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ANISOTROPIC ORNSTEIN NONINEQUALITIES

KRYSTIAN KAZANIECKI, DMITRIY M. STOLYAROV AND MICHAŁ WOJCIECHOWSKI

We investigate the existence of a priori estimates for differential operators in the L1 norm: for anisotropic
homogeneous differential operators T1, . . . , T`, we study the conditions under which the inequality

‖T1 f ‖L1(Rd ) .
∑̀
j=2

‖Tj f ‖L1(Rd )

holds true. Properties of homogeneous rank-one convex functions play the major role in the subject. We
generalize the notions of quasi- and rank-one convexity to fit the anisotropic situation. We also discuss a
similar problem for martingale transforms and provide various conjectures.

1. Introduction

In his seminal paper, Ornstein [1962] proved the following: let {Tj }
`
j=1 be homogeneous differential

operators of the same order in d variables (with constant coefficients); if the inequality

‖T1 f ‖L1(Rd ) .
∑̀
j=2

‖Tj f ‖L1(Rd )

holds true for any f ∈ C∞0 (R
d), then T1 can be expressed as a linear combination of the other Tj . Here

and in what follows “a . b” means “there exists a constant c such that a 6 cb uniformly”; the meaning
of the word “uniformly” will be clear from the context. For example, in the statement above, the constant
should be uniform with respect to all functions f . The aim of the present paper is to extend this theorem
to the case where the differential operators are anisotropic homogeneous; see also [Kazaniecki and
Wojciechowski 2014], where partial progress in this direction was obtained by a simple Riesz product
technique.

To formulate the results, we have to introduce a few notions. Each differential polynomial P(∂) in
d variables has a Newton diagram which matches a set of integral points in Rd to each such polynomial. The
monomial a∂m1

1 ∂
m2
2 · · · ∂

md
d corresponds to the point m = (m1,m2, . . . ,md); for an arbitrary polynomial,

its Newton diagram is the union of the Newton diagrams of its monomials.
Let 3 be an affine hyperplane in Rd that intersects all the positive semiaxes. We call such a plane

a pattern of homogeneity. We say that a differential polynomial is homogeneous with respect to 3 (or
simply 3-homogeneous) if its Newton diagram lies on 3.
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Conjecture 1. Let3 be a pattern of homogeneity in Rd and let {Tj }
`
j=1 be a collection of3-homogeneous

differential operators. If the inequality

‖T1 f ‖L1(Rd ) .
∑̀
j=2

‖Tj f ‖L1(Rd )

holds true for any f ∈ C∞0 (R
d), then T1 can be expressed as a linear combination of the other Tj .

This conjecture may seem to be a simple generalization of Ornstein’s theorem. We warn the reader that
sometimes the anisotropic character of homogeneity brings new difficulties to inequalities for differential
operators (the main one being the lack of geometric tools such as the isoperimetric inequality, or the
coarea formula, etc.). For example, the classical embedding

W 1
1 (R

d) ↪→ Ld/(d−1)

due to Gagliardo and Nirenberg was generalized to the anisotropic case only in [Solonnikov 1972] and
additionally considered in [Kolyada 1993]; if one deals with similar embeddings for vector fields, the
isotropic case was successfully considered in [Van Schaftingen 2013] (see also the survey [Van Schaftingen
2014]), but there is almost no progress for the anisotropic case (however, see [Kislyakov et al. 2013; 2015]).

The method we use to attack the conjecture differs from that of Ornstein (though there are some
similarities). However, it is not new. It was noticed in [Conti et al. 2005] that Ornstein’s theorem is
related to the behavior of certain rank-one convex functions (for some special operators this link had
already been known; see [Iwaniec 2002]). The case d = 2 was considered there. As for the general case
of Ornstein’s (isotropic) theorem, its proof via rank-one convexity was announced in [Kirchheim and
Kristensen 2011] (and the proof is now available in the very recent preprint [Kirchheim and Kristensen
2016]). In a sense, we follow the plan suggested in [Kirchheim and Kristensen 2011]. However, the
notions of quasiconvexity, rank-one convexity and others should be properly adjusted to the anisotropic
world; we have not seen such an adjustment anywhere. For all these notions in the classical setting
of the first gradient, their relationship with each other, properties, etc., we refer the reader to the book
[Dacorogna 2008]. There are certain problems in the general anisotropic case that are not present in the
classical setting. For example, the existence of the elementary laminate is not quite clear; at least, the
classical reasoning does not work. Quasiconvexity still implies the rank-one convexity, but this requires a
new proof. The approach of rank-one convexity reduces Conjecture 1 to a certain geometric problem about
separately convex functions (Theorem 14) that is covered by Theorem 1 in [Kirchheim and Kristensen
2011] (Theorem 1.1 in [Kirchheim and Kristensen 2016]). We give a simple proof of this fact, which
is the second advantage of our paper (though our proof does not give the more advanced Theorem 1 of
[Kirchheim and Kristensen 2011]). We did not know of the preprint [Kirchheim and Kristensen 2016]
until shortly before the publication of the present text, and did our work independently. Discussion with
the authors of this preprint has shown that though the spirit of our approach in the geometric part is
similar to theirs, the presentation and details appear to be different.

We will prove a particular case of Conjecture 1, which still seems to be rather general (in particular, it
covers the classical isotropic case).
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Theorem 2. Let 3 be a pattern of homogeneity in Rd and let {Tj }
`
j=1 be 3-homogeneous differential

operators. Suppose all the monomials present in the Tj have the same parity of degree. If the inequality

‖T1 f ‖L1(Rd ) .
∑̀
j=2

‖Tj f ‖L1(Rd ) (1)

holds true for any f ∈ C∞0 (R
d), then T1 can be expressed as a linear combination of the other Tj .

We note that the differential operators here are not necessarily scalar; i.e., one can prove the same
theorem for the case where operators act on vector fields. It is one of the advantages of the general
rank-one convexity approach. However, to facilitate the notation, we work on the scalar case.

We outline the structure of the paper. We begin with restating inequality (1) as an extremal problem
described by a certain Bellman function (if inequality (1) holds, then the corresponding Bellman function
is nonnegative). We also study the properties of our Bellman function (they are gathered in Theorem 6),
the most important of which is the quasiconvexity. All this material constitutes Section 2. It turns out that
quasiconvexity leads to a softer, but easier to work with, property of rank-one convexity. The proof of
this fact is given in Section 3; see Theorem 9. So, the Bellman function in question is rank-one convex.
In Section 4, we prove that rank-one convex functions homogeneous of order one are nonnegative, which
gives us Theorem 2. In fact, it suffices to show a similar principle for separately convex functions on Rd,
which is formalized in Theorem 14. This theorem is purely convex geometric. Finally, we discuss related
questions in Section 5.

2. Bellman function and its properties

Inequality (1) can be rewritten as

inf
ϕ∈C∞0 ([0,1]

d )

(∑̀
j=2

‖Tjϕ‖L1(Rd )− c‖T1ϕ‖L1(Rd )

)
= 0, (2)

where c is a sufficiently small positive constant.

Definition 3. Suppose ∂α, α ∈ A, are all the partial derivatives that are present in the Tj (thus A is a
subset of 3∩Zd). Consider the Hilbert space E with an orthonormal basis eα indexed with the set A.
For each function ϕ and each point x , we have a mapping

[0, 1]d 3 x 7→ ·∇[ϕ](x)=
∑
α∈A

∂α[ϕ](x)eα ∈ E .

We call the function ·∇[ϕ] the generalized gradient of ϕ.

The operator ·∇[ · ] is an analogue of the usual gradient suitable for our problem.

Example 4. Let Tj = ∂x j for j = 1, . . . , d . In this case the generalized gradient turns out to be the usual
gradient on the Euclidean space Rd.
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Example 5. Let us take the differential operators

T1[ϕ] = ∂
(2,0,1)
[ϕ] − ∂(0,3,1)[ϕ], T2[ϕ] = ∂

(4,0,0)ϕ, T3[ϕ] = ∂
(0,6,0)
[ϕ], T4[ϕ] = ∂

(0,0,2)
[ϕ]. (3)

We can list all the partial derivatives present in the operators:

A =
{
∂(0,0,2), ∂(0,6,0), ∂(4,0,0), ∂(0,3,1), ∂(2,0,1)

}
.

All the operators Tj are 3-homogeneous, where 3 = {x ∈ R3
: 〈x, (3, 2, 6)〉 = 12}. In this case the

generalized gradient is of the form

·∇[ϕ] =
(
∂(0,0,2)[ϕ], ∂(0,6,0)[ϕ], ∂(4,0,0)[ϕ], ∂(0,3,1)[ϕ], ∂(2,0,1)[ϕ]

)
∈ R5.

We also consider the function V : E→ R given by the rule

V (e)=
(∑̀

j=2

|T̃j e| − c|T̃1e|
)
, (4)

where the T̃j are the linear functionals on E such that T̃j (e)=
∑

A cα,j eα if Tj =
∑

A cα, j∂
α. With this

bit of abstract linear algebra, we rewrite formula (2) as

inf
ϕ∈C∞0 ([0,1]

d )

∫
[0,1]d

V ( ·∇[ϕ](x)) dx = 0.

The main idea is to consider a perturbation of this extremal problem, i.e., the function B : E→ R given
by the formula

B(e)= inf
ϕ∈C∞0 ([0,1]

d )

∫
[0,1]d

V (e+ ·∇[ϕ](x)) dx . (5)

Theorem 6. Suppose that inequality (2) holds true. Then, the function B possesses the properties listed
below.

(1) It satisfies the inequalities −‖e‖. B(e). ‖e‖ and B 6 V .

(2) It is one-homogeneous; i.e., B(λe)= |λ|B(e).

(3) It is a Lipschitz function.

(4) It is a generalized quasiconvex function; i.e., for any ϕ ∈ C∞0 ([0, 1]d) and any e ∈ E the inequality

B(e)6
∫
[0,1]d

B(e+ ·∇[ϕ](x)) dx (6)

holds true.

Proof. (1) We get the upper estimates on the function B by plugging ϕ ≡ 0 in the formula for it:

B(e)6
∫
[0,1]d

V (e+ ·∇[ϕ])= V (e). ‖e‖.
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We obtain the lower bounds on the function B from inequality (2) and the triangle inequality:∫
[0,1]d

(∑̀
j=2

|T̃j (e+ ·∇[ϕ])|−c|T̃1(e+ ·∇[ϕ])|
)
>
∫
[0,1]d

(∑̀
j=2

|T̃j (e+ ·∇[ϕ])|−c|T̃1( ·∇[ϕ])|−c|T̃1e|
)

>
∫
[0,1]d

(∑̀
j=2

|T̃j (e+ ·∇[ϕ])|−
∑̀
j=2

|T̃j ( ·∇[ϕ])|−c|T̃1e|
)

=

∫
[0,1]d

(∑̀
j=2

(
|T̃j (e+ ·∇[ϕ])|−|T̃j ( ·∇[ϕ])|

)
−c|T̃1e|

)

>−
∑̀
j=2

|T̃j e|−c|T̃1e|,

where ϕ ∈ C∞0 ([0, 1]d) is an arbitrary function. We take infimum of the above inequality over all
admissible ϕ:

−‖e‖.−
∑̀
j=2

|T̃j e| − c|T̃1e|6 B(e).

(2) Since V is a one-homogeneous function, the following equality holds for every λ 6= 0:

B(λe)= inf
ϕ∈C∞0 ([0,1]

d )

∫
[0,1]d

V (λe+ ·∇[ϕ])= inf
ϕ∈C∞0 ([0,1]

d )

∫
[0,1]d
|λ|V (e+ ·∇[λ−1ϕ]).

We know that λ−1C∞0 ([0, 1]d)= C∞0 ([0, 1]d) for every λ 6= 0; therefore

B(λe)= inf
ϕ∈C∞0 ([0,1]

d )

∫
[0,1]d
|λ|V (e+ ·∇[λ−1ϕ])= |λ| inf

ϕ∈C∞0 ([0,1]
d )

∫
[0,1]d

V (e+ ·∇[ϕ])= |λ|B(e).

(3) In order to get the Lipschitz continuity of B, we rewrite the formula for it:

for all e ∈ E, B(e)= inf
ϕ∈C∞0 ([0,1]

d )
Vϕ(e),

where

Vϕ(e)=
∫
[0,1]d

V (e+ ·∇[ϕ](x)) dx .

It follows from the Lipschitz continuity of V that every function Vϕ is a Lipschitz function with the
Lipschitz constant bounded by L , where L is the Lipschitz constant of the function V. For every two
points v1, v2 ∈ E , we can find a sequence of functions Vϕn such that B(v j )= infn∈N Vϕn (v j ) for j ∈ {1, 2}.
We define

fk(e)= min
n=1,2,...,k

Vϕn (e).

For every k ∈N the function fk is the Lipschitz function with the Lipschitz constant bounded by L . Hence

|B(v1)− B(v2)| = lim
k→∞
| fk(v1)− fk(v2)|6 L‖v1− v2‖.
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(4) Before we prove the generalized quasiconvexity of this function, we need to introduce some notation.
We know that all α ∈ A have common pattern of homogeneity 3; thus we can find a vector γ ∈Nd and a
number k ∈ N such that 〈α, γ 〉 = k for every α ∈ A.

For every λ ∈ R and x ∈ Rd, we define

xλ = (λγ1 x1, λ
γ2 x2, . . . , λ

γd xd).

For every λ ∈ N we define the partition of the unit cube [0, 1]d into small parallelepipeds:

Q y = y+
d∏

j=1

[0, λ−γ j ] for every y ∈ Y,

where

Y =
{

y ∈ [0, 1]d : y =
(
κ1

λγ1
,
κ2

λγ2
, . . . ,

κd

λγd

)
for κ j ∈ N∪ {0} and κ j < λ

γ j

}
.

Here Y is the set of “leftmost lowest” vertices of the parallelepipeds Q y . The parallelepipeds Q y are
disjoint up to sets of measure zero and

⋃
y∈Y Q y = [0, 1]d. Let us fix ϕ ∈ C∞0 ([0, 1]d). Since ·∇[ϕ] is

a uniformly continuous function on [0, 1]d and the diameter of the parallelepipeds Q y tends to zero
uniformly with the growth of λ, we can choose λ sufficiently large to obtain

for all y ∈ Y, for all z, v ∈ Q y,
∣∣ ·∇[ϕ](z)− ·∇[ϕ](v)∣∣6 ε

L
, (7)

where L is the Lipschitz constant of the function V. Let {ψy}y∈Y be a family of functions in C∞0 ([0, 1]d).
For these functions, we use the rescaling

ψy,λ(x)= λ−kψy((x − y)λ).

Let us observe that the rescaling (x − y)λ transforms the cube [0, 1]d into Q y; thus suppψy,λ ⊂ Q y .
Moreover, we know that

∂α[ψy,λ](x)= λ−kλ(
∑d

j=1 α jγ j)∂α[ψy]((x − y)λ)= ∂α[ψy]((x − y)λ)

for every α ∈ A. By (5), we have

B(e)6
∫
[0,1]d

V
(

e+
∑
y∈Y

·∇[ψy,λ](x)+ ·∇[ϕ](x)
)

dx =
∑
y∈Y

∫
Q y

V
(
e+ ·∇[ψy,λ](x)+ ·∇[ϕ](x)

)
dx .

We assumed that (7) holds; therefore, for arbitrary vy ∈ Q y we have the estimate∫
Q y

V
(
e+ ·∇[ψy,λ](x)+ ·∇[ϕ](x)

)
dx 6

∫
Q y

V
(
e+ ·∇[ψy,λ](x)+ ·∇[ϕ](vy)

)
dx + ε|Q y|

=

∫
Q y

V
(
e+ ·∇[ψy]((x − y)λ)+ ·∇[ϕ](vy)

)
dx + ε|Q y|.

Since λ−(
∑d

j=1 γ j) = |Q y|, we have∫
Q y

V
(
e+ ·∇[ψy]((x − y)λ)+ ·∇[ϕ](vy)

)
dx = |Q y|

∫
[0,1]d

V
(
e+ ·∇[ψy](z)+ ·∇[ϕ](vy)

)
dz
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for z = (x − y)λ. Now for every y ∈ Y and vy ∈ Q y we can choose ψy such that∫
[0,1]d

V
(
e+ ·∇[ψy](z)+ ·∇[ϕ](vy)

)
dz 6 B(e+ ·∇[ϕ](vy))+ ε

(this choice depends on vy , however, we treat vy as of a fixed parameter). We obtain

B(e)6
∑
y∈Y

|Q y|B(e+ ·∇[ϕ](vy))+ 2ε

from the above inequalities. We take mean integrals of this inequality over each cube Q y with respect
to vy , which gives us

B(e)6
∑
y∈Y

∫
Q y

B(e+ ·∇[ϕ](vy)) dvy + 2ε =
∫
[0,1]d

B(e+ ·∇[ϕ](x)) dx + 2ε.

Since ε was an arbitrary positive number, we have proved the generalized quasiconvexity of B. �

The proof of the fourth point seems very similar to the standard Bellman induction step (see [Nazarov
et al. 2001; Osękowski 2012; Stolyarov and Zatitskiy 2016; Volberg 2011] or any other paper on the
Bellman function method in probability or harmonic analysis); moreover, the function B itself is, in a
sense, a Bellman function and inequality (6) is a Bellman inequality. We suspect that this “similarity”
should be more well-studied.

3. Rank-one convexity

Inequality (6) looks like a convexity inequality. Sometimes that is really the case.

Definition 7. We call a vector ex ∈ E a generalized rank-one vector if it is of the form∑
α∈A

i |α|+|α0|xαeα, x ∈ Rd, α0 ∈ A.

Remark 8. In Theorem 2, we only consider the case where every α ∈ A has the same parity as the other
elements of A. Therefore, i |α|+|α0| ∈ R for every α0, α ∈ A. Hence the coefficients of the generalized
rank-one vector are real.

Theorem 9. The function B is a generalized rank-one convex function; i.e., it is convex in the directions
of generalized rank-one vectors.

To prove the theorem, we need two auxiliary lemmas.

Lemma 10. For every x ∈ Rd and every ε, δ > 0, there exists a function lx,ε,δ ∈ C∞0 ([0, 1]d) and a set
B ⊂ [0, 1]d such that the following hold.

(1) ‖ ·∇[lx,ε,δ]‖6 ‖ex‖+ ε.

(2) |B|> 1− δ.
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(3) The function ·∇[lx,ε,δ]|B with respect to the measure µ = |B|−1 dx |B is equimeasurable with the
function cos(2π t)ex , t ∈[0, 1]; i.e.,

µ
(
{ ·∇[lx,ε,δ] ∈W }

)
=
∣∣{t ∈ [0, 1] : cos(2π t)ex ∈W

}∣∣
for every Borel set W in E.

Proof. For a given x ∈ Rd we take the same γ and k as in the proof of the fourth point of Theorem 6. We
consider the function

lx,ε,δ(ξ)= t−k cos
( d∑

j=1

tγ j x jξ j

)
8(ξ),

where 8 is the smooth hat function:

8(ξ)=


1, ξ ∈ [2δ′, 1− 2δ′]d,
0, ξ ∈ [0, 1]d\[δ′, 1− δ′]d,
Θ(ξ) ∈ [0, 1], otherwise

for δ′ sufficiently small (in particular, we need 2(2δ′)d < δ). Similarly to the fourth point of Theorem 6,
we define the set of proper parallelepipeds

Yt =

{
Q : Q = (k jv j ) j=1,...,d +

d∏
j=1

[0, w j ], k j ∈ {1} ∪
{

k j ∈ N : k j <
tγ j x j

2π
− 1

}}
,

where v j =w j = 2π t−γ j x−1
j if x j 6= 0 and v j = δ

′, w j = (1−2δ′) otherwise. For any δ′, we can choose t
to be so large that ∣∣∣∣ ⋃

Q∈Yt
Q⊂[2δ′,1−2δ′]d

Q
∣∣∣∣> 1− δ.

We put B to be this union, i.e., the union of the parallelepipeds Q from the family Yt that belong to
[2δ′, 1− 2δ′]d entirely.

If t is sufficiently large, then for every β ∈ Nd satisfying 06 〈β, γ 〉< k, we have

sup
ξ∈[0,1]d

|t−1∂β[8](ξ)|6 ε′. (8)

For any β ∈ Nd,

∂β
[

cos
( d∑

j=1

tγ j x jξ j

)]
=t 〈β,γ 〉xβ∂β[cos]

( d∑
j=1

tγ j x jξ j

)
.

Since all α ∈ A have the same parity, we either have ∂α[cos](ξ) = (−1)|α|/2 cos(ξ) for every α ∈ A
or ∂α[cos](x)= (−1)(|α|+1)/2 sin(ξ) for every α ∈ A. Without loss of generality we may assume 2

∣∣ |α|,
because the functions sine and cosine are equimeasurable on their periodic domains. Therefore, for every
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ξ ∈ [0, 1]d and α ∈ A we have

∂α[lξ,ε,δ](ξ)=8(ξ)∂α
[

t−k cos
( d∑

j=1

tγ j x jξ j

)]
+

∑
α′+β=α

β 6=(0,0,...,0)

cα′,β t−k∂α
′

[
cos
( d∑

j=1

tγ j x jξ j (x)
)]
∂β[8]

=8(ξ)xα∂α[cos]
( d∑

j=1

tγ j x jξ j

)
+

∑
α′+β=α

β 6=(0,0,...,0)

cα′,β t 〈α
′,γ 〉−k∂α

′

[cos]
( d∑

j=1

tγ j x jξ j (x)
)
∂β[8]

= (−1)|α|/2xα cos
( d∑

j=1

tγ j x jξ j

)
+ error, (9)

where the coefficients cα′,β come from the Leibniz formula. The error is O(ε′) in absolute value by (8) and
is equal to zero on the set [2δ′, 1− 2δ′]d (because the function 8 is constant there). For every ξ ∈ [0, 1]d

we have

·∇[lξ,ε,δ](ξ)=
∑
α∈A

∂α[lξ,ε,δ](ξ)eα =
∑
α∈A

(
(−1)|α|/2xα cos

( d∑
j=1

tγ j x jξ j

)
+ error

)
eα

= ex cos
( d∑

j=1

tγ j x jξ j

)
+ error.

Thus, for every ξ ∈ [0, 1]d and ε′ sufficiently small, we obtain

‖ ·∇[lξ,ε,δ](ξ)‖6 ‖ex‖+‖error‖6 ‖ex‖+ ε.

Since the error is equal to zero on the set [2δ′, 1− 2δ′]d, it follows from (9) that for every ξ ∈ B we have

·∇[lξ,ε,δ](ξ)= cos
( d∑

j=1

tγ j x j ξ j

)
ex .

We note that the function cos
(∑d

j=1 tγ j x jξ j
)
ex restricted to any Q ∈ Yt is equimeasurable (with respect

to the measure dx/|Q| on Q) with the function cos(2π t)ex , t ∈[0, 1] (one can verify this fact using an
appropriate dilation). Since B is a union of several parallelepipeds Q, the same holds with Q replaced
by B. �

Lemma 11. Suppose v : R→ R is a Lipschitz function such that

v(x)6
∫ 1

0
v(x + λ cos(2π t)) dt (10)

for any x, λ ∈ R. Then v is convex.

Proof. We are going to verify that v is convex as a distribution, or equivalently, that the distribution v′′

is nonnegative. For that, we multiply inequality (10) by a positive function ϕ ∈ C∞0 (R). Since v is a
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Lipschitz function, we can integrate it over R:∫
R

v(x)ϕ(x) dx 6
∫

R

∫ 1

0
v(x + λ cos(2π t))ϕ(x) dt dx =

∫
R

∫ 1

0
v(x)ϕ(x − λ cos(2π t)) dt dx

=

∫
R

v(x)
∫ 1

0

(
ϕ(x)− λ cos(2π t)ϕ

′

(x)+ 1
2λ

2 cos2(2π t)ϕ′′(x)+ o(λ2)
)

dt dx

=

∫
R

(
v(x)ϕ(x)+ v(x)ϕ′′(x) 1

2λ
2
(∫ 1

0
cos2(2π t)

)
+ o(λ2)

)
dx .

Therefore,

06 1
2

(∫ 1

0
cos2(2π t) dt

)∫
R

v(x)ϕ′′(x) dx +
o(λ2)

λ2 .

Letting λ→ 0, we show that v′′ as a distribution satisfies v′′(ϕ)> 0 for all ϕ ∈ C∞0 (R) and ϕ > 0. From
the Schwartz theorem it follows that v′′ is a nonnegative measure of locally finite variation. Thus v′ is an
increasing function and therefore v is convex. �

Proof of Theorem 9. The function B is a generalized quasiconvex function; hence it satisfies (6) for every
ϕ ∈ C∞0 ([0, 1]d). Let us fix x ∈ Rd, λ ∈ R. We plug λlx,ε,δ into (6). We get (for every e ∈ E)

B(e)6
∫
[0,1]d

B(e+ ·∇[λlx,ε,δ])=

∫
B

B(e+ ·∇[λlx,ε,δ])+

∫
[0,1]d\B

B(e+ ·∇[λlx,ε,δ])

6
∫

B
B(e+ ·∇[λlx,ε,δ])+ O

(
λ(‖e‖+‖ex‖+ ε)δ

)
by Lemma 10. Since ·∇[lx,ε,δ]|B is equimeasurable (B equipped with the measure dx/|B|) with cos(2π t)ex ,∫

B
B(e+ ·∇[λlx,ε,δ])

dx
|B|
=

∫
[0,1]

B(e+ λ cos(2π t)ex) dt.

Therefore,

B(e)6 |B|
∫
[0,1]

B(e+ λ cos(2π t)ex) dt + O
(
λ(‖e‖+‖ex‖+ ε)δ

)
.

Since for δ→ 0, we have |B| → 1, we get

B(e)6
∫
[0,1]

B(e+ λ cos(2π t)ex) dt. (11)

For a fixed e ∈ E , consider the function R 3 s 7→ B(e+ sex). By (11),

B(e+ sex)6
∫
[0,1]

B(e+ sex + λ cos(2π t)ex) dt.

Thus, by Lemma 11, the function R 3 s 7→ B(e+ sex) is convex (one simply applies the lemma to this
function). Since e ∈ E and x ∈ Rd, λ ∈ R were arbitrary, this proves the generalized rank-one convexity
of the function B. �
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4. Separately convex homogeneous functions and proof of Theorem 2

Lemma 12. Generalized rank-one vectors span E.

Proof. Since E is a finite-dimensional Hilbert space, every functional on E is of the form ϕ∗( · ) =〈∑
α∈A aαeα, ·

〉
. We get

ϕ∗(ex)=
∑
α∈A

aα xαi |α|+|α0|

for every x ∈ Rd. If E is not a span of generalized rank-one vectors, then there exists a nontrivial ϕ∗ such
that

0= ϕ∗(ex)=
∑
α∈A

aαxαi |α|+|α0|

for every x ∈ Rd. However, xα are linearly independent monomials. Therefore, aα = 0 for every α ∈ A.
Hence ϕ∗ ≡ 0 and the generalized rank-one vectors span E . �

We recall that our aim was to show that T1 is a linear combination of the other Tj . By comparing the
kernels of the T̃j , it is equivalent to the fact that V > 0 everywhere. By the evident inequality B 6 V, it
suffices to prove that B is nonnegative. By Lemma 12 and Theorem 9, this will follow from the theorem
below. Hence it suffices to prove Theorem 14 to get Theorem 2.

Definition 13. A function F : Rd
→ R is separately convex if it is convex with respect to each variable.

Theorem 14. A function F : Rd
→ R that is separately convex and homogeneous of order one is

nonnegative.

Before moving to the proof, we cite [Dacorogna 2008, Theorem 2.31], which says that a separately
convex function is continuous. This fact will be implicitly used several times in the reasoning below.

Proof. We proceed by induction. Suppose the statement of the theorem holds true for the dimension d−1.
We then prove it for the dimension d . Construct the function G : Rd−1

→ R by the formula

G(x)= F(x, 1), x ∈ Rd−1.

This function is separately convex and convex with respect to radius, i.e., for every x ∈ Rd−1 the function
R+ 3 t 7→G(t x) is a convex function. Indeed, the function F is one-homogeneous and separately convex;
thus for t, r > 0 and τ ∈ (0, 1) we have

τG(t x)+ (1− τ)G(r x)= τ F(t x, 1)+ (1− τ)F(r x, 1)

= (τ t + (1− τ)r)
(
τ t F

(
x, 1

t

)
+ (1− τ)r F

(
x, 1

r

)
τ t + (1− τ)r

)
> (τ t + (1− τ)r)F

(
x,

1
τ t + (1− τ)r

)
= F

(
(τ t + (1− τ)r)x, 1

)
= G

(
(τ t + (1− τ)r)x

)
.



362 KRYSTIAN KAZANIECKI, DMITRIY M. STOLYAROV AND MICHAŁ WOJCIECHOWSKI

We claim that for each x ∈ Rd−1, the function R 3 t 7→ G(t x) is convex. Since the function G is
continuous, it suffices to prove that G(t x)+G(−t x)> G(0) for all t ∈ R. Consider another function V :

V (x)= lim
t→0+

G(t x)+G(−t x)− 2G(0)
t

, x ∈ Rd−1.

The limit exists due to the convexity with respect to radius. This function V is one-homogeneous and
separately convex. However, it may have attained the value −∞. Fortunately, this is not the case. If there
exists x ∈ Rd such that V (x)=−∞ then

2V (0, x2, . . . , xd)6 V (x1, . . . , xd)+ V (−x1, . . . , xd)=−∞.

Therefore V (0, x2, . . . , xd)=−∞. We repeat the above reasoning with x2, . . . , xd instead of x1 and we
get V (0)=−∞, but from the definition of V we know that

V (0)= lim
t→0+

G(0)+G(0)− 2G(0)
t

= 0.

Hence V (x) is finite for every x ∈ Rd−1. Thus, by the induction hypothesis, V is nonnegative. So,
R 3 t 7→ G(t x) is a convex function.

By symmetry, G(x)+G(−x)> 2F(x, 0). On the other hand, limt→±∞ G(t x)/t = F(x, 0). So, the
convexity of t 7→ G(t x) gives the inequality |G(x)−G(−x)|6 2F(x, 0). Adding these two inequalities,
we get F(x, 1)> 0. �

Proof of Theorem 2. Assume that inequality (1) holds. Then, by Theorem 6, the function B given by (5)
is Lipschitz, one-homogeneous, generalized quasiconvex, and satisfies the inequality B 6 V , where the
function V is given by formula (4). Then, by Theorem 9, B is a generalized rank-one convex function.

Let e ∈ E be an arbitrary point. By Lemma 12, e is a linear combination of generalized rank-one
vectors ex1, ex2, . . . , exk . We may assume that they are linearly independent. Consider the function
F : Rk

→ R given by the rule

F(z1, z2, . . . , zk)= B(z1ex1 + z2ex2 + · · ·+ zkexk ).

By the generalized rank-one convexity of B, we see that F is separately convex. It is also one-
homogeneous; thus F > 0 by Theorem 14. Therefore, B(e) is also nonnegative for arbitrary e ∈ E .

Since B > 0, we have V > 0. In such a case, it follows from formula (4) that Ker T̃1 ⊃
⋂`

j=2 Ker T̃j .
Therefore, T1 is a linear combination of the other Tj . �

5. Related questions

5.1. Towards Conjecture 1. The following statement plays the same role in view of Conjecture 1 as
Theorem 14 plays in the proof of Theorem 2.

Conjecture 15. Let F : R2d
→ R be a Lipschitz homogeneous function of order one. Suppose that for

any j = 1, 2, . . . , d the function F is subharmonic with respect to the variables (x j , x j+d). Then, F is
nonnegative.
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Indeed, plugging the cosine function into (6) as we did in the proof of Theorem 9 leads to “sub-
harmonicity”1 of the function B in the directions of projections of a generalized rank-one vector onto
subspaces generated by odd and even monomials in A correspondingly. Therefore, Conjecture 1 follows
from Conjecture 15.

We are not able to prove Conjecture 15. However, we know the following: in the case d = 1, the
function F is not only nonnegative, but, in fact, convex (i.e., a one-homogeneous subharmonic function is
convex). On the other hand, there is not much hope for simplifications: a subharmonic one-homogeneous
function in R3 (and thus in Rd, d > 3) can attain negative values; e.g., in R4 one may take the function

x2
1 + x2

2 + x2
3 − x2

4√
x2

1 + x2
2 + x2

3

.

There are also reasons that differ from the ones discussed in the present paper that may “break”
inequality (1). One of them is a certain geometric property of the spaces generated by the operators Tj .
Not stating any general theorem or conjecture, we treat an instructive example. Consider the noninequality

‖∂2
1∂2 f ‖L1 . ‖∂

4
1 f ‖L1 +‖∂

2
2 f ‖L1 . (12)

Conjecture 1 suggests that it cannot be true. We will disprove it on the torus T2 and leave to the reader
the rigorous formulation and proof of the corresponding transference principle, whose heuristic form is
“inequalities of the sort (1) are true or untrue simultaneously on the torus and the Euclidean space”. Consider
two anisotropic homogeneous Sobolev spaces W1 and W2, which are obtained from the set of trigonometric
polynomials by completion and factorization over the null-space with respect to the seminorms

‖ f ‖W1 = ‖∂
4
1 f ‖L1 +‖∂

2
2 f ‖L1, ‖ f ‖W2 = ‖∂

2
1∂2 f ‖L1 +‖∂

4
1 f ‖L1 +‖∂

2
2 f ‖L1 .

If inequality (12) holds true, then these two spaces are, in fact, equal (the identity operator is a Banach-
space isomorphism between these spaces). However, it follows from the results of [Pełczyński and
Wojciechowski 1992] (see [Wojciechowski 1991; 1993] as well) that W2 has a complemented translation-
invariant Hilbert subspace,2 whereas W1 does not, a contradiction.

Martingale transforms. Let S = {Sn}n , n ∈ {0} ∪N, be an increasing filtration of finite algebras on the
standard probability space. We suppose that it differentiates L1 (i.e., for any f ∈ L1(�) the sequence
E( f | Sn) tends to f almost surely). We will be working with martingales adapted to this filtration.

Definition 16. Let α = {αn}n be a bounded sequence. The linear operator

Tα[ f ] =
∞∑
j=1

α j−1( f j − f j−1), f = { fn}n is an L1 martingale,

is called a martingale transform.

1The “subharmonicity” means that D B > 0 as a distribution, where D is an elliptic symmetric differential operator of second
order (with constant real coefficients); one can then pass to usual subharmonicity by an appropriate change of variable.

2That means that there exists a subspace X ⊂ W2 such that g ∈ X whenever g( · + t) ∈ X , t ∈ T2, X is isomorphic to an
infinite-dimensional Hilbert space, and there exists a continuous projector P :W2→ X .
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Our definition is not as general as the usual one, and we refer the reader to the book [Osękowski 2012] for
the information about such operators. We only mention that martingale transforms serve as a probabilistic
analogue for the Calderón–Zygmund operators. Here is the probabilistic version of Conjecture 1.

Conjecture 17. Suppose α1, α2, . . . , α` are bounded sequences. Suppose that the algebras Sn uniformly
grow; i.e., there exists γ < 1 such that each atom a of Sn is split in Sn+1 into atoms of probability not
greater than γ |a| each. The inequality

‖Tα1 f ‖L1 .
∑̀
j=2

‖Tα j f ‖L1 (13)

holds for any martingale f adapted to {Sn}n if and only if α1 is a sum of a linear combination of the α j

and an `1 sequence.

We do not know whether the condition of uniform growth fits this conjecture. Anyway, it is clear that
one should require some condition of this sort (otherwise one may take Sn = Sn+1 = · · · = Sn+k very
often and lose all the control of the sequences α j on these time intervals). Again, we are not able to prove
the conjecture in the full generality, but will deal with an important particular case.

Theorem 18. Suppose α1, α2, . . . , α` to be bounded periodic sequences. The inequality

‖Tα1 f ‖L1 .
∑̀
j=2

‖Tα j f ‖L1

holds if and only if α1 is a linear combination of the other α j.

Proof. To avoid technicalities, we will be working with finite martingales (denote the class of such
martingales by M). The general case can be derived by stopping time. Assume that inequality (13) holds
true. Consider the Bellman function B : R`→ R given by the formula

B(x)= inf
f ∈M

(∑̀
j=2

∥∥x j + Tα j [ f ]
∥∥

L1
− c

∥∥x1+ Tα1[ f ]
∥∥

L1

)
.

It is easy to verify that this function is one-homogeneous and Lipschitz. Moreover, B is convex in the
direction of (α1

n, α
2
n, . . . , α

`
n) for each n (by the assumption of periodicity, there is only a finite number

of these vectors); the proof of this assertion is a simplification of Theorem 9 (here we do not have
to make additional approximations; however, see [Stolyarov and Zatitskiy 2016, Lemma 2.17] for a
very similar reasoning). Thus, by Theorem 14, B is nonnegative on the span of {(α1

n, α
2
n, . . . , α

`
n)}n .

Since B(x)6
∑

j>2 |x j | − c|x1|, the aforementioned span does not contain the x1-axis. Therefore, α1 is
a linear combination of the other α j. �

Case p > 1. Inequality (1) may become valid provided one replaces the L1 norm with the L p one,
1< p <∞. Let cp be the best possible constant in the inequality

‖T1 f ‖p
L p(Rd )

6 cp

∑̀
j=2

‖Tj f ‖p
L p(Rd )

. (14)
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It is interesting to compute the asymptotics of cp as p→ 1. Some particular cases have been considered
in [Berkson et al. 2001]; we also refer the reader there for a discussion of similar questions.

Conjecture 19. Let3 be a pattern of homogeneity in Rd and let {Tj }
`
j=1 be a collection of3-homogeneous

differential operators. If T1 cannot be expressed as a linear combination of the other Tj , then cp &
1

p−1 .

The conjecture claims that if there is no continuity at the endpoint, then the inequality behaves at least
as if it had a weak type (1, 1) there (it is also interesting to study when there is a weak type (1, 1) indeed).
First, we note that this question is interesting even when there are only two polynomials. Second, this is
only a bound from below for cp. Even in the case of two polynomials, cp can be as big as (p− 1)1−d

(and thus the endpoint inequality may not be of weak type (1, 1), at least when d > 3); see [Berkson et al.
2001] for the example.

Conjecture 19 will follow from the corresponding geometric statement in the spirit of Theorem 14.

Conjecture 20. Let F :Rd
→R be a separately convex p-homogeneous function (i.e., F(λx)=|λ|p F(x)).

Suppose F(x)6 |x |p. Then, F(x)& (1− p)|x |p.

Conjecture 19 is derived from Conjecture 20 in the same way as Theorem 2 is derived from Theorem 14:
one considers the Bellman function (5) with the function V given by the formula

V (e)=
(

cp

∑̀
j=2

|T̃j e|p − |T̃1e|p
)
,

proves its generalized quasiconvexity, which leads to the generalized rank-one convexity, and then uses
Conjecture 20 to estimate cp from below.

It is not difficult to verify the case d = 2 of Conjecture 20. Therefore, there exists a C∞0 -function f p

such that
(p− 1)‖∂1∂2 f p‖L p(R2) &

(
‖∂2

1 f p‖L p(R2)+‖∂
2
2 f p‖L p(R2)

)
.
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