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Let E ⊂ Rn+1, n ≥ 2, be an Ahlfors–David regular set of dimension n. We show that the weak-A∞
property of harmonic measure, for the open set � := Rn+1

\ E , implies uniform rectifiability of E . More
generally, we establish a similar result for the Riesz measure, p-harmonic measure, associated to the
p-Laplace operator, 1< p <∞.
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1. Introduction

In this paper we prove quantitative, scale invariant results of free boundary type, for harmonic measure and,
more generally, for p-harmonic measure. More precisely, let �⊂ Rn+1 be an open set (not necessarily
connected nor bounded) satisfying an interior corkscrew condition, whose boundary is n-dimensional
Ahlfors–David regular (ADR) (see Definition 2.1). Given these background hypotheses we prove that
if ω, the harmonic measure for �, is absolutely continuous with respect to σ , and if the Poisson kernel
k = dω/dσ verifies an appropriate scale invariant higher integrability estimate (in particular, if ω belongs
to weak-A∞ with respect to σ ), then ∂� is uniformly rectifiable in the sense of [David and Semmes 1991;
1993]; see Theorem 1.1 and Corollary 1.5 below. In particular, our background hypotheses hold in the
case that � := Rn+1

\ E is the complement of an ADR set of codimension 1, as in that case it is well
known that the corkscrew condition is verified automatically in �, i.e., in every ball B = B(x, r) centered
on E , there is some component of �∩ B that contains a point Y with dist(Y, E)≈ r . Furthermore, our
argument is general enough to allow us to establish a nonlinear version of Theorem 1.1 (see Theorem 1.12
below) involving the p-Laplace operator, p-harmonic functions, and p-harmonic measure.
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To briefly outline previous work, in [Hofmann et al. 2014] the first and third authors, together with
I. Uriarte-Tuero, proved the same result (cf. Theorem 1.1 and Corollary 1.5) under the additional strong
hypothesis that � is a connected domain, satisfying an interior Harnack chain condition. In hindsight,
under that extra assumption, one obtains the stronger conclusion that the exterior domain Rn+1

\� in
fact also satisfies a corkscrew condition, and hence that � is an NTA domain in the sense of [Jerison and
Kenig 1982]; see [Azzam et al. 2014] for the details. Compared to [Hofmann et al. 2014] the main new
advances in the present paper are two. First, we remove any connectivity hypothesis; in particular, we
avoid the Harnack chain condition. Second, we are able to establish a version of our results also in the
nonlinear case 1 < p <∞. Our main results — Theorem 1.1, Corollary 1.5, and Theorem 1.12 — are
new even in the linear case p = 2.

Our approach is decidedly influenced by prior work of Lewis and Vogel [2006; 2007]. In particular, a
version of Theorem 1.12 and Theorem 1.1 was proved in [Lewis and Vogel 2007], under the stronger
hypothesis that p-harmonic measure µ itself is an Ahlfors–David regular measure, which in the linear
case p = 2 implies that the Poisson kernel is a bounded, accretive function, i.e., k ≈ 1. However, to
weaken the hypotheses on ω and µ, as we have done here, requires further considerations, which we
discuss below in Section 1B.

To provide some additional context, we mention that out results here may be viewed as “large constant”
analogues of results of Kenig and Toro [2003] in the linear case p = 2, and of J. Lewis and Nyström
[2012], in the general p-harmonic case 1 < p < ∞. These authors show that in the presence of a
Reifenberg flatness condition and Ahlfors–David regularity, log k ∈ VMO implies that the unit normal
ν to the boundary belongs to VMO, where k is either the Poisson kernel with pole at some fixed point
or the density of p-harmonic Riesz measure associated to a particular ball B(x, r). Moreover, under
the same background hypotheses, the condition ν ∈ VMO is equivalent to a uniform rectifiability (UR)
condition with vanishing trace. Thus log k ∈VMO=⇒ vanishing UR, given sufficient Reifenberg flatness.
On the other hand, our large constant version “almost” says “log k ∈ BMO=⇒ UR”. Indeed, it is well
known that the A∞ condition, i.e., weak-A∞ plus the doubling property, implies that log k ∈ BMO,
while if log k ∈ BMO with small norm, then k ∈ A∞. We further note that, in turn, the results of
[Kenig and Toro 2003] may be viewed as an “endpoint” version of the free boundary results of [Alt
and Caffarelli 1981; Jerison 1990], which establish, again in the presence of Reifenberg flatness, that
Hölder continuity of log k implies that of the unit normal ν (and indeed, that ∂� is of class C1,α for
some α > 0).

1A. Statement of main results. Given an open set �⊂ Rn+1, and a Euclidean ball B = B(x, r)⊂ Rn+1

centered on ∂�, we let 1=1(x, r) := B ∩ ∂� denote the corresponding surface ball. For X ∈�, let ωX

be harmonic measure for �, with pole at X . As mentioned above, all other terminology and notation will
be defined below.

Concerning the Laplace operator and harmonic measure we prove the following results.

Theorem 1.1. Let�⊂Rn+1, n≥ 2, be an open set whose boundary is Ahlfors–David regular of dimension
n (see Definition 2.1). Suppose that there are positive constants C0 and c0, and an exponent q > 1, such
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that for every surface ball1=1(x, r), with x ∈ ∂� and 0< r < diam(∂�), there exists X1 ∈ B(x, r)∩�,
with dist(X1, ∂�)≥ c0r , satisfying

(?) scale-invariant higher integrability: ωX1 � σ in 21, and k X1 := dωX1/dσ satisfies∫
21

k X1(y)q dσ(y)≤ C0σ(1)
1−q . (1.2)

Then ∂� is uniformly rectifiable and moreover the “UR character” (see Definition 2.4) depends only on n,
the ADR constants, q , c0, and C0.

The point X1 in Theorem 1.1 is a “corkscrew point” for �, relative to 1. An open set � for which
there is such a point relative to every surface ball 1(x, r), x ∈ ∂�, 0< r < diam(∂�), with a uniform
constant c0, is said to satisfy the “corkscrew condition” (see Definition 2.5 below).

Remark 1.3. We note that, in lieu of absolute continuity and (?), only the following apparently weaker
condition is actually used in the proof of Theorem 1.1:

(??) local nondegeneracy: there exist uniform constants η, β >0 such that if A⊂1 is Borel measurable,
then

σ(A)≥ (1− η)σ (1) =⇒ ωX1(A)≥ βωX1(1).1 (1.4)

Here1=1(x, r) for x ∈ ∂� and 0<r <diam(∂�), and X1∈ B(x, r/2)∩�with dist(X1, ∂�)≥ c0r/2.2

We observe that there turns out to be some flexibility in the choice of X1 (see the discussion at the
beginning of Section 4), and consequently it is not hard to see that (?) implies (??); see Lemma 4.3.

We also have the following easy corollary of Theorem 1.1 (we shall give the short proof of the corollary
in Section 5D).

Corollary 1.5. Let �⊂ Rn+1, n ≥ 2, be an open set satisfying the corkscrew condition, whose boundary
is Ahlfors–David regular of dimension n. Suppose further that for every ball B = B(x, r) with x ∈ ∂� and
0 < r < diam(∂�), and every Y ∈ � \ B(x, 2r), harmonic measure ωY belongs to weak-A∞(1(x, r)),
i.e., there is a constant C0 ≥ 1 and an exponent q > 1, each of which is uniform with respect to x , r , and
Y , such that ωY

� σ in 1(x, r), and kY
= dωY /dσ satisfies(

−

∫
1′

kY(z)q dσ(z)
)1/q

≤ C0 −

∫
21′

kY(z) dσ(z) (1.6)

for every surface ball centered on the boundary 1′ = B ′ ∩ ∂� with 2B ′ ⊂ B(x, r). Then ∂� is uniformly
rectifiable, and moreover, the “UR character” (see Definition 2.4) depends only on n, the ADR constant
of ∂�, q, C0, and the corkscrew constant.

Remark 1.7. As mentioned above, the corkscrew condition is automatically satisfied in the case that E is
an n-dimensional ADR set (hence closed, see Definition 2.1 below), and �=Rn+1

\ E is its complement,
with the corkscrew constant for � depending only on n and the ADR constant of E . Thus, in particular,

1This formulation is adapted from [Mourgoglou and Tolsa 2015]; see the discussion in Section 1D.
2For aesthetic reasons, and for convenience in the sequel, in contrast to condition (?), we prefer to state condition (??) in

terms of 1 rather than 21, and with X1 ∈ B(x, r/2) rather than B(x, r).
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Corollary 1.5 applies in that setting, so in the presence of the weak reverse Hölder condition (1.6), we
deduce that E is uniformly rectifiable.

Combining Theorem 1.1 with the results in [Bortz and Hofmann 2015], we obtain as an immediate
consequence a “big pieces” characterization of uniformly rectifiable sets of codimension 1, in terms of
harmonic measure. Here and in the sequel, given an ADR set E , Q denotes a “dyadic cube” on E in
the sense of [David and Semmes 1991; 1993; Christ 1990], and D(E) denotes the collection of all such
cubes; see Lemma 2.6 below.

Theorem 1.8. Let E ⊂ Rn+1, n ≥ 2, be an n-dimensional ADR set. Let � := Rn+1
\ E. Then E is

uniformly rectifiable if and only if it has “big pieces of good harmonic measure estimates” in the following
sense: for each Q ∈D(E) there exists an open set �̃= �̃Q with the following properties, with uniform
control of the various implicit constants:

• ∂�̃ is ADR;

• the interior corkscrew condition holds in �̃;

• ∂�̃ has a “big pieces” overlap with E , in the sense that σ(Q ∩ ∂�̃)& σ(Q);

• for each surface ball 1 = 1(x, r) := B(x, r) ∩ ∂�̃ with x ∈ ∂�̃ and r ∈ (0, diam(�̃)), there is
an interior corkscrew point X1 ∈ �̃ such that ωX1

�̃
, the harmonic measure for �̃ with pole at X1,

satisfies ωX1
�̃
(1)& 1, and belongs to weak-A∞(1).

The “only if” direction is proved in [Bortz and Hofmann 2015], and the open sets �̃ constructed
in [Bortz and Hofmann 2015] even satisfy a 2-sided corkscrew condition, and moreover, �̃ ⊂ � with
diam(�̃) ≈ diam(Q). To obtain the converse direction, we simply observe that by Theorem 1.1, the
subdomains �̃ have uniformly rectifiable boundaries, with uniform control of the “UR character” of
each ∂�̃, and thus, by [David and Semmes 1993], E is uniformly rectifiable.

To formulate our main result in the nonlinear setting we first need to introduce some notation. If
O ⊂Rn+1 is an open set and 1≤ p ≤∞, then by W 1,p(O) we denote the space of equivalence classes of
functions f with distributional gradient ∇ f = ( fx1, . . . , fxn+1), both of which are q-th power integrable
on O . Let ‖ f ‖1,p = ‖ f ‖p +‖|∇ f |‖p be the norm in W 1,p(O), where ‖ · ‖q denotes the usual Lebesgue
p norm in O . Next, let C∞0 (O) be the set of infinitely differentiable functions with compact support in O ,
and let W 1,p

0 (O) be the closure of C∞0 (O) in the norm of W 1,p(O). We let W 1,p
loc (O) be the set of all

functions u such that u2 ∈W 1,p
0 (O) whenever 2 ∈ C∞0 (O).

Given an open set O and 1< p <∞, we say that u is p-harmonic in O provided u ∈W 1,p
loc (O) and∫∫

Rn+1
|∇u|p−2

∇u · ∇2 dX = 0, ∀2 ∈ C∞0 (O). (1.9)

Observe that if u is smooth and ∇u 6= 0 in O , then

∇ · (|∇u|p−2
∇u)≡ 0 in O, (1.10)

and u is a classical solution in O to the p-Laplace partial differential equation. Here, as in the sequel, ∇·
is the divergence operator.
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Let � ⊂ Rn+1 be an open set, not necessarily connected, with n-dimensional ADR boundary. Let
p ∈ (1,∞). Given x ∈ ∂� and 0 < r < diam(∂�), let u be a nonnegative p-harmonic function in
� ∩ B(x, r) which vanishes continuously on 1(x, r) := B(x, r) ∩ ∂�. Extend u to all of B(x, r) by
putting u ≡ 0 on B(x, r) \�. Then there exists a unique nonnegative finite Borel measure µ on Rn+1,
with support contained in 1(x, r), such that

−

∫∫
Rn+1
|∇u|p−2

∇u · ∇φ dX =
∫
∂�

φ dµ, ∀φ ∈ C∞0 (B(x, r)); (1.11)

see [Heinonen et al. 2006, Chapter 21] and Lemma 3.43 below. We refer to µ as the p-harmonic measure
associated to u. In the case p = 2, and if u is the Green function for � with pole at X ∈ �, then the
measure µ coincides with harmonic measure at X , ω = ωX.

Concerning the p-Laplace operator, p-harmonic functions, and p-harmonic measure, we prove the
following theorem.

Theorem 1.12. Let � ⊂ Rn+1, n ≥ 2, be an open set whose boundary is Ahlfors–David regular of
dimension n. Let p, 1 < p < ∞, be given. Let C be a sufficiently large constant (to be specified),
depending only on n and the ADR constant, and suppose that there exist q > 1 and a positive constant
C0 for which the following holds: for each x ∈ ∂� and each 0 < r < diam(∂�), there is a nontrivial,
nonnegative p-harmonic function u = ux,r in �∩ B(x,Cr), and corresponding p-harmonic measure
µ= µx,r , such that µ� σ in 1(x,Cr), and such that k := dµ/dσ satisfies(

−

∫
1(x,Cr)

k(y)q dσ(y)
)1/q

≤ C0
µ(1(x, r))
σ (1(x, r))

. (1.13)

Then ∂� is uniformly rectifiable, and moreover the “UR character” (see Definition 2.4) depends only
on n, the ADR constant, p, q , and C0.

Some remarks are in order concerning the hypotheses of Theorem 1.12. Let us observe that, in
particular, Ahlfors–David regularity and (1.13) imply that

µ(1(x,Cr))≤ C1µ(1(x, r)), (1.14)

with C1 ≈ C0. In the linear case, the latter estimate follows automatically, with µ = ωY for some
Y ∈ B(x, r) such that dist(Y, E) ≈ r , and with C1 depending only on n and the ADR constant, by
Bourgain’s Lemma 3.1 below, even though ωY need not be a doubling measure (i.e., (1.14) says nothing
about points other than x nor about scales other than r ). In the nonlinear case, it seems that we must impose
condition (1.14) by hypothesis. We also observe that (1.13) holds in particular ifµ∈weak-A∞(1(x, 2Cr))
and satisfies (1.14) (with radius 2C in place of C). Of course, (1.14) holds trivially if µ is a doubling
measure, but we do not assume doubling.

Remark 1.15. We note that, as in Remark 1.3, the proof of Theorem 1.12 will in fact use, in lieu of
absolute continuity and (1.13), only the apparently weaker condition that there exist uniform constants
η, β ∈ (0, 1) such that for all 1=1(x, r), and for all Borel sets A ⊂1,

σ(A)≥ (1− η)σ (1) =⇒ µ(A)≥ βµ(1). (1.16)
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1B. Brief outline of the proofs of the main results. As mentioned, the approach in the present paper is
strongly influenced by prior work due to Lewis and Vogel [2006; 2007], who in the latter paper proved a
version of Theorem 1.12, and Theorem 1.1, under the stronger hypothesis that p-harmonic measure µ
itself is an Ahlfors–David regular measure. In the linear case p = 2, this implies that the Poisson kernel
is a bounded, accretive function, i.e., k ≈ 1. Assuming that p-harmonic measure µ is an Ahlfors–David
regular measure, Lewis and Vogel were able to show that E satisfies the so-called weak exterior convexity
(WEC) condition, which characterizes uniform rectifiability [David and Semmes 1993]. To weaken the
hypotheses on ω and µ, as we have done here, requires two further considerations. The first is quite
natural in this context: a stopping time argument, in the spirit of the proofs of the Kato square root
conjecture [Hofmann and McIntosh 2002; Hofmann et al. 2002; Auscher et al. 2002a] (and of local Tb
theorems [Christ 1990; Auscher et al. 2002b; Hofmann 2006]), by means of which we extract ample
dyadic sawtooth regimes on which averages of harmonic measure and p-harmonic measure are bounded
and accretive; see Lemma 4.12 below. This allows us to use the arguments of [Lewis and Vogel 2007]
within these good sawtooth regions. The second new consideration is necessitated by the fact that in
our setting, the doubling property may fail for harmonic and p-harmonic measure. In the absence of
doubling, we are unable to obtain the WEC condition directly. Nonetheless, we are able to follow the
arguments of [Lewis and Vogel 2007] very closely up to a point, to obtain a condition on ∂� which we
call the “weak half space approximation” (WHSA) property (see Definition 2.19). Indeed, extracting the
essence of the argument of [Lewis and Vogel 2007], while dispensing with the doubling property, one
realizes that the WHSA is precisely what one obtains. In the sequel, we present the argument of [Lewis
and Vogel 2007] as Lemma 5.10. Finally, having obtained that ∂� satisfies the WHSA property, we are
able to prove the following proposition stating that WHSA implies uniform rectifiability.

Proposition 1.17. An n-dimensional ADR set E ⊂ Rn+1 is uniformly rectifiable if and only if it satisfies
the WHSA property.

While the WHSA condition, per se, is new, our proof of Proposition 1.17 is based on a modified version
of part of the argument in [Lewis and Vogel 2007].

1C. Organization of the paper. The paper is organized as follows. In Section 2, we state several
definitions, including definitions of ADR, UR, and dyadic grids, and introduce further notions and
notation. In Section 3, we state, and either prove or give references for, the PDE estimates needed in
the proofs of our main results. In Section 4, we begin the (simultaneous) proofs of Theorem 1.1 and
Theorem 1.12 by giving some preliminary arguments. In Section 5, following [Lewis and Vogel 2006;
2007], we complete the proofs of Theorem 1.1 and Theorem 1.12, modulo Proposition 1.17. At the end
of Section 5 we also give the (very short) proof of Corollary 1.5. In Section 6, we give the proof of
Proposition 1.17, i.e., the proof of the fact that the WHSA condition implies uniform rectifiability.

1D. Discussion of recent related work. We note that some related work has recently appeared, or been
carried out, while this manuscript was in preparation. In the setting of uniform domains with lower
ADR boundary with locally finite n-dimensional Hausdorff measure, Mourgoglou [2015] has shown that
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rectifiability of the boundary implies absolute continuity of surface measure with respect to harmonic
measure (for the Laplacian). Akman, Badger, Hofmann, and Martell [Akman et al. 2015], in the setting of
uniform domains with ADR boundary, have characterized the rectifiability of the boundary in terms of the
absolute continuity of harmonic measure and some elliptic measures and surface measure or in terms of
some qualitative A∞ condition. Also, Azzam, Mourgoglou, and Tolsa [Azzam et al. 2015] have obtained
that absolute continuity of harmonic measure with respect to surface measure on an H n-finite piece of
the boundary implies that harmonic measure is rectifiable in that piece. The setting is very general as
they only assume a “porosity” (i.e., corkscrew) condition in the complement of ∂�. In [Hofmann et al.
2015], Hofmann, Martell, Mayboroda, Tolsa, and Volberg prove the same result removing the porosity
assumption. Both [Azzam et al. 2015] and the follow-up version [Hofmann et al. 2015] (which will be
combined in the forthcoming paper [Azzam et al. 2016]) rely on recent deep results of [Nazarov et al.
2014a; 2014b], concerning connections between rectifiability and the behavior of Riesz transforms.

Finally, we discuss two closely related papers treating the case p = 2. First, we mention that a
preliminary version of our results, treating only the linear harmonic case (i.e., Theorem 1.1 of the present
paper) under hypothesis (?), appeared earlier in the unpublished preprint [Hofmann and Martell 2015].
That result, again in the case p = 2, was then essentially reproved, by a different method, in [Mourgoglou
and Tolsa 2015], but assuming condition (??) in place of (?). While the present paper was in preparation,
we learned of the work in [Mourgoglou and Tolsa 2015], and we realized that our arguments (and those of
[Hofmann and Martell 2015]), almost unchanged, also allow (?) to be replaced by (??) or its p-harmonic
equivalent. The current version of this manuscript incorporates this observation.3 Let us mention also that
the approach in [Mourgoglou and Tolsa 2015] is based on showing that (??) for harmonic measure implies
L2-boundedness of the Riesz transforms, and thus it is a quantitative version of the method of [Azzam
et al. 2016]. An interesting feature of the proof in [Mourgoglou and Tolsa 2015] is that it works even
without the lower bound in the Ahlfors–David condition; in that case, one may deduce rectifiability, as
opposed to uniform rectifiability, of the underlying measure on ∂�. On the other hand, it seems difficult
to generalize the approach of [Mourgoglou and Tolsa 2015] to the p-Laplace setting, since it is based on
Riesz transforms, which are tied to the linear harmonic case.

2. ADR, UR, and dyadic grids

Definition 2.1 (Ahlfors–David regular (ADR)). We say that a set E ⊂ Rn+1, of Hausdorff dimension n,
is ADR if it is closed and if there is some uniform constant C such that

C−1rn
≤ σ(1(x, r))≤ Crn, ∀r ∈ (0, diam(E)), x ∈ E, (2.2)

where diam(E) may be infinite. Here, 1(x, r) := E ∩ B(x, r) is the “surface ball” of radius r , and
σ := H n

|E is the “surface measure” on E , where H n denotes n-dimensional Hausdorff measure.

Definition 2.3 (uniformly rectifiable (UR)). An n-dimensional ADR (hence closed) set E ⊂ Rn+1 is UR
if and only if it contains “big pieces of Lipschitz images” of Rn (BPLI). This means that there are positive

3We thank Mourgoglou and Tolsa for making their preprint available to us while our manuscript was in preparation.
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constants θ and M0, such that for each x ∈ E and each r ∈ (0, diam(E)), there is a Lipschitz mapping
ρ = ρx,r : R

n
→ Rn+1, with Lipschitz constant no larger than M0, such that

H n(E ∩ B(x, r)∩ ρ({z ∈ Rn
: |z|< r})

)
≥ θrn.

We recall that n-dimensional rectifiable sets are characterized by the property that they can be covered,
up to a set of H n measure 0, by a countable union of Lipschitz images of Rn; we observe that BPLI is a
quantitative version of this fact.

We remark that, at least among the class of ADR sets, the UR sets are precisely those for which
all “sufficiently nice” singular integrals are L2-bounded [David and Semmes 1991]. In fact, for n-
dimensional ADR sets in Rn+1, the L2-boundedness of certain special singular integral operators (the
“Riesz transforms”) suffices to characterize uniform rectifiability (see [Mattila et al. 1996] for the case
n = 1, and [Nazarov et al. 2014a] in general). We further remark that there exist sets that are ADR (and
that even form the boundary of a domain satisfying interior corkscrew and Harnack chain conditions), but
that are totally nonrectifiable (e.g., see the construction of Garnett’s “4-corners Cantor set” in [David and
Semmes 1993, Chapter1]). Finally, we mention that there are numerous other characterizations of UR
sets (many of which remain valid in higher codimensions); see [David and Semmes 1991; 1993], and
in particular Theorem 2.14 below. In this paper, we also present a new characterization of UR sets of
codimension 1 (see Proposition 1.17 below), which will be very useful in the proof of Theorem 1.1.

Definition 2.4 (UR character). Given a UR set E ⊂ Rn+1, its “UR character” is just the pair of constants
(θ,M0) involved in the definition of uniform rectifiability, along with the ADR constant; or equivalently,
the quantitative bounds involved in any particular characterization of uniform rectifiability.

Definition 2.5 (corkscrew condition). Following [Jerison and Kenig 1982], we say that an open set
�⊂ Rn+1 satisfies the “corkscrew condition” if for some uniform constant c0 > 0 and for every surface
ball 1 := 1(x, r), with x ∈ ∂� and 0 < r < diam(∂�), there is a point X1 ∈ B(x, r) ∩� such that
dist(X1, ∂�)≥ c0r . The point X1 ⊂� is called a “corkscrew point” relative to 1.

Lemma 2.6 (existence and properties of the “dyadic grid” [David and Semmes 1991; 1993; Christ 1990]).
Suppose that E ⊂ Rn+1 is a closed n-dimensional ADR set. Then there exist constants a0 > 0, γ > 0, and
C∗ <∞, depending only on n and the ADR constant, such that for each k ∈ Z, there is a collection

Dk := {Qk
j ⊂ E : j ∈ Ik}

of Borel sets (“cubes”), where Ik denotes some (possibly finite) index set depending on k, satisfying

(i) E =
⋃

j Qk
j for each k ∈ Z;

(ii) if m ≥ k then either Qm
i ⊂ Qk

j or Qm
i ∩ Qk

j =∅;

(iii) for each ( j, k) and each m < k, there is a unique i such that Qk
j ⊂ Qm

i ;

(iv) diam(Qk
j )≤ C∗2−k ;

(v) each Qk
j contains some “surface ball” 1(xk

j , a02−k) := B(xk
j , a02−k)∩ E ;

(vi) H n
(
{x ∈ Qk

j : dist(x, E \ Qk
j )≤ % 2−k

}
)
≤ C∗%γ H n(Qk

j ) for all k, j and for all % ∈ (0, a0).
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Let us make a few remarks concerning this lemma, and discuss some related notation and terminology.

• In the setting of a general space of homogeneous type, this lemma has been proved by Christ [1990],
with the dyadic parameter 1

2 replaced by some constant δ ∈ (0, 1). In fact, one may always take
δ = 1

2 (cf. [Hofmann et al. 2017, Proof of Proposition 2.12]). In the presence of the Ahlfors–David
property (2.2), the result already appears in [David and Semmes 1991; 1993].

• For our purposes, we may ignore those k ∈ Z such that 2−k & diam(E), in the case that the latter is
finite.

• We denote by D= D(E) the collection of all relevant Qk
j , i.e.,

D :=
⋃
k

Dk,

where, if diam(E) is finite, the union runs over those k such that 2−k . diam(E).

• Properties (iv) and (v) imply that for each cube Q ∈ Dk , there is a point xQ ∈ E , a Euclidean ball
B(xQ, r), and a surface ball 1(xQ, r) := B(xQ, r)∩ E such that r ≈ 2−k

≈ diam(Q) and

1(xQ, r)⊂ Q ⊂1(xQ,Cr) (2.7)

for some uniform constant C . We denote this ball and surface ball by

BQ := B(xQ, r), 1Q :=1(xQ, r), (2.8)

and we refer to the point xQ as the “center” of Q.

• Given a dyadic cube Q ∈ D, we define its “κ-dilate” by

κQ := E ∩ B(xQ, κ diam(Q)). (2.9)

• For a dyadic cube Q ∈ Dk , we set `(Q)= 2−k , and we refer to this quantity as the “length” of Q.
Clearly, `(Q)≈ diam(Q).

• For a dyadic cube Q ∈D, we let k(Q) denote the “dyadic generation” to which Q belongs, i.e., we
set k = k(Q) if Q ∈ Dk ; thus, `(Q)= 2−k(Q).

• For any Q ∈ D(E), we set DQ := {Q′ ∈ D : Q′ ⊂ Q}.

• Given Q0 ∈ D(E) and a family F = {Q j } ⊂ D of pairwise disjoint cubes, we set

DF,Q0 := {Q ∈ DQ0 : Q is not contained in any Q j ∈ F} = DQ0 \
( ⋃

Q j∈F
DQ j

)
. (2.10)

Definition 2.11 (ε-local BAUP). Given ε > 0, we say that Q ∈D(E) satisfies the ε-local BAUP condition
if there is a family P of hyperplanes (depending on Q) such that every point in 10Q is at a distance at
most ε`(Q) from

⋃
P∈P P , and every point in

(⋃
P∈P P

)
∩ B(xQ, 10 diam(Q)) is at a distance at most

ε`(Q) from E .

Definition 2.12 (BAUP). We say that an n-dimensional ADR set E ⊂ Rn+1 satisfies the condition of
bilateral approximation by unions of planes (BAUP) if for some ε0 > 0, and for every positive ε < ε0,
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there is a constant Cε such that the set B of bad cubes in D(E), for which the ε-local BAUP condition
fails, satisfies the packing condition∑

Q′⊂Q, Q′∈B

σ(Q′)≤ Cεσ(Q), ∀Q ∈ D(E). (2.13)

For future reference, we recall the following result of David and Semmes.

Theorem 2.14 [David and Semmes 1993, Theorem I.2.18, p. 36]. Let E ⊂ Rn+1 be an n-dimensional
ADR set. Then E is uniformly rectifiable if and only if it satisfies BAUP.

We remark that the definition of BAUP in [David and Semmes 1993] is slightly different in superficial
appearance, but it is not hard to verify that the dyadic version stated here is equivalent to their condition.
We note that we shall not need the full strength of this equivalence here, but only the fact that our version
of BAUP implies the version in [David and Semmes 1993], and hence implies UR.

We also require a new characterization of UR sets of codimension 1, which is related to the BAUP and
its variants. For a sufficiently large constant K0 to be chosen (see Lemma 4.24 below), we set

B∗Q := B(xQ, K 2
0`(Q)), 1∗Q := B∗Q ∩ E . (2.15)

Given a small positive number ε, which we typically assume to be much smaller than K−6
0 , we also set

B∗∗Q = B∗∗Q (ε) := B(xQ, ε
−2`(Q)), B∗∗∗Q = B∗∗∗Q (ε) := B(xQ, ε

−5`(Q)). (2.16)

Definition 2.17 (ε-local WHSA). Given ε > 0, we say that Q ∈ D(E) satisfies the ε-local WHSA
condition (or more precisely, the “ε-local WHSA with parameter K0”) if there is a half-space H = H(Q),
a hyperplane P = P(Q)= ∂H, and a fixed positive number K0 satisfying

(1) dist(Z , E)≤ ε`(Q) for every Z ∈ P ∩ B∗∗Q (ε),

(2) dist(Q, P)≤ K 3/2
0 `(Q), and

(3) H ∩ B∗∗Q (ε)∩ E =∅.

Note that part (2) of the previous definition says that the hyperplane P has an “ample” intersection
with the ball B∗∗Q (ε). Indeed,

dist(xQ, P). K 3/2
0 `(Q)� ε−2`(Q). (2.18)

Definition 2.19 (WHSA). We say that an n-dimensional ADR set E ⊂Rn+1 satisfies the weak half-space
approximation property (WHSA) if for some pair of positive constants ε0 and K0, and for every positive
ε < ε0, there is a constant Cε such that the set B of bad cubes in D(E), for which the ε-local WHSA
condition with parameter K0 fails, satisfies the packing condition∑

Q⊂Q0, Q∈B

σ(Q)≤ Cεσ(Q0), ∀Q0 ∈ D(E). (2.20)

Next, we develop some further notation and terminology. Given a closed set E , set δE(Y ) := dist(Y, E),
simply writing δ(Y ) when the set has been fixed.
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Let W =W(�) denote a collection of (closed) dyadic Whitney cubes of �, so that the cubes in W
form a covering of � with nonoverlapping interiors, and which satisfy

4 diam(I )≤ dist(4I, ∂�)≤ dist(I, ∂�)≤ 40 diam(I ) (2.21)

and

diam(I1)≈ diam(I2), whenever I1 and I2 touch. (2.22)

Assuming that E = ∂� is ADR and given Q ∈ D(E), for the same constant K0 as in (2.15) we set

WQ := {I ∈W : K−1
0 `(Q)≤ `(I )≤ K0`(Q), and dist(I, Q)≤ K0 `(Q)} . (2.23)

Fix a small, positive parameter τ , to be chosen momentarily, and given I ∈W , let

I ∗ = I ∗(τ ) := (1+ τ)I (2.24)

denote the corresponding “fattened” Whitney cube. We now choose τ sufficiently small that the cubes I ∗

retain the usual properties of Whitney cubes, in particular that

diam(I )≈ diam(I ∗)≈ dist(I ∗, E)≈ dist(I, E).

We then define Whitney regions with respect to Q by setting

UQ :=
⋃

I∈WQ

I ∗. (2.25)

We observe that these Whitney regions may have more than one connected component, but that the number
of distinct components is uniformly bounded, depending only upon K0 and dimension. We enumerate the
components of UQ as {U i

Q}i . Moreover, we enlarge the Whitney regions as follows.

Definition 2.26. For ε > 0, and given Q ∈ D(E), we write X ≈ε,Q Y if X may be connected to Y by
a chain of at most ε−1 balls of the form B(Yk, δ(Yk)/2), with ε3`(Q) ≤ δ(Yk) ≤ ε

−3`(Q). Given a
sufficiently small parameter ε > 0, we then set

Ũ i
Q := {X ∈ Rn+1

\ E : X ≈ε,Q Y, for some Y ∈U i
Q}. (2.27)

Remark 2.28. Since Ũ i
Q is an enlarged version of UQ , it may be that there are some i 6= j for which Ũ i

Q
meets Ũ j

Q . This overlap will be harmless.

3. PDE estimates

In this section we recall several estimates for harmonic measure and harmonic functions, and also for
p-harmonic measure and p-harmonic functions. Although some of the PDE results in the harmonic case
p = 2 can be subsumed into the general p-harmonic theory, we choose to present some aspects of the
harmonic theory separately, in part for the convenience of those readers who are more familiar with the
case p = 2, and in part because the presence of the Green function is unique to that case.
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3A. PDE estimates: the harmonic case. Next, we recall several facts concerning harmonic measure and
Green’s functions. Let� be an open set, not necessarily connected, and set δ(X)= δ∂�(X)= dist(X, ∂�).

Lemma 3.1 [Bourgain 1987]. Suppose that ∂� is n-dimensional ADR. Then there are uniform constants
c ∈ (0, 1) and C ∈ (1,∞), depending only on n and ADR, such that for every x ∈ ∂� and every
r ∈ (0, diam(∂�)), if Y ∈�∩ B(x, cr) then

ωY(1(x, r))≥ 1
C
> 0. (3.2)

We refer the reader to [Bourgain 1987, Lemma 1] for the proof. We note for future reference that in
particular, given X ∈ �, if x̂ ∈ ∂� satisfies |X − x̂ | = δ(X) and 1X := ∂�∩ B(x̂, 10δ(X)), then for a
slightly different uniform constant C > 0,

ωX (1X )≥
1
C
. (3.3)

Indeed, the latter bound follows immediately from (3.2), and the fact that we can form a Harnack chain
connecting X to a point Y that lies on the line segment from X to x̂ and satisfies |Y − x̂ | = cδ(X).

A proof of the next lemma may be found, e.g., in [Hofmann et al. ≥ 2017]. We note that, in particular,
the ADR hypothesis implies that ∂� is Wiener regular at every point (see Lemma 3.27 below).

Lemma 3.4. Let � be an open set with n-dimensional ADR boundary. There exist positive, finite
constants C , depending only on dimension, and cθ , depending on dimension and θ ∈ (0, 1), such that the
Green function satisfies

G(X, Y )≤ C |X − Y |1−n
; (3.5)

cθ |X − Y |1−n
≤ G(X, Y ), if |X − Y | ≤ θδ(X), θ ∈ (0, 1); (3.6)

G(X, · ) ∈ C(� \ {X}) and G(X, · )|∂� ≡ 0, ∀X ∈�; (3.7)

G(X, Y )≥ 0, ∀X, Y ∈�, X 6= Y ; (3.8)

G(X, Y )= G(Y, X), ∀X, Y ∈�, X 6= Y ; (3.9)

and for every 8 ∈ C∞0 (R
n+1),∫

∂�

8 dωX
−8(X)=−

∫∫
�

∇Y G(Y, X) · ∇8(Y ) dY, ∀X ∈�. (3.10)

Next we present a version of one of the estimates obtained by Caffarelli, Fabes, Mortola, and Salsa in
[Caffarelli et al. 1981], which remains true even in the absence of connectivity.

Lemma 3.11 (“CFMS” estimates). Suppose that ∂� is n-dimensional ADR. For every Y ∈� and X ∈�
such that |X − Y | ≥ δ(Y )/2, we have

G(Y, X)
δ(Y )

≤ C
ωX (1Y )

σ (1Y )
, (3.12)

where 1Y = B(ŷ, 10δ(Y ))∩ E , with ŷ ∈ ∂� such that |Y − ŷ| = δ(Y ).



THE WEAK-A∞ PROPERTY OF ( p-)HARMONIC MEASURES IMPLIES UNIFORM RECTIFIABILITY 525

For future use, we note that as a consequence of (3.12), it follows directly that for every Q ∈D(∂�),
if Y ∈ B(xQ,C`(Q)) with δ(Y )≥ c`(Q), then there exists κ = κ(C, c) such that

G(Y, X)
`(Q)

.
ωX (κQ)
σ (Q)

. κn
(
−

∫
Q
(MωX )1/2 dσ

)2

, ∀X /∈ B(xQ, κ`(Q)), (3.13)

where κQ is defined in (2.9), and M is the usual Hardy–Littlewood maximal operator on ∂�.

Proof of Lemma 3.11. We follow the well known argument of [Caffarelli et al. 1981] (see also [Kenig
1994, Lemma 1.3.3]). Fix Y ∈� and write BY

= B(Y, δ(Y )/2). Consider the open set �̂=� \ BY for
which clearly ∂�̂= ∂�∪ ∂BY . Set

u(X) := G(Y, X)/δ(Y ), v(X) := ωX (1Y )/σ (1Y ),

for every X ∈ �̂. Note that both u and v are nonnegative harmonic functions in �̂. If X ∈ ∂� then
u(X) = 0 ≤ v(X). Take now X ∈ ∂BY , so that u(X) . δ(Y )−n by (3.5). On the other hand, if we fix
X0 ∈ ∂BY with X0 on the line segment that joints Y and ŷ, then 21X0 =1Y , so that v(X0) & δ(Y )−n ,
by (3.3). By Harnack’s inequality, we then obtain v(X)& δ(Y )−n for all X ∈ ∂BY . Thus, u . v in ∂�̂
and by the maximum principle this immediately extends to �̂ as desired. �

Lemma 3.14. Let ∂� be n-dimensional ADR. Let B = B(x, r) with x ∈ ∂� and 0< r < diam(∂�), and
set 1 = B ∩ ∂�. There exist constants κ0 > 2, C > 1, and M1 > 1, depending only on n and the ADR
constant of ∂�, such that for X ∈� \ B(x, κ0r), we have

sup
1
2 B

G( · , X).
1
|B|

∫∫
B

G(Y, X) dY ≤ Cr
ωX (1(x,M1r))

σ (1)
. (3.15)

Moreover, for each γ ∈ (0, 1],

1
|B|

∫∫
B∩{Y :δ(Y )<γ r}

G(Y, X) dY ≤ Cγ 2r
ωX (1(x,M1r))

σ (1)
, (3.16)

where C depends on n and the ADR constant of ∂�.

We note that in the previous estimates it is implicitly understood that G( · , X) is extended to be 0
outside of �.

Proof. Extending G( · , X) to be 0 outside of �, we obtain a subharmonic function in B. The first
inequality in (3.15) follows immediately. The second inequality in (3.15) is just the special case γ = 1
of (3.16), so it suffices to prove the latter. Set 6γ = {I ∈W : I ∩ B 6= ∅, dist(I, ∂�) < γ r}, and note
that if I ∈6γ then by (2.21),

40−1 dist(I, ∂�)≤ diam(I )≤ dist(I, ∂�) < γ r ≤ r, dist(I, x)≤ r.

In particular, I ⊂ B(x, 2r). Furthermore, we can find κ0, depending only on dimension, such that
dist(X, 4I ) ≥ 4r for every I ∈ 6γ and X ∈ � \ B(x, κ0r). Let Q I ∈ D be such that `(Q I ) = `(I ) and
dist(I, ∂�)= dist(I, Q I ). Then `(Q I )≤ γ r , and Y (I ), the center of I , satisfies Y (I ) ∈ B(xQ I ,C`(Q I ))
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and δ(Y (I ))≈ `(I )= `(Q I ). Hence we can invoke (3.13) (taking κ0 larger if needed) and obtain that for
every Y ∈ I ,

G(Y, X)≈ G(Y (I ), X). `(I )
ωX (κQ I )

σ (Q I )
,

where the first estimate uses Harnack’s inequality in 2I ⊂�. Hence,∫∫
B∩{Y :δ(Y )<γ r}

G(Y, X) dY ≤
∑
I∈6γ

∫∫
I
G(Y, X) dY .

∑
I∈6γ

`(I )2ωX (κQ I )

≤

∑
k:2−k.γ r

2−2 k
∑

I∈6γ :`(I )=2−k

ωX (κQ I ). (γ r)2ωX (1(x,M1r)),

where in the last step we have used that for each fixed k, the cubes κQ I with `(I )= 2−k have uniformly
bounded overlaps, and are all contained in 1(x,M1r) for M1 large enough. Dividing by |B| ≈ rn+1 and
using the ADR property, we obtain the desired estimate. �

3B. PDE estimates: the p-harmonic case. We now recall several fundamental estimates for p-harmonic
functions and p-harmonic measure, some of which generalize certain of the preceding estimates that we
have stated in the harmonic case. We ask the reader to forgive a moderate amount of redundancy. Given a
closed set E , as above we set δ(Y ) := dist(Y, E).

Lemma 3.17. Let p, 1< p <∞, be given. Let u be a positive p-harmonic function in B(X, 2r). Then(
1

|B(X, r/2)|

∫∫
B(X,r/2)

|∇u|p dy
)1/p

≤
C
r

max
B(X,r)

u, (3.18)

max
B(X,r)

u ≤ C min
B(X,r)

u. (3.19)

Furthermore, there exists α = α(p, n) ∈ (0, 1) such that if Y, Y ′ ∈ B(X, r), then

|u(Y )− u(Y ′)| ≤ C
(
|Y − Y ′|

r

)α
max

B(X,2r)
u. (3.20)

Proof. The inequality (3.18) is a standard energy estimate, (3.19) is the well known Harnack inequality
for positive solutions to the p-Laplace operator, and (3.20) is a well known interior Hölder continuity
estimate for solutions to equations of p-Laplace type. We refer to [Serrin 1964] for these results. �

Definition 3.21. Let O ⊂ Rn+1 be open and let K be a compact subset of O . Given p, 1< p <∞, we
let

Capp(K , O)= inf
{∫∫

O
|∇φ|p dY : φ ∈ C∞0 (O), φ ≥ 1 in K

}
.

Capp(K , O) is referred to as the p-capacity of K relative to O . The p-capacity of an arbitrary set E ⊂ O
is defined by

Capp(E, O)= inf
E⊂G⊂O
G open

sup
K⊂G

K compact

Capp(K , O). (3.22)



THE WEAK-A∞ PROPERTY OF ( p-)HARMONIC MEASURES IMPLIES UNIFORM RECTIFIABILITY 527

Definition 3.23. Let E ⊂ Rn+1 be a closed set and let x ∈ E , 0 < r < diam(E). Given p, 1 < p <∞,
we say that E ∩ B(x, 4r) is p-thick if for every x ∈ E ∩ B(x, 4r) there exists rx > 0 such that∫ rx

0

[Capp(E ∩ B(x, ρ), B(x, 2ρ))

Capp(B(x, ρ), B(x, 2ρ))

]1/(p−1) dρ
ρ
=∞.

We note that this definition is just the Wiener criterion in the p-harmonic case. As it can be seen in
[Heinonen et al. 2006, Chapter 6], p-thickness implies that all points on E ∩ B(x, 4r) are regular for the
continuous Dirichlet problem for ∇ · (|∇u|p−2

∇u)= 0.

Definition 3.24. Let E ⊂ Rn+1 be a closed set and let x ∈ E , 0 < r < diam(E). Given p, 1 < p <∞,
and η > 0 we say that E ∩ B(x, 4r) is uniformly p-thick with constant η if

Capp(E ∩ B(x̂, r̂), B(x̂, 2r̂))

Capp(B(x̂, r̂), B(x̂, 2r̂))
≥ η (3.25)

whenever x̂ ∈ E ∩ B(x, 4r) and B(x̂, 2r̂)⊂ B(x, 4r).

Remark 3.26. In the case p= 2, the condition defined in Definition 3.24 is sometimes called the capacity
density condition (CDC); see for instance [Aikawa 2004]. Note that uniform p-thickness is a strong
quantitative version of the p-thickness defined above and hence of the Wiener regularity for the Laplace
and the p-Laplace operator.

Lemma 3.27. Let E ⊂ Rn+1, n ≥ 2, be Ahlfors–David regular of dimension n. Let p, 1 < p <∞, be
given. Then E ∩ B(x, 4r) is uniformly p-thick for some constant η, depending only on p, n, and the ADR
constant, whenever x ∈ E , 0< r < 1

4 diam E.

Proof. We first observe that since the ADR condition is scale-invariant we may translate and rescale
to prove (3.25) only for x̂ = 0 and r̂ = 1 (we would also need to rescale E , but abusing the notation
we still call it E). Write B = B(0, 1) and observe that, for every 1 < p <∞, [Heinonen et al. 2006,
Example 2.12] gives

Capp(B, 2B)= C(n, p). (3.28)

The desired bound from below follows at once if p > n+ 1 from the estimate in [Heinonen et al. 2006,
Example 2.12]:

Capp(E ∩ B, 2B)≥ Capp({0}, 2B)= C(n, p)′.

Let us now consider the case 1< p ≤ n+ 1. Write K = E ∩ 1
2 B. Combining [Heinonen et al. 2006,

Theorem 2.38; Adams and Hedberg 1999, Theorems 2.2.7 and 4.5.2] we have that

Capp(E ∩ B, 2B)& C̃app(K )& sup
µ

(
µ(K )

‖Wp(µ)‖
1/p′

L1(µ)

)p

. (3.29)

In the previous expression the implicit constants depend only on p and n; C̃app stands for the inhomoge-
neous p-capacity, that is,

C̃app(K )= inf
{∫∫

Rn+1
(|φ|p + |∇φ|p) dY : φ ∈ C∞0 (R), φ ≥ 1 in K

}
;
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the sup runs over all Radon positive measures supported on K ; and

Wp(µ)(y) :=
∫ 1

0

(
µ(B(y, t))

tn+1−p

)p′−1 dt
t
, x ∈ suppµ.

We choose µ = H n
|K and observe that, if y ∈ suppµ ⊂ K ⊂ E and 0 < t < 1, then, by ADR,

µ(B(y, t)) = σ(B(y, t)∩ B
(
0, 1

2

)
. tn . This easily gives Wp(µ)(y) . 1 for every y ∈ suppµ and, by

ADR, ∫
K

Wp(µ)(y) dµ(y)≤ µ(K )≤ σ(B). 1.

We can now use (3.29) and ADR again to conclude that

Capp(E ∩ B, 2B)& µ(K )≥ σ
(
B
(
0, 1

2

))p
& 1.

Combining this with (3.28) we readily obtain (3.25). �

Lemma 3.30. Let E ⊂ Rn+1, n ≥ 2, be Ahlfors–David regular of dimension n. Let p, 1 < p < ∞,
be given. Let x ∈ E and 0 < r < diam(E). Then, given f ∈ W 1,p(B(x, 4r)) there exists a unique
p-harmonic function u ∈ W 1,p(B(x, 4r) \ E) such that u − f ∈ W 1,p

0 (B(x, 4r) \ E). Furthermore, let
u, v∈W 1,p

loc (B(x, 4r)\E) be a p-superharmonic function and a p-subharmonic function in�, respectively.
If inf{u−v, 0} ∈W 1,p

0 (B(x, 4r)\E), then u≥ v a.e. in B(x, 4r)\E. Finally, every point x̂ ∈ E∩B(x, 4r)
is regular for the continuous Dirichlet problem for ∇ · (|∇u|p−2

∇u)= 0.

Proof. The first part of the lemma is a standard maximum principle. The fact that every x̂ ∈ E∩B(x, 4r) is
regular in the continuous Dirichlet problem for ∇·(|∇u|p−2

∇u)= 0 follows from the fact that Lemma 3.27
implies that E ∩ B(x, 4r) is uniformly p-thick for every 1< p<∞, and hence we can invoke [Heinonen
et al. 2006, Chapter 6]. �

Lemma 3.31. Let � ⊂ Rn+1, n ≥ 2, be an open set whose boundary is Ahlfors–David regular of
dimension n. Let p, 1 < p <∞, be given. Let x ∈ ∂� and consider 0 < r < diam(∂�). Assume also
that u is nonnegative and p-harmonic in B(x, 4r)∩�, continuous on B(x, 4r)∩�, and that u = 0 on
∂�∩ B(x, 4r). Then, extending u to be 0 in B(x, 4r) \�, we have(

1
|B(x, r/2)|

∫∫
B(x,r/2)

|∇u|p dy
)1/p

≤
C
r

(
1

|B(x, r)|

∫∫
B(x,r)

u p−1
)1/(p−1)

. (3.32)

Furthermore, there exists α ∈ (0, 1), depending only on p, n, and the ADR constant, such that if
Y, Y ′ ∈ B(x, r), then

|u(Y )− u(Y ′)| ≤ C
(
|Y − Y ′|

r

)α
max

B(x,2r)
u. (3.33)

Proof. Since u, extended as above to all of B(x, 4r), is a nonnegative p-subsolution in B(x, 4r), (3.32) is
just a standard energy or Caccioppoli estimate plus a standard interior estimate. Thus, we only prove (3.33).
Since E ∩ B(x, 4r) is uniformly p-thick as seen in Lemma 3.27, we can invoke [Heinonen et al. 2006,
Theorem 6.38] to obtain that there exist C ≥ 1 and α = α ∈ (0, 1), depending only on n, p, and the ADR
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constant, such that

max
B(x,ρ)

u ≤ C
(
ρ

r

)α
max
B(x,r)

u, whenever 0< ρ ≤ r . (3.34)

This, the triangle inequality, and elementary arguments give (3.33). �

Lemma 3.35. Let � ⊂ Rn+1, n ≥ 2, be an open set whose boundary is Ahlfors–David regular of
dimension n. Let p, 1 < p <∞, be given. Let x ∈ ∂� and consider 0 < r < diam(∂�). Assume also
that u is nonnegative and p-harmonic in B(x, 4r)∩�, continuous on B(x, 4r)∩�, and that u = 0 on
∂�∩ B(x, 4r). Then, extending u to be 0 in B(x, 4r) \�, there exists α > 0 such that

u(Y )≤ C
(
δ(Y )

r

)α( 1
|B(x, 2r)|

∫∫
B(x,2r)

u p−1(Z) dZ
)1/(p−1)

(3.36)

for all Y ∈ B(x, r), where the constants C and α depend only on n, p, and the ADR constant of ∂�.

Proof. This follows from Lemma 3.31 and standard estimates for p-subsolutions. Let us note that in the
linear case (i.e, p = 2) one can give an alternative proof based on Bourgain’s Lemma 3.1 and an iteration
argument (see [Hofmann et al. ≥ 2017] for details). �

Lemma 3.37. Let � ⊂ Rn+1, n ≥ 2, be an open set whose boundary is Ahlfors–David regular of
dimension n. Let p, 1< p<∞, be given. Let x ∈ ∂� and consider 0< r < diam(∂�). Assume also that u
is nonnegative and p-harmonic in B(x, 4r)∩�, continuous on B(x, 4r)∩�, that u= 0 on ∂�∩B(x, 4r),
and that u is extended to be 0 in B(x, 4r) \�. Then u has a representative in W 1,p(B(x, 4r)) with
Hölder continuous partial derivatives in B(x, 4r) \ ∂�. Furthermore, there exists β ∈ (0, 1] such that if
Y, Y ′ ∈ B(X, r̂/2), with B(X, 4r̂)⊂ B(x, 4r) \ ∂�, then

|∇u(Y )−∇u(Y ′)|.
(
|Y − Y ′|

r̂

)β
max

B(X,r̂)
|∇u|.

1
r̂

(
|Y − Y ′|

r̂

)β
max

B(X,2r̂)
u , (3.38)

where β and the implicit constants depend only on p and n. Furthermore, if

u(Y )
δ(Y )

≈ |∇u(Y )|, Y ∈ B(X, 3r̂), (3.39)

then u has continuous second derivatives in B(X, 3r̂), and there exists C ≥ 1, depending only on n, p,
and the implicit constants in (3.39), such that

max
B(X,r̂/2)

|∇
2u| ≤ C

(
1

|B(X, r̂)|

∫∫
B(X,r̂)

|∇
2u(Y )|2 dY

)1/2

≤ C2 u(X)
δ(X)2

. (3.40)

Proof. For (3.38) we refer, for example, to [Tolksdorf 1984]; (3.40) is a consequence of (3.38), (3.39),
and Schauder type estimates, see [Gilbarg and Trudinger 1983]. For a more detailed proof of (3.40), see
[Lewis and Vogel 2006, Lemma 2.4(d)] for example. �

Remark 3.41. We note that the second inequality in (3.38) and (3.19) give

|∇u(Y )|.
u(Y )
δ(Y )

, Y ∈ B(x, 2r) \ ∂�. (3.42)
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Lemma 3.43. Let � ⊂ Rn+1, n ≥ 2, be an open set and assume that ∂� is Ahlfors–David regular
of dimension n. Let p, 1 < p < ∞, be given. Let x ∈ ∂�, 0 < r < diam(∂�), and suppose that u
is nonnegative and p-harmonic in B(x, 4r) ∩�, vanishing continuously on B(x, 4r) ∩� (hence u is
continuous in B(x, 4r) after being extended by 0 in B(x, 4r) \�). There exists a unique finite positive
Borel measure µ on Rn+1, with support in ∂�∩ B(x, 4r), such that

−

∫∫
Rn+1
|∇u|p−2

∇u · ∇φ dY =
∫
φ dµ (3.44)

whenever φ ∈ C∞0 (B(x, 4r)). Furthermore, there exists C <∞, depending only on p, n, and the ADR
constant, such that (maxB(x,r) u

r

)p−1
≤ C

µ(1(x, 2r))
σ (1(x, 2r))

. (3.45)

Note that (3.45) is the p-harmonic analogue of Lemma 3.11.

Proof. For the proof of (3.44), see [Heinonen et al. 2006, Chapter 21]. Using Lemma 3.27 and Lemma 3.31,
(3.45) follows directly from [Kilpeläinen and Zhong 2003, Lemma 3.1]; see also [Eremenko and Lewis
1991]. �

The following lemma generalizes Lemma 3.14 to the case 1< p <∞.

Lemma 3.46. Let � ⊂ Rn+1, n ≥ 2, be an open set and assume that ∂� is Ahlfors–David regular of
dimension n. Let p, 1< p <∞, be given. Let x ∈ ∂�, 0< r < diam(∂�), and suppose that u and µ are
as in Lemma 3.43. Then there exist constants C and M1, depending only on n and the ADR constant, such
that if B(y,M1s)⊂ B(x, 2r) with y ∈ ∂�, then

max
B(y,s/2)

u p−1 .
1

|B(y, s)|

∫∫
B(y,s)

u p−1(Z) dZ ≤ Cs p−1µ(1(y,M1s))
σ (1(y, s))

.

Moreover, for all γ ∈ (0, 1],

1
|B(y, s)|

∫∫
B(y,s)∩{Y :δ(Y )≤γ s}

u p−1(Z) dZ ≤ Cγ ps p−1µ(1(y,M1s))
σ (1(y, s))

.

We note that in the previous estimates it is implicitly understood that u is extended to be 0 on
B(x, 4r) \�.

Proof. Using (3.45), the proof of Lemma 3.46 is the same mutatis mutandi as that of Lemma 3.14. We
omit further details. �

4. Proofs of Theorem 1.1 and Theorem 1.12: preliminary arguments

We start the proofs of Theorem 1.1 and Theorem 1.12 by giving some preliminary arguments. We first
show that (1.2) implies (1.4). To this end, we claim that, without loss of generality, we may suppose that
for a surface ball 1=1(x, r), the point X1 in the statement of Theorem 1.1 satisfies (3.2), i.e., there is
some c1 = c1(n,ADR) > 0 such that

ωX1(1)≥ c1. (4.1)
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The only price to be paid is that the constants c0,C0 may now be slightly different (depending only on n
and ADR), and that (1.2) now holds with 1 in place of 21, i.e., for the (possibly) new point X1, we have∫

1

k X1(y)q dσ(y)≤ C0σ(1)
1−q . (4.2)

Indeed, set 1′ :=1(x, r/2), and let X ′ := X1′ ∈ B(x, r/2)∩� be the point such that (1.2) holds for 1′.
Fix x̂ ∈ ∂� such that δ(X ′) = |X ′ − x̂ |. Suppose first that δ(X ′) ≤ r/4, in which case 1(x̂, r/4) ⊂ 1.
Thus, if in addition δ(X ′) < cr/4, where c ∈ (0, 1) is the constant in Lemma 3.1, then we set X1 := X ′,
and (4.1) holds by Lemma 3.1. On the other hand, if cr/4≤ δ(X1)≤ r/4, we select X1 along the line
segment joining X ′ to x̂ , such that δ(X1)= |X1− x̂ | = cr/8, and (4.1) holds exactly as before. Moreover,
(4.2) holds for this new X1, in the first case, immediately by (1.2) applied to X ′ = X1′ , and in the second
case, by moving from X ′ to X1 via Harnack’s inequality (which may be used within the touching ball
B(X ′, δ(X ′))). Let us finally consider the case δ(X ′) > r/4. Then we can use Harnack within the ball
B(X ′, r/4) to pass to a point X ′′ on the line segment joining X ′ to x such that |X ′ − X ′′| = r/8, and
consequently δ(X ′′)≤ |X ′′−x |< 3r/8 (since X ′ ∈ B(x, r/2)). Hence (1.2) holds (with different constant)
for1′ with X ′′ in place of X1′ . Now take x̂ ∈ ∂� such that δ(X ′′)= |X ′′− x̂ | and note that1(x̂, r/4)⊂1.
We can now repeat the previous argument with X ′′ in place of X ′. Details are left to the interested reader.

Similarly, if (1.4) holds for1=1(x, r), with X1 ∈ B(x, r/2)∩�, then again without loss of generality
we may suppose that (4.1) holds, possibly for a new X1 ∈ B(x, r)∩�. Indeed if we let X ′ ∈ B(x, r/2)∩�
be the original point X1 for which (1.4) holds, we may then follow the argument in the previous paragraph,
mutatis mutandi. We choose x̂ ∈ ∂� such that δ(X ′)= |X ′− x̂ | and suppose first that δ(X ′)≤ r/4, so that
1(x̂, r/4)⊂1. Considering the same two cases as before we pick X1 and in either case (4.1) holds by
Lemma 3.1 applied to the surface ball 1(x̂, r/4). Note that in the second case, (1.4) continues to hold for
X1, with a different but still uniform β, using Harnack’s inequality within the touching ball B(X ′, δ(X ′)) to
move from X ′ to X1. When r/4<δ(X ′) we choose X ′′ as before, and by Harnack’s inequality, (1.4) holds
with X ′′ in place of X ′, for a different but still uniform β. Again, if we let x̂ ∈ ∂� with δ(X ′′)= |X ′′− x̂ |,
then 1(x̂, r/4)⊂1, and we may now repeat the previous argument with X ′′ in place of X ′.

We are now ready to show that (1.2) implies (1.4).

Lemma 4.3. Let �⊂ Rn+1 be an open set with n-dimensional ADR boundary, and let 1=1(x, r) be
a surface ball on ∂�. Let µ be a measure on ∂� such that µ|1 � σ , and such that for some q > 1
and 3<∞,

−

∫
1

kq dσ ≤3, (4.4)

where k := dµ/dσ on 1. Suppose also that
µ(1)

σ(1)
≥ 1. (4.5)

Then there are constants η, β ∈ (0, 1), depending only on n, q, 3, and ADR, such that for any Borel set
A ⊂1,

σ(A)≥ (1− η)σ (1) =⇒ µ(A)≥ βµ(1). (4.6)
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Remark 4.7. Let k be a normalized version of harmonic measure: k = c−1
1 σ(1)k X1 , with X1 a point

for which (4.1) and (4.2) hold. Then clearly (4.4) and (4.5) hold for k, and the conclusion (4.6) is just a
reformulation of (1.4). We note that in the sequel, we actually use only (4.6) or (1.4), rather than condition
(4.4) or (4.2). Thus, Theorem 1.1 could just as well have been stated with condition (??) (see Remark 1.3)
in place of (?).

Proof of Lemma 4.3. Set F :=1 \ A, so σ(F)≤ ησ(1). Then

µ(F)=
∫

F
k dσ ≤ σ(F)1/q

′

(∫
1

kqdσ
)1/q

≤31/qσ(F)1/q
′

σ(1)1/q ≤31/qη1/q ′σ(1)≤31/qη1/q ′µ(1),

where in the last step we have used (4.5). Thus,

µ(A)≥
(
1−31/qη1/q ′)µ(1)≥ 1

2µ(1)

for η small enough. This completes the proof. �

Fix Q0 ∈ D(∂�). As in (2.8), we set BQ0 = B(xQ0, r0), with r0 := rQ0 ≈ `(Q0), so that 1Q0 =

BQ0 ∩ ∂�⊂ Q0.
Proceeding first in the setting of Theorem 1.1, let X0 := X1Q0

be the point relative to 1=1Q0 such
that (4.1) and (4.2) hold. Note that (4.1) trivially implies that

ωX0(Q0)≥ c1.

With the pole X0 fixed, we define the normalized harmonic measure and the normalized Green’s function,
respectively, by

µ :=
1
c1
σ(Q0)ω

X0, u(Y ) := 1
c1
σ(Q0)G(X0, Y ). (4.8)

Then under this normalization, setting ‖µ‖ = µ(∂�), we have

1≤
µ(Q0)

σ (Q0)
≤
‖µ‖

σ(Q0)
≤ C1, (4.9)

with C1 = 1/c1. Furthermore, we may apply Lemma 4.3 (using (4.1) and with 3≈ C0/c1) to obtain (4.6)
for µ, with 1=1Q0 . In turn, the latter bound, in conjunction with (4.1) and ADR, clearly implies an
analogous estimate for Q0, namely that there are constants that we again call η, β ∈ (0, 1) such that for
any Borel set A ⊂ Q0,

σ(A)≥ (1− η)σ (Q0) =⇒ µ(A)≥ βµ(Q0). (4.10)

Here, of course, we may have different values of the parameters η and β, but these have the same
dependence as the original values, so for convenience we maintain the same notation.

In the p-harmonic case, proceeding under the setup of Theorem 1.12, we let u and µ be the p-harmonic
function and its associated p-harmonic measure, corresponding to the point x = xQ0 and the radius
r = Cr0 := CrQ0 , satisfying the hypotheses of Theorem 1.12, where we choose the constant C depending
only on n and ADR, such that Q0⊂1(xQ0,Cr0) (thus, in particular, µ is defined on Q0). Since we assume
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that u is nontrivial and nonnegative, we can apply Lemma 3.43 in B(xQ0,Cr0) and use (1.14) to conclude
that µ(1Q0) > 0. We can therefore normalize u and µ (abusing the notation we call the normalizations
u and µ) so that µ(1Q0)/σ (Q0) = 1, and since 1Q0 ⊂ Q0 ⊂ 1(xQ0,Cr0) by (1.14), we also have
µ(1(xQ0,Cr0))/σ (1(xQ0,Cr0))≈µ(Q0)/σ (Q0)≈ 1. Set k := dµ/dσ . As above, by (1.13) and (1.14),
we may then use Lemma 4.3 to see that again µ satisfies both (4.9), now with ‖µ‖ := µ(1(xQ0,Cr0)),
and (4.10). The constants C1, η, and β depend on C , n, the ADR constant, C0, and q.

Remark 4.11. Under the assumptions of Theorems 1.1 and 1.12 and throughout this section and Section 6,
for Q0 ∈ D(E) fixed, u and µ will continue to denote the normalized Green function and harmonic
measure or the normalized nonnegative p-harmonic solution and p-harmonic Riesz measure, as defined
above. In particular, (4.9) and (4.10) hold for all 1< p <∞.

As above, let M denote the usual Hardy–Littlewood maximal operator on ∂� and recall the definition
of DF,Q0 in (2.10).

Lemma 4.12. Let Q0 ∈D, and suppose that µ satisfies (4.9) and (4.10). Then there is a pairwise disjoint
family F = {Q j } j≥1 ⊂ DQ0 such that

σ
(
Q0 \

(⋃
j

Q j
))
≥

1
C
σ(Q0) (4.13)

and
β

2
≤
µ(Q)
σ (Q)

≤

(
−

∫
Q
(Mµ)1/2 dσ

)2

≤ C, ∀Q ∈ DF,Q0, (4.14)

where C > 1 depends only on η, β, C1, n, and ADR.

Proof. The proof is based on a stopping time argument similar to those used in the proof of the Kato
square root conjecture [Hofmann and McIntosh 2002; Hofmann et al. 2002; Auscher et al. 2002a], and in
local Tb theorems. We begin by noting that

‖Mµ‖L1,∞(σ ) := sup
λ>0

λσ {Mµ > λ}. ‖µ‖. σ(Q0) (4.15)

by the Hardy–Littlewood theorem and (4.9). Consequently, by Kolmogorov’s criterion,

−

∫
Q0

(Mµ)1/2 dσ ≤ C = C(n,ADR,C1). (4.16)

We now perform a stopping time argument to extract a family F = {Q j } of dyadic subcubes of Q0 that
are maximal with respect to the property that either

µ(Q j )

σ (Q j )
<
β

2
(4.17)

and/or

−

∫
Q j

(Mµ)1/2 dσ > K , (4.18)
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where K ≥ 1 is a sufficiently large number to be chosen momentarily. Note that Q0 /∈ F , by (4.9) and
(4.16). We say that Q j is of “type I” if (4.17) holds, and of “type II” if (4.18) holds but (4.17) does not.
Set A := Q0 \

(⋃
j Q j

)
, and F :=

⋃
Q j type II Q j . Then by (4.9),

σ(Q0)≤ µ(Q0)=
∑

Q j type I

µ(Q j )+µ(F)+µ(A). (4.19)

By definition of the type I cubes,∑
Q j type I

µ(Q j )≤
β

2

∑
j

σ(Q j )≤
β

2
σ(Q0). (4.20)

To handle the remaining terms, observe that

σ(F)=
∑

Q j type II

σ(Q j )≤
1
K

∑
j

∫
Q j

(Mµ)1/2 dσ

≤
1
K

∫
Q0

(Mµ)1/2 dσ ≤ ησ(Q0), (4.21)

by the definition of the type II cubes, (4.16), and the choice of K =Cη−1. By (4.10) and complementation,
we therefore find that

µ(F)≤ (1−β)µ(Q0). (4.22)

Next, if x ∈ A, then every Q ∈ DQ0 that contains x must satisfy the opposite inequality to (4.18), and
therefore, by Lebesgue’s differentiation theorem,

Mµ(x)≤ K 2, for σ -a.e. x ∈ A.

Thus µ|A� σ , with dµ|A/dσ ≤ K 2, and thus,

µ(A)≤ K 2σ(A).

Combining the latter estimate with (4.19), (4.20), and (4.22), we obtain

βµ(Q0)≤
β

2
σ(Q0)+ K 2σ(A).

Using (4.9), we then find that

βσ(Q0)≤ βµ(Q0)≤
β

2
σ(Q0)+ K 2σ(A).

The conclusion of the lemma now follows readily. �

For future reference, let us note an easy consequence of the last inequality in (4.14) and the ADR
property: for all Q ∈ DF,Q0 , and for any constant b > 1, we have

µ
(
1(xQ, b diam(Q))

)
. bnσ(Q)

(
−

∫
Q
(Mµ)1/2 dσ

)2

. bnσ(Q). (4.23)

Recall that the ball B∗Q and surface ball 1∗Q are defined in (2.15).
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Lemma 4.24. Let u, µ be as in Remark 4.11. If the constant K0 in (2.15) and (2.23) is chosen sufficiently
large, then for each Q ∈ DF,Q0 with `(Q)≤ K−1

0 `(Q0), there exists YQ ∈UQ with

δ(YQ)≤ |YQ − xQ |. `(Q),

where the implicit constant is independent of K0, such that

µ(Q)
σ (Q)

≤ C |∇u(YQ)|
p−1, (4.25)

where C depends on K0 and the implicit constants in the hypotheses of Theorems 1.1 and 1.12.

Remark 4.26. Recalling the construction at the beginning of Section 4, and the fact that we have defined
X0 := X1Q0

, we see that `(Q0)≈ δ(X0) ≥ K−1/2
0 `(Q0), for K0 chosen large enough. We note further

that the point YQ whose existence is guaranteed by Lemma 4.24 is essentially a corkscrew point relative
to Q. Indeed, δ(YQ)& K−1

0 `(Q) (since Y ∈UQ), and also |YQ− xQ |. `(Q) (with constant independent
of K0). With a slight abuse of terminology, we shall refer to YQ as a corkscrew point relative to Q, with
corkscrew constant depending on K0.

Proof of Lemma 4.24. Fix Q ∈DF,Q0 , with `(Q)≤ K−1
0 `(Q0), where, as in Remark 4.26, we have chosen

K0 large enough that `(Q0) ≈ δ(X0) ≥ K−1/2
0 `(Q0). Recall (2.7) and (2.8), and set B̂Q = B(xQ, r̂Q),

1̂Q = B̂Q ∩ ∂�, with r̂Q ≈ `(Q) and Q ⊂ 1̂Q . Let 0 ≤ φQ ∈ C∞0 (2B̂Q), such that φQ ≡ 1 in B̂Q and
‖∇φQ‖. `(Q)−1. Note that

K 1/2
0 `(Q)≤ K−1/2

0 `(Q0)≤ δ(X0)≤ |X0− xQ |,

which implies that X0 /∈ 4B̂Q provided K0 is large enough. Thus, by (3.10) in the linear case, or (3.44) in
general,

`(Q)µ(Q)≤ `(Q)
∫
∂�

φQ dµ.
∫∫

B̂Q∩�

|∇u(Y )|p−1 dY (4.27)

≤

∫∫
B̂Q∩UQ

|∇u(Y )|p−1 dY +
∫∫

(B̂Q∩�)\UQ

|∇u(Y )|p−1 dY

=: I + II.

Notice that by construction,

(B̂Q ∩�) \UQ ⊂ {Y ∈ B̂Q : δ(Y )≤ C K−1
0 `(Q)}.

We may therefore cover the latter region by a family of balls {Bk}k , centered on ∂�, of radius C K−1
0 `(Q),

such that their doubles {2Bk} have bounded overlaps and satisfy⋃
k

2Bk ⊂ {Y ∈ 2B̂Q : δ(Y )≤ 2C K−1
0 `(Q)} =:6(K0).
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By the boundary Cacciopoli estimate in Lemma 3.31, plus Hölder’s inequality, we obtain

II ≤
∑

k

∫∫
Bk

|∇u(Y )|p−1 dY .
(

K0

`(Q)

)p−1∑
k

∫∫
2Bk

|u(Y )|p−1 dY

.

(
K0

`(Q)

)p−1∫∫
6(K0)

|u(Y )|p−1 dY

.

(
K0

`(Q)

)p−1

K−p
0 `(Q)pµ(1(xQ, 2M1r̂Q))

. K−1
0 `(Q)σ (Q)≤ 1

2
`(Q)µ(Q) ,

where in the last three steps we have used (3.16) (when p = 2) or Lemma 3.46 (1< p <∞), (4.23), and
finally the choice of K0 large enough. We can then hide this term on the left-hand side of (4.27), so that

`(Q)µ(Q). I =
∫∫

B̂Q∩UQ

|∇u(Y )|p−1 dY =
∑

i

∫∫
B̂Q∩U i

Q

|∇u(Y )|p−1 dY

. `(Q)n+1 max
i

sup
Y∈B̂Q∩U i

Q

|∇u(Y )|p−1

≈ `(Q)σ (Q)max
i

sup
Y∈B̂Q∩U i

Q

|∇u(Y )|p−1,

and we recall that {U i
Q}i is an enumeration of the connected components of UQ , and that the number

of these components is uniformly bounded. Thus, for some i , there is a point YQ ∈ B̂Q ∩U i
Q such

that µ(Q)/σ (Q) . |∇u(YQ)|
p−1. To complete the proof, we simply observe that by construction,

δ(YQ)≤ |YQ − xQ | ≤ r̂Q . `(Q). �

5. Proof of Theorem 1.1, Corollary 1.5, and Theorem 1.12

In this section we complete the proofs of Theorem 1.1 and Theorem 1.12 by proving that E := ∂�
satisfies WHSA, and hence, by Proposition 1.17, E is UR. The proof of Corollary 1.5 follows almost
immediately from Theorem 1.1 and we supply the proof at the end of the section. Our approach to the
proofs of Theorems 1.1 and 1.12 is a refinement and extension of the arguments in [Lewis and Vogel
2007], who, as mentioned in the introduction, treated the special case that k ≈ 1.

We fix Q0 ∈ D(E) and we let u and µ be as in Remark 4.11. We recall that by (4.9),

µ(Q0)

σ (Q0)
≈ 1. (5.1)

Let F = {Q j } j be the family of maximal stopping time cubes constructed in Lemma 4.12. Combining
(4.25) and (4.14), we see that

|∇u(YQ)|& 1, ∀Q ∈ D∗F,Q0
:= {Q ∈ DF,Q0 : `(Q)≤ K−1

0 `(Q0)}, (5.2)

where YQ ∈ UQ is the point constructed in Lemma 4.24. We recall that the Whitney region UQ has a
uniformly bounded number of connected components, which we have enumerated as {U i

Q}i . We now fix
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the particular i such that YQ ∈U i
Q ⊂ Ũ i

Q , where the latter is the enlarged Whitney region constructed in
Definition 2.26.

For a suitably small ε0, say ε0 � K−6
0 , we fix an arbitrary positive ε < ε0, and we fix also a large

positive number M to be chosen. For each point Y ∈�, we set

BY := B(Y, (1− ε2M/α)δ(Y )), B̃Y := B(Y, δ(Y )), (5.3)

where 0< α < 1 is the exponent appearing in Lemma 3.35. For Q ∈ DF,Q0 , we consider three cases.

Case 0: Q ∈ DF,Q0 , with `(Q) > ε10`(Q0).

Case 1: Q ∈ DF,Q0 , with `(Q)≤ ε10`(Q0) and

sup
X∈Ũ i

Q

sup
Z∈BX

|∇u(Z)−∇u(YQ)|> ε
2M . (5.4)

Case 2: Q ∈ DF,Q0 , with `(Q)≤ ε10`(Q0) and

sup
X∈Ũ i

Q

sup
Z∈BX

|∇u(Z)−∇u(YQ)| ≤ ε
2M . (5.5)

We trivially see that the cubes in Case 0 satisfy a packing condition:∑
Q∈DF,Q0

Case 0 holds

σ(Q) ≤
∑

Q∈DQ0
`(Q)>ε10`(Q0)

σ(Q). (log ε−1)σ (Q0). (5.6)

Note that in Case 1 and Case 2 we have Q ∈D∗F,Q0
(see (5.2)). Furthermore, if `(Q)≤ ε10`(Q0), then

by (5.2), (3.42), and either (3.13) (which we apply in the case p = 2, with X = X0, since `(Q)� `(Q0))

or (3.45) (for general p, 1< p <∞), and (4.14), we have

1. |∇u(YQ)|.
u(YQ)

δ(YQ)
. 1. (5.7)

Regarding Case 1 we obtain the following packing condition.

Lemma 5.8. Under the previous assumptions, the following packing condition holds:

1
σ(Q0)

∑
Q∈DF,Q0

Case 1 holds

σ(Q)≤ C(ε, K0,M, η). (5.9)

On the other hand, we show that the cubes in Case 2 satisfy the ε-local WHSA property. Given ε > 0,
recall that B∗∗∗Q (ε)= B(xQ, ε

−5`(Q)) (see (2.16)). We also introduce

Bbig
Q = Bbig

Q (ε) := B(xQ, ε
−8`(Q)), 1

big
Q := Bbig

Q ∩ E .

Lemma 5.10. Fix ε ∈ (0, K−6
0 ), and let 1< p <∞. Suppose that u is nonnegative and p-harmonic in

�Q :=�∩ Bbig
Q , u ∈ C(�Q), u ≡ 0 on 1big

Q . Suppose also that for some i , there exists a point YQ ∈U i
Q

such that
|∇u(YQ)| ≈ 1, (5.11)
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and furthermore, that
sup
B∗∗∗Q

u . ε−5`(Q) (5.12)

and

sup
X,Y∈Ũ i

Q

sup
Z1∈BY , Z2∈BX

|∇u(Z1)−∇u(Z2)| ≤ 2ε2M . (5.13)

Then Q satisfies the ε-local WHSA, provided that M is large enough, depending only on dimension and
on the implicit constants in the stated hypotheses.

Assuming these results momentarily, we can complete the proofs of Theorem 1.1 and Theorem 1.12
as follows. First we see that we can apply Lemma 5.10 to the cubes in Case 2. Indeed, let Q be a cube
such that Q ∈ DF,Q0 , `(Q)≤ ε10`(Q0), and (5.5) holds. Hence (5.11) follows by virtue of (5.7), while
(5.12) holds by Lemma 3.14 applied with B = 2B∗∗∗Q (or Lemma 3.46, with B(y, s)= 2B∗∗∗Q ), and (4.23).
Moreover, (5.13) follows trivially from (5.5). Thus, the hypotheses of Lemma 5.10 are all verified and
hence Q satisfies the ε-local WHSA condition. In particular, the cubes Q ∈ DF,Q0 , which belong to the
bad collection B of cubes in D(E) for which the ε-local WHSA condition fails, must be as in Case 0 or
Case 1. By (5.6) and (5.9) these cubes satisfy the packing estimate∑

Q∈B∩DF,Q0

σ(Q)≤ Cεσ(Q0). (5.14)

For each Q0 ∈ D(E), there is a family F ⊂ DQ0 for which (5.14), and also the “ampleness” condition
(4.13), hold uniformly. We may therefore invoke a well known lemma of John–Nirenberg type to deduce
that (2.20) holds for all ε ∈ (0, ε0), and therefore to conclude that E satisfies the WHSA condition,
Definition 2.19. Hence E is UR by Proposition 1.17.

The rest of the section is devoted to the proof of Lemmas 5.8 and 5.10. We shall first prove Lemma 5.8
in the relatively simpler linear case p = 2 (see Section 5A). The proof of Lemma 5.8 in the general case
1< p <∞ is a bit more delicate and given in Section 5B. Lemma 5.10 is proved in Section 5C. Finally,
the proof of Corollary 1.5 is given in Section 5D.

Before passing to the subsections we first introduce some additional notation to be used in the sequel.
We augment Ũ i

Q as follows. Set

W i,∗
Q :=

{
I ∈W : I ∗ meets BY for some Y ∈

( ⋃
X∈Ũ i

Q

BX

)}
(5.15)

(and define W j,∗
Q analogously for all other Ũ j

Q), and set

U i,∗
Q :=

⋃
I∈W i,∗

Q

I ∗∗, U∗Q :=
⋃

j

U j,∗
Q , (5.16)

where I ∗∗ = (1+ 2τ)I is a suitably fattened Whitney cube, with τ fixed as above. By construction,

Ũ i
Q ⊂

⋃
X∈Ũ i

Q

BX ⊂
⋃

Y∈
⋃

X∈Ũ i
Q

BX

BY ⊂U i,∗
Q ,
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and for all Y ∈U i,∗
Q , we have that δ(Y )≈ `(Q) (depending of course on ε). Moreover, also by construction,

there is a Harnack path connecting any pair of points in U i,∗
Q (depending again on ε), and furthermore,

for every I ∈W i,∗
Q (or for that matter for every I ∈W j,∗

Q , j 6= i),

εs`(Q). `(I ). ε−3`(Q), dist(I, Q). ε−4`(Q),

where 0< s = s(M, α). Thus, by Harnack’s inequality and (5.7),

C−1δ(Y )≤ u(Y )≤ Cδ(Y ), ∀Y ∈U i,∗
Q , (5.17)

with C = C(K0, ε,M). Moreover, for future reference, we note that the upper bound for u holds in all of
U∗Q , i.e.,

u(Y )≤ Cδ(Y ), ∀Y ∈U∗Q, (5.18)

by (3.12) or (3.45) and (4.14), where again C = C(K0, ε,M).

5A. Proof of Lemma 5.8 in the linear case ( p = 2). Here we complete the proof of estimate (5.9) in
the relatively simpler linear case p= 2. To start the proof of (5.9), we fix Q ∈DF,Q0 so that Case 1 holds.
We see that if we choose Z as in (5.4), and use the mean value property of harmonic functions, then

ε2M
≤ Cε(`(Q))−(n+1)

∫∫
BZ∪BYQ

|∇u(Y )− Eβ| dY,

where Eβ is a constant vector at our disposal. By Poincaré’s inequality (see, e.g., [Hofmann and Martell
2014, Section 4] in this context), we obtain that

σ(Q).
∫∫

U i,∗
Q

|∇
2u(Y )|2δ(Y ) dY .

∫∫
U i,∗

Q

|∇
2u(Y )|2u(Y ) dY,

where the implicit constants depend on ε, and in the last step we have used (5.17). Consequently,∑
Q∈DF,Q0

Case 1 holds

σ(Q) .
∑

Q∈DF,Q0
`(Q)≤ε10`(Q0)

∫∫
U∗Q

|∇
2u(Y )|2u(Y ) dY .

∫∫
�∗F,Q0

|∇
2u(Y )|2u(Y ) dY, (5.19)

where

�∗F,Q0
:= int

( ⋃
Q∈DF,Q0

`(Q)≤ε10`(Q0)

U∗Q

)
, (5.20)

and where we have used that the enlarged Whitney regions U∗Q have bounded overlaps.
Take an arbitrary N > 1/ε (eventually N →∞), and augment F by adding to it all subcubes Q ⊂ Q0

with `(Q) ≤ 2−N`(Q0). Let FN ⊂ DQ0 denote the collection of maximal cubes of this augmented
family. Thus, Q ∈ DFN ,Q0 if and only if Q ∈ DF,Q0 and `(Q) > 2−N`(Q0). Clearly, DFN ,Q0⊂ DFN ′ ,Q0

if N ≤ N ′, and therefore �∗FN ,Q0
⊂�∗FN ′ ,Q0

(where �∗FN ,Q0
is defined as in (5.20) with FN replacing F).
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By monotone convergence and (5.19), we have that∑
Q∈DF,Q0

Case 1 holds

σ(Q). lim sup
N→∞

∫∫
�∗FN ,Q0

|∇
2u(Y )|2u(Y ) dY. (5.21)

It therefore suffices to establish bounds for the latter integral that are uniform in N , with N large.
Let us then fix N > 1/ε. Since �∗FN ,Q0

is a finite union of fattened Whitney boxes, we may now
integrate by parts, using the identity 2|∇∂ku|2 = div∇(∂ku)2 for harmonic functions, to obtain that∫∫

�∗FN ,Q0

|∇
2u(Y )|2u(Y ) dY .

∫
∂�∗FN ,Q0

(|∇2u||∇u|u+ |∇u|3) dH n
≤ CεH n(∂�∗FN ,Q0

), (5.22)

where in the second inequality we have used the standard estimates

δ(Y )|∇2u(Y )|, |∇u(Y )|.
u(Y )
δ(Y )

,

along with (5.18). We observe that �∗FN ,Q0
is a sawtooth domain in the sense of [Hofmann et al. 2016],

or to be more precise, it is a union of a bounded number, depending on ε, of such sawtooths, one for each
maximal subcube of Q0 with length on the order of ε10`(Q0). By [Hofmann et al. 2016, Appendix A]
each of the previous sawtooth domains is ADR uniformly in N . Hence, its union is upper ADR uniformly
in N with constant depending on the number of sawtooth domains in the union, which ultimately depends
on ε. Therefore,

H n(∂�∗FN ,Q0
)≤ Cε(diam(∂�∗FN ,Q0

))n ≤ Cεσ(Q0).

Combining the latter estimate with (5.21) and (5.22), we obtain (5.9), as desired, in the case p = 2.

5B. Proof of Lemma 5.8 in the general case (1< p<∞). Here we prove (5.9) for general p, 1< p<∞,
by proceeding along the lines of the proof of Lemma 2.5 in [Lewis and Vogel 2006]. We fix Q ∈ DF,Q0

so that Case 1, and hence (5.4), holds. Let us recall that we have verified estimates (5.7), (5.17), and
(5.18) for all p, 1< p <∞.

Recall that if X ∈ Ũ i
Q , then by definition X can be connected to some Ỹ ∈U i

Q , and then to YQ ∈U i
Q ,

by a chain of at most Cε−1 balls of the form B(Yk, δ(Yk)/2), with ε3`(Q)≤ δ(Yk)≤ ε
−3`(Q). Note that

using the triangle inequality and the definition of Ũ i
Q , we may suppose that Yk+1 ∈ B(Yk, 3δ(Yk)/4)⊂ BYk ;

otherwise we increase the chain by introducing some intermediate points and the new chain will have
essentially the same length. Fix now Q, a cube in Case 1, and by (5.4) we can pick X ∈ Ũ i

Q so that

sup
Y∈BX

|∇u(Y )−∇u(YQ)|> ε
2M.

As observed previously, we can form a Harnack chain connecting X and YQ so that Y1 = YQ and Yl = X
and l ≤ Cε−1. Then the previous expression can be written as

sup
Y∈BYl

|∇u(Y )−∇u(Y1)|> ε
2M. (5.23)
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Obviously we may assume that

sup
Y∈BY j

|∇u(Y )−∇u(Y1)| ≤ ε
2M (5.24)

whenever 1< j ≤ l − 1, and l > 1, since otherwise we shorten the chain (and work with the first Y j for
which (5.23) holds). This and the fact that Y j+1 ∈ BY j for every 1≤ j ≤ l − 1 imply that

|∇u(Y j )| ≥ |∇u(Y1)| − ε
2M , for 1≤ j ≤ l. (5.25)

Furthermore, using the triangle inequality,

ε2M
≤ sup

Y∈BYl

|∇u(Y )−∇u(Yl)| +

l−1∑
j=1

|∇u(Y j+1)−∇u(Y j )|. (5.26)

Hence, using this and the fact that l . ε−1 we have that either

(i) sup
Y∈BYl

|∇u(Y )−∇u(Yl)| ≥ ε
2M+2, or

(ii) |∇u(Y j+1)−∇u(Y j )| ≥ ε
2M+2, for some 1≤ j ≤ l − 1.

(5.27)

By (5.18) and (3.42) we have
|∇u(Y )| ≤ Cε, ∀Y ∈U∗Q . (5.28)

In scenario (i) of (5.27) we take Y , a point where the sup is attained. This choice, (5.28), and the first
inequality in (3.38) imply that |Y − Yl | ≈ε `(Q). We then construct 00(Q) a (possibly rotated) rectangle
as follows. The base and the top are two n-dimensional cubes of side length cε`(Q), with cε chosen
sufficiently small, centered respectively at the points Y and Yl , and lying in the two parallel hyperplanes
passing through the points Y and Yl and perpendicular to the vector joining these two points. Note that
for this rectangle, all side lengths are of the order of `(Q) with implicit constants possibly depending
on ε. In scenario (ii) of (5.27) we do the same construction with Y j+1 and Y j in place of Y and Yl and
define 00(Q) which verifies the same properties. Note that in either case, (5.28) and the first inequality in
(3.38) give the property that

|∇u(Y )−∇u(W )| ≥ ε2M+4 (5.29)

whenever W and Y are in the base and top of the parallelepiped, respectively. By construction, at least
the top, which we denote by t (Q), is centered on Y j , for some 1≤ j ≤ l. We observe that by (5.25) and
(5.7), since Y1 := YQ , and since ε is very small, we have for each Y j , 1≤ j ≤ l,

|∇u(Y j )| ≥ a, (5.30)

for some uniform constant a independent of ε. Therefore, by (3.38), we also have

|∇u(Y )| ≥ a
2
, ∀Y ∈ t (Q), (5.31)

provided that we take cε small enough, since diam(t (Q))≈ cε`(Q). Moving downward, that is, from top
to base, through 00(Q) along slices parallel to t (Q), we stop the first time that we reach a slice b(Q)
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which contains a point Z with |∇u(Z)| ≤ a/4. If there is such a slice, we form a new rectangle 0(Q)
with base b(Q) and top t (Q); otherwise, we set 0(Q) := 00(Q), and let b(Q) denote the base in this
case as well. In either case, dist(b(Q), t (Q))≈ `(Q), with implicit constants possibly depending on ε,
by (3.38) and (5.31). Note that by construction and the continuity of ∇u,

|∇u(Y )| ≥ a
4
, ∀Y ∈ 0(Q), (5.32)

and that |0(Q)| ≈ `(Q)n+1, again with implicit constants which may depend on ε. Furthermore, if
0(Q)=00(Q), then (5.29) holds for all W ∈ b(Q) and Y ∈ t (Q). Otherwise, if 0(Q) is strictly contained
in 00(Q), then, since diam(b(Q)) ≈ cε`(Q) with cε small, and since by construction b(Q) contains a
point Z with |∇u(Z)| = a/4, it follows that |∇u(W )| ≤ 3a/8 for all W ∈ b(Q), by (3.38). Hence, in
either situation, since a/8� ε2M+4, we have

|∇u(Y )−∇u(W )| ≥ ε2M+4, ∀W ∈ b(Q), Y ∈ t (Q). (5.33)

We let γ = a/8 and set
Fγ (|∇u|) :=max(|∇u|2− γ 2, 0).

Then by (5.32) we see that

Fγ (|∇u|)≥ a2

64
, ∀Y ∈ 0(Q). (5.34)

Furthermore, by (5.33), the fundamental theorem of calculus, (5.17), (5.32), and (5.34), we have

`(Q)n .
∫∫

0(Q)
u|∇2u|2 dX .

∫∫
0(Q)

uFγ (|∇u|)|∇u|p−2
|∇

2u|2 dY,

where the implicit constants depend on ε. In particular, since 0(Q)⊂U i,∗
Q ⊂U∗Q , by ADR we obtain

σ(Q).
∫∫

U∗Q

uFγ (|∇u|)|∇u|p−2
|∇

2u|2 dY,

where the implicit constants still depend on ε, and this estimate holds for all cubes Q ∈ DF,Q0 , so that
Case 1 holds. Hence, ∑

Q∈DF,Q0
Case 1 holds

σ(Q).
∫∫

�∗F,Q0

uFγ (|∇u|)|∇u|p−2
|∇

2u|2 dY, (5.35)

where �∗F,Q0
was defined in (5.20) and where we have used that the enlarged Whitney regions U∗Q have

bounded overlaps. To prove (5.9) in the general case 1 < p <∞, it therefore suffices to establish the
local square function bound∫∫

�∗F,Q0

uFγ (|∇u|)|∇u|p−2
|∇

2u|2 dY . σ(Q0), (5.36)

where, as we recall, u is a nonnegative p-harmonic function in the open set �0 := �∩ B(xQ0,CrQ0),
vanishing on 1(xQ0,CrQ0).
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To start the proof of (5.36), for each Q ∈ D(E), we define a further fattening of U∗Q as follows. Set

U i,∗∗
Q :=

⋃
I∈W i,∗

Q

I ∗∗∗, U∗∗Q :=
⋃

i

U i,∗∗
Q ,

U i,∗∗∗
Q :=

⋃
I∈W i,∗

Q

I ∗∗∗∗, U∗∗∗Q :=

⋃
i

U i,∗∗∗
Q ,

where I ∗∗∗ = (1+ 3τ)I and I ∗∗∗∗ = (1+ 4τ)I are fattened Whitney regions, for some fixed small τ as
above; see (5.15)–(5.16). Notice that I ∗∗ ⊂ I ∗∗∗ ⊂ I ∗∗∗∗. We observe that the fattened Whitney regions
U∗∗∗Q have bounded overlaps, say ∑

Q∈D(E)

1U∗∗∗Q
(Y )≤ M0, (5.37)

where M0 <∞ is a uniform constant depending on K0, ε, τ , and n. Next, let {ηQ}Q be a partition of
unity adapted to U∗∗Q . That is,

(1)
∑

Q ηQ(Y )≡ 1 whenever Y ∈�,

(2) supp ηQ ⊂U∗∗Q , and

(3) ηQ ∈ C∞0 (R
n+1) with 0≤ ηQ ≤ 1, ηQ ≥ c on U∗Q , and |∇ηQ | ≤ C`(Q)−1.

Set
DF,Q0,ε := {Q ∈ DF,Q0 : `(Q)≤ ε

10`(Q0)},

and recall from (5.20) that

�∗F,Q0
:= int

( ⋃
Q∈DF,Q0,ε

U∗Q

)
.

Given a large number N � ε−10, set

3=3(N )= {Q ∈ D(E) :U∗∗Q ∩�
∗

F,Q0
6=∅ and `(Q)≥ N−1`(Q0)}.

Eventually, we shall let N →∞. Let

I1(N ) :=
∑

Q∈3(N )

∫∫
uFγ (|∇u|)

( n+1∑
i, j=1

u2
yi y j

)
ηQ dY

and note, by positivity of u and the properties of ηQ , that we then have∫∫
�∗F,Q0

uFγ (|∇u|)|∇2u|2 dY . lim
N→∞

I1(N ).

We now fix N . We intend to perform integration by parts and in this argument, we exploit that |∇u|2 is a
subsolution to a certain linear PDE defined based on u. To describe this in detail, let Q ∈3(N ) be such
that Fγ (|∇u(Y )|) 6= 0 for some Y ∈U∗∗Q . Then |∇u(Y )| ≥ γ and there exists C = C(γ )≥ 1 such that

C−1
≤ |∇u(X)|. 1 whenever X ∈ B(Y, δ(Y )/C), (5.38)
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and where the upper bound follows from (5.18) and the lower bound uses also (3.38). Let ζ =∇u · ξ , for
some ξ ∈ Rn+1. Then ζ satisfies, at X ∈ B(Y, δ(Y )/C), the partial differential equation

Lζ =∇ ·
[
(p− 2)|∇u|p−4 (∇u · ∇ζ )∇u+ |∇u|p−2

∇ζ
]
= 0, (5.39)

as is seen by a straightforward calculation from differentiating the p-Laplace partial differential equation
for u with respect to ξ . Note that (5.39) can be written in the form

Lζ =
n+1∑

i, j=1

∂

∂yi
[bi j ( · )ζy j ( · )] = 0, (5.40)

where

bi j (Y )= |∇u|p−4
[(p− 2)u yi u y j + δi j |∇u|2](Y ), 1≤ i, j ≤ n+ 1, (5.41)

and δi j is the Kronecker δ. Clearly we also have

Lu(Y )= (p− 1)∇ · [|∇u|p−2
∇u](Y )= 0. (5.42)

In particular, u and (∇u · ξ ) for each ξ ∈ Rn+1 all satisfy the divergence form partial differential
equation (5.40).

It is easy to see that (bi j )i j satisfies the following degenerate ellipticity condition: for every ξ ∈ Rn+1

one has

n+1∑
i, j=1

bi jξiξ j = (p− 2)|∇u|p−4
n+1∑

i, j=1

ui u jξiξ j + |∇u|p−2
n+1∑

i, j=1

δi jξiξ j

= (p− 2)|∇u|p−4(∇u · ξ)2+ |∇u|p−2
|ξ |2 ≥min{1, p− 1}|∇u|p−2

|ξ |2, (5.43)

where the last inequality is immediate when p ≥ 2 and uses the Cauchy–Schwarz inequality when
1< p< 2. Hence, |∇u|2 is a subsolution to the PDE defined in (5.40), (5.41), as seen from the calculation

L(|∇u|2)= 2
n+1∑

i, j,k=1

bi j u yi yk u y j yk & |∇u|p−2
( n+1∑

i, j=1

u2
yi y j

)
. (5.44)

Now, using (5.44) and the fact that (5.38) holds for every Y such that Fγ (|∇u(Y )|) 6= 0, we see that
I1(N ). J1(N ), where

J1(N ) :=
∑

Q∈3(N )

∫∫
uFγ (|∇u|)L(|∇u|2)ηQ dY.

Hence it suffices to establish bounds for the integral J1 := J1(N ) that are uniform in N , with N large.
In the following we let v = Fγ (|∇u|) and note that ∇v = ∇(|∇u|2) whenever v > 0. Using this and
integration by parts we see that

J1 =−J2− J3− J4,
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where

J2 =
∑

Q∈3(N )

∫∫
v

n+1∑
i, j=1

bi j u yivy jηQ dY,

J3 =
∑

Q∈3(N )

∫∫
u

n+1∑
i, j=1

bi jvyivy jηQ dY,

J4 =
∑

Q∈3(N )

∫∫
uv

n+1∑
i, j=1

bi jvy j (ηQ)yi dY.

We estimate J4 first. Set 31 =311 ∪312, where

311 := {Q ∈3 :U∗∗Q meets � \�F,Q0},

and

312 := {Q ∈3 :U∗∗Q meets U∗∗Q′ such that `(Q′) < N−1`(Q0)}.

From the definition of ηQ , we obtain

|J4|.
∑

Q∈311

∫∫
uv

n+1∑
i, j=1

|ui j ||ui ||(ηQ) j | dY +
∑

Q∈311

∫∫
uv

n+1∑
i, j=1

|ui j ||ui ||(ηQ) j | dY =: J51+ J52.

Notice that, equivalently, 311 is the subcollection of Q ∈ 31 such that U∗∗Q meets ∂�∗F,Q0
. We start

with J51. Note that by (3.38), (5.18), and Harnack’s inequality,

δ(Y )|∇u(Y )|. u(Y ). δ(Y )≈ `(Q) (5.45)

whenever Y ∈U∗∗∗Q . Furthermore, if v 6= 0 for some Y ∈U∗∗∗Q , then using (5.38) and (3.40), we also have

(δ(Y ))2 |∇2u(Y )|. u(Y ). δ(Y )≈ `(Q). (5.46)

In particular, u|∇ηQ |. 1 by construction of ηQ , |∇u(Y )|. 1 whenever Y ∈U∗∗∗Q , and δ(Y )|∇2u(Y )|. 1
whenever Y ∈U∗∗∗Q and v 6= 0. Thus,

J51 .
∑

Q∈311

`(Q)n .
∑

Q∈311

H n(U∗∗∗Q ∩ ∂�
∗

F,Q0
).

∑
Q∈311

H n(∂�∗F,Q0
). σ(Q0),

where we have used that ∂�∗F,Q0
is ADR (see [Hofmann et al. 2016]), and the bounded overlap property

(5.37). To estimate J52, observe that for each Q ∈ 312, we have `(Q) ≈ N−1`(Q0) by properties of
Whitney regions. Hence, by a slightly simpler version of the argument used for J51, we obtain

J52 .
∑

Q∈312

σ(Q). σ(Q0).

Therefore, |J4|. J51+ J52 . σ(Q0).
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To handle J2 we use the fact that u is a solution to (5.40). Indeed, by integration by parts, using the
identity 2vvy j = (v

2)y j we see that

2J2 =
∑

Q∈3(N )

∫∫ n+1∑
i, j=1

bi j u yi (v
2)y jηQ dY =−

∑
Q∈3(N )

∫∫ n+1∑
i, j=1

bi j u yiv
2(ηQ)y j dY,

and by the same argument as in the estimate of J4 we obtain |J2|. σ(Q0).
To conclude, we collect the estimates for J2 and J4, and use the fact that J3 is nonnegative by (5.43)

to obtain J1(N ) . σ(Q0), with constants independent of N . The proof of (5.9) in the general case
1< p <∞ is then complete.

5C. Proof of Lemma 5.10. To prove Lemma 5.10, we follow the corresponding argument in [Lewis and
Vogel 2007] closely, but with some modifications due to the fact that in contrast to the situation in that
paper, our solution u need not be Lipschitz up to the boundary, and our harmonic/p-harmonic measures
need not be doubling. It is the latter obstacle that has forced us to introduce the WHSA condition, rather
than to work with the weak exterior convexity condition used by Lewis and Vogel. Lemma 5.10 is
essentially a distillation of the main argument of the corresponding part of [Lewis and Vogel 2007], but
with the doubling hypothesis removed.

In the remainder of this section, for convenience we use the notational convention that implicit and
generic constants are allowed to depend upon K0, but not on ε or M . Dependence on the latter is stated
explicitly. We first prove the following lemma. Recall that the balls BY and B̃Y are defined in (5.3).

Lemma 5.47. Let Y ∈U i
Q , X ∈ Ũ i

Q . Suppose first that w ∈ ∂ B̃Y ∩ E , and let W be the radial projection
of w onto ∂BY . Then

u(W ). ε2M−5δ(Y ). (5.48)

If w ∈ ∂ B̃X ∩ E , and W now is the radial projection of w onto ∂BX , then

u(W ). ε2M−5`(Q). (5.49)

Proof. Since K−1
0 `(Q). δ(Y ). K0`(Q) for Y ∈U i

Q , it is enough to prove (5.49). To prove (5.49), we
first note that

|W −w| = ε2M/αδ(X). ε2M/αε−3`(Q),

by definition of BX , B̃X and the fact that by construction of Ũ i
Q ,

ε3`(Q). δ(X). ε−3`(Q), ∀X ∈ Ũ i
Q . (5.50)

In addition, again by construction of Ũ i
Q ,

diam(Ũ i
Q). ε

−4`(Q). (5.51)

Consequently, W ∈ 1
2 B∗∗∗Q = B

(
xQ,

1
2ε
−5`(Q)

)
, so by Lemma 3.35 and (5.12),

u(W ).

(
ε2M/αε−3`(Q)
ε−5`(Q)

)α 1
|B∗∗∗Q |

∫∫
B∗∗∗Q

u . ε2M+2α−5`(Q)≤ ε2M−5`(Q). �
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Claim 5.52. Let Y ∈U i
Q . For all W ∈ BY ,

|u(W )− u(Y )−∇u(Y ) · (W − Y )|. ε2Mδ(Y ). (5.53)

Proof of Claim 5.52. Let W ∈ BY . Then for some W̃ ∈ BY ,

u(W )− u(Y )=∇u(W̃ ) · (W − Y ).

We may then invoke (5.13), with X = Y , Z1 = W̃ , and Z2 = Y , to obtain (5.53). �

Claim 5.54. Let Y ∈U i
Q . Suppose that w ∈ ∂ B̃Y ∩ E. Then

|u(Y )−∇u(Y ) · (Y −w)| = |u(w)− u(Y )−∇u(Y ) · (w− Y )|. ε2M−5δ(Y ). (5.55)

Proof of Claim 5.54. Given w ∈ ∂ B̃Y ∩ E , let W be the radial projection of w onto ∂BY , so that
|W −w| = ε2M/αδ(Y ). Since u(w)= 0, by (5.48) we have

|u(W )− u(w)| = u(W ). ε2M−5δ(Y ).

Since (5.53) holds for W , we obtain (5.55) by (5.11) and (5.13). �

To simplify notation, we now set Y := YQ , the point in U i
Q satisfying (5.11). By (5.11) and (5.13), for

ε < 1
2 , and M chosen large enough, we have that

|∇u(Z)| ≈ 1, ∀Z ∈ Ũ i
Q . (5.56)

By translation and rotation, we assume that 0 ∈ ∂ B̃Y ∩ E and that Y = δ(Y )en+1, where as usual
en+1 := (0, . . . , 0, 1).

Claim 5.57. We claim that ∣∣∇u(Y ) · en+1− |∇u(Y )|
∣∣. ε2M−5. (5.58)

Proof of Claim 5.57. We apply (5.55), with w = 0, to obtain

|u(Y )−∇u(Y ) · Y |. ε2M−5δ(Y ).

Combining the latter bound with (5.53), we find that

|u(W )−∇u(Y ) ·W | = |u(W )−∇u(Y ) · Y −∇u(Y ) · (W − Y )|. ε2M−5δ(Y ), ∀W ∈ BY . (5.59)

Fix W ∈ ∂BY so that ∇u(Y ) · W−Y
|W−Y |

= −|∇u(Y )|. Since |W −Y | = (1− ε2M/α)δ(Y ), and since u ≥ 0,
we have

0≤ |∇u(Y )| −∇u(Y ) · en+1 ≤ |∇u(Y )| −∇u(Y ) · en+1+
u(W )

δ(Y )

≤
1

δ(Y )

(
−∇u(Y ) ·

(W − Y )
1− ε2M/α −∇u(Y ) · Y + u(W )

)
. (ε2M−5

+ ε2M/α)≈ ε2M−5, (5.60)

by (5.59) and (5.11). �
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Claim 5.61. Suppose that M > 5. Then∣∣|∇u(Y )|en+1−∇u(Y )
∣∣. εM−3. (5.62)

Proof of Claim 5.61. By Claim 5.57,∣∣|∇u(Y )|en+1− (∇u(Y ) · en+1)en+1
∣∣. ε2M−5.

Therefore, it is enough to consider ∇‖u := ∇u− (∇u(Y ) · en+1)en+1. Observe that

|∇‖u(Y )|2 = |∇u(Y )|2− (∇u(Y ) · en+1)
2

= (|∇u(Y )| −∇u(Y ) · en+1)(|∇u(Y )| +∇u(Y ) · en+1). ε
2M−5,

by (5.58) and (5.11). �

Now for Y = δ(Y )en+1 ∈U i
Q fixed as above, we consider another point X ∈ Ũ i

Q . By definition of Ũ i
Q ,

there is a polygonal path in Ũ i
Q , joining Y to X , with vertices

Y0 := Y, Y1, Y2, . . . , YN := X, N . ε−4,

such that Yk+1 ∈ BYk ∩ B(Yk, `(Q)), 0 ≤ k ≤ N − 1, and such that the distance between consecutive
vertices is at most C`(Q). Indeed, by definition of Ũ i

Q , we may connect Y to X by a polygonal path
connecting the centers of at most ε−1 balls, such that the distance between consecutive vertices is between
ε3`(Q)/2 and ε−3`(Q)/2. If any such distance is greater than `(Q), we take at most Cε−3 intermediate
vertices with distances on the order of `(Q). The total length of the path is thus on the order of N`(Q)
with N . ε−4. Furthermore, by (5.13) and (5.62),∣∣∇u(W )− |∇u(Y )|en+1

∣∣≤ |∇u(W )−∇u(Y )| +
∣∣∇u(Y )− |∇u(Y )|en+1

∣∣
. ε2M

+ εM−3 . εM−3, ∀W ∈ BZ , ∀Z ∈ Ũ i
Q . (5.63)

Claim 5.64. Assume M > 7. Then for each k = 1, 2, . . . , N ,∣∣u(Yk)− |∇u(Y )|Yk · en+1
∣∣. kεM−3`(Q). (5.65)

Moreover, ∣∣u(W )− |∇u(Y )|Wn+1
∣∣. εM−7`(Q), ∀W ∈ BX , ∀X ∈ Ũ i

Q . (5.66)

Proof of Claim 5.64. By (5.59) and (5.62), we have∣∣u(W )− |∇u(Y )|Wn+1
∣∣. |u(W )−∇u(Y ) ·W | +

∣∣(∇u(Y )− |∇u(Y )|en+1) ·W
∣∣

. ε2M−5δ(Y )+ εM−3
|W |. εM−3`(Q), ∀W ∈ BY , (5.67)

since δ(Z) ≈ `(Q), for all Z ∈ U i
Q (so in particular, for Z = Y ), and since |W | ≤ 2δ(Y ) . `(Q), for

all W ∈ BY . Thus, (5.65) holds with k = 1, since Y1 ∈ BY , by construction. Now suppose that (5.65)
holds for all 1 ≤ i ≤ k, with k ≤ N . Let W ∈ BYk , so that W may be joined to Yk by a line segment of
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length less than δ(Yk). ε−3`(Q) (the latter bound holds by (5.50)). We note also that if k ≤ N − 1, and
if W = Yk+1, then this line segment has length at most `(Q), by construction. Then∣∣u(W )− |∇u(Y )|Wn+1

∣∣≤ ∣∣u(W )− u(Yk)+ |∇u(Y )|(Yk −W ) · en+1
∣∣+ ∣∣u(Yk)− |∇u(Y )|Yk · en+1

∣∣
=
∣∣(W − Yk) · ∇u(W1)+ |∇u(Y )|(Yk −W ) · en+1

∣∣+ O(kεM−3`(Q)),

where W1 is an appropriate point on the line segment joining W and Yk , and where we have used that Yk

satisfies (5.65). By (5.63), applied to W1, we find in turn that∣∣u(W )− |∇u(Y )|Wn+1
∣∣. εM−3

|W − Yk | + kεM−3`(Q), (5.68)

which, by our previous observations, is bounded by C(k + 1)εM−3`(Q) if W = Yk+1, or by (εM−6
+

kεM−3)`(Q) in general. In the former case, we find that (5.65) holds for all k = 1, 2, . . . , N , and in the
latter case, taking k = N . ε−4, we obtain (5.66). �

Claim 5.69. Let X ∈ Ũ i
Q , and let w ∈ E ∩ ∂ B̃X . Then

|∇u(Y )||wn+1|. ε
M/2`(Q). (5.70)

Proof of Claim 5.69. Let W be the radial projection of w onto ∂BX , so that

|W −w| = ε2M/αδ(X). ε(2M/α)−3`(Q), (5.71)

by (5.50). We write

|∇u(Y )||wn+1| ≤ |∇u(Y )||W −w| +
∣∣u(W )− |∇u(Y )|Wn+1

∣∣+ u(W )=: I + I I + u(W ).

Note that I . ε(2M/α)−3`(Q) by (5.71) and (5.11) (recall that Y = YQ), and that I I . εM−7`(Q) by
(5.66). Furthermore, u(W ). ε2M−5`(Q), by (5.49). For M chosen large enough, we obtain (5.70). �

We note that since we have fixed Y = YQ , it then follows from (5.70) and (5.11) that

|wn+1|. ε
M/2`(Q), ∀w ∈ E ∩ ∂ B̃X , ∀X ∈ Ũ i

Q . (5.72)

Recall that xQ denotes the “center” of Q (see (2.7)–(2.8)). Set

O := B(xQ, 2ε−2`(Q))∩ {W :Wn+1 > ε
2`(Q)}. (5.73)

Claim 5.74. For every point X ∈ O , we have X ≈ε,Q Y (see Definition 2.26). Thus, in particular, O ⊂ Ũ i
Q .

Proof of Claim 5.74. Let X ∈ O . We need to show that X may be connected to Y by a chain of at most
ε−1 balls of the form B(Yk, δ(Yk)/2), with ε3`(Q)≤ δ(Yk)≤ ε

−3`(Q) (for convenience, we shall refer
to such balls as “admissible”). We first observe that if X = ten+1, with ε3`(Q) ≤ t ≤ ε−3`(Q), then
by an iteration argument using (5.72) (with M chosen large enough), we may join X to Y by at most
C log(1/ε) admissible balls. The point (2ε)−3`(Q)en+1 may then be joined to any point of the form
(X ′, (2ε)−3`(Q)) by a chain of at most C admissible balls, whenever X ′ ∈ Rn with |X ′| ≤ ε−3`(Q). In
turn, the latter point may then be joined to (X ′, ε3`(Q)) by at most C log(1/ε) admissible balls. �
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We note that Claim 5.74 implies that
E ∩ O =∅. (5.75)

Indeed, O ⊂ Ũ i
Q ⊂�. Let P0 denote the hyperplane

P0 := {Z : Zn+1 = 0}.

Claim 5.76. If Z ∈ P0, with |Z − xQ | ≤
3
2 ε
−2`(Q), then

δ(Z)= dist(Z , E)≤ 16ε2`(Q). (5.77)

Proof of Claim 5.76. Observe that B(Z , 2ε2`(Q)) meets O . Then by Claim 5.74, there is a point
X ∈ Ũ i

Q ∩ B(Z , 2ε2`(Q)). Suppose that (5.77) is false, which in particular implies that δ(X)≥ 14ε2`(Q).
Then B(Z , 4ε2`(Q))⊂ BX , so by (5.66), we have∣∣u(W )− |∇u(Y )|Wn+1

∣∣≤ CεM−7`(Q), ∀W ∈ B(Z , 4ε2`(Q)). (5.78)

In particular, since Zn+1 = 0, we may choose W such that Wn+1 =−ε
2`(Q), to obtain that

|∇u(Y )|ε2`(Q)≤ CεM−7`(Q),

since u ≥ 0. But for ε < 1
2 , and M large enough, this is a contradiction, by (5.11) (recall that we have

fixed Y = YQ). �

It now follows by Definition 2.17 that Q satisfies the ε-local WHSA condition, with

P = P(Q) := {Z : Zn+1 = ε
2`(Q)}, H = H(Q) := {Z : Zn+1 > ε

2`(Q)}.

This concludes the proof of Lemma 5.10.

5D. Proof of Corollary 1.5. Now Corollary 1.5 follows almost immediately from Theorem 1.1. Let
B = B(x, r) and 1= B ∩ ∂�, with x ∈ ∂� and 0< r < diam(∂�). Let c be the constant in Lemma 3.1.
By hypothesis, there is a point X1 ∈ B ∩� which is a corkscrew point relative to 1, that is, there is a
uniform constant c0 > 0 such that δ(X1) ≥ c0r . Thus, to apply Theorem 1.1, it remains only to verify
hypothesis (?). For a sufficiently large constant C1, set 1fat

= 1(x,C1r). Cover 1fat by a collection
of surface balls {1i }

N
i=1 with 1i = Bi ∩ ∂� and Bi := B(xi , c0r/4), where xi ∈ 1

fat and where N is
uniformly bounded, depending only on n, c0, C1, and ADR. By construction, X1 ∈ � \ 4Bi , so by
hypothesis, ωX1 ∈ weak-A∞(21i ). Hence, ωX1 � σ in 21i , and (1.6) holds with Y = X1, and with
1′ =1i . Consequently, ωX1 � σ in 1fat, and if we write k X1 = dωX1/dσ , we obtain∫

1fat
k X1(z)q dσ(z)≤

N∑
i=1

∫
1i

k X1(z)q dσ(z).
N∑

i=1

σ(1i )

(
−

∫
21i

k X1(z) dσ(z)
)q

.
N∑

i=1

σ(21i )
1−qωX1(21i ). σ(1

fat )1−q ,

where in the last estimate we have used the ADR property, the uniform boundedness of N , and the fact
that ωX1(21i )≤ 1. By Theorem 1.1, it then follows that ∂� is UR as desired. �
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6. Proof of Proposition 1.17

Here we prove Proposition 1.17. We first observe that if E is UR then it satisfies the so-called “bilateral
weak geometric lemma” (BWGL); see [David and Semmes 1991, Theorem I.2.4, p. 32]. In turn, in [David
and Semmes 1991, Section II.2.1, p. 97], one can find a dyadic formulation of the BWGL as follows.
Given ε small enough and k > 1 large to be chosen, D(E) can be split in two collections, one of “bad
cubes” and another of “good cubes”, so that the “bad cubes” satisfy a packing condition and each “good
cube” Q verifies the following: there is a hyperplane P = P(Q) such that dist(Z , E)≤ ε`(Q) for every
Z ∈ P ∩ B(xQ, k`(Q)), and dist(Z , P)≤ ε`(Q) for every Z ∈ B(xQ, k`(Q))∩ E . In turn, this implies
that B(xQ, k`(Q))∩ E is sandwiched between two planes parallel to P at distance ε`(Q). Hence, at
that scale, we have a half-space (indeed we have two) free of E , and clearly the 2ε-local WHSA holds
provided K is taken of the order of ε−2 or larger. Further details are left to the interested reader. Thus we
obtain the easy implication UR =⇒WHSA.

The main part of the proof is to establish the opposite implication. To this end, we assume that E
satisfies the WHSA property and show that E is UR. Given a positive ε < ε0� K−6

0 , we let B0 denote
the collection of bad cubes for which ε-local WHSA fails. By Definition 2.19, B0 satisfies the Carleson
packing condition (2.20). We now introduce a variant of the packing measure for B0. We recall that
B∗Q = B(xQ, K 2

0`(Q)), and given Q ∈ D(E), we set

Dε(Q) := {Q′ ∈ D(E) : ε3/2`(Q)≤ `(Q′)≤ `(Q), Q′ meets B∗Q}. (6.1)

Set

αQ :=

{
σ(Q) if B0 ∩Dε(Q) 6=∅,
0 otherwise,

(6.2)

and define

m(D′) :=
∑
Q∈D′

αQ, D′ ⊂ D(E). (6.3)

Then m is a discrete Carleson measure, with

m(DQ0)=
∑

Q⊂Q0

αQ ≤ Cεσ(Q0), Q0 ∈ D(E). (6.4)

Indeed, note that for any Q′, the cardinality of {Q : Q′ ∈Dε(Q)} is uniformly bounded, depending on n,
ε, and ADR, and that σ(Q)≤ Cεσ(Q′) if Q′ ∈ Dε(Q). Then given any Q0 ∈ D(E),

m(DQ0)=
∑

Q⊂Q0:B0∩Dε(Q)6=∅

σ(Q) ≤
∑

Q′∈B0

∑
Q⊂Q0:Q′∈Dε(Q)

σ(Q)

≤ Cε
∑

Q′∈B0: Q′⊂2B∗Q0

σ(Q′)≤ Cεσ(Q0),

by (2.20) and ADR.
To prove Proposition 1.17, we are required to show that the collection B of bad cubes for which the
√
ε-local BAUP condition fails satisfies a packing condition. That is, we establish the discrete Carleson
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measure estimate

m̃(DQ0) =
∑

Q⊂Q0:Q∈B

σ(Q)≤ Cεσ(Q0), Q0 ∈ D(E). (6.5)

To this end, by (6.4), it suffices to show that if Q ∈ B, then αQ 6= 0 (and thus αQ = σ(Q), by definition).
In fact, we prove the contrapositive statement.

Claim 6.6. Suppose that αQ = 0. Then the
√
ε-local BAUP condition holds for Q.

Proof of Claim 6.6. We first note that since αQ = 0, then by definition of αQ ,

B0 ∩Dε(Q)=∅. (6.7)

Thus, the ε-local WHSA condition (Definition 2.17) holds for every Q′ ∈ Dε(Q) (in particular, for Q
itself). By rotation and translation, we may suppose that the hyperplane P = P(Q) in Definition 2.17 is

P = {Z ∈ Rn+1
: Zn+1 = 0},

and that the half-space H = H(Q) is the upper half-space Rn+1
+ = {Z : Zn+1 > 0}. We recall that by

Definition 2.17, P and H satisfy

dist(Z , E)≤ ε`(Q), ∀Z ∈ P ∩ B∗∗Q (ε), (6.8)

dist(P, Q)≤ K 3/2
0 `(Q), (6.9)

and
H ∩ B∗∗Q (ε)∩ E =∅. (6.10)

The proof now follows by a construction similar to that in [Lewis and Vogel 2007], used to establish the
weak exterior convexity condition. By (6.10), there are two cases.

Case 1: 10Q ⊂ {Z : −
√
ε`(Q)≤ Zn+1 ≤ 0}. In this case, the

√
ε-local BAUP condition holds trivially

for Q, with P = {P}.

Case 2: There is a point x ∈ 10Q such that xn+1 < −
√
ε`(Q). In this case, we choose Q′ 3 x with

ε3/4`(Q)≤ `(Q′) < 2ε3/4`(Q). Thus,

Q′ ⊂
{

Z : Zn+1 ≤−
1
2

√
ε`(Q)

}
. (6.11)

Moreover, Q′ ∈ Dε(Q), so by (6.7), Q′ /∈ B0, i.e., Q′ satisfies the ε-local WHSA. Let P ′ = P(Q′) and
H ′ = H(Q′) denote the hyperplane and half-space corresponding to Q′ in Definition 2.17, so that

dist(Z , E)≤ ε`(Q′)≤ 2ε7/4`(Q), ∀Z ∈ P ′ ∩ B∗∗Q′(ε), (6.12)

dist(P ′, Q′)≤ K 3/2
0 `(Q′)≈ K 3/2

0 ε3/4`(Q)� ε1/2`(Q) (6.13)

(where the last inequality holds since ε� K−6
0 ), and

H ′ ∩ B∗∗Q′(ε)∩ E =∅, (6.14)
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where we recall that B∗∗Q′(ε) := B(xQ′, ε
−2`(Q′)) (see (2.16)). We note that

B∗Q ⊂ B̃Q(ε) := B(xQ, ε
−1`(Q))⊂ B∗∗Q′(ε)∩ B∗∗Q (ε), (6.15)

by construction, since ε� K−6
0 . Let ν ′ denote the unit normal vector to P ′, pointing into H ′. Note that

by (6.10), (6.12), and the definition of H ,

P ′ ∩ B̃Q(ε)∩ {Z : Zn+1 > 2ε7/4`(Q)} =∅. (6.16)

Moreover, ν ′ points “downward”, i.e., ν ′ · en+1 < 0, as otherwise, H ′ ∩ B̃Q(ε) would meet E by (6.8),
(6.11), and (6.13). More precisely, we have the following.

Claim 6.17. The angle θ between ν ′ and −en+1 satisfies 0≤ θ ≈ sin θ . ε.

Indeed, since Q′ meets 10Q, (6.9) and (6.13) imply that dist(P, P ′). K 3/2
0 `(Q), and that the latter

estimate is attained near Q. By (6.16) and a trigonometric argument, one then obtains Claim 6.17 (more
precisely, one obtains θ . K 3/2

0 ε, but in this section, we continue to use the notational convention that
implicit constants may depend upon K0, but K0 is fixed, and ε� K−6

0 ). The interested reader could
probably supply the remaining details of the argument that we have just sketched, but for the sake of
completeness, we give the full proof at the end of this section.

We therefore take Claim 6.17 for granted, and proceed with the argument. We note first that every
point in (P ∪ P ′)∩ B∗Q is at a distance at most ε`(Q) from E by (6.8), (6.12), and (6.15). To complete
the proof of Claim 6.6, it therefore remains only to verify the following. As with the previous claim, we
provide a condensed proof immediately, and present a more detailed argument at the end of the section.

Claim 6.18. Every point in 10Q lies within
√
ε`(Q) of a point in P ∪ P ′.

Suppose not. We could then repeat the previous argument, to construct a cube Q′′, a hyperplane P ′′,
a unit vector ν ′′ forming a small angle with −en+1, and a half-space H ′′ with boundary P ′′, with the
same properties as Q′, P ′, ν ′, and H ′. In particular, we have the respective analogues of (6.13) and (6.14),
namely

dist(P ′′, Q′′)≤ K 3/2
0 `(Q′)≈ K 3/2

0 ε3/4`(Q)� ε1/2`(Q) (6.19)

and
H ′′ ∩ B∗∗Q′′(ε)∩ E =∅, (6.20)

Also, we have the analogue of (6.11), with Q′′, P ′ in place of Q′, P . Thus

dist(Q′′, P ′)≥ 1
2

√
ε`(Q) and Q′′ ∩ H ′ =∅. (6.21)

In addition, as in (6.15), we also have B∗Q ⊂ B∗∗Q′′(ε). On the other hand, the angle between ν ′ and ν ′′ is
very small. Thus, combining (6.12), (6.19), and (6.21), we see that H ′′ ∩ B∗Q captures points in E , which
contradicts (6.20).

Claim 6.6 therefore holds (in fact, with a union of at most 2 planes), and thus we obtain the conclusion
of Proposition 1.17. �

We now provide detailed proofs of Claims 6.17 and 6.18.
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Proof of Claim 6.17. By (6.13) we can pick x ′ ∈ Q′, y′ ∈ P ′ such that |y′− x ′| � ε1/2`(Q), and therefore
y′ ∈ 11Q. Also, from (6.9) and (6.10) we can find x̄ ∈ Q such that −K 3/2

0 `(Q) < x̄n+1 ≤ 0. This and
(6.11) yield

−2K 3/2
0 `(Q) < y′n+1 <−

1
4

√
ε`(Q). (6.22)

Let π be the orthogonal projection onto P . Let Z ∈ P (i.e., Zn+1=0) be such that |Z−π(y′)|≤ K 3/2
0 `(Q).

Then Z ∈ B(xQ, 4K 3/2
0 `(Q)) ⊂ B∗Q . Hence Z ∈ P ∩ B∗∗Q (ε) and by (6.8), dist(Z , E) ≤ ε`(Q). Then

there exists xZ ∈ E with |Z − xZ | ≤ ε`(Q), which in turn implies that |(xZ )n+1| ≤ ε`(Q). Note that
xZ ∈ B(xQ, 5K 3/2

0 `(Q))⊂ B∗Q and by (6.15), xZ ∈ E ∩ B∗∗Q (ε)∩ B∗∗Q′(ε). This, (6.10), and (6.14) imply
that xZ 6∈ H ∪ H ′. Hence, (xZ )n+1 ≤ 0 and (xZ − y′) · ν ′ ≤ 0, since y′ ∈ P ′ and ν ′ denote the unit normal
vector to P ′ pointing into H ′. Using (6.22) we observe that

1
8

√
ε`(Q) <−ε`(Q)+ 1

4

√
ε`(Q) < (xZ − y′)n+1 < 2K 3/2

0 `(Q), (6.23)

and that

(xZ − y′)n+1ν
′

n+1 ≤−π(xZ − y′) ·π(ν ′)

≤ |xZ − z| −π(Z − y′) ·π(ν ′)≤ ε`(Q)−π(Z − y′) ·π(ν ′). (6.24)

We prove that ν ′n+1 <−
1
8 < 0 by considering two cases.

Case 1: |π(ν ′)| ≥ 1
2 . We pick

Z1 = π(y′)+ K 3/2
0 `(Q)

π(ν ′)

|π(ν ′)|
.

By construction, Z1 ∈ P and |Z1−π(y′)| ≤ K 3/2
0 `(Q). Hence, we can use (6.24) with Z1:

(xZ1 − y′)n+1 ν
′

n+1 ≤ ε`(Q)−π(Z1− y′) ·π(ν ′)

= ε`(Q)− K 3/2
0 `(Q)|π(ν ′)| ≤ − 1

4 K 3/2
0 `(Q).

This together with (6.23) give that ν ′n+1 <−
1
8 < 0.

Case 2: |π(ν ′)|< 1
2 . This case is much simpler. Note first that |ν ′n+1|

2
= 1−|π(ν ′)|2 > 3

4 , and thus either
ν ′n+1 <−

1
2

√
3 or ν ′n+1 >

1
2

√
3. We see that the second scenario leads to a contradiction. Assume then

that ν ′n+1 >
1
2

√
3. We take Z2 = π(y′) ∈ P , which clearly satisfies |Z2 − π(y′)| ≤ K 3/2

0 `(Q). Again
(6.24) and (6.23) are applicable with Z2:

1
8
√
ε`(Q)

√
3

2
< (xZ2 − y′)n+1ν

′

n+1 ≤ ε`(Q)�
√
ε`(Q),

and we get a contradiction. Hence necessarily ν ′n+1 ≤−
1
2

√
3<− 1

8 < 0.

Having proved that ν ′n+1 < −
1
8 < 0, we estimate θ , the angle between ν ′ and −en+1. Note first

cos θ = −ν ′n+1 >
1
8 . If cos θ = 1 (which occurs if ν ′ = −en+1), then θ = sin θ = 0 and the proof is

complete. Assume then that cos θ 6= 1, in which case 1
8 <−ν

′

n+1 < 1 and hence |π(ν ′)| 6= 0. Pick

Z3 = y′+
`(Q)

2ε
ν̂ ′, ν̂ ′ =

en+1− ν
′

n+1ν
′

|π(ν ′)|
.
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Then ν̂ ′ · ν ′ = 0 and hence Z3 ∈ P ′ as y′ ∈ P ′. Also, |ν̂ ′| = 1 and therefore |Z3− y′| = `(Q)/(2ε). This
in turn gives that Z3 ∈ B̃Q(ε). We have obtained that Z3 ∈ P ′ ∩ B̃Q(ε), and hence (Z3)n+1 ≤ 2ε7/4`(Q)
by (6.16). This and (6.23) applied to Z3 easily give

4K 3/2
0 `(Q)≥ 2ε7/4`(Q)≥ (Z3)n+1 = y′n+1+

`(Q)
2ε

1− (ν ′n+1)
2

|π(ν ′)|

= y′n+1+
`(Q)

2ε
|π(ν ′)| ≥ −2 K 3/2

0 `(Q)+
`(Q)

2ε
|π(ν ′)|.

This readily yields |sin θ | = |π(ν ′)| ≤ 8K 3/2
0 ε, and the proof is complete. �

Proof of Claim 6.18. We want to prove that every point in 10Q lies within
√
ε`(Q) of a point in P ∪ P ′.

We argue by contradiction and hence we assume that there exists x ′ ∈ 10Q with dist(x ′, P∪P ′)>
√
ε`(Q).

In particular, x ′n+1<−
√
ε`(Q), and as observed above, we may repeat the previous argument to construct

a cube Q′′, a hyperplane P ′′, a unit vector ν ′′ forming a small angle with −en+1, and a half-space H ′′ with
boundary P ′′, with the same properties as Q′, P ′, ν ′, and H ′, namely (6.19), (6.21), and (6.20). Also,

√
ε`(Q)≤ dist(x ′, P ′)≤ diam(Q′′)+ dist(Q′′, P ′)≤ 1

2

√
ε`(Q)+ dist(Q′′, P ′),

and, in addition, as in (6.15), we have B∗Q ⊂ B∗∗Q′′(ε).
By (6.19) there is y′′ ∈ Q′′ and z′′ ∈ P ′′ such that |y′′− z′′|� ε1/2`(Q). By (6.20) y′′ 6∈ H ′. Write π ′ to

denote the orthogonal projection onto P ′ and note that (6.21) gives dist(y′′, P ′)=|y′′−π ′(y′′)|≥ 1
2
√
ε`(Q).

Note also that

|y′′−π ′(y′′)| = dist(y′′, P ′)

≤ |y′′− x ′| + |x ′− x | + diam(Q′)+ dist(Q′, P ′)≤ 11 diam(Q)

and that

|π ′(y′′)− xQ | ≤ |π
′(y′′)− y′′| + |y′′− x ′| + |x ′− xQ |< 22 diam(Q) < K 2

0`(Q).

Hence π ′(y′′) ∈ B∗Q ⊂ B̃Q(ε), and since π ′(y′′) ∈ P ′, (6.12) gives ỹ ∈ E with |π ′(y′′)− ỹ| ≤ 2ε7/4`(Q).
Then ỹ ∈ 23Q ⊂ B∗Q ∩ E and |ỹ− z′′|< 12 diam(Q). To complete our proof we just need to show that
ỹ ∈ H ′′, which contradicts (6.20).

Write ν ′′ to denote the unit normal vector to P ′′ pointing into H ′′, and let us momentarily assume that

|ν ′− ν ′′| ≤ 16
√

2 K 2/3
0 ε. (6.25)

Recalling that y′′ 6∈ H ′, we then obtain that

1
2

√
ε`(Q)≤ |y′′−π ′(y′′)| = (π ′(y′′)− y′′) · ν ′

≤ |π ′(y′′)− ỹ| + |ỹ− z′′||ν ′− ν ′′| + (ỹ− z′′) · ν ′′+ |z′′− y′′|

< 1
4

√
ε`(Q)+ (ỹ− z′′) · ν ′′.
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This immediately gives that (ỹ−z′′) ·ν ′′> 1
4
√
ε`(Q)> 0, and hence ỹ ∈ H ′′ as desired. Thus, to complete

the proof we have to prove (6.25). We first note that if |α|< π
4 , then

1− cosα = 1−
√

1− sin2 α ≤ sin2 α.

In particular, we can apply this to θ (resp. θ ′), which is the angle between ν ′ (resp. ν ′′) and −en+1, and as
we showed that |sin θ |, |sin θ ′| ≤ 8K 3/2

0 ε, we see that
√

1− cos θ +
√

1− cos θ ′ ≤ 16K 3/2
0 ε.

Using the trivial formula

|a− b|2 = 2(1− aḃ), ∀a, b ∈ Rn+1, |a| = |b| = 1,

we conclude that

|ν ′− ν ′′| ≤ |ν ′− (−en+1)| + |(−en+1)− ν
′′
|

=
√

2(1+ ν ′ en+1)+
√

2(1+ ν ′′en+1)

=

√
2(1− cos θ)+

√
2(1− cos θ ′)≤ 16

√
2K 3/2

0 ε.

This proves (6.25), and hence the proof of Claim 6.18 is complete. �
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