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SIMPLICES IN THIN SUBSETS OF EUCLIDEAN SPACES

ALEX IOSEVICH AND ÁKOS MAGYAR

Let 1 be a nondegenerate simplex on k vertices. We prove that there exists a threshold sk < k such that
any set A ⊆ Rk of Hausdorff dimension dim A ≥ sk necessarily contains a similar copy of the simplex 1.

1. Introduction

A classical problem of geometric Ramsey theory is to show that sufficiently large sets contain a given
geometric configuration. The underlying settings can be Euclidean space, the integer lattice or vector
spaces over finite fields. By a geometric configuration, we mean the collection of finite point sets obtained
from a given finite set F ⊆ Rk via translations, rotations and dilations.

If the size is measured in terms of the positivity of the Lebesgue density, then it is known that large sets
in Rk contain a translated and rotated copy of all sufficiently large dilates of any nondegenerate simplex 1
with k vertices [Bourgain 1986]. However, on the scale of the Hausdorff dimension s<k this question is not
very well understood. The only affirmative result in this direction was obtained by Iosevich and Liu [2019].

In the other direction, a construction due to Keleti [2008] shows that there exists a set A ⊆ R of
full Hausdorff dimension which does not contain any nontrivial 3-term arithmetic progression. In two
dimensions an example due to Falconer [2013] and Maga [2010] shows that there exists a set A ⊆ R2

of Hausdorff dimension 2 which does not contain the vertices of an equilateral triangle, or more generally
a nontrivial similar copy of a given nondegenerate triangle. It seems plausible that examples of such sets
exist in all dimensions, but this is not currently known. See [Fraser and Pramanik 2018] for related results.

The purpose of this paper is to show that measurable sets A ⊆ Rk of sufficiently large Hausdorff
dimension s < k contain a similar copy of any given nondegenerate k-simplex with bounded eccentricity.
Our arguments make use of and have some similarity to those of Lyall and Magyar [2020]. We also
extend our results to bounded degree distance graphs. For the special cases of a path (or chain) and,
more generally, a tree, similar but somewhat stronger results were obtained in [Bennett et al. 2016] and
[Iosevich and Taylor 2019].

2. Main results

Let V = {v1, . . . , vk} ⊂ Rk be a nondegenerate k-simplex, a set of k vertices which are in general position
spanning a (k−1)-dimensional affine subspace. For 1 ≤ j ≤ k, let rj (V ) be the distance of the vertex vj
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to the affine subspace spanned by the remaining vertices vi , i ̸= j , and define r(V ) := min1≤ j≤k rj (V ).
Let d(V ) denote the diameter of the simplex, which is also the maximum distance between two vertices.
Then the quantity δ(V ) := r(V )/d(V ), which is positive if and only if V is nondegenerate, measures how
close the simplex V is to being degenerate.

We say that a simplex V ′ is similar to V, if V ′
= x +λ ·U(V ) for some x ∈ Rk, λ > 0 and U ∈ SO(k);

that is if V ′ is obtained from V by a translation, dilation and rotation.

Theorem 1. Let k ∈ N and δ > 0. There exists s0 = s0(k, δ) < k such that if E is a compact subset of Rk

of Hausdorff dimension dim E ≥ s0, then E contains the vertices of a simplex V ′ similar to V, for any
nondegenerate k-simplex V with δ(V )≥ δ.

Remarks. (1) Note that the dimension condition is sharp for k = 2, as a construction due to Maga [2010]
shows the existence of a set E ⊆ R2 with dim(E)= 2 that does not contain any equilateral triangle or
more generally a similar copy of any given triangle.

While we do not currently have an example showing that the dimension condition is sharp when k > 2,
we have some indications that this should be the case. In the finite field setting, one can show that Fd

q (the
d-dimensional vector space over the field with q elements) contains a d-dimensional equilateral simplex
if and only if (d + 1)/2d is a square in Fq ; see the appendix in [Bennett et al. 2014]. This allows one
to construct an Fd

q that does not contain a d-dimensional equilateral simplex under a suitable arithmetic
assumption on Fq . While such an assumption is not meaningful in Rd, the Fourier analytic methods
used in this paper would likely to extend to the finite field setting. At the very least, this says that if
the dimensional assumption in Theorem 1 is not sharp, a very different approach would be required to
establish a positive result.

(2) It is also interesting to note that the proof of Theorem 1 above proves much more than just the
existence of vertices of V ′ similar to V inside E. The proof proceeds by constructing a natural measure
on the set of simplexes and proving an upper and a lower bound on this measure. This argument shows
that an infinite “statistically” correct “amount” of simplexes V ′ exist that satisfy the conclusion of the
theorem, shedding considerable light on the structure of sets of positive upper Lebesgue density.

(3) Theorem 1 establishes a nontrivial exponent s0 < k, but the proof yields s0 very close to k and not
explicitly computable. The analogous results in the finite field setting (see e.g., [Hart and Iosevich 2008],
[Iosevich and Parshall 2019]) suggest that it may be possible to obtain explicit exponents, but this would
require a fundamentally different approach to certain lower bounds obtained in the proof of Theorem 1.

A distance graph is a connected finite graph embedded in Euclidean space, with a set of vertices
V = {v0, v1, . . . , vn} ⊆ Rd and a set of edges E ⊆ {(i, j) : 0 ≤ i < j ≤ n}. We say that a graph 0= (V, E)
has degree at most k if |Vj | ≤ k for all 1 ≤ j ≤ n, where Vj = {vi : (i, j) ∈ E}. The graph 0 is called
proper if the sets Vj ∪ {vj } for all j are in general position, in the sense that Vj ∪ {vj } is not contained
in a subspace of dimension smaller than |Vj | − 1. Let r(0) be the minimum of the distances from the
vertices vj to the corresponding affine subspace spanned by the sets Vj , and note that r(0) > 0 if 0 is
proper. Let d(0) denote the length of the longest edge of 0, and let δ(0) := r(0)/d(0).
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We say that a distance graph 0′
= (V ′, E) is isometric to 0 and write 0′

≃ 0, if there is a one-to-one
and onto mapping φ : V → V ′ so that |φ(vi )−φ(vj )| = |vi − vj | for all (i, j) ∈ E. One may picture 0′

obtained from 0 by a translation followed by rotating the edges around the vertices, if possible. By λ ·0

we mean the dilate of the distance graph 0 by a factor λ > 0, and we say that 0′ is similar to 0 if 0′ is
isometric to λ ·0.

Theorem 2. Let δ>0, n ≥1, 1≤k<d , and let E be a compact subset of Rk of Hausdorff dimension s<d.
There exists s0 = s0(n, d, δ) < d such that if s ≥ s0, then E contains a distance graph 0′ similar to 0, for
any proper distance graph 0 = (V, E) of degree at most k, with V ⊆ Rd, |V | = n and δ(0)≥ δ.

Note that Theorem 2 implies Theorem 1, as a nondegenerate simplex is a proper distance graph of
degree k − 1.

3. Proof of Theorem 1

Let E ⊆ B(0, 1) be a compact subset of the unit ball B(0, 1) in Rk of Hausdorff dimension s < k. It is
well known that there is a probability measure µ supported on E such that µ(B(x, r)) ≤ Cµr s for all
balls B(x, r). The following observation shows that we may take Cµ = 4 for our purposes.1

Lemma 1. There exists a set E ′
⊆ B(0, 1) of the form E ′

= ρ−1(F − u) for some ρ > 0, u ∈ Rk and
F ⊆ E, and a probability measure µ′ supported on E ′ which satisfies

µ′(B(x, r))≤ 4r s, for all x ∈ Rk, r > 0. (3-1)

Proof. Let K := inf(S), where

S := {C ∈ R : µ(B(x, r))≤ Cr s, ∀ B(x, r)}.

By Frostman’s lemma [Mattila 1995], we have that S ̸= ∅ and K > 0, moreover,

µ(B(x, r))≤ 2Kr s,

for all balls B(x, r). There exists a ball Q = B(v, ρ) of radius ρ such that µ(Q)≥ 1
2 Kρs. We translate E

so Q is centered at the origin, set F = E ∩ Q and denote by µF the induced probability measure on F :

µF (A)=
µ(A ∩ F)
µ(F)

.

Note that for all balls B = B(x, r),

µF (B)≤
2Kr s

(1/2)Kρs = 4
( r
ρ

)s
.

Finally, we define the probability measureµ′ asµ′(A) :=µF (ρA). It is supported on E ′
=ρ−1 F ⊆ B(0, 1)

and satisfies

µ′(B(x, r))= µF (B(ρx, ρr))≤ 4r s. □

1We would like to thank Giorgis Petridis for bringing this observation to our attention.
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Clearly E contains a similar copy of V if the same holds for E ′, thus one can pass from E to E ′ in
proving our main results, assuming that (3-1) holds. Given ε > 0, let ψε(x) = ε−kψ(x/ε) ≥ 0, where
ψ ≥ 0 is a Schwarz function whose Fourier transform, ψ̂ , is a compactly supported smooth function
satisfying ψ̂(0)= 1 and 0 ≤ ψ̂ ≤ 1.

We define µε := µ ∗ψε. Note that µε is a continuous function satisfying ∥µε∥∞ ≤ Cεs−k with an
absolute constant C = Cψ > 0, by Lemma 1.

Let V = {v0 = 0, . . . , vk−1} be a given nondegenerate simplex and note that in proving Theorem 1 we
may assume that d(V )= 1, and hence δ(V )= r(V ). A simplex V ′

= {x0 = 0, x1, . . . , xk−1} is isometric
to V if for every 1 ≤ j ≤ k one has that x j ∈ Sx1,...,x j−1 , where

Sx1,...,x j−1 = {y ∈ Rk
: |y − xi | = |vj − vi |, 0 ≤ i < j}

is a sphere of dimension k − j and of radius rj = rj (V )≥ r(V ) > 0. Let σx1,...,x j−1 denote its normalized
surface area measure.

Given 0< λ and ε ≤ 1, define the multilinear expression

TλV (µε) :=

∫
µε(x)µε(x − λx1) · · ·µε(x − λxk−1) dσ(x1) dσx1(x2) · · · dσx1,...,xk−2(xk−1) dx, (3-2)

which may be viewed as a weighted count of the isometric copies of λ1.

3.1. Upper bounds. A crucial part of our approach is to show that the averages TλV (µε) have a limit
as ε→ 0, for which one needs the following upper bound.

Lemma 2. There exists a constant Ck > 0, depending only on k, such that

|TλV (µ2ε)− TλV (µε)| ≤ Ckr(V )−1/2λ−1/2ε(k−1/2)(s−k)+1/4. (3-3)

As an immediate corollary we have the following:

Lemma 3. Let k −
1

4k ≤ s < k. There exists

TλV (µ) := lim
ε→0

TλV (µε), (3-4)

and moreover,
|TλV (µ)− TλV (µε)| ≤ Ckr(V )−1/2λ−1/2ε(k−1/2)(s−k)+1/4. (3-5)

Indeed, the left side of (3-5) can be written as a telescopic sum:∑
j≥0

TλV (µ2εj )− TλV (µεj ), with εj = 2− jε.

Proof of Lemma 2. Write 1µε := µ2ε −µε. Then

k−1∏
j=1

µ2ε(x − λx j )−

k−1∏
j=1

µε(x − λx j )=

k∑
j=1

1j (µε),

where
1j (µε)=

∏
i ̸= j

µεi j (x − λxi )1µε(x − λx j ), (3-6)
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and where εi j = 2ε for i < j and εi j = ε for i > j . Since the arguments below are the same for all
1 ≤ j ≤ k − 1, assume j = k − 1 for simplicity of notations. Writing f ∗λ g(x) :=

∫
f (x − λy)g(y) dy,

and using ∥µε∥∞ ≤ Cεs−k, we have for 1T (µε) := TλV (µε)− TλV (µ2ε) that

|1T (µε)| ≲ ε(k−2)(s−d)
∫ ∣∣∣∣∫ µε(x)1µε ∗λ σx1,...,xk−2(x) dx

∣∣∣∣ dω(x1, . . . , xk−2), (3-7)

where dω(x1, . . . , xk−2) = dσ(x1) · · · dσx1,...,xk−3(xk−2) for k > 3, and where for k = 3 we have that
dω(x1)= dσ(x1), which is the normalized surface area measure on the sphere S = {y : |y| = |v1|}.

The inner integral is of the form

|⟨µε,1µε ∗λ σx1,...,xk−2⟩| ≲ ε
s−d

∥1µε ∗λ σx1,...,xk−2∥2.

Thus by Cauchy–Schwarz and Plancherel’s identity,

|1k−1T (µε)|2 ≲ ε2(k−1)(s−d)
∫

|1̂µε(ξ)|
2 Iλ(ξ) dξ,

where
Iλ(ξ)=

∫
|σ̂x1,...,xk−2(λξ)|

2 dω(x1, . . . , xk−2).

Since Sx1,...,xk−2 is a one-dimensional circle of radius rk−1 ≥ r(V ) > 0 contained in an affine subspace
orthogonal to Mx1,...,xk−2 = span{x1, . . . , xk−2}, we have that

|σ̂x1,...,xk−2(λξ)|
2 ≲ (1 + r(V )λ dist(ξ,Mx1,...,xk−2))

−1.

Since the measure ω(x1, . . . , xk−2) is invariant with respect to the change of variables (x1, . . . , xk−2)→

(Ux1, . . . ,Uxk−2) for any rotation U ∈ SO(k), one estimates

Iλ(ξ)≲
∫∫

(1 + r(V )λ dist(ξ,MUx1,...,Uxk−2))
−1 dω(x1, . . . , xk−2) dU

=

∫∫
(1 + r(V )λ dist(Uξ,Mx1,...,xk−2))

−1 dω(x1, . . . , xk−2) dU

=

∫∫
(1 + r(V )λ|ξ | dist(η,Mx1,...,xk−2))

−1 dω(x1, . . . , xk−2) dσk−2(η)≲ (1 + r(V )λ|ξ |)−1,

where we have written η := |ξ |−1Uξ and σk−1 denotes the surface area measure on the unit sphere
Sk−1

⊆ Rk.
Note that 1̂µε(ξ) = µ̂(ξ)(ψ̂(2εξ) − ψ̂(εξ)), which is supported on |ξ | ≲ ε−1 and is essentially

supported on |ξ | ≈ ε−1. Indeed, writing

J :=

∫
|1̂µε(ξ)|

2 Iλ(ξ) dξ =

∫
|ξ |≤ε−1/2

|1̂µε(ξ)|
2 Iλ(ξ) dξ+

∫
ε−1/2≤|ξ |≲ε−1

|1̂µε(ξ)|
2 Iλ(ξ) dξ =: J1 + J2

and using |ψ̂(2εξ)− ψ̂(εξ)| ≲ ε1/2 for |ξ | ≤ ε−1/2, we estimate

J1 ≲ ε
1/2

∫
|µ̂(ξ)|2(ψ̂(2εξ)+ ψ̂(εξ)) dξ ≲ ε1/2+s−k,

as ∫
|µ̂(ξ)|2ψ̂(εξ) dξ =

∫
µε(x) dµ(x)≲ εs−k.
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On the other hand, as Iλ(ξ)≲ ε1/2r(V )−1λ−1 for |ξ | ≥ ε−1/2, we have

J2 ≲ ε
1/2r(V )−1λ−1

∫
|µ̂(ξ)|2φ̂(εξ) dξ ≲ r(V )−1λ−1ε1/2+s−k,

where we have written φ̂(ξ)= (ψ̂(2ξ)− ψ̂(ξ))2. Plugging these estimates into (3-7), we obtain

|1T (µε)|2 ≲ r(V )−1λ−1ε1/2+(2k−1)(s−d),

and (3-5) follows. □

The support of µε is not compact, however, as it is a rapidly decreasing function, it can be made to
be supported in a small neighborhood of the support of µ without changing our main estimates. Let
φε(x) := φ(cε−1/2x) with some small absolute constant c > 0, where 0 ≤ φ(x)≤ 1 is a smooth cut-off,
which equals one for |x | ≤

1
2 and is zero for |x | ≥ 2. Define ψ̃ε = ψεφε and µ̃ε = µ ∗ ψ̃ε. It is easy to

see that µ̃ε ≤ µε and
∫
µ̃ε ≥

1
2 , if c > 0 is chosen sufficiently small. Using the trivial upper bound, for

k − 1/(4k)≤ s < k we have

|TλV (µε)− TλV (µ̃ε)| ≤ Ck∥µε∥
k−1
∞

∥µε − µ̃ε∥∞ ≤ Ckε
1/2,

and it follows that estimate (3-5) remains true with µε replaced with µ̃ε.

3.2. Lower bounds. Let fε := cεk−sµ̃ε, where c = cψ > 0 is a constant such that 0 ≤ fε ≤ 1 and∫
fε dx = c′εk−s. Let α := c′εk−s and note that the set Aε :=

{
x : fε(x) ≥

1
2α

}
has measure |Aε| ≥

1
2α.

If one defines the averages

TλV (Aε)=

∫
1Aε(x)1Aε(x − λx1) · · · 1Aε(x − λxk−1) dσ(x1) · · · dσx1,...,xk−2(xk−1) dx,

then clearly
TλV (µ̃ε)≥ cαk TλV (Aε).

The averages TλV (Aε) represent the density of isometric copies of the simplex λ1 in a set Aε of measure
|Aε| ≥ α

2 > 0, which was studied in [Lyall and Magyar 2020] in the more general context of k-degenerate
distance graphs. We recall one of the main results of the aforementioned paper; see Theorem 2 (ii) together
with Estimate (18):

Theorem 3 [Lyall and Magyar 2020]. Let A ⊆ [0, 1]
k and |A| ≥ α > 0. Then there exists an interval I of

length |I | ≥ exp(−Cα−Ck ), such that for all λ ∈ I , one has

|TλV (A))| ≥ cαk.

Thus for all λ ∈ I ,
TλV (µ̃ε)≥ c > 0 (3-8)

for a constant c = c(k, ψ, r(V )) > 0. Now, let

TV (µ̃ε) :=

∫ 1

0
λ1/2TλV (µ̃ε) dλ.
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For k −
1

4k ≤ s < k, by (3-5) we have that

|TλV (µ)− TλV (µ̃ε)| ≤ Ckr(V )−1/2λ−1/2ε1/8,

it follows that ∫ 1

0
λ1/2

|TλV (µ)− TλV (µ̃ε)| dλ≤ Ckr(V )−1/2ε1/8, (3-9)

and in particular
∫ 1

0 λ
1/2TλV (µ) dλ <∞. On the other hand, by (3-8), one has that∫ 1

0
λ1/2TλV (µ̃ε) dλ≥ exp(−ε−Ck(k−s)). (3-10)

Assume that r(V )≥ δ, fix a small ε = εk,δ > 0 and then choose s = s(ε, δ) < k such that

Ckδ
−1/2ε1/8 < 1

2 exp(−ε−Ck(k−s)),

which ensures that ∫ 1

0
λ1/2TλV (µ) dλ > 0.

Thus there exists λ > 0 such that TλV (µ) > 0. Fix such a λ, and assume indirectly that Ek
= E ×· · ·× E

does not contain any simplex isometric to λV, i.e., any point of the compact configuration space SλV ⊆ Rk2

of such simplexes. By compactness, this implies that there is some η > 0 such that the η-neighborhood
of Ek also does not contain any simplex isometric to λV. Since the support of µ̃ε is contained in the
Ckε

1/2-neighborhood of E, as E = suppµ, it follows that TλV (µ̃ε) = 0 for all ε < ckη
2 and hence

TλV (µ)= 0, contradicting our choice of λ. This proves Theorem 1.

4. The configuration space of isometric distance graphs

Let 00 = (V0, E) be a fixed proper distance graph, with vertex set V0 = {v0 = 0, v1, . . . , vn} ⊆ Rd of
degree k<d . Let ti j =|vi −vj |

2 for (i, j)∈ E. A distance graph 0= (V, E) with V ={x0 = 0, x1, . . . , xn}

is isometric to 00 if and only if x = (x1, . . . , xn) ∈ S00 , where

S00 = {(x1, . . . , xn) ∈ Rdn
: |xi − x j |

2
= ti j , ∀0 ≤ i < j ≤ n, (i, j) ∈ E}.

We call the algebraic set S00 the configuration space of isometric copies of 00. Note that S00 is the
zero set of the family F = { fi j : (i, j) ∈ E} with fi j (x)= |xi − x j |

2
− ti j , thus it is a special case of the

general situation described in Section 5.
If 0 ≃ 00 with vertex set V = {x0 = 0, x1, . . . , xn} is proper, then x = (x1, . . . , xn) is a nonsin-

gular point of S00 . Indeed, for a fixed 1 ≤ j ≤ n, let 0j be the distance graph obtained from 0 by
removing the vertex x j together with all edges emanating from it. By induction we may assume that
x′

= (x1, . . . , x j−1, x j+1, . . . , xn) is a nonsingular point, i.e., the gradient vectors ∇x′ fik(x), (i, k) ∈ E,
i ̸= j , k ̸= j , are linearly independent. Since 0 is proper, the gradient vectors ∇x j fi j (x)= 2(xi − x j ),
(i, j) ∈ E , are also linearly independent, hence x is a nonsingular point. In fact we have shown that the
partition of coordinates x = (y, z) with y = x j and z = x′ is admissible and hence (6-4) holds.
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Let r0 = r(00) > 0. It is clear that if 0≃00 and |x j −vj | ≤ η0 for all 1 ≤ j ≤ n, for a sufficiently small
η0 = η(r0) > 0, then 0 is proper and r(0)≥

1
2r0. For a given 1 ≤ j ≤ n, let X j := {xi ∈ V : (i, j) ∈ E}

and define
SX j := {x ∈ Rd

: |x − xi |
2
= ti j , ∀xi ∈ X j }.

As explained in Section 6, SX j is a sphere of dimension d − |X j | ≥ 1 with radius r(X j )≥
1
2r0. Let σX j

denote the surface area measure on SX j and write νX j := φjσX j , where φj is a smooth cut-off function
supported in an η-neighborhood of vj with φj (vj )= 1.

Write x = (x1, . . . , xn) and φ(x) :=
∏n

j=1 φj (x j ). Then by (6-4) and (6-5) one has∫
g(x)φ(x) dωF (x)= cj (00)

∫∫
g(x)φ(x′) dνX j (x j ) dωFj (x

′), (4-1)

where x′
= (x1, . . . , x j−1, x j+1, . . . , xn) and Fj = { fil : (i, l) ∈ E, l ̸= j}. The constant cj (00) > 0 is the

reciprocal of the volume of the parallelotope with sides x j − xi , (i, j) ∈ E , which is easily shown to be at
least ckr k

0 , as the distance of each vertex to the opposite face is at least 1
2r0 on the support of φ.

5. Proof of Theorem 2

Let d > k and again, without loss of generality, assume that d(0) = 1 and hence δ(0) = r(0). Given
λ, ε > 0, define the multilinear expression

Tλ00(µε) :=

∫
· · ·

∫
µε(x)µε(x − λx1) · · ·µε(x − λxn)φ(x1, . . . , xn) dωF (x1, . . . , xn) dx . (5-1)

Given a proper distance graph 00 = (V, E) on |V | = n vertices of degree k < n, one has the following
upper bound.

Lemma 4. There exists a constant C = Cn,d,k(r0) > 0 such that

|Tλ00(µ2ε)− Tλ00(µε)| ≤ Cλ−1/2ε(n+1/2)(s−d)+1/4. (5-2)

This implies again that in dimensions d − 1/(4n + 2)≤ s ≤ d, the limit Tλ00(µ) := limε→0 Tλ00(µε)

exists. Also, the lower bound (3-8) holds for distance graphs of degree k, as was shown for a large class
of graphs, the so-called k-degenerate distance graphs; see [Lyall and Magyar 2020]. Thus one may argue
exactly as in Section 3 to prove that there exists a λ > 0 for which

Tλ00(µ) > 0, (5-3)

and Theorem 2 follows from the compactness of the configuration space Sλ00 ⊆ Rdn. It remains to prove
Lemma 4.

Proof of Lemma 4. Write 1T (µε) := Tλ00(µε)− Tλ00(µ2ε). Then we have 1T (µε)=
∑

j=11j T (µε),
where 1j T (µε) is given by (5-1) with µε(x − λx j ) replaced by 1µε(x − λx j ) given in (3-6), and
µε(x − λxi ) by µ2ε(x − λx j ) for i > j . Then by (4-1) we have the analogue of estimate (3-7):

|1T (µε)| ≲ ε(n−1)(s−d)
∫ ∣∣∣∣∫ µε(x)1µε ∗λ νX j (x) dx

∣∣∣∣φ(x′) dωFj (x
′), (5-4)



SIMPLICES IN THIN SUBSETS OF EUCLIDEAN SPACES 1493

where φ(x′)=
∏

i ̸= j φ(x j ). Thus by Cauchy–Schwarz and Plancherel’s identity,

|1j T ε(µ)|2 ≲ ε2n(s−d)
∫

|1̂εµ(ξ)|
2 I j
λ (ξ) dξ,

where

I j
λ (ξ)=

∫
|ν̂X j (λξ)|

2φ(x′) dωFj (x
′).

Recall that on the support of φ(x′) we have that SX j is a sphere of dimension at least 1 and of radius
r ≥

1
2r0 > 0, contained in an affine subspace orthogonal to span X j . Thus,

|ν̂X j (λξ)|
2 ≲ (1 + r0λ dist(ξ, span X j ))

−1.

Let U : Rd
→ Rd be a rotation, and for x′

= (xi )i ̸= j write Ux′
= (Uxi )i ̸= j . As explained in Section 6,

the measure ωFj is invariant under the transformation x′
→ Ux′, hence

Iλ(ξ)≲
∫∫

(1 + r0λ dist(ξ, span U X j ))
−1 dωFj (x

′) dU

=

∫∫
(1 + r0λ|ξ | dist(η, span X j ))

−1 dσd−1(η) dωFj (x′)≲ (1 + r0λ|ξ |)
−1,

where we have written again η := |ξ |−1Uξ ∈ Sd−1.
Then we argue as in Lemma 2, noting that as 1̂µε(ξ) is essentially supported on |ξ | ≈ ε−1, we have

that

|1T (µε)|2 ≲ r−1
0 λ−1ε2n(s−d)+1/2

∫
|µ̂(ξ)|2φ̂(εξ) dξ ≲ r−1

0 λ−1ε(2n+1)(s−d)+1/2,

with µ̃ε = µε or µ̃ε = µ ∗φε. This proves Lemma 4. □

6. Measures on real algebraic sets

Let F = { f1, . . . , fn} be a family of polynomials fi : Rd
→ R. We will describe certain measures

supported on the algebraic set

SF := {x ∈ Rd
: f1(x)= · · · = fn(x)= 0}. (6-1)

A point x ∈ SF is called nonsingular if the gradient vectors

∇ f1(x), . . . ,∇ fn(x)

are linearly independent. Let S0
F denote the set of nonsingular points. It is well known that if S0

F ̸= ∅,
then it is a relative open, dense subset of SF , and moreover it is an (d−n)-dimensional submanifold of Rd.
If x ∈ S0

F , then there exists a set of coordinates J = { j1, . . . , jn}, with 1 ≤ j1 < · · ·< jn ≤ d , such that

jF,J (x) := det
(
∂ fi

∂x j
(x)

)
1≤i≤n, j∈J

̸= 0. (6-2)
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Accordingly, we will call a set of coordinates J admissible if (6-2) holds for at least one point x ∈ S0
F and

will denote by SF,J the set of such points. For a given set of coordinates x J let ∇xJ f (x) := (∂x j f (x)) j∈J

and note that J is admissible if and only if the gradient vectors

∇xJ f1(x), . . . ,∇xJ fn(x)

are linearly independent for at least one point x ∈ SF . It is clear that, unless SF,J = ∅, it is a relative
open and dense subset of SF and is also a (d−n)-dimensional submanifold, moreover S0

F is the union of
the sets SF,J for all admissible J.

We define a measure, near a point x0 ∈ SF,J , as follows. For simplicity of notation assume that
J = {1, . . . , n} and let

8(x) := ( f1, . . . , fn, xn+1, . . . , xd).

Then 8 : U → V is a diffeomorphism on some open set x0 ∈ U ⊆ Rd to its image V =8(U ), moreover
SF = 8−1(V ∩ Rd−n). Indeed, x ∈ SF ∩ U if and only if 8(x) = (0, . . . , 0, xn+1, . . . , xd) ∈ V. Let
I = {n + 1, . . . , d} and write x I := (xn+1, . . . , xd). Let 9(x I ) = 8−1(0, x I ) and in local coordinates
let x I define the measure ωF via∫

g dωF :=

∫
g(9(x I )) Jac−1

8 (9(x I )) dx I , (6-3)

for a continuous function g supported on U. Note that Jac8(x) = jF,J (x), i.e., the Jacobian of the
mapping 8 at x ∈ U is equal to the expression given in (6-2), and that the measure dωF is supported
on SF . Define the local coordinates yj = f j (x) for 1 ≤ j ≤ n and yj = x j for n < j ≤ d . Then

dy1 ∧ · · · ∧ dyd = d f1 ∧ · · · ∧ d fn ∧ dxn+1 ∧ · · · ∧ dxd = Jac8(x) dx1 ∧ · · · ∧ dxd ,

and thus

dx1 ∧ · · · ∧ dxd = Jac8(x)−1d f1 ∧ · · · ∧ d fn ∧ dxn+1 ∧ · · · ∧ dxd = d f1 ∧ · · · ∧ d fn ∧ dωF .

This shows that the measure dωF (given as a differential (d−n)-form on SF ∩U ) is independent of the
choice of local coordinates x I . Then ωF is defined on S0

F and moreover the set S0
F\SF,J is of measure

zero with respect to ωF , as it is a proper analytic subset on Rd−n in any other admissible local coordinates.
Let x = (z, y) be a partition of coordinates in Rd, with y = x J2 , z = X J1 , and assume that for i =1, . . . ,m

the functions fi depend only on the z-variables. We say that the partition of coordinates is admissible if
there is a point x = (z, y) ∈ SF such that both the gradient vectors ∇z f1(x), . . . ,∇z fm(x) and the vectors
∇y fm+1(x), . . . ,∇y fn(x) form a linearly independent system. Partition the system F = F1 ∪F2 with
F1 = { f1, . . . , fm} and F2 = { fm+1, . . . , fn}. Then there is a set J ′

1 ⊆ J1 for which

jF1,J ′

1
(z) := det

(
∂ fi

∂x j
(z)

)
1≤i≤m, j∈J ′

1

̸= 0,

and also a set J ′

2 ⊆ J2 such that

jF2,J ′

2
(z, y) := det

(
∂ fi

∂x j
(z, y)

)
m+1≤i≤n, j∈J ′

2

̸= 0.
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Since ∇y fi ≡ 0 for 1 ≤ i ≤ m, it follows that the set of coordinates J ′
= J ′

1 ∪ J ′

2 is admissible, moreover,

jF,J ′(y, z)= jF1,J ′

1
(z) jF2,J ′

2
(y, z).

For fixed z, let fi,z(y) := fi (z, y) and let F2,z = { fm+1,z, . . . , fn,z}. Then clearly jF2,J ′

2
(y, z) =

jF2,z,J ′

2
(y) as it only involves partial derivatives with respect to the y-variable. Thus we have an analogue

of Fubini’s theorem, namely,∫
g(x) dωF (x)=

∫∫
g(z, y) dωF2,z (y) dωF1(z). (6-4)

Consider now algebraic sets given as the intersection of spheres. Let x1, . . . , xm ∈ Rd, t1, . . . , tm > 0
and F ={ f1, . . . , fm}, where fi (x)=|x −xi |

2
−ti for i = 1, . . . ,m. Then SF is the intersection of spheres

centered at the points xi of radius ri = t1/2
i . If the set of points X = {x1, . . . , xm} is in general position

(i.e., they span an (m−1)-dimensional affine subspace), then a point x ∈ SF is nonsingular if x /∈ span X,
i.e., if x cannot be written as linear combination of x1, . . . , xm . Indeed, since ∇ fi (x) = 2(x − xi ), we
have that

m∑
i=1

ai∇ fi (x)= 0 ⇐⇒

m∑
i=1

ai x =

m∑
i=1

ai xi ,

which implies that
∑m

i=1 ai = 0 and
∑m

i=1 ai xi = 0. By replacing the equations |x − xi |
2

= ti with
|x − x1|

2
−|x − xi |

2
= t1 − ti , which is of the form x · (x1 − xi )= ci , for i = 2, . . . ,m, it follows that SF

is the intersection of the sphere with an (n−1)-codimensional affine subspace Y, perpendicular to the
affine subspace spanned by the points xi . Thus SF is an m-codimensional sphere of Rd if SF has one
point x /∈ span{x1, . . . , xm} and all of its points are nonsingular. Let x ′ be the orthogonal projection of x
to span X. If y ∈ Y is a point with |y − x ′

| = |x − x ′
| then by the Pythagorean theorem we have that

|y − xi | = |x − xi | and hence y ∈ SF . It follows that SF is a sphere centered at x ′ and contained in Y.
Let T = TX be the inner product matrix with entries ti j := (x − xi ) · (x − x j ) for x ∈ SF . Since

(x − xi ) · (x − x j )=
1
2(ti + tj − |xi − x j |

2),

the matrix T is independent of x . We will show that dωF = cT dσSF , where dσSF denotes the surface
area measure on the sphere SF and cT = 2−m det(T )−1/2 > 0, i.e., for a function g ∈ C0(R

d),∫
SF

g(x) dωF (x)= cT

∫
SF

g(x) dσSF (x). (6-5)

Let x ∈ SF be fixed and let e1, . . . , ed be an orthonormal basis so that the tangent space Tx SF equals
span{em+1, . . . , ed}, and moreover we have that span{∇ f1, . . . ,∇ fm} = span{e1, . . . , em}. Let x1, . . . , xn

be the corresponding coordinates on Rd and note that in these coordinates the surface area measure, as a
(d−m)-form at x , is

dσSF (x)= dxm+1 ∧ · · · ∧ dxd .
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On the other hand, in local coordinates x I = (xm+1, . . . , xd), it is easy to see from (6-2)–(6-3) that
jF,J (x)= 2m vol(x − x1, . . . , x − xm), and hence

dωF (x)= 2−m vol(x − x1, . . . , x − xm)
−1 dxm+1 ∧ · · · ∧ dxd ,

where vol(x − x1, . . . , x − xm) is the volume of the parallelotope with side vectors x − x j . Finally, it is a
well-known fact from linear algebra that

vol(x − x1, . . . , x − xm)
2
= det(T ),

i.e., the volume of a parallelotope is the square root of the Gram matrix formed by the inner products of
its side vectors.
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zbigniew.blocki@uj.edu.pl

Charles Fefferman Princeton University, USA
cf@math.princeton.edu

David Gérard-Varet Université de Paris, France
david.gerard-varet@imj-prg.fr

Colin Guillarmou Université Paris-Saclay, France
colin.guillarmou@universite-paris-saclay.fr

Ursula Hamenstaedt Universität Bonn, Germany
ursula@math.uni-bonn.de

Vadim Kaloshin University of Maryland, USA
vadim.kaloshin@gmail.com

Izabella Laba University of British Columbia, Canada
ilaba@math.ubc.ca

Anna L. Mazzucato Penn State University, USA
alm24@psu.edu

Richard B. Melrose Massachussets Inst. of Tech., USA
rbm@math.mit.edu

Frank Merle Université de Cergy-Pontoise, France
merle@ihes.fr

William Minicozzi II Johns Hopkins University, USA
minicozz@math.jhu.edu

Werner Müller Universität Bonn, Germany
mueller@math.uni-bonn.de

Igor Rodnianski Princeton University, USA
irod@math.princeton.edu

Yum-Tong Siu Harvard University, USA
siu@math.harvard.edu

Terence Tao University of California, Los Angeles, USA
tao@math.ucla.edu

Michael E. Taylor Univ. of North Carolina, Chapel Hill, USA
met@math.unc.edu

Gunther Uhlmann University of Washington, USA
gunther@math.washington.edu

András Vasy Stanford University, USA
andras@math.stanford.edu

Dan Virgil Voiculescu University of California, Berkeley, USA
dvv@math.berkeley.edu

Jim Wright University of Edinburgh, UK
j.r.wright@ed.ac.uk

Maciej Zworski University of California, Berkeley, USA
zworski@math.berkeley.edu

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/apde for submission instructions.

The subscription price for 2023 is US $405/year for the electronic version, and $630/year (+$65, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues from the last three years and changes of subscriber address should be sent to MSP.

Analysis & PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o Univer-
sity of California, Berkeley, CA 94720-3840, is published continuously online.

APDE peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2023 Mathematical Sciences Publishers

http://msp.org/apde
mailto:patrick.gerard@universite-paris-saclay.fr
mailto:c.mouhot@dpmms.cam.ac.uk
mailto:berti@sissa.it
mailto:zbigniew.blocki@uj.edu.pl
mailto:cf@math.princeton.edu
mailto:david.gerard-varet@imj-prg.fr
mailto:colin.guillarmou@universite-paris-saclay.fr
mailto:ursula@math.uni-bonn.de
mailto:vadim.kaloshin@gmail.com
mailto:ilaba@math.ubc.ca
mailto:alm24@psu.edu
mailto:rbm@math.mit.edu
mailto:merle@ihes.fr
mailto:minicozz@math.jhu.edu
mailto:mueller@math.uni-bonn.de
mailto:irod@math.princeton.edu
mailto:siu@math.harvard.edu
mailto:tao@math.ucla.edu
mailto:met@math.unc.edu
mailto:gunther@math.washington.edu
mailto:andras@math.stanford.edu
mailto:dvv@math.berkeley.edu
mailto:j.r.wright@ed.ac.uk
mailto:zworski@math.berkeley.edu
mailto:production@msp.org
http://msp.org/apde
http://msp.org/
http://msp.org/


ANALYSIS & PDE
Volume 16 No. 7 2023

1485Simplices in thin subsets of Euclidean spaces
ALEX IOSEVICH and ÁKOS MAGYAR

1497Resonances for Schrödinger operators on infinite cylinders and other products
T. J. CHRISTIANSEN

1547A structure theorem for elliptic and parabolic operators with applications to homogenization
of operators of Kolmogorov type

MALTE LITSGÅRD and KAJ NYSTRÖM

1589Dimension-free Harnack inequalities for conjugate heat equations and their applications to
geometric flows

LI-JUAN CHENG and ANTON THALMAIER

1621The regularity of the boundary of vortex patches for some nonlinear transport equations
JUAN CARLOS CANTERO, JOAN MATEU, JOAN OROBITG and JOAN VERDERA

1651Directional square functions
NATALIA ACCOMAZZO, FRANCESCO DI PLINIO, PAUL HAGELSTEIN,
IOANNIS PARISSIS and LUZ RONCAL

1701Partial regularity for Navier–Stokes and liquid crystals inequalities without maximum
principle

GABRIEL S. KOCH

A
N

A
LY

SIS
&

PD
E

Vol.16,
N

o.7
2023


	1. Introduction
	2. Main results
	3. Proof of Theorem 1
	3.1. Upper bounds
	3.2. Lower bounds

	4. The configuration space of isometric distance graphs
	5. Proof of Theorem 2
	6. Measures on real algebraic sets
	References
	
	

