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LOCAL ENERGY DECAY AND SMOOTHING EFFECT
FOR THE DAMPED SCHRÖDINGER EQUATION

MOEZ KHENISSI AND JULIEN ROYER

We prove the local energy decay and the global smoothing effect for the damped Schrödinger equation
on Rd. The self-adjoint part is a Laplacian associated to a long-range perturbation of the flat metric. The
proofs are based on uniform resolvent estimates obtained by the dissipative Mourre method. All the
results depend on the strength of the dissipation that we consider.

1. Introduction

Let d > 3. Our purpose in this paper is to study on Rd the local energy decay and the Kato smoothing
effect for the damped Schrödinger equation�

�i@tuCPu� ia.x/hDi
˛a.x/uD 0;

u.0/D u0:
(1-1)

The operator P is a Laplacian in divergence form associated to a long-range perturbation of the usual flat
metric (see (1-2) below). For the dissipative part we have denoted by h � i the function .1Cj � j2/

1
2 and by

D the square root of the free Laplacian, so that hDi˛ stands for .1��/
˛
2 . The parameter ˛ belongs to

Œ0; 2Œ. The nonnegative-valued function a will be assumed to be of short range (see (1-3)), so that in terms
of spacial decay, we have an absorption index a.x/2 which decays at least like hxi�2�2� for some � > 0.

It is known that the free Schrödinger equation ((1-1) with P D�� and aD 0) preserves the L2-norm
but satisfies the local energy decay: if u0 is supported in the ball B.R/ D fjxj 6 Rg of Rd for some
R > 0 we have

keit�u0kL2.B.R// 6 CRhti�
d
2 ku0kL2.Rd /:

This means that the “mass” of the solution escapes at infinity. On the other hand, the Schrödinger equation
has a regularizing effect: Z

R

k.1��/
1
4 eit�u0k

2
L2.B.R//

dt 6 CRku0k2L2.Rd /:

There are many papers dealing with these properties for more and more general Schrödinger equations.
Concerning the local energy decay for a self-adjoint Schrödinger equation, we only refer to [Rauch
1978] for the Schrödinger operator with an exponentially decaying potential, to [Tsutsumi 1984] for the
free Schrödinger equation on an exterior domain, and to [Bouclet 2011; Bony and Häfner 2012] for a
Laplacian associated to a long-range perturbation of the flat metric. For all these papers, the local energy
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decays like t�
d
2 or like t�

d
2
C" under a nontrapping assumption. There is also a huge literature for the

closely related problem of the local energy decay for the wave equation (see [Lax et al. 1963; Ralston
1969; Morawetz et al. 1977; Burq 1998; Tataru 2013; Guillarmou et al. 2013]).

Concerning the smoothing effect we mention [Constantin and Saut 1988; Sjölin 1987] for the Laplacian
on Rd, [Ben-Artzi and Klainerman 1992] for the Schrödinger operator with a potential, [Burq et al. 2004]
for the problem on an exterior domain and [Erdoğan et al. 2009] for the magnetic Schrödinger equation.
We also refer to [Doi 1996; 2000; Burq 2004] for the necessity of the nontrapping condition.

In the dissipative context, the local energy decay for the damped Schrödinger equation in an exterior
domain has been proved in [Aloui and Khenissi 2007]. In this context, the nontrapping condition can be
replaced by the geometric control condition: there can be bounded classical trajectories but they have
to go through the damping region (see [Rauch and Taylor 1974; Bardos et al. 1992] for the original
geometric control condition, and [Aloui and Khenissi 2002] for the exterior geometric condition on
an unbounded domain). Then the local energy decays like t�

d
2 , as in the self-adjoint case under the

nontrapping condition. A similar result has been obtained in [Aloui and Khenissi 2010] on an exterior
domain with dissipation at the boundary, and in [Royer 2015] for the same problem on a wave guide (see
also [D’Ancona and Racke 2012] for the undamped problem on a nonflat wave guide). In the latter case,
the global energy decays exponentially and we have a smoothing effect in the unbounded directions. We
also mention [Bortot and Cavalcanti 2014], where an exponential decay for the global energy is proved
for the solution of the Schrödinger equation with a dissipation effective on a neighborhood of the infinity.

The dissipation by a potential (˛D 0 in our setting) is not strong enough to recover under the damping
condition the same smoothing effect as under the nontrapping condition. However, it is known that this is
the case for the so-called regularized Schrödinger equation (˛ D 1). See [Aloui 2008a; 2008b] for the
problem on a compact manifold and [Aloui et al. 2017] for the problem on an exterior domain. As in
the self-adjoint case (see [Burq 2004]), we can recover a H

1
2
�" smoothing effect if only a few classical

trajectories fail to satisfy the assumption (see [Aloui et al. 2013]).
In these works, the problem is a compact perturbation of the free Schrödinger equation. Our purpose

in this paper is to prove the local energy decay and the Kato smoothing effect for an asymptotically
vanishing perturbation. In a similar context, the local energy decay has been studied for the dissipative
wave equation in [Bouclet and Royer 2014].

We now describe more precisely the setting of our paper. We consider on Rd a long-range perturbation
G.x/ of the identity: for some � > 0 there exist constants Cˇ for ˇ 2 Nd such thatˇ̌

@ˇ .G.x/� Id /
ˇ̌
6 Cˇ hxi���jˇ j: (1-2)

Concerning the dissipative term, a is a smooth and nonnegative-valued function on Rd. As already
mentioned, it is of short range:

j@ˇa.x/j6 Cˇ hxi�1���jˇ j: (1-3)

We will use the notation

B˛ D a.x/hDi
˛a.x/ and H D P � iB˛: (1-4)
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We recall that ˛ 2 Œ0; 2Œ and we set

Q̨ Dmin.1; ˛/ and � D

(
d
2

if d is even;
dC1
2

if d is odd:
(1-5)

Then Q̨ 2 Œ0; 1� and � > 2.
We will see that H is a maximal dissipative operator on L2. In particular, for u0 2 D.H/DH 2 the

problem (1-1) has a unique solution t 7! e�itHu0. The main purpose of this paper is to prove that this
solution satisfies the local energy decay and the Kato smoothing effect as stated in the following two
theorems:

Theorem 1.1 (local energy decay). Let " > 0. Let ı > �C 1
2

, N 2 N and � 2 Œ0; 2�. Assume that

(i) there are no bounded geodesics (see the nontrapping condition (1-8) below) or

(ii) the bounded geodesics go through the damping region (see (1-9)), N Q̨ C � > 2 and ı > N � 1
2

.

Then there exists C > 0 such that for u0 2H�;ı and t > 0 we have

ke�itHu0kL2;�ı 6 Ct�
d
2
C"
ku0kH�;ı :

In this statement L2;�ı denotes the weighted space L2.hxi�2ı dx/, while ku0kH�;ı is the L2-norm
of hxiıhDi�u0.

We remark that we have to take � D 2 in the second case if ˛ D 0. This means that we have a loss of
two derivatives. If ˛ > 0 we can take � D 0 (no loss of derivative) as long as we choose ı large enough�
if ˛ > 1 then we can take N D 2, and in this case the condition ı > N � 1

2
is weaker than ı > �C 1

2

�
.

Under the nontrapping condition we can always take � D 0.
In this setting, we obtain a decay which is almost as good as in the free case. We recall that for such

a P, this is the best decay known even in the particular case aD 0 (see [Bouclet 2011]).

Theorem 1.2 (global smoothing effect). Assume that the damping condition (1-9) holds. Then there exists
C > 0 such that for all u0 2 L2 we haveZ C1

0

khxi�1hDi
Q̨
2 e�itHu0k

2
L2
dt 6 Cku0k2L2 :

Moreover, under the nontrapping condition (1-8), we can replace Q̨ by 1.

The last statement says that, despite the non-self-adjointness of H, we recover the same gain of
regularity as in the self-adjoint case under the nontrapping assumption. However, the main result is that if
the damping is strong enough, we have the same result for a trapping metric under the usual geometric
condition. For a weaker damping we cannot reach the optimal result, but we still have some gain of
regularity. As for the local energy decay above and for the resolvent estimates below, we can consider a
very strong damping (˛ > 1), but this does not improve the results (even if we allow trapped trajectories,
there still are trajectories going to infinity, and their contributions are not controlled by the damping).
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The proofs of Theorems 1.1 and 1.2 are based on uniform resolvent estimates. According to
Proposition 2.2 below, the operator H is maximal dissipative, so for all z in

CC WD fz 2 C W Im z > 0g

we can consider in L.L2/ (the space of bounded operators on L2) the resolvent

R.z/D .H � z/�1: (1-6)

After a Fourier transform, the solution u of (1-1) can be written as the integral over frequencies Re.z/
of this resolvent when Im.z/ goes to 0 (see Section 6). Thus the problem will be reduced to proving
uniform estimates for R.z/ and its derivatives for Im.z/ small, and then to controlling the dependence of
these estimates with respect to Re.z/. Since the self-adjoint part P of H is a nonnegative operator, the
estimates for Re.z/ < 0 are easy: for n 2 N and z 2 CC with Re.z/6 �c0 < 0 we have

kRnC1.z/kL.L2/ 6
C

jRe.z/jnC1
: (1-7)

Thus we will focus on z 2 CC with Re.z/> �c0, where 0 < c0� 1. As usual, the difficulties will arise
for low frequencies (Re.z/ close to 0) and high frequencies (Re.z/� 1). We first state the uniform
resolvent estimates for intermediate frequencies:

Theorem 1.3 (intermediate-frequency estimates). Let K be a compact subset of C n f0g. Let n 2 N and
ı > nC 1

2
. Then there exists C > 0 such that for all z 2K \CC we have

khxi�ıRnC1.z/hxi�ıkL.L2/ 6 C:

We remark that compared to the resolvent for the dissipative wave equation (see [Bouclet and Royer
2014]), the derivatives of the resolvent correspond to its powers:

R.n/.z/D nŠRnC1.z/:

This will significantly simplify the discussion.
It is known that even for the free Laplacian, the estimates of Theorem 1.3 fail to hold uniformly when

z goes to 0 if n is too large. This explains the restriction in the rate of decay in Theorem 1.1. For low
frequencies we prove the following result:

Theorem 1.4 (low-frequency estimates). Let " > 0. Let n 2 N and let ı be such that

ı >

(
nC 1

2
if 2nC 1> d;

nC 1 if 2nC 1 < d:

Then there exist C > 0 and a neighborhood U of 0 in C such that for all z 2 U \CC we have

khxi�ıRnC1.z/hxi�ıkL.L2/ 6 C.1Cjzj
d
2
�"�1�n/:

In the self-adjoint case we can improve the estimate for a single resolvent. More precisely we can
replace the weight hxi�ı for ı >1 by hxi�1. See [Bouclet and Royer 2015]. This is particularly interesting
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for Theorem 1.2, which does not require estimates for the derivatives of the resolvent. This sharp resolvent
estimate is also valid in our dissipative context:

Theorem 1.5 (sharp low-frequency estimate). There exist C > 0 and a neighborhood U of 0 in C such
that for all z 2 U \CC we have

khxi�1R.z/hxi�1kL.L2/ 6 C:

The high-frequency properties of the problem are closely related to the corresponding classical problem.
Here, the classical flow is the geodesic flow on R2d ' T �Rd for the metric G.x/�1. It is the Hamiltonian
flow corresponding to the symbol

p.x; �/D hG.x/�; �i:

We denote this flow by �t D .X.t/;„.t//. Let

�b D
˚
w 2 p�1.f1g/ W supt2RjX.t; w/j<C1

	
:

The assumptions used in the statements of Theorems 1.1 and 1.2 are the following. We say that the
classical flow is nontrapping if there is no bounded geodesic:

�b D∅: (1-8)

We say that the damping condition on bounded geodesics (or geometric control condition) is satisfied if
every bounded geodesic goes through the damping region fa.x/ > 0g:

8w 2�b; 9T 2 R such that a.X.T;w// > 0: (1-9)

Theorem 1.6 (high-frequency estimates). Let n 2 N and ı > nC 1
2

.

(i) Assume that the nontrapping assumption (1-8) holds. Then there exists C > 0 such that for z 2 CC

with Re.z/> C we have

khxi�ıRnC1.z/hxi�ıkL.L2/ 6 C jzj�
nC1
2 :

(ii) Assume that the damping condition (1-9) holds. Then there exists C > 0 such that for z 2 CC with
Re.z/> C we have

khxi�ıRnC1.z/hxi�ıkL.L2/ 6 C jzj�
.nC1/ Q̨
2

(we recall that Q̨ was defined in (1-5)).

To prove the uniform estimates of Theorems 1.3, 1.4 and 1.6 we use the commutators method of Mourre
[1981] (see also [Amrein et al. 1996] for an overview of the subject). The method has been generalized to
the dissipative setting in [Royer 2010], then in [Bouclet and Royer 2014] for the estimates of the derivatives
of the resolvent and finally in [Royer 2016] for a dissipative perturbation in the sense of forms. Here the
dissipative perturbation B˛ is well defined as an operator on L2 relatively bounded with respect to the
self-adjoint part P. However, for d 2 f3; 4g the rescaled version of the dissipative part which we are going
to use for low frequencies will be uniformly bounded as an operator in L.H 1;H�1/ but not in L.H 2; L2/,
so we will have to see H as a dissipative perturbation of P in the sense of forms. See Remark 4.7.
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Let us come back to the statement of Theorem 1.2. To prove this theorem we will use in particular
the resolvent estimates of Theorem 1.6, which in turn rely on the damping assumption (1-9). These
estimates and hence the smoothing effect we obtain are optimal (in the sense that they are as good as in the
self-adjoint case with the nontrapping condition) when ˛ > 1. However, with a weaker dissipation (˛ < 1)
we can obtain (weaker) resolvent estimates and a (weaker) smoothing effect. Similarly, it is possible
to prove high-frequency resolvent estimates weaker than those of Theorem 1.6 without the damping
condition. We have already mentioned [Burq 2004] in the self-adjoint case and [Aloui et al. 2013] in the
dissipative setting, where only a few hyperbolic classical trajectories deny the assumption

�
in these cases

the high-frequency resolvent estimates are of size lnjzj=
p
jzj, which gives a gain of 1

2
�" derivative

�
. We

do not prove resolvent estimates without damping condition in this paper, but we emphasize this fact with
a more general version of Theorem 1.2 (for self-adjoint operators, we mention the result of [Thomann
2010], which gives a relation between the smoothing effect and the decay of the spectral projections).

Theorem 1.7. Let  2 Œ0; 2�. Assume that there exists C > 0 such that for all z 2 CC we have

khxi�1R.z/hxi�1kL.L2/ 6 C hzi�

2 : (1-10)

Then for all u0 2 L2 we haveZ C1
0

khxi�1hDi

2 e�itHu0k

2
L2
dt 6 Cku0k2L2 :

It is classical in the self-adjoint setting to prove the smoothing effect from resolvent estimates by
means of the theory of relatively smooth operators in the sense of Kato [1966] (see also [Reed and Simon
1978]). Other ideas have been used for dissipative operators (see [Aloui et al. 2013; 2017]). However, the
theory of Kato can also be used in this context (see [Royer 2010; 2015]). We will follow this idea to
prove Theorem 1.7 and hence Theorem 1.2.

This paper is organized as follows. In Section 2 we recall all the abstract properties we need concerning
dissipative operators (including the statement of the Mourre method). In Section 3 we prove Theorem 1.3.
In Section 4 we deal with low frequencies. We first prove Theorem 1.4 for a small perturbation of the free
Laplacian in Section 4A and then in the general setting in Section 4B. Theorem 1.5 is proved in Section 4C.
In Section 5 we prove Theorem 1.6 concerning the high-frequency resolvent estimates. Finally, we turn to
the time-dependent problem: we prove Theorem 1.1 in Section 6 and Theorems 1.7 and 1.2 in Section 7.

2. Abstract properties for dissipative operators

In this section we recall some general properties about dissipative operators. In particular we give the
version of the Mourre’s method that we use in this paper.

Let H be a Hilbert space. An operatorH with domain D.H/ on H is said to be dissipative (respectively
accretive) if

8' 2 D.H/; ImhH'; 'iH 6 0 .respectively RehH'; 'iH > 0/:

MoreoverH is said to be maximal dissipative (respectively maximal accretive) if it has no other dissipative
(respectively accretive) extension than itself. Notice that H is (maximal) dissipative if and only if iH is
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(maximal) accretive. We recall that a dissipative operator H is maximal dissipative if and only if there
exists z 2CC such that the operator .H �z/ has a bounded inverse on H. In this case any z 2CC belongs
to the resolvent set of H and

k.H � z/�1kL.H/ 6
1

Im.z/
: (2-1)

According to the Hille–Yosida theorem this implies in particular that �iH generates a contractions semi-
group, and then for all u0 2D.H/ the function u W t 7! e�itHu0 belongs to C 0.RC;D.H//\C 1.RC;H/
and is the unique solution for the problem(

�i@tuCHuD 0 8t > 0;

u.0/D u0:

Moreover we have
8t > 0; ku.t/kH 6 ku0kH:

Remark 2.1. Assume that H is both dissipative and accretive. Then it is maximal dissipative if and only
if it is maximal accretive. Indeed both properties are equivalent to the fact that .H � .�1C i// has a
bounded inverse on H. Moreover, for z 2 C with Im.z/ > 0 or Re.z/ < 0 we have

k.H � z/�1kL.H/ 6
1

max.Im.z/;�Re.z//
:

Proposition 2.2. The operator H defined by (1-4) is maximal dissipative and maximal accretive on L2.

Proof. The operators P and B˛ are self-adjoint and nonnegative on L2, so H D P � iB˛ is dissipative
and accretive. Let ' 2D.P /DH 2. By interpolation there exists C > 0 (which only depends on a and ˛)
such that for any " > 0

kB˛'kL2 6 Ck'kH˛ 6 Ck'k
˛
2

H2 k'k
1�˛

2

L2
6 1
2
˛"Ck'kH2 CC

�
1� 1

2
˛
�
"�

˛
2�˛ k'kL2 :

With " > 0 small enough we obtain that the dissipative operator �iB˛ is relatively bounded with respect
to P with relative bound less than 1. According to [Royer 2010, Lemma 2.1], this proves that H is
maximal dissipative in L2. By Remark 2.1, H is also maximal accretive. �

According to Proposition 2.2, the estimate of Remark 2.1 holds for H in L.L2/. As already mentioned,
the difficulties in Theorems 1.3, 1.4 and 1.6 come from the behavior of the resolvent R.z/ when the
spectral parameter z 2CC approaches the nonnegative real axis. For this we are going to use a dissipative
version of the Mourre method, which we recall now.

Let q0 be a quadratic form closed, densely defined, symmetric and bounded from below on H. We set
KD D.q0/. Let q‚ be another symmetric form on H, nonnegative and q0-bounded. Let q D q0� iq‚
and let H be the corresponding maximal dissipative operator (see Proposition 2.2 in [Royer 2016]). We
denote by zH W K! K� the operator which satisfies q.';  /D h zH'; iK�;K for all '; 2 K. Similarly,
we denote by zH0 and ‚ the operators in L.K;K�/ which correspond to the forms q0 and q‚, respectively.
By the Lax–Milgram theorem, the operator . zH � z/ has a bounded inverse in L.K�;K/ for all z 2 CC.
Moreover for ' 2H we have .H � z/�1' D . zH � z/�1'.
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Definition 2.3. Let A be a self-adjoint operator on H and N 2N�. We say that A is a conjugate operator
(in the sense of forms) to H on the interval J, up to order N, and with bounds ˛0 2 �0; 1�, ˇ > 0 and
‡N > 0 if the following conditions are satisfied:

(i) The form domain K is left invariant by e�itA for all t 2 R. We denote by E the domain of the
generator of e�itAjK.

(ii) The commutators ƒ0D Œ zH0; iA� and ƒ1D Œ zH; iA�, a priori defined as operators in L.E ; E�/, extend
to operators in L.K;K�/. Then for all n 2 J1;N K the operator Œƒn; iA� defined (inductively) in
L.E ; E�/ extends to an operator in L.K;K�/, which we denote by ƒnC1.

(iii) We have

kƒ1k6
p
˛0‡N ; kƒ1Cˇ‚kkƒ

0
k6 ˛0‡N ; kŒƒ1; A�kCˇkŒ‚;A�k6 ˛0‡N

and
NC1X
nD2

kƒnkL.K;K�/ 6 ˛0‡N ;

where all the norms are in L.K;K�/.

(iv) We have
1J .H0/.ƒ

0
Cˇ‚/1J .H0/> ˛01J .H0/: (2-2)

Theorem 5.5 of [Royer 2016] in the particular case where all the inserted factors are equal to IdH gives
the following abstract resolvent estimates:

Theorem 2.4. Suppose the self-adjoint operator A is conjugate to the maximal dissipative operator H
on J up to order N > 2 with bounds .˛0; ˇ; ‡N /. Let n 2 J1;N K. Let I � VJ be a compact interval.
Let ı > n� 1

2
. Then there exists c > 0 which only depends on J , I , ı, ˇ and ‡N and such that for all

z 2 CI;C we have

khAi�ı.H � z/�nhAi�ıkL.H/ 6
c

˛n0
:

We finish this general section with the so-called quadratic estimates. The following result is a
consequence of Proposition 4.4 in [Royer 2016]:

Proposition 2.5. Let T 2L.K;H/ be such that T �T 6 q‚ in the sense of forms on K. LetQ 2L.H;K�/.
Then for all z 2 CC we have

kT . zH � z/�1QkL.H/ 6 kQ�. zH � z/�1Qk
1
2

L.H/:

Applied with QD T �, this proposition gives the following particular case:

Corollary 2.6. Let T be as in Proposition 2.5. Then for all z 2 CC we have

kT . zH � z/�1T �kL.H/ 6 1:

We are going to use all these results with the forms q0 W ' 7! hP'; 'i and q‚ W ' 7! hB˛'; 'i defined
on KDH 1.Rd /.
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3. Intermediate-frequency estimates

In this section we prove Theorem 1.3. For this, we will apply Theorem 2.4 with the generator of dilations
as the conjugate operator. Let

AD�1
2
i.x � r Cr � x/D�i .x � r/� 1

2
id:

We recall in the following proposition the main properties of A that we are going to use in this paper:

Proposition 3.1. (i) For � 2 R, u 2 S and x 2 Rd we have

.ei�Au/.x/D e
d�
2 u.e�x/:

(ii) For j 2 J1; dK and  2 C1.Rd / we have on S

Œ@j ; iA�D @j and Œ; iA�D�.x � r/:

(iii) For p 2 Œ1;C1�, � 2 R and u 2 S we have

kei�AukLp D e
�.d
2
�d
p
/
kukLp :

Now we give a proof of Theorem 1.3:

Proof of Theorem 1.3. Let E > 0. We check that the generator of dilations A is a conjugate operator
for H on a neighborhood J of E in the sense of Definition 2.3. The form domain of H is the Sobolev
space H 1.Rd /. According to Proposition 3.1, it is left invariant by the dilation e�itA for any t 2 R.
By pseudodifferential calculus we can see that the commutators ŒP; iA�, ŒŒP; iA�; iA�, ŒB˛; iA� and
ŒŒB˛; iA�; iA� define operators in L.H 2; L2/, hence in L.L2;H�2/ by duality, and in L.H 1;H�1/ by
interpolation.1 Finally, we use the usual trick for the main assumption. For � >0we set J�D ŒE��;EC��.
We have

1J� .P /ŒP; iA�1J� .P /D 1J� .P / 2P 1J� .P /CW 1J� .P /

> 2.E � �/1J� .P /CW 1J� .P /;

where

W WD 1J� .P / div
�
.x � r/G.x/

�
r

is a compact operator. Since E > 0 is not an eigenvalue of P (see [Koch and Tataru 2006]) the operator
1J� .P / goes strongly to 0 when � goes to 0. Then for � small enough we have

1J� .P /ŒP; iA�1J� .P />E1J� .P /:

Thus we can apply Theorem 2.4, which gives Theorem 1.3 for Re.z/ 2 J� and with weights hAi�ı.
By compactness of K � C� and the easy estimate of Remark 2.1, we have a uniform estimate for all

1 In fact we can also compute these commutators explicitly with Proposition 3.1, except for the commutators of hDi˛ with A:
for this we can write hDi˛ D .1��/2 � .1��/�2h��i

˛
2 and use the Helffer–Sjöstrand formula for the second factor (see

[Dimassi and Sjöstrand 1999; Davies 1995]).
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z 2 CC\K. It remains to replace hAi�ı by hxi�ı. For this, we use the resolvent identity

R.z/DR.i/C .z� i/R.i/R.z/DR.i/C .z� i/R.z/R.i/:

It gives in particular, for � > 2,

R�.z/DR.i/
�
R�.z/C 2.z� i/R��1.z/C .z� i/2R�.z/

�
R.i/:

With these equalities in hand, we can prove by induction on m 2 N� that RnC1.z/ can be written as a
sum of terms of the form .z� i/ˇRnC1Cˇ .i/ with ˇ 2 N or

.z� i/2m�n�1C�Rm.i/R�.z/Rm.i/;

where max.1; nC 1� 2m/6 � 6 nC 1. For any ˇ 2 N, we know RnC1Cˇ .i/ is uniformly bounded in
L.L2/. On the other hand,hxi�ıRm.i/R�.z/Rm.i/hxi�ı6 hxi�ıRm.i/hAiıhAi�ıR�.z/hAi�ıhAiıRm.i/hxi�ı:
The first and third factors are bounded by pseudodifferential calculus if m is large enough and the second
has been estimated uniformly by the Mourre method. This concludes the proof of Theorem 1.3. �

4. Low-frequency estimates

In this section we prove Theorems 1.4 and 1.5. As in [Bouclet 2011; Bouclet and Royer 2014], the
proof of Theorem 1.4 is based on a scaling argument for a small perturbation of the free Laplacian
(see Section 4A), and then on a perturbation argument to deal with the general case (see Section 4B).
Theorem 1.5 is proved in Section 4C.

Let � 2 C10 .R
d / be equal to 1 on a neighborhood of 0. For � 2 �0; 1� we set �� W x 7! �.�x/. Then

for �1 2 �0; 1� we set G�1.x/D ��1.x/Id C .1���1.x//G.x/,

P�1 D� divG�1.x/r and P�1;c D P �P�1 D� div
�
��1.x/.G.x/� Id /

�
r: (4-1)

For the dissipative part we set

B˛�2 D a.1���2/hDi
˛aC a��2hDi

˛a.1���2/ (4-2)

and

B˛�2;c D B˛ �B
˛
�2
D a��2hDi

˛a��2 ;

where �2 2 �0; 1�. Finally, for the full operator we define

H N� D P�1 � iB
˛
�2

and R N�.z/D .H N� � z/
�1;

where N�D .�1; �2/ 2 �0; 1�2 and z 2 CC. The fact that we can choose �1 ¤ �2 will be important in the
sequel (see Remark 4.11).
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4A. Low-frequency estimates for a small perturbation of the Laplacian. In this paragraph we prove
Theorem 1.4 with R.z/ replaced by R N�.z/. Then in Section 4B we will add the contributions of P�1;c
and B˛�2;c .

The proof relies on a scaling argument. To this purpose we use for z 2 C� the operator

‚z D exp
�
1
2
i lnjzjA

�
:

For u 2 S and x 2 Rd we have .‚zu/.x/ D jzj
d
4 u.jzj

1
2x/. According to Proposition 3.1 we have for

p 2 Œ1;C1�

k‚zkL.Lp/ D jzj
d
4
� d
2p: (4-3)

For a function u on Rd and z 2 C� we denote by uz the function

uz W x 7! u

�
xp
jzj

�
:

Compared to the scaling for the wave equation we are using the parameter
p
jzj instead of jzj.

Now we introduce the rescaled versions of our operators:

H N�;z D
1

jzj
‚�1z H N�‚z D P�1;z � iB

˛
�2;z

;

where P�1;z D� divG�1;z.x/r and

B˛�2;z D
1

jzj
..1���2/a/z.1� jzj�/

˛
2 azC

1

jzj
.��2a/z.1� jzj�/

˛
2 ..1���2/a/z :

Then for � 2 CC we set R N�;z.�/D .H N�;z � �/�1, so that with the notation Oz D z=jzj we have for z 2 CC

R N�.z/D
1

jzj
‚zR N�;z. Oz/‚

�1
z :

Our analysis of the rescaled operators is based on the fact that if a function � decays like hxi���
�
2

(recall that � > 0 is fixed by (1-2) and (1-3)) then the multiplication by the rescaled function �� behaves
like a differential operator of order � for low frequencies, in the sense that it is of size �� as an operator
from H s to H s��. Since this observation relies on the Sobolev embeddings, there is however a restriction
on the choices of � and s. For � 2 R, let S�� .Rd / be the set of functions � 2 C1.Rd / such that

j@ˇ�.x/j. hxi���jˇ j:

For � > 0, N 2 N and � 2 S���
�
2 .Rd / we set

k�k�;N D sup
jˇ j6�C1

X
06m6N

sup
x2Rd

ˇ̌
hxi�C

�
2
Cjˇ j.@ˇ .x � r/m�/.x/

ˇ̌
:

We recall that the integer � was defined in (1-5). The following result is Proposition 7.2 in [Bouclet and
Royer 2014]:
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Proposition 4.1. Let � 2
�
0; d
2

�
and s 2

�
�
d
2
; d
2

�
be such that s� � 2

�
�
d
2
; d
2

�
. Then there exists C > 0

such that for � 2 S���
�
2 .Rd /, u 2H s and � > 0 we have

k��uk PH s�� 6 C��k�k�;0 kuk PH s ;

k��ukH s�� 6 C��k�k�;0 kukH s :

The reason for replacing G.x/ by G�1.x/ and a by a.1���2/ in the definition of H N� is that for all
N 2 N we have

N N�;N WD
dX

j;kD1

kG�1;j;k.x/�ıj;kk0;N Ck.1���2/ak1;N
�
kak1;N Ck��2ak1;N

�
D O
N�!0

.j N�j�=2/: (4-4)

Thus this quantity is as small as we wish if we choose �1 and �2 small enough.
Given two operators T and S we set ad0T .S/D S , adT .S/D ad1T .S/D ŒS; T � and then, for m > 2,

admT .S/D Œadm�1T .S/; S�. For �D .�1; : : : ; �d / 2 Nd we set

ad�x WD ad�1x1 � � � ad�dxd :

At the beginning of the section we said that H N� has to be close to the free Laplacian. What we need
precisely is the following result:

Proposition 4.2. Let �2Nd, m2N, "0>0 and s2R. There exists �0 2 �0; 1� such that for N�D .�1; �2/2
�0; �0�

2 the following statements hold:

(i) If s 2
�
�
d
2
; d
2

�
then for z 2 CC with jzj6 1 we have

kad�x admA .P�1;zC/kL.H sC1;H s�1/ 6 "0:

(ii) If s 2
�
�
d
2
C 1; d

2
� 1

�
then we also have

kad�x admAB
˛
�2;z
kL.H sC1;H s�1/ 6 "0:

(iii) For u 2H 2 we have
1
2
kuk PH2 6 kP�1ukL2 6 2kuk PH2 :

Proof. The first statement is the same as for the wave equation. See Proposition 7.6 in [Bouclet and Royer
2014]. In particular with s D 1, jzj D 1 and "0 D 1

2
we obtain the last statement. It remains to prove (ii).

Let Dz D
p
jzjD. We write

..1���2/a/zhDzi
˛az D ..1���2/a/z.�jzj�C 1/hDzi

˛�2az :

Then ad�x admA
�
..1���2/a/zhDzi

˛az
�

can be written as a sum of terms of the form

ad�1x adm1A
�
..1���2/a/z

�
ad�2x adm2A .�jzj�C 1/ ad�3x adm3A .hDzi

˛�2/ ad�4x adm4A .az/;

where �1; �2; �3; �4 2 Nd and m1; m2; m3; m4 2 J0;mK are such that �1C�2C�3C�4 D � and
m1Cm2Cm3Cm4 Dm. Let  2 Œ0; 1�. According to Proposition 4.1 we have for z 2 CC

kad�1x adm1A ..1���2/a/zkL.H s�1C;H s�1/ . �
1C�

2
�

2 jzj

2 (4-5)
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and
kad�4x adm4A azkL.H sC1;H sC1� / . jzj


2 : (4-6)

To estimate ad�3x adm3A .hDzi
˛�2/, we use the Helffer–Sjöstrand formula (see [Dimassi and Sjöstrand

1999; Davies 1995]). We can check that for � 2 C nR we havead�3x adm3A .�jzj�� �/�1

L.H sC1� /

.
h�ij�3jCm3

jIm.�/jj�3jCm3C1
:

Let f W � 7! .� C 1/
˛�2
2 . Let � 2 C10 .R; Œ0; 1�/ be supported in Œ�2; 2� and equal to 1 on Œ�1; 1�. For

M > j�3jCm3C 1 and � D xC iy we set

QfM .�/D �

�
y

hxi

� MX
kD0

f .k/.x/
.iy/k

kŠ
:

We have ˇ̌̌̌
@ QfM

@ N�
.�/

ˇ̌̌̌
6 1fhxi6jyj62hxig.�/hxi

�1C˛�2
2 C1fjyj62hxig.�/jyj

M
hxi�M�1C

˛�2
2 ;

so we can write

.�jzj�C 1/
˛�2
2 D

1

�

Z
�DxCiy2C

@ QfM

@ Nz
.�/.�jzj�� �/�1 dx dy:

Then we can check that
kad�3x adm3A hDzi

˛�2
kL.H sC1� / . 1: (4-7)

It remains to estimate

ad�2x adm2A .hDzi
2/D�jzjad�2x adm2A �C ad�2x adm2A .1/: (4-8)

We have kjzjad�2x adm2A �k. jzj in L.H sC1;H s�1/ so with (4-5), (4-6) and (4-7) applied with  D 0 we
obtain in L.H sC1;H s�1/ad�1x adm1A

�
..1���2/a/z

�
ad�2x adm2A .�jzj�/ ad�3x adm3A .hDzi

˛�2/ ad�4x adm4A .az/
. jzj�1C�22 : (4-9)

If j�2j Dm2 D 0 we also have to consider the second term in (4-8). For this we apply (4-5), (4-6) and
(4-7) with  D 1, which givesad�1x adm1A

�
..1���2/a/z

�
ad�3x adm3A .hDzi

˛�2/ ad�4x adm4A .az/

L.H sC1;H s�1/

. jzj�
�
2

2 :

Thus we have proved that ad�x admA
�
..1���2/a/zhDzi

˛az
�

is of size O.jzj�
�
2

2 / in L.H sC1;H s�1/. We
proceed similarly for ad�x admA

�
.��2a/zhDzi

˛..1���2/a/z
�
, and the statement follows. �

Remark 4.3. If d > 5 we can replace P�1 by H N� in the last statement of Proposition 4.2. This is not
the case for d 2 f3; 4g. This is due to the fact that s D 1 does not belong to

�
�
d
2
C 1; d

2
� 1

�
and hence

B˛�2;z is not small in L. PH 2; L2/ in these cases.
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Proposition 4.4. Let � 2 Nd, m 2 N and s 2
�
�
d
2
C 1; d

2
� 1

�
. There exists �0 2 �0; 1� such that the

operator
ad�x admAR N�;z.�1/

is bounded as an operator fromH s�1 toH sC1 uniformly in z2CC with jzj61 and N�D .�1; �2/2 �0; �0�2.

Proof. The idea of the proof is the same as the proof of Proposition 7.9 in [Bouclet and Royer 2014]. We
only have to be careful with the fact that the dissipative term has to be seen as an operator of order 2.
However, with the smallness assumption on a.1���2/, it is still a small perturbation of ��, and we
can proceed as for the wave resolvent. We also have to be careful with the restriction on s, which is
stronger than for the wave equation. This is due to the analogous restriction in the second statement of
Proposition 4.2. We omit the details. �

Proposition 4.5. (i) Let s2
�
0; d
2

�
, ı >s andm2N be such thatm> s. Then there exist �0 2 �0; 1� and

C > 0 such that for z 2 CC with jzj6 1 and N� 2 �0; �0�2 we have

khxi�ı‚zR
m
N�;z.�1/‚

�1
z hxi

�ı
kL.L2/ 6 C jzjs:

(ii) Let s 2
�
0; d
2

�
, ı > s, and m2N large enough

�
say m> ıC s

2
C 1

�
. Then there exist �0 2 �0; 1� and

C > 0 such that for z 2 CC with jzj6 1 and N� 2 �0; �0�2 we have

khxi�ı‚zR
m
N�;z.�1/hAi

ı
kL.L2/ 6 C jzj

s
2 ;

khAiıRmN�;z.�1/‚
�1
z hxi

�ı
kL.L2/ 6 C jzj

s
2 :

Proof. According to Proposition 4.4 the operator Rm
N�;z.�1/ is bounded in L.H�s;H s/ uniformly in

z 2 CC with jzj 6 1 and N� close to (0,0). On the other hand, according to the Sobolev embedding
H s � Lp for p D 2d

d�2s
, the fact that hxi�ı belongs to L.Lp; L2/ and (4-3) we have

khxi�ı‚zkL.H s;L2/ . k‚zkL.Lp/ . jzj
s
2 :

We similarly have
k‚�1z hxi

�ı
kL.L2;H�s/ . jzj

s
2 ;

and the first statement follows. For the second statement we use the same idea as in the proof of
Proposition 7.11 in [Bouclet and Royer 2014]. We only prove the first estimate. For this we first remark that

khxi�ı‚z.1Cjxj
ı/kL.H s;L2/ 6 khxi�ı‚zkL.H s;L2/C

hxi�ı‚zjxjıL.L2/
. k‚zkL.Lp/Cjzj

ı
2

hxi�ı jxjı‚zL.L2/ . jzj s2 ;
where, again, p stands for 2d

d�2s
. Then it remains to prove that for all ı > 0 (we no longer need the

assumption that ı > s), m> ıC s
2
C 1 and � 2 Nd the operator

hxi�ıad�x
�
RmN�;z.�1/hAi

ı
�

is bounded in L.L2;H s/ uniformly in z 2 CC. With �D 0 this will conclude the proof. By interpolation
it is enough to consider the case where ı is an integer and m> ıC s

2
(we do not mean to be sharp with



LOCAL ENERGY DECAY AND SMOOTHING EFFECT FOR THE DAMPED SCHRÖDINGER EQUATION 1299

this assumption). We proceed by induction. The statement for ı D 0 is given by Proposition 4.4. Now
let ı 2 N�. We have

RmN�;z.�1/A
ı
D

ıX
kD0

C kı R
m�1
N�;z .�1/Aı�kadkA.R N�;z.�1//:

When k ¤ 0 we can apply the inductive assumption to Rm�1
N�;z .�1/Aı�k. With Proposition 4.4 we obtain

that the contributions of the corresponding terms are uniformly bounded in L.L2;H s/ as expected. It
remains to consider the term corresponding to k D 0. It is enough to consider

Rm�1N�;z .�1/Aı�1xjDjR N�;z.�1/

for some j 2 J1; dK. The operator DjR N�;z.�1/ and its commutators with powers of x are uniformly
bounded operators on L2, and

Rm�1N�;z .�1/Aı�1xj D xjR
m�1
N�;z .�1/Aı�1C adxj

�
Rm�1N�;z .�1/Aı�1

�
:

We conclude with the inductive assumption. �

Proposition 4.6. Let k 2 N and ı > kC 1
2

. Then there exist �0 2 �0; 1� and C > 0 such that for z 2 CC

with jzj6 1 and N�D .�1; �2/ 2 �0; �0�2 we have

khAi�ıRkC1
N�;z . Oz/hAi

�ı
kL.L2/ 6 C:

Proof. The estimate is clear when Oz is outside some neighborhood of 1. For Oz close to 1 we apply
Theorem 2.4 uniformly in z with A as a conjugate operator. We have already said that e�itA leaves
H 1 invariant for all t 2 R. The assumptions (ii) and (iii) of Definition 2.3 with ˛0 D 1

2
and ˇ D 0 are

consequences of Proposition 4.2 applied with s D 0, �D 0 and m 2N�. For m 2 f0; 1g, z 2 CC and
u 2 S we have

ˇ̌˝
admiA.P�1;z/u; u

˛
L2
� 2mh��u; uiL2

ˇ̌
6

dX
j;kD1

ˇ̌˝
.2� x � r/m.G�1;z;j;k � ıj;k/Dju;Dku

˛
L2

ˇ̌
.O.��=21 /kruk2

L2
;

and hence
ŒP�1;z; iA�> .2�O.�

�=2
1 //.��/> .2�O.��=21 //P�1;z :

Let J D
�
1
2
; 3
2

�
. After conjugation by 1J .P�1;z/ we obtain that if �0 is small enough then for all

�1 2 �0; �0� and z 2 CC we have

1J .P�1;z/ŒP�1;z; iA�1J .P�1;z/> 1
2

1J .P�1;z/:

Then Proposition 4.6 follows from Theorem 2.4. �

Remark 4.7. It is important to notice that we have estimated ŒB˛�2 ; iA� and ŒŒB˛�2 ; iA�; iA� in L.H 1;H�1/

and not in L.H 2; L2/. By pseudodifferential calculus, these two commutators define operators in
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L.H 2; L2/. But in low dimensions (d 2 f3; 4g) they can be estimated uniformly by Proposition 4.2 only
in the sense of forms. This is why we need a form version of the dissipative Mourre method here.

Proposition 4.8. Let " > 0 and n 2 N. Let ı be as in the statement of Theorem 1.4. Then there exist
�0 2 �0; 1�, C > 0 and a neighborhood U of 0 in C such that for N�D .�1; �2/ 2 �0; �0�2 and ˇl ; ˇr 2 RC

with ˇl Cˇr 6 2 we havehxi�ıhDiˇlRnC1
N� .z/hDiˇr hxi�ı


L.L2/ 6 C.1Cjzj

d
2
�"�1�n/:

Remark 4.9. Compared to the analogous result for the wave equation (see Theorem 1.3 in [Bouclet and
Royer 2014]) there is no gain when we add a derivative. This is a consequence of the restriction on the
Sobolev index s in Proposition 4.4, which is stronger than in Proposition 7.9 in [Bouclet and Royer 2014].

Proof of Proposition 4.8. First assume that n> 1. By the resolvent identity we have

hxi�ıhDiˇlRnC1
N� .z/hDiˇr hxi�ı D hxi�ıhDiˇlR N�.�1/hxi

ı

� hxi�ı
�
Rn�1N� .z/C 2.1C z/RnN�.z/C .1C z/

2RnC1.z/
�
hxi�ı

� hxiıR N�.�1/hDi
ˇr hxi�ı:

The first and last factors are bounded on L2 uniformly in N� 2 �0; 1�2 by pseudodifferential calculus, so it
is enough to prove the statement without additional derivatives if n > 1. Since ˇl Cˇr 6 2 we have a
similar argument for nD 0.

We have

hxi�ıRnC1
N� .z/hxi�ı D jzj�.nC1/hxi�ı‚zR

nC1
N�;z . Oz/‚

�1
z hxi

�ı:

As in the proof of Theorem 1.3 in Section 3 we can prove by induction on m 2 N� that RnC1
N�;z . Oz/ can be

written as a sum of terms of the form

.1C Oz/ˇR
nC1Cˇ
N�;z .�1/ or .1C Oz/2m�n�1C�RmN�;z.�1/R

�
N�;z. Oz/R

m
N�;z.�1/; (4-10)

where max.1; nC 1� 2m/ 6 � 6 nC 1 and ˇ 2 N. Let s D min
�
nC 1; d

2
� "
�
. For ˇ 2 N we have

s 2
�
0; d
2

�
, nC1Cˇ> s and ı > s, so according to the first statement of Proposition 4.5 we have

jzj�.nC1/
hxi�ıRnC1Cˇ

N�;z .�1/hxi�ı

L.L2/ . jzj

s�.nC1/ . 1Cjzj
d
2
�"�n�1:

Now we consider the contributions of terms of the second kind in (4-10). We can assume that m is large
enough to apply the second statement of Proposition 4.5. We have ı >�� 1

2
, so with Proposition 4.6 we get

jzj�.nC1/
hxi�ı‚zRmN�;z.�1/R�N�;z. Oz/RmN�;z.�1/‚�1z hxi�ı
6 jzj�.nC1/

hxi�ı‚zRmN�;z.�1/hAiıhAi�ıR�N�;z. Oz/hAi�ıhAiıRmN�;z.�1/‚�1z hxi�ı
. jzjs�.nC1/ . 1Cjzj

d
2
�"�n�1: �
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4B. Low-frequency estimates for a general perturbation of the Laplacian. In this paragraph we use the
estimates on R N�.z/ to prove the same estimates for R.z/. To this purpose we have to add the contribution
of P�1;c in the self-adjoint part and the contribution of B˛�2;c in the dissipative part.

For �0; �2 2 �0; 1� and N�D .�0; �2/ we set, for  2 C10 .R/,

S ; N�.z/D P�0;cR N�.z/ .P /:

From Proposition 4.8 we obtain the following result:

Proposition 4.10. Let " > 0, n 2 N and M 2 R. Let  2 C10 .R/. Let ı be as in the statement of
Theorem 1.4. Let �0 2 �0; 1� be given by Proposition 4.8. Then there exist C > 0 and a neighborhood U
of 0 in C such that for �2 2 �0; �0� and z 2 U \CC we have

khxiMS
.n/
 ; N�.z/hxi

�ı
kL.L2/ 6 C.1Cjzj

d
2
�"�1�n/;

where N�D .�0; �2/.

Proof. The proposition is a consequence of Proposition 4.8, the boundedness of  .P / in L2;ı and the
boundedness of hxiMP�0;c.1��/

�1hxiı. �

Remark 4.11. Until now we had not used the distinction between �1 and �2. However, the size of
hxiMP�1;c depends on �1, so �1 has to be fixed in order to obtain uniform estimates in Proposition 4.10
and in Proposition 4.12 below. On the other hand, we have to keep the possibility to take �2 small.
More precisely, the choice of the cut-off function  in Proposition 4.12 (and hence in the proof of
Proposition 4.13) will depend on �1, and then the choice of �2 will in turn depend on  . This is why we
could not simply take �1 D �2 in the definition of H N�.

Proposition 4.12. Let �0 2 �0; 1� be given by Proposition 4.8. Let "1>0, � >2 and M > 0. Then there
exist a bounded neighborhood U of 0 in C,  2C10 .R/ equal to 1 on a neighborhood of 0 and Q� 2 �0; �0�
such that for �2 2 �0; Q�� and z 2 U \CC we have

khxiMS ; N�.z/hxi
��
kL.L2/ 6 "1;

where N�D .�0; �2/.

Proof. According to the Hardy inequality we have for u 2 S

khxiMP�0;cukL2.
dX

j;kD1

hxiM.Dj .��0Gj;k//DkuL2C dX
j;kD1

hxiM��0.Gj;k�ıj;k/DjDkuL2.kuk PH2 :

According to the third statement of Proposition 4.2 we obtain for � > 0

khxiMP�0;cR N�.i�/ .P /hxi
��ukL2

. kR N�.i�/ .P /hxi��uk PH2

. kP�0R N�.i�/ .P /hxi
��ukL2

. k .P /hxi��ukL2 C�kR N�.i�/ .P /hxi��ukL2 CkB˛�2R N�.i�/ .P /hxi
��uk

. k .P /hxi��ukL2 CO.�
1C�
2 /

hxi�1��.��C 1/R N�.i�/ .P /hxi��uL2 :
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The term with the factor � is estimated by the analog of (2-1) for H N�. For the term involving B˛�2 we
have used the fact that

kB˛�2.��C 1/
�1
hxi1C�kL.L2/ D O

�2!0
.�
1C�
2 /:

Let  1 2 C10 .R/ be equal to 1 on Œ�1; 1�. For  2 C10 .R/ supported in ��1; 1Œ we have  .P /hxi�� D
 .P / 1.P /hxi

��. The operator  1.P /hxi�� is compact. On the other hand, since 0 is not an eigenvalue
of P , the operator  .P / goes weakly to 0 when the support of  shrinks to f0g. Thus we can find  
equal to 1 on a neighborhood of 0 such that for � > 0 and �2 small enough we have

khxiMS ; N�.i�/hxi
��
kL.L2/ 6 1

2
"1:

Now let � 2 R and � > 0. We havehxiMP�0;c�R N�.� C i�/�R N�.i�/� .P /hxi��
6
hxiMP�0;c.��C 1/�1hxi�� Z �

0

hxi�� .��C 1/R2N�.� C i�/hxi�� d�:
The first factor is bounded by pseudodifferential calculus, and the second factor is of size O.j� j/ by
Proposition 4.8. Thus this norm is not greater that 1

2
"1 if � is small enough, and the proposition is

proved. �

For z 2 CC and �2 2 �0; 1� we set

R0.z/D .P � z/
�1 (4-11)

and
zR�2.z/D .P � iB

˛
�2
� z/�1:

In the following proposition we prove the resolvent estimates for zR�2.z/. Then we will add the contribution
of B˛�2;c in the dissipative part to conclude the proof of Theorem 1.4.

Proposition 4.13. Let " > 0 and n 2 N. Let ı be as in Theorem 1.4. Then there exist �2, C > 0 and a
neighborhood U of 0 in C such that for z 2 U \CC and ˇl ; ˇr 2 RC with ˇl Cˇr 6 2 we havehxi�ıhDiˇl zRnC1�2

.z/hDiˇr hxi�ı

L.L2/ 6 C.1Cjzj

d
2
�"�1�n/:

Proof. As for Proposition 4.8 we see that it is enough to consider the case ˇl Dˇr D 0. Let � Dmax.ı; 3/.
Let "1 2

�
0; 1
4

�
and consider  2 C10 .R/ as given by Proposition 4.12 for M D � . We set B .z/ D

R0.z/.1� /.P /. For any  2 R, this operator and its derivatives are uniformly bounded on L2; for
z 2CC close to 0. Let �0 be given by Proposition 4.8. Given �2 2 �0; �0� we write N� for .�0; �2/. We have

zR�2.z/DR N�.z/ .P /�
zR�2.z/S ; N�.z/CB .z/C i zR�2.z/B

˛
�2
B .z/;

and hence for n 2 N

zR.n/�2 .z/DR
.n/
N� .z/ .P /C zR.n/�2 .z/

�
�S ; N�.z/C iB

˛
�2
B .z/

�
CB.n/ .z/

C i

n�1X
jD0

C nj
zR.j /�2 .z/

�
�S

.n�j /
 ; N� .z/C iB˛�2B

.n�j /
 .z/

�
: (4-12)
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We prove by induction on n 2 N that

khxi�ı zR.n/�2 .z/hxi
��
k. 1Cjzj

d
2
�"�n�1: (4-13)

According to Propositions 4.8, 4.10 and 4.12, the fact that  .P / is uniformly bounded on L2;� and the
inductive assumption for the sum in (4-12) (it vanishes if nD 0), there exists C > 0 such that for z 2 CC

close to 0 we have

khxi�ı zR.n/�2 .z/hxi
��
k
�
1� "1�khxi

�B˛�2B .z/hxi
��
k
�
6 C.1Cjzj

d
2
�"�n�1/:

By pseudodifferential calculus we see that the norm of hxi�B˛�2B .z/hxi
�� goes to 0 when �2 goes

to 0. Thus if �2 is small enough we have

1� "1�khxi
�B˛�2B .z/hxi

��
k> 1

2
;

which concludes the proof of (4-13). In order to replace � by ı we use (4-12) again and, estimating the
second term with (4-13) and Proposition 4.10 instead of Proposition 4.12 we obtain

khxi�ı zR.n/�2 .z/hxi
�ı
k
�
1�khxiıB˛�2B .z/hxi

�ı
k
�
6 C.1Cjzj

d
2
�"�n�1/;

and we conclude similarly. �

In order to prove Theorem 1.4 it remains to add the dissipative part with compactly supported absorption
index. We begin with a lemma:

Lemma 4.14. Let H be a Hilbert space. Let R0;R1 2 L.H/ and let B be such that

R1 DR0�R0BR1 DR0�R1BR0:

Then for all m 2 N we can write RmC11 as a linear combination of terms of the form

Rm1C10 BRm2C1j2
B � � �BRmkC1jk�1

BRmkC10 ; (4-14)

where k 2 N�, j1; : : : ; jk�1 2 f0; 1g and m1; : : : ; mk 2 N are such that

kX
lD1

ml 6m and ml D 0 if jl D 1:

Proof. Using both of the identities above involving R1 and R0 we obtain

R1.z/DR0.z/�R0.z/BR0.z/CR0.z/BR1.z/BR0.z/:

Then the result is proved by induction on m. �

Now we can finish the proof of Theorem 1.4:

Proof of Theorem 1.4. Let �2 be given by Proposition 4.13. Let T D hDi
˛
2 a��2 2 L.H 1; L2/. We have

T �T D B˛�2;c 6 B˛, so according to Corollary 2.6 we have

kTR.z/T �kL.L2/ 6 1:
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Let M > 0 and TM D hxi�M hDi
˛
2 . We can write B˛�2;c D T

�
MB1T D T �B2TM D T �MB3TM , where B1,

B2 and B3 are bounded on L2. According to Lemma 4.14 applied with

R0 D zR�2.z/; R1 DR.z/ and B D B˛�2;c ;

we can write RmC1.z/ as a sum of terms of the form

T DRm1C10 .z/BRm2C1j2
.z/B � � �BRmkC1jk�1

.z/BRmkC10 .z/; (4-15)

where k 2 N�, j1; : : : ; jk�1 2 f0; 1g and m1; : : : ; mk 2 N are such that
Pk
lD1ml 6 m and ml D 0 if

jl D 1. If k > 3 and M is large enough we obtain for such a term

khxi�ıT hxi�ık

. khxi�ı zRm1C1�2
.z/T �Mk�

k�1Y
lD2
jlD0

kTM zR
mlC1
�2

.z/T �Mk�

k�1Y
lD2
jlD1

kTR.z/T �k� kTM zR
mkC1
�2

.z/hxi�ık

.
kY
lD1

.1Cjzj
d
2
�1�ml�"/. .1Cjzj

d
2
�1�m�"/:

The cases k D 1 and k D 2 are estimated similarly. This concludes the proof of Theorem 1.4. �

4C. Sharp low-frequency resolvent estimate. We finish this section with the proof of Theorem 1.5. The
result follows from the self-adjoint analog by a simple perturbation argument, using the quadratic estimates
and the spatial decay of the dissipative term:

Proof of Theorem 1.5. According to the resolvent identity, Proposition 2.5 and Theorem 1.1 in [Bouclet
and Royer 2015] we havehxi�1R.z/hxi�1D hxi�1R0.z/hxi�1C hxi�1R0.z/pB˛pB˛R.z/hxi�1

. 1C
hxi�1R0.z/pB˛hxi�1R.z/hxi�1 12 :

Moreover,hxi�1R0.z/pB˛6 hxi�1R0.i/pB˛Cjz� i jhxi�1R0.z/hxi�1hxiR0.i/pB˛. 1:
For the norms involving R0.i/ we have used the fact that hxi�R0.i/

p
B˛ extends to a bounded operator

since for � 6 1 and u 2 S we have by pseudodifferential calculus

k
p
B˛R0.i/hxi

�uk2
L2
6
˝
hxi�R0.�i/B˛R0.i/hxi

�u; u
˛
. kuk2

L2
:

This gives

khxi�1R.z/hxi�1k. 1Ckhxi�1R.z/hxi�1k
1
2 ;

from which the conclusion follows. �
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5. High-frequency estimates

In this section we prove Theorem 1.6. To this purpose we use semiclassical analysis (see for instance
[Zworski 2012]). For h > 0 and � 2 CC we set HhD h2H, PhD h2P and Rh.�/D .Hh��/�1. Then
for n 2 N, z 2 CC and hD jzj�

1
2 we have

R.z/nC1 D
1

jzjnC1
RnC1
h

. Oz/D h2.nC1/RnC1
h

. Oz/ (5-1)

(we recall that Oz D z=jzj).
In order to prove uniform estimates for the resolvent Rh.z/ we use again the Mourre method. For high

frequencies and in a dissipative context we follow [Royer 2010; Bouclet and Royer 2014]. Here we have
to be careful with the form of the dissipative part h2B˛.

Let �˛ 2 C10 .R/ be positive in a neighborhood of 1 and such that 06 �˛.r/6 r
˛
2 for all r 2 RC. For

h 2 �0; 1� we set
B˛h D a.x/�˛.�h

2�/a.x/:

Then we have
06 h2�Q̨B˛h 6 h

2�˛B˛h 6 h
2a.x/.��/

˛
2 a.x/6 h2B˛; (5-2)

in the sense that for all ' 2H˛=2.Rd / we have

06 h2�Q̨ hB˛h'; 'iL2.Rd / 6 h
2
hB˛'; 'iL2.Rd /: (5-3)

The operator B˛
h

is a bounded pseudodifferential operator on L2. Its principal symbol is

b.x; �/D a.x/2�˛.j�j
2/:

The damping assumption (1-9) on bounded trajectories is satisfied with b instead of a:

8w 2�b; 9T 2 R such that b.�T .w// > 0:

Set
f0.x; �/D x � �:

As in [Bouclet and Royer 2014] (see Proposition 8.1), we can prove that there exist an open neighborhood zJ
of 1, fc 2 C10 .R

2n;R/, ˇ > 0 and c0 > 0 such that on p�1. zJ / we have

fp; f0CfcgCˇb > 3c0; (5-4)

where fp; qg is the Poisson bracket r�p � rxq�rxp � r�q. The fact that the symbol of the dissipative
part depends on � does not change anything in the proof of this statement. We set

Fh D Opwh .f0Cfc/;

where Opwh is the Weyl quantization:

Opwh .q/u.x/D
1

.2�h/n

Z
Rn

Z
Rn
e
i
h
hx�y;�iq

�
xCy

2
; �

�
u.y/ dy d�:
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Let J be a neighborhood of 1 and a compact subset of zJ. Let � 2 C10 . zJ; Œ0; 1�/ be equal to 1 on a
neighborhood of J. After multiplication by .� ı p/2, the (easy) Gårding inequality (Theorem 4.26 in
[Zworski 2012]) gives for h > 0 small enough

Oph
�
.� ıp/2fp; f0CfcgCˇb.� ıp/

2
C 3c0.1� .� ıp/

2/
�
> 3c0�O.h/> 2c0:

After multiplication by h2�Q̨ we obtain

�.Ph/
�
ŒPh; ih

1�Q̨Fh�Cˇh
2�Q̨B˛h

�
�.Ph/C 3c0.1��

2/.Ph/> 2c0h2�Q̨ �O.h3�Q̨ /:

After conjugation by 1J .Ph/ we obtain for h small enough

1J .Ph/
�
ŒPh; ih

1�Q̨Fh�Cˇh
2�Q̨B˛h

�
1J .Ph/> c0h2�Q̨ 1J .Ph/:

According to (5-2) this finally gives

1J .Ph/
�
ŒPh; ih

1�Q̨Fh�Cˇh
2B˛

�
1J .Ph/> c0h2�Q̨ 1J .Ph/; (5-5)

which is the main assumption of Definition 2.3 with ˇh2 instead of ˇ and ˛ D c0h2�Q̨.
It remains to check the other assumptions of Definition 2.3. The first is proved as in [Bouclet and

Royer 2014] (except that we look at the norm in the form domain H 1 instead of the domain H 2), and
the commutator properties are proved using (standard) pseudodifferential calculus, considering h as a
parameter (for the dissipative part we cannot use h2�˛B˛

h
as above, so we have to control directly the

commutators of h2B˛ with h1�Q̨Fh).
Thus we have proved that for h 2 �0; h0� the operator h1�Q̨Fh is a conjugate operator to Hh on a

neighborhood J of 1 with lower bounds h2�Q̨c0 for some c0 > 0. According to Theorem 2.4 we have
proved the following result with hFhi�ı instead of hxi�ı :

Proposition 5.1. Let n 2 N and ı > nC 1
2

. There exists a neighborhood J of 1, h0 > 0 and C > 0 such
that for all � 2 CC with Re.�/ 2 J we have

khxi�ıRnC1
h

.�/hxi�ıkL.L2/ 6
C

h.2�Q̨/.nC1/
:

In order to have the estimate with hxi�ı we proceed as usual (see the end of Section 3 for intermediate
frequencies or [Royer 2010] in the semiclassical context). With (5-1) and Proposition 5.1 we obtain the
second statement of Theorem 1.6. For the first statement, we observe that under the nontrapping condition
we can proceed as above with ˇ D 0 and with Q̨ replaced by 1 in (5-5).

6. Local energy decay

In this section we use Theorems 1.3, 1.4 and 1.6 to prove Theorem 1.1. Let u0 2 S. We denote by u the
solution of (1-1). Let � > 0. For t 2 R we set

u�.t/D 1RC.t/u.t/e
�t�:
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Then for � 2 R we set

Lu�.�/D

Z
R

eit�u�.t/ dt D

Z C1
0

eit.�Ci�/u.t/ dt; (6-1)

so that for all n 2 N and � 2 R we have

Lu.n/� .�/D

Z
R

.i t/neit�u�.t/ dt: (6-2)

We multiply (1-1) by eit.�Ci�/ and integrate over RC. This yields

.H � .� C i�// Lu�.�/D�iu0

and hence, for all n 2 N

Lu.n/� .�/D�i nŠRnC1.� C i�/u0: (6-3)

Lemma 6.1. For all n 2 N� and � > 0 the map � 7!RnC1.� C i�/u0 belongs to L1.R; L2.Rd //.

Proof. Let �0 2 C10 .R; Œ0; 1�/ be equal to 1 on a neighborhood of 0. According to (1-7) the map
� 7!RnC1.�C i�/u0 is bounded, so it is enough to prove that � 7! .1��0/.�/R

nC1.�C i�/u0 belongs
to L1.R/. Let z 2 CC. Using twice the identity

R.z/D
R.z/.H C 1/� 1

zC 1
;

we get

R.z/u0 D
1

.zC 1/2
R.z/.H C 1/2u0�

1

.zC 1/2
.H C 1/u0�

1

zC 1
u0:

The result follows after at least one differentiation with respect to z. �

This lemma does not provide any uniform estimate, but now we can take the Fourier transform of (6-2).
With (6-3) this gives for all t > 0

.i t/ne�t�u.t/D�
i nŠ

2�

Z
�2R

e�it�RnC1.� C i�/u0 d�: (6-4)

We consider ��; �0; �2C1.R; Œ0; 1�/ such that �� is supported in ��1; 0Œ, �0 is compactly supported
and equal to 1 on a neighborhood of 0, � is compactly supported in �0;C1Œ and

��C�0C
X
j2N�

�j D 1 on R,

where for j 2 N� and � 2 R we have set �j .�/D �.�=2j�1/. We set �C D
P
j2N� �j . Starting from

(6-4) applied with nD � � 1 (� was defined in (1-5)) we can write

u�.t/D�
i nŠ

2�.it/��1

�
v�.t/C v0.t/C vC.t/

�
; (6-5)

where for � 2 f�; 0;Cg we have set

v�.t/D

Z
�2R

��.�/e
�it�R�.� C i�/u0 d�: (6-6)
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To simplify the notation we forget the dependence on �. From now on, all the quantities depend on
� > 0 but the estimates are uniform in �.

Proposition 6.2. Let k 2 N. There exists C > 0 which does not depend on u0 2 S such that for all � > 0
and t > 0 we have

kv�.t/kL2 6 C hti�kku0kL2 :

This implies that the corresponding contribution for u.t/ decays like any power of t in L2.

Proof. After k partial integrations in (6-6) we get

.i t/kv�.t/D

Z
R

e�it�
dk

d�k

�
��.�/R.� C i�/

�
�
u0 d�:

According to Remark 2.1 we have dkd�k ���.�/R.� C i�/��

L.L2/

. h�i�.�Ck/;

and the result follows. �

We now deal with v0. The following result is (a slightly modified version of) Lemma 4.3 in [Bouclet
and Royer 2014]:

Lemma 6.3. Let H be a Hilbert space. Let f 2 C 1.R�;H/ be equal to 0 outside a compact subset of R.
Assume that for some  2 �0; 1Œ and Mf > 0 we have

8� 2 R�; kf .�/kH 6Mf j� j� and kf 0.�/kH 6Mf j� j�1�:

Let ˇ 2 Œ0; 1Œ. Then there exists C > 0 which does not depend on f and such that for all t 2 R we have

k Of .t/kH 6 C Mf htiˇ.�1/:

Proof. Following the proof of [Bouclet and Royer 2014] we set ft .�/D
R 1
�1 �.s/f

�
� � s

t

�
ds, where

� 2 C10 .��1; 1Œ;R/ satisfies
R

R
� D 1 and we write for jt j> 1

j Of .t/j6
Z
j� j6t�ˇ

kf .�/kd�C

Z
j� j>t�ˇ

kf .�/�ft .�/kd�C

Z
j� j>t�ˇ

e�it�ft .�/d�


. jt j�ˇ.1�/Cjt jˇ�1C1

t

�
kft .t

�ˇ /kCkft .�t
�ˇ /kC

Z
j� j>t�ˇ

e�it�f 0t .�/d�

�. jt j�ˇ.1�/:
We omit the details. �

Proposition 6.4. Let " 2
�
0; 1
2

�
and ı > �C 1

2
. Then there exists C > 0 which does not depend on u0 2 S

and such that for all � > 0 and t > 0 we have

kv0.t/kL2;�ı 6 hti��1�
d
2
C"
ku0kL2;ı :
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Proof. According to Theorem 1.4 applied with "
2

instead of " and Theorem 1.3 there exists C > 0 (which
does not depend on u0) such that for � > 0, � 2 R and z D � C i� we have

k�0.�/R
�.z/u0kL2;�ı 6 C jzj

d
2
��� "

2 ku0kL2;ı ; d
d�

�
�0.�/R

�.z/
�
u0


L2;�ı

6 C jzj
d
2
���1� "

2 ku0kL2;ı :

Then the statement follows from Lemma 6.3 applied with ˇ 2 �0; 1Œ so close to 1 that

ˇ
�
� �

d

2
� 1C

"

2

�
6 � � d

2
� 1C ": �

To finish the proof of Theorem 1.1 we have to estimate vC.t/. As for v�.t/ above, k partial integrations
yield

.i t/kvC.t/D

Z
R

e�it�
kX

jD1

C
j

k
�
.j /
C
.�/R�Ck�j .� C i�/u0 d� C

Z
R

e�it��C.�/R
�Ck.� C i�/u0 d�

DW v0
C;k.t/Cwk.t/:

The following proposition proves that the contribution of vC.t/ in (6-5) decays like any power of t .
However, there may be a loss of two derivatives when ˛ D 0 if the nontrapping assumption does not hold.
We apply the following result with k > 1 to conclude the proof of Theorem 1.1.

Proposition 6.5. Let k 2 N� and ı > �C k� 1
2

. Let � 2 Œ0; 2�.

(i) There exists C > 0 which does not depend on u0 and such that for all � > 0 and t > 1 we have

khxi�ıv0
C;k.t/kL2 6 Cku0kL2;ı :

(ii) Assume that the nontrapping assumption (1-8) holds or that we have the damping condition (1-9)
together with .�C k/ Q̨ C � > 2. Then there exists C > 0 which does not depend on u0 such that for
all � > 0 and t > 1 we have

khxi�ıwk.t/kL2 6 Cku0kH�;ı :

Proof. Statement (i) follows from Theorem 1.3 and the fact that �.j /
C

is compactly supported in �0;C1Œ
for all j > 1. We turn to the proof of (ii).

� For j 2 N� we set

wk;j .t/D

Z
�2R

�j .�/e
�it�R�Ck.� C i�/u0 d�:

Let Q� 2 C10 .R
�
C
; Œ0; 1�/ be equal to 1 on a neighborhood of supp�. For � 2 R and j 2 N� we set

Q�j .�/D Q�.�=2
j�1/. Let

Ik;j .t/D

Z
�2R

�j .�/e
�it�
hxi�ıR�Ck.� C i�/hxi�ı d� 2 L.L2/:

We have
hxi�ıwk;j .t/D w

1
k;j .t/Cw

2
k;j .t/Cw

3
k;j .t/;
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where
w1k;j .t/D Q�j .P /Ik;j .t/ Q�j .P /hxi

ıu0;

w2k;j .t/D .1� Q�j /.P /Ik;j .t/ Q�j .P /hxi
ıu0;

w3k;j .t/D Ik;j .t/.1� Q�j /.P /hxi
ıu0:

� By almost orthogonality, Theorem 1.6 and almost orthogonality again we haveX
j2N�

w1k;j .t/

2.X
j2N�

kw1k;j .t/k
2

. sup
j2N�

�Z
�2R

�j .�/
hxi�ıR�Ck.�Ci�/hxi�ıd��2�X

j2N�

 Q�j .P /hP i��2 hP i�2 hxiıu02
. sup
j2N�

22j 2�j.�Ck/˛2�j�khP i
�
2 hxiıu0k

2

. ku0k2H�;ı :

It remains to prove that

kw2k;j .t/kCkw
3
k;j .t/k. 2

�j
ku0kL2;ı : (6-7)

� For the contribution of w2
k;j
.t/ we prove that there exists C > 0 such that for j 2N� and � 2 supp.�j /

we have .1� Q�j /.P /hxi�ıR�Ck.� C i�/hxi�ıL.L2/ 6 C2�2j: (6-8)

For this, we prove by induction on m 2N� and then on ` 2N that for ı >m� 1
2

and � 2C10 .R
�
C
; Œ0; 1�/

equal to 1 on a neighborhood of supp.�/ there exists C > 0 such that for all j 2 N�, z D � C i� with
� 2 supp.�/ and � > 0hxi�ı.1��j /.P /Rm.z/hxi�ı6 C2�j min .m;`.1�˛

2
//; (6-9)

where for j 2 N� we have set �j D �. � =2j�1/. Let m 2 N�. If m > 2, we assume that the estimate is
proved up to order m� 1 (for all ` 2 N). Note that we will not use any inductive assumption on m for
mD 1. Then we prove the estimate by induction on ` 2 N. For `D 0 it follows from Theorem 1.6 and
the boundedness of .1��j /.P / in weighted spaces. Assume that (6-9) is proved up to order `� 1 for
some ` 2 N�. Let Q� 2 C10 .R

�
C
/ be equal to 1 on a neighborhood of supp.�/ and such that � D 1 on a

neighborhood of supp. Q�/. For j 2 N� we set Q�j D Q�. � =2j�1/. We recall that for z 2 CC we have set
R0.z/D .P � z/

�1. By the resolvent identity we have

Rm.z/DR0.z/R
m�1.z/C iR0.z/B˛R

m.z/: (6-10)

If mD 1, the first term is just R0.z/ and we havehxi�ı.1��j /.P /R0.z/hxi�ı. 2�j:
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If m> 2, the contribution of the first term is estimated as follows:hxi�ı.1��j /.P /R0.z/Rm�1.z/hxi�ı
6
hxi�ı.1��j /.P /R0.z/ Q�j .P /hxiıhxi�ıRm�1.z/hxi�ı
6
hxi�ı.1��j /.P /R0.z/hxiıhxi�ı.1� Q�j .P //Rm�1.z/hxi�ı:

Using Theorem 8.7 in [Dimassi and Sjöstrand 1999] about functions of a self-adjoint semiclassical
pseudodifferential operator (with hD 2�

j�1
2 ) we see that for any M > 0 we havehxi�ı.1��j /.P /R0.z/hxiı Q�j .P /L.L2/ . 2�jM:

We also have hxi�ı.1��j /.P /R0.z/hxiı. 2�j:
With Theorem 1.6 and the inductive assumption (for Q� instead of �) we obtain (6-9) with Rm.z/ replaced
by R0.z/Rm�1.z/. For the contribution of the second term in (6-10) we similarly writehxi�ı.1��j /.P /R0.z/B˛Rm.z/hxi�ı

6
hxi�ı.1��j /.P /R0.z/B˛ Q�j .P /hxiıhxi�ıRm.z/hxi�ı
6
hxi�ı.1��j /.P /R0.z/B˛hxiıhxi�ı.1� Q�j .P //Rm.z/hxi�ı:

Here we only have hxi�ı.1��j /.P /R0.z/B˛hxiı. 2�j.1�˛2 /;
but with the inductive assumption (on `), we still can conclude. Thus, (6-9) is proved for all m; ` 2 N.
With m D � C k and ` large enough (we recall that ˛ < 2), this gives (6-8). After integration over
� 2 supp.�j /, this gives (6-7) for w2

k;j
.t/. The contribution of w3

k;j
.t/ is estimated similarly, and the

proof is complete. �

7. Smoothing effect

In this section we prove Theorem 1.7. With Theorems 1.3, 1.5 and 1.6 it implies Theorem 1.2. For this
we use a dissipative version of the theory of relatively smooth operators in the sense of Kato.

Proposition 7.1. Under the assumption of Theorem 1.7 there exists C > 0 such that for all z 2 CC we
have

khxi�1hP i

4R.z/hP i


4 hxi�1kL.L2/ 6 C:

Proof. � Let K be a compact subset of C. Using the resolvent identity

R.z/DR.i/C .z� i/R.i/2C .z� i/2R.i/R.z/R.i/;

we obtain for z 2 CC\Khxi�1hP i4R.z/hP i4 hxi�1. 1C hxi�1hP i4R.i/hxihxi�1R.z/hxi�1hxiR.i/hP i4 hxi�1:
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By pseudodifferential calculus the operators hP i

4R.i/ and R.i/hP i


4 are bounded on L2;�1 and L2;1,

respectively. For the second factor on the right-hand side we use (1-10), and the conclusion follows for
z 2 CC\K.

� It remains to prove the result for jzj � 1. Let � 2 C10 .R; Œ0; 1�/ be supported on Œ�3; 3� and equal to 1
on Œ�2; 2�. For z 2CC we define �z W� 7!�.�=jzj/. The operator "


4 hP i


4 h"P i�


4 is a pseudodifferential

operator whose symbol has bounded derivatives uniformly in " 2 �0; 1�, so the operator

jzj�

4 hxi�1hP i


4

�
P

jzj

��
4

hxi (7-1)

extends to a bounded operator on L2 uniformly in z with jzj> 1. The operator

hxi�1
�
P

jzj

�
4

�

�
P

jzj

�
hxi (7-2)

is also bounded on L2 uniformly in z with jzj> 1, and we have similar estimates for the adjoint operators
of (7-1) and (7-2). Thushxi�1hP i4 �z.P/R.z/�z.P/hP i4 hxi�1. jzj2 hxi�1hjzj�1P i4 �z.P/R.z/�z.P/hjzj�1P i4 hxi�1

. jzj

2 khxi�1R.z/hxi�1k. 1:

� With R0.z/D .P � z/�1 we have the resolvent identity

R.z/DR0.z/C iR.z/B˛R0.z/:

We havehxi�1hP i4 �z.P/R0.z/.1��z/.P/hP i4 hxi�16 hxi�1hP i4 �z.P/R0.z/.1��z/.P/hP i4 hxi�1
. hzi


4 hzi


4
�1. 1:

We have estimated the first factor as above and the second by the spectral theorem. On the other hand,
since the operator

p
B˛hP i

� 1
2 is bounded we also have by Proposition 2.5hxi�1hP i4 �z.P /R.z/B˛R0.z/.1��z/.P /hP i4 hxi�1

6
hxi�1hP i4 �z.P /hxihxi�1R.z/pB˛hP i 12R0.z/.1��z/.P /hP i4 
. hzi


4 hzi�


4 hzi

1
2
C

4
�1 . 1:

This proves that hxi�1hP i4 �z.P /R.z/.1��z/.P /hP i4 hxi�1. 1:
� The operator

hxi�1hP i

4 .1��z/.P /R.z/�z.P /hP i


4 hxi�1

is estimated similarly. Finally for

hxi�1hP i

4 .1��z/.P /R.z/.1��z/.P /hP i


4 hxi�1
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we only have to use twice the resolvent identity

R.z/DR0.z/C iR0.z/B˛R0.z/�R0.z/B˛R.z/B˛R0.z/:

Then we apply the same idea as above, using Corollary 2.6 to estimate
p
B˛R.z/

p
B˛. �

Taking the adjoint in the estimate of Proposition 7.1 we obtain the same estimate with R.z/ replaced by
R.z/� D .P C iB˛ � Nz/

�1 (the same is true for the estimates of Theorems 1.3, 1.5 and 1.6). In particular
we obtain the following result:

Corollary 7.2. Then there exists C > 0 such that for all z 2 CC and ' 2 S we haveˇ̌˝�
.H � z/�1� .H�� Nz/�1

�
hP i


4 hxi�1'; hP i


4 hxi�1'

˛
L2

ˇ̌
6 Ck'k2

L2
:

It is known that such an estimate on the resolvent implies Theorem 1.7. This comes from the dissipative
version of the theory of relatively smooth operators. The self-adjoint theory can be found in [Reed and
Simon 1978, §XIII.7]. The dissipative version uses the theory of self-adjoint dilations for a dissipative
operator described in [Sz.-Nagy et al. 2010]. All this has been combined in Proposition 6.2 in [Royer
2016], from which Theorem 1.7 follows.
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