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VASILEIOS CHOUSIONIS AND SEAN LI

Let E be a 1-regular subset of the Heisenberg group H. We prove that there exists a −1-homogeneous
kernel K1 such that if E is contained in a 1-regular curve, the corresponding singular integral is bounded
in L2(E). Conversely, we prove that there exists another −1-homogeneous kernel K2 such that the
L2(E)-boundedness of its corresponding singular integral implies that E is contained in a 1-regular curve.
These are the first non-Euclidean examples of kernels with such properties. Both K1 and K2 are weighted
versions of the Riesz kernel corresponding to the vertical component of H. Unlike the Euclidean case,
where all known kernels related to rectifiability are antisymmetric, the kernels K1 and K2 are even and
nonnegative.

1. Introduction

One of the standard topics in classical harmonic analysis is the study of singular integral operators (SIOs)
of the form

T f (x)=
∫
�(x − y)
|x − y|n

f (y) dLn(y),

where � is a 0-homogeneous function and Ln is the Lebesgue measure in Rn; see, e.g., [Stein 1993]. A
considerable amount of research has been devoted to such SIOs, and nowadays they are well understood.
On the other hand if the singular integral is defined on lower-dimensional measures, the situation is much
more complicated even when one considers the simplest of kernels.

As an example the reader should think of the Cauchy transform

CE f (z)=
∫

E

f (w)
z−w

dH1(w), E ⊂ C,

where H1 denotes the 1-dimensional Hausdorff measure in the complex plane. Two questions arise
naturally. For which sets E is CE bounded in L2(E)? And, if CE is bounded in L2(E), what does this
imply about E? Here L2(E)-boundedness means that there exists a constant C > 0 such that the truncated
operator

Cε
E f (z)=

∫
E\B(z,ε)

f (w)
z−w

dH1(w)
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satisfies ‖Cε
E f ‖L2(H1|E ) ≤ C‖ f ‖L2(H1|E ) for all f ∈ L2(H1

|E). It turns out that the L2(E)-boundedness
of the Cauchy transform depends crucially on the geometric structure of E .

The problem of exploring this relation has a long history and it is deeply related to rectifiability and
analytic capacity; we refer to the recent book of Tolsa [2014] for an extensive treatment. One of the
landmarks in the field was the characterization of the 1-regular sets E on which the Cauchy transform is
bounded in L2(E). Recall that an H1-measurable set E is 1-Ahlfors-regular, if there exists a constant
1≤ C <∞ such that

C−1r ≤H1(B(x, r)∩ E)≤ Cr

for all x ∈ E , and 0< r ≤ diam E . It turns out that if E is 1-regular, the Cauchy transform CE is bounded
in L2(E) if and only if E is contained in a 1-regular curve. The sufficient condition is due to David
[1988] and it even holds for more general smooth antisymmetric kernels. The necessary condition is due
to Mattila, Melnikov and Verdera [Mattila et al. 1996]. It is a remarkable fact that their proof depends
crucially on a special subtle positivity property of the Cauchy kernel related to an old notion of curvature
named after Menger; see, e.g., [Melnikov and Verdera 1995; Mattila et al. 1996]. We also note that the
above characterization also holds for the SIOs associated to the coordinate parts of the Cauchy kernel.

Very few things are known for the action of SIOs associated with other−1-homogeneous, 1-dimensional
Calderón–Zygmund kernels (see Section 2 for the exact definition) on 1-regular sets in the complex plane.
Call a kernel “good” if its associated SIO is bounded on L2(E) if and only if E is contained in a 1-regular
curve. It is noteworthy that all known good or bad kernels are related to the kernels

kn(z)=
x2n−1

|z|2n , z = (x, y) ∈ C \ {0}, n ∈ N.

Observe that k1 is a good kernel as it is the x-coordinate of the Cauchy kernel; see [Mattila et al. 1996].
It was shown in [Chousionis et al. 2012] that the kernels kn , n > 1, are good as well, and these were the
first nontrivial examples of good kernels not directly related to the Cauchy kernel. Now let

κt(z)= k2(z)+ t · k1(z), t ∈ R.

It follows by [Chousionis et al. 2012] and [Mattila et al. 1996] that κt is good for t > 0. Recently
Chunaev [2016] showed that κt is good for t ≤ −2 and Chunaev, Mateu and Tolsa [Chunaev et al.
2016] proved that κt is good for t ∈ (−2,−

√
2). For t =−1 and t =− 3

4 there exist intricate examples
of sets E , due to Huovinen [2001] and Jaye and Nazarov [2013] respectively, which show that the
L2(E)-boundedness of the SIO associated to κ−1 and κ−3/4 does not imply rectifiability for E . Therefore
the kernels κ−1(z)= xy2/|z|4 and κ−3/4(x, y)= (x3

− 3xy2)/|z|4 are bad kernels.
Notice that all the kernels mentioned so far are odd and this is very reasonable. Consider, for example,

a 1-dimensional Calderón–Zygmund kernel k :R×R\{x= y}→R+ which is not locally integrable along
the diagonal. Take, for example, k(x, y)= |x− y|−1. Then

∫
I k(x, y) dy=∞ for all open intervals I ⊂R.

It becomes evident that defining a SIO which makes sense on lines and other “nice” 1-dimensional objects
depends crucially on the cancellation properties of the kernel. Surprisingly in the Heisenberg group H the
situation is very different.
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The Heisenberg group H is R3 endowed with the group law

p · q =
(
x + x ′, y+ y′, z+ z′+ 1

2(xy′− yx ′)
)

(1-1)

for p=(x, y, t), q=(x ′, y′, t ′) ∈ R3. We use the following metric on H:

dH : H×H→ [0,∞), dH(p, q) := N (q−1
· p),

where N : H→ [0,∞) is the Korányi norm in H,

N (x, y, z) := ((x2
+ y2)2+ z2)1/4.

We also let
NH(x, y, z)= |z|1/2,

where NH stands for nonhorizontal. Note that

dH(x, y)= (|π(x)−π(y)|4+NH(x−1 y)4)1/4.

We also remark that the metric dH is homogeneous with respect to the dilations

δr : H→ H, δr ((x, y, z))= (r x, r y, r2z), (r > 0).

Finally let � : H \ {0} → [0,∞),

�(p)=
NH(p)
N (p)

(1-2)

and notice that � is 0-homogeneous, as �(δr (p))=�(p) for all r > 0. One can also define the dilations
for r < 0 for which the metric is still 1-homogeneous (although with absolute value).

In our first main theorem we prove that, in contrast to the Euclidean case, there exists a nonnegative,
−1 homogeneous, Calderón–Zygmund kernel which is bounded in L2(E) for every 1-regular set E which
is contained in a 1-regular curve. We warn the reader that from now on H1 will denote the 1-dimensional
Hausdorff measure in (H, dH).

Theorem 1.1. Let K1 : H \ {0} → [0,∞) be defined by

K1(p)=
�(p)8

N (p)
,

and let E be a 1-regular set which is contained in a 1-regular curve. Then the corresponding truncated
singular integrals

T ε
1 f (p)=

∫
E\BH(p,ε)

K1(q−1
· p) f (q) dH1(q)

are uniformly bounded in L2(E).

There are abundant examples of 1-regular sets in H which are not contained in 1-regular curves. For
example, one can consider suitable 1-dimensional Cantor sets in the vertical axis, T = {(0, 0, z) : z ∈ R},
which is 2-dimensional.
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We define the principal value of f at p to be

p.v. T1 f (p)= lim
ε→0

T ε
1 ( f )(p),

when the limit exists. Because the kernel is positive, we will be able to use Theorem 1.1 to easily show
that the principal value operator is bounded in L2.

Corollary 1.2. If f ∈ L2(E), then p.v. T1 f (x) exists almost everywhere and is in L2(E). Moreover, we
have that there exists a constant C > 0 such that

‖p.v. T1 f ‖L2(E) ≤ C‖ f ‖L2(E) ∀ f ∈ L2(E).

Let us quickly give an intuition behind why one would expect a positive kernel like NH(x)m/N (x)m+1

to be bounded on Lipschitz curves. Rademacher’s theorem says that Lipschitz curves in Rn infinitesimally
resemble affine lines, and antisymmetric kernels cancel on affine lines. This is essentially what controls
the singularity. In the Heisenberg setting, a Rademacher-type theorem by Pansu [1989] says that Lipschitz
curves infinitesimally resemble horizontal lines and NH is 0 on horizontal lines. Thus, we again have
control over the singularity.

Some heuristic motivation comes from the fact that the positive Riesz kernel |z|/(x2
+ y2
+ z2)3/2

defines a SIO which is trivially bounded in R3 for curves in the xy-plane. In this case, however, the
boundedness of this SIO tells us nothing about the regularity of the xy-curve. An analogous concern in
the Heisenberg group would be whether the boundedness of kernels of the form NH(z)p/N (z)p+1 implies
anything about the regularity of the sets if the vertical direction is “orthogonal” to Lipschitz curves. While
we do not know if the boundedness of the kernel of Theorem 1.1 says anything about regularity, our next
result shows that there exists some p for which these vertical Riesz kernels do:

Theorem 1.3. Let K2 : H \ {0} → [0,∞) be defined by

K2(p)=
�(p)2

N (p)
,

and let E be a 1-regular set. If the corresponding truncated singular integrals

T ε
2 f (p)=

∫
E\BH(p,ε)

K2(q−1
· p) f (q) dH1(q)

are uniformly bounded in L2(E) then E is contained in a 1-regular curve.

One can interpret this statement as saying that the vertical fluctuations of a 1-regular set E ⊂H (that
is, Ki (p−1

· q) when p, q ∈ E) contain enough information to determine that it lies on a 1-regular curve.
The following question arises naturally from Theorems 1.1 and 1.3. Does there exist some m ∈N such

that any 1-regular set E is contained in some 1-regular curve if and only if the operators

T ε f (p)=
∫

E

�(q−1
· p)m

N (q−1 · p)
f (q) dH1(q)
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are uniformly bounded in L2(E)? The methods developed in this paper do not allow us to answer this
question, partly because our proof for Theorem 1.1 seems to require a large power for �(p). This is
essential because we are using a positive kernel and so are not able to use antisymmetry to gain additional
control from the bilinearity, as is commonly used in these types of arguments; for example, see Section 6.2
of [Tolsa 2009]. The proof of Theorem 1.3 uses delicate estimates regarding the Korányi norm and is
also not likely to be improved without a major change in the proof structure.

A motivation for the geometric study of SIOs in Rn is their significance in PDE and potential theory.
In particular the d-dimensional Riesz transforms (the SIOs associated to the kernels x/|x |d+1) for d = 1
and d = n − 1 play a crucial role in the geometric characterization of removable sets for bounded
analytic functions and Lipschitz harmonic functions. Landmark contributions by David [1998], David
and Mattila [2000], and Nazarov, Tolsa and Volberg [Nazarov et al. 2014a; 2014b] established that these
removable sets coincide with the purely (n−1)-unrectifiable sets in Rn , i.e., the sets which intersect every
(n−1)-dimensional Lipschitz graph in a set of vanishing (n−1)-dimensional Hausdorff measure. For an
excellent review of the topic and its connections to nonhomogeneous harmonic analysis, we refer the
reader to the survey [Volberg and Èiderman 2013].

The same motivation exists in several noncommutative Lie groups as well. For example, the problem
of characterizing removable sets for Lipschitz harmonic functions has a natural analogue in Carnot groups.
In that case the harmonic functions are, by definition, the solutions to the sub-Laplacian equation. It was
shown in [Chousionis and Mattila 2014] that in the case of the Heisenberg group, the dimension threshold
for such removable sets is dim H− 1= 3, where dim H denotes the Hausdorff dimension of H. See also
[Chousionis et al. 2015] for an extension of the previous result to all Carnot groups. As in the Euclidean
case, one has to handle a SIO whose kernel is the horizontal gradient of the fundamental solution of the
sub-Laplacian. For example, in H, such a kernel can be explicitly written as

K (p) :=
(

x(x2
+ y2)+ yz

((x2+ y2)2+ z2)3/2
,

y(x2
+ y2)− xz

((x2+ y2)2+ z2)3/2

)
for p = (x, y, z) ∈ H. Currently we know very little about the action of this kernel on 3-dimensional
subsets of H. Nevertheless it has motivated research on SIOs on lower-dimensional subsets of H, e.g.,
[Chousionis and Mattila 2011] and the present paper, as well as the very recent study of quantitative
rectifiability in H; see [Chousionis et al. 2016].

2. Preliminaries

Although we have already defined a metric on H, we will also need the fact that there exists a natural path
metric on H. Notice that the Heisenberg group is a Lie group with respect to the group operation defined
in (1-1), and the Lie algebra of the left invariant vector fields in H is generated by the vector fields

X := ∂x + y∂z, Y := ∂y − x∂z, T := ∂z.

The vector fields X and Y define the horizontal subbundle HH of the tangent vector bundle of R3. For
every point p ∈H we will denote the horizontal fiber by HpH. Every such horizontal fiber is endowed
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with the left invariant scalar product 〈 · , · 〉p and the corresponding norm | · |p that make the vector fields
X , Y , T orthonormal.

Definition 2.1. An absolutely continuous curve γ : [a, b] →H will be called horizontal with respect to
the vector fields X , Y if

γ̇ (t) ∈ Hγ (t)H for a.e. t ∈ [a, b].

Definition 2.2. The Carnot–Carathéodory distance of p, q ∈ H is

dcc(p, q)= inf
∫ b

a
|γ̇ (t)|γ (t) dt,

where the infimum is taken over all horizontal curves γ : [a, b] → H such that γ (a)= p and γ (b)= q.

By Chow’s theorem, the above set of curves joining p and q is not empty and hence dcc defines a
metric on H. Furthermore the infimum in the definition can be replaced by a minimum. See [Bonfiglioli
et al. 2007] for more details.

Remark 2.3. It follows by results of Pansu [1982a; 1982b] that any 1-regular curve is horizontal; hence
the reader should keep in mind that our two main theorems (Theorems 1.1 and 1.3) essentially involve
subsets of horizontal curves.

A point p ∈H is called horizontal if p lies on the xy-plane. We can now define an important family of
curves in the Heisenberg group.

Definition 2.4. Let p, q ∈ H such that q is horizontal. The subsets of the form

{p · δr (q) : r ∈ R}

are called horizontal lines.

Observe that horizontal lines are horizontal curves with constant tangent vector. Thus, in the horizontal
line above, the element q can be thought of as defining a “horizontal direction” for the line.

Note also that the horizontal lines going through a specified point in H span only two dimensions
instead of three as in R3. This is a significant difference between Heisenberg and Euclidean geometry.

It is easy to see that the homomorphic projection π : H→ R2 defined by

π(x, y, z)= (x, y)

is 1-Lipshitz. We will also use the map π̃ : H→ H defined by

π̃(x, y, z)= (x, y, 0).

We stress that π̃ is not a homomorphism.

Definition 2.5 (horizontal interpolation). For p, q ∈ H,

pq = {p · δr π̃(p−1
· q) : r ∈ [0, 1]}.

Note that pq is a horizontal segment starting from p traveling in the horizontal direction of p−1
· q .
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Definition 2.6. Let (X, d) be a metric space. We say that

k( · , · ) : X × X \ {x= y} → R

is an n-dimensional Calderón–Zygmund (CZ)-kernel if there exist constants c > 0 and η, with 0< η ≤ 1,
such that for all x, y ∈ X , with x 6= y,

(1) |k(x, y)| ≤ c/d(x, y)n,

(2) |k(x, y)− k(x ′, y)| + |k(y, x)− k(y, x ′)| ≤ cd(x, x ′)η/d(x, y)n+η if d(x, x ′)≤ d(x, y)/2.

For the next lemma, recall the definition (1-2) of the functions �.

Lemma 2.7. Fix m ∈ N, and let k : H×H \ {x= y} → R be defined as

k(p, q)=
�(q−1

· p)m

N (q−1 · p)
.

Then k is a 1-dimensional CZ-kernel.

Proof. We need to verify (1) and (2) from Definition 2.6. Notice that (1) is immediate because by the
definition of the Korányi norm, NH(p)≤ N (p) for all p ∈H. For (2) we will use the fact that the function

f (p)=
�(p)m

N (p)
, p ∈ H \ {0},

is C1 away from the origin and it is also −1-homogeneous, that is,

f (δr (p))=
1
r

f (p)

for all r > 0 and p ∈ H \ {0}. Hence by [Folland and Stein 1982, Proposition 1.7] there exists some
constant C > 0 such that for all P, Q ∈ H with N (Q)≤ N (P)/2,

| f (P · Q)− f (P)| ≤ C
N (Q)
N (P)2

.

Hence if p, p′, q ∈ H such that dH(p, p′)≤ dH(p, q)/2,

|k(p, q)− k(p′, q)| = | f (q−1
· p)− f (q−1

· p′)|

= | f (q−1
· p)− f (q−1

· p · p−1
· p′)| ≤ C

N (p′−1
· p)

N (q−1 · p)2
= C

dH(p′, p)
dH(p, q)2

. (2-1)

Since k is symmetric, from (2-1) we deduce that k also satisfies (2) of Definition 2.6. �

In the sequel, we will use the notation a . b or a & b to mean that there exists a universal constant C
so that a ≤ Cb or a ≥ Cb. This universal constant can change from instance to instance. We let a � b
mean both a . b and b . a. Given another fixed quantity α, we let a .α b and b .α a mean that the
quantity C can depend only on α.
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3. Necessary conditions

In order to simplify notation, in the two following sections we will denote d := dH, B(p, r) := BH(p, r)
and ab := a · b for a, b ∈ H.

Let E ⊂ H such that µ=H1
|E satisfies the 1-regularity condition

ξr ≤ µ(B(x, r))≤ ξ−1r ∀x ∈ E, r > 0,

for some ξ < 1. We now recall the construction of David cubes [1991]. David cubes can be constructed
on any regular set of a geometrically doubling metric space. In particular, for the set E , we obtain a
constant c > 0 and a family of partitions 1j of E , j ∈ Z, with the following properties:

(D1) If k ≤ j , Q ∈1j and Q′ ∈1k , then either Q ∩ Q′ =∅ or Q ⊂ Q′.

(D2) If Q ∈1j , then diam Q ≤ 2− j.

(D3) Every set Q ∈1j contains a set of the form B(pQ, c2− j )∩ E for some pQ ∈ Q.

The sets in 1 :=
⋃
1j are called David cubes, or dyadic cubes, of E . Notice that diam Q � 2− j if

Q ∈1j . For a cube S ∈1, we define

1(S) := {Q ∈1 : Q ⊆ S}.

Given a cube Q ∈1 and λ≥ 1, we define

λQ := {x ∈ E : d(x, Q)≤ (λ− 1) diam Q}.

It follows from (D1), (D2), and the 1-regularity of E that µ(Q)∼ 2− j for Q ∈1j .
Define the positive symmetric −1-homogeneous kernel K by

K (p)=
�8(p)
N (p)

=
NH(p)8

N (p)9
.

For any ε > 0, we can define the truncated operator as before:

T ε
1 f (x)=

∫
d(y,x)>ε

K (y−1x) f (x) dµ(y).

Proof of Theorem 1.1. Our goal is to show that when E lies on a rectifiable curve, there exists a uniform
bound C <∞ that can depend on ξ such that

‖T ε
1 χS‖

2
L2(S) ≤ Cµ(S) ∀S ∈1, ∀ε > 0. (3-1)

We then apply the T (1) theorem for homogeneous spaces — see, e.g., [Deng and Han 2009; David 1991] —
to deduce the uniform L2-boundedness of T ε

1 for all ε > 0. We may suppose E is a 1-regular rectifiable
curve, as taking a subset can only decrease the L2-bound of T ε

1 χS .
From now on we assume the 1-regular set E actually lies on a rectifiable curve. For x ∈ E and r > 0,

we define

βE(x, r)= inf
L

sup
z∈E∩B(x,r)

d(z, L)
r

,

where the infimum is taken over all horizontal lines.



NONNEGATIVE KERNELS AND 1-RECTIFIABILITY IN THE HEISENBERG GROUP 1415

Proposition 3.1. There exists a constant C ≥ 1 depending only ξ so that for any S ∈1, we have∑
Q∈1(S)

β(10Q)4µ(Q)≤ Cµ(S). (3-2)

Proof. This essentially follows from Theorem I of [Li and Schul 2016b], which says that there exists
some universal constant C > 0 such that∫

H

∫
∞

0
βE(B(x, t))4

dt
t4 dH4(x)≤ CH1(E)

when E is simply a horizontal curve. When E is in addition 1-regular, it is a standard argument to use the
Ahlfors regularity to bound this integral from below by a constant multiple — which can depend on ξ —
of the left-hand side of (3-2) (after intersecting E with S). In fact, one can easily show that the integral
and sum are comparable up to multiplicative constants.

One then gets ∑
Q∈1(S)

β(10Q)4µ(Q)≤ CH1(E ∩ S).ξ µ(S),

where we again used 1-regularity of E in the final inequality. �

We now fix S ∈1 a cube.
Now define a positive, even Lipschitz function ψ :R→R such that χB(0,1/2) ≤ψ ≤ χB(0,2). We define

ψj : H→ R, z 7→ ψ(2 j N (z)),

and φj := ψj −ψ j+1. Thus, φj is supported on the annulus B(0, 21− j )\B(0, 2−2− j ) in H and we have

χH\B(0,2−n+1) ≤

∑
n≤N

φn ≤ χH\B(0,2−n−2). (3-3)

For each j ∈ Z, we can define K( j) = φj · K and also

T( j)χS(x)=
∫

S
K( j)(y−1x) dµ(y).

Define SN =
∑

n≤N T(n). As the kernel K is positive, we can easily get the following pointwise estimates
for any positive function f from (3-3):

0≤ T ε
1 f ≤ Sn+1 f ∀ε ≥ 2−n.

Thus, to show uniform bound (3-1), it suffices to show that there exists C <∞ depending possibly on ξ
such that

‖SnχS‖
2
L2(S) ≤ Cµ(S) ∀S ∈1, ∀n ∈ Z.

We now fix S ∈1`.
We will need the following lemma.

Lemma 3.2 [Li and Schul 2016a, Lemma 3.3]. For every a, b ∈ H and horizontal line L ⊂ H, we have

max{d(a, L), d(b, L)} ≥
1
16

NH(a−1b)2

d(a, b)
. (3-4)

Lemma 3.3. For any j ∈ Z and x ∈ E , we have

T( j)1(x).ξ βE(x, 21− j )4. (3-5)
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Proof. Define the annulus A = E ∩ A(x, 2−2− j, 21− j ). Then

T( j)1(x)≤
∫

E
φj (y−1x)K (y−1x) dµ(y)≤ 2 j+2

∫
A

NH(y−1x)8

N (y−1x)8
dµ(y).ξ sup

y∈A

NH(y−1x)8

d(x, y)8
.

It suffices to show
NH(y−1x)8

d(x, y)8
≤ 84βE(B(x, 21− j ))4

when y ∈ A. This follows easily from (3-4). Indeed, as y ∈ A, we have d(x, y) ≥ 2− j−2. We can then
find a horizontal line so that

β{x,y}(B(x, 21− j ))=
max{d(x, L), d(y, L)}

21− j ≥
max{d(x, L), d(y, L)}

8d(x, y)

(3-4)
≥

NH(x−1 y)2

128d(x, y)2
.

The statement now follows as βE(B(x, 21− j ))≥ β{x,y}(B(x, 21− j )). �

We now have the following easy corollary.

Corollary 3.4. Let R ∈1j . Then for any α > 0, we have∫
R

T( j)1(x)α dµ(x).ξ βE(10R)4αµ(R). (3-6)

Remark 3.5. We may replace the constant 1 function in (3-5) and (3-6) with any positive function f ≤ 1
(such as f = χS for some S ∈1). This is again because the kernel of Tj is positive and so respects the
partial ordering of positive functions.

For any Q ∈1, we can also define

TQχS := χQ T( j (Q))χS.

Thus, we have

SnχS =
∑
j≤n

T( j)χS =
∑
j≤n

∑
Q∈1j

TQχS.

and so

‖SnχS‖
2
L2(S) =

∑
j≤n

‖T( j)χS‖
2
L2(S)+ 2

∑
j<k≤n

〈T( j)χS, T(k)χS〉, (3-7)

where the inner product 〈 · , · 〉 is integration on S. We will bound the two terms on the right-hand side
separately.

Let S∗ ∈1`−2 be such that S ⊂ S∗. It follows from (D1) that S∗ is unique for S. It follows from the
φj factor and the fact that cubes of 1` have diameter at most 2−` that T( j)χS(x) = 0 for x ∈ S ∈ 1`
whenever j < `− 2. Thus, as S ∈1`, we have∑

j≤n

‖T( j)χS‖
2
L2(S) ≤

∑
`−2≤ j≤n

∑
Q∈1j ,Q⊆S

∫
Q

T( j)χS(x)2 dµ(x)
(3-6)
.ξ

∑
Q∈1(S∗)

β(10Q)8µ(Q). (3-8)
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We now have to bound the off-diagonal terms of (3-7). We have∑
j≥`−2

∑
j<k≤n

∫
S

T( j)χS(x) · T(k)(x)χS dµ(x)
(3-5)
.ξ

∑
j≥`−2

∑
Q∈1j (S)

β(10Q)4
∑
k> j

∫
Q

T(k)χS dµ(x)

(3-6)
.ξ

∑
Q∈1(S∗)

β(10Q)4
∑

R∈1(Q)

β(10R)4µ(R)

(3-2)
.ξ C

∑
Q∈1(S∗)

β(10Q)4µ(Q). (3-9)

Note that the constants hidden in the . of (3-8) and (3-9) do not depend on S or n.
Altogether, we have

‖SnχS‖
2
L2(S)

(3-7)–(3-9)
.ξ

∑
Q∈1(S∗)

β(10Q)4µ(Q)
(3-2)
.ξ µ(S∗).ξ,c µ(S),

where we used properties (D2), (D3), and 1-regularity of E in the last inequality. �

We now demonstrate how using a positive kernel leads to an easy proof of Corollary 1.2.

Proof of Corollary 1.2. First suppose that f ∈ L2(E) is a nonnegative function. Then as the kernel K1 is
positive, we have for fixed p ∈ E that T ε

1 f (p) is a monotonically increasing sequence as ε→ 0 and so

p.v. T1 f (p) := lim
ε→0

T ε
1 f (p)

is a well-defined function, although it be infinity. By Theorem 1.1, we get that there exists some C > 0
such that

sup
ε>0

∫
(T ε

1 f )2 dµ≤ C
∫

f 2 dµ.

Thus, by Fatou’s lemma, we get∫
(p.v. T1 f )2 dµ≤ lim inf

ε→0

∫
(T ε

1 f )2 ≤ C
∫

f 2 dµ.

This then proves the corollary for nonnegative functions.
Now let f ∈ L2(E) be a real-valued function. We have the decomposition f = f + − f −, where

f + =max{ f, 0} and f − =max{− f, 0}. Then

max(‖ f +‖L2(E), ‖ f −‖L2(E))≤ ‖ f ‖L2(E)

and so we get that the principal values of f + and f − under T1 are controlled by C‖ f ‖L2(E). Thus, the
principal values have to be finite almost everywhere and so we get p.v. T1 f = p.v. T1 f +− p.v. T1 f − as
L2(E) functions. Additionally, we get

‖p.v. T1 f ‖L2(E) ≤ ‖p.v. T1 f +‖L2(E)+‖p.v. T1 f −‖L2(E) ≤ 2C‖ f ‖L2(E).

This proves the entire corollary. �
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4. Sufficient conditions

We will need the following “triangle inequality” for this section.

Lemma 4.1 (NH2 triangle inequality). Let a, b, c ∈ H and let A be the (unsigned) area of the triangle
in R2 with vertices π(a), π(b), π(c). For the four quantities

A, NH(a−1b)2, NH(b−1c)2, NH(c−1a)2,

any one of these numbers is less than the sum of the other three.

Proof. Let us first show A is less than the sum of the other three quantities. Since everything is
invariant under left translation, we may suppose c = (0, 0, 0), a = (x, y, t), and b = (x ′, y′, t ′). Then
NH(c−1a)2 = |t | and NH(b−1c)2 = |t ′| and we have

A = 1
2 |x
′y− xy′| ≤

∣∣ 1
2 x ′y− xy′− t + t ′

∣∣+ |t ′| + |t | ≤ NH(a−1b)2+NH(b−1c)2+NH(c−1a)2.

We now show that NH(a−1b)2 is less than the sum of the other three quantities. We will keep the same
normalization as the last case:

NH(a−1b)2 =
∣∣ 1

2 x ′y− xy′− t + t ′
∣∣≤ 1

2 |x
′y− xy′| + |t ′| + |t | ≤ A+NH(b−1c)2+NH(c−1a)2. �

For r < R and x ∈ H, we can define the annulus

A(x, r, R) := {y ∈ H : d(x, y) ∈ (r, R)}.

For three points p1, p2, p3 in H, we define

∂(p1, p2, p3)= min
σ∈S3

{
d(pσ(1), pσ(2))+ d(pσ(2), pσ(3))− d(pσ(1), pσ(3))

}
.

For α ∈ (0, 1), r > 0, and a metric space X , we let 6X (α, r) denote the triples of points (p1, p2, p3) ∈ X
such that

αr ≤ d(pi , pj )≤ r ∀i 6= j.

We also let 6X (α)=
⋃

r>06X (α, r). For notational convenience, we will drop the X subscript when we
want X = E , where E is the 1-regular set of the hypothesis of Theorem 1.3.

Lemma 4.2. Let (p1, p2, p3) ∈6(α, r). If for some ε ∈ (0, 1/2) we have

NH(p−1
i pj )≤ εd(pi , pj ), (4-1)

then the point π(pi ) ∈ R2 is contained in the strip around the line π(pi+1), π(pi+2) of width 16α−1ε2r .

Proof. We will view π(p2), π(p3) as the base of a triangle with top vertex π(p1). It suffices to bound the
height. We let A denote the area of the triangle.

Suppose A ≥ 4ε2r2. We have by the NH2 triangle inequality that

NH(p−1
2 p3)

2
≥ A−NH(p−1

1 p2)
2
−NH(p−1

1 p3)
2 (4-1)
≥ 2ε2r2.

This is a contradiction of (4-1).
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Thus, we may assume A ≤ 4ε2r2. But if NH(p−1
2 p3) ≤ d(p2, p3)/2, then |π(p2) − π(p3)| ≥

d(p2, p3)/2≥ αr/2. Thus, the height of the triangle is less than

2A
|π(p2)−π(p3)|

≤
16
α
ε2r. �

Given u, v, w ∈ H, we denote the largest and second largest quantities of{
NH(u−1v)

d(u, v)
,

NH(v−1w)

d(v,w)
,

NH(u−1w)

d(u, w)

}
by γ1(u, v, w) and γ2(u, v, w), respectively.

Lemma 4.3. For all α > 0, there exists a constant c1 > 0 such that if (p1, p2, p3) ∈6(α, r), then

∂(p1, p2, p3)≤ c1γ1(p1, p2, p3)
4r.

Proof. Let γ = γ1(p1, p2, p3), and we may suppose without loss of generality that

∂(p1, p2, p3)= d(p1, p2)+ d(p2, p3)− d(p1, p3).

Suppose first that γ < c for some c > 0 to be determined soon. Then

NH(p−1
i pj )≤ γ d(pi , pj ) < cd(pi , pj ) ∀i 6= j, (4-2)

and so

|π(pi )−π(pj )| =
(
d(pi , pj )

4
−NH(p−1

i pj )
4)1/4
≥ (1− c4)1/4d(pi , pj ).

By taking c small enough, we get that (π(p1), π(p2), π(p3)) ∈6R2(α/2) and, by Taylor expansion of
the Korányi norm, that

d(pi , pj )≤ |π(pi )−π(pj )| +
NH(p−1

i pj )
4

|π(pi )−π(pj )|3
≤ |π(pi )−π(pj )| + (1− c4)−3/4γ 4r,

and so

∂(p1, p2, p3)≤ |π(p1)−π(p2)| + |π(p2)−π(p3)| − |π(p1)−π(p3)| + 2(1− c4)−3/4γ 4r. (4-3)

As (π(p1), π(p2), π(p3)) ∈6R2(α/2), we get by a Taylor approximation of the Euclidean metric that

|π(p1)−π(p2)| + |π(p2)−π(p3)| − |π(p1)−π(p3)|.α
h2

r
, (4-4)

where h is the height of the triangle in R2 defined by π(pi ) with base π(p1), π(p3). From (4-1) and
(4-2), we have

h ≤ 16α−1γ 2r. (4-5)

The result now follows from (4-3)–(4-5).
Now suppose γ ≥ c. As ∂(p1, p2, p3)≤ 3r , the lemma trivially follows. �
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We let E ⊂ H be a set with µ=H1
|E satisfying the estimate

ξr ≤ µ(B(x, r))≤ ξ−1r ∀x ∈ E, r > 0,

where ξ ≤ 1.

Lemma 4.4. Let E ⊂H be a 1-regular set and α ∈ (0, 1). There exists c2 ≥ 1 depending on α and ξ such
that if (p1, p2, p3) ∈6(α, r), then one of the following is true:

(1) γ1(p1, p2, p3)≤ c2γ2(p1, p2, p3).

(2) After a possible reindexing of pi , there exists a set V ⊆ E ∩ B(p1, αr/10) with µ(V ) ≥ r/c2 such
that for every x ∈ V we have

γ1(p1, p2, p3)≤ c2γ2(x, p2, p3)

and (x, p2, p3) ∈6(c−1
2 ).

(3) After a possible reindexing of pi , there exist sets W1,W2 ⊆ E ∩ B(p1, αr/5) with µ(W1), µ(W2)≥

r/c2 such that for all (x, y) ∈W1×W2 we have

γ1(p1, p2, p3)≤ c2γ2(p1, x, y)

and (p1, x, y) ∈6(c−1
2 , r).

Proof. Throughout this proof, we will give a finite series of lower bounds for c2. The final c2 will then
just be the maximum of these lower bounds. For simplicity of notation, let γi = γi (p1, p2, p3). We
may of course suppose that γ2 ≤ cγ1 for some small c > 0 depending on α and ξ to be determined,
as otherwise condition (1) would be satisfied. Without loss of generality, we can assume that γ1 =

NH(p−1
2 p3)/d(p2, p3). Let A denote the area of the triangle in R2 with vertices π(pi ). Then we have

from the NH2 triangle inequality that

NH(p−1
2 p3)

2
≤ NH(p−1

1 p2)
2
+NH(p−1

1 p3)
2
+ A,

and so if we set c < α/2 (while still allowing ourselves to take c smaller) then

A ≥ 1
2α

2γ 2
1 r2. (4-6)

Fix λ ∈ (0, 1) depending only ξ so that

µ(A(x, λ`, `))≥ 1
2ξ` ∀x ∈ E, ` > 0.

Suppose now A(p1, λαr/10, αr/10) contains a subset S of µ-measure at least ξαr/40 so that

NH(x−1 p1)

d(x, p1)
< cγ1 ∀x ∈ S. (4-7)

If there is a further subset V ⊆ S with µ(V )≥ ξαr/80 such that NH(x−1 p2)≥ cγ1d(x, p2) for each x ∈ V,
then we are done as we’ve satisfied condition (2) for large enough c2 if we keep p2, p3 and draw x from V.

Thus, suppose there is a subset V ⊆ S with µ(V )≥ ξαr/80 and

NH(x−1 p2)

d(x, p2)
< cγ1 ∀x ∈ V . (4-8)
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b

b b

b

π(p3)

π(p1) π(p2)π(x)

h ≥ α2γ21r

d(π(p1), π(2)) ≤ r

w = 640
αλ c

2γ21r

A1 ≥ λα3

60 γ
2
1r

2

A ≥ α2

2 γ
2
1r

2

Figure 1. A denotes the area of the triangle determined by π(pi ), i = 1, 2, 3, and A1

denotes the area of the triangle determined by π(p1), π(p3) and π(x).

Recalling

d(x, p1) ∈
[ 1

10λαr, 1
10αr

]
, d(x, p2) ∈

[1
2r, 2r

]
, ∀x ∈ V ⊆ A

(
p1,

1
10λαr, 1

10αr
)
, (4-9)

from (4-7), (4-8), and Lemma 4.2, for every x ∈ V we get that π(x) lies in the strip around π(p1), π(p2)

of width

w =
640
λα

c2γ 2
1 r. (4-10)

As NH(x−1 p1) < cγ1d(x, p1), we easily get (supposing c is small enough) that

|π(x)−π(p1)| ≥
1
2 d(x, p1)

(4-9)
≥

1
20λαr. (4-11)

As d(p1, p2) ≤ r , we get that the height of the triangle given by π(pi ) with base π(p1), π(p2) is then
at least

h ≥
2A

d(p1, p2)

(4-6)
≥ α2γ 2

1 r.

Let A1 denote the area of the triangle determined by π(p1), π(x), π(p3). By (4-10), we have that w
is at most some constant multiple (depending on α and λ) of c2h. Thus, if we choose c small enough
to get π(x) sufficiently close to the line π(p1), π(p2) compared to h, we get

A1 ≥
1
3 h|π(p1)−π(x)|

(4-11)
≥

1
60λα

3γ 2
1 r2.

See Figure 1 for an illustration of these triangles.
Now using the NH2 triangle inequality, we get

1
60α

3λγ 2
1 r2
≤ A1 ≤ NH(x−1 p1)

2
+NH(p−1

1 p3)
2
+NH(x−1 p3)

2 (4-7),(4-9)
≤ 2c2γ 2

1 r2
+NH(x−1 p3)

2.

Thus, if we choose c small enough compared to α and λ once and for all, we get

NH(x−1 p3)≥
1
10

√
α3λγ1r ≥ 1

20

√
α3λγ1d(x, p3).

Now we can satisfy condition (2) for sufficiently large c2 by keeping p2, p3 and drawing x from V.



1422 VASILEIOS CHOUSIONIS AND SEAN LI

Thus, we may suppose that E ∩ A(p1, λαr/10, αr/10) contains a subset S so that µ(S)≥ ξαr/40 and

NH(z−1 p1)≥ cγ1d(z, p1) ∀z ∈ S.

Using the 1-regularity of E , an elementary, although tedious, packing argument shows that there exist
η, τ < λα/100 depending only on α and ξ and points x ′, y′ ∈ E ∩ A(p1, λαr/10, αr/10) such that
d(x ′, y′)≥ 10τr and

min
{
µ(S ∩ B(x ′, τr)), µ(S ∩ B(y′, τr))

}
≥ ηr.

Note by the triangle inequality that we get

B(x ′, τr), B(y′, τr)⊆ A
(

p1,
1

20λαr, 1
5αr

)
.

Thus, after setting c2 large enough, we’ve satisfied condition (3) with W1 = S ∩ B(x ′, τr) and W2 =

S ∩ B(y′, τr), which would completely finish the proof of the lemma. We will present a quick sketch
of the packing argument and leave the details to the reader.

Find a maximal τr-separated net N of E ∩ B(p1, αr) for τ > 0 to be determined. By 1-regularity,
we have #N & α/τ . First use the 1-regularity of E to find M ≥ 1 such that any subset S ⊆N for which
#S ≥ M must contain x ′, y′ ∈ S so that d(x ′, y′) ≥ 10τr . Now {B(x, τr) : x ∈ N } is a covering of
B(p1, αr/10). Define B= {B(x, τr) : x ∈N , µ(S∩ B(x, r))≥ ηr}. By choosing η small enough relative
to ατ , we can use the 1-regularity of E and the fact that µ(S)& αr to get that #B & αN & α2/τ (with
no dependence on η). Now simply choose τ small enough so that #B ≥ M . One then finds two balls
B(x ′, τr), B(y′, τr) ∈ B such that d(x ′, y′)≥ 10τr , which finishes the sketch. �

For x, y ∈ E , we let

6(α, r; x) := {(y, z) ∈ E2
: (x, y, z) ∈6(α, r)}, 6(α; x, y) := {z ∈ E : (x, y, z) ∈6(α)}.

One easily has that there exists some constant c3 ≥ 1 depending on ξ such that
1
c3

r2
≤ µ×µ(6(α, r; x))≤ c3r2,

1
c3

d(x, y)≤ µ(6(α; x, y))≤ c3d(x, y).

For simplicity, we will adopt the convention that the integral
∫

A f (x) dx means
∫

A f (x) dµ(x) when
A⊆ E . Recall that for three points p1, p2, p3 in a metric space X , the Menger curvature c(p1, p2, p3)∈R

is defined as
c(p1, p2, p3)=

1
R
,

where R is the radius of the circle in R2 passing through a triangle defined by the vertices p′1, p′2, p′3 ∈R2,
where d(pi , pj )= |p′i − p′j |.

Proposition 4.5. For any α > 0, there exists c4 ≥ 1 such that∫∫∫
6(α)

c(x, y, z)2 dx dy dz ≤ c4

∫∫∫
6(c−1

4 )

γ1(x, y, z)2 γ2(x, y, z)2

diam({x, y, z})2
dx dy dz. (4-12)

Proof. We have by [Hahlomaa 2005] that there exists some τ > 0 depending on α such that if (x, y, z) ∈
6(α), then

c(x, y, z)2 ≤ τ diam({x, y, z})−3∂(x, y, z). (4-13)
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By Lemma 4.3, we have that there exists c1 > 0 such that∫∫∫
6(α)

diam({x, y, z})−3∂(x, y, z) dx dy dz ≤ c1

∫∫∫
6(α)

γ1(x, y, z)4

diam({x, y, z})2
dx dy dz. (4-14)

We now decompose 6(α) into three pieces. For i = 1, 2, 3, let Si ⊆6(α) denote the triples of points for
which condition (i) of Lemma 4.4 holds for some r > 0 (that can depend on the triple of points). Note
6(α)⊆ S1 ∪ S2 ∪ S3, but this decomposition need not be disjoint.

It will be convenient to define the functions

f (x, y, z) :=
γ1(x, y, z)4

diam({x, y, z})2
, g(x, y, z) :=

γ1(x, y, z)2 γ2(x, y, z)2

diam({x, y, z})2
.

We trivially have that ∫∫∫
S1

f (x, y, z) dx dy dz ≤ c2
2

∫∫∫
S1

g(x, y, z) dx dy dz. (4-15)

When we write a triple of points (x, y, z) ∈ S2, we will always assume y, z play the role of p2, p3 in
condition (2). Now let (x, y, z) ∈ S2 ∩6(α). We then have that there exists a subset with µ(V )≥ r/c2,

f (x, y, z)≤ c2g(u, y, z) ∀u ∈ V .

We then have

f (x, y, z)≤ c2
1

µ(V )

∫
V

g(u, y, z) du.

We also have (u, y, z) ∈6(c−1
2 ) for all u ∈ V and so∫

6(α;y,z)
f (x, y, z) dx ≤ c2

µ(6(α; y, z))
µ(V )

∫
V

g(u, y, z) du ≤ c2
2c3

∫
6(c−1

2 ;y,z)
g(u, y, z) du.

Now we have ∫∫∫
S2

f (x, y, z) dx dy dz =
∫∫∫

6(α)

1S2 f (x, y, z) dx dy dz

≤

∫
E

∫
E

∫
6(α;y,z)

1S2 f (x, y, z) dx dy dz

≤ c2
2c3

∫
E

∫
E

∫
6(c−1

2 ;y,z)
g(x, y, z) dx dy dz

≤ 6c2
2c3

∫∫∫
6(c−1

2 )

g(x, y, z) dx dy dz. (4-16)

For S3, we will write the points (x, y, z)with the understanding that z plays the role of p1 in condition (3).
Now let (x, y, z) ∈ S3 ∩6(α/2, r). In a way similar to that above, we can use the properties of the
conclusion of property (3) to get that

f (x, y, z)≤ c2
2c3

∫∫
6(c−1

2 ,r;z)
g(u, v, z) du dv.
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It is elementary to see that if (x, y, z) ∈6(α), then∫
∞

0
1{r :(x,y)∈6(α/2,r;z)}

dr
r
�α 1.

Here, we need the extra factor of 1
2 in case (x, y, z) achieves tightness in the 6(α) condition. We can

now decompose the integral:∫∫∫
S3

f (x, y, z) dx dy dz .α

∫∫∫
S3

f (x, y, z)
∫
∞

0
1{r :(x,y)∈6(α/2,r;z)}

dr
r

dx dy dz

≤

∫
E

∫
∞

0

∫∫
{(x,y)∈6(α/2,r;z):(x,y,z)∈S3}

f (x, y, z) dx dy dr
r

dz

≤ c2
2c3

∫
E

∫
∞

0

∫∫
6(c−1

2 ,r;z)
g(u, v, z) du dvdr

r
dz

.α

∫
6(c−1

2 )

g(x, y, z)
∫
∞

0
1
{r :(u,v)∈6(c−1

2 ,r;z)}
dr
r

du dv dz

.
∫∫∫

6(c−1
2 )

g(x, y, z) dx dy dz. (4-17)

In the second and penultimate inequalities, we used Fubini. We then get the conclusion from (4-13)–(4-16)
and (4-17). �

Proof of Theorem 1.3. By a result of Hahlomaa [2007, p. 123], it suffices to show that for some α > 0,∫∫∫
6(α)∩B(p,R)3

c2(y1, y2, y3) dy1 dy2 dy3 . R ∀p ∈ E, R > 0. (4-18)

Hence by (4-12), it is enough to prove that for some α > 0,∫∫∫
6(α)∩B(p,R)3

γ1(y1, y2, y3)
2γ2(y1, y2, y3)

2

diam({y1, y2, y3})2
dy1 dy2 dy3 . R ∀p ∈ E, R > 0. (4-19)

By our assumption, for all ε > 0 and every f ∈ L2(E),

‖T ε
2 f ‖L2(E) . ‖ f ‖L2(E). (4-20)

Let p ∈ E and R > 0. Applying (4-20) to f = χB(p,R), we get that there exists some C ≥ 0 such that for
every ε > 0,∫

E∩B(p,R)

∫
E∩B(p,r)∩B(y1,ε)c

NH(y−1
1 y2)

2

d(y1, y2)3
dy2

∫
E∩B(p,r)∩B(y1,ε)c

NH(y−1
1 y3)

2

d(y1, y3)3
dy3 dy1 ≤ C R,

Uε =
{
(y1, y2, y3) ∈6(α)∩ B(p, R)3 : d(y1, y2) > ε, d(y1, y3) > ε

}
,

Vε =
{
(y1, y2, y3) ∈6(α)∩ B(p, R)3 : d(y1, y2) > ε, d(y1, y3) > ε, d(y2, y3) > ε

}
.
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It then easily follows from Fubini (remember that all the terms in the integrand are positive) that∫∫∫
Uε

NH(y−1
1 y2)

2 NH(y−1
1 y3)

2

diam({y1, y2, y3})6
dy1 dy2 dy3 ≤ C R. (4-21)

Therefore,

C R ≥
∫∫∫

Vε

NH(y−1
1 y2)

2 NH(y−1
1 y3)

2

diam({y1, y2, y3})6
dy1 dy2 dy3+

∫∫∫
Uε\Vε

NH(y−1
1 y2)

2 NH(y−1
1 y3)

2

diam({y1, y2, y3})6
dy1 dy2 dy3.

(4-22)
Using the upper regularity of µ, it is not difficult to show that∫∫∫

Uε\Vε

NH(y−1
1 y2)

2 NH(y−1
1 y3)

2

diam({y1, y2, y3})6
dy1 dy2 dy3 .ξ R. (4-23)

Using (4-21)–(4-23) and letting ε→ 0 we deduce that∫∫∫
6(α)∩B(p,R)3

NH(y−1
1 y2)

2 NH(y−1
1 y3)

2

diam({y1, y2, y3})6
dy1 dy2 dy3 ≤ C R.

By permuting variables, we get∫∫∫
6(α)∩B(p,R)3

∑
σ∈S3

NH(y−1
σ(1)yσ(2))

2 NH(y−1
σ(1)yσ(3))

2

diam({y1, y, y3})6
dy1 dy2 dy3 ≤ 6C R. (4-24)

If (y1, y2, y3) ∈6(α), then it follows easily that

γ1(y1, y2, y3)
2 γ2(y1, y2, y3)

2

diam({y1, y2, y3})2
.max

σ∈S3

NH(y−1
σ(1)yσ(2))

2 NH(y−1
σ(1)yσ(3))

2

diam({y1, y2, y3})6

≤

∑
σ∈S3

NH(y−1
σ(1)yσ(2))

2 NH(y−1
σ(1)yσ(3))

2

diam({y1, y2, y3})6
, (4-25)

where the constant multiple implicit in the first inequality depends on α. We then get (4-19) from (4-24)
and (4-25). �

5. Norm independence

In this short section we will show that Theorems 1.1 and 1.3 do not depend on the Korányi metric.
Let ‖ · ‖1 and ‖ · ‖2 be two homogeneous norms on H and denote by

di (p, q)= ‖q−1
· p‖i

the induced metrics for i = 1, 2. We will also denote by Bi (p, r) the balls with respect to the metric di for
i = 1, 2. It is well known — see, e.g., [Bonfiglioli et al. 2007, Proposition 5.1.4] — that all homogeneous
norms in a Carnot group are globally equivalent. In particular there exists some L ≥ 0 such that

L−1
‖p‖2 ≤ ‖p‖1 ≤ L‖p‖2 for p ∈ H.
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Let s > 0 and define k1, k2 : H \ {0} → (0,+∞) by

k1(p)=
|z|s

‖p‖2s+1
1

and k2(p)=
|z|s

‖p‖2s+1
2

,

where p = (x, y, z) ∈ H \ {0}. As in the proof of Lemma 2.7 one can show that the kernels ki , i = 1, 2,
are CZ kernels. Note also that

L−s−1 k2(p)≤ k1(p)≤ Ls+1 k2(p).

Let µ be a 1-regular measure on H and define the truncated singular integrals

Sε1 f (p)=
∫

B1(p,ε)c
k1(q−1

· p) f (q) dµ(q) and Sε2 f (p)=
∫

B2(p,ε)c
k2(q−1

· p) f (q) dµ(q)

for f ∈ L2(µ) and ε > 0.

Proposition 5.1. The operator S1 is bounded in L2(µ) if and only if the operator S2 is bounded in L2(µ).

Proof. It suffices to show that if S2 is bounded in L2(µ) then S1 is bounded in L2(µ). We define the
following auxiliary truncated singular integral for ε > 0 and f ∈ L2(µ):

S̃ε2 f (p)=
∫

B2(p,ε)c
k1(q−1

· p) f (q) dµ(q).

Let Q be any David cube associated to µ, as in the beginning of Section 3. Then

‖S̃ε2χQ‖
2
L2(µ)
=

∫ (∫
Q∩B2(p,ε)c

k1(q−1
· p) dµ(q)

)2

dµ(p)

≤ L2(s+1)
∫ (∫

Q∩B2(p,ε)c
k2(q−1

· p) dµ(q)
)2

dµ(p)≤ L2(s+1)
‖S2χQ‖

2
L2(µ)

. µ(Q)

because S2 is bounded in L2(µ). Hence by the T (1) theorem for homogeneous spaces — see, e.g., [Deng
and Han 2009; David 1991] — we deduce that S̃2 is bounded in L2(µ).

For f ∈ L2(µ), ε > 0, and p ∈ H, we have

|Sε1 f (p)− S̃ε2 f (p)| =
∣∣∣∣∫

B1(p,ε)c
k1(q−1

· p) f (q) dµ(q)−
∫

B2(p,ε)c
k1(q−1

· p) f (q) dµ(q)
∣∣∣∣

.
∫

B1(p,ε)\B2(p,ε)

| f (q)|
d1(p, q)

dµ(q)+
∫

B2(p,ε)\B1(p,ε)

| f (q)|
d1(p, q)

dµ(q).

Note that∫
B1(p,ε)\B2(p,ε)

| f (q)|
d1(p,q)

dµ(q)≤
∫
{q:ε/L≤d1(p,q)<ε}

| f (q)|
d1(p,q)

dµ(q)

≤
L
ε

∫
B1(p,ε)

| f (y)|dµ(q)≈
1

µ(B1(p,ε))

∫
B1(p,ε)

| f (y)|dµ(q)≤M1
µ f (p),
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where M1
µ denotes the Hardy–Littlewood maximal function with respect to d1 and µ. Similarly,∫

B2(p,ε)\B1(p,ε)

| f (q)|
d1(p, q)

dµ(q). M1
µ f (p),

and we have shown that
|Sε1 f (p)− S̃ε2 f (p)|. M1

µ f (p).

Hence the proposition follows because we already showed that S̃2 is bounded in L2(µ) and it is also well
known that the maximal operator M1

µ is bounded in L2(µ). �

In particular, as a corollary to Theorems 1.1 and 1.3 and Proposition 5.1, we obtain that Theorems 1.1
and 1.3 hold respectively for the kernels

K ′1(p)=
|z|4

dcc(p, 0)9
and K ′2(p)=

|z|
dcc(p, 0)3

,

where, recalling Definition 2.2, dcc stands for the Carnot–Carathéodory distance.
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