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KINETIC FORMULATION OF VORTEX VECTOR FIELDS

PIERRE BOCHARD AND RADU IGNAT

This article focuses on gradient vector fields of unit Euclidean norm in RN. The stream functions associated
to such vector fields solve the eikonal equation and the prototype is given by the distance function to a
closed set. We introduce a kinetic formulation that characterizes stream functions whose level sets are
either spheres or hyperplanes in dimension N ≥ 3. Our main result proves that the kinetic formulation is a
selection principle for the vortex vector field whose stream function is the distance function to a point.

1. Introduction

In this article, we analyze the following type of vortex vector field:

u? : RN
→ RN, u?(x)=

x
|x |

for every x ∈ RN
\{0}

in dimension N ≥ 2, where | · | is the Euclidean norm in RN. This structure arises in many physical
models such as micromagnetics, liquid crystals, superconductivity, elasticity. Clearly, u? is smooth away
from the origin: in fact, 0 is a topological singularity of degree 1 since the jacobian is det∇u? = VN δ0,
where δ0 is the Dirac measure at the origin and VN is the volume of the unit ball in RN. Also, u? is a
curl-free unit-length vector field; i.e.,

|u?| = 1 and ∇ × u? = 0 in RN
\{0}. (1)

Moreover, there is a stream function ψ? : RN
→ R associated to u? by the equation

u? =∇ψ?;

indeed, one may consider ψ? as the distance function at the origin, i.e., ψ?(x)= |x | for x ∈ RN , and ψ?

represents the viscosity solution of the eikonal equation

|∇ψ?| = 1

under an appropriate boundary condition at infinity (e.g., lim|x |→∞(ψ?(x)− |x |)= 0).
Note that conversely, these properties characterize the vortex vector field: if u : RN

→ RN is a
nonconstant vector field that is smooth away from the origin and satisfies (1) then u =±u? in RN. Indeed,
this classically follows by the method of characteristics: the flow associated to u by

∂t X (t, x)= u(X (t, x)) (2)
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with the initial condition X (0, x)= x for x 6=0 yields straight lines {X (t, x)}t given by X (t, x)= x+tu(x)
along which u is constant, i.e., u(X (t, x)) = u(x). Since u is nonconstant and two characteristics can
intersect only at the origin (which is the prescribed point-singularity of u), every characteristic passes
through the origin1 and therefore, u coincides with u? or −u?. Caffarelli and Crandall [2010] proved this
result under a weaker regularity hypothesis for the vector field u = ∇ψ : if ψ is assumed only pointwise
differentiable away from a set S of vanishing Hausdorff H1-measure (i.e., H1(S) = 0) and |∇ψ | = 1
in RN

\S, then ψ =±ψ? (up to a translation and an additive constant). We also refer to [DiPerna and
Lions 1989] for weaker regularity assumptions on u in the framework of Sobolev spaces.

Our aim is to prove a kinetic characterization of the vortex vector field that does not assume any
initial regularity on u. This kinetic formulation will characterize stream functions whose level sets are
totally umbilical hypersurfaces in dimension N ≥ 3, i.e., either pieces of spheres or hyperplanes. In
order to introduce the kinetic formulation of the vortex vector field, we start by presenting the case of
dimension N = 2 and then we extend it to dimensions N ≥ 3.

1.1. Kinetic formulation in dimension N = 2. Let � ⊂ R2 be an open set and u : � → R2 be a
Lebesgue-measurable vector field that satisfies

|u| = 1 a.e. in � and ∇ × u = 0 distributionally in �. (3)

The main feature of the kinetic formulation relies on the concept of weak characteristic for a nonsmooth
vector field u. We start by noting that (2) has a proper meaning only if some notion of trace of u can be
defined on curves {X (t, x)}t , which in general is a consequence of the regularity assumption on u (see
[DiPerna and Lions 1989]). To overcome this difficulty, the following notion of “weak characteristic”
is introduced for measurable vector fields u (see, e.g., [Lions, Perthame, and Tadmor 1994; Jabin and
Perthame 2001]): for every direction ξ ∈ S1, one defines the function χ( · , ξ) :�→ {0, 1} by

χ(x, ξ)=
{

1 for u(x) · ξ > 0,
0 for u(x) · ξ ≤ 0.

(4)

In the case of a smooth vector field u in a neighborhood of a point x0 ∈ �, then χ( · , ξ) mimics the
characteristic of u of normal direction ξ = (ξ1, ξ2) (see Figure 1); formally, if ξ⊥ = (−ξ2, ξ1)=±u(x0),
then either ∇χ( · , ξ) locally vanishes (if u is constant in a neighborhood of x0), or ∇χ( · , ξ) is a measure
concentrated on the characteristic {X (t, x0)}t given by (2) with constant measure density ±ξ . In other
words, we have the following “kinetic formulation” of the problem (see, e.g., [DeSimone, Müller, Kohn
and Otto 2001; Jabin and Perthame 2001]):

Proposition 1 (kinetic formulation in dimension N = 2). Let �⊂ R2 be an open set and u :�→ R2 be
a smooth vector field. If u satisfies (3) then

ξ⊥ · ∇xχ( · , ξ)= 0 distributionally in � for every ξ ∈ S1. (5)

1This argument is clear in dimension N = 2; for dimensions N ≥ 3, one needs an additional argument showing that two
characteristics are coplanar, as we will see later in the proof of Theorem 8.
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Figure 1. Characteristics of u.

We mention that the kinetic formulation (5) holds under the weaker Sobolev regularity W 1/p,p for
p ∈ [1, 3] (see [Ignat 2011; 2012a; 2012b; De Lellis and Ignat 2015]). Note that the knowledge of χ( · , ξ)
in every direction ξ ∈S1 determines completely a vector field u with |u| = 1 due to the averaging formula

u(x)= 1
2

∫
S1
ξχ(x, ξ) dH1(ξ) for a.e. x ∈�. (6)

Thanks to (6), we deduce that the kinetic formulation (5) incorporates the fact that ∇ × u = 0 (see
Proposition 5 below). Therefore, the curl-free condition will be no longer mentioned in the following
statements whenever (5) is assumed to hold true for unit-length vector fields u.

The main question is whether the kinetic formulation (5) characterizes the vortex vector field in R2.
First of all, (5) induces a regularizing effect for Lebesgue-measurable unit-length vector fields u. Indeed,
the classical “kinetic averaging lemma” (see, e.g., [Golse, Lions, Perthame, and Sentis 1988]) shows that
a measurable vector field u :�→S1 satisfying (5) belongs to H 1/2

loc (�) due to the averaging formula (6).2

Moreover, Jabin, Otto, and Perthame [2002] improved the regularizing effect by showing that u is locally
Lipschitz away from vortex point-singularities3 and u coincides with the vortex vector field around these
singularities:

Theorem 2 [Jabin, Otto, and Perthame 2002]. Let �⊂ R2 be an open set and u :�→ R2 be a Lebesgue-
measurable vector field satisfying |u| = 1 a.e. in � together with the kinetic formulation (5). Then u is
locally Lipschitz continuous inside � except at a locally finite number of singular points. Moreover, every
singular point P of u corresponds to a vortex singularity of topological degree 1 of u; i.e., there exists a
sign γ =±1 such that

u(x)= γ u?(x − P) for every x 6= P in any convex neighborhood of P in �.

In particular, if �= R2 and u is nonconstant, then u coincides with u? or −u? (up to a translation).

This result leads to the following interpretation of the kinetic formulation in dimension N = 2:
equation (5) is a selection principle for the viscosity solutions of the eikonal equation |∇ψ | = 1 in the
sense that the solutions ψ are smooth (more precisely, they belong to the Sobolev space W 2,∞

loc ) away from

2For the improved regularizing effect for scalar conservation laws, see [Otto 2009; Golse and Perthame 2013].
3This regularity is optimal; see, e.g., Proposition 1 in [Ignat 2012b].
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point-singularities. Clearly, these solutions are induced by the viscosity solutions of the eikonal equation
under some appropriate boundary condition. Conversely, in the spirit of [Caffarelli and Crandall 2010],
it was shown by Ignat [2012b] and De Lellis and Ignat [2015] that for any vector field u satisfying (3)
together with an initial Sobolev regularity W 1/p,p, p ∈ [1, 3] (i.e., excluding jump line-singularities), the
kinetic formulation (5) holds true and therefore, one obtains the regularizing effect in Theorem 2.

Remark 3. The result of Jabin, Otto, and Perthame [2002] was motivated by the study of zero-energy
states in a line-energy Ginzburg–Landau model in dimension 2. More precisely, one considers the energy
functional Eε : H 1(�,R2)→ R+ defined for ε > 0 as

Eε(uε)= ε
∫
�

|∇uε|2 dx + 1
ε

∫
�

(1− |uε|2)2 dx + 1
ε
‖∇ × uε‖2H−1(�)

, uε ∈ H 1(�,R2), (7)

where � is a domain in R2 and H−1(�) is the dual of the Sobolev space H 1
0 (�). (We refer to [Ambrosio,

De Lellis, and Mantegazza 1999; Aviles and Giga 1999; DeSimone, Müller, Kohn and Otto 2001; Jabin,
Otto, and Perthame 2002; Jabin and Perthame 2001; Jin and Kohn 2000; Rivière and Serfaty 2001] for
the analysis of this model.) A vector field u :�→ R2 is called zero-energy state if there exists a family
{uε ∈ H 1(�,R2)}ε→0 satisfying

uε→ u in L1(�) and Eε(uε)→ 0 as ε→ 0.

Obviously, a zero-energy state u satisfies (3). The result of Jabin, Otto, and Perthame [2002] shows that
every zero-energy state u satisfies (5) and therefore, u shares the structure stated in Theorem 2.

1.2. Kinetic formulation in dimension N≥3. Our main interest consists in defining a kinetic formulation
for the vortex vector field in dimension N ≥ 3. Let�⊂RN be an open set and u :�→RN be a Lebesgue-
measurable vector field. For every direction ξ ∈ SN−1, we consider the characteristic function χ( · , ξ)
defined at (4) and we denote the orthogonal hyperplane to ξ by

ξ⊥ := {v ∈ RN
: v · ξ = 0}.

Definition 4 (kinetic formulation). We say that a measurable vector field u satisfies the kinetic formulation
if the following equation holds true:

v · ∇xχ( · , ξ)= 0 distributionally in � for every ξ ∈ SN−1 and v ∈ ξ⊥. (8)

Roughly speaking, (8) means that ∇xχ( · , ξ) is a distribution pointing in direction ±ξ . Note that the
kinetic formulation (8) only carries out the information of the direction of the vector field u (i.e., it gives
no information about the Euclidean norm of u). Imposing the unit-length constraint, u will satisfy a
similar averaging formula (6) which justifies that the curl-free constraint ∇ × u = 0 is incorporated in the
kinetic formulation (8).

Proposition 5. Let N ≥ 2, �⊂RN be an open set and u :�→ RN be Lebesgue measurable with |u| = 1
a.e. in �. Then

u(x)= 1
VN−1

∫
SN−1

ξχ(x, ξ) dHN−1(ξ) for a.e. x ∈�, (9)
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where VN−1 is the volume of the unit ball in RN−1. Moreover, if u satisfies the kinetic formulation (8)
then ∇ × u = 0 distributionally in �.

Remark 6. We highlight that Proposition 1 is false in dimension N ≥ 3; i.e., there are smooth curl-free
vector fields with values into the unit sphere SN−1 that do not satisfy the kinetic formulation (8). For
example, in dimension N = 3, considering the vortex-line vector field

u0(x)=
(x1, x2, 0)√

x2
1 + x2

2

in �= {x=(x1, x2, x3) ∈ R3
: x2 > 1},

then u0 is smooth in � and satisfies (3). However, (8) fails. Indeed, let ξ = 1
√

2
(1, 0, 1). Then u0(x) ·ξ = 0

for x ∈� is equivalent to x1 = 0 and therefore,

∇xχ( · , ξ)= e1H2 x {x ∈� : x1= 0},

where e1 = (1, 0, 0). Now, taking v= 1
√

2
(−1, 0, 1), we have v ·ξ = 0 (i.e., v ∈ ξ⊥) and v ·∇xχ( · , ξ) 6= 0

in D ′(�).

As Remark 6 has already revealed, the kinetic equation (8) in dimension N ≥ 3 plays a different role
than in dimension N = 2 because the gradient ∇χ( · , ξ) is expected to concentrate on hypersurfaces (not
on the line characteristics of u). In fact, the geometric interpretation of (8) can be regarded in terms of the
stream function ψ of a nonconstant vector field u = ∇ψ : the level sets of ψ are expected to be pieces of
spheres of codimension 1 where the characteristics of u represent the normal directions to these spheres.

Theorem 7. Let N ≥ 3, �⊂RN be an open set and ψ :�→ R be a smooth stream function such that
u =∇ψ satisfies the kinetic formulation (8). Assume |u| never vanishes on a level set {x ∈� : ψ(x)= α}
for some α ∈ R and let S be a connected component of {ψ = α}. Then S is locally a totally umbilical
hypersurface, that is, either a piece of an (N−1)-sphere or a piece of a hyperplane.

Note that Theorem 7 fails in dimension N = 2: a level set of a smooth stream function ψ of u =∇ψ
satisfying (3) (and therefore, u satisfies the kinetic formulation (5) by Proposition 1) does not have, in
general, constant curvature.4

2. Main results

Our main result shows that the kinetic formulation (8) is a characterization of the vortex vector field u? in
dimension N ≥ 3.

Theorem 8. Let N ≥ 3, �⊂RN be a connected open set and u :�→ RN be a nonconstant Lebesgue-
measurable vector field satisfying |u| = 1 a.e. in� together with the kinetic equation (8). Then u coincides
with the vortex vector field u? or −u? up to a translation.

Note that in dimension N = 2, this result is true for the domain � = R2, but it is in general false
for other domains � where there exist nonconstant smooth vector fields u in � different than vortex

4If 0 ⊂ R2 is a smooth curve of nonconstant curvature, then one takes ψ to be the distance function to 0 in a small
neighborhood� of 0 (with the convention that 0 is withdrawn from that neighborhood, i.e., 0∩�=∅, so that ψ is smooth in�).
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vector fields that satisfy (3) and thus, (5) (by Proposition 1). The main difference in dimension N ≥ 3
is the following: if u is a smooth vector field with (3) that is neither constant nor a vortex vector field,
then the kinetic formulation (8) doesn’t hold for u (see Remark 6). Hence, in dimension N ≥ 3, the
zero-energy states of Eε defined in (7) do not satisfy in general the kinetic equation (8). Therefore, the
kinetic formulation (8) is more rigid in dimension N ≥ 3 since it selects only the vortex vector fields, as
they correspond to smooth solutions of the eikonal equation with level sets of constant sectional curvature
(by Theorem 7).

Let us explain the strategy of the proof of Theorem 8. The key point relies on a relation of order of the
level sets of the stream function associated to u: for every two Lebesgue points x, y ∈� of u such that
the segment [x, y] lies in � and for every direction ξ ∈ SN−1 orthogonal to x − y, one has

u(x) · ξ > 0 =⇒ u(y) · ξ ≥ 0.

The next step consists in defining the trace of u on each segment 6 ⊂�; more precisely, similar to the
procedure of [Jabin, Otto, and Perthame 2002], there exists a trace ũ ∈ L∞(6,SN−1) of u such that
u(P) = ũ(P) for each Lebesgue point P ∈ 6 of u. Moreover, if the trace ũ of u is collinear with the
segment 6 at some Lebesgue point, then ũ is H1-almost everywhere collinear with 6 (which coincides
with the classical principle of characteristics for smooth vector fields u). The final step consists in proving
that every two characteristics are coplanar. Then one concludes by the following geometrical fact specific
to dimension N ≥ 3:

Proposition 9. Let N ≥ 3 and D be a set of lines in RN such that every two lines of D are coplanar,
but D is not planar (i.e., there is no 2-dimensional plane containing D). Then either all lines of D are
collinear, or all lines of D pass through a same point (that is a vortex point).

In view of Theorem 8, it is natural to ask if one can characterize other types of unit-length curl-free
vector fields u by weakening the kinetic formulation (8), in particular, vector fields having a vortex-line
singularity. In dimension N ≥ 3, the prototype of a vortex-line vector field is given by

u0(x ′, xN )=∇|x ′|,

where x=(x ′, xN ) and x ′=(x1, . . . , xN−1); clearly, u0 is smooth away from the vortex-line {x∈RN
: x ′=0}

where (3) holds true. Defining

E := {ξ ∈ SN−1
: ξN= 0} = SN−2

×{0},

using the notation (4), we have that u0 satisfies the following kinetic formulation in �= RN :

∀ξ ∈ E, ∀v ∈ ξ⊥, v · ∇xχ( · , ξ)= 0 in D ′(�). (10)

Note that (10) is a weakened form of (8): the quantity v · ∇xχ( · , ξ) vanishes for directions ξ ∈ E (and
v ∈ ξ⊥) and fails to vanish for HN−1-a.e. direction ξ ∈ SN−1. As opposed to (8) (in view of (9)), the
kinetic formulation (10) does not force a unit-length vector field u to be curl-free; it only implies that

∇
′
×

u′

|u′|
= 0 in {|u′| 6=0} = {u 6= ± eN },



KINETIC FORMULATION OF VORTEX VECTOR FIELDS 735

where eN = (0, . . . , 0, 1), u′ = (u1, . . . , uN−1) and ∇ ′ = (∂1, . . . , ∂N−1). Since we are looking for a
characterization of vortex-line vector fields (that are in particular curl-free), we will impose that

∂kuN = ∂N uk in � for k = 1, . . . , N − 1. (11)

We will prove the following result:

Theorem 10. Let N ≥ 4, �⊂RN be an open set and u :�→ RN be a Lebesgue-measurable vector field
satisfying |u|=1 a.e. on� together with (10) and (11). Then in every ball included in {x ∈� :u(x) 6=±eN },
there exists a stream function ψ = ψ(α, β) solving the eikonal equation in dimension 2 such that

u(x)=∇x [ψ(α, β)],

where

(1) either α = |x ′− P ′| and β = xN for some point P ′ ∈ RN−1;

(2) or α = w′ · x ′ and β = xN for some vector w′ ∈ SN−2.

Therefore, the weakened kinetic formulation (10), together with (11), is not enough to select vortex-
line vector fields which correspond to the stream function ψ(α, β) = ±α in case (1) of Theorem 10.
Similar results to Theorem 10 hold for similar kinetic formulations corresponding to vector fields having
vortex-sheet singularities of dimension k in RN with N ≥ k+ 3.

The outline of this paper is as follows: in Section 3, we characterize the level sets of smooth stream
functions associated to vector fields that satisfy the kinetic formulation (8). In particular, we prove
Proposition 1 and Theorem 7. Section 4 is devoted to proving fine properties of Lebesgue points of u needed
in Section 5, where the notion of the trace on lines for a vector field u satisfying (8) is defined. Section 6
is the core of this paper: using this notion of trace and the geometric arguments of Proposition 9, we prove
our main result in Theorem 8. Section 7 deals with the study of the weakened kinetic formulation (10).

3. Level sets of the stream function

This section is devoted to the study of the level sets of smooth stream functions ψ associated to vector
fields u =∇ψ satisfying (8). We start by proving that |∇ψ | is locally constant on each level set of ψ .

Lemma 11. Let N ≥ 2, �⊂RN be an open set and ψ :�→ R be a smooth stream function such that
u =∇ψ satisfies the kinetic formulation (8). Assume |u| never vanishes on a level set {x ∈� : ψ(x)= α}
for some α∈R and let S be a connected component of {ψ=α}. Then |u| is constant on S. Moreover, there
exists a neighborhood ω of S, a smooth solution ψ̃ : ω→R of the eikonal equation and a diffeomorphism
t 7→ F(t) such that ψ = F(ψ̃) in ω (in particular, ∇ψ̃ satisfies (8)).

Proof. Since |u| 6= 0 on S and u is smooth in �, we can define

v =
u
|u|

in a neighborhood of S.

For simplicity of notation, we suppose that � is this neighborhood, i.e., |u| 6= 0 in �. Then v satisfies
(8) because u satisfies it, too; since v is smooth in �, Proposition 5 implies ∇ × v = 0 in �. (The proof
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of Proposition 5 is independent of Lemma 11; we will admit it here and prove it later in Section 4.) As
a consequence, in any simply connected domain ω ⊂�, the Poincaré lemma yields the existence of a
smooth function ψ̃ such that v = u/|u| = ∇ψ̃ in ω, i.e.,

∇ψ = u = |u|v = |u|∇ψ̃ in ω.

Therefore, ψ and ψ̃ have the same level sets in ω. Without loss of generality, we may assume that ψ̃ = 0
on ω∩S. Now, for every P ′ ∈ ω∩S, we consider the flow associated to v,{

Ẋ(P ′, t)=∇ψ̃(X (P ′, t)),
X (P ′, 0)= P ′.

(12)

Call IP ′ the maximal interval where the solution X (P ′, · ) exists. Obviously, the flow is unique and
smooth, satisfying

Ẍ(P ′, t)=∇2ψ̃(X) · Ẋ =∇2ψ̃(X) · ∇ψ̃(X)= 0 in IP ′

because ∇2ψ̃ is a symmetric matrix and |∇ψ̃ | = 1 in ω. Consequently, Ẋ(P ′, · ) is constant in IP ′ so that

∇ψ̃(X (P ′, t))=∇ψ̃(P ′), d
dt
[ψ̃(X (P ′, t))] = 1, X (P ′, t)= P ′+ t∇ψ̃(P ′).

Therefore, since ψ̃ = 0 on ω∩S, we have

ψ̃(X (P ′, t))= t for all P ′∈ ω∩S and t ∈ IP ′ .

Identifying the level sets of ψ̃ (and of ψ , too) using the flow, i.e., {ψ̃=t} = {X (P ′, t) : P ′∈ ω∩S}, we
can define

F(t) := ψ(X (P ′, t)) for P ′∈ ω∩S, t ∈ IP ′ .

The function F is a diffeomorphism: F is smooth (because ψ and X are smooth) and we have

d
dt

F(t)=∇ψ(X (P ′, t)) · Ẋ(P ′, t)
(12)
= ∇ψ(X (P ′, t)) ·

∇ψ

|∇ψ |
(X (P ′, t))= |u|(X (P ′, t)) 6= 0.

In particular, |u| is constant on {ψ̃= 0} = {ψ=F(0)} =ω∩S. Since ω was arbitrarily chosen, we deduce
that |u| is locally constant on S; because S is connected, it follows that |u| is constant on S. Since the
flow {X (P ′, t) : P ′∈ S, t ∈ IP ′} covers a neighborhood of S, the last statement of the lemma follows. �

3.1. The case of dimension N = 2. In the special case of dimension N = 2, we start by proving that
every smooth curl-free vector field of unit length satisfies the kinetic formulation (5). This result can be
found already in [DeSimone, Müller, Kohn and Otto 2001; Jabin and Perthame 2001]. For completeness,
we will present two easy and self-contained proofs. The first one is based on the geometry of the flow (2)
(as heuristically described in Section 1), while the second proof is based on the concept of entropy
introduced in [DeSimone, Müller, Kohn and Otto 2001].

Proof of Proposition 1: first method. We can assume that ξ = e1 and ξ⊥ = e2 (otherwise, one considers
a rotation R ∈ SO(2) such that e1 = Rξ and ũ(x) := Ru(R−1x) in a neighborhood of a point x ∈ �).
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Naturally, � can be written as a countable union of squares whose edges are parallel with e1 and e2.
Therefore, using a partition of unity, it is enough to prove the statement for �= (−1, 1)2:

∀ϕ ∈ C∞c (�), 0=
∫
�

ϕ ξ⊥ · ∇xχ(x, ξ) dx
ξ=e1
=

∫
�

ϕ ∂2χ(x, e1) dx =−
∫
�∩{u1>0}

∂2ϕ dx .

For that, we consider the flow (2) and by the proof of Lemma 11, we have, for every x ∈�, that {X (t, x)}t
is a straight line given by X (t, x)= x + tu(x) and u(X (t, x))= u(x) for all t . Since u is smooth, there
is no crossing between two characteristics in �. We claim that

�∩ {u1 > 0} =
⊔
k∈K

Ak,

where {Ak}k∈K is a (at most) countable set of pairwise disjoint rectangles of type (ak, bk)× (−1, 1)⊂
�= (−1, 1)2. Note first that �∩ {u1 = 0} is the intersection of � by vertical lines. Indeed, if u1(x)= 0,
then u(x)‖ e2. By the characteristic method, for all t , we have u1(x + tu(x)) = 0 and u1 vanishes on
the vertical line passing through x . Now {x1 ∈ (−1, 1) : u1(x1, 0) = 0}c is an open set in (−1, 1) and
therefore, we can write {

x1∈(−1, 1) : u1(x1, 0)= 0
}c
=

⊔
k∈K̃

(ak, bk),

where K̃ is at most countable. For k ∈ K̃ , we define Ak := (ak, bk)× (−1, 1). By continuity, u1 is
either positive or negative on Ak . Defining K := {k ∈ K̃ : u1 > 0 on Ak}, the claim is proved. Now, for
ϕ ∈ C∞c (�), ∫

�∩{u1>0}
∂2ϕ =

∑
k

∫
Ak

∂2ϕ =
∑

k

∫ bk

ak

∫ 1

−1
∂2ϕ = 0,

because ∂2ϕ can be seen as a signed Radon measure for ϕ ∈ C∞c (�) and the proposition is proved. �

Proof of Proposition 1: second method. The following proof links the kinetic formulation (5) with the
theory of entropy solutions for scalar conservation laws (see, e.g., [DeSimone, Müller, Kohn and Otto
2001]). Indeed, if u is a smooth vector field satisfying (3), then formally, u1 =−h(u2) := ±

√
1− u2

2 so
that ∇ × u = 0 can be rewritten as

∂1u2+ ∂2[h(u2)] = 0; (13)

thus, u2 can be formally interpreted as a solution of the above scalar conservation law in the variables
(time, space)= (x1, x2). Based on the concept of entropy solution of (13) introduced via the pairs (entropy,
entropy-flux), the following applications (called “elementary entropies”) were used in [DeSimone, Müller,
Kohn and Otto 2001]. More precisely, for every ξ ∈ S1, the map 8ξ : S1

→ R2 is defined as

for z ∈ S1, 8ξ (z)=
{
ξ⊥ for z · ξ > 0,
0 for z · ξ ≤ 0.

Then the kinetic formulation (5) can be written as

∇ ·
[
8ξ (u)

]
= 0 distributionally in�. (14)
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In order to prove (14), we will approximate 8ξ by a sequence of smooth maps {8k : S
1
→ R2

} such
that {8k} is uniformly bounded, limk 8k(z)=8ξ (z) for every z ∈ S1 and 8k satisfies (14) for every k.
Following the ideas in [DeSimone, Müller, Kohn and Otto 2001] (see also [Ignat and Merlet 2012]), this
smoothing result comes from the following observation: there exists a (unique) 2π-periodic piecewise
C1 function ϕ : R→ R associated to 8ξ via the equation

8ξ (z)=−ϕ′(θ)z+ϕ(θ)z⊥ for every z = eiθ
∈ S1. (15)

In fact, ϕ is given by

ϕ(θ)=8ξ (z) · z⊥ = ξ · z1{z·ξ>0} = cos(θ − θ0)1{θ−θ0∈(−π/2,π/2)} for z = eiθ, θ ∈ (−π + θ0, π + θ0),

where ξ = eiθ0 ∈ S1 with θ0 ∈ (−π, π]. In (15), the distributional derivative ϕ′ is given by

ϕ′(θ)=− sin(θ − θ0)1{θ−θ0∈(−π/2,π/2)} for θ ∈ (−π + θ0, π + θ0).

Now, one regularizes ϕ by 2π-periodic functions ϕk ∈ C∞(R) that are uniformly bounded in W 1,∞(R)

with limk ϕk(θ) = ϕ(θ) and limk ϕ
′

k(θ) = ϕ
′(θ) for every θ ∈ R. Then we define 8k as in (15) for the

functions ϕk :

8k(z)=−ϕ′k(θ)z+ϕk(θ)z⊥ for z = eiθ
∈ S1.

Let us now check that {8k}k are indeed the desired (smooth) approximating maps of 8ξ. For that, first,
note that differentiating the above equation defining 8k , one obtains

∂8k

∂θ
(z) · z⊥ = 0 for every z = eiθ

∈ S1. (16)

Next, we prove that 8k satisfies (14). Indeed, we can locally write u = ei2 in every ball B ⊂� for some
smooth lifting 2 : B→ R that satisfies

∇2 · u =∇ × u = 0 in B.

This means that ∇2= λu⊥ in B for some smooth function λ : B→ R. Therefore, it follows that

∇ · [8k(u)] =
∂8k

∂θ
(ei2) · ∇2= λ

∂8k

∂θ
(u) · u⊥

(16)
= 0 in B.

Passing to limit k→∞, the dominated convergence theorem yields∫
B
8ξ (u) · ∇ζ dx = 0 for every ζ ∈ C∞c (B).

The conclusion is now straightforward. �

Note that another interest of this second method is that it can be adapted to vector fields u ∈W 1/p,p

for p ∈ [1, 3]. For such vector fields, there is a priori no trace of u on a segment, so the flow (2) does not
have a proper meaning anymore; see [Ignat 2012b; De Lellis and Ignat 2015] for more details.
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3.2. The case of dimension N ≥ 3. The aim of this subsection is to prove Theorem 7. We divide the
proof in several steps, each being stated as a lemma.

Lemma 12. Let�⊂RN be an open set and u :�→RN be a smooth vector field satisfying (8). We define

�̃ :=

{
x ∈� : u(x) 6= 0, ∇

(
u
|u|

)
(x) 6= 0

}
and for every x ∈ �̃,

Sx := u(x)⊥ ∩SN−1
=
{
ξ ∈ SN−1

: u(x) · ξ = 0
}
≈ SN−2.

Then we have for all x ∈ �̃ and for HN−2-a.e. ξ ∈ Sx that the set

{y ∈ �̃ : u(y) · ξ = 0} = �̃∩ ∂{u · ξ > 0}

is a hyperplane around x that is oriented by the normal vector ξ . Moreover,

∇xχ( · , ξ)=±ξHN−1 x ∂{u · ξ > 0} locally around x . (17)

Proof. As in the proof of Lemma 11, we set v = u/|u| on �̃. Then v is a smooth unit-length vector field
in �̃ that satisfies (8) (because u satisfies it, too) and by Proposition 5, we have that v is curl-free in �̃. Let
x ∈ �̃; in particular, ∇v(x) 6= 0. First, we show that {y ∈ �̃ : u(y) · ξ = 0} is a smooth (N−1)-manifold
around x . Since v is curl-free, we know that ∇v(x)= (∂jvi (x))i, j is symmetric. By differentiating the
relation |v(x)| = 1, it follows that

∇v(x)T v(x)=∇v(x)v(x)= 0,

which means v(x) ∈ Ker∇v(x). We will prove that

HN−2(Sx ∩Ker∇v(x))= 0.

Assume by contradiction that Sx ∩Ker∇v(x) has positive HN−2-measure. Since Ker∇v(x) is a linear
space, we have Sx ⊂ Ker∇v(x), that is, ∇v(x)ξ = 0 for all ξ ∈ Sx . Moreover, since v(x) ∈ Ker∇v(x)
and Sx ⊂ v(x)⊥, it follows that ∇v(x) = 0, which is a contradiction with the assumption ∇v(x) 6= 0.
Therefore, ∇v(x)ξ 6= 0 for HN−2-a.e. ξ ∈ Sx and {y ∈ �̃ : v(y) · ξ = 0} = {y ∈ �̃ : u(y) · ξ = 0} is a
smooth (N−1)-manifold around x .

It remains to prove that this manifold is a piece of hyperplane oriented by ξ where (17) holds true. For
that, let ϕ ∈ C∞c (�̃,RN ) be supported in a ball B ⊂ �̃ centered at x . By the Gauss theorem, we have

−
〈
∇xχ( · , ξ), ϕ

〉
=

∫
B
∇ ·ϕ(y)χ(y, ξ) dy =

∫
{y∈B:u(y)·ξ>0}

∇ ·ϕ dy =
∫

B∩∂{u·ξ>0}
ϕ · ν dHN−1(y),

where ν is the unit outer normal vector to the (N−1)-manifold ∂{u(y) · ξ > 0}. This proves that locally
around x , we have

∇xχ(x, ξ)=−νHN−1 x
(
B ∩ ∂{u · ξ > 0}

)
.

Because of (8), we know that ∇xχ(x, ξ) and ξ are collinear. Since ν is smooth on B ∩ ∂{u · ξ > 0}, this
implies ν = ξ or ν =−ξ on B ∩ ∂{u · ξ > 0}. The conclusion is now straightforward. �
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We now state the following result, which is the key point in proving Theorem 7.

Lemma 13. Under the hypotheses of Theorem 7, every point x ∈ S is an umbilical point; i.e., there exists
λ(x) ∈ R such that

Du(x)= λ(x)Id : TxS→ RN−1,

where u is proportional to the Gauss map on S, TxS is the tangent plane to the hypersurface S at x and
Id is the identity matrix.

Proof. Recall that |u| is constant on S by Lemma 11 so that u/|u| is the normal vector (i.e., the Gauss
map) at the hypersurface S. Therefore,

D
(

u
|u|

∣∣∣∣
S

)
=

1
|u|

D(u|S) in S,

where D(u|S) is the differential of u restricted to S as a map with values into the sphere SN−1 (up to
the multiplicative constant |u|). As in the proofs of Lemmas 11 and 12, we may assume that u never
vanishes in � and set v = u/|u| in �. Then v is a smooth unit-length vector field in � that satisfies (8)
and by Proposition 5, v is curl-free so that locally v = ∇ψ̃ for a smooth stream function ψ̃ . Since
∇ψ = u = |u|∇ψ̃ , we know that ψ and ψ̃ have the same level sets; in particular, S is a level set of ψ̃ .
Therefore, replacing u by v, we may assume in the following that

|u| = 1 in �.

Let x ∈ S. We want to show that x is an umbilical point of S. This is clear if ∇u(x)= 0. Therefore, we
assume in the following that x ∈ �̃∩S, as defined in Lemma 12; i.e.,

∇u(x) 6= 0.

Since (9) holds for the unit-length vector field u, by differentiating (9), we obtain

∇u(x)= 1
VN−1

∫
SN−1

ξ ⊗∇xχ(x, ξ),

where VN−1 is the volume of the unit ball in RN−1. The above integrand is to be understood as an
absolutely continuous measure with respect to the Hausdorff HN−2 measure concentrated on the set Sx

(defined at Lemma 12). For that, we check first that the support of the integrand lies on Sx . Indeed, if
ξ ∈ SN−1 with u(x) · ξ 6= 0, then ∇xχ( · , ξ) = 0 in the open set {u · ξ 6= 0} around x . Therefore, the
integrand has support on the set ξ ∈Sx , where (17) holds true for HN−2-a.e. ξ ∈Sx and the density of the
measure is equal to ±ξ ⊗ ξHN−2 xSx . Since Sx ⊂ u(x)⊥ = TxS, the density ξ ⊗ ξ with ξ ∈ Sx already
identifies ∇u(x)≡ Du(x). Next we compute this quantity by exploring the sign of the density ±ξ ⊗ ξ :

Case N = 3. We show that there are at most two nonzero vectors ±ξ0 ∈ Sx ≈ S1 such that ∇u(x)ξ0 = 0.
Assume by contradiction that there are more than two vectors as above; i.e., there exists another nonzero
vector ξ̃0 6=±ξ0 in Sx such that∇u(x)ξ0=∇u(x)ξ̃0=0. Because of |u|=1, we know that∇u(x)u(x)=0.
Since the set {u(x), ξ0, ξ̃0} spans R3, we have ∇u(x) = 0, which contradicts the hypothesis x ∈ �̃.
Therefore, ∇u(x)ξ 6= 0 for every ξ ∈Sx\{±ξ0} (or for every ξ ∈Sx if ξ0 does not exist) and by Lemma 12,
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∂{u(y)·ξ > 0} is a smooth surface around x oriented by ξ . Let C1 and C2 be the two connected components
of Sx\ {±ξ0} (with the convention that C1 = C2 = Sx in the case ∇u(x)ξ 6= 0 for every ξ ∈ Sx ). For
j = 1, 2, we associate to a point ξ ∈ Cj the unit outer normal vector field ν(ξ) ∈ {±ξ} to the plane
∂{u · ξ > 0} around x . Since the map ξ ∈ Cj → ν(ξ) is smooth (by the implicit function theorem) and Cj

is connected, we deduce that ν is constant on Cj . Thus it follows that

π∇u(x)= γ1

∫
C1

ξ ⊗ ξ dξ + γ2

∫
C2

ξ ⊗ ξ dξ,

with V2 = π and γ1,2 ∈ {±1} (with the convention that γ1 = γ2 =±1/2 if C1 = C2 = Sx ). It remains to
show that

∫
Cj
ξ ⊗ ξ dξ is proportional to the identity matrix Id, j = 1, 2. Up to a rotation, we can suppose

that u(x)= e3 and C1 = {ξ ∈ S1
×{0} : ξ2 > 0} ≈ {(cos θ, sin θ) : θ ∈ (0, π)}. We have∫

C1

ξ ⊗ ξ dξ ≈
∫ π

0

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)
dθ = π

2
Id

(the conclusion follows similarly if C1 = C2 = Sx ).

Case N > 3. Let C = Ker∇u(x)∩Sx . We know that u(x) ∈ Ker∇u(x) and u(x) is orthogonal to Sx ,
which is isomorphic to SN−2. Since ∇u(x) 6= 0 (i.e., the dimension of Ker∇u(x) is at most N − 1), we
have two situations (as in the case N = 3):

• Situation 1: dim Ker∇u(x)= N − 1, which leads to C isomorphic to SN−3. In this situation, Sx\C is
the partition of two connected sets C1 and C2 that are isomorphic to the half-sphere

SN−2
+
= {ξ=(ξ1, . . . , ξN−1) ∈ SN−2

: ξ1 > 0}.

The same argument as in the case N = 3 shows that the sign of the unit outer normal field ν(ξ) ∈ {±ξ} to
the hyperplane ∂{u · ξ > 0} is constant when ξ covers Cj , j = 1, 2, so that

VN−1∇u(x)= γ1

∫
C1

ξ ⊗ ξ dξ + γ2

∫
C2

ξ ⊗ ξ dξ,

with γ1, γ2 ∈ {±1}.

• Situation 2: dim Ker∇u(x) ≤ N − 2, which leads to the manifold C of dimension ≤ N − 4. In other
words, Sx\C is connected and covers a.e. point of Sx . The above formula holds for C1 = C2 = Sx and
γ1 = γ2 =±1/2.

We now compute ∇u(x). For that, we may assume (up to a rotation) that u(x)= eN and C1 = SN−2
+ .

Since SN−2
+ is invariant under the change of coordinate ξd 7→ −ξd for some 2≤ d ≤ N − 1, we have for

every 1≤ j ≤ N − 1 with j 6= d ,∫
SN−2
+

ξjξd dξ =−
∫

SN−2
+

ξjξd dξ = 0,

leading to ∫
SN−2
+

ξ ⊗ ξ dξ =
∫

SN−2
+

ξ 2
1 0
. . .

0 ξ 2
N−1

 dξ =
HN−2(SN−2)

2(N − 1)
Id. �
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Proof of Theorem 7. By Lemma 13, every point in S is an umbilical point. Such a hypersurface is called
totally umbilical. A classical result in differential geometry states that a totally umbilical hypersurface
is either a piece of an (N−1)-sphere or a piece of a hyperplane (see, e.g., [Hicks 1965, Chapter 2,
page 36]). �

We have the following consequence of Lemma 11 and Theorem 8 (whose proof is independent of this
section):

Corollary 14. Under the hypotheses of Theorem 7, there exists a neighborhood ω of S and a diffeomor-
phism t→ F(t) such that either ψ = F(|x − P|) for every x ∈ ω for a point P ∈ RN, or ψ = F(x · ξ) for
every x ∈ ω for a vector ξ ∈ SN−1.

4. Several properties on the set of Lebesgue points

Let � ⊂ RN be an open set and u ∈ L1
loc(�,RN ). Recall that x0 ∈ � is a Lebesgue point of u if there

exists a vector u0 ∈ RN such that

lim
r→0
−

∫
Br (x0)

|u(x)− u0| dx = 0. (18)

In this case, we write u(x0)= u0, which is the limit of the average −
∫

of u on the ball Br (x0) as r→ 0.
We denote by Leb⊂� the set of Lebesgue points of u. It is well known that HN (� \Leb)= 0 and one
can replace the ball Br (x0) by the cube x0+ (−r, r)N in the definition (18) to recover the same set of
Lebesgue points.

Proof of Proposition 5. We start by proving (9) for a fixed vector u(x) ∈ SN−1. By rotating the axes if
necessary, we may assume that u(x)= eN . Then we compute∫

SN−1
ξχ(x, ξ) dHN−1(ξ)=

∫
SN−1∩{ξN>0}

ξ dHN−1(ξ)=

(∫
SN−1∩{ξN>0}

ξN dHN−1(ξ)

)
eN

because the integrand is odd in the variables ξj for j = 1, . . . , N − 1. Defining ξ ′ := (ξ1, . . . , ξN−1), the
half-sphere SN−1

∩ {ξN > 0} is the graph of the map

ξ ′ ∈ B N−1
7→ ξN =

√
1− |ξ ′|2

so that we have∫
SN−1∩{ξN>0}

ξN dHN−1(ξ)=

∫
B N−1

√
1− |ξ ′|2

dξ ′√
1− |ξ ′|2

=HN−1(B N−1)= VN−1.

The second statement naturally reduces (by a slicing argument) to the case of dimension N = 2. In that
case, for any ϕ ∈ C∞c (�), we have ∇ × u = ∂1u2− ∂2u1 and∫

�

ϕ∇ × u dx = −
∫
�

∇
⊥ϕ · u dx

(6)
=

1
2

∫
�

∫
S1
∇ϕ · ξ⊥χ(x, ξ) dH1(ξ) dx = 1

2

∫
S1

dH1(ξ)

∫
�

∇ϕ · ξ⊥χ(x, ξ) dx
(5)
= 0. �
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The following lemma yields the relation between the Lebesgue points of u and Lebesgue points of the
functions {χ( · , ξ)}ξ∈SN−1 defined in (4).

Lemma 15. Let �⊂ RN be an open set and u ∈ L1
loc(�,RN ).

(i) If |u| = 1 a.e. in � and x0 is a Lebesgue point of χ( · , ξ) for almost every ξ ∈ SN−1, then x0 is a
Lebesgue point of u and (9) holds at x0.

(ii) Let x0 be a Lebesgue point of u and ξ ∈SN−1. If u(x0)·ξ 6= 0, then x0 is a Lebesgue point of χ( · , ξ).
Conversely, if x0 is a Lebesgue point of χ( · , ξ) with χ(x0, ξ) = 1 (resp. = 0), then u(x0) · ξ ≥ 0
(resp. ≤ 0).

Proof. To prove (i), we apply Proposition 5. Indeed, if x0 is a Lebesgue point of χ( · , ξ) for a.e. ξ ∈SN−1,
then Fubini’s theorem implies

−

∫
Br (x0)

∣∣∣∣u(x)− 1
VN−1

∫
SN−1

ξχ(x0, ξ) dHN−1(ξ)

∣∣∣∣ dx

(9)
≤

1
VN−1

−

∫
Br (x0)

∫
SN−1

∣∣ξ(χ(x, ξ)−χ(x0, ξ)
)∣∣ dHN−1(ξ) dx

≤
1

VN−1

∫
SN−1

(
−

∫
Br (x0)

|χ(x, ξ)−χ(x0, ξ)| dx
)

dHN−1(ξ) r→0
−−→ 0,

where we used the dominated convergence theorem.
Next we prove (ii). We treat the case u(x0) · ξ > 0. For that, we have∫

Br (x0)

∣∣χ(x,ξ)−1
∣∣dx =

1
u(x0)·ξ

∫
Br (x0)∩{u·ξ≤0}

u(x0)·ξ dx

≤
1

u(x0)·ξ

∫
Br (x0)∩{u·ξ≤0}

(u(x0)·ξ−u(x)·ξ)︸ ︷︷ ︸
≥u(x0)·ξ>0

dx ≤
1

u(x0)·ξ

∫
Br (x0)

|u(x)−u(x0)|dx .

Since x0 is a Lebesgue point of u, it follows that x0 is a Lebesgue point for χ( · , ξ) with χ(x0, ξ)= 1.
The case u(x0) · ξ < 0 can be shown similarly and we obtain χ(x0, ξ)= 0. The last statement is a direct
consequence of the above lines (using a contradiction argument). �

Remark 16. (a) Note that the condition u(x0)·ξ 6= 0 is essential in Lemma 15(ii). Indeed, if one considers
the vortex vector field u(x)= x/|x | for x ∈ RN

\{0}, then for every ξ ∈ SN−1, any point x0 ∈ ξ
⊥
\{0} is a

Lebesgue point of u (because u is smooth around x0) and satisfies

u(x0) · ξ = 0,

but x0 is not a Lebesgue point of χ( · , ξ) because

−

∫
Br (x0)

∣∣∣∣χ(x, ξ)− −∫
Br (x0)

χ( · , ξ)

∣∣∣∣ dx = −
∫

Br (x0)

1
2 dx 9 0 as r→ 0,

where we used that

−

∫
Br (x0)

χ(x, ξ) dx =
HN

(
{x ∈ Br (x0) : x · ξ > 0}

)
HN (Br (x0))

x=y+x0
=

HN
(
{y ∈ Br (0) : y · ξ > 0}

)
HN (Br (0))

=
1
2
.
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(b) Note that in Lemma 15(ii), one cannot conclude in general that u(x0) ·ξ > 0 provided that χ(x0, ξ)= 1.
Indeed, consider for example ξ = eN , u(x) · ξ = uN (x) := |x | for x ∈RN and set x0= 0; then χ( · , ξ)= 1
in RN

\{x0}, x0 is a Lebesgue point of uN and χ( · , ξ) with χ(x0, ξ)= 1, but uN (x0)= 0.

We now prove one of the key tools in the proof of Theorem 8, which mimics the relation of the ordering
of level sets of a stream function when (8) holds true. It is a generalization of Proposition 3.1 in [Jabin,
Otto, and Perthame 2002] to the case of dimension N :

Proposition 17 (ordering). Let N ≥ 2, �⊂RN be an open set and u ∈ L1
loc(�,RN ) satisfy the kinetic

formulation (8). Assume that y, z ∈ Leb are two different Lebesgue points of u such that the closed
segment [yz] is included in �. Then for every direction ξ ∈ SN−1 with ξ ∈ (z− y)⊥, we have

u(y) · ξ > 0 (resp. < 0) =⇒ u(z) · ξ ≥ 0 (resp. ≤ 0); (19)

moreover, y and z are Lebesgue points of χ( · , ξ) and χ(y, ξ)= χ(z, ξ). As a consequence, if u 6= 0 a.e.
in �, then for a.e. y ∈�, HN−1-a.e. ξ ∈SN−1 and HN−1-a.e. v∈ ξ⊥ with the segment [y, y+v] included
in �, we have that y and y+ v are Lebesgue points of u and

χ(y, ξ)= χ(y+ v, ξ). (20)

Proof. First, we consider the case u(y) · ξ > 0. By Lemma 15(ii), y is a Lebesgue point of χ( · , ξ) and
χ(y, ξ)= 1. Let {

ρε( · )=
1
εN ρ

(
·

ε

)}
ε>0

be a standard family of mollifiers, where ρ is a nonnegative radial smooth function having as support the
unit ball supp ρ = B1 ⊂ RN and

∫
B1
ρ dx = 1. Set the convoluted function

χε := ρε ∗χ( · , ξ)

in a neighborhood ω ⊂� of the segment [yz] for ε > 0 sufficiently small. Then χε is smooth in ω and
for every Lebesgue point x ∈ ω of χ( · , ξ) we have χε(x)→ χ(x, ξ) as ε→ 0 because

|χε(x)−χ(x, ξ)| =
∣∣∣∣∫

Bε(0)

(
χ(x − x̃, ξ)−χ(x, ξ)

)
ρε(x̃) dx̃

∣∣∣∣
≤

sup ρ
εN

∫
Bε(0)

∣∣χ(x − x̃, ξ)−χ(x, ξ)
∣∣ dx̃

≤ C −
∫

Bε(x)

∣∣χ(ỹ, ξ)−χ(x, ξ)∣∣ d ỹ ε→0
−−→ 0.

In particular, limε→0 χε(y)= χ(y, ξ)= 1. Let v = z− y. We will show that χ(y+ v, ξ)= 1. For that,
we have v ∈ ξ⊥ and

v · ∇xχε = v · ∇xχ( · , ξ) ∗ ρε
(8)
= 0 in ω.

Then

χε(y+ v)−χε(y)=
∫ 1

0
v · ∇xχε(y+ tv) dt = 0
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so that

lim
ε→0

χε(z)= lim
ε→0

χε(y)= χ(y, ξ)= 1.

This implies that u(z) ·ξ ≥ 0. Assume by contradiction that u(z) ·ξ < 0. By Lemma 15(ii), z is a Lebesgue
point of χ( · , ξ) with χ(z, ξ)= 0 so that

lim
ε→0

χε(z)= χ(z, ξ)= 0,

which contradicts the above statement. We prove now the following:

Claim. If χε(z)→ 1 as ε→ 0, then z is a Lebesgue point of χ( · , ξ) with χ(z, ξ)= 1.

Proof of Claim. Let {εk} be a sequence converging to 0 as k →∞. For k large enough, we define
fk : B1→{0, 1} by fk(x)= χ(z−εk x, ξ) for every x ∈ B1. Then the sequence { fk} is bounded in L2(B1)

and up to a subsequence, fk ⇀ f weakly in L2(B1), where the limit f : B1→ R takes values in [0, 1].
Therefore, we have for our smooth mollifier ρ ∈ L2(B1) that∫

B1

ρ fk dx→
∫

B1

ρ f dx as k→∞.

Note now that by the change of variable x̃ = z− εk x we obtain by our assumption:∫
B1

ρ(x) fk(x) dx =
∫

Bεk (z)
ρεk (z− x̃)χ(x̃, ξ) dx̃ = χεk (z)→ 1 as k→∞;

therefore,
∫

B1
ρ f dx = 1. Since 1 is the maximal value of f and ρ is nonnegative with the integral on B1

equal to 1, we deduce that f = 1 in supp ρ = B1. It follows by the change of variable x̃ = z− εk x that

−

∫
Bεk (z)
|χ(x̃, ξ)− 1| dx̃ = 1− −

∫
B1(0)

fk(x) dx→ 0 as k→∞,

because fk ⇀ 1 weakly in L2(B1). Since the limit is unique for every subsequence εk→ 0, we conclude
that z is a Lebesgue point of χ( · , ξ) with χ(z, ξ)= 1, which proves the claim. �

For the case u(y) · ξ < 0, i.e., χ(y, ξ) = 0 by Lemma 15(ii), one applies the above argument by
replacing ξ with −ξ and obtains that z is a Lebesgue point of χ( · ,−ξ) with χ(z,−ξ)= 1. It follows
that z is a Lebesgue point of χ( · , ξ) with χ(z, ξ)= 0 because

−

∫
Br (z)
|χ(x, ξ)| dx ≤

HN
(
{x ∈ Br (z) : u(x) · ξ ≥ 0}

)
HN (Br (z))

= 1− −
∫

Br (z)
χ(x,−ξ) dx→ 0

as r→ 0. One also concludes that u(z) · ξ ≤ 0 by Lemma 15(ii).
For the last statement, we have for a.e. y ∈� that y is a Lebesgue point of u with u(y) 6= 0. Then for

HN−1-a.e. direction ξ ∈SN−1, we have that u(y) · ξ 6= 0 and y+v is a Lebesgue point of u for HN−1-a.e.
v ∈ ξ⊥ with the segment [y, y+ v] ⊂�. By the above argument, we get (20). �
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5. Notion of the trace on lines

The H 1/2-regularity for N -dimensional unit-length vector fields u satisfying the kinetic formulation (8)
(see [Golse, Lions, Perthame, and Sentis 1988]) is a priori not enough to define the notion of the trace of u
on 1-dimensional lines. However, using the ideas in [Jabin, Otto, and Perthame 2002] for dimension 2, we
will define a notion of the trace of u on segments (in the sense of Lebesgue points) in any dimension N ≥ 2.

Proposition 18 (trace). Let N ≥2, �⊂RN be an open set and u :�→SN−1 be a Lebesgue-measurable
vector field satisfying the kinetic formulation (8). Assume that the segment

L := {0}N−1
×[−1, 1] is included in �.

Then there exists a Lebesgue-measurable function ũ : (−1, 1)→ RN such that

lim
r→0
−

∫
(−r,r)N−1

∫ 1

−1
|u(x ′, xN )− ũ(xN )| dxN dx ′ = 0, (21)

where x = (x ′, xN ), x ′= (x1, . . . , xN−1). Moreover, for H1-a.e. xN ∈ (−1, 1),

ũ(xN )= lim
r→0
−

∫
(−r,r)N−1

u(x ′, xN ) dx ′ and |ũ(xN )| = 1. (22)

Finally, every Lebesgue point x ∈ Leb of u lying inside L is a Lebesgue point of ũ and u(x) = ũ(xN ).
The vector field ũ is called the trace of u on the segment L.

Proof. To simplify the writing, we assume that �= RN. We divide the proof into several steps:

Step 1: defining the 1-dimensional function χ̃( · , ξ) for suitable directions ξ ∈ SN−1. Let D be the set of
directions ξ ∈ SN−1 such that ξN 6= 0 and (20) holds true for the triple (y, y+ v, ξ) for a.e. y ∈� and
HN−1-a.e. v ∈ ξ⊥ (with the segment [y, y+ v] ⊂�, where y and y+ v are Lebesgue points of u). By
Proposition 17, we know that D covers SN−1 up to a set of zero HN−1-measure. For such a direction
ξ ∈ D, we can choose a point yξ ∈ � (in a neighborhood of L) such that the map ξ ∈ D 7→ yξ ∈ �
is Lebesgue measurable, the point yξ + tξ ∈ � is a Lebesgue point of χ( · , ξ) for H1-a.e. t ∈ R, the
function t 7→ χ(yξ + tξ, ξ) is H1-measurable (by Fubini’s theorem) and (20) holds true for the triple
(yξ + tξ, yξ + tξ+v, ξ) for HN−1-a.e. v ∈ ξ⊥ and H1-a.e. t . Define the 1-dimensional function

s 7→ χ̃(s, ξ) := χ
(
yξ + (s− yξ · ξ)ξ, ξ

)
∈ {0, 1}.

Then we have that for a.e. x ∈� in a neighborhood of L ,

χ̃(x · ξ, ξ)= χ
(
yξ − yξ · ξξ + x · ξξ, ξ

) (20)
= χ(x, ξ), (23)

because

v = yξ − yξ · ξξ + x · ξξ − x ∈ ξ⊥.
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Step 2: for ξ ∈ D and for every Lebesgue point P = (0, . . . , 0, PN ) ∈ L of χ( · , ξ) with PN ∈ (−1, 1),
the point P · ξ is a Lebesgue point of χ̃( · , ξ) and χ̃(PN ξN , ξ)= χ(P, ξ). Indeed, since ξN 6= 0, we have

−

∫ PN ξN+r |ξN |

PN ξN−r |ξN |

∣∣χ̃(t,ξ)−χ(P,ξ)∣∣dt

= −

∫
(−r,r)N−1

dx ′−
∫ PN+r

PN−r

∣∣χ̃(x̃N ξN ,ξ)−χ(P,ξ)
∣∣dx̃N (since t = x̃N ξN )

= −

∫
(−r,r)N−1

dx ′−
∫ PN−x ′·ξ ′/ξN+r

PN−x ′·ξ ′/ξN−r

∣∣χ̃(x ′·ξ ′+xN ξN ,ξ)︸ ︷︷ ︸
(23)
= χ(x,ξ)

−χ(P,ξ)
∣∣dxN (since x ′·ξ ′+xN ξN = x̃N ξN )

≤ −

∫
(−r,r)N−1

dx ′ 1
2r

∫ PN+r̃

PN−r̃

∣∣χ(x,ξ)−χ(P,ξ)∣∣dxN

≤C−
∫

P+(−r̃ ,r̃)N

∣∣χ(x,ξ)−χ(P,ξ)∣∣dx→ 0 as r→ 0,

where we used that |x ′ · ξ ′| ≤ r
√

N − 1 for x ′ ∈ (−r, r)N−1 and r̃ = (
√

N − 1/|ξN |+1)r . Thus, PN ξN is
a Lebesgue point of χ̃( · , ξ). In particular, we have by Fubini’s theorem, for every α > 0,

−

∫ αr

−αr
dt̃−
∫ PN ξN+r |ξN |+t̃

PN ξN−r |ξN |+t̃

∣∣χ̃(t,ξ)−χ̃(PN ξN ,ξ)
∣∣dt

=
1

4α|ξN |r2

∫ αr

−αr

∫ PN ξN+r(|ξN |+α)

PN ξN−r(|ξN |+α)

∣∣χ̃(t,ξ)−χ̃(PN ξN ,ξ)
∣∣1(PN ξN−r |ξN |+t̃,PN ξN+r |ξN |+t̃ )(t)dt dt̃

=
1

4α|ξN |r2

∫ PN ξN+r(|ξN |+α)

PN ξN−r(|ξN |+α)

∣∣χ̃(t,ξ)−χ̃(PN ξN ,ξ)
∣∣dt

∫ αr

−αr
1(−PN ξN−r |ξN |+t,−PN ξN+r |ξN |+t)(t̃ )dt̃

≤
1

2|ξN |r

∫ PN ξN+r(|ξN |+α)

PN ξN−r(|ξN |+α)

∣∣χ̃(t,ξ)−χ̃(PN ξN ,ξ)
∣∣dt → 0 as r→ 0. (24)

Step 3: proof of (21). For ξ ∈ D, we have, for small r > 0,

−

∫
(−r,r)N−1

∫ 1

−1

∣∣χ(x, ξ)− χ̃(xN ξN , ξ)
∣∣ dx ′ dxN

(23)
= −

∫
(−r,r)N−1

∫ 1

−1

∣∣χ̃(x ′ · ξ ′+ xN ξN , ξ)− χ̃(xN ξN , ξ)
∣∣ dx ′ dxN

≤
1
|ξN |

sup
|t̃ |≤r
√

N−1

∫
|ξN |

−|ξN |

∣∣χ̃(t + t̃, ξ)− χ̃(t, ξ)
∣∣ dt (since t = xN ξN )

because |x ′ ·ξ ′| ≤ r
√

N − 1. Since the 1-dimensional function t 7→ χ̃(t, ξ) belongs to L∞, its L1-modulus
of continuity present in the above right-hand side tends to 0 as r→ 0, which leads to

lim
r→0
−

∫
(−r,r)N−1

∫ 1

−1

∣∣χ(x, ξ)− χ̃(xN ξN , ξ)
∣∣ dx ′ dxN = 0.
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This formula can be interpreted as the notion of the trace of χ( · , ξ) on the segment L and yields (21).
Indeed, due to (9), we define for a.e. xN ∈ (−1, 1),

ũ(xN )=
1

VN−1

∫
SN−1

ξ χ̃(xN ξN , ξ) dHN−1(ξ)

and we obtain, by Fubini’s theorem,∫
(−r,r)N−1

∫ 1

−1

∣∣u(x ′, xN )− ũ(xN )
∣∣ dx ′ dxN

(9)
≤

1
VN−1

∫
SN−1

(∫
(−r,r)N−1

∫ 1

−1

∣∣χ(x, ξ)− χ̃(xN ξN , ξ)
∣∣ dx ′ dxN

)
dHN−1(ξ) r→0

−−→ 0,

where we used the dominated convergence theorem.

Step 4: proof of (22). By Step 3, we deduce that

−

∫
(−r,r)N−1

u(x ′, · ) dx ′ r→0
−−→ ũ in L1((−1, 1));

therefore, the first statement in (22) follows immediately. Moreover,

−

∫ 1

−1

∣∣|ũ(xN )| − 1
∣∣ dxN =−

∫
(−r,r)N−1

∫ 1

−1

∣∣|ũ(xN )| − |u(x ′, xN )|
∣∣ dx ′ dxN

≤−

∫
(−r,r)N−1

∫ 1

−1

∣∣ũ(xN )− u(x ′, xN )
∣∣ dx ′ dxN

(21)
−→ 0 as r→ 0;

thus, |ũ(xN )| = 1 for H1-a.e. xN ∈ (−1, 1).

Step 5: conclusion. Let P = (0, . . . , 0, PN ) ∈ Leb be a Lebesgue point of u with PN ∈ (−1, 1). We want
to show that PN is a Lebesgue point of ũ and ũ(PN )= u(P). For that, we know by Lemma 15 that P is a
Lebesgue point of χ( · , ξ) for every direction ξ ∈ SN−1 with u(P) · ξ 6= 0. If in addition ξ ∈D, we know
by Step 2 that P · ξ is also a Lebesgue point of χ̃( · , ξ). By the same argument as in Step 3, we have

−

∫
P+(−r,r)N

|u(x ′, xN )− ũ(xN )| dx ′ dxN

≤
1

VN−1

∫
SN−1
−

∫
P+(−r,r)N

∣∣ χ(x, ξ)︸ ︷︷ ︸
(23)
= χ̃(x ′·ξ ′+xN ξN ,ξ)

−χ̃(xN ξN , ξ)
∣∣ dx ′ dxN dHN−1(ξ)

≤
1

VN−1

∫
SN−1

dHN−1(ξ)

[
−

∫
P+(−r,r)N

∣∣χ̃(x ′ · ξ ′+ xN ξN , ξ)− χ̃(PN ξN , ξ)
∣∣ dx

+ −

∫ PN+r

PN−r

∣∣χ̃(xN ξN , ξ)− χ̃(PN ξN , ξ)
∣∣ dxN

]
≤

1
VN−1

∫
SN−1

dHN−1(ξ)−

∫
(−r,r)N−1

dx ′−
∫ PN ξN+r |ξN |+x ′·ξ ′

PN ξN−r |ξN |+x ′·ξ ′

∣∣χ̃(t, ξ)− χ̃(PN ξN , ξ)
∣∣ dt

+
1

VN−1

∫
SN−1

dHN−1(ξ)−

∫ PN ξN+r |ξN |

PN ξN−r |ξN |

∣∣χ̃(t, ξ)− χ̃(PN ξN , ξ)
∣∣ dt.
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Using the dominated convergence theorem twice, we conclude that the above right-hand side vanishes as
r→ 0. Indeed, the second integrand converges to 0 as r→ 0 by Step 2 for a.e. ξ ∈ SN−1. For the first
integrand, we proceed as follows: for HN−1-a.e. direction ξ , we may assume that |ξ ′|> 0 and ξN 6= 0 so
that there exists a rotation R′ ∈ SO(N − 1) with R′ξ ′ = |ξ ′|e1 and we have by the change of variables
x̃ ′ = R′x ′ and r̂ = r

√
N − 1,

−

∫
(−r,r)N−1

dx ′−
∫ PN ξN+r |ξN |+x ′·ξ ′

PN ξN−r |ξN |+x ′·ξ ′

∣∣χ̃(t, ξ)− χ̃(PN ξN , ξ)
∣∣ dt

≤ C −
∫
{|x̃ ′|<r̂}

dx̃ ′−
∫ PN ξN+r |ξN |+x̃1|ξ

′
|

PN ξN−r |ξN |+x̃1|ξ ′|

∣∣χ̃(t, ξ)− χ̃(PN ξN , ξ)
∣∣ dt

≤ C −
∫
|ξ ′|r̂

−|ξ ′|r̂
−

∫ PN ξN+r |ξN |+t̃

PN ξN−r |ξN |+t̃

∣∣χ̃(t, ξ)− χ̃(PN ξN , ξ)
∣∣ dt dt̃ (24)

−→ 0 as r→ 0. �

6. Proof of Theorem 8

We start by showing some preliminary results that reveal the geometric consequences of the kinetic
formulation (8). The following lemma is the first step in proving that u is constant along the characteristics
and is reminiscent of the ideas presented in [Jabin, Otto, and Perthame 2002]:

Lemma 19. Let � ⊂ RN be an open set such that L = {0}N−1
× [−1, 1] ⊂ � and u : � → SN−1

be a Lebesgue-measurable vector field satisfying the kinetic formulation (8). Assume that the origin
O ∈�∩Leb is a Lebesgue point of u and u(O)= eN . Then for every Lebesgue point xN ∈ (−1, 1) of ũ,
we have

ũ(xN )=±eN ,

where ũ is the trace of u on L defined at Proposition 18.

Proof. Without loss of generality we assume that� is a convex open neighborhood of L . By Proposition 18,
we know that O is also a Lebesgue point of ũ and ũ(0) = eN ; moreover, |ũ| = 1 a.e. in (−1, 1). Let
xN ∈ (−1, 1) \ {0} be a Lebesgue point of ũ such that HN−1-a.e. z ∈ �∩ (xN eN + e⊥N ) is a Lebesgue
point of u and such that the following holds true (see Proposition 18):

lim
r→0
−

∫
(−r,r)N−1

∣∣u(x ′, xN )− ũ(xN )
∣∣ dx ′ = 0. (25)

Our goal is to prove that the component ũi (xN ) of ũ(xN ) in direction ei vanishes for every i =1, . . . , N−1.
For that, we follow the ideas in [Jabin, Otto, and Perthame 2002]. Let ε > 0 be small and define the
following subsets E−i and E+i (depending on ε) of the hyperplane (xN eN + e⊥N ) for 1≤ i ≤ N − 1:

E±i =
{
z ∈�∩Leb : zN = xN , ε|xN | ≥ ±zi > 0

}
.

By our assumption, the sets E±i contain many points (e.g., for i = 1, the set E+1 covers the (N−1)-
parallelepiped (0, r)× (−r, r)N−2

×{xN } up to a set of zero HN−1-measure for r < ε). For z ∈ E+i , we
set y = −zi eN + xN ei if xN > 0 and y = zi eN − xN ei if xN < 0. Obviously, z · y = 0; that is, y ∈ z⊥.
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By the convexity of �, the segment [Oz] lies in � so that by Proposition 17 we have if xN > 0 (resp.
xN < 0), then u(O) · y =−zi < 0 (resp. u(O) · y = zi > 0) so that u(z) · y ≤ 0 (resp. ≥ 0). It follows that

ui (z)≤
zi

xN
uN (z)≤ ε

(
resp. ui (z)≥

−zi

|xN |
uN (z)≥−ε

)
,

because |uN (z)| ≤ 1. Similarly, for z ∈ E−i , one uses y = zi eN − xN ei if xN > 0 and y =−zi eN + xN ei if
xN < 0 and deduces that ui (z)≥−ε if xN > 0 and ui (z)≤ ε if xN < 0. We conclude that ũi (xN )∈ [−ε, ε].
Indeed, let us set i = 1 for simplicity of notation; by (25), we have

ũ1(xN )= lim
r→0
−

∫
(0,r)×(−r,r)N−2

u1(x ′, xN ) dx ′ ≤ ε if xN > 0 (resp. ≥−ε if xN < 0)

and also,

ũ1(xN )= lim
r→0
−

∫
(−r,0)×(−r,r)N−2

u1(x ′, xN ) dx ′ ≥−ε if xN > 0 (resp. ≤ ε if xN < 0).

Passing to the limit ε→ 0, we conclude that ũi (xN )= 0 for i = 1 (similarly, for every 1≤ i ≤ N − 1).
Obviously, H1-a.e. xN ∈ (−1, 1) satisfies this property. As a consequence, if PN ∈ (−1, 1) is a Lebesgue
point of ũ then for every 1≤ i ≤ N − 1,

ũi (PN )= lim
r→0
−

∫ PN+r

PN−r
ũi (xN ) dxN = 0.

Since |ũ(PN )| = 1, we deduce that ũN (PN )=±1, that is, ũ(PN )=±eN . �

We now prove the main result:

Proof of Theorem 8. We first treat the case where � is a ball and then the general case of a connected
open set.

Case I: � is a ball. Since u is not a constant vector field, there exist two Lebesgue points P0, P1 ∈�∩Leb
of u such that

u(P0) 6= u(P1).

Let D0 (resp. D1) be the line directed by u(P0) (resp. u(P1)) that passes through P0 (resp. P1).

Step 1: we show that D0 and D1 are coplanar. Assume by contradiction that D0 and D1 are not coplanar;
in particular |u(P0) · u(P1)|< 1. Set A ∈ D0 and B ∈ D1 such that

0< |A− B| = min
x∈D0,y∈D1

|x − y|.

Obviously, the segment [AB] is orthogonal to D0 and D1. Let O be the middle point of the segment
[AB] (see Figure 2). Let

w1 = u(P0), w2 =

−→
O A

|
−→
O A|

and w3 = αu(P0)+βu(P1),



KINETIC FORMULATION OF VORTEX VECTOR FIELDS 751

D0

D1

A

O

B

P0 u(P0)

P1 u(P1)

Figure 2. Two noncoplanar lines D0 and D1.

where

α =
−u(P0) · u(P1)√

1−
(
u(P0) · u(P1)

)2
and β =

1√
1−

(
u(P0) · u(P1)

)2
> 0. (26)

The choice of α and β is done in order to ensure that w1 ·w3 = 0 and |w3|
2
= 1, which finally yields

the orthonormal basis w1, w2 and w3. Note now that the vectors u(P0) and u(P1) have the following
components in the basis (w1, w2, w3):

u(P0)= (1, 0, 0) and u(P1)=

(
−
α

β
, 0,

1
β

)
.

We want to find the expression of
−−→
P0 P1 in that basis, too. For that, we have
−−→
P0 P1 =

−−→
P0 A+

−→
AB+

−−→
B P1,

which implies the existence of three real numbers λ, λ̃, λ̂ ∈ R with λ̃ 6= 0 such that

−−→
P0 P1 = λw1+ λ̃w2+ λ̂u(P1)= λw1+ λ̃w2+ λ̂

(
1
β
w3−

α

β
w1

)
.

Thus,
−−→
P0 P1 has the following components in the basis (w1, w2, w3):

−−→
P0 P1 =

(
λ−

α

β
λ̂, λ̃,

λ̂

β

)
.

Define the vector ξ := (1, s,−β) 6= 0, written in our basis where

s :=
λ̂(α+β)

βλ̃
−
λ

λ̃
.

Then [P0 P1] ⊂� (since � is a ball) and
−−→
P0 P1 · ξ = 0, i.e., ξ ∈ P0 P⊥1 ,

u(P0) · ξ = 1> 0, u(P1) · ξ = u(P0)u(P1)− 1< 0,

which contradicts Proposition 17. Thus, D0 and D1 are coplanar.
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D0

D1

u(P1) P1

ξ

ξ

u(P0)P0

Figure 3. Two parallel lines D0 and D1.

Step 2: we show that D0 and D1 must intersect (D0 might coincide with D1). Assume by contradiction
that D0 and D1 are parallel and D0 6= D1. This means that u(P0) = −u(P1) (because of our choice
u(P0) 6= u(P1)). Set (w1, w2) to be an orthonormal basis in the 2-dimensional plane 5 determined by D0

and D1 with w1 = u(P0). In the basis (w1, w2), we write
−−→
P0 P1 = (λ, λ̃), where λ̃ 6= 0 (since D0 6= D1),

and set ξ = (−λ̃, λ) to be an orthogonal vector to
−−→
P0 P1 in 5 (see Figure 3). Then one checks that

u(P0) · ξ =−λ̃ and u(P1) · ξ = λ̃ have different signs, which again contradicts Proposition 17.

Step 3: there exists a point O ∈ D0 with O 6= P0, P1 and a sign γ ∈ {±1} such that

u(Pi )= γ

−−→
O Pi

|
−−→
O Pi |

, i = 0, 1.

If D0 = D1, then u(P0) = −u(P1), so any point O ∈ D0 located between P0 and P1 leads to the
conclusion. Otherwise, D0 6= D1 and we define {O} = D0 ∩ D1. First, we prove that O 6= P0, P1.
Assume by contradiction that O = P0 ∈ D0 ∩ D1. Then by Proposition 18 we know that P0 and P1 are
Lebesgue points of the trace ũ of u on the segment D1 ∩� (directed by u(P1)) with ũ(P0) = u(P0)

and ũ(P1) = u(P1) so that by Lemma 19, we should have u(P0) is parallel with u(P1), which is a
contradiction with D0 6= D1. So, O 6= P0, P1. Next, note that for any orthogonal vector ξ to

−−→
P0 P1 in the

plane determined by D0 and D1, we have by Proposition 17 that u(P0) · ξ and u(P1) · ξ have the same
sign, i.e.,

(u(P0) · ξ) · (u(P1) · ξ)≥ 0. (27)

Write now
−−→
O P0 = λu(P0) and

−−→
O P1 = λ̃u(P1)

with λ, λ̃ nonzero real numbers. The conclusion of Step 3 is equivalent to proving that λ and λ̃ have the
same sign. For that, as in Step 1, we choose the orthonormal basis w1= u(P0) and w2= αu(P0)+βu(P1)

with α ∈ R and β > 0 given in (26) (recall that |u(P0) · u(P1)|< 1 because of the assumption D0 6= D1).
Since

−−→
P0 P1 =

−−→
O P1−

−−→
O P0 = λ̃u(P1)− λu(P0), we write, in the basis (w1, w2),

u(P0)= (1, 0), u(P1)=

(
−
α

β
,

1
β

)
,
−−→
P0 P1 =

(
−λ−

α

β
λ̃,
λ̃

β

)
.

Then for the orthogonal vector ξ = (λ̃, λβ +αλ̃) 6= 0 to
−−→
P0 P1, we have by (27) that

0≤ (u(P0) · ξ) · (u(P1) · ξ)= λ̃ · λ.
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Step 4: conclusion. For every Lebesgue point P ∈Leb∩� of u, we consider the line D passing through P
and directed by u(P). Call D the set of these lines. Obviously, D covers HN -almost all of the ball �
(since HN (� \Leb)= 0); in particular, D is not planar. By Step 1, we know that every two lines in D
are coplanar. Then Proposition 9 (whose proof is presented below) implies that either all these lines are
parallel, or they pass through the same point O. Since u is nonconstant, we deduce by Step 2 that only
the last situation holds true. By Step 3, we conclude that u = γ u?( · − O) a.e. in �.

Case II: � is a connected open set. By Case I, we know that in every open ball B ⊂� around a Lebesgue
point of u, the vector field u is either a vortex-type vector field in B, or u is constant in B. Since u is
nonconstant in �, there exists a Lebesgue point P0 of u and a ball B0 ⊂ � around P0 such that u is a
vortex-type vector field in B0; say for simplicity u = u?. Let P 6= P0 be any other Lebesgue point of u.
Since � is path-connected, there exists a path 0 ⊂ � from P0 to P. Then we can cover the path 0 by
a finite number of open balls {Bj }0≤ j≤n such that P ∈ Bn , Bj∩B j+1 6=∅ for 0≤ j ≤n−1 and u is either
constant or a vortex-type vector field in any Bj . Since u = u? in B0 and B0 ∩ B1 is a nonempty open set,
the analysis in Case I yields u= u? in B1 and by induction, u= u? in Bn , which is a neighborhood of P. �

Let us now present the proof of the geometric result in Proposition 9, which is independent of the
previous results:

Proof of Proposition 9. Assume that there are two lines D0, D1 ∈ D that are not collinear. Since D0 and
D1 are coplanar, they intersect at a point P. Call 5 the plane determined by D0 and D1. We show that
all the lines in D pass through P. Let D2 ∈D be any line not included in 5 (such a line exists because D
is not planar). We know that D2 is coplanar with D0 and D1, respectively. Then D2 cannot be parallel
with D0 (otherwise, D2 ‖ D0 and D2 ∩ D1 6= ∅ imply that D2 ⊂ 5, which is a contradiction with our
assumption). Similarly, D2 cannot be parallel with D1. Therefore, D2 intersects both D0 and D1. Since
D2 is not included in 5, the intersection points coincide with P. Let now D3 ∈ D be any line included
in 5 (different than D0 and D1). Then D3 is not included in the plane determined by D1 and D2. The
previous argument leads again to P ∈ D3, which concludes our proof. �

7. Vector fields of vortex-line type

We will prove the characterization of the weakened kinetic formulation (10) in Theorem 10. This result is
in the spirit of Corollary 14 and leads to vector fields that have vortex-line singularities.

Proof of Theorem 10. For x ∈ RN, recall the notation x = (x ′, xN ) with x ′ = (x1, . . . , xN−1) ∈ RN−1. As
the result is local in the set {uN 6=±1}, we will assume that ω= B ′×(−1, 1) is included in that set, where
B ′ is the unit ball in RN−1. Let ξ ′ ∈ SN−2 and ξ = (ξ ′, 0) ∈ E . Since eN ∈ ξ

⊥, we deduce by (10) that

eN · ∇xχ( · , ξ)= ∂Nχ( · , ξ)= 0 in D ′(ω). (28)

We know that the point (x ′, t) is a Lebesgue point of χ( · , ξ) for HN−1-a.e. x ′ ∈ B ′ and H1-a.e. t ∈ (−1, 1)
and the convolution argument in the proof of Proposition 17 yields

χ(x, ξ)= χ(x + teN , ξ) for HN -a.e. x ∈ ω and H1-a.e. t .
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Then one can define the measurable function χ̃( · , ξ ′) : B ′→ {0, 1} by

χ̃(x ′, ξ ′) := χ(x, ξ)= 1{x∈ω:u′(x)·ξ ′>0} for HN -a.e. x = (x ′, t) ∈ ω.

Set

ũ(x ′)=
1

VN−2

∫
SN−2

ξ ′χ̃(x ′, ξ ′) dHN−2(ξ ′), x ′ ∈ B ′.

Thanks to (9),

ũ(x ′)=
u′(x)
|u′(x)|

for HN -a.e. x = (x ′, t) ∈ ω ⊂ {|u′|> 0}.

In particular, χ̃(x ′, ξ ′)= 1{x ′∈B ′:ũ(x ′)·ξ ′>0} in B ′ for every ξ ′ ∈ SN−2. Therefore, we deduce by (10) that
ũ : B ′→ SN−2 satisfies

∀ξ ′ ∈ SN−2, ∀v′ ∈ (ξ ′)⊥, v′ · ∇ ′x ′ χ̃(x
′, ξ ′)= 0 in B ′,

where ∇ ′x ′ = (∂1, . . . , ∂N−1). As N − 1≥ 3, Theorem 8 yields either ũ(x ′)=w′ for almost every x ′ ∈ B ′,
where w′ ∈ SN−2 is a constant vector, or ũ(x ′)= γ (x ′− P ′)/|x ′− P ′| for almost every x ′ ∈ B ′, where
γ ∈ {±1} and P ′ ∈ RN−1 is some point. This means that for a.e. x ∈ ω,

either u′(x)= |u′(x)|w′ or u′(x)= γ |u′(x)|
x ′− P ′

|x ′− P ′|
.

Case 1. Let u′(x)= |u′(x)|w′ for a.e. x ∈ ω. By (11), we have for k ∈ {1, . . . , N − 1},

∂kuN = ∂N uk = wk∂N (|u′|) in ω, (29)

which yields, for all k, j ∈ {1, . . . , N − 1},

wj∂kuN = wk∂j uN in ω.

Therefore, uN (x)= g(α, xN ) in ω for some 2-dimensional function g with the new variable α := α(x)=
x ′ ·w′. Moreover, by (29), the function g satisfies the following: since wk 6= 0 for some k ∈ {1, . . . , N−1}
(because w ∈ SN−1), the equation |u′|2+ u2

N = 1 a.e. in ω implies

wk∂αg = ∂kuN
(29)
= wk∂N (|u′|)= wk∂N (

√
1− g2).

The Poincaré lemma yields the existence of a stream function ψ(α, xN ) such that g= ∂Nψ and
√

1− g2=

∂αψ so that u(x)=∇x [ψ(α, xN )] and therefore, ψ satisfies the 2-dimensional eikonal equation

(∂αψ)
2
+ (∂Nψ)

2
= 1.

Case 2. Let u′(x)= γ |u′(x)|(x ′− P ′)/|x ′− P ′| for a.e. x ∈ω. As above, we have, for k ∈ {1, . . . , N−1},

∂kuN = ∂N uk = γ
xk − Pk

|x ′− P ′|
∂N (|u′|) in ω (30)

and we deduce that, for all k, j ∈ {1, . . . , N − 1},

(x j − Pj )∂kuN = (xk − Pk)∂j uN in ω.
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Therefore, uN (x)=g(α, xN ) inω for some 2-dimensional function g with the new variable α :=α(x)=|x ′|.
By (30), we conclude as above that there exists a stream function ψ solving the eikonal equation in the
variables (α, xN ) such that

u(x)=∇x [ψ(α, xN )]. �
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