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We give a sufficient condition for global existence of the solutions to a generalized derivative nonlinear
Schrödinger equation (gDNLS) by a variational argument. The variational argument is applicable to
a cubic derivative nonlinear Schrödinger equation (DNLS). For (DNLS), Wu (2015) proved that the
solution with the initial data u0 is global if ‖u0‖

2
L2 < 4π by the sharp Gagliardo–Nirenberg inequality.

The variational argument gives us another proof of the global existence for (DNLS). Moreover, by the
variational argument, we can show that the solution to (DNLS) is global if the initial data u0 satisfies
‖u0‖

2
L2 = 4π and the momentum P(u0) is negative.
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1. Introduction

1A. Background. The following equation is known as a derivative nonlinear Schrödinger equation:

i∂tv+ ∂
2
x v+ i∂x(|v|

2v)= 0, (t, x) ∈ R×R. (1-1)

This equation appears in plasma physics [Mio et al. 1976; Mjølhus 1976] and as a model for ultrashort
optical pulses [Moses et al. 2007]. Using the gauge transformation

u(t, x)= v(t, x) exp
(

i
2

∫ x

−∞

|v(t, x)|2 dx
)
,

we get a Hamiltonian form of (1-1):

i∂t u+ ∂2
x u+ i |u|2∂x u = 0, (t, x) ∈ R×R. (DNLS)

Namely, this equation can be written as i∂t u = E ′(u) (see below for the definition of the Hamiltonian E).
The Cauchy problem for (DNLS) (or equivalently (1-1)) has been studied by many researchers. It is known
that (DNLS) is locally well-posed in the energy space H 1(R). See [Tsutsumi and Fukuda 1980; Hayashi
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and Ozawa 1992; Hayashi 1993; Hayashi and Ozawa 1994a; 1994b]. Hayashi and Ozawa [1994a] proved
that the solution is global if ‖u0‖

2
L2 < 2π . See also [Ozawa 1996]. Wu [2013; 2015] proved that it holds if

‖u0‖
2
L2 < 4π . Recently, Miao, Tang, and Xu obtained the global well-posedness by a variational argument

(see the remark on page 1156). For the initial data with low regularity, there are also many references.
Takaoka [1999] proved that (DNLS) is locally well-posed in H s(R) when s ≥ 1

2 by the Fourier restricted
method. Biagioni and Linares [2001] proved that the solution map from H s(R) to C([−T, T ] : H s(R)),
where T > 0, for (DNLS) is not locally uniformly continuous when s < 1

2 . Colliander, Keel, Staffilani,
Takaoka, and Tao [Colliander et al. 2002] proved that the H s-solution is global if ‖u0‖

2
L2 < 2π when s> 1

2
by the I -method (see also [Colliander et al. 2001; Takaoka 2001]). Recently, Miao, Wu, and Xu [Miao
et al. 2011] showed that H 1/2-solution is global if ‖u0‖

2
L2 < 2π . Guo and Wu [2017] improved their

result; that is, they proved that H 1/2-solution is global if ‖u0‖
2
L2 < 4π . The orbital stability of solitary

waves has been also studied. It is known that (DNLS) has a two-parameter family of the solitary waves
uω,c(t, x)= eiωtφω,c(x − ct), where (ω, c) satisfies ω > c2/4, or ω = c2/4 and c > 0 (see below for the
explicit formula of φω,c). Guo and Wu [1995] proved that the solitary waves uω,c are orbitally stable when
ω> c2/4 and c< 0 by the abstract theory of Grillakis, Shatah, and Strauss [Grillakis et al. 1987; 1990] and
the spectral analysis of the linearized operators. Colin and Ohta [2006] proved that the solitary waves uω,c
are orbitally stable when ω> c2/4 by characterizing the solitary waves from the viewpoint of a variational
structure. The case of ω = c2/4 and c > 0 was treated by Kwon and Wu [2016]. Recently, the stability
of the multisolitons was studied by Miao, Tang, and Xu [Miao et al. 2017b] and Le Coz and Wu [2016].

To understand the structural properties of (DNLS), Liu, Simpson, and Sulem [Liu et al. 2013] introduced
an extension of (DNLS) with general power nonlinearity. The generalized derivative nonlinear Schrödinger
equation is {

i∂t u+ ∂2
x u+ i |u|2σ ∂x u = 0, (t, x) ∈ R×R,

u(0, x)= u0(x), x ∈ R,
(gDNLS)

where σ > 0. Equation (gDNLS) is invariant under the scaling transformation

uγ (t, x) := γ 1/(2σ)u(γ 2t, γ x), γ > 0.

This implies that its critical Sobolev exponent is sc =
1
2 − 1/(2σ). In particular, (DNLS) is L2-critical.

Liu et al. [2013] investigated the orbital stability of a two-parameter family of solitary waves

uω,c(t, x)= eiωtφω,c(x − ct),

where (ω, c) satisfies ω > c2/4, or ω = c2/4 and c > 0, and

φω,c(x)=8ω,c(x) exp
(

i
c
2

x −
i

2σ + 2

∫ x

0
8ω,c(y)2σ dy

)
, (1-2)

8ω,c(x)=


{

(σ + 1)(4ω− c2)

2
√
ω cosh(σ

√
4ω− c2x)− c

}1/(2σ)

if ω > c2/4,{
2(σ + 1)c
σ 2(cx)2+ 1

}1/(2σ)

if ω = c2/4 and c > 0.
(1-3)
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We note that 8ω,c is the positive even solution of

−8′′+ (ω− 1
4 c2)8+ 1

2 c|8|2σ8−
2σ + 1
(2σ + 2)2

|8|4σ8= 0, x ∈ R, (1-4)

and then the complex-valued function φω,c satisfies

−φ′′+ωφ+ icφ′− i |φ|2σφ′ = 0, x ∈ R.

Liu et al. [2013] proved that the solitary waves are orbitally stable if −2
√
ω < c < 2z0

√
ω, and orbitally

unstable if 2z0
√
ω< c< 2

√
ω when 1<σ < 2, where the constant z0= z0(σ )∈ (−1, 1) is the solution of

Fσ (z) := (σ − 1)2
{∫
∞

0
(cosh y− z)−1/σ dy

}2

−

{∫
∞

0
(cosh y− z)−1/σ−1(z cosh y− 1) dy

}2

= 0.

Moreover, they also proved that the solitary waves for all ω > c2/4 are orbitally unstable when σ ≥ 2 and
orbitally stable when 0 < σ < 1. Recently, Fukaya [2016] proved that the solitary waves are orbitally
unstable if c = 2z0

√
ω when 7

6 < σ < 2. More recently, Tang and Xu investigated stability of the sum of
two solitary waves for (gDNLS) (see [Tang and Xu 2017] for more details). Before Liu et al. [2013],
Hao [2007] considered (gDNLS) and proved the local well-posedness in H 1/2(R) when σ ≥ 5

2 . Santos
[2015] proved the existence and uniqueness of a solution u ∈ C([0, T ]; H 1/2(R)) for sufficiently small
initial data when σ > 1. Recently, Hayashi and Ozawa [2016] proved local well-posedness in H 1(R)

when σ ≥ 1 and that the following quantities are conserved:

E(u) := 1
2‖∂x u‖2L2 −

1
2σ + 2

Re
∫

R

i |u|2σu∂x u dx, (Energy)

M(u) := ‖u‖2L2, (Mass)

P(u) := Re
∫

R

i∂x uu dx . (Momentum)

Moreover, they proved global well-posedness for small initial data. They also constructed global solutions
for any initial data in H 1(R) in the case 0 < σ < 1 (L2-subcritical case). However, in the case σ ≥ 1
(L2-critical or supercritical case), there has been no global existence result for large data. In the present
paper, we investigate global well-posedness for (gDNLS) in the case σ ≥ 1 by a variational argument.
More precisely, we give a variational characterization of solitary waves and a sufficient condition for
global existence of solutions to (gDNLS) by using the characterization. Such an argument was done for
nonlinear hyperbolic partial differential equations by Sattinger [1968] (see also [Tsutsumi 1972; Payne
and Sattinger 1975]). Our argument is also applicable to (DNLS). Indeed, the variational argument gives
another proof of the result by Wu [2015]. Moreover, we prove that the solution of (DNLS) is global if the
initial data u0 satisfies ‖u0‖

2
L2 = 4π and P(u0) < 0.

1B. Main results. To state our main results, we introduce some notations. Let (ω, c) satisfy

ω > c2/4 or ω = c2/4 and c > 0. (1-5)
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For (ω, c) satisfying (1-5), we define

Sω,c(ϕ) := E(ϕ)+ 1
2ωM(ϕ)+ 1

2 cP(ϕ).

We denote the nonlinear term by

N (ϕ) := Re
∫

R

i |ϕ|2σϕ∂xϕ dx .

We define

S̃ω,c(ψ) := 1
2‖∂xψ‖

2
L2 +

1
2(ω−

1
4 c2)‖ψ‖2L2 +

c
2(2σ + 2)

‖ψ‖2σ+2
L2σ+2 −

1
2σ + 2

N (ψ).

Then, we have Sω,c(ϕ)= S̃ω,c(e−(c/2)i xϕ) by using the identities

cP(ϕ)=−‖∂xϕ‖
2
L2 −

1
4 c2
‖ϕ‖2L2 +‖∂x(e−(c/2)i xϕ)‖2L2, (1-6)

N (ϕ)=− 1
2 c‖ϕ‖2σ+2

L2σ+2 + N (e−(c/2)i xϕ). (1-7)

We denote the scaling transformation by f α,βλ (x) := eαλ f (e−βλx) for (α, β) ∈ R2 and any function f .
For (α, β) ∈ R2, we define

K̃ α,β
ω,c (ψ) := ∂λ S̃ω,c(ψ

α,β
λ )|λ=0,

K α,β
ω,c (ϕ) := K̃ α,β

ω,c (e
−(c/2)i xϕ).

By a direct calculation, we have the explicit formulae

K̃ α,β
ω,c (ψ)= 〈S̃

′

ω,c(ψ), αψ−βx∂xψ〉

=
2α−β

2
‖∂xψ‖

2
L2+

2α+β
2

(
ω−

c2

4

)
‖ψ‖2L2+

{(2σ+2)α+β}c
2(2σ+2)

‖ψ‖2σ+2
L2σ+2−αN (ψ),

K α,β
ω,c (ϕ)= 〈S̃

′

ω,c(e
−(c/2)i xϕ), αe−(c/2)i xϕ−βx∂x(e−(c/2)i xϕ)〉

= 〈S′ω,c(ϕ), αϕ+
1
2 ciβxϕ−βx∂xϕ〉

=
2α−β

2
‖∂xϕ‖

2
L2+

(
2α+β

2
ω−

c2

4
β

)
‖ϕ‖2L2+

2α−β
2

cP(ϕ)+
βc

2(2σ+2)
‖ϕ‖2σ+2

L2σ+2−αN (ϕ),

where we have used (1-6) and (1-7).

Remark. (1) If β 6= 0, then K α,β
ω,c is different from I α,βω,c (ϕ) := ∂λSω,c(ϕ

α,β
λ )|λ=0. Indeed, the explicit

formula of I α,βω,c is

I α,βω,c (ϕ)=
2α−β

2
‖∂xϕ‖

2
L2 +

2α+β
2

ω‖ϕ‖2L2 + cαP(ϕ)−αN (ϕ).

We note that K α,0
ω,c coincides with I α,0ω,c , and especially K 1,0

ω,c= I 1,0
ω,c is nothing but the Nehari functional.

(2) It is not clear whether the momentum P is positive or not. That is why we introduce S̃ω,c by using
(1-6). Such an argument can be seen in [Bellazzini et al. 2014b] (see (14) therein for the details).

(3) The functional K α,β
ω,c is more useful to obtain the characterization of the solitary waves when ω= c2/4

and c > 0 than I α,βω,c since K α,β
ω,c contains the L2σ+2-norm (see the proof in Section 2B).
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(4) S̃ω,c and K̃ α,β
ω,c are relevant to the elliptic equation

−ψ ′′+ (ω− 1
4 c2)ψ + 1

2 c|ψ |2σψ − i |ψ |2σψ ′ = 0, x ∈ R.

We define the following function space for (ω, c) satisfying (1-5):

Xω,c :=
{

H 1(R) if ω > c2/4,
Ḣ 1(R)∩ L2σ+2(R) if ω = c2/4 and c > 0.

We consider the following minimization problem:

µα,βω,c := inf{Sω,c(ϕ) : e−(c/2)i xϕ ∈ Xω,c \ {0}, K α,β
ω,c (ϕ)= 0}

= inf{S̃ω,c(ψ) : ψ ∈ Xω,c \ {0}, K̃ α,β
ω,c (ψ)= 0}.

Remark. (1) We note that the solitary waves φc2/4,c do not belong to L2(R) when σ ≥ 2. Therefore,
we define Xc2/4,c := Ḣ 1(R)∩ L2σ+2(R) to characterize the solitary waves φc2/4,c (cf. [Kwon and
Wu 2016]).

(2) Sc2/4,c seems meaningless on the function space {ϕ : e−(c/2)i xϕ ∈ Xc2/4,c} since Sc2/4,c contains
L2-norm. However, in fact, Sc2/4,c is well-defined on the function space since S̃c2/4,c is defined
on Ḣ 1(R)∩ L2σ+2(R) and the equality Sc2/4,c(ϕ) = S̃c2/4,c(e−(c/2)i xϕ) holds. Similarly, K α,β

c2/4,c is
well-defined on this function space.

(3) Since ϕ ∈ H 1(R) if and only if e−(c/2)i xϕ ∈ H 1(R), when ω > c2/4, we have

µα,βω,c = inf{Sω,c(ϕ) : ϕ ∈ H 1(R) \ {0}, K α,β
ω,c (ϕ)= 0}.

However, when ω = c2/4 and c > 0, the above equality does not hold.

We assume that (α, β) ∈ R2 satisfies{
2α−β > 0, 2α+β > 0, and βc ≤ 0 when ω > c2/4,
2α−β > 0, 2α+β > 0, and β < 0 when ω = c2/4 and c > 0.

(1-8)

We define some function spaces:

M α,β
ω,c := {ϕ : e

−(c/2)i xϕ ∈ Xω,c \ {0}, Sω,c(ϕ)= µα,βω,c, K α,β
ω,c (ϕ)= 0},

Gω,c := {ϕ : e−(c/2)i xϕ ∈ Xω,c \ {0}, S′ω,c(ϕ)= 0}.

We give the following characterization of the solitary waves.

Theorem 1.1. Let σ ≥ 1, (ω, c) satisfy (1-5), and (α, β) satisfy (1-8). Then,

M α,β
ω,c = Gω,c = {eiθ0φω,c( · − x0) : θ0 ∈ [0, 2π), x0 ∈ R}.

Theorem 1.1 also means that µα,βω,c and M
α,β
ω,c are independent of (α, β) and M

α,β
ω,c is not empty. Thus,

we denote µα,βω,c by µω,c.
We define

K α,β,+
ω,c := {ϕ ∈ H 1(R) : Sω,c(ϕ)≤ µω,c, K α,β

ω,c (ϕ)≥ 0},

K α,β,−
ω,c := {ϕ ∈ H 1(R) : Sω,c(ϕ)≤ µω,c, K α,β

ω,c (ϕ) < 0}.

The characterization by Theorem 1.1 gives us the following sufficient condition for global existence.
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Theorem 1.2. Let σ ≥ 1, (ω, c) satisfy (1-5), and (α, β) satisfy (1-8). Then, K
α,β,±
ω,c are invariant under

the flow of (gDNLS). Namely, if the initial data u0 belongs to K
α,β,±
ω,c , then the solution u(t) of (gDNLS)

also belongs to K
α,β,±
ω,c for all t ∈ Imax, where Imax denotes the maximal existence time.

Moreover, if the initial data u0 belongs to K
α,β,+
ω,c for some (ω, c) satisfying (1-5) and (α, β) satisfying

(1-8), then the corresponding solution u of (gDNLS) exists globally in time and

‖u‖L∞(R:H1(R)) ≤ C(‖u0‖H1),

where C : [0,∞)→ R is continuous.

Recently, Miao et al. [2017a] independently obtained the results similar to Theorems 1.1 and 1.2 when
σ = 1. We will compare their method with our argument in the remark on page 1156.

We show that Theorem 1.2 gives us some interesting corollaries for (DNLS).

Corollary 1.3. Let σ = 1. If the initial data u0 ∈ H 1(R) satisfies ‖u0‖
2
L2 < 4π , then the solution of

(DNLS) is global.

Two proofs have been known for Corollary 1.3. One was obtained by Wu [2015] and another one by
Guo and Wu [2017]. We give another proof by Theorem 1.2. We compare the methods of [Wu 2015;
Guo and Wu 2017], which depend on the sharp Gagliardo–Nirenberg-type inequality, with our variational
argument. Using the gauge transformation to the solution of (DNLS)

u(t, x)= w(t, x) exp
(
−

i
4

∫ x

−∞

|w(t, x)|2 dx
)
, (1-9)

then w satisfies the equation{
i∂tw+ ∂

2
xw+

1
2 i |w|2∂xw−

1
2 iw2∂xw+

3
16 |w|

4w = 0, (t, x) ∈ R×R,

w(0, x)= w0(x), x ∈ R.
(1-10)

The energy and the momentum are transformed as

E(w)= 1
2‖∂xw‖

2
L2 −

1
32‖w‖

6
L6,

P(w)= Re
∫

R

i∂xww dx + 1
4‖w‖

4
L4 .

Hayashi and Ozawa [1992] used the sharp Gagliardo–Nirenberg inequality

‖ f ‖6L6 ≤
4
π2 ‖ f ‖4L2‖∂x f ‖2L2 (1-11)

in order to obtain an a priori estimate in Ḣ 1(R). We note that the optimizer for the inequality (1-11) is
given by Q :=81,0 and Q satisfies the elliptic equation

−Q′′+ Q− 3
16 Q5

= 0. (1-12)

Hayashi and Ozawa [1992] proved the H 1-solution of (DNLS) is global if the initial data u0 satisfies
‖u0‖

2
L2 = ‖w0‖

2
L2 < ‖Q‖2L2 = 2π (see also [Weinstein 1982]). Wu [2015] used not only the energy but
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also the momentum and the sharp Gagliardo–Nirenberg inequality

‖ f ‖6L6 ≤ 3(2π)−2/3
‖ f ‖16/3

L4 ‖∂x f ‖2/3L2 . (1-13)

We note that the optimizer for the inequality (1-13) is given by W :=81/4,1 and W satisfies the elliptic
equation

−W ′′+ 1
2 W 3
−

3
16 W 5

= 0. (1-14)

Wu [2015] proved that the H 1-solution of (DNLS) is global if the initial data u0 satisfies ‖u0‖
2
L2 =

‖w0‖
2
L2 < ‖W‖2L2 = 4π . His proof depends on a contradiction argument. Supposing that there exists

a time sequence {tn}n∈N with tn → Tmax or −Tmin such that ‖∂xw(tn)‖L2 → ∞ as n → ∞, where
(−Tmin, Tmax) is the maximal time interval, he mainly proved that X = ‖w(tn)‖8L4/‖w(tn)‖6L6 satisfies
X3
−‖w‖2L2 X2

+ 16{3(2π)−2/3
}
−3
‖w‖2L2 < 0, but this does not hold when ‖w‖2L2 < 4π . On the other

hand, Guo and Wu [2017] gave an a priori estimate directly for (1-10) by the sharp Gagliardo–Nirenberg
inequality (1-13). More precisely, they showed in [Guo and Wu 2017, Lemma 2.1] the inequality

P(w)≥ 1
4‖w‖

4
L4

(
1−
‖w‖L2

2
√
π

)
−

8
√
πE(w)‖w‖L2

‖w‖4L4

, (1-15)

and thus, ‖∂xw‖
2
L2 is bounded by P and E if ‖w‖2L2 < 4π [Guo and Wu 2017, Lemma 2.2]. In our

variational argument, we do not use a contradiction argument, the gauge transformation like (1-9), or any
sharp Gagliardo–Nirenberg inequality.

We give the global existence result in the threshold case by Theorem 1.2.

Corollary 1.4. Let σ = 1. We assume that the initial data u0 ∈ H 1(R) satisfies ‖u0‖
2
L2 = 4π . If P(u0)< 0,

then the solution of (DNLS) is global.

After submitting the present paper, Guo pointed out that Corollary 1.4 can be obtained by (1-15). We
also give the proof by (1-15) for the reader’s convenience.

The following corollary means that there exist global solutions with any large mass.

Corollary 1.5. Let σ ≥ 1. Given ψ ∈ H 1(R), set the initial data as u0,c = e(c/2)i xψ . Then there exists
c0 > 0 such that, if c ≥ c0, then the corresponding solution uc of (gDNLS) is global.

Remark. The existence of blow-up solutions in finite time is still an open problem. It might be a very
interesting problem whether finite-time blow-up occurs when the initial data u0 satisfies ‖u0‖

2
L2 = 4π

and P(u0) > 0.

1C. Compare DNLS with mass-critical NLS. Equation (DNLS) is L2-critical in the sense that the
equation and L2-norm are invariant under the scaling transformation

uγ (t, x) := γ 1/2u(γ 2t, γ x), γ > 0.

The same invariance holds for the quintic nonlinear Schrödinger equation in one-dimensional space:

i∂t u+ ∂2
x u+ 3

16 |u|
4u = 0, (t, x) ∈ R×R. (1-16)
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This equation has the same energy as (1-10). It is known that (1-16) is locally well-posed in the energy
space H 1(R) and the solution is global if the initial data u0 satisfies ‖u0‖

2
L2 < ‖Q‖2L2 , where Q is the

ground state of the same elliptic equation (1-12). The condition ‖u0‖
2
L2 < ‖Q‖2L2 is equivalent to the

condition obtained by the variational argument. In this argument, the momentum is not essential since
(1-16) is invariant under the Galilean transformation, and thus, we may assume that the momentum is zero.
On the other hand, (DNLS) is not invariant under the Galilean transformation. Therefore, the condition
by the variational argument is better than the assumption ‖u0‖

2
L2 < ‖W‖2L2 = 4π . Indeed, the momentum

and the parameter c play important roles in Corollaries 1.4 and 1.5.

1D. Idea of proofs. The proof of Theorem 1.1 is based on the method of Colin and Ohta [2006] (con-
centration compactness method). They characterized the solitary waves for ω > c2/4 when σ = 1 by the
Nehari functional I 1,0

ω,c. However, in the case ω= c2/4 and c> 0, we cannot apply their argument directly
since the L2-norm in I 1,0

ω,c disappears by (1-6). Therefore, we introduce the new functional K α,β
ω,c for (α, β)

satisfying (1-8). We can use the L2σ+2-norm instead of the L2-norm by using K α,β
ω,c . That is why we

introduce the function space Xω,c as Ḣ 1
∩ L2σ+2 in the massless case (i.e., ω = c2/4 and c > 0). Noting

that the solitary waves φc2/4,c do not belong to L2(R) when σ ≥ 2, the function space Xω,c is essential to
obtain the characterization of the solitary waves φc2/4,c. Based on the argument of Colin and Ohta [2006],
we characterize the solitary waves φc2/4,c by K α,β

ω,c . By the conservation laws and the characterization
of the solitary waves, we get an a priori estimate and thus obtain Theorem 1.2. The corollaries follow
from Theorem 1.2. In their proofs, the parameter c plays an important role. More precisely, taking c > 0
large, we get the corollaries. At last, we emphasize that we do not use the sharp Gagliardo–Nirenberg
inequality and we do not apply the gauge transformation to (gDNLS) since the equation after applying
the transformation is complicated unlike (DNLS).

Remark. Miao et al. [2017a] treated the case of σ = 1. They considered (1-10) by using the gauge
transformation and defined the action by Sω,c := E + ωM/2+ cP/2. They applied a concentration
compactness argument to give the variational characterization of the solitary waves. Then, they use the
Nehari functional Kω,c derived from the action Sω,c. The explicit formula of Kω,c is

Kω,c(w) := ‖∂xw‖
2
L2 −

3
16‖w‖

6
L6 +ω‖w‖

2
L2 + c Re

∫
R

i∂xww dx + 1
2 c‖w‖4L4 .

They defined
A ±ω,c := {ϕ ∈ H 1(R) : Sω,c(ϕ)≤ Sω,c(φω,c), Kω,c(ϕ)R 0},

and they also showed that A ±ω,c are invariant under the flow of (1-10) and the solution to (1-10) is global
if w0 ∈A +ω,c for some (ω, c). The functional Kω,c is useful to characterize the solitary waves φc2/4,c since
it contains L4-norm. Namely, one can use the Nehari functional by the gauge transformation. On the
other hand, we cannot use the Nehari functional when we do not apply the gauge transformation, and
thus, we introduce the new functionals K α,β

ω,c .

The rest of the present paper is as follows. In Section 2A, we prepare some lemmas to obtain the
characterization of the solitary waves and prove the a priori estimate (see (2-2)). In Section 2B, we give
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the characterization of the solitary waves φc2/4,c. We remark that the characterization of the solitary waves
φω,c for ω > c2/4 can be obtained in the same manner as in [Colin and Ohta 2006], and then we omit the
proof. Section 3 is devoted to the proof of Theorem 1.2 and the corollaries. In the Appendix, we show that
there is no nontrivial solution of the nonlinear elliptic equation (1-4) if ω < c2/4, or ω = c2/4 and c ≤ 0.

2. Variational characterization of the solitary waves

2A. Preliminaries. We define function spaces

M̃ α,β
ω,c := {ψ ∈ Xω,c \ {0} : S̃ω,c(ψ)= µα,βω,c, K̃ α,β

ω,c (ψ)= 0},

G̃ω,c := {ψ ∈ Xω,c \ {0} : S̃′ω,c(ψ)= 0}.

In this section, we prove the following proposition, which gives Theorem 1.1.

Proposition 2.1. Let (ω, c) satisfy (1-5) and (α, β) satisfy (1-8). Then

M̃ α,β
ω,c = G̃ω,c = {eiθe−(c/2)i xφω,c( · − y) : θ ∈ [0, 2π), y ∈ R}.

Indeed, Theorem 1.1 follows from Proposition 2.1 and the following properties:

ϕ ∈M α,β
ω,c ⇐⇒ e−(c/2)i xϕ ∈ M̃ α,β

ω,c ,

ϕ ∈ Gω,c ⇐⇒ e−(c/2)i xϕ ∈ G̃ω,c,

where we note that S̃′ω,c(e
−(c/2)i xϕ)= e−(c/2)i x S′ω,c(ϕ) holds.

To prove Proposition 2.1, we prepare some basic lemmas. We have the Gagliardo–Nirenberg-type
inequality.

Lemma 2.2. Let p ≥ 1. We have the estimate

‖ f ‖2p
L∞ ≤ 2p‖ f ‖2p−1

L4p−2‖∂x f ‖L2 . (2-1)

Proof. By the Hölder inequality,

| f (x)|2p
=

∫ x

−∞

d
dx
(| f (y)|2p) dy

=

∫ x

−∞

2p| f (y)|2p−2 Re( f (y)(∂x f )(y)) dy

≤ 2p‖| f |2p−1
‖L2‖∂x f ‖L2

= 2p‖ f ‖2p−1
L4p−2‖∂x f ‖L2 .

Taking the supremum, we obtain (2-1). �

We have the Lieb compactness lemma. See [Lieb 1983] for p = 2 and [Bellazzini et al. 2014a, Lemma
2.1] for more general setting.

Lemma 2.3. Let p≥2 and d ∈N. Let { fn} be a bounded sequence in Ḣ 1(Rd)∩L p(Rd). Assume that there
exists q ∈ (p, 2∗) such that lim supn→∞‖ fn‖Lq > 0. Then there exist {yn} and f ∈ Ḣ 1(Rd)∩ L p(Rd)\{0}
such that { fn( · − yn)} has a subsequence that converges to f weakly in Ḣ 1(Rd)∩ L p(Rd).
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We have the Brézis–Lieb lemma [1983].

Lemma 2.4. Let d ∈N and 1< p<∞. Let { fn} be a bounded sequence in L p(Rd) and fn→ f a.e. in Rd .
Then

‖ fn‖
p
L p −‖ fn − f ‖p

L p −‖ f ‖p
L p → 0.

If { fn} is a bounded sequence in L2(Rd) and fn converges to f weakly in L2(Rd), then the statement with
p = 2 holds.

A direct calculation gives us the following relation.

Lemma 2.5. We have

α(2σ + 2)S̃ω,c(ψ)= K̃ α,β
ω,c (ψ)+

2σα+β
2
‖∂xψ‖

2
L2 + (ω−

1
4 c2)

2σα−β
2
‖ψ‖2L2 −

βc
2(2σ + 2)

‖ψ‖2σ+2
L2σ+2 .

(2-2)

We denote the difference α(2σ + 2)S̃ω,c(ψ)− K̃ α,β
ω,c (ψ) by

J̃α,βω,c (ψ) :=
2σα+β

2
‖∂xψ‖

2
L2 + (ω−

1
4 c2)

2σα−β
2
‖ψ‖2L2 −

βc
2(2σ + 2)

‖ψ‖2σ+2
L2σ+2 .

2B. Variational characterization. First we consider the case of ω= c2/4 and c> 0. Then (α, β) satisfies

2α−β > 0, 2α+β > 0, β < 0. (2-3)

Hereafter, we often omit the indices ω, c, α, and β for simplicity.

Lemma 2.6. The following equality holds:

G̃ω,c = {eiθ0e−(c/2)i xφω,c( · − x0) : θ0 ∈ [0, 2π), x0 ∈ R}.

Proof. Since e−(c/2)i xφω,c satisfies S̃′ω,c(e
−(c/2)i xφω,c) = e−(c/2)i x S′ω,c(φω,c) = 0, we have G̃ω,c ⊃

{eiθ0e−(c/2)i xφω,c( · − x0) : θ0 ∈ [0, 2π), x0 ∈ R}. We prove G̃ω,c ⊂ {eiθ0e−(c/2)i xφω,c( · − x0) : θ0 ∈

[0, 2π), x0 ∈ R}. Letting ψ ∈ G̃ω,c and

ψ(x)=8(x) exp
(
−

i
2σ + 2

∫ x

0
|8(y)|2σ dy

)
,

then 8 is a solution of

−8′′+ 1
2 c|8|2σ8−

2σ + 1
(2σ + 2)2

|8|4σ8+
σ

σ + 1
|8|2σ−2 Im(88′)8= 0.

Setting A(8) := 1
2 c|8|2σ − ((2σ + 1)/(2σ + 2)2)|8|4σ + (σ/(σ + 1))|8|2σ−2 Im(88′), f := Re8, and

g := Im8,
f ′′ = A(8) f, g′′ = A(8)g.

Therefore,

( f g′− g f ′)′ = f g′′− g f ′′ = f A(8)g− g A(8) f = A(8) f g− A(8) f g = 0.
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Since f, g ∈ Ḣ 1(R)∩ L2σ+2(R), we obtain f g′− g f ′ = 0. On the other hand, f g′− g f ′ = Re8 Im8′−

Im8Re8′ = Im(88′). Thus, Im(88′)= 0 for any x ∈ R. Therefore, 8 satisfies

−8′′+ 1
2 c|8|2σ8−

2σ + 1
(2σ + 2)2

|8|4σ8= 0. (2-4)

Therefore, there exist θ0 and x0 such that 8= eiθ08ω,c( · − x0) since 8ω,c is the unique solution of (2-4)
up to translation and phase (see the Appendix). This implies ψ(x)= eiθe−(c/2)i xφω,c(x − x0). �

Remark. According to [Colin and Ohta 2006], it looks natural to take the integral on the infinite interval
(−∞, x] in the gauge transformation as

ψ(x)=8(x) exp
(
−

i
2σ + 2

∫ x

−∞

|8(y)|2σ dy
)
.

However, in the massless case, it is not clear whether ψ ∈ G̃ω,c belongs to L2σ (R). This is why we take
the integral on the finite interval [0, x] instead of (−∞, x].

Lemma 2.7. We have G̃ω,c ⊃ M̃
α,β
ω,c .

Proof. This is obvious if M̃ =∅. We consider the case of M̃ 6=∅. Let ψ ∈ M̃ . Since ψ is a minimizer,
there exists a Lagrange multiplier η ∈ R such that S̃′(ψ)= ηK̃ ′(ψ). Then

0= K̃ (ψ)= 〈S̃′(ψ), ∂λψ
α,β
λ |λ=0〉 = η〈K̃ ′(ψ), ∂λψ

α,β
λ |λ=0〉 = η∂λ K̃ (ψα,βλ )|λ=0,

where we remark that this is justified by a density argument. By a direct calculation, we obtain

∂λ K̃ (ψα,βλ )|λ=0 =
(2α−β)2

2
‖∂xψ‖

2
L2 −
{(2σ + 2)α+β}2

2(2σ + 2)
‖ψ‖2σ+2

L2σ+2 −
{(2σ + 2)α}2

2σ + 2
N (ψ)

=
−(2α−β)(2σα+β)

2
‖∂xψ‖

2
L2 +
{(2σ + 2)α+β}βc

2(2σ + 2)
‖ψ‖2σ+2

L2σ+2 + (2σ + 2)α K̃ (ψ)

< 0,

where in the last inequality we use

2α−β > 0, 2α+β > 0, β < 0, K̃ (ψ)= 0.

Therefore, η = 0. This implies S̃′ω,c(ψ)= 0 and then ψ ∈ G̃ω,c. �

Lemma 2.8. We have G̃ω,c ⊂ M̃
α,β
ω,c if M̃

α,β
ω,c 6=∅.

Proof. Let ψ ∈ G̃ . Then there exist θ0 ∈ [0, 2π) and x0 ∈ R such that ψ = eiθ0e−(c/2)i xφω,c( · − x0) by
Lemma 2.6. If M̃ 6=∅, then we can take ϕ ∈ M̃ . By Lemmas 2.6 and 2.7, there exist θ1 ∈ [0, 2π) and
x1 ∈R such that ϕ = eiθ1e−(c/2)i xφω,c( · − x1). Thus, S̃ω,c(ψ)= S̃ω,c(φω,c)= S̃ω,c(ϕ)=µω,c. Moreover,
we have K̃ (ψ)= 〈S̃′ω,c(ψ), ∂λψ

α,β
λ |λ=0〉 = 0. �

Lemma 2.9. We have M̃
α,β
ω,c 6=∅.

To prove this lemma, we show the following proposition.
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Proposition 2.10. Let {ψn}n∈N ⊂ Xω,c satisfy

S̃ω,c(ψn)→ µα,βω,c and K̃ α,β
ω,c (ψn)→ 0.

Then there exist {yn} ⊂ R and ψ ∈ M̃
α,β
ω,c such that {ψn( · − yn)} has a subsequence which converges to ψ

strongly in Xω,c.

To prove this proposition, first, we prove the following lemma.

Lemma 2.11. We have µα,βω,c > 0.

Proof. We recall that µα,βω,c = inf{S̃ω,c(ψ) :ψ ∈ Xω,c \ {0}, K̃ α,β
ω,c (ψ)= 0}. By (2-2), it is trivial that µ≥ 0.

We prove µ > 0 by contradiction. We assume that µ= 0. Taking the minimizing sequence {ψn} ⊂ Xω,c,
i.e., S̃(ψn)→ µ = 0 and K̃ (ψn) = 0, we have ‖∂xψn‖

2
L2 → 0 and ‖ψn‖

2σ+2
L2σ+2 → 0 by (2-2) and (2-3).

Then, by using (2-1) with p = (σ + 2)/2, we get ‖ψn‖L∞→ 0 as n→∞. By using

−N (ψ)=−‖∂xψ‖
2
L2 −

1
4‖ψ‖

4σ+2
L4σ+2 +‖∂xψ +

1
2 i |ψ |2σψ‖2L2,

we obtain

K̃ (ψn)=
2α−β

2
‖∂xψn‖

2
L2 +
{(2σ + 2)α+β}c

2(2σ + 2)
‖ψn‖

2σ+2
L2σ+2 −αN (ψn)

=−
1
2β‖∂xψn‖

2
L2 +
{(2σ + 2)α+β}c

2(2σ + 2)
‖ψn‖

2σ+2
L2σ+2 −

1
4α‖ψn‖

4σ+2
L4σ+2 +α‖∂xψn +

1
2 i |ψn|

2σψn‖
2
L2

≥
{(2σ + 2)α+β}c

2(2σ + 2)
‖ψn‖

2σ+2
L2σ+2 −

1
4α‖ψn‖

4σ+2
L4σ+2

≥
{(2σ + 2)α+β}c

2(2σ + 2)
‖ψn‖

2σ+2
L2σ+2 −

1
4α‖ψn‖

2σ+2
L2σ+2‖ψn‖

2σ
L∞

≥

(
{(2σ + 2)α+β}c

2(2σ + 2)
−

1
4α‖ψn‖

2σ
L∞

)
‖ψn‖

2σ+2
L2σ+2

> 0,

for large n ∈ N since ‖ψn‖L∞→ 0 as n→∞. However, this contradicts K̃ (ψn)= 0 for all n ∈ N. �

Proof of Proposition 2.10. We take {ψn} ⊂ Xω,c such that S̃ω,c(ψn)→ µ
α,β
ω,c and K̃ α,β

ω,c (ψn)→ 0. Then,
{ψn} is a bounded sequence in Xω,c by (2-2).

Step 1. We prove lim supn→∞‖ψn‖L4σ+2>0 by contradiction. We suppose that lim supn→∞‖ψn‖L4σ+2=0.
Since

0← K̃ (ψn)≥−
1
2β‖∂xψn‖

2
L2 +
{(2σ + 2)α+β}c

2(2σ + 2)
‖ψn‖

2σ+2
L2σ+2 −

1
4α‖ψn‖

4σ+2
L4σ+2,

we obtain ‖∂xψn‖
2
L2 → 0 and ‖ψn‖

2σ+2
L2σ+2 → 0 as n→∞. By (2-2), we get S̃(ψn)→ 0. This contradicts

µ > 0.

Step 2. Since {ψn} is bounded in Xω,c = Ḣ 1(R)∩L2σ+2(R) and lim supn→∞‖ψn‖L4σ+2 > 0, by applying
Lemma 2.3 with fn =ψn , d = 1, and p= 2σ+2, there exist {yn} and v ∈ Xω,c\{0} such that {ψn( · − yn)}

(we denote this by vn) has a subsequence that converges to v weakly in Xω,c.



GLOBAL EXISTENCE FOR A GENERALIZED DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION 1161

Step 3. We show
K̃ (vn)− K̃ (v− vn)− K̃ (v)→ 0 as n→∞. (2-5)

We note that

K̃ (ψ)=− 1
2β‖∂xψ‖

2
L2 +
{(2σ + 2)α+β}c

2(2σ + 2)
‖ψ‖2σ+2

L2σ+2 −
1
4α‖ψ‖

4σ+2
L4σ+2 +α‖∂xψ +

1
2 i |ψ |2σψ‖2L2, (2-6)

for any ψ ∈ Xω,c. Since vn converges to v weakly in Xω,c, we have vn → v a.e. in R. Therefore, by
Lemma 2.4, we have ‖vn‖

p
L p −‖vn − v‖

p
L p −‖v‖

p
L p → 0 for 2σ + 2≤ p <∞. Moreover, setting

wn := ∂xvn +
1
2 i |vn|

2σvn and w = ∂xv+
1
2 i |v|2σv,

wn converges to w weakly in L2(R). Indeed, it is obvious that ∂xvn ⇀ ∂xv in L2(R) and we have, for
any f ∈ C∞0 (R),∣∣∣∣∫

R

f (x)(|vn(x)|2σvn(x)− |v(x)|2σv(x)) dx
∣∣∣∣. ∫

supp f
| f (x)|(|vn(x)|2σ + |v(x)|2σ )|vn(x)− v(x)| dx

.
∫

supp f
|vn(x)− v(x)| dx→ 0,

where we use the Hölder inequality, the fact that {vn} is bounded in L∞(R), and the compactness of
the embedding Ḣ 1(�)∩ L2σ+2(�) ↪→ H 1(�) ↪→ L p(�) for a bounded domain �⊂ R and 1≤ p ≤∞.
Thus, wn converges to w weakly in L2(R). Therefore, by (2-6), we get (2-5).

Step 4. We prove α(2σ + 2)µ < J̃ (ψ) if K̃ (ψ) < 0. By the definition of µ,

µα,βω,c =
1

α(2σ + 2)
inf{ J̃α,βω,c (ψ) : ψ ∈ Xω,c \ {0}, K̃ α,β

ω,c (ψ)= 0}. (2-7)

If ψ ∈ Xω,c satisfies K̃ (ψ) < 0, then there exists λ0 ∈ (0, 1) such that K̃ (λ0ψ)= 0 since K̃ (λψ) > 0 for
small λ ∈ (0, 1). Therefore, we have α(2σ + 2)µ≤ J̃ (λ0ψ) < J̃ (ψ).

Step 5. We prove K̃ (v)≤ 0 by contradiction. We suppose K̃ (v) > 0. Since K̃ (vn)→ 0 and (2-5) hold,

K̃ (v− vn)→−K̃ (v) < 0.

This implies that K̃ (v− vn) < 0 for large n ∈ N. Therefore, by Step 4, we get α(2σ + 2)µ < J̃ (v− vn)

for large n ∈ N. By the same argument as in Step 3,

J̃ (vn)− J̃ (v− vn)− J̃ (v)→ 0 as n→∞.

Therefore, we get J̃ (v)= limn→∞( J̃ (vn)− J̃ (v− vn))≤ 0 since we have J̃ (vn)→ α(2σ + 2)µ by the
definition of J̃ and K̃ (vn)→ 0. By Step 2, we have v 6= 0 and then J̃ (v) > 0. This is a contradiction.

Step 6. We prove that v belongs to M̃ . By (2-7) and the weakly lower semicontinuity of J̃ , we obtain

α(2σ + 2)µ≤ J̃ (v)≤ lim inf
n→∞

J̃ (vn)= α(2σ + 2)µ.

Thus, J̃ (v) = α(2σ + 2)µ and vn converges to v strongly in Xω,c. Therefore, we get S̃(v) = µ and
K̃ (v)= 0 by Steps 4 and 5. �
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Therefore, we obtain Proposition 2.1 when ω = c2/4 and c > 0.
The case of ω > c2/4 is much easier. Indeed, we can obtain Proposition 2.1 by the same argument as

in the case ω = c2/4 and c > 0 by using L2(R) instead of L2σ+2(R). See also [Colin and Ohta 2006],
where the statement only for the Nehari functional K 1,0

ω,c is obtained. Thus, we omit the proof.

3. Global existence

In this section, we show Theorem 1.2.

Proof of Theorem 1.2. Let u0 belong to K
α,β,+
ω,c . First, we consider the case that K α,β

ω,c (u0) = 0. Then,
u0 = 0 or u0 = eiθ0φω,c( · − x0) by Theorem 1.1. By the uniqueness of solution to (gDNLS), we have
u(t)= 0 or u(t)= eiθ0eiωtφω,c(x − ct − x0), respectively. This implies that K α,β

ω,c (u(t))= 0 for all time.
This means that u(t) ∈K

α,β,+
ω,c for all time. Next, we consider the case that K α,β

ω,c (u0) > 0. We suppose
that there exists a time t such that K α,β

ω,c (u(t))≤ 0. Then there exists t∗ such that K α,β
ω,c (u(t∗))= 0 by the

continuity of the flow. By the above argument, K α,β
ω,c (u(t))= 0 for all time. This is a contradiction. Thus,

u(t) belongs to K
α,β,+
ω,c for all time. When u0 belongs to K

α,β,−
ω,c , the same argument implies that u(t)

belongs to K
α,β,−
ω,c for all time. Next, we prove that the solution is global if u0 ∈K

α,β,+
ω,c . Then, since

α(2σ+2)Sω,c(ϕ)=K α,β
ω,c (ϕ)+

2σα+β
2
‖∂xϕ−

1
2 ciϕ‖2L2+(ω−

1
4 c2)

2σα−β
2
‖ϕ‖2L2−

βc
2(2σ + 2)

‖ϕ‖2σ+2
L2σ+2

(3-1)
and K α,β

ω,c (u(t)) > 0 for all time t , we have that ‖∂x u(t)− 1
2 ciu(t)‖2L2 is uniformly bounded. Therefore,

‖∂x u(t)‖L2 ≤ ‖∂x u(t)− 1
2 ciu(t)‖L2 +

1
2 |c|‖u(t)‖L2 < C + 1

2 |c|‖u0‖L2,

for some positive constant C independent of t . This boundedness and the conservation law of the L2-norm
imply that u is global in time. �

We give proofs of Corollaries 1.3, 1.4, and 1.5. Direct calculations imply the following lemma (see
[Colin and Ohta 2006] for the details).

Lemma 3.1. Let σ = 1 and (ω, c) satisfy (1-5). Then, we have the relations

M(φω,c)= 8 tan−1

√
2
√
ω+ c

2
√
ω− c

,

P(φω,c)= 2
√

4ω− c2,

E(φω,c)=− 1
2 c
√

4ω− c2.

In particular,

Sω,c(φω,c)= 4ω tan−1

√
2
√
ω+ c

2
√
ω− c

+
1
2 c
√

4ω− c2.

Remark. When σ = 1, we have M(φc2/4,c) = 4π , P(φc2/4,c) = 0, and E(φc2/4,c) = 0 for all c > 0 by
Lemma 3.1. On the other hand, if M(φ)= 4π , P(φ)= 0, and E(φ)≤ 0, then φ(x)= eiθ0φc2

0/4,c0
(x− x0)



GLOBAL EXISTENCE FOR A GENERALIZED DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION 1163

for some θ0 ∈ R, x0 ∈ R, and c0 > 0. Indeed, M(φ)= 4π , P(φ)= 0, and E(φ)≤ 0 imply that

K α,β

c2/4,c(φ)≤−
2α+β

2
‖∂xφ‖

2
L2 +

2α−β
2

c2π +
βc
8
‖φ‖4L4 .

Since K α,β

c2/4,c(φ) < 0 for small c > 0 and K α,β

c2/4,c(φ)→+∞ as c→∞, there exists c0 > 0 such that
K α,β

c2
0/4,c0

(φ)= 0. Therefore, Theorem 1.1 implies that φ(x)= eiθ0φc2
0/4,c0

(x − x0). Note that this means
that there is no function satisfying M(φ)= 4π , P(φ)= 0, and E(φ) < 0.

First, we prove Corollary 1.3.

Proof of Corollary 1.3. Let u0 satisfy ‖u0‖
2
L2 < 4π . The statement is trivial if u0 = 0. We assume that

u0 6= 0. Since ‖u0‖
2
L2 < 4π ,

Sc2/4,c(u0)= E(u0)+
1
8 c2
‖u0‖

2
L2 +

1
2 cP(u0) < c2π/2,

for sufficiently large c > 0. Moreover, since ‖u0‖
2
L2 6= 0,

K α,β

c2/4,c(u0)=
2α−β

2
‖∂x u0‖

2
L2 +

2α−β
2

c2

4
‖u0‖

2
L2 +

2α−β
2

cP(u0)+
βc
8
‖u0‖

4
L4 −αN (u0)

→∞ as c→∞, (3-2)

for any (α, β) satisfying (1-8). Thus, K α,β

c2/4,c(u0) > 0 for large c > 0. Thus, there exists c > 0 such that
K α,β

c2/4,c(u0) > 0 and Sc2/4,c(u0) < c2π/2, where we note that µc2/4,c = c2π/2 by Lemma 3.1 when σ = 1.
By Theorem 1.2, the solution u is global. �

Secondly, we give a proof of Corollary 1.4 by Theorem 1.2.

Proof of Corollary 1.4. Let u0 satisfy ‖u0‖
2
L2 = 4π and P(u0) < 0. We recall that µc2/4,c = c2π/2 by

Lemma 3.1 when σ = 1. Since P(u0) < 0, we have, for large c > 0,

Sc2/4,c(u0)= E(u0)+
1
2 c2π + 1

2 cP(u0)≤ µc2/4,c.

On the other hand, because 2α−β > 0 and ‖u0‖
2
L2 6= 0, we obtain (3-2). Thus, K α,β

c2/4,c(u0) > 0 for large
c > 0. This means that the assumption in Theorem 1.2 holds for sufficiently large c. This implies that u
is global. �

We give another proof. This is due to [Guo and Wu 2017].

Another proof of Corollary 1.4. We have

P(u)≥ 1
4‖u‖

4
L4

(
1−
‖u‖L2

2
√
π

)
−

8
√
πE(u)‖u‖L2

‖u‖4L4

,

applying the gauge transformation u = w exp(− 1
4 i
∫ x
−∞
|w(y)|2 dy) to (1-15). See [Guo and Wu 2017,

Lemma 2.1] for the proof of (1-15). When ‖u0‖
2
L2 = 4π and P(u0) < 0, we get

‖u(t)‖4L4 ≤
8
√
πE(u0)‖u0‖L2

|P(u0)|
. (3-3)
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Therefore, by the Hölder inequality, the Gagliardo–Nirenberg inequality, and the Young inequality,

‖∂x u(t)‖2L2 = 2E(u0)+
1
2 Re

∫
R

i |u(t, x)|2u(t, x)∂x u(t, x) dx

≤ 2E(u0)+
1
2‖u(t)‖

3
L6‖∂x u(t)‖L2

≤ 2E(u0)+C‖u(t)‖8/3L4 ‖∂x u(t)‖4/3L2

≤ 2E(u0)+C‖u(t)‖8L4 +
1
2‖∂x u(t)‖2L2 .

This inequality and (3-3) give an a priori estimate, and thus, the solution is global. �

At last, we prove Corollary 1.5.

Proof of Corollary 1.5. Let σ ≥ 1. Since u0,c = e(c/2)i xψ ,

Sc2/4,c(u0,c)= S̃c2/4,c(ψ)

=
1
2‖∂xψ‖

2
L2 +

c
2(2σ + 2)

‖ψ‖2σ+2
L2σ+2 −

1
2σ + 2

N (ψ)

≤ c1+1/σ S1/4,1(φ1/4,1)= Sc2/4,c(φc2/4,c),

K α,β

c2/4,c(u0,c)= K̃ α,β

c2/4,c(ψ)

=
2α−β

2
‖∂xψ‖

2
L2 +
{(2σ + 2)α+β}c

2(2σ + 2)
‖ψ‖2σ+2

L2σ+2 −αN (ψ)

≥ 0,

for large c > 0. By Theorem 1.2, therefore, the solution uc with the initial data u0,c is global for large
c > 0. �

Appendix: Uniqueness and nonexistence

We prove the uniqueness of the massless elliptic equation.

Proposition A.1. Let 1 < p < q <∞, a > 0, and b > 0. Assume there exists a nontrivial solution in
Ḣ 1(R)∩ L p+1(R) of the equation

−ϕ′′+ a|ϕ|p−1ϕ− b|ϕ|q−1ϕ = 0 (A-1)

in the distribution sense. Then there exist θ0 ∈ [0, 2π) and x0 ∈ R such that ϕ = eiθ0ψ( · − x0), where ψ
is the unique positive, even, and decreasing function which satisfies (A-1).

Proof. Since a|ϕ|p−1ϕ− b|ϕ|q−1ϕ belongs to L2(R), we obtain ϕ ∈ Ḣ 2(R). A bootstrap argument gives
us that ϕ ∈ Ḣ 3(R). By the Sobolev embedding, ϕ ∈ C2(R) and ϕ satisfies the equation in the classical
sense. Multiplying the equation by ϕ′ and integrating on (−∞, x), we obtain

−
1
2 |ϕ
′(x)|2+

a
p+ 1

|ϕ(x)|p+1
−

b
q + 1

|ϕ(x)|q+1
= 0. (A-2)

We write ϕ = ρeiθ , where ρ > 0 and ρ, θ ∈ C2(R). It is easily seen that θ ≡ θ0 for some θ0 ∈ [0, 2π).
Since ρ ∈ L p+1(R), there must exist x0 ∈ R such that ρ ′(x0) = 0. By (A-2), ρ(x0) = c, where cq−p

=
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(a(q + 1))/(b(p+ 1)). Let ψ be the real-valued solution of (A-1) such that ψ(0) = c and ψ ′(0) = 0.
Using the uniqueness of the ordinary differential equation, we can deduce that ϕ = eiθ0ψ( · − x0). �

We prove the nonexistence of a nontrivial solution to the nonlinear elliptic equation (1-4) in the case
ω < c2/4, or ω = c2/4 and c ≤ 0. See [Berestycki and Lions 1983, Theorem 5] for the necessary
and sufficient condition for the existence of nontrivial solutions to more general second-order ordinary
differential equations.

Proposition A.2. Let 1< p, q <∞. If ϕ ∈ H 1(R) satisfies

−ϕ′′+ωϕ+ a|ϕ|p−1ϕ− b|ϕ|q−1ϕ = 0 in the distribution sense,

where a, b ∈ R and ω < 0, then we have ϕ = 0.

Proof. By a usual bootstrap argument [Cazenave 2003, §8], we have ϕ ∈ H 3(R). We get ϕ ∈ C2(R) by
the Sobolev embedding. Therefore, ϕ′(x)→ 0 and ϕ(x)→ 0 as |x | → ∞. Multiplying the equation
by ϕ′ and integrating on (−∞, x), we obtain

−
1
2 |ϕ
′(x)|2+ 1

2ω|ϕ(x)|
2
+

a
p+ 1

|ϕ(x)|p+1
−

b
q + 1

|ϕ(x)|q+1
= 0. (A-3)

Since ϕ(x)→ 0 as |x | →∞, we get

1
2ω|ϕ(x)|

2
+

a
p+ 1

|ϕ(x)|p+1
−

b
q + 1

|ϕ(x)|q+1 < 0 for some x

or

|ϕ(x)| = 0 for some x .

In the former case, we obtain |ϕ′(x)|< 0 by (A-3). This is a contradiction. In the latter case, we obtain
|ϕ′(x)| = 0 by (A-3). By the uniqueness of the ordinary differential equation, we get ϕ = 0. �

By the same argument as in the proof of Proposition A.2, we obtain the nonexistence of a nontrivial
solution to the nonlinear elliptic equation (1-4) when ω = c2/4 and c ≤ 0 as follows.

Proposition A.3. Let 1< p, q <∞. If ϕ ∈ Ḣ 1(R)∩ L p+1(R) satisfies

−ϕ′′− a|ϕ|p−1ϕ− b|ϕ|q−1ϕ = 0 in the distribution sense,

where a ≥ 0 and b > 0, then we have ϕ = 0.
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