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THE ONE-PHASE PROBLEM
FOR HARMONIC MEASURE IN TWO-SIDED NTA DOMAINS

JONAS AZZAM, MIHALIS MOURGOGLOU AND XAVIER TOLSA

We show that if �⊂ R3 is a two-sided NTA domain with AD-regular boundary such that the logarithm of
the Poisson kernel belongs to VMO(σ ), where σ is the surface measure of �, then the outer unit normal
to ∂� belongs to VMO(σ ) too. The analogous result fails for dimensions larger than 3. This answers a
question posed by Kenig and Toro and also by Bortz and Hofmann.

1. Introduction

In this paper we study a one-phase free boundary problem in connection with the Poisson kernel. The study
of this type of problems was initiated in the pioneering work [Alt and Caffarelli 1981], where they showed
that for a Reifenberg flat domain with n-AD-regular boundary in Rn+1, if the logarithm of the Poisson
kernel is in Cα for some α > 0, then the domain is of class C1,β for some β > 0. Later on, Jerison [1990]
showed that, in fact, one can take β = α. Kenig and Toro [1997; 1999; 2003] considered the endpoint case
of the logarithm of the Poisson kernel being in VMO, and they obtained the following remarkable result:

Theorem A [Kenig and Toro 2003]. Suppose �⊂ Rn+1 is a δ-Reifenberg flat chord-arc domain for some
δ > 0 small enough. Denote by σ the surface measure of � and by h the Poisson kernel with a pole in �
if � is bounded or with the pole at infinity if � is unbounded. Then log h ∈ VMO(σ ) if and only if the
outer unit normal En to ∂� is in VMO(σ ).

A domain � ⊂ Rn+1 is called chord-arc if it is an NTA domain with n-AD-regular boundary. Its
Poisson kernel with pole at p ∈� equals h = dωp/dσ , where ωp stands for the harmonic measure of �
with pole at p. For the definitions of Reifenberg flatness, NTA, and VMO, we refer the reader to Section 2.

We also remark that, in fact, Kenig and Toro [2003] proved a slightly weaker statement than the one
in Theorem A. Indeed, instead of showing that when log h ∈ VMO(σ ), the outer unit normal En to ∂�
is in VMO(σ ), they proved that En belongs to VMOloc(σ ) (which coincides with VMO(σ ) when � is
bounded). However, as we explain in Remark 9.1, a minor modification of their arguments in [Kenig and
Toro 2003] proves the full statement above in Theorem A.

Without the Reifenberg flatness assumption and just assuming the NTA condition, the conclusion of the
theorem above need not hold: Kenig and Toro [1999, Proposition 3.1] showed that for the Kowalski–Preiss
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cone �= {(x, y, z, w) : x2
+ y2
+ z2 >w2

} ⊂ R4, the harmonic measure with pole at infinity coincides
with the surface measure modulo a constant factor, and thus has log h ∈ VMO(σ ), even though the outer
unit normal is not in VMO(σ ). In fact, a similar conical example in R3 was shown previously by Alt and
Caffarelli [1981, Section 2.7].

It was conjectured by Kenig and Toro [2006] and Bortz and Hofmann [2016] that, instead of the
Reifenberg flatness assumption, being a two-sided chord-arc domain should be enough for the implication
log h∈VMO(σ ) =⇒ En∈VMO(σ ). By a two-sided chord-arc domain we mean a chord-arc domain such
that its exterior is also connected and chord-arc. Kenig and Toro showed that this holds under the
additional assumption that the logarithm of the Poisson kernel of the exterior domain is also in VMO(σ ).
Their precise result reads as follows:

Theorem B [Kenig and Toro 2006, Corollary 5.2]. Let � be a two-sided chord-arc domain in Rn+1.
Assume further that log(dω/dσ), log(dωext/dσ) ∈ VMOloc(σ ). Then En ∈ VMOloc(σ ).

Bortz and Hofmann [2016] showed that this same result holds under the assumption that ∂� is uniformly
n-rectifiable, so that the measure theoretic boundary has full surface measure, instead of the two-sided
chord-arc condition above. The boundary of any two-sided chord-arc domain is always uniformly
n-rectifiable by results due to David and Jerison [1990], and thus this is more general than Theorem B.
We also note that, by Proposition 4.10 in [Hofmann et al. 2010], such domains with En ∈ VMOloc(σ ) are
also vanishing Reifenberg flat. It is also worth mentioning that the arguments in [Bortz and Hofmann
2016] are very different from the ones in [Kenig and Toro 2006]: while the latter uses blow-up techniques,
the former relies on the relationship between the Riesz transform and harmonic measure and exploit the
jump relations for the gradient of the single layer potential.

In this paper we resolve the conjecture mentioned above:

Theorem 1.1. Let �⊂ R3 be a two-sided chord-arc domain. Denote by σ the surface measure of � and
by h the Poisson kernel with a pole in � if � is bounded or with the pole at infinity if � is unbounded. If
log h ∈ VMO(σ ), then the outer unit normal of � also belongs to VMO(σ ).

On the other hand, for d ≥ 4, there are two-sided chord-arc domains �⊂Rd satisfying h ≡ 1 and such
that the outer unit normal of � does not belong to VMO(σ ).

Most of the paper is devoted to proving the positive result stated in the theorem for R3. Our arguments
use the powerful blow-up techniques developed by Kenig and Toro [2003]. Indeed, by arguments
analogous to the ones of Kenig and Toro, we reduce our problem to the study of the case when �∞ is an
unbounded two-sided chord-arc domain such that its Poisson kernel with pole at infinity is constantly equal
to 1. By combining a monotonicity formula due to Weiss [1998] and some topological arguments inspired
by a work from Caffarelli, Jerison and Kenig [Caffarelli et al. 2004], we then show that for such domains
all blow-downs are flat. This is probably one of the main novelties in our paper. Then an application
of a variant of a well-known theorem of Alt and Caffarelli [1981] shows that �∞ must be a half-space.

The aforementioned reduction of the problem to the case when the Poisson kernel with pole at infinity
is constantly equal to 1 requires estimating from above the gradient of the Green function. This estimate
is obtained in [Kenig and Toro 2003] under the assumption that the domain � is Reifenberg flat, and this
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is one of the main technical difficulties of that paper. In [Kenig and Toro 2006] it is shown how these
estimates can be extended to the case when � is not Reifenberg flat. In our present paper we provide some
alternative arguments to estimate the gradient of the Green function. The main difference with respect to
the ones in [Kenig and Toro 2003; 2006] is that in the present paper we use the jump relations for the
gradient of single layer potentials, instead of the (perhaps) less standard approach in the aforementioned
works. We think that our approach has some independent interest (especially because of the connection
between harmonic measure with pole at infinity and the Riesz transform that we describe in Section 3).

Concerning the negative result for dimensions d ≥ 4 in Theorem 1.1, basically we recall in the last
section of the paper an example of a conical domain in R4 by Guanghao Hong1[2015] such that the
harmonic measure with pole at infinity coincides with surface measure, and so that the outer unit normal
does not belong to VMO(σ ). One can check easily that such domain is two-sided NTA. Probably, this
example was unnoticed in some recent works in this area.

2. Preliminaries

For a, b ≥ 0, we will write a . b if there is C > 0 so that a ≤ Cb and a .t b if the constant C depends
on the parameter t . We write a ≈ b to mean a . b . a and define a ≈t b similarly.

Definition 2.1. Given a closed set E , x ∈ Rd, r > 0, and P a d-plane, we set

2E(x, r, P)= r−1 max
{
supy∈E∩B(x,r) dist(y, P), supy∈P∩B(x,r) dist(y, E)

}
.

Also define
2E(x, r)= inf

P
2E(x, r, P),

where the infimum is over all d-planes P. A set E is δ-Reifenberg flat if 2E(x, r) < δ for all x ∈ E and
r > 0, and is vanishing Reifenberg flat if

lim
r→0

sup
x∈E

2E(x, r)= 0.

Definition 2.2. Let � ⊂ Rn+1 be an open set, and let 0 < δ < 1
2 . We say that � is a δ-Reifenberg flat

domain if it satisfies the following conditions:

(a) ∂� is δ-Reifenberg flat.

(b) For every x ∈ ∂� and r > 0, denote by P(x, r) an n-plane that minimizes 2E(x, r). Then one of
the connected components of

B(x, r)∩ {x ∈ Rn+1
: dist(x,P(x, r))≥ 2δr}

is contained in � and the other is contained in Rn+1
\�.

If, additionally, ∂� is vanishing Reifenberg flat, then � is said to be vanishing Reifenberg flat, too.

Definition 2.3. Let�⊂Rn+1. We say that� satisfies the Harnack chain condition if there is a uniform con-
stant C such that for every ρ>0, 3≥1, and every pair of points x, y∈�with dist(x, ∂�), dist(y, ∂�)≥ρ
and |x − y| < 3ρ, there is a chain of open balls B1, . . . , BN ⊂ �, N ≤ C(3), with x ∈ B1, y ∈ BN ,

1 So the statement in the theorem referring to the case d ≥ 4 should not be attributed to us.
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Bk ∩ Bk+1 6=∅ and C−1 diam(Bk)≤ dist(Bk, ∂�)≤ C diam(Bk). The chain of balls is called a Harnack
chain. Note that if such a chain exists, then

u(x)≈N u(y).

For C ≥ 2, the set � is a C-corkscrew domain if for all ξ ∈ ∂� and r > 0 there are two balls of radius
r/C contained in B(ξ, r)∩� and B(ξ, r)\� respectively. If

B(x, r/C)⊆ B(ξ, r)∩�,

we call x a corkscrew point for the ball B(ξ, r). Finally, we say � is C-nontangentially accessible (or
C-NTA, or just NTA) if it satisfies the Harnack chain condition and is a C-corkscrew domain. We say �
is two-sided C-NTA if both � and �ext := (�)

c are C-NTA. Finally, it is chord-arc if, additionally, ∂� is
n-AD-regular, meaning there is C > 0 so that, if σ denotes surface measure, then

C−1rn < σ(B(x, r)) < Crn for all x ∈ ∂�, 0<r≤ diam(�).

Any measure σ that satisfies the preceding estimate for all x ∈ supp σ and 0< r ≤ diam(supp σ) is
called n-AD-regular.

Definition 2.4. Let σ be an n-AD-regular measure in Rn and f a locally integrable function with respect
to σ . We say f ∈ VMO(σ ) if

lim
r→0

sup
x∈supp σ

−

∫
B(x,r)

∣∣∣∣ f − −
∫

B(x,r)
f dσ

∣∣∣∣2dσ = 0. (2-1)

We say f ∈ VMOloc(σ ) if, for any compact set K ,

lim
r→0

sup
x∈supp σ∩K

−

∫
B(x,r)

∣∣∣∣ f − −
∫

B(x,r)
f dσ

∣∣∣∣2dσ = 0.

It is well known that the space VMO coincides with the closure of the set of bounded uniformly
continuous functions on supp σ in the BMO norm.

We also remark that one can find slightly different definitions of VMO in the literature. For example,
in some references besides (2-1) the additional condition that

lim
r→∞

sup
x∈supp σ

−

∫
B(x,r)

∣∣∣∣ f −−
∫

B(x,r)
f dσ

∣∣∣∣2dσ = 0

is required. In this case, it turns out that VMO coincides with the closure of the set of compactly supported
continuous functions on supp σ in the BMO norm. However, the definition we will use in our paper is
Definition 2.4 (as in other works like [Kenig and Toro 1999; 2003]).

3. The Riesz transform of the harmonic measure with pole at infinity

Readers that are familiar with the results in [Kenig and Toro 2003; 2006] may skip this section, as well as
Sections 4 and 5, and go directly to Section 6 without much harm. In fact, in Sections 3–5 we provide the
alternative arguments to estimate the gradient of the Green function that we mentioned in the Introduction.
Our approach uses the jump relations for the gradient of the single layer potential (derived by Hofmann,
Mitrea, and Taylor [Hofmann et al. 2010] in the case of chord-arc domains and somewhat more general
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settings). Modulo these standard relations, our arguments are reasonably self-contained and shorter than
the ones in [Kenig and Toro 2003; 2006].

Recall from [Kenig and Toro 1999, Lemma 3.7] that if �⊂ Rn+1 is an unbounded NTA domain, then
there exist a function u ∈ C(�) and a measure ω in ∂� such that

1u = 0 in �, u = 0 in ∂�, u > 0 in �, (3-1)

and ∫
�

u1φ dm =
∫
∂�

φ dω for all φ ∈ C∞c (R
n+1). (3-2)

The function u and the measure ω are unique modulo constant factors, and u is the so-called Green
function with pole at infinity and ω the harmonic measure with pole at infinity.

From now on, we will assume that u is also defined in Rn+1
\� and vanishes identically here, so that

u ∈ C(Rn+1).
Given a Radon measure µ in Rn+1, its n-dimensional Riesz transform is defined by

Rµ(x)= cn

∫
x − y
|x − y|n+1 dµ(y),

whenever the integral makes sense. We assume that the constant cn is chosen so that

K (x) := cn
x
|x |n+1

coincides with the gradient of the fundamental solution of the Laplacian.

The main result of this section is the following.

Proposition 3.1. Let � ⊂ Rn+1 be an unbounded NTA domain, and let u and ω be the Green function
and the associated harmonic measure with pole at infinity, respectively. Suppose that for all x ∈ ∂� there
exist some constants 0< δ < 1 and C > 0 (both possibly depending on x) such that

ω(B(x, r))≤ C rn+δ for all r ≥ 1. (3-3)

Then we have

Rω(x)−Rω(y)=∇u(y)−∇u(x) for all x, y ∈ Rn+1
\∂�. (3-4)

Some remarks are in order. First, it is easy to check that if the condition (3-3) holds for all x ∈ ∂�,
then it also holds for all x ∈ Rn+1 (with some constants C, δ depending also on x). For the identity (3-4)
to be true, it is important to define the Riesz transform so that its kernel is the gradient of the fundamental
solution of the Laplacian, as we did above. On the other hand, the function Rω is defined modulo a
constant term (i.e., in a BMO sense). So for all x, y ∈ Rn+1

\∂�, by definition we write

Rω(x)−Rω(y)=
∫ (

K (x − z)− K (y− z)
)

dω(z).
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Then it turns out that the integral on the right-hand side above is absolutely convergent. Indeed, defining
d =max(2|x − y|, 1), we have∫
|x−z|≥d

∣∣K (x−z)−K (y−z)
∣∣dω(z). ∫

|x−z|≥d

|x−y|
|x−z|n+1 dω(z)

.
∑
k≥0

|x−y|
(2kd)n+1 ω(B(x,2

kd)).x

∑
k≥0

|x−y|
(2kd)n+1 (2

kd)k(n+δ)<∞,

(3-5)
which implies ∫ ∣∣K (x − z)− K (y− z)

∣∣ dω(z) <∞,

since x, y 6∈ suppω = ∂�.

Before proceeding with the proof of Proposition 3.1, we recall a few lemmas about NTA domains.
These lemmas were originally shown in [Jerison and Kenig 1982] for bounded NTA domains, but as the
arguments for these results are purely local, they also hold for unbounded NTA domains.

Lemma 3.2 [Jerison and Kenig 1982, Lemma 4.4]. Let �⊆ Rn+1 be NTA and B a ball centered on ∂�
with 0< r(B) < diam ∂�. Let xB be a corkscrew point for B in � and let g be the Green function for �.
Then

ωz(B)≈ g(xB, z)r1−n for all z ∈�\2B. (3-6)

Lemma 3.3 [Jerison and Kenig 1982, Lemma 4.10]. Let � ⊆ Rn+1 be an NTA domain and B a ball
centered on ∂� with 0< Mr(B) < diam ∂�, where M depends on the NTA character of �. Suppose u, v
are two positive harmonic functions in � vanishing continuously on MB ∩ ∂� and let xB be a corkscrew
point for B in �. Then

u(z)
v(z)
≈

u(xB)

v(xB)
for all z ∈ B ∩�. (3-7)

Proof of Proposition 3.1. As shown in [Kenig and Toro 1999, Section 3], the Green function u and the
harmonic measure ω with pole at infinity can be constructed as follows. Given a fixed point a ∈� and a
sequence of points pj ∈� such that pj →∞, we consider the function

u j (x)=
{

g(x, pj )/g(a, pj ) if x ∈�,
0 if x 6∈�,

and the measure
ωj =

1
g(a, pj )

ωpj.

Passing to a subsequence and relabeling if necessary, we may assume that u j is locally uniformly
convergent and that ωj is weakly convergent. Then it turns out that u is the weak limit of the sequence u j

and ω is the weak limit of ωj . For simplicity, we choose points pj such that |pj−a| ≈ dist(pj , ∂�)→∞.
Observe that by (3-6) and our definitions of u and ω, it follows that for all balls B centered on ∂�, if xB

is a corkscrew point for B in �, then

ω(B)r1−n
≈ u(xB). (3-8)
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It is well known that the Green function g( · , · ) equals

g(x, p)= E(x − p)−
∫

E(x − z) dωp(z) for x, p ∈�,

where E stands for the fundamental solution of the Laplacian. On the other hand, the right-hand side
above vanishes if x ∈Rn+1

\�, p ∈�. So we deduce that for all x 6∈ ∂�,

∇u j (x)=
1

g(a, pj )
K (x − pj )−Rωj (x).

Thus, for all x, y 6∈ ∂�,

∇u j (y)−∇u j (x)=
1

g(a, pj )

(
K (y− pj )− K (x − pj )

)
+Rωj (x)−Rωj (y).

Since u j is harmonic outside of ∂� and u j converges locally uniformly to u, it turns out that ∇u j converges
also locally uniformly to ∇u outside of ∂�. Hence, to prove the proposition, it suffices to show that

lim
j→∞

1
g(a, pj )

(
K (y− pj )− K (x − pj )

)
= 0, (3-9)

lim
j→∞

(
Rωj (x)−Rωj (y)

)
=Rω(x)−Rω(y). (3-10)

To prove the above identities, first we will estimate g(a, pj ) in terms of u and ω. To this end, we will
apply the boundary Harnack principle.

Let ξj ∈∂� be such that |ξj−pj |=dist(pj , ∂�), and consider the ball B(pj )= B(ξj , |ξj−pj |). Suppose
that |ξj− pj |�dist(a, ∂�). Consider a corkscrew point p̃j ∈

1
2 B(pj )∩�, so that dist( p̃j , ∂�)≈ r(B(pj )).

Since u and g( · , pj ) are harmonic in �∩ B(pj ) and vanish identically in ∂�, we deduce from (3-7) that

g( p̃j , pj )

g(a, pj )
≈

u( p̃j )

u(a)
,

since a belongs to CB(pj ) for some fixed constant C , and dist(a, ∂�)� r(B(pj )) by assumption. Taking
into account that by (3-8)

u( p̃j )≈ u(pj )≈ ω(B(pj )) |pj − ξj |
1−n
≈ ω(B(pj )) |pj − a|1−n

and
g( p̃j , pj )≈

1
| p̃j − pj |

n−1 ≈
1

|pj − a|n−1 ,

we infer that
g(a, pj )≈

u(a)
ω(B(pj ))

. (3-11)

With (3-11) at hand, we are ready to prove (3-9):

1
g(a, pj )

∣∣K (y− pj )− K (x − pj )
∣∣. ω(B(pj ))

u(a)
|x − y|
|x − pj |

n+1 .

For j big enough, we have r(B(pj ))≈ |x − pj |, and then we derive

ω(B(pj ))

|x − pj |
n+1 .x

|x − pj |
n+δ

|x − pj |
n+1 =

1
|x − pj |

1−δ ,
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and thus

1
g(a, pj )

∣∣K (y− pj )− K (x − pj )
∣∣.x
|x − y|
u(a)

1
|x − pj |

1−δ → 0 as j→∞.

We turn our attention to the identity (3-10) now. Take an auxiliary radial C∞ function φ : Rn+1
→ R

such that χB(0,1) ≤ φ ≤ χB(0,2) and define φε(z)= φ(z/ε). For ε > 0, we define

Kε = (1−φε) K and K̃ε = φε K .

Notice that Kε and K̃ε are standard Calderón–Zygmund kernels. We denote by Rε and R̃ε the respective
associated operators, so that, at least formally, R̃ε tends to R as ε→∞. Then we write∣∣(Rωj (x)−Rωj (y)

)
−
(
Rω(x)−Rω(y)

)∣∣
≤
∣∣(R̃εωj (x)−R̃εωj (y)

)
−
(
R̃εω(x)−R̃εω(y)

)∣∣+∣∣Rεωj (x)−Rεωj (y)
∣∣+∣∣Rεω(x)−Rεω(y)

∣∣. (3-12)

Since the function K̃ε(x − · )− K̃ε(y− · ) is continuous on ∂� (recall that x, y ∈ Rn+1
\∂�) and has

compact support, we infer that∣∣(R̃εωj (x)− R̃εωj (y)
)
−
(
R̃εω(x)− R̃εω(y)

)∣∣→ 0 as j→∞, (3-13)

by the weak convergence of ωj to ω.
Concerning the second term on the right-hand side of (3-12), we will show below that∣∣Rεωj (x)−Rεωj (y)

∣∣.x
|x − y|
u(a)

(
1
ε1−δ +

1
|x − pj |

1−δ

)
. (3-14)

The last term in (3-12) is estimated as in (3-5). Indeed, for ε� |x − y|,∣∣Rεω(x)−Rεω(y)
∣∣. ∫ ∣∣Kε(x − z)− Kε(y− z)

∣∣ dω(z).
∫
|x−z|≥ε/2

|x − y|
|x − z|n+1 dω(z)

.
∑
k≥0

|x − y|
(2kε)n+1 ω(B(x, 2kε)).x

∑
k≥0

|x − y|
(2kε)n+1 (2

kε)n+δ ≈
|x − y|
ε1−δ . (3-15)

From (3-12), (3-13), (3-14) and (3-15) we deduce that

lim sup
j→∞

∣∣(Rωj (x)−Rωj (y)
)
−
(
Rω(x)−Rω(y)

)∣∣.x
|x − y|

u(a) ε1−δ +
|x − y|
ε1−δ .

Since this holds for any arbitrarily big ε > 0, the limit vanishes and this concludes the proof of (3-4).
Finally we deal with the estimate (3-14). Arguing as in (3-15), with ω replaced by ωj , we obtain∣∣Rεωj (x)−Rεωj (y)

∣∣.∑
k≥0

|x − y|
(2kε)n+1 ωj (B(x, 2kε)).

We split the last sum according to whether 2kε ≤ |pj − x | or not, so that∣∣Rεωj (x)−Rεωj (y)
∣∣≤ S1+ S2,
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where

S1 =
∑
k≥0

2kε≤|pj−x |

|x − y|
(2kε)n+1 ωj (B(x, 2kε)) and S2 =

∑
k≥0

2kε>|pj−x |

|x − y|
(2kε)n+1 ωj (B(x, 2kε)).

To estimate S1 we use the fact that, for 2kε ≤ |pj − x |,

ωj (B(x, 2kε))=
1

g(a, pj )
ωpj (B(x, 2kε))≈

1
g(a, pj )

ω(B(x, 2kε))

ω(B(pj ))
.

Hence, by (3-11),

ωj (B(x, 2kε))≈
ω(B(x, 2kε))

u(a)
,

and so

S1 .
∑
k≥0

|x − y|
(2kε)n+1

ω(B(x, 2kε))

u(a)
.x

∑
k≥0

|x − y|
(2kε)n+1

(2kε)n+δ

u(a)
.
|x − y|

u(a) ε1−δ .

To estimate S2 we use the trivial estimate

ωj (B(x, 2kε))=
1

g(a, pj )
ωpj (B(x, 2kε))≤

1
g(a, pj )

≈
ω(B(pj ))

u(a)
.

Therefore,

S2 ≈
∑
k≥0

2kε>|pj−x |

|x − y|
(2kε)n+1

ω(B(pj ))

u(a)
.
|x − y|
|pj − x |n+1

ω(B(pj ))

u(a)
.

Assuming that |pj − x | ≥ 1, we have

ω(B(pj )).x r(B(pj ))
n+δ
≈ |pj − x |n+δ,

and thus

S2 .x
|x − y|
|pj − x |1−δ

ω(B(pj ))

u(a)
.

From this estimate and the one for S1, we obtain (3-14), as wished. �

We recall now the following version of the jump equations for the gradient of the single layer potential
due to Hofmann, Mitrea and Taylor [Hofmann et al. 2010]:

Proposition 3.4 [Hofmann et al. 2010, Proposition 3.30]. Let � ⊂ Rn+1 be a domain in Rn+1 with
uniformly rectifiable boundary such that σ(∂�\∂∗�)= 0, where ∂∗� stands for the measure theoretic
boundary and σ for the surface measure of �. Let f ∈ L p(σ |∂�) for 1≤ p<∞. Then, for σ -a.e. x ∈ ∂�,

lim
0−(x)3z→x

R( f σ)(z)=− 1
2 En(x) f (x)+ pvR( f σ)(x), (3-16)

and
lim

0+(x)3z→x
R( f σ)(z)= 1

2 En(x) f (x)+ pvR( f σ)(x), (3-17)
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where 0+(x) is a nontangential cone at x relative to �, (that is,

0+(x)= {y ∈� : dist(y, �c) > t |y− x |}

for some t > 0), 0−(x) is a nontangential cone at x relative to Rn+1
\�, and En(x) is the outer normal to

� at x.

In particular, if � is a chord-arc domain in Rn+1, then ∂� is uniformly rectifiable (see [David and
Jerison 1990]) and σ(∂�\∂∗�)= 0; thus the preceding proposition can be applied.

Proposition 3.5. Let �⊂ Rn+1 be a chord-arc domain in Rn+1. Let ω and u be the harmonic measure
and the Green function with a pole either at infinity or at some point p ∈�. Suppose that for each x ∈ ∂�
there exist some constants 0< δ < 1 and C > 0 such that

ω(B(x, r))≤ C rn+δ for all r ≥ 1. (3-18)

Suppose h := dω/dσ ∈ L p
loc(σ ) for some p ≥ 1. Then lim0+(x)3z→x ∇u(z) exists for σ -a.e. x ∈ ∂� and

lim
0+(x)3z→x

∇u(z)=−h(x) En(x). (3-19)

Proof. Assume that the pole for ω and u is at infinity (the arguments for the case when the pole is finite
are analogous). Let B be a ball centered at ∂�. By Proposition 3.4, for σ -a.e. x ∈ B,

lim
0−(x)3z→x

R(χ2Bω)(z)=− 1
2 En(x) h(x)+ pvR(χ2Bω),

and

lim
0+(x)3z→x

R(χ2Bω)(z)= 1
2 En(x) h(x)+ pvR(χ2Bω)

In particular,

lim
0+(x)3z→x

R(χ2Bω)(z)− lim
0−(x)3z→x

R(χ2Bω)(z)= En(x)h(x).

Using the condition (3-18), by estimates analogous to the ones in (3-5), it is immediate to check that

lim
0+(x)3z→x

R(χ2Bω)(z)− lim
0−(x)3z→x

R(χ2Bω)(z)= lim
0+(x)3z→x

Rω(z)− lim
0−(x)3z→x

Rω(z).

Then, by Proposition 3.1 we infer that

lim
0−(x)3z→x

∇u(z)− lim
0+(x)3z→x

∇u(z)= En(x)h(x).

Since u ≡ 0 in Rn+1
\�, we have lim0−(x)3z→x ∇u(z)= 0 and so

− lim
0+(x)3z→x

∇u(z)= En(x)h(x) for σ -a.e. x ∈ ∂�∩ B. �
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4. Some technical lemmas

From now on, given a domain �⊂ Rn+1 and x ∈ Rn+1, we define

d�(x)= dist(x, �c).

The following is a well-known result. See, for example, [Jerison and Kenig 1982, Section 4].

Lemma 4.1. Let � ⊂ Rn+1 be an NTA domain and let B be a ball centered at ∂�. There exist some
constants C, α > 0 depending on the NTA character of � such that the following holds. If u is a
nonnegative harmonic function on �∩ 2B which vanishes continuously on ∂�∩ 2B, then

u(x)≤ C
(

d�(x)
r(B)

)α
sup

y∈∂(2B)∩�
u(y) for all x ∈ B ∩�.

If xB is a corkscrew point for B, then

sup
y∈B∩�

u(y)≤ Cu(xB).

We will also need the next auxiliary result.

Lemma 4.2. Let �⊂ Rn+1 be an NTA domain. There exist some constants C, α > 0 depending on the
NTA character of � such that the Green function of � satisfies

g(x, y)≤ C
1

|x − y|n−1

(
min

(
d�(x), d�(y)

)
|x − y|

)α
for all x, y ∈�. (4-1)

Proof. It is enough to show that, for some C, α′ > 0,

g(x, y)≤ C
1

|x − y|n−1

(
d�(x)
|x − y|

)α
for all x, y ∈�, (4-2)

because then the analogous inequality interchanging x by y also holds, by symmetry.
Because of the trivial estimate g(x, y). 1/|x−y|n−1, to prove (4-2) we may assume |x−y|> 10 d�(x).

Let ξx ∈ ∂� be such that |ξx − x | = d�(x) and consider the ball B := B(ξx , |x− y|/8). Clearly x ∈ B, as

|x − ξx | = d�(x)≤ 1
10 |x − y| = 8

10r(B).

Note also that, for all z ∈ ∂(2B),

|y− z| ≥ |x − y| − |x − z| ≥ 8 r(B)− 4 r(B)= 4 r(B)≈ |x − y|.

Hence g(z, y) . 1/|y − z|n−1 . 1/|x − y|n−1 for all z ∈ ∂(2B). Thus, (4-2) follows from Lemma 4.1
applied to the function g( · , y). �

The following rather standard result is shown in [Kenig and Toro 2003, Theorem 2.1].
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Lemma 4.3. Let � ⊂ Rn+1 be a chord-arc domain, f ∈VMO(σ ), and h = e f . Then, for all x ∈ ∂�,
0< r ≤ diam(�) and 1< p <∞,(

−

∫
B(x,r)

h p dσ
)1/p

≤ C p −

∫
B(x,r)

h dσ and
(
−

∫
B(x,r)

h−p dσ
)1/p

≤ C p−

∫
B(x,r)

h−1 dσ.

The next lemma is proven in [Jerison and Kenig 1982, Lemma 4.11]:

Lemma 4.4. Let � be an NTA domain, B a ball centered on ∂� with 0 < r(B) < diam ∂�, and let
E ⊆ B ∩ ∂� be Borel. If xB is a corkscrew point for B in �, then

ωz(E)
ωz(B)

≈ ωxB (E) for z ∈�\2B. (4-3)

Note that this implies that if ω is the harmonic measure with pole at infinity, we also have

ω(E)
ω(B)

≈ ωxB (E). (4-4)

The next corollary is an easy consequence of the preceding lemma, as shown in [Kenig and Toro 2003,
Corollary 2.4].

Corollary 4.5. Let � ⊂ Rn+1 be a chord-arc domain. If the harmonic measure ω in � is such that
dω/dσ ∈ VMO(σ ), then, for all ε > 0, x ∈ ∂�, 0< r ≤ diam(�) and E ⊂ B(x, r)∩ ∂�,

C(ε)−1
(

σ(E)
σ (B(x, r))

)1+ε

≤
ω(E)

ω(B(x, r))
≤ C(ε)

(
σ(E)

σ (B(x, r))

)1−ε

.

Let us remark that the pole of harmonic measure above can be either a point p ∈� (in which case the
constants also depend on p) or infinity in the case � is unbounded.

Another easy consequence of Lemma 4.3 is the following.

Corollary 4.6. Let �⊂ Rn+1 be a chord-arc domain. Suppose that the harmonic measure ω in � with
pole at infinity is such that log(dω/dσ) ∈ VMO(σ ). For z ∈�, let Kz = dωz/dσ (i.e., Kz is the Poisson
kernel). For 1< p <∞, if x ∈ ∂�, 0< r ≤ diam(�), and z ∈�\B(x, 2r), then(

−

∫
B(x,r)

(Kz)
p dσ

)1/p

≤ C(p)−
∫

B(x,r)
Kz dσ.

For this corollary to hold we assume either the pole of ω is at∞ if � is unbounded, or it is in �.

Proof. Since z ∈ �\B(x, 2r), if z0 is a corkscrew point for B(x, r), then whenever B(y, s) ⊂ B(x, r)
and all 0< s < r/10, by (4-3) and (4-4),

ω(B(y, s))
ω(B(x, r))

≈ ωz0(B(y, s))≈
ωz(B(y, s))
ωz(B(x, r))

.

Hence, by the Lebesgue differentiation theorem, if we define h = dω/dσ for σ -a.e. y ∈ B(x, r)∩ ∂�,

Kz(y)=
dωz

dσ
(y)= lim

s→0

ωz(B(y, s))
σ (B(y, s))

≈
ωz(B(x, r))
ω(B(x, r))

lim
s→0

ω(B(y, s))
σ (B(y, s))

=
ωz(B(x, r))
ω(B(x, r))

h(y).
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Therefore, by Lemma 4.3, since log h ∈ VMO(σ ),(
−

∫
B(x,r)

Kz(y)p dσ(y)
)1/p

≈
ωz(B(x, r))
ω(B(x, r))

(
−

∫
B(x,r)

h(y)p dσ(y)
)1/p

.
ωz(B(x, r))
ω(B(x, r))

−

∫
B(x,r)

h(y) dσ(y)≈ −
∫

B(x,r)
Kz(y) dσ(y). �

Lemma 4.7. Let � ⊂ Rn+1 be a chord-arc domain. Suppose that the harmonic measure ω in � with
pole either at infinity or at some fixed point p ∈� is such that log(dω/dσ) ∈ VMO(σ ). Denote by u the
associated Green function. Then, for σ -a.e. x ∈ ∂�, we have ∇u(z) converges to −En(x)(dω/dσ)(x) as
� 3 z→ x nontangentially, where En is the outer unit normal of �.

This lemma is proved in [Kenig and Toro 2003] under the additional assumption that � is Reifenberg
flat. In [Kenig and Toro 2006] it is shown how to prove this without the Reifenberg flatness assumption.
The delicate arguments involved in [Kenig and Toro 2003; 2006] do not use the connection between
harmonic measure and the Riesz transform and instead are of a more geometric nature.

Proof. This is an immediate consequence of Proposition 3.5 and Corollary 4.5. Indeed, this corollary,
implies that for all x ∈ ∂� and all 0< r0 ≤ r ≤ diam(�),(

σ(B(x, r0))

σ (B(x, r))

)1+ε

≤ C(ε)
ω(B(x, r0))

ω(B(x, r))
.

Hence, using also the AD-regularity of σ we get

ω(B(x, r))≤ C(ε) ω(B(x, r0))

(
σ(B(x, r))
σ (B(x, r0))

)1+ε

≈
ω(B(x, r0))

σ (B(x, r0))1+ε
rn(1+ε).

Therefore, choosing ε = 1/(2n),

ω(B(x, r))≤ C(x) rn+1/2 for r ≥ r0.

So the assumption (3-18) in Proposition 3.5 holds and thus

lim
0+(x)3z→x

∇u(z)=−
dω
dσ
(x) En(x) for σ -a.e. x ∈ ∂�. �

The next result is an auxiliary calculation which will be used several times in the next section. The
arguments for the proof are quite standard. Similar calculations appear, for example, in the proofs of
Lemma 5.2 of [Kenig and Toro 2006], Lemma 3.3 of [Kenig and Toro 2003] or Lemma 3.30 of [Hofmann
and Martell 2014].

Lemma 4.8. Let �⊂ Rn+1 be a chord-arc domain, and let ω be the harmonic measure in � with pole
either at infinity or at some fixed point p ∈�. Let B ⊂ Rn+1 be a ball centered at ∂� such that p 6∈ 10B.
Then for any constant ε > 0,∫

B∩�

(
d�(y)
r(B)

)ε
ω(B(y, 2d�(y)))

d�(y)n+1 dy ≤ C(ε) ω(B).
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Proof. We write∫
B∩�

(
d�(y)
r(B)

)ε
ω(B(y,2d�(y)))

d�(y)n+1 dy.
∑
j≥0

2− jε
∫

y∈B∩�
2− j−1r(B)<d�(y)≤2− j r(B)

ω(B(y,2− j+1r(B)))
(2− jr(B))n+1 dy. (4-5)

We define Aj := {y ∈ B ∩� : 2− j−1r(B) < d�(y)≤ 2− jr(B)}. For each y ∈ Aj consider a ball B j
y with

radius 2− j+1r(B) centered at a point ξy ∈ ∂� such that |y− ξy| = d�(y). Clearly y ∈ B j
y for each y ∈ Aj ,

and thus we can extract a subfamily of pairwise disjoint balls {B j
k }k ⊂ {B

j
y }y∈Aj so that

Aj ⊂
⋃

k

3B j
k .

Notice that for each y ∈ B j
k , since ω is doubling,

ω(B(y, 2− j+1r(B)))≤ ω(6B j
k ). ω(B

j
k ).

Therefore, taking also into account that the balls B j
k are contained in 6B,∫

y∈B∩�:
2− j−1r(B)<d�(y)≤2− j r(B)

ω(B(y, 2− j+1r(B)))
(2− jr(B))n+1 dy .

∑
k

∫
B j

k

ω(B j
k )

(2− jr(B))n+1 dy

= C
∑

k

ω(B j
k ). ω(6B). ω(B).

Plugging this estimate into (4-5), the lemma follows. �

5. Estimates for the gradient of Green’s function

The reader should compare the arguments in this section to the ones in Section 3 of [Kenig and Toro
2003] and Section 2 of [Kenig and Toro 2006], which in turn rely on the results in the Appendices A1
and A2 of [Kenig and Toro 2003].

Lemma 5.1. Let �⊂ Rn+1 be an unbounded chord-arc domain. Suppose that the harmonic measure ω
in � with pole at infinity satisfies log(dω/dσ) ∈ VMO(σ ). Denote by u the associated Green function.
Then

|∇u(x)| ≤
∫
∂�

dω
dσ
(y) dωx(y) for all x ∈�. (5-1)

The proof of this lemma would be quite immediate if the function dω/dσ inside the integral in (5-1)
were compactly supported, taking into account that ∇u is harmonic. However, this is not the case and so
the arguments are more delicate. The next auxiliary lemma will be used to take care of this question by a
localization of singularities technique.

Lemma 5.2. Under the assumptions of Lemma 5.1, suppose that 0 ∈ ∂�. Fix R > 1 large and let
φR ∈ C∞c (R

n+1) such that χB(0,R)≤φR ≤χB(0,2R), |∇ jφR|. 1/R j for j = 1, 2. For x ∈�, define

wR(x)=
∫
�

g(x, y)1[φR∇u](y) dy.
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Then wR ∈ Cα/2(�) for some α > 0, wR|∂� ≡ 0, and the following estimates hold for x ∈�:

(a) |wR(x)|.
ω(B(0, R))

Rn

(
d�(x)

R

)α/2
if |x | ≤ 4R.

(b) |wR(x)|.
ω(B(0, R))

|x |n−1+α/2 R1−α/2

(
d�(x)
|x |

)α/2
if |x |> 4R.

Proof. By the relationship between Green’s function and harmonic measure, for all y ∈� we have

u(y)≈
1

d�(y)n−1 ω(B(y, 2d�(y))),

and by standard estimates for positive harmonic functions we derive

|∇u(y)|.
u(y)

d�(y)
≈
ω(B(y, 2d�(y)))

d�(y)n
and |∇

2u(y)|.
u(y)

d�(y)2
≈
ω(B(y, 2d�(y)))

d�(y)n+1 .

Thus,

|wR(x)| =
∣∣∣∣∫
�

g(x, y)
(
1φR(y)∇u(y)+ 2∇φR(y) · ∇2u(y)

)
dy
∣∣∣∣

.
∫

A(0,R,2R)∩�
g(x, y)

(
ω(B(y, 2d�(y)))

R2 d�(y)n
+
ω(B(y, 2d�(y)))

R d�(y)n+1

)
dy

.
∫

B(0,2R)∩�
g(x, y)

ω(B(y, 2d�(y)))
R d�(y)n+1 dy. (5-2)

Case 1: |x | ≤ 4R.
We split the integral on the right-hand side of (5-2) as follows:

|wR(x)|.
∫
|y−x |≤d�(x)/2

g(x, y)
ω(B(y, 2d�(y)))

R d�(y)n+1 dy+
∫

y∈B(0,2R)∩�
|y−x |>d�(x)/2

g(x, y)
ω(B(y, 2d�(y)))

R d�(y)n+1 dy

=: I1+ I2. (5-3)

First we will deal with I1. In the domain of integration of I1 we have d�(y) ≈ d�(x). Taking into
account that ω is doubling, in this case we derive ω(B(y, 2d�(y)))≈ ω(B(x, 2d�(x))). Then using also
the trivial estimate g(x, y). 1/|x − y|n−1, we get

I1 .
∫
|y−x |≤d�(x)/2

1
|x − y|n−1

ω(B(x, 2d�(x))
R d�(x)n+1 dy ≈

ω(B(x, 2d�(x))
R d�(x)n−1 .

Notice that, by Lemma 4.1,

u(x).
(

d�(x)
R

)α
sup

y∈∂B(0,8R)∩�
u(y).

(
d�(x)

R

)α
u(xR), (5-4)

where xR is a corkscrew point for B(0, R). That is, xR ∈ B(0, R)∩� and d�(xR)≈ R. Hence using that
ω(B(z, 2d�(z)))≈ u(z) d�(z)n−1 both for z = x and z = xR , we deduce that

I1 .
ω(B(x, 2d�(x)))

R d�(x)n−1 .

(
d�(x)

R

)α
ω(B(xR, 2d�(xR)))

R d�(xR)n−1 ≈

(
d�(x)

R

)α
ω(B(0, R))

Rn . (5-5)
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We consider now the integral I2 in (5-3). To estimate this we use the inequality

g(x, y).
1

|x − y|n−1

(
d�(x)
|x − y|

)α/2( d�(y)
|x − y|

)α/2
, (5-6)

which is an immediate consequence of (4-1). To shorten notation, for each integer j ≥ 0 we write
rj := 2 j d�(x). Denote by jmax the least integer such that B(0, 2R)⊂ B(x, r jmax), so that r jmax ≈ R. Then
plugging the estimate (5-6) into I2 and splitting, we obtain

I2 .
∑

0≤ j≤ jmax

1

R rn−1
j

(
d�(x)

rj

)α/2∫
y∈�
r j−1<|y−x |≤rj

(
d�(y)

rj

)α/2
ω(B(y, 2d�(y)))

d�(y)n+1 dy.

Let ξx ∈ ∂� be such that |x − ξx | = d�(x). It is immediate to check that if |y− x | ≤ rj = 2 j d�(x), then
y ∈ B(ξx , 2rj ). So the last integral is bounded above by∫

�∩B(ξx ,2rj )

(
d�(y)

rj

)α/2
ω(B(y, 2d�(y)))

d�(y)n+1 dy,

and then, by Lemma 4.8, this does not exceed C ω(B(ξx , rj )). Hence,

I2 .
∑

0≤ j≤ jmax

1

R rn−1
j

(
d�(x)

rj

)α/2
ω(B(ξx , rj )). (5-7)

To estimate the right-hand side in the inequality above, we argue as in (5-4). We consider a corkscrew
point x j in each ball B(ξx , rj ), and then since dist(x j , ∂�)≈ rj , we deduce

u(x j ).

(
rj

R

)α
u(xR)

(recall that xR is a corkscrew point for B(0, R)). Thus,

ω(B(ξx , rj ))

rn−1
j

.

(
rj

R

)α
ω(B(0, R))

Rn−1 .

Plugging this estimate into (5-7) we obtain

I2 .
∑

0≤ j≤ jmax

(
d�(x)

rj

)α/2(rj

R

)α
ω(B(0, R))

Rn =
d�(x)α/2

Rα
ω(B(0, R))

Rn

∑
0≤ j≤ jmax

rα/2j .

Since the last sum is geometric, it turns out that∑
0≤ j≤ jmax

rα/2j ≈ rα/2jmax
≈ Rα/2.

Therefore,

I2 .
d�(x)α/2

Rα/2
ω(B(0, R))

Rn .

Together with the estimate for I1 in (5-5), this yields the inequality (a) in the lemma.
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Case 2: |x |> 4R.
To estimate the integral on the right-hand side of (5-2) we use the fact that, for y ∈ B(0, 2R), by (4-1),

g(x, y).
1
|x |n−1

(
d�(x)
|x |

)α/2(d�(y)
|x |

)α/2
,

taking into account that |x − y| ≈ |x |. Then we get

|wR(x)|.
1
|x |n−1

(
d�(x)
|x |

)α/2 ∫
B(0,2R)∩�

(
d�(y)
|x |

)α/2
ω(B(y, 2d�(y)))

R d�(y)n+1 dy

=
1

R|x |n−1

(
d�(x)
|x |

)α/2( R
|x |

)α/2 ∫
B(0,2R)∩�

(
d�(y)

R

)α/2
ω(B(y, 2d�(y)))

d�(y)n+1 dy.

By Lemma 4.8, the last integral above does not exceed Cω(B(0, R)), and so we deduce that

|wR(x)|.
1

R|x |n−1

(
d�(x)
|x |

)α/2( R
|x |

)α/2
ω(B(0, R)),

which gives the inequality (b) in the lemma. �

Proof of Lemma 5.1. The arguments are similar to the ones for [Kenig and Toro 2003, Theorem 3.1]. For
the reader’s convenience, we show the details below.

Suppose that 0 ∈ ∂� and, for R ≥ 1, let φR and wR be the functions introduced in Lemma 5.2. For
x ∈�, we define

h R(x)= φR(x)∇u(x)−wR(x).

Since 1wR =1[φR∇u] in �, it turns out that h R is harmonic in �. Further, the estimates (a) and (b) in
Lemma 5.2, in particular, ensure that wR vanishes continuously at ∂�. Thus h R vanishes on ∂�\B(0, 2R).

By Lemma 4.7 it follows that ∇u(z) converges nontangentially to −(dω/dσ)(y)En(y) as � 3 z→ y
for σ -a.e. y ∈ ∂�. Also, as mentioned above, wR(z)→ 0 as z→ y. Therefore, if we define

h(y)=
dω
dσ
(y),

we have

lim
0+(y)3z→y

h R(z)=−φR(y) h(y) En(y) for σ -a.e. y ∈ ∂�.

We claim that for all x ∈�,

h R(x)=−
∫
φR(y) h(y) En(y) dωx(y). (5-8)

To prove this, recalling that h R vanishes at∞, by Theorem 5.8 and Lemma 8.3 in [Jerison and Kenig
1982] it suffices to show that N1h R ∈ L1(ωx) for all x ∈�, where N1 stands for the operator defined by

N1h R(y)= sup
z∈0+1 (y)

h R(z),
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with 0+1 (y)= 0
+(y)∩ B(y, 1). By Lemma 5.2, wR is bounded, and thus N1wR ∈ L1(ωx). Hence it is

enough to prove that N1(φR∇u) ∈ L1(ωx). To this end, notice that if z ∈ 0+1 (y), then

|∇u(z)|.
u(z)

d�(z)
≈
ω(B(y, d�(z)))

d�(z)n
.

Thus,

N1(φR∇u)(y). sup
0<r≤1

ω(B(y, r))
rn = sup

0<r≤1

1
rn

∫
B(y,r)
|h| dσ =:M1h(y).

Also, N1(φR∇u)(y) vanishes outside of B ′ := B(0, 2R+ 1) because in this case φR(z) = 0 whenever
z ∈ 0+1 (y). Therefore,∫

N1(φR∇u) dωx
=

∫
B ′
N1(φR∇u) Kx dσ .

(∫
B ′
|M1h|2 dσ

)1/2(∫
B ′
(Kx)

2 dσ
)1/2

.

By the L2(σ )-boundedness of M1, it follows that∫
B ′
|M1h|2 dσ =

∫
B ′
|M1(χB ′′h)|2 dσ <∞,

where B ′′ = B(0, 2R+ 2). Also, by Corollary 4.6,∫
B ′
(Kx)

2 dσ <∞,

and so N1(φR∇u) ∈ L1(ωx) and (5-8) holds.
From the definition of h R and (5-8) we deduce that

φR(x)∇u(x)=−
∫
φR(y) h(y) En(y) dωx(y)+wR(x). (5-9)

Hence, letting R→∞,

|∇u(x)| ≤
∫
|h(y)| dωx(y)+ lim inf

R→∞
|wR(x)|.

By Lemma 5.2(a) and Corollary 4.5 (with ε small enough), we deduce easily that wR(x)→ 0 as R→∞,
for any fixed x ∈�, and then the lemma follows. �

Now we wish to obtain a variant of Lemma 5.1 suitable for the case when the pole for harmonic
measure is finite. This is what we do in the next lemma.

Lemma 5.3. Let � ⊂ Rn+1 be a chord-arc domain. Suppose that the harmonic measure ωp in � with
pole at p ∈� satisfies log(dωp/dσ) ∈ VMO(σ ). Then, for all x ∈� such that d�(x)≤ d�(p)/8 and all
qx ∈ ∂� such that |x − qx | ≤ d�(p)/8,

|∇g(x, p)| ≤
∫
∂�

K p(y) dωx(y)+C
ωp(B(qx , d�(p)))

d�(p)n

(
d�(x)
d�(p)

)α/2
. (5-10)
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Proof. Let ξ ∈ ∂� and take a C∞ function φ compactly supported in B(ξ, d�(p)/4) which is identically 1
on B(ξ, d�(p)/8), so that |∇ jφ| . 1/d�(p) j for j = 1, 2. Note that, in particular, φ vanishes on
B(p, d�(p)/4). We consider the function

w0(x)=
∫
�

g(x, y)1[φ ∇g( · , p)](y) dy for x ∈�.

We claim that

|w0(x)|.
ω(B(ξ, d�(p)/8))

d�(p)n

(
d�(x)
d�(p)

)α/2
if |x − ξ | ≤

d�(p)
4

. (5-11)

The arguments to prove (5-11) are quite similar to the ones in Lemma 5.2. By the relationship between
Green’s function and harmonic measure and by standard estimates for positive harmonic functions, for all
y ∈ B(ξ, d�(p)/4)∩� we have

|∇g(y, p)|.
g(y, p)
d�(y)

≈
ωp(B(ξ, d�(p)/4))

d�(y)n
and |∇

2g(y, p)|.
g(y, p)
d�(y)2

≈
ωp(B(ξ, d�(p)/4))

d�(y)n+1 .

Thus,

|w0(x)| =
∣∣∣∣∫
�

g(x, y)
(
1φ(y)∇g(y, p)+ 2∇φ(y) · ∇2g(y, p)

)
dy
∣∣∣∣

.
∫

A(ξ,d�(p)/8,d�(p)/4)∩�
g(x, y)

(
ωp(B(ξ, d�(p)/4))

d�(p)2 d�(y)n
+
ωp(B(ξ, d�(p)/4))

d�(p) d�(y)n+1

)
dy

.
∫

B(ξ,d�(p)/4)∩�
g(x, y)

ωp(B(ξ, d�(p)/4))
d�(p) d�(y)n+1 dy.

Notice that the integral on the right-hand side above is very similar to the one on the right-hand side of
(5-2). The reader can check that exactly the same arguments and estimates used to prove Lemma 5.2(a)
yield (5-11), with ξ instead of 0, d�(p)/8 instead of R, ωp instead of ω, and g(y, p) instead of u(y).
We leave the details for the reader.

From (5-11) it follows that w0 ∈ Cα/2(�) and it vanishes at ∂�. Further, the function defined by

h0(x)= φ(x)∇g(x, p)−w0(x), x ∈�,

is harmonic in �, because 1w0 = φ ∇g( · , p). Hence, arguing as in (5-9), we derive

φ(x)∇g(x, p)=−
∫
φ(y) K p(y) En(y) dωx(y)+w0(x).

If |x − ξ | ≤ d�(p)/8, then φ(x)= 1 and from the last identity and the inequality (5-11) with ξ = qx , we
deduce (5-10). �

6. The pseudo-blow-up of harmonic measure is surface measure

Let �⊂ Rn+1 be a chord-arc domain. We recall that harmonic measure with either a finite pole p ∈� or
pole at infinity is in the A∞(σ ) class of weights by [David and Jerison 1990] or [Semmes 1990] and thus, the
Poisson kernel dω/dσ exists and is positive and finite. We denote by u either the Green’s function with pole
at p ∈� or with pole at infinity and by h the corresponding Poisson kernel (see (3-2) for pole at infinity).
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6A. Pseudo-blow-ups of chord-arc domains. Here we introduce the notion of pseudo-blow-ups from
[Kenig and Toro 2003], but with a slight modification. Let xi ∈ ∂� and let {ri }i≥1 be a sequence of
positive numbers so that limi→∞ ri = 0. Consider now the domains

�i =
1
ri
(�− xi ),

so that ∂�i = (1/ri )(∂�− xi ), and the functions ui in �i defined by

ui (x)=
g(ri x + xi , pi )

ri ωpi (B(xi , ri ))
σ (B(xi , ri )),

where either pi =∞ or pi ∈�\{xi } satisfies

pi − xi

ri
→∞ as i→∞.

Note that ui vanishes at ∂�i and is harmonic in �i \{(pi − xi )/ri }. We denote by dωi = hi dσi the
harmonic measure of�i with pole at infinity or (pi−xi )/ri depending on the pole of u, where σi =Hn

|∂�i .
Moreover, the corresponding Poisson kernel2 hi satisfies

hi (x)=
h(ri x + xi )

ωpi (B(xi , ri ))
σ (B(xi , ri )).

Theorem 6.1 [Kenig and Toro 2003, Theorem 4.1]. If �⊂ Rn+1 is a chord-arc domain, then there exists
a subsequence satisfying

�i →�∞ in the Hausdorff metric, uniformly on compact sets,

∂�i → ∂�∞ in the Hausdorff metric, uniformly on compact sets,

where �∞ is a chord-arc domain. Moreover, there exists u∞ ∈ C(�∞) such that ui → u∞ uniformly on
compact sets which satisfies (3-1) for �=�∞. Furthermore, ωi → ω∞ weakly as Radon measures and
ω∞ is the harmonic measure of �∞ with pole at infinity (corresponding to u∞).

This was originally shown in [Kenig and Toro 2003] under the assumption that pi is a fixed point and
xi converges to some point in ∂�. However, the same proof gives the result above.

Theorem 6.2. If �∞ ⊂ Rn+1 and u∞ are as in Theorem 6.1, then

sup
z∈�∞
|∇u∞(z)| ≤ 1. (6-1)

Theorem 6.3. If �∞ ⊂ Rn+1 and u∞ and ω∞ are as in Theorem 6.1, then

dω∞
dσ∞

≥ 1, Hn-a.e. on ∂�∞, (6-2)

where σ∞ =Hn
|∂�∞ .

2In fact, this is the Poisson kernel of �i with pole at pi modulo a constant factor.
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Both theorems were proved in [Kenig and Toro 2003, Theorems 4.2 and 4.3] for Reifenberg flat domains
with n-AD regular boundary, although, an inspection of the proofs shows that the same arguments, with
very minor changes, work also for NTA domains with n-AD regular boundary, i.e., for chord-arc domains.

Corollary 6.4. If �∞ ⊂ Rn+1 and u∞ and ω∞ are as in Theorem 6.1, then

|∇u∞| =
dω∞
dσ∞

= 1 Hn-a.e. on ∂�∞. (6-3)

Proof. Combining (3-19) and (6-1) we get that dω∞/dσ∞ ≤ 1 for Hn-a.e. on ∂�∞. Then (6-3) follows
from (6-2). �

Lemma 6.5. The subsequence introduced in Theorem 6.1 satisfies σi ⇀σ∞ weakly as Radon measures.

Proof. This was essentially proved in Theorem 4.4 in [Kenig and Toro 2003]. The only difference is that
instead of invoking [Kenig and Toro 2003, Theorem 2] in the proof, which is particular to the Reifenberg
flat case, we just use Corollary 6.4. �

6B. Blow-downs of unbounded chord-arc domains. In the course of proving our main result we will
need to construct the blow-down domain with respect to a fixed point x0 ∈ ∂� of an unbounded chord-arc
domain � such that dω/dσ = 1 σ -a.e. on ∂� (i.e., ω = σ ). To do so, we let xi = x0 for all i ≥ 1 and a
sequence of positive numbers ri such that limi→∞ ri =∞. Now we take �i and ui as in the construction
of pseudo-blow-ups in Section 6A and p = pi =∞. Then similar (but easier) arguments show that there
exists a chord-arc domain �̃ such that

�i → �̃ in the Hausdorff metric, uniformly on compact sets,

∂�i → ∂�̃ in the Hausdorff metric, uniformly on compact sets.

Moreover, there exists ũ ∈ C(�̃) such that ui → u0 uniformly on compact sets which satisfies

1ũ = 0 in �̃, ũ > 0 in �̃, ũ = 0 in ∂�̃.

7. Application of the monotonicity formula of Weiss: blow-downs are planes in R3

We first introduce the notion of a variational solution of the one-phase free boundary problem in an open
ball B ⊂ Rn+1, 

u ≥ 0 in B,
1u = 0 in B+(u) := B ∩ {u > 0},
|∇u| = 1 on F(u) := ∂B+(u)∩ B.

(7-1)

Definition 7.1. We define u ∈W 1,2
loc (B) to be a variational solution of (7-1) if

(1) u ∈ C(B)∩C2(B+(u)),

(2) χ{u>0} ∈ L1
loc(B) and

(3) the first variation with respect to the functional

F(v) :=
∫

B
(|∇v|2+χ{v>0}) dm (7-2)
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vanishes at v = u; i.e.,

0=−
d
dε

F(u(x + εφ(x)))|ε=0 =

∫
B

[
(|∇u|2+χ{u>0}) divφ− 2∇u Dφ (∇u)T

]
dm (7-3)

for any φ ∈ C∞c (B;R
n+1).

Definition 7.2. We say that u is a weak solution of 1u = Hn(∂{u > 0} ∩ · ) in B if the following are
satisfied:

(1) u ∈W 1,2
loc (B)∩C(B+(u)), u ≥ 0 in B, and u is harmonic in the open set {u > 0}.

(2) Nondegeneracy and regularity: for any open D b B there exist 0< cD ≤ CD <∞ such that for any
B(x, r)⊂ D satisfying x ∈ ∂{u > 0} we have

cD ≤ r−n−1
∫
∂B(x,r)

u dHn
≤ CD. (7-4)

(3) {u > 0} is locally in B a set of finite perimeter and

−

∫
∇u · ∇ζ dm =

∫
∂∗{u>0}

ζ dHn (7-5)

for any ζ ∈ C∞c (B), where ∂∗{u > 0} stands for the reduced boundary of {u > 0}.

Let us now record a useful lemma whose proof is contained in the one of [Weiss 1998, Theorem 5.1].

Lemma 7.3. If u is a weak solution of 1u =Hn(∂{u > 0}∩ · ) in a ball B in the sense of Definition 7.2,
then it is also a variational solution in the ball B in the sense of Definition 7.1.

Lemma 7.4. Assume that �∞ is the blow-up domain and u∞ is the blow-up Green’s function constructed
in Theorem 6.1. If B is a ball centered on ∂{u∞ > 0} = ∂�∞, then the extension by zero of u∞ outside
{u∞ > 0} is a weak solution of 1u =Hn(∂{u > 0} ∩ · ) in B.

Proof. By construction, �∞ = {u∞ > 0}, u∞ > 0 in �∞, u∞ = 0 in ∂�∞, u∞ is harmonic in �∞,
u∞ ∈ C(�∞), and |∇u∞| ≤ 1 in �∞. Therefore, it is trivial to see that its extension by zero in the
complement of �∞ satisfies the condition (1) in Definition 7.2 for the ball B. Notice also that by
Harnack’s inequality at the boundary, if xr is a corkscrew point in B(x, r)∩�∞, it holds that

max
z∈∂B(x,r)∩�∞

u∞(z)= max
z∈B(x,r)∩�∞

u∞(z)≈ u∞(xr ).

Therefore, we have that by (3-8) and Corollary 6.4,

r−n−1
∫
∂B(x,r)

u∞ dHn
≈

Hn(∂B(x, r))
rn+1 u∞(xr )≈

ω∞(B(x, r))
σ∞(B(x, r))

= 1.

Since ∂�∞ is n-AD regular, we have that Hn
|∂�∞ is locally finite, and thus�∞ is of locally finite perimeter

in Rn+1. By the generalized Gauss–Green formula for sets of locally finite perimeter, we infer that∫
∂�∞

ζ dHn
=

∫
∂�∞

ζ dω∞ =
∫
�∞

u∞1ζ dm

=

∫
�∞

div(u∞∇ζ ) dm−
∫
�∞

∇u∞ · ∇ζ dm = 0−
∫
�∞

∇u∞ · ∇ζ dm
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for any ζ ∈ C∞c (R
n). Note that Hn(∂�∞\∂

∗�∞) = 0 in any NTA domain and thus, condition (3) in
Definition 7.2 is satisfied. �

We state without proof a lemma from [Jerison and Kamburov 2016] which allows us to conclude that
any blow-down domain of �∞ is in fact a cone.

Lemma 7.5 [Jerison and Kamburov 2016, Lemma 5.2]. Let u be a variational solution of (7-1) in Rn+1

which is globally Lipschitz. Assume that 0 ∈ F(u) and consider a sequence R j →∞. If the sequence

vj (x)= R−1
j u(Rj x)

converges uniformly on compact sets as j →∞, its limit is Lipschitz continuous and homogeneous of
degree 1.

Lemma 7.6. Assume that �∞ ⊂ Rn+1 is the blow-up domain and u∞ is the blow-up Green’s function
constructed in Theorem 6.1. If x ∈ ∂�∞, then any blow-down domain of �∞ at x is a cone.

By a cone we mean a set F ⊂ Rn+1 such that if x ∈ F, then λx ∈ F for all λ > 0. A conical domain is
a domain which is a cone.

Proof. It follows from Lemmas 7.3, 7.4 and 7.5 in view of Section 6B. �

Lemma 7.7. If �0 ⊂ R3 is a conical two-sided NTA domain in R3 with 2-AD-regular boundary such that
dω0/dσ0 = 1 σ0-a.e. in ∂�0, then �0 is a half-space.

Proof. Since �0 is a conical two-sided NTA domain, the intersection of �0 with the sphere S2 is an
open connected subset of S2, and the interior of its complement should be another open connected set
of S2. Further, as shown in [Caffarelli et al. 2004, Remark 2 and p. 92] by studying the mean curvature of
∂�0 ∩ S2, one deduces that ∂�0 ∩ S2 is a convex curve and �c

0 is a convex cone. One can check that a
convex cone in R3 is a Lipschitz domain, and also its exterior domain. Hence, by the results of Farina
and Valdinoci [2010] (or by arguments analogous to the ones in [Caffarelli et al. 2004, p. 92]), �0 is a
half-space. �

Corollary 7.8. Suppose that �0 is a two-sided NTA domain in R3 with 2-AD-regular boundary such that
dω0/dσ0 = 1 σ0-a.e. in ∂�0. Then, for any x ∈ ∂�0,

lim
r→∞

2∂�0(x, r)= 0.

Proof. This is an immediate consequence of Lemmas 7.6 and 7.7. �

8. The Alt–Caffarelli theorem

The objective of this section is to explain how to prove the following lemma.

Lemma 8.1. Let �0 be an NTA domain in Rn+1 with n-AD-regular boundary with constant C0. Suppose
0 ∈ ∂�0 and

dω0

dσ0
≡ 1 σ0-a.e. in ∂�0. (8-1)
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There exists δ0>0 small enough depending on n, the NTA character of �0, and C0 such that if B= B(0, 1)
satisfies

2∂�0(λB)≤ δ0 for all λ > 1, (8-2)

then �0 is a half-space.

Before turning to the proof of this lemma, notice that an immediate consequence of this and Corollary 7.8
is the following.

Corollary 8.2. Suppose that �0 is a two-sided chord-arc in R3 such that dω0/dσ0 = 1 σ0-a.e. in ∂�0.
Then, �0 is a half-space.

Lemma 8.1 is essentially proven in [Kenig and Toro 2004], which assumes that the domain is Reifenberg
flat. This is a variant of some of the results by Alt and Caffarelli [1981]. In [Kenig and Toro 2004] the
authors also assume in the statement of their theorem that

|∇u0| ≤ χ�, (8-3)

where u0 is its Green function with pole at infinity. However, this estimate is an immediate consequence
of the assumptions of Lemma 8.1, especially (8-1), and Lemma 5.1. Thus, we will only explain how to
read and adjust the proof in [Kenig and Toro 2004] in order to obtain the lemma, adding details where
necessary.

Lemma 8.3. Let � ⊂ Rn+1 be a two-sided C-corkscrew domain so that �ext is also connected. Then
whenever ξ ∈ ∂�, r > 0, and β∂�(ξ, r, P)< 1/(2C) for some n-plane P,

2∂�(ξ, r/2, P)≤ 2β∂�(ξ, r, P) (8-4)

and there are half-spaces H± such that

H+ ∪ H− =
{

y : dist(y, P) > β∂�(ξ, r, P)
}
,

H+ ∩ B(ξ, r)⊂� and H− ∩ B(ξ, r)⊂�ext.

In particular, if πP is the projection onto P, then πP(∂�∩ B(ξ, r))⊇ πP(B(ξ, r/2)).

Proof. Without loss of generality, we assume ξ =0, r=1, so B(ξ, r)=B= B(0, 1). Let ε= β∂�(ξ, r, P).
If (H+ ∪ H−)∩B⊂�, then

�ext ∩B⊂ {y : dist(y, P)≤ ε},

but since � has exterior corkscrews, there must be

B(y, 1/C)⊂ B∩�ext ⊂ {y : dist(y, P)≤ ε},

which is a contradiction for ε < 1/(2C). We also get a contradiction if (H+ ∪ H−)∩B⊂�ext, and so
H± ∩B must be in two different components. Assume H+ ∩B⊂� and H− ⊂�ext. The last part of the
lemma now follows from this, since for any y ∈ πP(B(ξ, r)), the line π−1

P (y) must pass through both
H+ and H−, and thus it must intersect ∂�.
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To prove (8-4) it suffices to show that if x ∈ 1
2 B∩P , then dist(x, ∂�)≤ 2ε. Suppose there is x ∈ 1

2 B∩P
so that B(x, 2ε)⊂ (∂�)c. Then the set

U = B∩ B(x, 2ε)c ∩ {y : dist(y, P) > ε}

is a connected open subset of (∂�)c, and hence U ⊂� or U ⊂�ext. Without loss of generality, we can
assume the former case. Then

�ext ∩B⊂ {y : dist(y, P)≤ ε} ∪ B(x, 2ε).

But by the exterior corkscrew condition, B(y, 1/C)⊂ B∩�ext, which is impossible if ε < 1/(2C). �

The following definition comes from [Kenig and Toro 2004], and it is a variant of one that appears in
[Alt and Caffarelli 1981].

Definition 8.4. Let �⊂ Rn+1 be an NTA domain. Let x0 ∈ ∂�, ρ > 0, σ+, σ ∈ (0, 1), ν ∈Sn, and v be
the Green function with pole at infinity. We say v ∈ F(σ+, σ ) in B(x0, ρ) in the direction ν ∈ Sn if, for
all x ∈ B(x0, ρ),

v(x)= 0 if (x − x0) · ν ≥ σ+ρ (8-5)

and
v(x)≥−(x − x0) · ν− σρ if (x − x0) · ν ≤−σρ. (8-6)

Observe that v ≡ 0 exactly on �c and v > 0 exactly on �, and so

v ∈ F(σ, σ ) in direction ν in B(x0, ρ) implies β∂�(x0, ρ)≤ σ . (8-7)

Indeed, assume x0 = 0, ρ = 1, and note that by (8-5), since v = 0 only when �c, we have that for
x ∈ B(x0, ρ),

{x ∈ B : x · ν ≥ σ } ⊆�c.

By (8-6), if x · ν <−σρ, then
v(x)≥−x · ν− σ > 0

and since v(x) > 0 only when x ∈�,

{x ∈ B : x · ν <−σ } ⊆�.

Since v is continuous, we thus have
β∂�(0, 1) < σ.

Lemma 8.5. Let� be a two-sided NTA domain and v the Green function with pole at infinity. Let x0 ∈ ∂�,
ρ, σ > 0, and ν ∈ Sn. If v ∈ F(σ, 1) in B(x0, ρ) in the direction ν, then v ∈ F(2σ,Cσ) in B(x0, ρ/2) in
the same direction, where C = C(n).

Proof. The proof is exactly the same as in Lemma 0.4 in [Kenig and Toro 2004]. Its proof and that of
Lemma 0.3 in the same paper, upon which it depends, do not require the Reifenberg flat assumption and
the proofs are identical. �
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Lemma 8.6. Let � be a two-sided NTA domain and v the Green function with pole at infinity. There is
some ε0 small enough so that the following holds. Let x0 ∈ ∂�, ρ > 0, and ν ∈ Sn. Given θ ∈ (0, 1),
there is σθ > 0 and η ∈ (0, 1) so that if 0 < σ < σθ and v ∈ F(σ, σ ) in B(x0, ρ) in the direction ν and
β∂�(x0, 2ρ) < ε0, then v ∈ F(θσ, 1) in B(x0, ηρ) in some direction ν ′ such that |ν− ν ′|< Cσ .

Proof. Again, the proof is exactly the same as that of Lemma 0.5 in [Kenig and Toro 2004]. The only time
Kenig and Toro use the Reifenberg flatness assumption is to show that the intersection of a cylinder C
with the boundary (with axis passing through Q0) has projection in the direction of the cylinder equal to
the base of the cylinder (i.e., a ball); see right below equation (0.69) in [Kenig and Toro 2004]. However,
we can just replace this with the assumption that β∂�(x0, 2ρ) < ε0 is small and then apply Lemma 8.3. �

Proof of Lemma 8.1. Let θ ′ ∈ (0, 1/2) and δ0 ∈ (0, σn,θ ′/(8+2C)). Note that (8-2) implies that for r > 1,
there is a plane Pr so that

β∂�(0, r, Pr )≤2∂�(0, r, Pr )≤ δ0. (8-8)

Let Lr = P2r −πP2r (0) and let νr ∈ Sn be a unit vector orthogonal to Lr so that rνr/2 ∈�c. Then

{x ∈ B(0, r) : x · νr>δ0r} ⊆ {x ∈ B(0, r) : dist(x, Lr )>δ0r} ⊆ (∂�)c.

Since {x ∈ B(0, r) : x ·νr > δ0r} and �c are connected and rνr/2 is in their intersection, we actually have

{x ∈ B(0, r) : x · νr > δ0r} ⊆�c.

Hence, v(x)= 0 for x ∈ B(0, r) such that x · ν > δ0r . Furthermore, we trivially have

{x ∈ B(0, r) : x · νr > r} =∅

and thus v∈ F(δ0, 1). Lemma 8.5 implies v∈ F(2δ0,Cδ0) in 1
2rB in the same direction, and so v∈ F(δ, δ)

in 1
2rB, where δ =max{2,C}. Let θ ′ ∈ (0, 1). By Lemma 8.6 and (8-8), there is η′ ∈ (0, 1) (depending

only on θ ′) so that v ∈ F(θ ′δ, 1) in 1
2(η
′r)B. Again, by Lemma 8.5, we have v ∈ F(2θ ′δ,Cθ ′δ) in

1
4(η
′r)B, and hence v ∈ F(θδ, θδ) in ηrB, where θ =max{2θ ′,Cθ ′} and η= 1

4η
′ in the direction of some

vector ν ∈ Sn. By (8-7), we have
β∂�(0, ηr) < θδ.

Iterating, we get that for all m ∈ N,

v ∈ F(θmδ, θmδ) in ηmrB (8-9)

and
2∂�(0, ηmr/2)≤ 2β∂�(0, ηmr)≤ θmδ.

Let 1< s� r and pick m so that ηm+1r ≤ s < ηmr . Then this implies

2∂�(0, s/2)≤ 22∂�(0, ηmr/2)≤ 2θmδ = 2ηlog θ/log ηmδ ≤ 2(η−1sr−1)log θ/log ηδ.

Thus, by sending r→∞, we get 2∂�(0, s/2)= 0. Since this holds for every s > 1, we have that ∂� is
equal to an n-plane, and since � is connected, it must be a half-space. �
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9. The proof of Theorem 1.1

Our arguments are very similar to the ones in [Kenig and Toro 2003]. The only difference is that in our
pseudo-blow-ups we allow the points xi to escape to∞. In this way, we are able to show that the outer
unit normal En belongs to VMO(σ ), not only to VMOloc(σ ). For the reader’s convenience, we replicate
the arguments of [Kenig and Toro 2003] here.

Let
`= lim

r→0
sup

x∈∂�
‖En‖∗(B(x, r)).

We will show `= 0. Let xi ∈ ∂� and ri ↓ 0 be such that

lim
i→∞

(
−

∫
B(xi ,ri )

|En− EnB(xi ,ri )|
2 dσ

)1/2

= `.

Let�i = (1/ri )(�−xi ) and u pi
i , ωpi

i be as in Theorem 6.1. By this theorem, we can pass to a subsequence
so that all these quantities converge to some �∞, u∞, and ω∞. By Lemma 6.5, σi also converges to
σ∞=Hn

|∂�∞ . By Lemma 7.7, �∞ is a half-space (suppose it is Rn+1
+ ) and ω∞=Hn

|Rn . For φ a smooth,
nonnegative, and compactly supported function with φ ≥ χB, and Eni the outer unit normal to ∂�i , we
thus have

lim
i→∞

∫
∂�i∩B

|Eni + en+1|
2 dσi ≤ lim

i→∞

∫
∂�i

φ |Eni + en+1|
2 dσi

= lim
i→∞

(
2
∫
∂�i

φ dσi + 2
∫
∂�i

φ Eni · en+1 dσi

)
= 2

∫
Rn
φ dσ∞+ 2 lim

i→∞

∫
�i

div(φ en+1) dm

= 2
∫

Rn
φ dσ∞+ 2

∫
Rn+1
+

div(φ en+1) dm

= 2
∫

Rn
φ dσ∞− 2

∫
Rn
φ en+1 · en+1 dσ∞ = 0

and hence

`= lim
i→∞

(
−

∫
B(xi ,ri )

|En− EnB(xi ,ri )|
2dσ

)1/2

≤ 2 lim
i→∞

(
−

∫
B(xi ,ri )

|En+ en+1|
2dσ

)1/2

= 0. �

Remark 9.1. The same arguments as above show that Theorem A by Kenig and Toro is valid as stated in
the Introduction. That is, under the assumptions of Theorem A, one deduces that En ∈ VMO(σ ), instead
of the weaker statement En ∈ VMOloc(σ ) proven in [Kenig and Toro 2003].

10. Counterexample for Rd, d ≥ 4

In this section we show that, for all d ≥ 4, there exists a two-sided chord-arc unbounded domain �⊂ Rd

for which the Poisson kernel with pole at infinity is constant and such that the outer unit normal is not
in VMO(σ ). Indeed, Hong [2015, Example 1] constructed u ∈ C(R4) such that u ≥ 0; u(r x)= ru(x),
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r > 0; 1u= 0 in 0={u> 0}; ∂0\{0} is smooth; ∂u/∂ En =−1, where En is the outward unit normal on 0
and u is singular, i.e., u 6= x+1 (modulo rotations). We describe his example in some detail below.

Since u is homogeneous of degree 1, it is determined by its values on the unit sphere S3
⊂ R4. Further,

u solves the following overdetermined first eigenvalue problem on Sd−1 for d = 4:
1Sd−1u+ (d − 1)u = 0 and u > 0 in � := 0 ∩Sd−1,

∂u
∂ En
=−1 and u = 0 in ∂� := ∂0 ∩Sd−1,

u ≡ 0 in �c.

(10-1)

To be more precise, let us consider in S3
⊂ R4 the coordinates

x1 = cos θ cosφ, x2 = cos θ sinφ,

x3 = sin θ cosψ, x4 = sin θ sinψ,
(10-2)

where θ ∈ [0, π/2] and φ,ψ ∈ [0, 2π ]. Let u(θ, φ, ψ)= τ f (θ), where τ > 0 and f is a sufficiently nice
function. To find u that satisfies (10-1), it is enough to solve the ODE{

(sin θ cos θ f ′)′+ sin θ cos θ f = 0, θ ∈ (0, π/2),
f (0)= 1, f ′(0)= 0.

Then it is shown in [Hong 2015] that there exists θ0 ∈ (0, π/2) such that f (θ0) = 0, f ′(θ0) < 0 and
f ′(θ) > 0 for all θ ∈ (0, θ0). If u is defined on S3 by u(θ, φ, ψ)= (−1/ f ′(θ0)) f (θ) for all θ ∈ [0, θ0)

and u ≡ 0 in [θ0, π/2], then v(x)= v(rξ)= ru(ξ), for r > 0 and ξ ∈ S3, is the solution to the one-phase
free boundary problem we are after.

The above-mentioned construction provides us with a domain for which Theorem 1.1 does not hold.
Indeed, let

� :=
{

x ∈ R4
: x = rξ for some ξ ∈ S3 satisfying (10-2) for θ ∈ [0, θ0)

}
= {v > 0},

whose boundary is given by all points x ∈R4 so that x = r ξ for some r > 0 and ξ ∈S3 that satisfies (10-2)
for θ = θ0. Remark here that as v is a homogeneous, degree-1 function and v 6≡ x+1 (under rotation), � is
a cone in R4 but not a half-space. Thus, � is not a Reifenberg flat domain with vanishing constant, which
infers that the outward unit normal En is not in VMO(∂�). Moreover, as the Poisson kernel h=−∂u/∂ En=1,
it is clear that log h ∈ VMO. Therefore, it is enough to show that � is a two-sided chord-arc domain.

To this end, notice that every x ∈ ∂� satisfies the equation x2
1 + x2

2 = cos2 θ0 x2
3 + x2

4 = sin2 θ0 while,
for x ∈�,

x2
1 + x2

2 = cos2 θ > cos2 θ0 and x2
3 + x2

4 = sin2 θ < sin2 θ0.

So � coincides with the set of those points x ∈ R4 such that

x2
1 + x2

2 > (x
2
3 + x2

4) cot2 θ0. (10-3)

Therefore, � is bi-Lipschitz equivalent to the domain {x ∈R4
: x2

1+ x2
2 > x2

3+ x2
4}, which is a well-known

two-sided chord-arc domain. The AD-regularity is easier to see as the boundary is locally a Lipschitz
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graph away from the origin by the implicit function theorem, so it is locally AD-regular, and the fact that
it is a cone easily gives that it is globally Ahlfors regular. Hence, � is also a two-sided chord-arc domain,
which finishes our proof in R4.

If we set D :=�⊗Rd−4
⊂ Rd, where �⊂ R4 is the domain just constructed, then D is a two-sided

chord-arc domain in Rd for which the Poisson kernel is constant and such that the outer unit normal is
not in VMO(σ ).
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