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IMPROVING BECKNER’S BOUND VIA HERMITE FUNCTIONS

PAATA IVANISVILI AND ALEXANDER VOLBERG

We obtain an improvement of the Beckner inequality ‖ f ‖2
2−‖ f ‖2

p ≤ (2− p)‖∇ f ‖2
2 valid for p ∈ [1, 2]

and the Gaussian measure. Our improvement is essential for the intermediate case p ∈ (1, 2), and
moreover, we find the natural extension of the inequality for any real p.

1. Introduction

1.1. The history of the problem. The Poincaré inequality [Nash 1958] for the standard Gaussian measure

dγn =
e−|x |

2/2
√
(2π)n

dx

states that ∫
Rn

f 2 dγn −

(∫
Rn

f dγn

)2

≤

∫
Rn
|∇ f |2 dγn (1)

for any smooth bounded function f : Rn
→ R. Later William Beckner [1989] generalized (1) for any real

power p, 1≤ p≤ 2, as follows:∫
Rn

f p dγn −

(∫
Rn

f dγn

)p

≤
p(p− 1)

2

∫
Rn

f p−2
|∇ f |2 dγn (2)

for any smooth bounded f : Rn
→ (0,∞). We caution the reader that in [Beckner 1989], inequality (2)

was formulated in a slightly different but equivalent form (see Theorem 1, inequality (3) in that paper). It
should be also mentioned that in the case p = 2, inequality (2) does coincide with (1) for all f ≥ 0 but
it does not imply the Poincaré inequality for the functions taking the negative values, especially when∫

Rn f dγn = 0. If p→ 1+ then (2) provides us with log-Sobolev inequality (see [Beckner 1989]). In
general, the constant p(p− 1)/2 is sharp in the right-hand side of (2), as can be seen for n = 1 on the
test functions f (x)= eεx by sending ε→ 0.

Later Beckner’s inequality (2) was studied by many mathematicians for different measures, in different
settings and for different spaces as well. We refer the reader to [Arnold et al. 2007; Da Pelo et al. 2016;
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Barthe et al. 2006; 2007; Barthe and Roberto 2003; Bobkov and Tetali 2003; Bobkov and Götze 1999;
Boucheron et al. 2005; Chafaï 2004; Wang 2005; Latała and Oleszkiewicz 2000; Kolesnikov 2007].

An analysis done in [Ivanisvili and Volberg 2015c] indicates that the right-hand side of (2) can be
improved. In the present paper we address this issue: what is the precise estimate of the difference
given in the left-hand side of (2), and can the requirement p ∈ [1, 2] be avoided by slightly changing the
right-hand side of (2)?

We give complete answers to these questions. For example, if p = 3
2 we will obtain an improvement in

Beckner’s inequality (2):∫
Rn

f 3/2 dγn −

(∫
Rn

f dγn

)3/2

≤

∫
Rn

(
f 3/2
−

1
√

2
(2 f −

√
f 2
+ |∇ f |2)

√
f +

√
f 2
+ |∇ f |2

)
dγn. (3)

The left-hand side of (3) coincides with the left-hand side of (2) for p = 3
2 , but the right-hand side of (3)

is strictly smaller than the right-hand side in (2). Indeed, notice that we have the pointwise inequality

x3/2
−

1
√

2
(2x −

√
x2
+ y2)

√
x +

√
x2
+ y2
≤

3
8 x−1/2 y2 for all x, y ≥ 0, (4)

which follows from the homogeneity, i.e., take x = 1, and the rest is a direct computation which follows
by introducing a new variable

u :=
√

1+
√

1+ y2.

As one can see, the improvement of Beckner’s inequality (2) is essential. Indeed, if y→∞ then the
right-hand side of (4) increases as y2 whereas the left-hand side of (4) increases as y3/2. Also notice that
if x→ 0 then the difference of both sides of (4) tends to infinity. The only place where the quantities in
(4) are comparable is when y/x→ 0.

1.2. Main results. Let k be a real parameter. Let Hk(x) be the Hermite function which satisfies the
Hermite differential equation

H ′′k − x H ′k + k Hk = 0, x ∈ R, (5)

and which grows relatively slowly, that is, Hk(x)= xk
+ o(xk) as x→+∞. If k is a nonnegative integer

then Hk is the probabilists’ Hermite polynomial of degree k with the leading coefficient 1; for example,
H0(x)= 1, H1(x)= x , H2(x)= x2

− 1, etc. In general, for arbitrary k ∈ R one should think that Hk

is the analytic extension of the Hermite polynomials in k (existence and many other properties will be
mentioned in Section 2).

For k ∈ R, let Rk be the rightmost zero of Hk(x) (see Lemma 7). If k ≤ 0 then we set Rk = −∞.
Define Fk(x) as

Fk

(∣∣∣∣H ′k(q)
Hk(q)

∣∣∣∣)= Hk+1(q)

H 1+1/k
k (q)

for q ∈ (Rk,∞). (6)

We will see in the next section that Fk ∈ C2([0,∞)) is well defined and Fk(0) = 1. Moreover, if
k >−1 then Fk will be a decreasing concave function, and if k <−1 then Fk will be an increasing convex
function.
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One may observe that

F1(y)= 1− y2, F2(y)=
1
√

2
(2−

√
1+ y2)

√
1+

√
1+ y2.

If k = 0 then definition (6) should be understood in the limiting sense as

Fexp(H−1(q))= q exp
(
α−

∫ q

1
H−1(s) ds

)
for all q ∈ R, (7)

where

α =

∫
∞

1

(
H−1(s)−

1
s

)
ds ≈−0.266 . . . . (8)

Theorem 1. For any p ∈ R \ [0, 1] and any smooth bounded f ≥ 0 with
∫

Rn f p dγn <∞ we have∫
Rn

f p F1/(p−1)

(
|∇ f |

f

)
dγn ≤

(∫
Rn

f dγn

)p

. (9)

The inequality is reversed if p ∈ (0, 1).

Proposition 2. We have

1−
p(p− 1)

2
t2
≤ F1/(p−1)(t) for all t ≥ 0, p ∈ (1, 2]. (10)

It remains to notice that estimate (10) applied to (9) immediately gives (2).
The improvement will be essential when t→∞. For example, it will become clear in the next section

that as t→∞ we have

F1/(p−1)(t)∼−t p(H ′1/(p−1)(R1/(p−1))
)1−p for p > 1. (11)

Another immediate application of Theorem 1 is the following corollary.

Corollary 3. For any p ∈ (1, 2] and any smooth bounded f ≥ 0 we have∫
Rn

f p dγn −

(∫
Rn

f dγn

)p

≤
(
H ′1/(p−1)(R1/(p−1))

)1−p
∫

Rn
|∇ f |p dγn. (12)

Estimate (12) will follow by showing that, for any y ≥ 0, the map

x→ x p
− x p F1/(1−p)

(
y
x

)
(13)

is decreasing for x > 0, and the limit x→ 0 gives (12) by (11).

Appearance of the roots of Hermite functions in (12) seems quite unexpected, especially when these
estimates are obtained on the Hamming cube. For example, in [Ivanisvili and Volberg 2016] we were
able to extend (12) to the Hamming cube but for a particular power p = 3

2 :

E f 3/2
− (E f )3/2 ≤ 1

√
2

E|∇ f |3/2, f : {−1, 1}n→ R+. (14)

We refer the reader to that paper for the notations, and we notice that the result announced there is a
counterpart of (9) for p = 3

2 on the Hamming cube, where the identity x3/2 F2(y/x) = <(x + iy)3/2
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was used. Next, let A ⊂ {−1, 1}n, and let wA(x) denote the number of edges containing x between
the set A and its complement. Clearly wA(x) lives on the boundary of the set A: wA(x) = 4|∇1A|

2.
If A has cardinality 2n−1 then the classical edge-isoperimetric inequality [Harper 1966] states that∑

x∈{−1,1}n wA(x)≥ 2n. On the other hand, taking f = 1A in (14) gives∑
x∈{−1,1}n

wA(x)3/4 ≥ (2−
√

2)2n,

which is a new edge-isoperimetric inequality and does not follow from the classical one.

Theorem 1 generates several inequalities. If p→ 1+ then (9) gives the log-Sobolev inequality. If
p = 2 then (9) provides us with the Poincaré inequality. If p→±∞ then we obtain a new Sobolev
inequality:

Corollary 4. For any smooth bounded f we have∫
Rn

exp( f ) Fexp(|∇ f |) dγn ≤ exp
(∫

Rn
f dγn

)
,

where Fexp is defined in (7).

Finally if p→ 0 we obtain a new “negative log-Sobolev” inequality:

Corollary 5. For any smooth bounded f ≥ 0 with
∫

Rn ln f dγn >−∞ we have∫
Rn
− ln f dγn + ln

(∫
Rn

f dγn

)
≤

∫
Rn
−F− ln

(
|∇ f |

f

)
dγn,

where F− ln(t) is defined as

F− ln

(
H−2(x)
H−1(x)

)
=

∫ x

1
H−1(s) ds− c+ ln H−1(x), x ∈ R.

All these estimates extend to uniformly log-concave probability measures in the following sense (for
the proof see Section 3).

Corollary 6. Let dµ = e−U dx be a probability measure, where Hess U ≥ R · Id for some R > 0. For
any p ∈ R \ [0, 1] and any smooth bounded f ≥ 0 with

∫
Rn f p dµ <∞ we have∫

Rn
f p F1/(p−1)

(
|∇ f |

f
√

R

)
dµ≤

(∫
Rn

f dµ
)p

. (15)

The inequality is reversed if p ∈ (0, 1).

The limiting cases of (15) when p→±∞ and p→ 0 should be understood in the sense of functions
Fexp and F− ln as in Corollary 4 and Corollary 5.

To summarize, the current paper provides us with estimates of 8-entropy (see [Chafaï 2004])

Ent8γn
( f ) :=

∫
Rn
8( f ) dγn −8

(∫
Rn

f dγn

)
for the following examples:
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• 8(x)= x p for p ∈ R \ [0, 1] using Theorem 1.

• 8(x)=−x p for p ∈ (0, 1) using Theorem 1.

• 8(x)= ex using Corollary 4, or by taking p→±∞ in Theorem 1.

• 8(x)=− ln x using Corollary 5, or by taking p→ 0 in Theorem 1.

• 8(x)= x ln x by taking p→ 1 in Theorem 1.

2. The proof of the theorem

The proof of the theorem amounts to checking that the real-valued function

M(x, y)= x p Fk

(
y
x

)
, k =

1
1− p

, (16)

defined on [ε,∞)× [0,∞) for any ε > 0, obeys a necessary smoothness condition, has a boundary
condition M(x, 0)= x p and satisfies the partial differential inequality(

Mxx +My/y Mxy

Mxy Myy

)
≤ 0, (17)

with reversed inequality in (17) if p ∈ (0, 1). Then by Theorem 1 in [Ivanisvili and Volberg 2015c] we
obtain that∫

Rn
f p Fk

(
|∇ f |

f

)
dγn =

∫
Rn

M( f, |∇ f |) dγn ≤ M
(∫

Rn
f dγn, 0

)
=

(∫
Rn

f dγn

)p

for any smooth bounded f ≥ ε, which is the statement of the theorem we want to prove (except we need
to justify the passage to the limit ε→ 0 and this will be done later). Notice that the inequality is reversed
if p ∈ (0, 1); indeed, in this case we should work with −M(x, y) instead of M(x, y).

Next we will need some tools regarding the Hermite functions Hk .

2.1. Properties of Hermite functions. Hk can be defined (see [Hayman and Ortiz 1975]) by

Hk(x)=−
2−k/2 sin(πk) 0(k+ 1)

2π

∞∑
n=0

0((n− k)/2)
n!

(−x
√

2)n, (18)

or in terms of the confluent hypergeometric functions (see [Durand 1975]) by

Hk(x)=

√
2k

π

[
cos
(
πk
2

)
0

(
k+1

2

)
1F1

(
−

k
2
,

1
2
;

x2

2

)
+t
√

2sin
(
πk
2

)
0

(
k
2
+1
)

1F1

(
1−k

2
,

3
2
;

x2

2

)]
. (19)

If k is a nonnegative integer then one should understand (18) and (19) in the limiting sense. Notice the
recurrence properties

H ′k(x)= k Hk−1(x), (20)

Hk+1(x)= x Hk(x)− H ′k(x). (21)

These properties follow from (18) and the fact that 0(z+ 1)= z0(z).
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We also notice that
Hk(x) := ex2/4 Dk(x), (22)

where Dk(x) is the parabolic cylinder function; i.e., it is the solution of the equation

D′′k +
(

k+
1
2
−

x2

4

)
Dk = 0.

Since Hk(x) is an entire function in x and k (see [Temme 2015] for the parabolic cylinder function),
sometimes it will be convenient to write H(x, k) instead of Hk(x). The precise asymptotic for x→+∞,
x > 0 and any k ∈ R is given by

Hk(x)∼ xk
·

∞∑
n=0

(−1)n
(−k)2n

n!(2x2)n
. (23)

Here (a)n = 1 if n = 0, and (a)n = a(a+ 1) · · · (a+ n− 1) if n > 0. When x→−∞ we have

Hk(x)∼ |x |k cos(kπ)
∞∑

n=0

(−1)n
(−k)2n

n!(2x2)n
+

√
2π

0(−k)
|x |−k−1ex2/2

∞∑
n=0

(1+ k)2n

n!(2x2)n
. (24)

We refer the reader to [Temme 2015; Olver et al. 2010]. For instance, for (23) we can use the asymptotic
formula (12.9.1) in [Olver et al. 2010] for the parabolic cylinder function. To verify (24) we can express
Hk(−x) as a linear combination of two parabolic cylinder functions but with argument x instead of −x ,
see (12.2.15) in [Olver et al. 2010], and then we can use (12.9.1) and (12.9.2) in the same paper.

Next we will need the result of Elbert and Muldoon [1999] which describes the behavior of the real
zeros of Hk(x) for any real k.

Lemma 7. For k ≤ 0, the function Hk(x) has no real zeros, and it is positive on the real axis. For
n< k≤ n+ 1, n= 0,1, . . . , the function Hk(x) has n+ 1 real zeros. Each zero is increasing function of k
on its interval of definition.

The proof of the lemma is Theorem 3.1 in [Elbert and Muldoon 1999]. It is explained in the paper that
as k passes through each nonnegative integer n a new leftmost zero appears at −∞, while the rightmost
zero passes through the largest zero of Hk(x). They also include more precise information about the
asymptotic behavior of the zeros as k→∞.

Further we will need Turán’s inequality for Hk for any real k.

Lemma 8. We have Turán’s inequality:

H 2
k (x)− Hk−1(x)Hk+1(x) > 0 for all k ∈ R, x ≥ Lk, (25)

where Lk denotes the leftmost zero of Hk . If k ≤ 0 then Lk =−∞.

The lemma is known as Turán’s inequality when k is a nonnegative integer. Unfortunately we could
not find the reference in the case when k is different from a positive integer; therefore we decided to
include the proof of the lemma.

The following is borrowed from [Madhava Rao and Thiruvenkatachar 1949].
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Proof. Take f (x)= e−x2/2
(
H 2

k (x)− Hk−1(x)Hk+1(x)
)
. Asymptotic formulas (23) and (24) imply that

lim
x→+∞

f (x)= 0 for all k ∈ R,

f (x)∼
√

2π |x |> 0 for x→−∞, k = 0,

f (x)∼
2πex2/2

0(−k)0(−k+ 1)
|x |−2k−2 for x→−∞, k /∈ {0} ∪N.

(26)

On the other hand, notice that by (20) and (21) we have

f ′(x)=−e−x2/2 Hk Hk−1. (27)

If k ≤ 0 then by Lemma 7 we have f ′ < 0, and because of the conditions f (−∞)=+∞ and f (∞)= 0
we obtain that f > 0 on R. To verify the statement for k > 0 we notice that

f ′′(x)= e−x2/2(H 2
k − k H 2

k−1). (28)

Now we notice that if Hk(c) = 0 then Hk−1(c) 6= 0. Indeed, assume to the contrary that Hk−1(c) = 0.
Then by (20) we have H ′k(c)= 0 and by (5) we obtain H ′′k (c)= 0, and again taking derivatives in (20) we
obtain that Hk−2(c)= 0. Repeating this process we obtain that Hk−N (c)= 0 for any large integer N > 0.
But this contradicts Lemma 7.

Thus by (27) and (28) we obtain that c is a local minimum of f if and only if Hk−1(c) = 0. Then
f (c)= e−x2/2 H 2

k (c) > 0. Finally we obtain that f : [Lk,∞)→R is positive on its local minimum points,
f (∞)= 0 and f (Lk) > 0 (because Hk−1 and Hk+1 have opposite signs at zeros of Hk by (21)). Therefore
f > 0 on [Lk,∞)→ R and the lemma is proved. �

Remark 9. If k ∈ N then Hk is the probabilists’ Hermite polynomial of degree k, so f (x) will be even
and inequality (25) will hold for all x ∈ R, which confirms the classical Turán’s inequality. However, if
k > 0 but k /∈ N then (25) fails when x→−∞; see (26).

Finally the next corollary together with Lemma 7 implies that∣∣∣∣H ′k
Hk

∣∣∣∣= sign(k)
H ′k(q)
Hk(q)

is positive and decreasing for q ∈ (Rk,∞) and k ∈ R \ {0}.

Corollary 10. For any x ≥ Lk and any k ∈ R \ {0} we have

sign[(H ′k)
2
− Hk H ′′k ] = sign(k).

Proof. The proof follows from Lemma 8 and the identity

k(H 2
k − Hk−1 Hk+1)= (H ′k)

2
− Hk H ′′k (29)

by (5), (20) and (21). �
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2.2. Checking the partial differential inequality. Let p= 1+1/k. Further we assume k 6= 0,−1. Define
F = Fk as in the Introduction:

F(t)=
Hk+1(q)

H 1+1/k
k (q)

, where
∣∣∣∣H ′k(q)

Hk(q)

∣∣∣∣= t, q ∈ (Rk,∞), t ∈ (0,∞). (30)

Notice that by Corollary 10, the function∣∣∣∣H ′k(q)
Hk(q)

∣∣∣∣= sign(k)
H ′k(q)
Hk(q)

is positive decreasing in q for q ∈ (Rk,∞); moreover, by (23) and (20) we have H ′k(q)/Hk(q) ∼ k/q
when q→+∞. From the same asymptotic formulas it follows that when t→ 0+ we have

F(t)= 1−
p(p− 1)

2
t2
+ O(t4).

Therefore F is a well-defined function and F ∈ C2([0,∞)).
Take a positive ε > 0 and define M(x, y) as in (16):

M(x, y) := x p F
(

y
x

)
for y ≥ 0, x > ε > 0. (31)

Clearly M(x,
√

y) ∈ C2([ε,∞)×[0,∞)). By Theorem 1 in [Ivanisvili and Volberg 2015c] we have the
inequality ∫

Rn
M( f, |∇ f |) dγn ≤ M

(∫
Rn

f dγn, 0
)

(32)

for all smooth bounded f ≥ ε if (17) holds. In terms of F (see (31)) condition (17) takes the form

t FF ′′p(p−1)+ F ′F ′′− t (p−1)2(F ′)2 ≥ 0, i.e., the determinant of (17) is nonnegative, (33)

F ′′(t+ t3)+ F ′(2t2
+1−2pt2)+ Fp(p−1)t ≤ 0, i.e., the trace of (17) is nonpositive, (34)

where t = y/x is the argument of F. In fact we will show that we have equality in (33) instead of
inequality; therefore the sign of (17) will depend on the sign of the trace in (34). We will see that
inequality (34) will be reversed for p ∈ (0, 1).

From (30), (29), (20) and (21) we obtain

F ′(t)=−
k+ 1
|k|

1

H 1/k
k

, (35)

F ′′(t)=
F ′

|k|
Hk Hk−1

H 2
k − Hk+1 Hk−1

, (36)

F(t)=−
|k|

k+ 1
Hk+1

Hk
F ′. (37)
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If we plug (36) and (37) into (33) we obtain that the left-hand side of (33) is zero. If we plug (36) and
(37) into (34) we obtain

left-hand side of (34)=
[
(k H 2

k−1− H 2
k + Hk−1 Hk+1)

2
+ H 2

k−1 H 2
k

H 2
k (H

2
k − Hk+1 Hk−1)

]
F ′.

Thus the sign of left-hand side of (34) coincides with the sign of F ′, which coincides with sign(−(k+1)).
The condition p ∈ R \ [0, 1] implies that k > −1 and therefore (17) holds. The condition p ∈ (0, 1)
implies that k <−1 and therefore the inequality in (17) is reversed.

Thus we have obtained (32) for smooth bounded functions f ≥ ε. Next we claim that for an arbitrary
smooth bounded f ≥ 0 with

∫
Rn f p dγn <∞, we can apply the inequality to fε := f + ε and send ε to 0

in (9). Indeed, it follows from (6) and (23) that as t→∞ we have

F(t)∼


−t1+1/k(H ′k(Rk))

−1/k for k > 0,

sign(−1− k)
(

et2/2
√

2π
t |0(−1− k)|

)−1/k

|1+ k|1+1/k for k < 0, k 6= −1.
(38)

Thus for p > 1, that is, k > 0, the claim about the limit follows from the estimate |F(t)| ≤ C1+C2t p

together with the Lebesgue dominated convergence theorem.
If p < 0, that is, k ∈ (−1, 0), we rewrite (9) in a standard way as∫

Rn
f p
ε dγn −

(∫
Rn

fε dγn

)p

≤

∫
Rn

f p
ε

(
1− F

(
|∇ f |

fε

))
dγn. (39)

Since f is bounded, f ≥ 0 and
∫

Rn f p dγn <∞, there is no issue with the left-hand side of (39) when
ε→ 0. For the right-hand side of (39) we notice that the function x p(1− F(y/x)) is nonnegative and
decreasing in x . Then the claim follows from the monotone convergence theorem. The nonnegativity
follows from the observation that F(0)= 1 and F ′< 0 (see (35) where we have k>−1). The monotonicity
follows from (6), (35), (20) and the straightforward computations

∂

∂x
(x p(1− F(y/x)))= x p−1(p− pF(t)+ t F ′(t))= x p−1 p

[
1−

q

H 1/k
k (q)

]
, (40)

where

|k|
Hk−1(q)
Hk(q)

= t =
y
x

and q ∈ (Rk,∞). The last expression in (40) is negative because

1≥ F(t)=
Hk+1

H 1+1/k
k

=
q Hk − k Hk−1

H 1+1/k
k

>
q

H 1/k
k

.

Finally if p ∈ (0, 1), that is, k <−1, we have the opposite inequality in (39). In this case the situation
is absolutely the same as for k ∈ (−1, 0) except now we should consider the function x p(F(y/x)− 1),
which is nonnegative and decreasing in x ; see (40). This finishes the proof of the theorem.

Now let us show Proposition 2. Since F(0)= 1, it is enough to show a stronger inequality, namely
F ′+ p(p− 1)t ≥ 0. From (35) and the fact that k > 1 since p ∈ (1, 2), we obtain that it is enough to
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show the inequality

−
p

H 1/k
k

+ p(p− 1)
H ′k
Hk
≥ 0 for all k ≥ 1, q ∈ (Rk,∞).

Using (20) and p = 1+ 1/k we notice that the inequality can be rewritten as 1≥ Hk(q)/H k/(k−1)
k−1 (q) for

all q ∈ (Rk,∞). To verify the last inequality recall that F(0)= 1 and F ′(t) < 0. Therefore F(t)≤ 1. We
also recall the definition of F(t); see (30). It follows that 1≥ F = Hk+1/H 1+1/k

k for all k > 0. The last
inequality is the same as

1≥
Hk(q)

H k/(k−1)
k−1 (q)

for all q ∈ (Rk,∞), k > 1. (41)

This finishes the proof of Proposition 2.
To verify Corollary 3 we only need to prove the monotonicity of the map (13) for p ∈ (1, 2], that is,

k ≥ 1, and the rest will follow from (38). If k = 1 there is nothing to prove; therefore we assume k > 1.
By (40) it is enough to show that L(q) := H 1/k

k (q)− q ≤ 0 for q ∈ (Rk,∞). The growth condition (24)
on Hk implies that limq→∞ L(q)= 0. If L ′(q)≥ 0 then we are done. Using (20) we notice that L ′(q)≥ 0
is equivalent to (41), which was already proved.

2.3. Proof of Corollaries 4 and 5. Notice that as y→ 0 we have

Fexp(y)= 1−
y2

2
+ O(y4) and F− ln(y)=−

y2

2
+ O(y4).

One can check that

Mexp(x, y) := ex Fexp(y), Mexp(x, 0)= ex, Mexp(x,
√

y) ∈ C2(R×R+),

M− ln(x, y) := − ln(x)+ F− ln

(
y
x

)
, M− ln(x, 0)=− ln x, x > 0,

and M− ln(x,
√

y) ∈ C2([ε,∞)×R+) for any ε > 0. By straightforward computations we notice that if
we set ψ(q)= α−

∫ q
1 H−1(s) ds then using the identity 1= q H−1(q)+ H−2(q) we obtain

Fexp(H−1)= qeψ, F ′exp(H−1)=−eψ and F ′′exp(H−1)=−
H−1

H−2
.

Similarly we compute that

F ′
− ln

(
H−2

H−1

)
=−H−1 and F ′′

− ln

(
H−2

H−1

)
=−

H−2 H 2
−1

H 2
−1− H−2

.

Next one notices that Mexp and M− ln satisfy (17) (in fact the determinant of (17) is zero). Then by
Theorem 1 in [Ivanisvili and Volberg 2015c] we obtain the corollaries. The passage to the limit for
M− ln(x, y) when ε → 0 follows from the monotone convergence theorem. Indeed, we notice that
−F− ln(y/x)≥ 0 is decreasing in x . We apply Corollary 5 to fε = f + ε and send ε→ 0.
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2.3.1. How we guessed the functions Mexp and M− ln. One may ask how to find the functions Mexp and
M− ln. To find Mexp we should apply (9) to functions f = eg/p, where g is some fixed function. Then (9)
takes the form ∫

Rn
eg F1/(p−1)

(
|∇g|

p

)
dγn ≤

(∫
Rn

eg/p dγn

)p

. (42)

Now we take p→∞. The right-hand side of (42) tends to exp(
∫

Rn g dγn). For the left-hand side of (42)
we should compute the limit

Fexp(t) := lim
p→∞

F1/(p−1)

(
t
p

)
= lim

p→∞
F1/(p−1)

(
t

p− 1

)
= lim

k→0+
Fk(tk).

In fact all equalities can be justified by direct calculations using the fact that Hk(x) = H(x, k) is the
entire function of x and k; see [Temme 2015] for the parabolic cylinder function and formula (22).

It is clear that Fexp(0)= 1. Next if we take k→ 0+ in (6) we obtain

lim
k→0+

Fk

(∣∣∣∣H ′k
Hk

∣∣∣∣)= lim
k→0+

Fk

(
k

Hk−1

Hk

)
= lim

k→0+
Fk

(
k

H−1

H0

)
= Fexp(H−1).

On the other hand, for the right-hand side of (6) we have

lim
k→0+

Hk+1(q)

H 1+1/k
k

= q lim
k→0+

H−1/k
k .

Here we have used H0(q) = 1 and H1(q) = q. Thus it remains to find limk→0+ H−1/k
k . If we take the

derivative in k of (20) we obtain Hxk(x, k) = H(x, k − 1)+ k Hk(x, k) (here subindices denote partial
derivatives). Now taking k = 0 we obtain Hxk(x, 0)= H(x,−1). Thus Hk(x, 0) is an antiderivative of
H(x,−1)= H−1. So

lim
k→0+

H−1/k
k = lim

k→0+
exp

(
−

1
k

ln
(
1+ k Hk(x, 0)+ o(k)

))
= exp

(
−

∫
H−1(s) ds

)
.

Finally we obtain

Fexp(H−1(q))= q exp
(

C −
∫ q

1
H−1

)
. (43)

In order to satisfy the condition Fexp(0)= 1, the constant c must be chosen as C =
∫
∞

1 (H−1−1/s) ds;
indeed send q→∞ in (43). This gives Corollary 4. It is worth mentioning that we have also obtained

Hk(x, 0)=
∫ x

1
H−1(s) ds−α;

see (8).
To find M− ln, let F(x, k) := Fk(x). Let Fk(x, k) denote the partial derivative in k of F(x, k). If we

send p→ 0, p< 0 in (9) and compare the terms of order p we obtain∫
Rn

(
ln f − Fk

(
|∇ f |

f
,−1

))
dγn ≥ ln

(∫
Rn

f dγn

)
.
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It remains to find the function Fk(x,−1). Let us equate terms of order (k+ 1) as k→−1, k<−1 in

F
(
|Hx(x, k)|

H(x, k)
, k
)
=

H(x, k+ 1)
H(x, k)1+1/k .

Straightforward computation shows that

Fk

(
H−2(x)
H−1(x)

,−1
)
= Hk(x, 0)+ ln H−1(x)=

∫ x

1
H−1(s) ds−α+ ln H−1(x),

where

α =

∫
∞

1

(
H−1(s)−

1
s

)
ds.

3. Concluding remarks

The reader may wonder how we guessed the choice (16). Of course it was not a random guess. Function
(16) is the best possible in the sense that the determinant of (17) is identically zero:

Myy

(
Mxx +

My

y

)
−M2

xy = 0,

M(x, 0)= x p for x ≥ 0.
(44)

Initially this was the way we started looking for M(x, y) as the solution of the Monge–Ampère equation
with a drift (44). By a proper change of variables, the equation reduces to the backwards heat equation
(see [Ivanisvili and Volberg 2015c] for more details where the connection with the theory of exterior
differential systems of R. Bryant et al. [1991] was exploited)

uxx + ut = 0, (45)

u(x, 0)= Cx p/(p−1) for x ≥ 0. (46)

One can notice that the Hermite polynomials do satisfy (45) and (46) when p/(p − 1) is a positive
integer. In general, one should invoke Hermite functions and this is the reason for the appearance of these
functions in our theorem.

Another possibility is to assume that M(x, y) should be homogeneous of degree p, which forces M to
have the form (31) for some F. Next setting h = F/F ′ and further by a subtle change of variables, one
obtains Hermite differential equation (5).

Nevertheless, for the formal proof of Theorem 1 we do not need to go through the details. We have
M(x, y) defined by (16) and we just need to check that it satisfies the desired properties.

That M(x, y) satisfies (17) makes it possible to extend Theorem 1 in a semigroup setting for uniformly
log-concave probability measures. Indeed, let dµ= e−U dx , where HessU ≥ R·Id, R> 0. Let L =1−
∇U ·∇ and Pt=et L be the semigroup with generator L; see [Ivanisvili and Volberg 2015c; Bakry et al. 2014].

Corollary 11. For any p ∈ R \ [0, 1] and any smooth bounded f ≥ 0 with
∫

Rn f p dµ <∞ we have

Pt

[
f p F1/(p−1)

(
|∇ f |

f
√

R

)]
≤ (Pt f )p F1/(p−1)

(
|∇Pt f |

Pt f
√

R

)
.

The inequality is reversed if p ∈ (0, 1).
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Proof. Notice that M̃(x, y)= M(x, y/
√

R) satisfies (17). Now it remains to use inequality (2.3) from
[Ivanisvili and Volberg 2015c]. �

By taking t→∞ and using the fact that |∇Pt f | ≤ e−t R Pt |∇ f |, we obtain Corollary 6.
Finally we would like to mention that having characterization (17) of functional inequalities (32)

makes our approach to problem (9) systematic. Very similar local estimates happen to rule some global
inequalities. We refer the reader to our recent papers on this subject [Ivanisvili and Volberg 2015a;2015b;
Ivanisvili 2016].
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