P ′(u) is

P ′(u)[h] = ∂t h+ (1+ a3) ∂xxx h+ a2 ∂xx h+ a1 ∂x h+ a0h, (2-1)

where the coefficients ai =ai (t, x), i=0, . . . , 3, are real-valued functions of (t, x)∈[0, T ]×T, depending
on u by

ai = ai (u) := (∂ziN )(x, u, ux , uxx , uxxx), i = 0, . . . , 3 (2-2)

(recall the notation N =N (x, z0, z1, z2, z3)). Note that a2 = 2∂xa3 because of the Hamiltonian structure
of the component N1 of the nonlinearity; see (1-3)–(1-4).

Lemma 2.1. Let N ∈Cr (T×R4,R) satisfy (1-2). For all 1≤ s ≤ r−3, and for all u ∈C2([0, T ], H s+3
x )

such that ‖u, ∂t u, ∂t t u‖T,4 ≤ 1, the coefficients ai (u) satisfy

‖ai (u), ∂t ai (u), ∂t t ai (u)‖T,s ≤ C‖u, ∂t u, ∂t t u‖T,s+3, i = 0, 1, 2, 3. (2-3)

Proof. Apply standard tame estimates for composition of functions; see Lemma C.2. �

Now we apply the reduction procedure to any linear operator of the form (2-1) where

a2(t, x)= c ∂xa3(t, x) (2-4)

for some constant c ∈R (note that P ′(u) has c= 2 because of the Hamiltonian structure of N1). Regarding
the loss of regularity with respect to the space variable x , the estimates in the sequel will be not sharp. In
the whole section we consider T > 0 fixed, and, unless otherwise specified, all the constants may depend
on T.

Remark 2.2. Given a linear operator L0 of the form (2-1), define the operator L∗0 as

L∗0h := −∂t h− ∂xxx{(1+ a3)h}+ ∂xx(a2h)− ∂x(a1h)+ a0h. (2-5)
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Note that −L∗0 is still an operator of the form (2-1), namely

−L∗0 = ∂t + (1+ a∗3) ∂xxx + a∗2 ∂xx + a∗1 ∂x + a∗0 , (2-6)

with
a∗3 := a3, a∗2 := 3(a3)x − a2,

a∗1 := 3(a3)xx − 2(a2)x + a1, a∗0 := (a3)xxx − (a2)xx + (a1)x − a0.
(2-7)

It follows from (2-6), (2-7) that if L0 satisfies (2-4), then also−L∗0 satisfies (2-4) (with a different constant),
namely a∗2 = (3− c) ∂xa∗3 . In particular, if L0 satisfies (2-4) with c = 2 (which is the case if L0 = P ′(u)),
then −L∗0 satisfies (2-4) with c = 1. �

2A. Step 1: change of the space variable. We consider a t-dependent family of diffeomorphisms of the
circle T of the form

y = x +β(t, x), (2-8)

where β is a real-valued function, 2π periodic in x , defined for t ∈ [0, T ], with |βx(t, x)| ≤ 1
2 for all

(t, x) ∈ [0, T ]×T. We define the linear operator

(Ah)(t, x) := h(t, x +β(t, x)). (2-9)

The operator A is invertible, with inverse A−1, transpose AT (transpose with respect to the usual L2
x -scalar

product) and inverse transpose A−T given by

(A−1v)(t, y)= v(t, y+ β̃(t, y)),

(AT v)(t, y)= (1+ β̃y(t, y)) v(t, y+ β̃(t, y)),

(A−T h)(t, x)= (1+βx(t, x)) h(t, x +β(t, x)),

(2-10)

where y 7→ y+ β̃(t, y) is the inverse diffeomorphism of (2-8), namely

x = y+ β̃(t, y) ⇐⇒ y = x +β(t, x). (2-11)

Given the operator

L0 := ∂t + (1+ a3(t, x)) ∂xxx + a2(t, x) ∂xx + a1(t, x) ∂x + a0(t, x), (2-12)

with a2(t, x) = c ∂xa3(t, x), we calculate the conjugate A−1L0A. The conjugate A−1aA of any multi-
plication operator a : h(t, x) 7→ a(t, x)h(t, x) is the multiplication operator (A−1a) that maps v(t, y) to
(A−1a)(t, y) v(t, y). By conjugation, the differential operators become

A−1 ∂tA= ∂t + (A−1βt) ∂y, A−1 ∂xA= {A−1(1+βx)} ∂y .

Then A−1 ∂xxA= (A−1 ∂xA)(A−1 ∂xA), and similarly for the conjugate of ∂xxx . We calculate

L1 :=A−1L0A= ∂t + a4(t, y) ∂yyy + a5(t, y) ∂yy + a6(t, y) ∂y + a7(t, y), (2-13)

where
a4=A−1

{(1+a3)(1+βx)
3
}, a5=A−1

{a2(1+βx)
2
+3(1+a3)βxx(1+βx)},

a6=A−1
{βt+(1+a3)βxxx+a2βxx+a1(1+βx)}, a7=A−1a0.

(2-14)
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We look for β(t, x) such that the coefficient a4(t, y) of the highest-order derivative ∂yyy in (2-13) does
not depend on y; namely a4(t, y)= b(t) for some function b(t) of t only. This is equivalent to

(1+ a3(t, x))(1+βx(t, x))3 = b(t); (2-15)

namely

βx = ρ0, ρ0(t, x) := b(t)1/3(1+ a3(t, x))−1/3
− 1. (2-16)

Equation (2-16) has a solution β, periodic in x , if and only if
∫

T
ρ0(t, x) dx = 0 for all t . This condition

uniquely determines

b(t)=
(

1
2π

∫
T

(1+ a3(t, x))−1/3 dx
)−3

. (2-17)

Then we fix the solution (with zero average) of (2-16),

β(t, x) := (∂−1
x ρ0)(t, x), (2-18)

where ∂−1
x h is the primitive of h with zero average in x (defined in Fourier). We have conjugated L0 to

L1 =A−1L0A= ∂t + a4(t) ∂yyy + a5(t, y) ∂yy + a6(t, y) ∂y + a7(t, y), (2-19)

where a4(t) := b(t) is defined in (2-17).
We prove here some bounds that will be used later.

Lemma 2.3. There exist positive constants σ , δ∗ with the following properties. Let s ≥ 0, and let
a3(t, x), a2(t, x), a1(t, x), a0(t, x) be four functions with a2 = c ∂xa3 for some c ∈ R. Moreover, assume
∂t t a3, ∂t a3, a3, ∂t a1, a1, a0 ∈ C([0, T ], H s+σ

x ). Let

δ(µ) := ‖∂t t a3, ∂t a3, a3, ∂t a1, a1, a0‖T,µ+σ ∀µ ∈ [0, s]. (2-20)

If δ(0)≤ δ∗, then the operator A defined in (2-9), (2-18), (2-16), (2-17) belongs to C([0, T ],L(Hµ
x )) for

all µ ∈ [0, s] and satisfies

‖Ah‖T,µ ≤ Cµ
(
‖h‖T,µ+ δ(µ)‖h‖T,0

)
∀h ∈ C([0, T ], Hµ

x ), (2-21)

for some positive Cµ depending on µ. The inverse operator A−1, the transpose AT and the inverse
transpose A−T all satisfy the same estimate (2-21) as A.

The functions a4(t)=b(t), a5(t, y), a6(t, y), a7(t, y), β(t, x), β̃(t, y) defined in (2-17), (2-16), (2-18),
(2-14), (2-11) belong to C([0, T ], Hµ

x ) for all µ ∈ [0, s] and satisfy

‖β, β̃, a5, ∂t a5, a6, ∂t a6, a7‖T,µ+ |a4− 1, a′4|T ≤ Cµδ(µ). (2-22)

Finally, the coefficient a5(t, y) satisfies∫
T

a5(t, y) dy = 0 ∀t ∈ [0, T ]. (2-23)
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Proof. The proof of (2-21) and (2-22) is a straightforward application of the standard tame estimates for
products, composition of functions and changes of variable; see Appendix C.

To prove (2-23), we use the definition of b(t) in (2-17), the equality a2 = c ∂xa3, and the change of
variables (2-11), and we compute∫

T

a5(t, y) dy =
∫

T

[
a2(1+βx)

2
+ 3(1+ a3)βxx(1+βx)

]
(1+βx) dx

= b(t)
{

c
∫

T

∂xa3(t, x)
1+ a3(t, x)

dx + 3
∫

T

βxx(t, x)
1+βx(t, x)

dx
}

= b(t)
{

c
∫

T

∂x log(1+ a3(t, x)) dx + 3
∫

T

∂x log(1+βx(t, x)) dx
}
= 0. �

2B. Step 2: time reparametrization. The goal of this section is to obtain a constant coefficient instead
of a4(t). We consider a diffeomorphism ψ : [0, T ] → [0, T ] which gives the change of the time variable

ψ(t)= τ ⇐⇒ t = ψ−1(τ ), (2-24)

with ψ(0)= 0 and ψ(T )= T. We define

(Bh)(t, y) := h(ψ(t), y), (B−1v)(τ, y) := v(ψ−1(τ ), y). (2-25)

By conjugation, the differential operators become

B−1 ∂tB = ρ(τ)∂τ , B−1 ∂yB = ∂y, ρ := B−1(ψ ′), (2-26)

and therefore (2-19) is conjugated to

B−1L1B = ρ ∂τ + (B−1a4) ∂yyy + (B−1a5) ∂yy + (B−1a6) ∂y + (B−1a7). (2-27)

We look for ψ such that the (variable) coefficients of the highest-order derivatives (∂τ and ∂yyy) are
proportional; namely

(B−1a4)(τ )= mρ(τ)= m(B−1(ψ ′))(τ ) (2-28)

for some constant m ∈ R. Since B is invertible, this is equivalent to requiring that

a4(t)= mψ ′(t). (2-29)

Integrating on [0, T ] determines the value of the constant m, and then we fix ψ :

m := 1
T

∫ T

0
a4(t) dt, ψ(t) := 1

m

∫ t

0
a4(s) ds. (2-30)

With this choice of ψ we get

B−1L1B = ρ L2, L2 := ∂τ +m∂yyy + a8(τ, y) ∂yy + a9(τ, y) ∂y + a10(τ, y), (2-31)
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where

a8(τ, y) :=
1

ρ(τ)
(B−1a5)(τ, y), a9(τ, y) :=

1
ρ(τ)

(B−1a6)(τ, y), a10(τ, y) :=
1

ρ(τ)
(B−1a7)(τ, y).

(2-32)
Note that for all τ ∈ [0, T ] one has∫

T

a8(τ, y) dy =
1

(B−1ψ ′)(τ )

∫
T

(B−1a5)(τ, y) dy =
1

ψ ′(t)

∫
T

a5(t, y) dy = 0. (2-33)

By straightforward calculations, we prove the following lemma.

Lemma 2.4. There exists δ∗ > 0 with the following properties. Let a4 ∈C([0, T ],R) with |a4(t)−1| ≤ δ∗
for all t ∈ [0, T ]. Then the operator B defined in (2-25), (2-30) is an invertible isometry of C([0, T ], H s

x )

for all s ≥ 0; namely,
‖Bh‖T,s = ‖h‖T,s ∀h ∈ C([0, T ], H s

x ), s ≥ 0. (2-34)

Moreover there exists a positive constant σ with the following property. Let a4 ∈ C1([0, T ],R), with
|a4(t)− 1| ≤ δ∗ and |a′4(t)| ≤ 1 for all t ∈ [0, T ]. Let s ≥ 0, and a5, ∂t a5, a6, ∂t a6, a7 ∈ C([0, T ], H s

x )

with
∫

T
a5(t, y) dy = 0 for all t ∈ [0, T ]. Then the functions a8(t, x), a9(t, x), a10(t, x), ψ(t), ρ(t) and

the constant m defined in (2-32), (2-30), (2-26) satisfy

|m− 1| + |ψ ′− 1, ρ− 1|T +‖a8, ∂τa8, a9, ∂τa9, a10‖T,s ≤ C‖a5, ∂t a5, a6, ∂t a6, a7‖T,s, (2-35)

where C is independent of s. Moreover one has∫
T

a8(τ, y) dy = 0 ∀τ ∈ [0, T ]. (2-36)

2C. Step 3: multiplication. In this section we eliminate the term a8(τ, y) ∂yy from the operator L2

defined in (2-31). To this end, we consider the multiplication operator M defined as

Mh(τ, y) := q(τ, y)h(τ, y), (2-37)

with q : [0, T ]×T→ R. We compute

M−1L2M= ∂τ +m ∂yyy + a11(τ, y) ∂yy + a12(τ, y) ∂y + a13(τ, y), (2-38)
with

a11 := a8+
3mqy

q
, a12 := a9+

2a8qy + 3mqyy

q
, a13 :=

L2q
q
. (2-39)

We want to choose q such that a11 = 0, which is equivalent to

3mqy + a8q = 0. (2-40)

Thanks to (2-36), equation (2-40) admits the space-periodic solution

q(τ, y) := exp
{
−

1
3m
(∂−1

y a8)(τ, y)
}
. (2-41)

As a consequence, we get

L3 :=M−1L2M= ∂τ +m ∂yyy + a12(τ, y) ∂y + a13(τ, y). (2-42)
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The proof of the following lemma is straightforward.

Lemma 2.5. Let s ≥ 0 and let a8 ∈ C([0, T ], H s
x ) with

∫
T

a8(τ, y) dy = 0 for all τ ∈ [0, T ]. Then for all
µ ∈ [0, s], the operator M defined in (2-37), (2-41) and its inverse M−1 belong to C([0, T ],L(Hµ

x )).
Note that M=MT.

Furthermore, there exist two positive constants δ∗, σ with the following properties. Assume that
a8, ∂t a8, a9, ∂t a9, a10 ∈ C([0, T ], H s+σ

x ) and let

δ(µ) := ‖a8, ∂t a8, a9, ∂t a9, a10‖T,µ+σ . (2-43)

Then if δ(0)≤ δ∗, for all µ ∈ [0, s] the operator M and its inverse M−1 satisfy

‖M±1h‖T,µ ≤ Cµ
(
‖h‖T,µ+ δ(µ)‖h‖T,0

)
∀h ∈ C([0, T ], Hµ

x ), (2-44)

for some positive Cµ depending on µ. Moreover, the functions a12(τ, y), a13(τ, y), q(τ, y) defined in
(2-39), (2-41) satisfy

‖q − 1, a12, ∂t a12, a13‖T,µ ≤ Cµδ(µ). (2-45)

2D. Step 4: translation of the space variable. We consider the change of the space variable z= y+ p(τ )
and the operators

T h(τ, y) := h(τ, y+ p(τ )), T −1v(τ, z) := v(τ, z− p(τ )), (2-46)

where p is a function p : [0, T ] → R. The differential operators become T −1∂yT = ∂z and T −1∂τT
= ∂τ + p′(τ )∂z . This is a special, simple case of the transformation A of Section 2A. Thus

L4 := T −1L3T = ∂τ +m ∂zzz + a14(τ, z) ∂z + a15(τ, z), (2-47)

where

a14(τ, z) := p′(τ )+ (T −1a12)(τ, z), a15(τ, z) := (T −1a13)(τ, z). (2-48)

Now we look for p(τ ) such that a14 has zero space average. We fix

p(τ ) := −
1

2π

∫ τ

0

∫
T

a12(s, y) dy ds. (2-49)

With this choice of p, after renaming the space-time variables z = x and τ = t , we have

L4 = ∂t +m ∂xxx + a14(t, x) ∂x + a15(t, x),
∫

T

a14(t, x) dx = 0 ∀t ∈ [0, T ]. (2-50)

With direct calculations we prove the following estimates.

Lemma 2.6. Let a12 ∈ C([0, T ], L2
x). Then the operator T defined in (2-46) and (2-49) belongs to

C([0, T ],L(H s
x )) for all s ∈ [0,+∞). In fact T is an isometry, namely

‖T h‖T,s = ‖h‖T,s ∀h ∈ C([0, T ], H s
x ). (2-51)

Moreover, T is invertible and its transpose is T T
= T −1.
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Let s ≥ 0, and let a12, ∂t a12, a13 ∈ C([0, T ], H s+1
x ) with ‖a12‖T,0 ≤ 1. Then the functions a14, a15, p

defined in (2-48) and (2-49) satisfy

sup
t∈[0,T ]

|p(t)| + ‖a14, ∂t a14, a15‖T,s ≤ C‖a12, ∂t a12, a13‖T,s+1, (2-52)

where C is independent of s.

2E. Step 5: elimination of the order one. The goal of this section is to eliminate the term a14(t, x) ∂x .
Consider an operator S of the form

Sh := h+ γ (t, x) ∂−1
x h, (2-53)

where γ (t, x) is a function to be determined. Note ∂−1
x ∂x = ∂x∂

−1
x = π0, where π0 h := h− 1

2π

∫
T

h dx .
We directly calculate

L4S −S(∂t +m∂xxx)= a16 ∂x + a17+ a18 ∂
−1
x , (2-54)

where

a16 := 3mγx + a14, a17 := a15+ (3mγxx + a14γ )π0, a18 := γt +mγxxx + a14γx + a15γ. (2-55)

We fix γ as

γ := −
1

3m
∂−1

x a14, (2-56)

so that a16 = 0. By the following Lemma 2.7, S is invertible, and we obtain

L5 := S−1L4S = ∂t +m ∂xxx +R, R := S−1(a17+ a18 ∂
−1
x ). (2-57)

Lemma 2.7. There exist positive constants σ , δ∗ with the following properties. Let s ≥ 0, let a14, a15 be
two functions with a14, ∂t a14, a15 ∈ C([0, T ], H s+σ

x ) and
∫

T
a14(t, x) dx = 0. Let

δ(µ) := ‖a14, ∂t a14, a15‖T,µ+σ ∀µ ∈ [0, s]. (2-58)

If δ(0)≤ δ∗, then the operator S defined in (2-53), (2-56) belongs to C([0, T ],L(Hµ
x )) for all µ ∈ [0, s]

and satisfies

‖Sh‖T,µ ≤ Cµ
(
‖h‖T,µ+ δ(µ)‖h‖T,0

)
∀h ∈ C([0, T ], Hµ

x ), (2-59)

for some positive Cµ depending on µ. The operator S is invertible, and its inverse S−1, its transpose ST

and its inverse transpose S−T all satisfy the same estimate (2-59) as S.
The operator R defined in (2-57) belongs to C([0, T ],L(Hµ

x )) for all µ ∈ [0, s] and it satisfies

‖Rh‖T,µ ≤ Cµ
(
δ(0)‖h‖T,µ+ δ(µ)‖h‖T,0

)
∀h ∈ C([0, T ], Hµ

x ). (2-60)

The transpose RT belongs to C([0, T ],L(Hµ
x )) and satisfies the same estimate (2-60) as R.

Proof. Estimate ‖γ ∂−1
x h‖T,µ by the usual tame estimates for the product of two functions (Lemma C.1),

then use Neumann series in its tame version. �



294 PIETRO BALDI, GIUSEPPE FLORIDIA AND EMANUELE HAUS

3. Observability

In this section we prove the observability of linear operators of the form (2-12). Such an observability
property will be used in Section 4 in order to prove controllability of the linearized problem. We split the
proof into several simple lemmas, starting with a direct consequence of the Ingham inequality. Since we
actually need observability of a Cauchy problem flowing backwards in time (see Lemma 4.2) with datum
at time T, we will accordingly state our lemmas.

Lemma 3.1 (Ingham inequality for ∂t +m ∂xxx ). For every T > 0 there exists a positive constant C1(T )
such that, for all (wn)n∈Z ∈ `

2(Z,C), all m ≥ 1
2 ,∫ T

0

∣∣∣∣∑
n∈Z

wneimn3t
∣∣∣∣2 dt ≥ C1(T )

∑
n∈Z

|wn|
2.

Proof. See, for example, Theorem 4.3 in Section 4.1 of [Micu and Zuazua 2005]. The fact that the
constant C1(T ) does not depend on m is obtained by closely following the proof in the above-mentioned
work, and taking into account the lower bound for the distance between two different eigenvalues
|mn3
−mk3

| ≥ m ≥ 1
2 for all n, k ∈ Z, n 6= k. �

The following observability result is classical (see, e.g., [Russell and Zhang 1993] for a closely related
result); for completeness, we also give here its proof.

Lemma 3.2 (observability for ∂t +m ∂xxx ). Let T > 0, and let ω ⊂ T be an open set. Let vT ∈ L2(T),
m ≥ 1

2 , and let v satisfy

∂tv+m ∂xxxv = 0, v(T )= vT . (3-1)

Then ∫ T

0

∫
ω

|v(t, x)|2 dx dt ≥ C2‖vT ‖
2
L2

x
, (3-2)

with C2 := C1(T )|ω|, where C1(T ) is the constant of Lemma 3.1, and |ω| is the Lebesgue measure of ω.

Proof. Let vT (x)=
∑

n∈Z aneinx , so that v(t, x)=
∑

n∈Zwn(x)eimn3t , where wn(x) := anei(nx−mn3T ). By
Lemma 3.1, for each x ∈ T we have∫ T

0

∣∣∣∣∑
n∈Z

wn(x)eimn3t
∣∣∣∣2 dt ≥ C1(T )

∑
n∈Z

|wn(x)|2 = C1(T )
∑
n∈Z

|an|
2
= C1(T )‖vT ‖

2
L2(T)

.

Then we integrate over x ∈ ω. �

Lemma 3.3 (observability of L5 := ∂t +m ∂xxx +R). Let T > 0, let ω⊂ T be an open set and let m ≥ 1
2 .

Let R ∈ C([0, T ],L(L2
x)), with ‖R(t)h‖0 ≤ r0‖h‖0 for all h ∈ L2

x , all t ∈ [0, T ], where r0 is a positive
constant. Let vT ∈ L2(T) and let v ∈ C([0, T ], L2

x) be the solution of the Cauchy problem

∂tv+m ∂xxxv+Rv = 0, v(T )= vT , (3-3)
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which is globally well-posed by Lemma A.2(iii). Then∫ T

0

∫
ω

|v(t, x)|2 dx dt ≥ C3‖vT ‖
2
L2

x
,

with C3 :=
1
4C2, provided that r0 is small enough (more precisely, r0 is smaller than a constant depending

only on T , C2, where C2 is the constant in Lemma 3.2).

Proof. Let v1 be the solution of ∂tv1+m ∂xxxv1 = 0, v1(T )= vT , and let v2 := v− v1. Then v2 solves

(∂t +m ∂xxx +R)v2 =−Rv1, v2(T )= 0. (3-4)

By (A-10), applied for s= 0, α= 0, f=−Rv1, we get

‖v2‖T,0 ≤ 24T r04T ‖Rv1‖T,0 ≤ 24T r04T r0‖vT ‖0. (3-5)

Using the elementary inequality (a+ b)2 ≥ 1
2a2
− b2 for all a, b ∈ R,∫ T

0

∫
ω

|v|2 dx dt ≥ 1
2

∫ T

0

∫
ω

|v1|
2 dx dt −

∫ T

0

∫
ω

|v2|
2 dx dt.

The integral of |v1|
2 is estimated from below by (3-2). The integral of |v2|

2 is bounded by T ‖v2‖
2
T,0; then

use (3-5). �

Lemma 3.4 (observability of L4 := ∂t +m ∂xxx + a14(t, x) ∂x + a15(t, x), a14 with zero mean). There
exists a universal constant σ > 0 with the following property. Let T > 0, and let ω ⊂ T be an open set.
Let m ≥ 1

2 and let a14(t, x), a15(t, x) be two functions, with a14, ∂t a14, a15 ∈ C([0, T ], Hσ
x ),∫

T

a14(t, x) dx = 0 ∀t ∈ [0, T ], ‖a14, ∂t a14, a15‖T,σ ≤ δ. (3-6)

Let vT ∈ L2(T) and let v ∈ C([0, T ], L2
x) be the solution of the Cauchy problem

L4v = 0, v(T )= vT , (3-7)

which is globally well-posed by Lemma A.3. Then∫ T

0

∫
ω

|v(t, x)|2 dx dt ≥ C4‖vT ‖
2
L2

x
,

with C4 :=
1
16C3, provided that δ is small enough (more precisely, δ is smaller than a constant depending

only on T, C3).

Proof. Following the procedure of Section 2E, we consider the transformation S in (2-53), (2-56), which
conjugates L4 to

L5 := S−1L4S = ∂t +m ∂xxx +R,

where the operator R is defined in (2-57), (2-55); it belongs to C([0, T ],L(L2
x)), and satisfies the bounds

in Lemma 2.7. Let v be the solution of (3-7), and define ṽ := S−1v. Then ṽ solves L5ṽ = 0, ṽ(T )= ṽT ,
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where ṽT := S−1(T )vT , and therefore Lemma 3.3 applies to ṽ if δ is sufficiently small. By Lemmas 2.7
and A.3 and Remark A.8 we get∫ T

0

∫
ω

|(S−1
− I )v|2 dx dt ≤ T ‖(S−1

− I )v‖2T,0 ≤ Cδ2
‖v‖2T,0 ≤ C ′δ2

‖vT ‖
2
0

for some constant C ′ depending on T. We split ṽ = v+ (S−1
− I )v, and we get∫ T

0

∫
ω

|ṽ|2 dx dt ≤ 2
∫ T

0

∫
ω

|v|2 dx dt + 2C ′δ2
‖vT ‖

2
0.

Moreover ‖vT ‖0 = ‖S(T )vT ‖0 ≤ 2‖ṽT ‖0, and the thesis follows for δ small enough. �

Lemma 3.5 (observability of L3 :=∂t+m ∂xxx+a12(t, x) ∂x+a13(t, x)). There exists a universal constant
σ > 0 with the following property. Let T > 0, and let ω ⊂ T be an open set and let m ≥ 1

2 . Let a12(t, x),
a13(t, x) be two functions, with a12, ∂t a12, a13 ∈ C([0, T ], Hσ

x ),

‖a12, ∂t a12, a13‖T,σ ≤ δ. (3-8)

Let vT ∈ L2(T) and let v ∈ C([0, T ], L2
x) be the solution of the Cauchy problem

L3v = 0, v(T )= vT , (3-9)

which is globally well-posed by Lemma A.4. Then∫ T

0

∫
ω

|v(t, x)|2 dx dt ≥ C5‖vT ‖
2
L2

x
(3-10)

for some C5 > 0 depending on T, ω, provided that δ in (3-8) is sufficiently small (more precisely, δ is
smaller than a constant depending on T, ω, C4).

Proof. Following the procedure of Section 2D, we consider the transformation T defined in (2-46), (2-49),
which conjugates L3 to

L4 := T −1L3T = ∂t +m ∂xxx + a14(t, x) ∂x + a15(t, x),

where a14, a15 are defined in (2-48), and
∫

T
a14(t, x) dx = 0. By (2-52), the function p defined in (2-49)

satisfies |p(t)| ≤Cδ for all t ∈ [0, T ]. Let v be the solution of the Cauchy problem (3-9). Then ṽ := T −1v

solves L4ṽ = 0, ṽ(T )= T −1(T )vT. Let ω1 = [α1, β1] be an interval contained in ω. For δ small enough,
one has

[α1− p(t), β1− p(t)] ⊆ [α1− δ, β1+ δ] ⊂ ω ∀t ∈ [0, T ].

The change of variable x − p(t)= y, dx = dy gives∫ T

0

∫
ω1

|ṽ(t, x)|2 dx dt =
∫ T

0

∫ β1−p(t)

α1−p(t)
|v(t, y)|2 dy dt ≤

∫ T

0

∫
ω

|v(t, y)|2 dy dt.

By (2-52), for δ small enough, Lemma 3.4 can be applied to ṽ on the interval ω1 and the thesis follows,
since ‖ṽ(T )‖0 = ‖T −1(T )vT ‖0 = ‖vT ‖0. �
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Lemma 3.6 (observability of L2 := ∂t +m ∂xxx + a8(t, x) ∂xx + a9(t, x) ∂x + a10(t, x)). There exists a
universal constant σ > 0 with the following property. Let T > 0, and let ω ⊂ T be an open set and let
m ≥ 1

2 . Let a8(t, x), a9(t, x), a10(t, x) be three functions, with a8, ∂t a8, a9, ∂t a9, a10 ∈ C([0, T ], Hσ
x ),∫

T

a8(t, x) dx = 0 ∀t ∈ [0, T ], ‖a8, ∂t a8, a9, ∂t a9, a10‖T,σ ≤ δ. (3-11)

Let vT ∈ L2(T) and let v ∈ C([0, T ], L2
x) be the solution of the Cauchy problem

L2v = 0, v(T )= vT , (3-12)

which is globally well-posed by Lemma A.5. Then∫ T

0

∫
ω

|v(t, x)|2 dx dt ≥ C6‖vT ‖
2
L2

x
(3-13)

for some C6 > 0 depending on T, ω, provided that δ in (3-11) is sufficiently small (more precisely, δ is
smaller than a constant depending on T, ω,C5).

Proof. Following the procedure of Section 2C, we consider the multiplication operator M defined in
(2-37), (2-41), which conjugates L2 to

M−1L2M= L3, L3 = ∂t +m ∂xxx + a12(t, x) ∂x + a13(t, x),

where a12, a13 are defined in (2-39). Let v be the solution of the Cauchy problem (3-12). Then ṽ :=M−1v

solves L3ṽ = 0, ṽ(T )=M−1(T )vT. Using (2-45), we have∫ T

0

∫
ω

|v(t, x)|2 dx dt =
∫ T

0

∫
ω

|ṽ|2 dx dt +
∫ T

0

∫
ω

|ṽ|2(|q|2− 1) dx dt ≥ (C5−Cδ)‖vT ‖
2
0.

The first of the two integrals has been estimated from below by applying Lemma 3.5 to L3 (by Lemma 2.5,
this can be done provided that δ is sufficiently small). The second integral has been estimated using
the bound (2-45), since |q(t) − 1| ≤ C‖q − 1‖T,1 ≤ C ′δ. Moreover, we have used the inequality
‖ṽ‖T,0 ≤ C‖ṽT ‖0 from Lemma A.4. The thesis follows with C6 :=

1
2C5 by choosing δ small enough. �

Lemma 3.7 (observability of L1 := ∂t + a4(t) ∂xxx + a5(t, x) ∂xx + a6(t, x) ∂x + a7(t, x)). There exists a
universal constant σ > 0 with the following property. Let T > 0, and let ω ⊂ T be an open set. Let a4, a5,
a6, a7 be four functions, with a4 ∈ C1([0, T ],R) and a5, ∂t a5, a6, ∂t a6, a7 ∈ C([0, T ], Hσ

x ), satisfying∫
T

a5(t, x) dx = 0 ∀t ∈ [0, T ], ‖a5, ∂t a5, a6, ∂t a6, a7‖T,σ + |a4− 1, a′4|T ≤ δ. (3-14)

Let vT ∈ L2(T) and let v ∈ C([0, T ], L2
x) be the solution of the Cauchy problem

L1v = 0, v(T )= vT , (3-15)

which is globally well-posed by Lemma A.6. Then∫ T

0

∫
ω

|v(t, x)|2 dx dt ≥ C7‖vT ‖
2
L2

x
(3-16)
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for some C7 > 0 depending on T, ω, provided that δ in (3-14) is sufficiently small (more precisely, δ is
smaller than a constant depending on T, ω, C6).

Proof. Following the procedure of Section 2B, we consider the reparametrization of time B defined in
(2-25), (2-30), which conjugates L1 to

B−1L1B = ρL2, L2 = ∂τ +m ∂xxx + a8(τ, x) ∂xx + a9(τ, x) ∂x + a10(τ, x),

where ρ, a8, a9, a10 are defined in (2-28), (2-32) and
∫

T
a8(τ, x) = 0 for all τ ∈ [0, T ]. Let v be the

solution of the Cauchy problem (3-15). Then ṽ := B−1v solves L2ṽ = 0, ṽ(T ) = B−1(T )vT. Using
(2-35), we have∫ T

0

∫
ω

|v(t, x)|2 dx dt =
∫ T

0

∫
ω

|ṽ(ψ(t), x)|2 dx dt

=

∫ T

0

∫
ω

|ṽ(ψ(t), x)|2[ψ ′(t)+ (1−ψ ′(t))] dx dt

=

∫ T

0

∫
ω

|ṽ(τ, x)|2 dx dτ +
∫ T

0

∫
ω

|ṽ(ψ(t), x)|2(1−ψ ′(t)) dx dt

≥ (C6−Cδ)‖vT ‖
2
0.

The first of the two integrals has been estimated from below by applying Lemma 3.6 to L2 (by Lemma 2.4,
this can be done provided that δ is sufficiently small). The second integral has been estimated using
the bound (2-35) for |ψ ′(t)− 1| and also the inequality ‖ṽ‖T,0 ≤ C‖ṽT ‖0 from Lemma A.5. The thesis
follows with C7 :=

1
2C6 by choosing δ small enough, since ‖ṽT ‖0 = ‖B−1(T )vT ‖0 = ‖vT ‖0. �

Lemma 3.8 (observability of L0 := ∂t + (1+ a3) ∂xxx + a2 ∂xx + a1 ∂x + a0). There exists a universal
constant σ > 0 with the following property. Let T > 0, and let ω ⊂ T be an open set. Let c ∈ R and
a3(t, x), a2(t, x), a1(t, x), a0(t, x) be four functions with a2 = c ∂xa3,

‖∂t t a3, ∂t a3, a3, ∂t a1, a1, a0‖T,σ ≤ δ. (3-17)

Let vT ∈ L2(T) and let v ∈ C([0, T ], L2
x) be the solution of the Cauchy problem

L0v = 0, v(T )= vT , (3-18)

which is globally well-posed by Lemma A.7. Then∫ T

0

∫
ω

|v(t, x)|2 dx dt ≥ C8‖vT ‖
2
L2

x
(3-19)

for some C8 > 0 depending on T, ω, provided that δ in (3-17) is sufficiently small (more precisely, δ is
smaller than a constant depending on T, ω, C7).

Proof. Following the procedure of Section 2A, we consider the transformation A defined in (2-9), (2-16),
(2-17), (2-18), which conjugates L0 to

A−1L0A= L1 = ∂t + a4(t) ∂xxx + a5(t, x) ∂xx + a6(t, x) ∂x + a7(t, x)
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(see (2-19)), where a4, a5, a6, a7 are defined in (2-14) and
∫

T
a5(t, x) = 0 for all t ∈ [0, T ]. Let v

be the solution of the Cauchy problem (3-18). Then ṽ := A−1v solves L1ṽ = 0, ṽ(T ) = ṽT , where
ṽ0 := A−1(0)v0. Let ω1 = [α1, β1] ⊂ ω. By (2-22) in Lemma 2.3, for δ sufficiently small Lemma 3.7
applies to ṽ on ω1, and ∫ T

0

∫
ω1

|ṽ|2 dy dt ≥ C7‖ṽT ‖
2
0.

By Lemma 2.3, ‖vT ‖0 = ‖A(T )ṽT ‖0 ≤ C‖ṽT ‖0. The change of integration variable y = x + β(t, x),
dy = (1+βx(t, x))dx gives∫ T

0

∫
ω1

|ṽ|2 dy dt =
∫ T

0

∫
ω1

|(A−1v)(t, y)|2 dy dt

=

∫ T

0

∫
ω2(t)

|v(t, x)|2

1+βx(t, x)
dx dt ≤ 2

∫ T

0

∫
ω

|v(t, x)|2 dx dt,

where ω2(t) := {x : x +β(t, x) ∈ ω1}. We have used the fact that, for δ small enough, ω2(t)⊂ ω, and the
bound (2-22) for |βx(t, x)| ≤ C‖β‖T,2 ≤ C ′δ. �

4. Controllability

In this section we prove the controllability of the linearized operator L0, using its observability (Lemma 3.8),
by means of the HUM. We also prove higher regularity of the control.

Lemma 4.1 (controllability of L0). Let T > 0, and let ω ⊂ T be an open set. Let a3, a2, a1, a0 be four
functions of (t, x) with a2 = 2∂xa3 satisfying (3-17). Let L0 be the linear operator

L0 := ∂t + (1+ a3) ∂xxx + a2 ∂xx + a1 ∂x + a0. (4-1)

(i) Existence. There exist constants δ0,C such that, if δ in (3-17) is smaller than δ0, then the following
property holds. Given any three functions g1(t, x), g2(x), g3(x), with g1 ∈ C([0, T ], L2

x) and g2, g3 ∈ L2
x ,

there exists a function ϕ ∈ C([0, T ], L2
x) such that the solution h of the Cauchy problem

L0h = g1+χωϕ, h(0)= g2 (4-2)

satisfies h(T )= g3. (Note that the Cauchy problem (4-2) is globally well-posed by Lemma A.7). Moreover

‖ϕ‖T,0 ≤ C(‖g1‖T,0+‖g2‖0+‖g3‖0). (4-3)

(ii) Uniqueness. Let L∗0 be the linear operator

L∗0ψ := −∂tψ − ∂xxx{(1+ a3)ψ}+ ∂xx(a2ψ)− ∂x(a1ψ)+ a0ψ. (4-4)

The control ϕ in (i) is the unique solution of the equation L∗0ϕ = 0 such that the solution h of the Cauchy
problem (4-2) satisfies h(T )= g3.

The proof of Lemma 4.1 is given below, and it is based on the following classical lemma. In this
section we use the standard notation 〈u, v〉 :=

∫
T

uv dx .
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Lemma 4.2. Let a3, a2, a1, a0 be functions satisfying (3-17) and a2 = 2∂xa3. Let L∗0 be the operator
defined in (4-4). For every (g1, g2, g3), with g1 ∈ C([0, T ], L2

x) and g2, g3 ∈ L2
x , there exists a unique

ϕ1 ∈ L2
x such that for all ψ1 ∈ L2

x , the solutions ϕ,ψ ∈ C([0, T ], L2
x) of the Cauchy problems{

L∗0ϕ = 0,
ϕ(T )= ϕ1

and
{
L∗0ψ = 0,
ψ(T )= ψ1

(4-5)

satisfy ∫ T

0
〈g1+χωϕ,ψ〉 dt +〈g2, ψ(0)〉− 〈g3, ψ(T )〉 = 0 (4-6)

(note that the global well-posedness of the Cauchy problems (4-5) follows by Lemma A.7 and Remark A.8).
Moreover ϕ satisfies (4-3).

Proof. Given ϕ1, ψ1 ∈ L2
x , let ϕ,ψ be the solutions of the Cauchy problems (4-5), and define

B(ϕ1, ψ1) :=

∫ T

0
〈χωϕ,ψ〉 dt, 3(ψ1) := 〈g3, ψ(T )〉− 〈g2, ψ(0)〉−

∫ T

0
〈g1, ψ〉 dt. (4-7)

The bilinear map B : L2
x×L2

x→R is well-defined and continuous because |χω(x)|≤ 1 and, by Lemma A.7
and Remark A.8, ‖ϕ‖T,0 ≤ C‖ϕ1‖0, and similarly for ψ . Moreover B is coercive by Lemma 3.8 and
Remark 2.2. The linear functional 3 is bounded, with

|3(ψ1)| ≤ C‖g‖T,0‖ψ1‖0 ∀ψ1 ∈ L2
x , ‖g‖T,0 := ‖g1‖T,0+‖g2‖0+‖g3‖0.

Thus, by Riesz representation theorem (or Lax–Milgram), there exists a unique ϕ1 ∈ L2
x such that

B(ϕ1, ψ1)=3(ψ1) ∀ψ1 ∈ L2
x . (4-8)

Moreover ‖ϕ1‖0 ≤ C‖3‖L(L2
x ,R)
≤ C ′‖g‖T,0. Since ‖ϕ‖T,0 ≤ C‖ϕ1‖0, we get (4-3). �

Proof of Lemma 4.1. (i) Let ϕ1 ∈ L2
x be the unique solution of (4-8) given by Lemma 4.2. Consider any

ψ1 ∈ L2
x , and let ϕ,ψ ∈ C([0, T ], L2

x) be the unique solutions of the Cauchy problems (4-5). Recalling
(4-6), (4-2) and integrating by parts, we have

0=
∫ T

0
〈g1+χωϕ,ψ〉 dt +〈g2, ψ(0)〉− 〈g3, ψ(T )〉

=

∫ T

0
〈L0h, ψ〉 dt +〈g2, ψ(0)〉− 〈g3, ψ(T )〉

= 〈h(T ), ψ(T )〉− 〈h(0), ψ(0)〉+
∫ T

0
〈h,L∗0ψ〉 dt +〈g2, ψ(0)〉− 〈g3, ψ(T )〉

= 〈h(T ), ψ(T )〉− 〈g3, ψ(T )〉

= 〈h(T )− g3, ψ1〉,

from which it follows that h(T )= g3.
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(ii) Assume that ϕ̃ ∈ C([0, T ], L2
x) satisfies L∗0ϕ̃ = 0 and it has the property that the solution h of the

Cauchy problem (4-2) satisfies h(T )= g3. Let ϕ̃1 := ϕ̃(T ). The same integration by parts as above shows
that B(ϕ̃1, ψ1)=3(ψ1) for all ψ1 ∈ L2

x . By the uniqueness in Lemma 4.2, ϕ̃1 = ϕ1. �

Lemma 4.3 (higher regularity). Let T , ω, a3, a2, a1, a0, L0, g1, g2, g3 be as in Lemma 4.1. There exist
two positive constants δ∗, σ with the following property. Let s > 0 be given. Assume that a0, a1, a2, a3 ∈

C2([0, T ], H s+σ
x ). Let

δ(µ) :=
∑

k=0,1,2, i=0,1,2,3

‖∂k
t ai‖T,µ+σ , µ ∈ [0, s].

Let ‖g‖T,s := ‖g1‖T,s +‖g2‖s +‖g3‖s <∞. If δ(0)≤ δ∗, then the control ϕ constructed in Lemma 4.1
and the solution h of (4-2) satisfy

‖ϕ, h‖T,s ≤ Cs(‖g‖T,s + δ(s)‖g‖T,0) (4-9)

for some positive Cs depending on s, T, ω. Moreover, if g1 ∈ C1([0, T ], H s
x ), then

‖∂tϕ, ∂t h‖T,s+3+‖∂t tϕ, ∂t t h‖T,s ≤ Cs
{
‖g‖T,s+6+‖∂t g1‖T,s + δ(s)‖g‖T,6

}
. (4-10)

Proof. Let g1 ∈ C([0, T ], H s
x ) and g2, g3 ∈ H s

x . Let ϕ, h ∈ C([0, T ], L2
x) be the solution of the control

problem constructed in Lemma 4.1, namely

L∗0ϕ = 0, L0h = χωϕ+ g1, h(0)= g2, h(T )= g3. (4-11)

To prove that h, ϕ ∈ C([0, T ], H s
x ), it is convenient to use the transformations of Section 2, to prove

higher regularity for the solution h̃, ϕ̃ of the transformed control problem, and then to go back to h, ϕ
proving their higher regularity. Recall that

L0 =ABρMT SL5S−1T −1M−1B−1A−1, (4-12)

where L5 = ∂t +m ∂xxx +R and A, B, ρ, M, T , S are defined in Section 2. In particular,

• A is the change of the space variable (Ah)(t, x)= h(t, x +β(t, x)) (see (2-9)), where β is defined
in (2-18), (2-16), (2-17);

• B is the reparametrization of time (Bh)(t, x)= h(ψ(t), x) (see (2-25)), where ψ is defined in (2-30);

• ρ(t) is the function defined in (2-26);

• M is the multiplication operator (Mh)(t, x) = q(t, x)h(t, x) (see (2-37)), where q is defined in
(2-41);

• T is the translation of the space variable (T h)(t, x)= h(t, x+ p(t)) (see (2-46)), where p is defined
in (2-49);

• S is the pseudodifferential operator (Sh)(t, x)= h(t, x)+ γ (t, x)∂−1
x h(t, x) (see (2-53)), where γ

is defined in (2-56) and ∂−1
x h is the primitive of h with zero average in x (defined in Fourier);

• R is the bounded operator defined in (2-57).
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Let

L∗5 := −∂t −m ∂xxx +RT, (4-13)

where RT is the L2
x -adjoint of R. Let

h̃ := (ABMT S)−1h, g̃1 := (ABρMT S)−1g1,

g̃2 := (ABMT S)−1
|t=0 g2, g̃3 := (ABMT S)−1

|t=T g3,

ϕ̃ := ST T TMTB−1ATϕ, K ϕ̃ := (ABρMT S)−1(χω(ST T TMTB−1AT )−1ϕ̃).

(4-14)

Note that, except for S−1, S−T, the operator K is a multiplication operator; namely

K ϕ̃ = S−1(ζS−T ϕ̃), where ζ(t, x) := ρ−1T −1M−2B−1A−1
[(1+βx)χω]. (4-15)

Since h, ϕ ∈ C([0, T ], L2
x), and g1 ∈ C([0, T ], H s

x ) and g2, g3 ∈ H s
x , by (4-14) and the estimates for

A,B, ρ,M, T ,S in Section 2, one has

h̃, ϕ̃, K ϕ̃ ∈ C([0, T ], L2
x), g̃1 ∈ C([0, T ], H s

x ), g̃2, g̃3 ∈ H s
x .

Since h, ϕ satisfy (4-11), one proves that h̃, ϕ̃ satisfy

L∗5ϕ̃ = 0, L5h̃ = K ϕ̃+ g̃1, h̃(0)= g̃2, h̃(T )= g̃3. (4-16)

The last three equations in (4-16) are straightforward. To prove that L∗5ϕ̃ = 0, we start from the equality

〈ϕ(T ), v(T )〉− 〈ϕ(0), v(0)〉 =
∫ T

0
〈ϕ,L0v〉 dt ∀v ∈ C∞([0, T ]×T)

(which is a weak form of L∗0ϕ= 0), we recall (4-12), and apply all the changes of variables A,B,M, T ,S
in the integral. Thus h̃, ϕ̃ solve this control problem:

Given g̃1, g̃2, g̃3, find ϕ̃ such that the solution h̃ of the Cauchy problem
L5h̃ = K ϕ̃+ g̃1, h̃(0)= g̃2 satisfies h̃(T )= g̃3, and moreover ϕ̃ solves L∗5ϕ̃ = 0.

(4-17)

The function ϕ̃ is the unique solution of (4-17). To prove it, assume that ϕ̃bis ∈C([0, T ], L2
x) solves (4-17),

and let h̃bis be the solution of the corresponding Cauchy problem L5h̃bis = K ϕ̃bis + g̃1, h̃bis(0) = g̃2.
Define

hbis :=ABMT S h̃bis, ϕbis :=A−TBM−T T −TS−T ϕ̃bis.

Then hbis, ϕbis solve (4-11). By the uniqueness in Lemma 4.1(ii) it follows that ϕbis = ϕ, hbis = h.
Therefore ϕ̃bis = ϕ̃ and h̃bis = h̃.

Now we prove that h̃, ϕ̃ ∈ C([0, T ], H s
x ). We follow an argument used by Dehman and Lebeau [2009,

Lemma 4.2], Laurent [2010, Lemma 3.1], and Alazard, Baldi, and Han-Kwan [2015, Proposition 8.1].
First, we prove the thesis for g̃1 = 0, g̃3 = 0. Consider the map

S : L2
x → L2

x , Sϕ̃1 = h̃(0), (4-18)
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obtained by the composition ϕ̃1 7→ ϕ̃ 7→ h̃ 7→ h̃(0), where ϕ̃, h̃ are the solutions of the Cauchy problems{
L∗5ϕ̃ = 0,
ϕ̃(T )= ϕ̃1,

{
L5h̃ = K ϕ̃,
h̃(T )= 0.

(4-19)

From the existence and uniqueness of ϕ̃1 ∈ L2
x such that ϕ̃ solves (4-17), it follows that S is an isomorphism

of L2
x . The initial datum g̃2 is given, so we fix ϕ̃1 ∈ L2

x such that Sϕ̃1 = g̃2. We have to estimate
‖3s ϕ̃1‖0 ≤ C‖S3s ϕ̃1‖0, where 3s is the Fourier multiplier of symbol 〈ξ〉s := (1+ ξ 2)s/2, s > 0. To
study the commutator [S,3s

], we compare (3s ϕ̃, 3s h̃) with (ϕ̄, h̄) defined by{
L∗5ϕ̄ = 0,
ϕ̄(T )=3sϕ1,

{
L5h̄ = K ϕ̄,
h̄(T )= 0.

(4-20)

The difference 3s ϕ̃− ϕ̄ satisfies{
L∗5(3

s ϕ̃− ϕ̄)= F1,

(3s ϕ̃− ϕ̄)(T )= 0,
where F1 := [L∗5,3

s
]ϕ̃ = [RT ,3s

]ϕ̃. (4-21)

From Lemma A.2 and Remark A.8, ‖3s ϕ̃− ϕ̄‖T,0 ≤ C‖F1‖T,0. We recall the classical estimate for the
commutator of 3s and any multiplication operator h 7→ ah:

‖[3s, a]h‖0 ≤ Cs
(
‖a‖2‖h‖s−1+‖a‖s+1‖h‖0

)
. (4-22)

By (4-22) and formulas (2-53), (2-56), (2-57), the commutator F1 = [RT ,3s
]ϕ̃ satisfies

‖F1‖T,0 ≤ Cs
(
‖a14, a17, a18‖T,σ‖ϕ̃‖T,s−1+‖a14, a17, a18‖T,s+σ‖ϕ̃‖T,0

)
≤ Cs

(
δ(0)‖ϕ̃‖T,s−1+ δ(s)‖ϕ̃‖T,0

)
.

(4-23)

The difference 3s h̃− h̄ satisfies{
L5(3

s h̃− h̄)= K (3s ϕ̃− ϕ̄)+F2,

(3s h̃− h̄)(T )= 0,
where F2 := [RT ,3s

]h̃+ [3s, K ]ϕ̃. (4-24)

We have ‖K (3s ϕ̃− ϕ̄)‖T,0 ≤ C‖3s ϕ̃− ϕ̄‖T,0 ≤ C‖F1‖T,0, and therefore, by Lemma A.2,

‖3s h̃− h̄‖T,0 ≤ C
(
‖F1‖T,0+‖F2‖T,0

)
. (4-25)

Using (4-22) and (4-15), we get

‖F2‖T,0 ≤ Cs
(
‖h̃, ϕ̃‖T,s−1+ δ(s)‖h̃, ϕ̃‖T,0

)
. (4-26)

By (4-23), (4-25) and (4-26) we deduce that

‖3s h̃− h̄‖T,0 ≤ Cs
(
‖h̃, ϕ̃‖T,s−1+ δ(s)‖h̃, ϕ̃‖T,0

)
.

By (4-19), Lemma A.2 and Remark A.8,

‖h̃, ϕ̃‖T,µ ≤ Cµ
(
‖ϕ̃‖T,µ+ δ(µ)‖ϕ̃‖T,0

)
≤ Cµ

(
‖ϕ̃1‖µ+ δ(µ)‖ϕ̃1‖0

)
, µ≥ 0. (4-27)

Therefore
‖(3s h̃− h̄)(0)‖0 ≤ ‖3s h̃− h̄‖T,0 ≤ Cs

(
‖ϕ̃1‖s−1+ δ(s)‖ϕ̃1‖0

)
. (4-28)



304 PIETRO BALDI, GIUSEPPE FLORIDIA AND EMANUELE HAUS

Since Sϕ̃1 = h̃(0) = g̃2, we have 3s h̃(0) = 3s g2. Moreover, by the definition of S in (4-18)–(4-19),
h̄(0)= S3s ϕ̃1. Thus

‖S3s ϕ̃1‖0 ≤ ‖(3
s h̃− h̄)(0)‖0+‖3s h̃(0)‖0 ≤ Cs

(
‖ϕ̃1‖s−1+ δ(s)‖ϕ̃1‖0

)
+‖g̃2‖s . (4-29)

Since S is an isomorphism of L2
x , we have ‖3s ϕ̃1‖0 ≤ C‖S3s ϕ̃1‖0, whence

‖ϕ̃1‖s ≤ Cs
(
‖g̃2‖s +‖ϕ̃1‖s−1+ δ(s)‖ϕ̃1‖0

)
. (4-30)

Since ‖ϕ̃1‖0 ≤ C‖g̃2‖0, by induction we deduce that

‖ϕ̃1‖s ≤ Cs
(
‖g̃2‖s + δ(s)‖g̃2‖0

)
. (4-31)

By (4-27), we obtain
‖h̃, ϕ̃‖T,s ≤ Cs

(
‖g̃2‖s + δ(s)‖g̃2‖0

)
, (4-32)

which is the thesis in the case g̃1 = 0, g̃3 = 0.
Now we prove the higher regularity of h̃, ϕ̃ removing the assumption g̃1 = 0, g̃3 = 0. Let g̃1 ∈

C([0, T ], H s
x ) and g̃2, g̃3 ∈ H s

x , and let h̃, ϕ̃ be the solution of (4-17). Let w be the solution of the problem

L5w = g̃1, w(T )= g̃3.

By Lemma A.2, w ∈ C([0, T ], H s
x ), with

‖w‖T,s ≤ Cs
{
‖g̃1‖T,s +‖g̃3‖s + δ(s)(‖g̃1‖T,0+‖g̃3‖0)

}
. (4-33)

Let v := h̃−w. Then
L5v = K ϕ̃, v(0)= g̃2−w(0), v(T )= 0.

This means that v, ϕ̃ solve (4-17) where (g̃1, g̃2, g̃3) are replaced by (0, g̃2 −w(0), 0). Hence (4-32)
applies to v, ϕ̃, and we get

‖v, ϕ̃‖T,s ≤ Cs
(
‖g̃2−w(0)‖s + δ(s)‖g̃2−w(0)‖0

)
. (4-34)

We estimate ‖g̃2−w(0)‖s ≤ ‖g̃2‖s +‖w‖T,s ; we use (4-33) and ‖h̃‖T,s ≤ ‖v‖T,s +‖w‖T,s to conclude

‖h̃, ϕ̃‖T,s ≤ Cs
{
‖g̃‖T,s + δ(s)‖g̃‖T,0

}
, (4-35)

where we have denoted, in short, ‖g̃‖T,s := ‖g̃1‖T,s +‖g̃2‖s +‖g̃3‖s . This proves the higher regularity
for the transformed control problem (4-17). By the definitions in (4-14),

‖ϕ‖T,s ≤ Cs
(
‖ϕ̃‖T,s + δ(s)‖ϕ̃‖T,0

)
, ‖h‖T,s ≤ Cs

(
‖h̃‖T,s + δ(s)‖h̃‖T,0

)
,

‖g̃‖T,s ≤ Cs
(
‖g‖T,s + δ(s)‖g‖T,0

)
,

and the proof of (4-9) is complete.
The bound (4-10) is deduced in a classical way from the fact that h, ϕ solve the equations L∗0ϕ = 0,

L0h = χωϕ+ g1. �
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Remark 4.4. Another possible way to prove higher regularity for h, ϕ is to apply the argument of
[Dehman and Lebeau 2009; Laurent 2010; Alazard, Baldi, and Han-Kwan 2015] directly to the control
problem for L0, instead of passing to the transformed problem (4-17), applying that argument, and then
going back to h, ϕ. Such a more direct method adapted to the present case would require the construction
of two operators As , Bs such that

(1) C1‖v‖s ≤ ‖Asv‖0 ≤ C2‖v‖s (equivalent norm in H s),

(2) the commutator [L0, As] is an operator of order s− 1,

(3) the difference BsL∗0−L∗0 As is also of order s− 1.

The construction of such As, Bs is possible, but probably the proof given above is more straightforward,
and it fully exploits the advantages of conjugating L0 to L5 (Section 2). The main point is that the
commutator [L5,3

s
] is of order s− 1 (because L5 has constant coefficients up to a bounded remainder),

while [L0,3
s
] is of order s+ 2 (because L0, which was obtained by linearizing a quasilinear PDE, has

variable coefficients also at the highest order), so that a modified version As of 3s is needed. �

In view of the application of the Nash–Moser theorem in Section 5, we define the spaces

Es := Xs × Xs, Xs := C([0, T ], H s+6
x )∩C1([0, T ], H s+3

x )∩C2([0, T ], H s
x ), (4-36)

Fs :=
{
g = (g1, g2, g3) : g1 ∈ C([0, T ], H s+6

x )∩C1([0, T ], H s
x ), g2, g3 ∈ H s+6

x
}

(4-37)

equipped with the norms

‖u, f ‖Es := ‖u‖Xs +‖ f ‖Xs , ‖u‖Xs := ‖u‖T,s+6+‖∂t u‖T,s+3+‖∂t t u‖T,s, (4-38)

‖g‖Fs := ‖g1‖T,s+6+‖∂t g1‖T,s +‖g2, g3‖s+6. (4-39)

With this notation, we have proved the following linear inversion result.

Theorem 4.5 (right inverse of the linearized operator). Let T > 0 and ω ⊂ T be an open set. There exist
two universal constants τ, σ ≥ 3 and a positive constant δ∗ depending on T, ω with the following property.

Let s ∈ [0, r−τ ], where r is the regularity of the nonlinearity N (see Lemma 2.1). Let g= (g1, g2, g3)∈

Fs and let (u, f ) ∈ Es+σ , with ‖u‖Xσ ≤ δ∗. Then there exists (h, ϕ) :=9(u, f )[g] ∈ Es such that

P ′(u)[h] −χωϕ = g1, h(0)= g2, h(T )= g3, (4-40)
and

‖h, ϕ‖Es ≤ Cs
(
‖g‖Fs +‖u‖Xs+σ ‖g‖F0

)
, (4-41)

where Cs depends on s, T, ω.

5. Proofs

In this section we prove Theorems 1.1 and 1.4.

5A. Proof of Theorem 1.1. The spaces defined in (4-36)–(4-39), with s ≥ 0, form scales of Banach
spaces. We define smoothing operators Sθ in the following way. We fix a C∞ function ϕ : R→ R with
0≤ ϕ ≤ 1,

ϕ(ξ)= 1 ∀|ξ | ≤ 1 and ϕ(ξ)= 0 ∀|ξ | ≥ 2.
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For any real number θ ≥ 1, let Sθ be the Fourier multiplier with symbol ϕ(ξ/θ), namely

Sθu(x) :=
∑
k∈Z

ûk ϕ(k/θ) eikx , where u(x)=
∑
k∈Z

ûkeikx
∈ L2(T). (5-1)

The definition of Sθ extends to functions u(t, x) =
∑

k∈Z ûk(t) eikx depending on time in the obvious
way. Since Sθ and ∂t commute, the smoothing operators Sθ are defined on the spaces Es , Fs defined in
(4-36)–(4-37) by setting Sθ (u, f ) := (Sθu, Sθ f ) and similarly on g = (g1, g2, g3). One easily verifies
that Sθ satisfies (B-1)–(B-4) on Es and Fs . We define the spaces E ′a with norm ‖ · ‖′a and F ′b with ‖ · ‖′b
as constructed in Appendix B.

We observe that 8(u, f ) := (P(u)−χω f, u(0), u(T )) defined in (1-13)–(1-14) belongs to Fs when
(u, f ) ∈ Es+3, s ∈ [0, r − 6], with ‖u‖T,4 ≤ 1. Its second derivative is

8′′(u, f )[(h1, ϕ1), (h2, ϕ2)] =

P ′′(u)[h1, h2]

0
0

.
For u in a fixed ball ‖u‖X1 ≤ δ0, with δ0 small enough, we estimate

‖P ′′(u)[h, w]‖Fs ≤ Cs
(
‖h‖X1‖w‖Xs+3 +‖h‖Xs+3‖w‖X1 +‖u‖Xs+3‖h‖X1‖w‖X1

)
(5-2)

for all s ∈ [0, r − 6]. We fix V = {(u, f ) ∈ E3 : ‖(u, f )‖E3 ≤ δ0}, δ1 = δ∗,

a0 = 1, µ= 3, a1 = σ, α = β = 2σ, a2 ∈ (3σ, r − τ ], (5-3)

where δ∗, σ, τ are given by Theorem 4.5, and r is the regularity of N in Theorem 1.1. The right
inverse 9 in Theorem 4.5 satisfies the assumptions of Theorem B.1. Thus by Theorem B.1 we obtain
that, if g = (0, uin, uend) ∈ F ′β with ‖g‖′Fβ ≤ δ, then there exists a solution (u, f ) ∈ E ′α of the equation
8(u, f )= g, with ‖u, f ‖′Eα ≤ C‖g‖′Fβ (and recall that β = α). We fix s1 := α+ 6, and (1-11) is proved.
In fact, we have proved slightly more than (1-11), because ‖g‖′Fβ ≤ C‖g‖Fβ and ‖u, f ‖Ea ≤ Ca‖u, f ‖′Eα
for all a < α.

We have found a solution (u, f ) of the control problem (1-9)–(1-10). Now we prove that u is the
unique solution of the Cauchy problem (1-9), with that given f . Let u, v be two solutions of (1-9) in
Es−6 for all s < s1. We calculate

P(u)− P(v)=
∫ 1

0
P ′(v+ λ(u− v))[u− v] dλ=: L̃0[u− v],

where
L̃0 := ∂t + (1+ ã3(t, x))∂xxx + ã2(t, x)∂xx + ã1(t, x)∂x + ã0(t, x),

ãi (t, x) :=
∫ 1

0
ai (v+ λ(u− v))(t, x) dλ, i = 0, 1, 2, 3,

and ai (u) is defined in (2-2). Note that ã2 = 2∂x ã3 because a2(v + λ(u − v)) = 2∂xa3(v + λ(u − v))
for all λ ∈ [0, 1]. The difference u− v satisfies L̃0(u− v)= 0, (u− v)(0)= 0. Hence, by Lemma A.7,
u− v = 0. The proof of Theorem 1.1 is complete. �
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5B. Proof of Theorem 1.4. We define

Es := C([0, T ], H s+6
x )∩C1([0, T ], H s+3

x )∩C2([0, T ], H s
x ), (5-4)

Fs :=
{
g = (g1, g2) : g1 ∈ C([0, T ], H s+6

x )∩C1([0, T ], H s
x ), g2 ∈ H s+6

x
}

(5-5)

equipped with norms

‖u‖Es := ‖u‖T,s+6+‖∂t u‖T,s+3+‖∂t t u‖T,s, (5-6)

‖g‖Fs := ‖g1‖T,s+6+‖∂t g1‖T,s +‖g2‖s+6, (5-7)

and 8(u) := (P(u), u(0)). Given g := ( f, uin) ∈ Fs0 , the Cauchy problem (1-18) becomes 8(u) = g.
We fix V , δ1, a0, µ, a1, α, β, a2 as in (5-3), where the constants σ, δ∗ are now given in Lemma A.7 and
τ = σ +9 by Lemma 2.1 combined with Lemma A.7 and the definition of the spaces Es, Fs . Assumption
(B-13) about the right inverse of the linearized operator is satisfied by Lemmas A.7 and 2.1. We fix
s0 := α+ 6. Then Theorem B.1 applies, giving the existence part of Theorem 1.4. The uniqueness of the
solution is proved exactly as in the proof of Theorem 1.1. �

Appendix A: Well-posedness of linear operators

Lemma A.1. Let T > 0, m ∈R, s ∈R, f ∈ C([0, T ], H s
x ), with f (t, x)=

∑
n∈Z fn(t)einx. Let A be the

linear operator defined by A f := v, where v is the solution of{
∂tv+m∂xxxv = f ∀(t, x) ∈ [0, T ]×T,

v(0, x)= 0.
(A-1)

Then

A f (t, x)=
∑
n∈Z

(A f )n(t)einx, (A f )n(t)=
∫ t

0
eimn3(τ−t) fn(τ ) dτ, (A-2)

A f belongs to C([0, T ], H s
x )∩C1([0, T ], H s−3

x ), and

‖A f ‖T,s ≤ T ‖ f ‖T,s . (A-3)

Proof. Formula (A-2) simply comes from variation of constants. By Hölder’s inequality,

|(A f )n(t)| ≤
√

t
(∫ t

0
| fn(τ )|

2 dτ
)1/2

∀t ∈ [0, T ]

and therefore, for each t ∈ [0, T ],

‖A f (t)‖2H s
x
=

∑
n∈Z

|(A f )n(t)|2〈n〉2s
≤

∑
n∈Z

t
∫ t

0
| fn(τ )|

2 dτ 〈n〉2s

≤ t
∫ t

0

∑
n∈Z

| fn(τ )|
2
〈n〉2s dτ = t

∫ t

0
‖ f (τ )‖2H s

x
dτ ≤ t2

‖ f ‖2C([0,t],H s
x )
.

Taking the sup over t ∈ [0, T ] we get the thesis. �
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We remark that for s ≤ 3 the operator A is well-defined in the sense of distributions. We also recall
that L(H s

x ) is the space of linear bounded operators of H s
x into itself, with operator norm ‖L‖L(H s

x )
:=

sup{‖Lh‖s : h ∈ H s
x , ‖h‖s = 1}.

Lemma A.2. (i) (LWP). Let T > 0, s ∈ R, R ∈ C([0, T ],L(H s
x )), and let

rs := ‖R‖C([0,T ],L(H s
x ))
= sup

t∈[0,T ]
‖R(t)‖L(H s

x )
, L5 := ∂t +m∂xxx +R. (A-4)

Let α ∈ H s
x and f ∈ C([0, T ], H s

x ). If T rs ≤
1
2 , then the Cauchy problem{

L5u = f,
u(0, x)= α(x)

(A-5)

has a unique solution u ∈ C([0, T ], H s
x ). The solution u satisfies

‖u‖T,s ≤ (1+ 2T rs)‖α‖s + 2T ‖ f ‖T,s ≤ 2(‖α‖s + T ‖ f ‖T,s). (A-6)

(ii) (tame LWP). Let T > 0, s ∈R, s1 ∈R with s ≥ s1, and let R∈C([0, T ],L(H s
x )) ∩ C([0, T ],L(H s1

x )).
Assume that

‖R(t)h‖s ≤ c1‖h‖s + cs‖h‖s1, ‖R(t)h‖s1 ≤ c1‖h‖s1 ∀h ∈ H s
x , (A-7)

for all t ∈ [0, T ], where c1, cs are positive constants. Let α ∈ H s
x . If

T c1 ≤
1
2 , (A-8)

then the solution u ∈ C([0, T ], H s1
x ) of the Cauchy problem (A-5) given in (i) belongs to C([0, T ], H s

x ),
with

‖u‖T,s ≤ 2T ‖ f ‖T,s + (1+ 2T c1)‖α‖s + 4T cs(T ‖ f ‖T,s1 +‖α‖s1). (A-9)

(iii) (GWP). Let T > 0, s ∈ R, R ∈ C([0, T ],L(H s
x )), and let rs be defined in (A-4). Let α ∈ H s

x . Then
the Cauchy problem (A-5) has a unique global solution u ∈ C([0, T ], H s

x ), with

‖u‖T,s ≤ 24T rs (‖α‖s + 4T ‖ f ‖T,s). (A-10)

(iv) (tame GWP). Let T > 0, s ∈R, s1 ∈R with s ≥ s1, and let R∈C([0, T ],L(H s
x )) ∩ C([0, T ],L(H s1

x )).
Assume that (A-7) holds for all t ∈ [0, T ], where c1, cs are positive constants. Let α ∈ H s

x . Then the global
solution u ∈ C([0, T ], H s

x ) of the Cauchy problem (A-5) given in (iii) satisfies

‖u‖T,s ≤ 24T c1
(
‖α‖s + 4T cs‖α‖s1 + 2T ‖ f ‖T,s + 4T 2cs‖ f ‖T,s1

)
. (A-11)

Proof. (i) Write u = v+w, where v(t, x) is the solution of

∂tv+m ∂xxxv = 0, v(0, x)= α(x). (A-12)

Hence u solves (A-5) if and only if w(t, x) solves

∂tw+m ∂xxxw+Rw =−Rv+ f, w(0, x)= 0. (A-13)
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By Lemma A.1, (A-13) is the fixed point problem

w =9(w), (A-14)

where 9(w) := A[ f −R(v+w)]. Let Bρ :=
{
w ∈ C([0, T ], H s

x ) : ‖u‖T,s ≤ ρ
}
, ρ ≥ 0. Then

‖9(w)‖T,s ≤ T (‖ f ‖T,s + rs‖α‖s + rsρ), ‖9(w1)−9(w2)‖T,s ≤ T rs‖w1−w2‖T,s (A-15)

for all w,w1, w2 ∈ Bρ . By assumption, T rs ≤
1
2 . Therefore, for any ρ ≥ 2T (‖ f ‖T,s + rs‖α‖s), 9 is

a contraction in Bρ . In particular, we fix ρ = ρ0 := 2T (‖ f ‖T,s + rs‖α‖s). Hence there exists a fixed
point w ∈ Bρ0 of 9, with ‖w‖T,s ≤ ρ0 ≤ 2T ‖ f ‖T,s +‖α‖s . As a consequence, there exists a solution
u ∈ C([0, T ], H s

x ) of (A-5) with ‖u‖T,s ≤ 2(T ‖ f ‖T,s +‖α‖s). By the contraction lemma, the solution u
is unique in any ball Bρ , ρ ≥ ρ0, and therefore it is unique in C([0, T ], H s

x ).

(ii) By assumption, T c1 ≤
1
2 , and therefore, by (i), there exists a unique solution u ∈ C([0, T ], H s1

x ).
It remains to prove that u satisfies (A-9). By construction, u = v+w, where v ∈ C([0, T ], H s

x ) is the
solution of (A-12), with ‖v(t)‖s = ‖α‖s for all t ∈ [0, T ], and w ∈ C([0, T ], H s1

x ) solves (A-14). By
the iterative scheme of the contraction lemma, w is the limit in C([0, T ], H s1

x ) of the sequence (wn),
where w0 := 0, and wn+1 :=9(wn) for all n ∈N. By (A-7) and (A-3), 9 maps C([0, T ], H s

x ) into itself;
therefore wn ∈ C([0, T ], H s

x ) for all n ≥ 0. Let hn :=wn−wn−1, n ≥ 1, so that wn =
∑n

k=1 hk . One has
hn+1 =−ARhn for all n ≥ 1, and

‖hn+1‖T,s ≤ T c1‖hn‖T,s + T cs‖hn‖T,s1, ‖hn+1‖T,s1 ≤ T c1‖hn‖T,s1 ∀n ≥ 1.

Hence, by induction, for all n ≥ 1 we have

‖hn‖T,s ≤ (T c1)
n−1
‖h1‖T,s + (n− 1)(T c1)

n−2T cs‖h1‖T,s1, ‖hn‖T,s1 ≤ (T c1)
n−1
‖h1‖T,s1 . (A-16)

Also, ‖h1‖T,s ≤ T ‖ f ‖T,s + T c1‖α‖s + T cs‖α‖s1 and ‖h1‖T,s1 ≤ T ‖ f ‖T,s1 + T c1‖α‖s1 . Therefore

‖hn‖T,s ≤ (T c1)
n−1T ‖ f ‖T,s + (T c1)

n
‖α‖s + (n− 1)(T c1)

n−2T cs T ‖ f ‖T,s1

+ n(T c1)
n−1T cs‖α‖s1,

‖hn‖T,s1 ≤ (T c1)
n−1T ‖ f ‖T,s1 + (T c1)

n
‖α‖s1 ∀n ≥ 1.

(A-17)

Since T c1 ≤
1
2 , the sequence wn =

∑n
k=1 hk converges in C([0, T ], H s

x ) to some limit w̃ ∈C([0, T ], H s
x ).

Since wn converges to w in C([0, T ], H s1
x ), the two limits coincide, and w ∈ C([0, T ], H s

x ). Since
‖w‖T,s ≤

∑
∞

k=1 ‖hk‖T,s , we get

‖w‖T,s ≤ 2T (‖ f ‖T,s + c1‖α‖s)+ 4T cs(T ‖ f ‖T,s1 +‖α‖s1). (A-18)

Since u = v+w, we deduce (A-9).

(iii) If T rs ≤
1
2 , the result is given by (i). Let T rs >

1
2 , and fix N ∈ N such that 2T rs ≤ N ≤ 4T rs .

Let T0 := T/N , so that 1
4 ≤ T0rs ≤

1
2 . Divide the interval [0, T ] into the union I1 ∪ · · · ∪ IN , where

In := [(n− 1)T0, nT0]. Applying (i) on the time interval I1 = [0, T0] gives the solution u1 ∈ C(I1, H s
x ),

with ‖u1‖C(I1,H s
x )
≤ b‖α‖s + 2T0‖ f ‖T,s , where b := 1+ 2T0rs . Now consider the Cauchy problem on I2
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with initial datum u(T0)= u1(T0). Applying (i) on I2 gives the solution u2 ∈ C(I2, H s
x ), with

‖u2‖C(I2,H s
x )
≤ b‖u1(T0)‖s + 2T0‖ f ‖T,s ≤ b2

‖α‖s + (1+ b)2T0‖ f ‖T,s .

We iterate the procedure N times. At the last step, we find the solution uN defined on IN , with

‖uN‖C(IN ,H s
x )
≤ bN
‖α‖s + (bN

− 1)
1

b− 1
2T0‖ f ‖T,s .

We define u(t) := un(t) for t ∈ In , and the thesis follows, using that b ≤ 2.

(iv) If T c1 ≤
1
2 , the result is given by (ii). Let T c1 >

1
2 , and fix N ∈ N such that 2T c1 ≤ N ≤ 4T c1. Let

T0 := T/N , so that 1
4 ≤ T0 c1 ≤

1
2 . Split [0, T ] = I1∪ · · ·∪ IN , where In := [(n−1)T0, nT0]. Perform the

same procedure as above. Using (A-9), and 1+ 2T0 c1 ≤ 2, by induction we get

‖un‖C(In,H s
x )
≤ 2n
‖α‖s + (2n

− 1)2T0‖ f ‖T,s + n2n−14T0 cs‖α‖s1 + [2
n(n− 1)+ 1]4T0 cs T0‖ f ‖T,s1,

‖un‖C(In,H
s1
x )
≤ 2n
‖α‖s1 + (2

n
− 1)2T0‖ f ‖T,s1 .

This implies (A-11), recalling that T0 c1 ≤
1
2 and also N T0 = T, N ≥ 1. �

Lemma A.3. There exist universal positive constants σ, δ∗ with the following properties. Let s ≥ 0,
let m ≥ 1

2 , and let a14(t, x), a15(t, x) be two functions with a14, ∂t a14, a15 ∈ C([0, T ], H s+σ
x ) and∫

T
a14(t, x) dx = 0, and let L4 := ∂t +m ∂xxx + a14 ∂x + a15. Let

δ(µ) := ‖a14, ∂t a14, a15‖T,µ+σ ∀µ ∈ [0, s].

Assume δ(0)≤ δ∗. Let f ∈ C([0, T ], H s
x ) and α ∈ H s

x . Then the Cauchy problem

L4u = f, u(0)= α (A-19)

admits a unique solution u ∈ C([0, T ], H s
x ), with

‖u‖T,s ≤ Cs
{
‖ f ‖T,s +‖α‖s + δ(s)(‖ f ‖T,0+‖α‖0)

}
. (A-20)

Proof. Following the procedure given in Section 2E, we define S := I + γ (t, x)∂−1
x (see (2-53)) with

γ (t, x) := − 1
3m ∂
−1
x a14(t, x). We have that u solves (A-19) if and only if ũ := S−1u satisfies

L5ũ = f̃ , ũ(0)= α̃,

where f̃ := S−1 f , α̃ := S−1(0)α and L5 = ∂t +m ∂xxx +R, with

R= S−1{a15+ (a14γ − (a14)x)π0+ (L4γ ) ∂
−1
x
}
.

Then the thesis follows by Lemmas A.2 and 2.7. �

Lemma A.4. There exist universal positive constants σ, δ∗ with the following properties. Let s ≥ 0,
let m ≥ 1

2 , and let a12(t, x), a13(t, x) be two functions with a12, ∂t a12, a13 ∈ C([0, T ], H s+σ
x ), and let

L3 := ∂t +m ∂xxx + a12 ∂x + a13. Let

δ(µ) := ‖a12, ∂t a12, a13‖T,µ+σ ∀µ ∈ [0, s].
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Assume δ(0)≤ δ∗. Let f ∈ C([0, T ], H s
x ) and α ∈ H s

x . Then the Cauchy problem

L3u = f, u(0)= α (A-21)

admits a unique solution u ∈ C([0, T ], H s
x ), with

‖u‖T,s ≤ Cs
{
‖ f ‖T,s +‖α‖s + δ(s)(‖ f ‖T,0+‖α‖0)

}
. (A-22)

Proof. Following the procedure given in Section 2D, we define T h(t, x) := h(t, x + p(t)) (see (2-46)),
with p(t) := − 1

2π

∫ t
0

∫
T

a12(s, x) dx ds. We have that u solves (A-21) if and only if ũ := T −1u satisfies

L4ũ = f̃ , ũ(0)= α

(note that T (0) is the identity), where f̃ := T −1 f , and L4 = ∂t +m ∂xxx + a14 ∂x + a15, with a14, a15

given by formula (2-48). Then the thesis follows by Lemmas A.3 and 2.6. �

Lemma A.5. There exist universal positive constants σ , δ∗ with the following properties. Let s ≥ 0, let
m≥ 1

2 , and let a8(t, x), a9(t, x), a10(t, x) be three functions with a8, ∂t a8, a9, ∂t a9, a10 ∈C([0, T ], H s+σ
x )

and
∫

T
a8(t, x) dx = 0, and let L2 := ∂t +m ∂xxx + a8 ∂xx + a9 ∂x + a10. Let

δ(µ) := ‖a8, ∂t a8, a9, ∂t a9, a10‖T,µ+σ ∀µ ∈ [0, s].

Assume δ(0)≤ δ∗. Let f ∈ C([0, T ], H s
x ) and α ∈ H s

x . Then the Cauchy problem

L2u = f, u(0)= α (A-23)

admits a unique solution u ∈ C([0, T ], H s
x ), with

‖u‖T,s ≤ Cs
{
‖ f ‖T,s +‖α‖s + δ(s)(‖ f ‖T,0+‖α‖0)

}
. (A-24)

Proof. Following the procedure given in Section 2C, we define Mh(t, x) := q(t, x)h(t, x) (see (2-37)),
with q(t, x) := exp{− 1

3m (∂
−1
x a8)(t, x)}. We have that u solves (A-23) if and only if ũ :=M−1u satisfies

L3ũ = f̃ , ũ(0)= α̃,

where f̃ :=M−1 f , α̃ :=M−1(0)α, and L3 = ∂t +m ∂xxx +a12 ∂x +a13, with a12, a13 given by formula
(2-39). Then the thesis follows by Lemmas A.4 and 2.5. �

Lemma A.6. There exist universal positive constants σ , δ∗ with the following properties. Let s ≥ 0 and
let a4(t), a5(t, x), a6(t, x), a7(t, x) be four functions with a4 ∈ C1([0, T ],R) and a5, ∂t a5, a6, ∂t a6, a7 ∈

C([0, T ], H s+σ
x ) and

∫
T

a5(t, x) dx = 0, and let L1 := ∂t + a4∂xxx + a5∂xx + a6∂x + a7. Let

δ(µ) := sup
t∈[0,T ]

|a4(t)− 1| + sup
t∈(0,T )

|a′4(t)| + ‖a5, ∂t a5, a6, ∂t a6, a7‖T,µ+σ ∀µ ∈ [0, s]. (A-25)

Assume δ(0)≤ δ∗. Let f ∈ C([0, T ], H s
x ) and α ∈ H s

x . Then the Cauchy problem

L1u = f, u(0)= α (A-26)
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admits a unique solution u ∈ C([0, T ], H s
x ), with

‖u‖T,s ≤ Cs
{
‖ f ‖T,s +‖α‖s + δ(s)(‖ f ‖T,0+‖α‖0)

}
. (A-27)

Proof. Following the procedure given in Section 2B, we define Bh(t, x) := h(ψ(t), x) (see (2-25)), with
ψ(t) := 1

m

∫ t
0 a4(s) ds, where m := 1

T

∫ T
0 a4(t) dt . We have that u solves (A-26) if and only if ũ := B−1u

satisfies

L2ũ = f̃ , ũ(0)= α

(note that B(0) is the identity), where f̃ := B−1 f , and L2 = ∂t +m ∂xxx + a8 ∂xx + a9 ∂x + a10, with a8,
a9, a10 given by formula (2-32) (see also (2-26)). Then the thesis follows by Lemma A.5 and 2.4. �

Lemma A.7. There exist universal positive constants σ, δ∗ with the following properties. Let s ≥ 0 and let
a3(t, x), a2(t, x), a1(t, x), a0(t, x) be four functions with a3, ∂t a3, ∂t t a3, a1, ∂t a1, a0 ∈ C([0, T ], H s+σ

x )

and a2 = c ∂xa3 for some c ∈ R. Let

δ(µ) := ‖a3, ∂t a3, ∂t t a3, a1, ∂t a1, a0‖T,µ+σ ∀µ ∈ [0, s]. (A-28)

Assume δ(0)≤ δ∗. Let L0 := ∂t + (1+ a3) ∂xxx + a2 ∂xx + a1 ∂x + a0. Let f ∈ C([0, T ], H s
x ) and α ∈ H s

x .
Then the Cauchy problem

L0u = f, u(0)= α (A-29)

admits a unique solution u ∈ C([0, T ], H s
x ), with

‖u‖T,s ≤ Cs
{
‖ f ‖T,s +‖α‖s + δ(s)(‖ f ‖T,0+‖α‖0)

}
. (A-30)

Proof. Following the procedure given in Section 2A, we define (Ah)(t, x) := h(t, x+β(t, x)) (see (2-9)),
with β(t, x) := (∂−1

x ρ0)(t, x), where ρ0 is defined in (2-16)–(2-17). We have that u solves (A-29) if and
only if ũ :=A−1u satisfies

L1ũ = f̃ , ũ(0)= α̃,

where f̃ := A−1 f , α̃ := A−1(0)α, and L1 = ∂t + a4 ∂xxx + a5 ∂xx + a6 ∂x + a7, with a4 not depending
on the space variable x and with a4, a5, a6, a7 given by formula (2-14). Then the thesis follows by
Lemmas A.6 and 2.3. �

Remark A.8. Consider the operators L0, . . . ,L5 defined in Lemmas A.2–A.7. Define

L∗0h := −∂t h− ∂xxx [(1+ a3)h] + ∂xx(a2h)− ∂x(a1h)+ a0h,

L∗1h := −∂t h− a4∂xxx h+ ∂xx(a5h)− ∂x(a6h)+ a7h,

L∗2h := −∂t h−m∂xxx h+ ∂xx(a8h)− ∂x(a9h)+ a10h,

L∗3h := −∂t h−m∂xxx h− ∂x(a12h)+ a13h,

L∗4h := −∂t h−m∂xxx h− ∂x(a14h)+ a15h,

L∗5h := −∂t h−m∂xxx h+RT h.
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It is straightforward to check that Lemmas A.2–A.7 also hold when the operator Lk (k = 0, . . . , 5) is
replaced by L∗k . The crucial observation is that for all k = 0, . . . , 5 (see Remark 2.2 for the case k = 0)
the operator −L∗k has the same structure as Lk (one might need to worsen the constants σ since the
coefficients of −L∗k involve space derivatives of the coefficients of Lk). It is also immediate to verify that
the same estimates also hold for the backward Cauchy problems{

Lku = f,
u(T )= α,

{
L∗ku = f,
u(T )= α,

k = 0, . . . , 5. (A-31)

Appendix B: Nash–Moser theorem

In this section we prove a Nash–Moser implicit function theorem that is a modified version of the theorem
in [Hörmander 1985]. With respect to that paper, here (Theorem B.1) we assume slightly stronger
hypotheses on the nonlinear operator 8 and its second derivative. These hypotheses are naturally verified
in applications to PDEs. We use the iteration scheme of [Hörmander 1976] (called the discrete Nash
method by Hörmander), which is neither the Newton scheme with smoothings used in [Berti, Bolle,
and Procesi 2010; Berti, Corsi, and Procesi 2015; Baldi, Berti, and Montalto 2016a], nor the scheme in
[Hörmander 1985; Alinhac and Gérard 2007]. The scheme of [Hörmander 1976] is based on a telescoping
series like in [Hörmander 1985], but some corrections yn (see (B-15)) are also introduced. In this way the
scheme converges directly to a solution of the equation 8(u)=8(0)+ g, avoiding the intermediate step
in [Hörmander 1985] where the Leray–Schauder theorem is applied. This makes it possible to remove
two assumptions of Hörmander’s theorem [1985], which are the compact embeddings Fb ↪→ Fa in the
codomain scale of Banach spaces (Fa)a≥0, and the continuity of the approximate right inverse 9(v) with
respect to the approximate linearization point v. We point out that, unlike Theorem 2.2.2 of [Hörmander
1976], our Theorem B.1 also applies to the case of Sobolev spaces.

Let us begin with recalling the construction of “weak” spaces in [Hörmander 1985].

Let Ea , a ≥ 0, be a decreasing family of Banach spaces with injections Eb ↪→ Ea of norm ≤ 1 when
b ≥ a. Set E∞ =

⋂
a≥0 Ea with the weakest topology making the injections E∞ ↪→ Ea continuous.

Assume that Sθ : E0→ E∞ for θ ≥ 1 are linear operators such that, with constants C bounded when a
and b are bounded,

‖Sθu‖b ≤ C‖u‖a if b ≤ a, (B-1)

‖Sθu‖b ≤ Cθb−a
‖u‖a if a < b, (B-2)

‖u− Sθu‖b ≤ Cθb−a
‖u‖a if a > b, (B-3)∥∥∥∥ d

dθ
Sθu

∥∥∥∥
b
≤ Cθb−a−1

‖u‖a. (B-4)

From (B-2)–(B-3) one can obtain the logarithmic convexity of the norms

‖u‖λa+(1−λ)b ≤ C‖u‖λa‖u‖
1−λ
b if 0< λ < 1. (B-5)
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Consider the sequence {θj } j∈N, with 1 = θ0 < θ1 < · · · → ∞, such that θj+1/θj is bounded. Set
1 j := θj+1− θj and

R0u :=
Sθ1u
10

, Rj u :=
Sθj+1u− Sθj u

1 j
, j ≥ 1. (B-6)

By (B-3) we deduce that, if u ∈ Eb for some b > a, then

u =
∞∑
j=0

1 j Rj u (B-7)

with convergence in Ea . Moreover, (B-4) implies that, for all b,

‖Rj u‖b ≤ Ca,bθ
b−a−1
j ‖u‖a. (B-8)

Conversely, assume that a1 < a < a2, that u j ∈ Ea2 and that

‖u j‖b ≤ Mθb−a−1
j if b = a1 or b = a2. (B-9)

By (B-5) this remains true with a constant factor on the right-hand side if a1< b< a2, so that u=
∑
1 j u j

converges in Eb if b < a.
Let E ′a be the set of all sums u =

∑
1 j u j with u j satisfying (B-9) and introduce the norm ‖u‖′a as the

infimum of M over all such decompositions. It follows that ‖ · ‖′a is stronger than ‖ · ‖b if a > b, while
(B-7) and (B-8) show that ‖ · ‖′a is weaker than ‖ · ‖a . Moreover (i) the space E ′a and, up to equivalence,
its norm are independent of the choice of a1 and a2; (ii) E ′a is defined by (B-8) for any values of b to
the left and to the right of a; (iii) E ′a does not depend on the smoothing operators; (iv) in (B-3) we can
replace ‖u‖a by ‖u‖′a , namely,

‖u− Sθu‖b ≤ C ′a,bθ
b−a
‖u‖′a if a > b, (B-10)

if we take another constant C ′a,b, which may tend to∞ as b approaches a. These four statements (i)–(iv)
are proved in [Hörmander 1985].

Now let us suppose that we have another family Fa of decreasing Banach spaces with smoothing
operators having the same properties as above. We use the same notation also for the smoothing operators.
Unlike [Hörmander 1985], here we do not need to assume that the embedding Fb ↪→ Fa is compact for
b > a.

Theorem B.1. Let a1, a2, α, β, a0, µ be real numbers with

0≤ a0 ≤ µ≤ a1, a1+
1
2β ≤ α < a1+β ≤ a2, 2α < a1+ a2. (B-11)

Let V be a convex neighborhood of 0 in Eµ. Let 8 be a map from V to F0 such that 8 : V ∩ Ea+µ→ Fa

is of class C2 for all a ∈ [0, a2−µ], with

‖8′′(u)[v,w]‖a ≤ C
(
‖v‖a+µ‖w‖a0 +‖v‖a0‖w‖a+µ+‖u‖a+µ‖v‖a0‖w‖a0

)
(B-12)
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for all u ∈ V ∩ Ea+µ, v,w ∈ Ea+µ. Also assume that 8′(v) for v ∈ E∞ ∩ V belonging to some ball
‖v‖a1 ≤ δ1 has a right inverse 9(v) mapping F∞ to Ea2 , and that

‖9(v)g‖a ≤ C
(
‖g‖a+β−α +‖g‖0‖v‖a+β

)
∀a ∈ [a1, a2]. (B-13)

There exists δ > 0 such that, for every g ∈ F ′β in the ball ‖g‖′β ≤ δ, there exists u ∈ E ′α , with ‖u‖′α ≤C‖g‖′β ,
solving 8(u)=8(0)+ g.

Proof. We follow the proof in [Hörmander 1985] where possible, but we use a different iteration scheme.
Let θj := j + 1, so that 1 j = 1 for all j . Let g ∈ F ′β and g j := Rj g. Thus

g =
∞∑
j=0

g j , ‖g j‖b ≤ Cbθ
b−β−1
j ‖g‖′β ∀b ∈ [0,+∞). (B-14)

We claim that if ‖g‖′β is small enough, then we can define a sequence u j ∈ V ∩ Ea2 with u0 := 0 by the
recursion formula

u j+1 := u j + h j , vj := Sθj u j , h j :=9(vj )(g j + yj ) ∀ j ≥ 0, (B-15)

where y0 := 0,

y1 := −Sθ1e0, yj := −Sθj e j−1− R j−1

j−2∑
i=0

ei ∀ j ≥ 2, (B-16)

and ej := e′j + e′′j ,

e′j :=8(u j + h j )−8(u j )−8
′(u j )h j , e′′j := (8

′(u j )−8
′(vj ))h j . (B-17)

We prove that for all j ≥ 0,

‖h j‖a ≤ K1‖g‖′β θ
a−α−1
j ∀a ∈ [a1, a2], (B-18)

‖vj‖a ≤ K2‖g‖′β θ
a−α
j ∀a ∈ [a1+β, a2+β], (B-19)

‖u j − vj‖a ≤ K3‖g‖′β θ
a−α
j ∀a ∈ [0, a2]. (B-20)

For j = 0, (B-19) and (B-20) are trivially satisfied, and (B-18) follows from (B-14) because h0 =9(0)g0

and θ0 = 1.
Now assume that (B-18), (B-19), (B-20) hold for j = 0, . . . , k, for some k ≥ 0. First we prove (B-20)

for j = k+1. Since uk+1 =
∑k

j=0 h j , the definition of the norm of E ′α and (B-18) for j = 0, . . . , k imply
that ‖uk+1‖

′
α ≤ K1‖g‖′β . By (B-10) one has

‖uk+1− vk+1‖0 ≤ C K1‖g‖′βθ
−α
k+1, (B-21)

where the constant C depends on α. From now until the end of this proof we denote by C any constant
(possibly different from line to line) depending only on a1, a2, α, β, µ, a0, which are fixed parameters.
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From (B-18) with j = 0, . . . , k we get

‖uk+1‖a ≤ K1‖g‖′β

k∑
j=0

θa−α−1
j ∀a ∈ [a1, a2]. (B-22)

We note that
k∑

j=0

θ
p−1
j ≤

2
p
θ

p
k+1 ∀p > 0. (B-23)

For a = a2, by (B-1) one gets ‖vk+1‖a2 ≤ C‖uk+1‖a2 . Thus, using (B-23) at p = a2−α,

‖uk+1− vk+1‖a2 ≤ C‖uk+1‖a2 ≤ C K1‖g‖′βθ
a2−α
k+1 . (B-24)

Using (B-5) to interpolate between (B-21) and (B-24), we get (B-20) for j = k+ 1, for all a ∈ [0, a2],
provided that K3 ≥ C K1.

To prove (B-19) for j = k+ 1, we use (B-2), (B-22) and (B-23) and we get

‖vk+1‖a ≤ Cθa−a1−β

k+1 ‖uk+1‖a1+β ≤ Cθa−a1−β

k+1 K1‖g‖′β

k∑
j=0

θ
a1+β−α−1
j ≤ C K1‖g‖′β θ

a−α
k+1

for all a ∈ [a1+β, a2+β]. This gives (B-19) for j = k+ 1 provided that K2 ≥ C K1.
To prove (B-18) for j = k+ 1, we begin with proving that

‖yk+1‖b ≤ C K1(K1+ K3)‖g‖′2β θ
b−β−1
k+1 ∀b ∈ [0, a2+β −α]. (B-25)

Since u j , vj , u j + h j belong to V for all j = 0, . . . , k, we use Taylor’s formula and (B-12) to deduce that,
for j = 0, . . . , k and a ∈ [0, a2−µ],

‖ej‖a ≤ C
(
‖h j‖a0‖h j‖a+µ+‖u j‖a+µ‖h j‖

2
a0
+‖h j‖a0‖vj − u j‖a+µ

+‖h j‖a+µ‖vj − u j‖a0 +‖u j‖a+µ‖h j‖a0‖vj − u j‖a0

)
. (B-26)

Hence at j = k, using (B-2) and then (B-26), we have

‖Sθk+1ek‖a2+β−α ≤ Cθ p
k+1‖ek‖a2+β−α−p

≤ Cθ p
k+1

(
‖hk‖a0‖hk‖q +‖uk‖q‖hk‖

2
a0
+‖hk‖a0‖vk − uk‖q

+‖hk‖q‖vk − uk‖a0 +‖uk‖q‖hk‖a0‖vk − uk‖a0

)
, (B-27)

where p := max{0, β − α +µ} and q := a2 + β − α − p+µ. Note that a2 + β − α − p ≥ 0 because
a2 ≥ µ. Since q ≤ a2, using also (B-23) we have

‖uk‖q ≤ ‖uk‖a2 ≤

k−1∑
j=0

‖h j‖a2 ≤ K1‖g‖′β

k−1∑
j=0

θ
a2−α−1
j ≤ C K1‖g‖′βθ

a2−α
k . (B-28)

By (B-28), (B-18), (B-20), and since a0 ≤ a1, the bound (B-27) implies that

‖Sθk+1ek‖a2+β−α ≤ C K1(K1+ K3)‖g‖′2β θ
p

k+1(θ
a1+q−2α−1
k + θ

a2+2a1−3α−1
k )



EXACT CONTROLLABILITY FOR QUASILINEAR PERTURBATIONS OF KDV 317

provided that K1‖g‖′β ≤ 1. We assume that

K1‖g‖′β ≤ 1. (B-29)

Both the exponents a1+q−2α−1 and a2+2a1−3α−1 are ≤ a2−α−1− p because a1 < α and
a1+β +µ≤ 2α. Thus

‖Sθk+1ek‖a2+β−α ≤ C K1(K1+ K3)‖g‖′2β θ
a2−α−1
k+1 . (B-30)

Now we estimate ‖Sθk+1ek‖0. Since a0, µ≤ a1, by (B-1) and (B-26) we get

‖Sθk+1ek‖0 ≤ C‖ek‖0 ≤ C(1+‖uk‖µ)(‖hk‖
2
a1
+‖hk‖a1‖vk − uk‖a1). (B-31)

By (B-18) and (B-29),

‖uk‖µ ≤ ‖uk‖a1 ≤

k−1∑
j=0

‖h j‖a1 ≤ K1‖g‖′β

∞∑
j=0

θ
a1−α−1
j = C K1‖g‖′β ≤ C. (B-32)

We use (B-18), (B-20) and (B-32) in (B-31), and the bound θ2a1−2α−1
k+1 ≤ θ

−β−1
k+1 , to deduce that

‖Sθk+1ek‖0 ≤ C K1(K1+ K3)‖g‖′2β θ
−β−1
k+1 . (B-33)

Using (B-5) to interpolate between (B-30) and (B-33), we obtain

‖Sθk+1ek‖b ≤ C K1(K1+ K3)‖g‖′2β θ
b−β−1
k+1 ∀b ∈ [0, a2+β −α]. (B-34)

Now we estimate the other terms in yk+1 (see (B-16)). By (B-8), (B-26), (B-18), (B-20) and (B-23),

k−1∑
i=0

‖Rkei‖b ≤

k−1∑
i=0

Cθb−a2+µ−1
k ‖ei‖a2−µ

≤ C K1(K1+ K3)‖g‖′2β θ
b−a2+µ−1
k

k−1∑
i=0

θ
a1+a2−2α−1
i (B-35)

for all b ∈ [0, a2 + β − α]. Since a1 + a2 − 2α > 0, we apply (B-23) to the last sum in (B-35). Then,
recalling that θk/θk+1 ∈

[ 1
2 , 1

]
, and using the bound a1+β +µ≤ 2α, we deduce that

k−1∑
i=0

‖Rkei‖b ≤ C K1(K1+ K3)‖g‖′2β θ
b−β−1
k+1 ∀b ∈ [0, a2+β −α]. (B-36)

The sum of (B-34) and (B-36) completes the proof of (B-25).
Now we are ready to prove (B-18) at j = k+1. By (B-1) and (B-22) we have ‖vk+1‖a1 ≤C‖uk+1‖a1 ≤

C K1‖g‖′β , and we assume that C K1‖g‖′β ≤ δ1, so that 9(vk+1) is defined. By (B-15), (B-13), (B-14),
(B-25), (B-19) one has, for all a ∈ [a1, a2],

‖hk+1‖a ≤ C‖g‖′β
{
1+ (K1+ K3)K1‖g‖′β

}
θa−α−1

k+1 (B-37)

provided that K2‖g‖′β ≤ 1. Bound (B-37) implies (B-18) provided that C
{
1+ (K1+ K3)K1‖g‖′β

}
≤ K1.
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The induction proof of (B-18), (B-19), (B-20) is complete if K1, K2, K3, ‖g‖′β satisfy

K3 ≥ C0K1, K2 ≥ C0K1, C0K1‖g‖′β ≤ 1, K2‖g‖′β ≤ 1, C0
{
1+ (K1+ K3)K1‖g‖′β

}
≤ K1,

where C0 is the largest of the constants appearing above. First we fix K1 ≥ 2C0. Then we fix K2 and K3

larger than C0K1, and finally we fix δ0 > 0 such that the last three inequalities hold for all ‖g‖′β ≤ δ0.
This completes the proof of (B-18), (B-19), (B-20).

Bound (B-18) implies that the sequence (uk) converges in Ea for all a ∈ [0, α). We call u its limit.
Since u =

∑
∞

j=0 h j and each term h j satisfies (B-18), it follows that u ∈ E ′α and ‖u‖′α ≤ K1‖g‖′β by the
definition of the norm in E ′α.

Finally, we prove the convergence of the Nash–Moser scheme. By (B-16) and (B-6) one proves by
induction that

k∑
j=0

(ej + yj )= ek + rk, where rk := (I − Sθk )

k−1∑
j=0

ej , ∀k ≥ 1.

Hence, by (B-15) and (B-17), recalling that 8′(vj )9(vj ) is the identity map, one has

8(uk+1)−8(u0)=

k∑
j=0

[8(u j+1)−8(u j )] =

k∑
j=0

(ej + g j + yj )= Gk + ek + rk,

where Gk :=
∑k

j=0 g j . By (B-14), ‖Gk − g‖b→ 0 as k→∞ for all b ∈ [0, β). Let a ∈ [a1−µ, α−µ).
By (B-22) and (B-29) we get ‖u j‖a+µ ≤ C . By (B-26), (B-18) and (B-20) we deduce that

‖ej‖a ≤ C K1(K1+ K3)‖g‖′2β θ
a1+a+µ−2α−1
j . (B-38)

Hence ‖ek‖a→ 0 as k→∞ because a1+ a+µ− 2α < 0, and, moreover,
∑
∞

j=0 ‖ej‖a converges. By
(B-3) and (B-38), for all ρ ∈ [0, a) we have

‖rk‖ρ ≤

k−1∑
j=0

‖(I − Sθk )ej‖ρ ≤ C
k−1∑
j=0

θ
ρ−a
k ‖ej‖a ≤ Cθρ−a

k , (B-39)

so that ‖rk‖ρ→ 0 as k→∞. We have proved that ‖8(uk)−8(u0)− g‖ρ→ 0 as k→∞ for all ρ in
the interval 0≤ ρ <min{α−µ, β}. Since uk→ u in Ea for all a ∈ [0, α), it follows that 8(uk)→8(u)
in Fb for all b ∈ [0, α−µ). �

Appendix C: Tame estimates

In this appendix we recall classical tame estimates for products, compositions of functions and changes
of variables which are repeatedly used in the paper. Recall the notation (1-6) for functions u(x), x ∈ T,
in the Sobolev space H s

:= H s(T,R).

Lemma C.1. Let s0, s1, s2, s denote nonnegative real numbers, with s0 >
1
2 . There exist positive con-

stants Cs , s ≥ s0, with the following properties.
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• (embedding and algebra) For all u, v ∈ H s0,

‖u‖L∞ ≤ Cs0‖u‖s0, ‖uv‖s0 ≤ Cs0‖u‖s0‖v‖s0 . (C-1)

• (interpolation) For 0≤ s1 ≤ s ≤ s2 and s = λs1+ (1− λ)s2, for all u ∈ H s2,

‖u‖s ≤ ‖u‖λs1
‖u‖1−λs2

. (C-2)

• (tame product) For s ≥ s0, for all u, v ∈ H s,

‖uv‖s ≤ Cs0‖u‖s‖v‖s0 +Cs‖u‖s0‖v‖s, (C-3)

and for s ∈ [0, s0], for all u ∈ H s0 and v ∈ H s,

‖uv‖s ≤ Cs0‖u‖s0‖v‖s . (C-4)

Proof. The lemma can be proved by using Fourier series and the Hölder inequality. Otherwise, for
(C-2) see, e.g., [Alinhac and Gérard 2007, p. 82] or [Moser 1966, p. 269]; for (C-3) adapt [Berti,
Bolle, and Procesi 2010, Appendix] or [Alinhac and Gérard 2007, p. 84]. For (C-4) use the bound∑

j∈Z〈n〉
2s
〈 j〉−2s

〈n− j〉−2s0 ≤ Cs0 for all n ∈ Z, all 0≤ s ≤ s0, which can be proved by splitting the two
cases 2| j | ≤ |n| and 2| j |> |n|. �

A function f : T× B→ R, where B := {y ∈ Rp+1
: |y|< R}, induces the composition operator

f̃ (u)(x) := f
(
x, u(x), u′(x), u′′(x), . . . , u(p)(x)

)
, (C-5)

where u(k)(x) denotes the k-th derivative of u(x). Let Bp be a ball in W p,∞(T,R) such that, if u ∈ Bp,
then the vector

(
u(x), u′(x), . . . , u(p)(x)

)
belongs to B for all x ∈ T.

Lemma C.2 (composition of functions). Assume f ∈Cr (T× B). Then, for all u ∈ H s+p
∩ Bp, s ∈ [0, r ],

the composition operator (C-5) is well-defined and

‖ f̃ (u)‖s ≤ C‖ f ‖Cr (‖u‖s+p + 1),

where C depends on r , p. If , in addition, f ∈ Cr+2, then, for u, h ∈ H s+p with u, u+ h ∈ Bp, one has

‖ f̃ (u+ h)− f̃ (u)‖s ≤ C‖ f ‖Cr+1
(
‖h‖s+p +‖h‖W p,∞‖u‖s+p

)
,

‖ f̃ (u+ h)− f̃ (u)− f̃ ′(u)[h]‖s ≤ C‖ f ‖Cr+2 ‖h‖W p,∞
(
‖h‖s+p +‖h‖W p,∞‖u‖s+p

)
.

Proof. For s ∈ N see [Moser 1966, pp. 272–275] and [Rabinowitz 1967, Lemma 7, pp. 202–203]. For
s /∈ N see [Alinhac and Gérard 2007, Proposition 2.2, p. 87]. �

Lemma C.3 (change of variable). Let p ∈W s,∞(T,R), s ≥ 1, with ‖p‖W 1,∞ ≤
1
2 . Let f (x)= x + p(x).

Then f is invertible, its inverse is f −1(y)= g(y)= y+ q(y), where q is 2π-periodic, q ∈W s,∞(T,R),
and ‖q‖W s,∞ ≤ C‖p‖W s,∞ , where C depends on d, s.

Moreover, if u ∈ H s(T,R), then u ◦ f (x)= u(x + p(x)) also belongs to H s, and

‖u ◦ f ‖s +‖u ◦ g‖s ≤ C(‖u‖s +‖p‖W s,∞‖u‖1). (C-6)
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Proof. For s ∈ N see, e.g., [Baldi 2013, Lemma B.4], where this lemma is proved by adapting [Hamilton
1982, Lemma 2.3.6, p. 149]. For s /∈ N the lemma can be proved by studying the conjugate of the
pseudodifferential operator |Dx |

s by a change of variable, either by Egorov’s theorem, see [Taylor 1981,
Chapter VIII, Section 1, p. 150] and [Alazard, Baldi, and Han-Kwan 2015, Appendix C, Section C.1], or
by an asymptotic formula, see [Alinhac and Gérard 2007, Proposition 7.1, p. 37]. �

Remark C.4. For time-dependent functions u(t, x), u ∈ C([0, T ], H s(T,R)), all the estimates of the
present appendix hold with ‖u‖s replaced by ‖u‖T,s := supt∈[0,T ] ‖u(t)‖s . �
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