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We give a technically simple approach to the maximal regularity problem in parabolic tent spaces for
second-order, divergence-form, complex-valued elliptic operators. By using the associated Hardy space
theory combined with certain L2-L2 off-diagonal estimates, we reduce the tent space boundedness in
the upper half-space to the reverse Riesz inequalities in the boundary space. This way, we also improve
recent results obtained by P. Auscher et al.
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1. Introduction

Let R1+n
+ be the upper half-space R+×Rn with R+ = (0,∞) and n ∈ N+ = {1, 2, . . . }. Define the tent

space T p
par, n/(n+ 1) < p <∞, as the space of all locally square-integrable functions on R1+n

+ such that

‖F‖T p
par
:=

(∫
Rn

(∫∫
R1+n
+

1B(x, t1/2)(y)
tn/2 |F(t, y)|2 dt dy

)p/2

dx
)1/p

<∞. (1)

The scale T p
par, n/(n+1)< p<∞, is a parabolic analogue of the tent spaces introduced by R. R. Coifman,

Y. Meyer and E. M. Stein [Coifman et al. 1985].
Let A = A(x) be an n × n matrix of complex L∞ coefficients, defined on Rn , and satisfying the

ellipticity (or “accretivity”) condition

λ|ξ |2 ≤ Re Aξ · ξ and |Aξ · ζ | ≤3|ξ ||ζ | (2)

for ξ, ζ ∈ Cn and for some λ and 3 such that 0< λ≤3<∞. Let

L := − div A∇
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(its precise definition will be recalled in next section). Consider the associated forward maximal regularity
operator M+L given by

M+L (F)t :=
∫ t

0
Le−(t−s)L Fs ds, (3)

originally defined on F ∈ L2(R+; D(L)). Here D(L) is the domain of L in L2(Rn) and Fs = F(s, · ).
By a classical result of L. de Simon [1964], M+L extends to a bounded operator on L2(R+; L2(Rn)). By
Fubini’s theorem,

T 2
par(R

1+n
+
)' L2(Rn

; L2(R+)). (4)

For p different from 2, the analogous equivalence of (4) between T p
par(R

1+n
+ ) and L p(Rn

; L2(R+)) breaks
down. We shall refer to the maximal regularity (namely, the boundedness of M+L ) in T p

par as conical
maximal regularity for the reason that (parabolic) cones are involved in defining tent spaces in (1).

The maximal regularity operator M+L is a typical example of singular integral operators with operator-
valued kernels. Let 1≤ p ≤ 2. Let

dist(E, E ′) := inf{|x − y| : x ∈ E, y ∈ E ′}.

We shall say that a class of uniformly L2
= L2(Rn) bounded kernels {T (t)}t>0 satisfies the L p-L2

off-diagonal decay with some order M ∈ N+ if we have

‖1E ′T (t)1E f ‖L2 . t−(n/2)(1/p−1/2)
(

1+
dist(E, E ′)2

t

)−M

‖1E f ‖L p (5)

for all Borel sets E, E ′ ⊂ Rn , all t > 0 and all f ∈ L p
∩ L2. We shall say {T (t)}t>0 satisfies the L p-L2

off-diagonal decay if it satisfies the L p-L2 off-diagonal decay with any order M ∈ N+. Denote by
p− = p−(L) the infimum of p for which the heat semigroup {e−t L

}t>0 satisfies the L p-L2 off-diagonal
decay. Define the index

(p−)∗ :=
np−

n+ p−
. (6)

For L =−1=− div∇, one has p− = 1 and 1∗ = n/(n+ 1).
Our main result in this letter reads as follows.

Theorem 1.1. Let L =− div A∇ with A satisfying (2) and p− defined as in (6). Then for p ∈ ((p−)∗, 2],
the maximal regularity operator M+L defined as in (3) extends to a bounded operator on T p

par.

We end the introduction with several remarks.

Remark 1.2. Under the assumption (p−)∗ < 1, Theorem 1.1 was first proved by Auscher et al. [2012a,
Theorem 3.1] (with m = 2, β = 0 and q close to p− in their statement). Indeed, we note that (p−)∗ < 1
is equivalent to (p−)′ > n, where (p−)′ is the dual exponent of p−. A threshold condition essentially the
same as (p−)′ > n is used in [Auscher et al. 2012a].

A general framework of singular integral operators on tent spaces is also presented by Auscher et al.
[2012a]. Their method is heavily based on the L p-L2 off-diagonal decay of the family {t Le−t L

}t>0
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for p ∈ (p−, 2). Note that they already improved the previous result in [Auscher et al. 2012b], the
T p

par-boundedness of M+L for p ∈ (2∗, 2], which assumes L2-L2 off-diagonal decay only.
Here we shall give a technically simple approach to Theorem 1.1 by using the well-established

L-associated Hardy space theory combined (mainly) with L2-L2 off-diagonal decay of {t Le−t L
}t>0.

Remark 1.3. The motivation of the reduction scheme

(operator theory on tent spaces)→ (Hardy space theory),

which is involved in our proof of Theorem 1.1, comes from the study of conical maximal regularity (in
elliptic tent spaces) for first-order perturbed Dirac operators [Huang 2015, Chapter 5]. Furthermore,
the motivation of considering such conical (elliptic) maximal regularity estimates is suggested by their
applications to boundary-value elliptic problems (see [Auscher and Axelsson 2011] for example). In the
parabolic case, the conical maximal regularity results have already proven to be useful in various settings
(see for example [Auscher et al. 2014; Auscher and Frey 2015]).

Remark 1.4. Though the singularity of the integral operator M+L is at s = t , the most involved part
turns out to be the estimation of tent space norms when s→ 0. For more explanations concerning the
“singularity” pertaining to singular integral operators and maximal regularity operators on tent spaces, see
[Auscher et al. 2012a, Remark 3.6; Auscher and Frey 2015, Remark 5.23].

Remark 1.5. Theorem 1.1 also extends to higher order elliptic operators. Then one changes correspond-
ingly the homogeneity of tent spaces and off-diagonal decay in (5). We leave this issue to the interested
reader.

2. Elliptic operators and Hardy spaces

We give some preliminary materials needed in the proof of Theorem 1.1.
Let A satisfy (2). We define the divergence-form elliptic operator

L f := − div(A∇ f ),

which we interpret in the sense of maximal-accretive operators via a sesquilinear form. That is, D(L) is
the largest subspace contained in W 1,2 for which∣∣∣∣∫

Rn
A∇ f · ∇g

∣∣∣∣≤ C‖g‖2

for all g ∈W 1,2, and we set L f by

〈L f, g〉 =
∫

Rn
A∇ f · ∇g

for f ∈ D(L) and g ∈W 1,2. Thus defined, L is a maximal-accretive operator on L2 and D(L) is dense
in W 1,2. Furthermore, L has a square root, denoted by L1/2 and defined as the unique maximal-accretive
operator such that

L1/2L1/2
= L (7)

as unbounded operators [Kato 1976, p. 281].
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For L as formulated above, the development of an L-associated Hardy space theory was taken in
[Hofmann and Mayboroda 2009] (and independently in [Auscher et al. 2008] in a different geometric
setting), in which the authors considered the model case H 1

L(R
n). In presence of pointwise heat kernel

bounds, see [Duong and Yan 2005]. The definition of H 1
L given in [Hofmann and Mayboroda 2009;

Auscher et al. 2008] can be extended immediately to n/(n+ 1) < p ≤ 2 [Hofmann et al. 2011]. To this
end, consider the (conical) square function associated with the heat semigroup generated by L

SL( f )(x) :=
(∫∫

0(x)
|t2Le−t2 L f (y)|2

dt dy
t1+n

)1/2

, x ∈ Rn,

where, as usual,
0(x)= {(t, y) ∈ R1+n

+
: |x − y|< t}

is a nontangential cone with vertex at x ∈ Rn . As in [Hofmann and Mayboroda 2009; Hofmann et al.
2011], we define H p

L (R
n) for n/(n+ 1) < p ≤ 2 as the completion of

{ f ∈ L2(Rn) : SL( f ) ∈ L p(Rn)}

in the quasinorm
‖ f ‖H p

L (R
n) := ‖SL( f )‖L p(Rn).

We will not get into the dual side (p > 2) of the Hardy space theory.
For L2-L2 off-diagonal decay related to {e−sL , sLe−sL ,

√
s∇e−sL

}s>0, and other holomorphic func-
tions of L (for example (I − e−sL)σ with σ > 0), we refer to Chapter 2 of the memoir [Auscher 2007].

3. Proof of Theorem 1.1

Note that the extension of M+L will be divided into two steps: first from F ∈ L2(R+; D(L)) to T 2
par and

then for n/(n+ 1) < p < 2 from T 2
par ∩ T p

par to T p
par.

First we split the operator M+L : for ` ∈ N+ large, set

R`L := M+L − V `
L , (8)

where for F ∈ L2(R+; D(L)) the singular part R`L is given formally by

R`L(F)t =
∫ t

0
Le−(t−s)L(I − e−2sL)`Fs ds (9)

and the regular part is defined by

V `
L =

∑̀
k=1

(
`

k

)
VL ,k

with

VL ,k(F)t :=
∫ t

0
Le−(t+(2k−1)s)L Fs ds, t ∈ R+.

For the above binomial sum V `
L , it suffices to consider VL := VL ,1.

Let 2N+ = {2, 4, . . . }. We make the following observation.
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Lemma 3.1. For ` ∈ 2N+ and 1
2` >

1
2 +

1
4 n, the operator R`L , as given in (9) through (8), extends to a

bounded operator on T p
par for any n/(n+ 1) < p ≤ 2.

Proof. The T 2
par-boundedness is de Simon’s theorem plus the uniform L2-boundedness of {(I−e−2sL)`}s>0.

By interpolation it suffices to consider n/(n+ 1) < p ≤ 1, and this follows from Lemmata 3.4 and 3.5 of
[Auscher et al. 2012a] in the particular case m = 2, β = 0 and q = 2.1 Indeed, first we can decompose
the operator R`L as in [Auscher et al. 2012a] in the way

R`L(F)t =
∫ t

t/2
Le−(t−s)L(I − e−2sL)`Fs ds+

∫ t/2

0
Le−(t−s)L(I − e−2sL)`Fs ds =: I+ II.

Here we view T1 = {(I − e−2sL)`}s>0 as an operator on T p
par given by

T1 : F 7→ T1(F)s := (I − e−2sL)`Fs,

with the similar interpretation for T2 = {(I − e−2sL)`/(sL)`/2}s>0 in

Le−(t−s)L(I − e−2sL)` =
( s

t−s

)`/2
L((t − s)L)`/2e−(t−s)L (I − e−2sL)`

(sL)`/2
.

Note that t− s ∼ t when s < t/2. Therefore, to obtain the T p
par-boundedness of R`L for n/(n+1) < p ≤ 1,

we can use Lemma 3.4 of [Auscher et al. 2012a] together with the T p
par-boundedness of T1 to estimate I

and use Lemma 3.5 of [Auscher et al. 2012a] together with the T p
par-boundedness of T2 to estimate II.

The latter tent space boundedness results on Ti , i = 1, 2, are implied by their L2-L2 off-diagonal decay
with order at least 1

2`, which satisfies the condition

`

2
>

1
2
+

n
4
=

n
2

(
1

n/(n+ 1)
−

1
2

)
.

This implication can be easily verified via the extrapolation method on tent spaces through atomic
decompositions. Note that we also need the condition 1

2` >
1
2 +

1
4 n in (s/(t − s))`/2 ∼ (s/t)`/2 when

applying Lemma 3.5 of [Auscher et al. 2012a]. �

Next we rewrite the operator VL in the following way:

VL(F)t =−ṼL(F)t + IL(F)t , t ∈ R+, (10)

where for F ∈ L2(R+; D(L)) the backward part ṼL is defined by

ṼL(F)t :=
∫
∞

t
Le−(t+s)L Fs ds, t ∈ R+, (11)

and the trace part IL is defined by

IL(F)t :=
∫
∞

0
Le−(t+s)L Fs ds =

√
Le−t L

∫
∞

0

√
Le−sL Fs ds.

We used the square root property
√

L
√

L = L recalled in (7).

1We point out that one can also prove this lemma by adapting directly the arguments for Lemma 3.4 of [Auscher et al. 2012a]
(see [Huang 2015] for details).
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Lemma 3.2. The integral operator ṼL as given in (11) extends to a bounded operator on T p
par for any

n/(n+ 1) < p ≤ 2.2

Proof. This is a consequence of a more general claim by Auscher et al. [2012a, Proposition 3.7], again
corresponding to the case m = 2, β = 0 and q = 2. Indeed, [Auscher et al. 2012a, Proposition 3.7] deals
with a counterpart to M+L , namely the backward maximal regularity operator

M−L (F)t :=
∫
∞

t
Le−(s−t)L Fs ds,

where F ∈ L2(R+; D(L)), and they use the splitting

M−L (F)t =
∫ 2t

t
Le−(s−t)L Fs ds+

∫
∞

2t
Le−(s−t)L Fs ds =: III+ IV.

We only need to use those arguments in proving [Auscher et al. 2012a, Proposition 3.7] with IV involved
since s − t ∼ s when s > 2t , which is equivalent to s + t ∼ s when s > t in our setting. We omit the
details. �

Now we use the L-associated Hardy spaces, which we recalled in Section 2, to treat the trace part IL .
First, from the conical square function estimates [Hofmann et al. 2011, Proposition 4.9], one has, for
n/(n+ 1) < p ≤ 2, ∥∥∥∥√Le−t L

∫
∞

0

√
Le−sL Fs ds

∥∥∥∥
T p

par

.

∥∥∥∥∫ ∞
0

√
Le−sL Fs ds

∥∥∥∥
H p

L

for F ∈ L2(R+; D(L)). Next, from the reverse Riesz inequalities [Hofmann et al. 2011, Proposition 5.17],
one has, for p ∈ ((p−)∗, 2],

‖
√

L f ‖H p
L
. ‖∇ f ‖H p

for f ∈ L2; hence, one further has, for p ∈ ((p−)∗, 2],∥∥∥∥∫ ∞
0

√
Le−sL Fs ds

∥∥∥∥
H p

L

.

∥∥∥∥∫ ∞
0
∇e−sL Fs ds

∥∥∥∥
H p
.

Here, as usual, we use the convention H p
= L p for p > 1.3

For F ∈ T 2
par, consider the sweeping operator

πL(F) :=
∫
∞

0
∇e−sL Fs ds.

An equivalent formulation of the Kato square root estimate for L∗ [Auscher et al. 2002] is the square
function estimate ∫∫

R1+n
+

|e−t L∗ div EF(y)|2 dt dy . ‖ EF‖22

2As we will see in the proof, the lemma also holds for any 0< p ≤ 2. But that does not help in proving Theorem 1.1.
3We remark that in [Auscher and Frey 2015, Lemma 5.21] a variant of IL is treated in a similar way, with informative

connections to the Hardy space theory associated with the first-order perturbed Dirac operators as alluded to in Remark 1.3.



CONICAL MAXIMAL REGULARITY FOR ELLIPTIC OPERATORS VIA HARDY SPACES 1087

for all EF ∈ L2(Rn
;Cn); hence, the mapping given by

QL∗ : EF 7→QL∗( EF)(t, y) := (e−t L∗ div EF)(y)

is bounded from L2(Rn
;Cn) to T 2

par. Thereby, we see that πL : T 2
par→ L2 is a bounded operator by duality

with QL∗ .
Recall that a T p

par-atom A supported in the parabolic Carleson cylinder

Cyl(B) := (0, r2
B)× B

for some ball B ⊂ Rn (with radius rB) satisfies the size estimate

‖A‖T 2
par
≤ |B|−(1/p−1/2). (12)

We have the following result on πL .

Lemma 3.3. For any n/(n+1)< p≤ 1 and any T p
par-atom A with supp A⊂Cyl(B) for some ball B⊂Rn

(with radius rB),

m := πL(A)=
∫ r2

B

0
∇e−sL As ds

satisfies the uniform estimate

‖m‖H p . 1. (13)

Hence, πL extends to a bounded operator from T p
par to H p for n/(n+ 1) < p ≤ 2.

Proof. For m = πL(A) with A being T p
par-atoms, n/(n+1) < p≤ 1, and by adapting [Coifman et al. 1983,

Théorème 3; 1985, Theorem 6], (13) follows from the L2-L2 off-diagonal decay for the heat semigroup
{e−sL

}s>0 and the gradient family {
√

s∇e−sL
}s>0, the size estimate (12) and the Coifman–Weiss molecular

theory for H p. Then for n/(n+ 1) < p ≤ 1, πL extends to a bounded operator from T p
par to H p, and by

interpolation, πL extends to a bounded operator from T p
par to H p for n/(n+ 1) < p ≤ 2. �

With the splittings (8) and (10), together with the conditions ` ∈ 2N+ and 1
2` >

1
2 +

1
4 n, and using

Lemmata 3.1, 3.2 and 3.3 in order, the proof of Theorem 1.1 (with p ∈ ((p−)∗, 2]) is then concluded.
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