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DISCRETE VELOCITY BOLTZMANN EQUATIONS IN THE PLANE:
STATIONARY SOLUTIONS

LEIF ARKERYD AND ANNE NOURI

We prove the existence of stationary mild solutions for normal discrete velocity Boltzmann equations in
the plane with no pair of colinear interacting velocities and given ingoing boundary values. We remove
an important restriction from a previous paper that all velocities point into the same half-space. A key
property is L' compactness of integrated collision frequency for a sequence of approximations. This
is proven using the Kolmogorov—Riesz theorem, which here replaces the L' compactness of velocity
averages in the continuous velocity case, not available when the velocities are discrete.

1. Introduction

The Boltzmann equation is the fundamental mathematical model in the kinetic theory of gases. Replacing
its continuum of velocities with a discrete set of velocities is a simplification, preserving the essential
features of free flow and quadratic collision term. Besides this fundamental aspect, the discrete equations
can approximate the Boltzmann equation with any given accuracy [Palczewski et al. 1997; Fainsilber
et al. 2006; Mischler 1997], and are thereby useful for approximations and numerics. In the quantum
realm they can also be more directly connected to microscopic quasi/particle models. A discrete velocity
model of a kinetic gas is a system of partial differential equations having the form,

o,
ot
where f;(t,z), 1 <i < p, are phase space densities at time ¢, position z and velocities v;. The spatial

domain is €2. The given discrete velocities are v;, 1 <i < p. For f = (f;)1<i<p, the collision operator
0 = (Qi)1<i<p with gain part O, loss part O, and collision frequency v, is given by

t,2)+v -V, fi(t,2) = Qi(f, Ht,2), t>0,z€Q, 1<i=<p,

14
Qi(f. /=Y TI(fifu—£ifp)=QF (£, /)= Q7 (£, ),

Jj.l,m=1
p p
QF (£ =Y. Tl fifm O (£ f)=fivi(f), w(f)= Y TIrf, i=1...p.
j.l,m=1 J.l,m=1

The collision coefficients satisfy
Im _ plm _ i
rin =i — 1 >0, (1-1)
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1870 LEIF ARKERYD AND ANNE NOURI
If a collision coefficient Ff}" is nonzero, then the conservation laws for momentum and energy,
2 2 2 2
AR T e P 11 e ol L e L e ol L (1-2)

are satisfied. We call a pair of velocities (v;, v;) interacting if for some (I, m) € {1, ..., p}? we have
Ff}" > 0. The discrete velocity model (DVM) is called normal (see [Cercignani 1985]) if any solution of
the equations

V(i) + W (vj) = W (v) + ¥ (vm),
where the indices (i, j; [, m) take all possible values satisfying Fll;" > 0, is given by
VW) =a+b-v+clv?

for some constants @, ¢ € R and b € R?. We consider
the generic case of normal coplanar velocity sets

with no pair of colinear interacting velocities (v;, v;). (1-3)

The case is generic. Indeed, consider a normal velocity set such that, for some interacting velocities (v;, v;),
v; and v; are colinear. Then there exists an arbitrary small vector vy such that the velocity set (v; +vo)1<i<)
is normal and with no colinear interacting velocities. The paper considers stationary solutions to normal
coplanar discrete velocity models satisfying (1-3), in a strictly convex bounded open subset & C R?, with
C? boundary 92 and given boundary inflow. Denote by n(Z) the inward normal to Z € 3. Denote the
v;-ingoing (resp. v;-outgoing) part of the boundary by

BQI.JF ={Z€0Q:v;-n(Z)>0} (resp.dR2; ={Z € dR:v;-n(Z) <0}).
Let
st(z) =inf{s > 0:z—sv; €9Q;'}, 57 (z) =inf{s > 0:z+sv; €9Q;}, zeQ.
Write
7@ =z—s"@v; (esp.z; (2) =z 457 (D)) (1-4)

for the ingoing (resp. outgoing) point on €2 of the characteristics through z in direction v;.
The stationary boundary value problem

vi - Vfi(2) = Qi(f, @), z€1, (1-5)
fi@) = friz), z€d, 1<i<p, (1-6)

is considered in L' in one of the following equivalent forms [DiPerna and Lions 1989]: the exponential
multiplier form,

$.+ 4
i@ = fri@ @e i mNE @tsuds

si(2)

sﬁ(z)
+ of (f, f)(zi*(z)+sv,-)e—fv NN @Frdr go a8 2eQ 1<i<p, (1-7)
0
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the mild form,
st

fi@) = iz () + A Qi(f, Nz (@) +svi)ds, aazeQ, 1<i<p, (1-8)

the renormalized form,

Qi(f. f)
1+ fi

in the sense of distributions. Denote by LL(Q) the set of nonnegative integrable functions on 2. For a

v, - Vin(l+ fi)(z) = (2), 7€, i@ = foi(z), z€dQt, 1<i<p, (19

distribution function f = (f;)<i<p, define its entropy (resp. entropy dissipation) by

P p
;/inlnfi(z)dz, (resp. > r,%?fg;ﬁfm—ﬁmln%(z)dz>,

i,j,l,m=1 iJj
The main result of the paper is:

Theorem 1.1. Consider a coplanar normal discrete velocity model and a nonnegative ingoing boundary
value f, with mass and entropy inflows bounded,

/ b - n(@) fru(1+1n fo)(2) do (D) < +00, 1<i < p.
at

For the boundary value problem (1-5)—(1-6) satisfying (1-3), there exists a stationary mild solution in
(LL(Q))" with finite mass and entropy-dissipation.

Giveni € {1, ..., p}, if Ffj’” = 0 for all j, [ and m, then f; equals its ingoing boundary value, and
the rest of the system can be solved separately. Such i’s are not present in the following discussion.
Most mathematical results for stationary discrete velocity models of the Boltzmann equation have been
obtained in one space dimension. An overview is given in [Platkowski and Illner 1988]. Half-space
problems [Bernhoff 2012] and weak shock waves [Bernhoff and Bobylev 2007] for discrete velocity
models have also been studied. A discussion of normal discrete velocity models, i.e., conserving nothing
but mass, momentum and energy, can be found in [Bobylev et al. 2010]. In two dimensions, special
classes of solutions to the Broadwell model are given in [Bobylev and Toscani 1996; Bobylev 1996;
Ilyin 2014]. The Broadwell model, not included in the present results, is a four-velocity model, with
v] + vy = v3 +v4 = 0 and vy, v3 orthogonal. A detailed study of the stationary Broadwell equation
in a rectangle with comparison to a Carleman-like system is given in [Bobylev 1996], as well as a
discussion of (in-)compressibility aspects. A main result in [Cercignani et al. 1988] is the existence of
continuous solutions to the two-dimensional stationary Broadwell model with continuous boundary data
for a rectangle. The paper [Arkeryd and Nouri 2020b] solves that problem in an L!-setting. The proof
uses in an essential way the constancy of the sums f; + f> and f3 + f4 along characteristics, which no
longer holds in the present paper. For every normal model, there is a priori control of entropy dissipation,
mass and entropy flows through the boundary. From there, the main difficulties are to prove that for a
sequence of approximations, weak L' compactness holds and the limit of the collision operator equals
the collision operator of the limit. In [Arkeryd and Nouri 2020a], weak L' compactness of a sequence of
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approximations was obtained with assumption (1-3) together with the assumption that all velocities v;
point out into the same half-plane. In this paper we keep assumption (1-3), remove the second assumption
and provide a new proof of weak L' compactness of approximations using (1-3). Assumption (1-3) is
also crucial for proving L' compactness of the integrated collision frequencies, which is important for the
convergence procedure. Our paper also differs from [Arkeryd and Nouri 2020a] in the limit procedure.
The frame of the limit procedure in that paper is the splitting into “good” and “bad” characteristics
following the approach in our earlier stationary continuous velocity papers [Arkeryd and Nouri 1995;
1999]. Here we have instead utilized sub- and supersolutions used in the classical evolutionary frame
for renormalized solutions to the Boltzmann equation [DiPerna and Lions 1989]. For the continuous
velocity evolutionary Boltzmann equation, the compactness properties of the collision frequency use in
an essential way the averaging lemma, which is not available for the discrete velocity Boltzmann model.
In the present paper, the compactness properties are proven by the Kolmogorov—Riesz theorem. Also
the argument used in the stationary paper [Arkeryd and Nouri 1995] in the continuous velocity case for
obtaining control of entropy, hence weak L' compactness of a sequence of approximations from the
control of entropy dissipation, does not work in a discrete velocity case because the number of velocities
is finite. The proof starts in Section 2 from bounded approximations. In Section 3, L' compactness
properties of the approximations are proven. Section 4 is devoted to the proof of Theorem 1.1.

2. Approximations

Denote by N* = N\ {0} and by a A b the minimum of two real numbers a and b. Let ©, be a smooth
mollifier in R? with support in the ball centered at the origin of radius . Outside the boundary the
function to be convolved with w,, is continued in the normal direction by its boundary value. Let [i; be a
smooth mollifier on 92 in a ball of radius 1/k. Define

fr= (fbi(')A]%)*llk, 1<i<p, keN*
The lemma introduces a primary approximated boundary value problem with damping and convolutions.

Lemma 2.1. For any o > 0 and k € N*, there is a solution F** (L1+(S2))1’ to

P o,k k ak ok

F Fot, * F~ F_ */,L

O‘Fia’k"‘vi'VFia’k: Z Flm( lak oy Fe T Jak - >’ (2-1)
Lk 1 By spa ko 1S k1 F &

tj
j.l,m=1

F') = k@), zedQf, 1<i<p. (2-2)

Proof of Lemma 2.1. For a proof of Lemma 2.1 we refer to the second section in [Arkeryd and Nouri
2020a]. Let k € N* be given. Each component of F*¥ is bounded by a multiple of k2. Therefore
(F""k)ae]o’l[ is weakly compact in (LY(Q))?. For a subsequence, the convergence is strong in (LY(Q))?
as stated in the following lemma. O

Lemma 2.2. There is a sequence (B(q))qen tending to zero when q — +00 and a function F ke L' such
that (Fﬁ(q)’k)qu strongly converges in (L' ())? to F* when q — +o0.
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Proof of Lemma 2.2. For a proof of Lemma 2.2 we refer to Lemma 3.1 in [Arkeryd and Nouri 2020a].
Define

" Z m F Ft i Z ; Ff
Q» = Fm k n ’ v, = "'n k k ’ (2_3)
! et Y 1+Fl/k 1+F,§/k ! e Y (1+Fi/k)(1+Fj/k)

Of =0 —FhE 1<i<p, (2-4)

and denote by Dy the entropy production term of the approximations,

- z”: ( Ff Fk Fk Ff ) FFFEQ+FF /) (1+Ff / k)

D, — Im — : n .
e T E R EL K T E K F k) A F 0+ B /0O FEFF

(2-5)

All throughout the paper, ¢, denotes constants that may vary from line to line but is independent of
parameters tending to +00 or to zero. O

Lemma 2.3. F* is a nonnegative solution to

v - VFF = 0 — FRF (2-6)
Fl@) = fi@, zedQf, 1<i<p. (2-7)

Solutions (F¥)gens to (2-6)—(2-7) have mass and entropy dissipation bounded from above uniformly with
respect to k. Moreover their outgoing flows at the boundary are controlled as follows:

P

k
Z/ ) |v,~-n(Z)|Fl.k1nEk(Z)do(Z)+ln§f ) lvi -n(Z)|FFdo(Z) < cp. (2-8)
) Joy Ff<k AQ Fr>k

Proof of Lemma 2.3. Passing to the limit when ¢ — 400 in (2-1)—(2-2) written for FA@)X implies that

F* is a solution in (LL(Q))” to (2-6)—(2-7). For a proof of the rest of Lemma 2.3, we refer to Lemma 3.2
in [Arkeryd and Nouri 2020a]. O

3. On compactness of sequences of approximations

This section is devoted to proving L! compactness properties of the approximations. In Proposition 3.1,
weak L' compactness of (FK);en+ is proven. Lemma 3.2 splits Q into a set of i-characteristics with
arbitrary small measure and its complement, where both the approximations and their integrated collision
frequencies are bounded. In Lemma 3.3, the strong L' compactness of integrated collision frequency is
proven.

Proposition 3.1. The sequence (F¥)iens solution to (2-6)—(2-7) is weakly compact in L.

Proof of Proposition 3.1. By Lemma 2.3, (F%)ens s uniformly bounded in (L'(Q))?. Given (2-8) and
the bound

Ff(2) < Ffz+s7 @) exp(F Z/

s; (@)
jen Y= @

Fj(z+rv,-)dr), zeQ,iell,...,p} (3-1)
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on F¥, the weak L! compactness of (F ¥y ren+ will follow from the uniform boundedness in L (d Q;r) of

s; (2)
( / FAZ +rup) dr) , (3-2)
0 jEJ,‘,kEN

where J; denotes the set {j € {1, ..., p}: (v;, vj) are interacting velocities}. By (1-3), there exists n > 0
such that, for all interacting velocities (v;, v;),

|sin(m)| > 7. (3-3)

Letie{l,...,p}and Z € 89;’. Multiply the equation satisfied by ij by (vl.L -vj)/|vi| and integrate
it on one of the half domains defined by the segment [Z, Z + 5,7 (Z)v;]. Summing over j € {1, ..., p}
implies that

4 s7(2)
Z sinz(@)/ FH(Z+sv)ds <cp, Ze€0dQ. (3-4)
, 0
j=1
Together with (3-3), this leads to the control of (3-2). O

Recall the exponential multiplier form for the approximations (F*)gens,

—fi,Jr ~ V{‘(z-ﬁ-sv;)ds
Fr@) = fhH@)e i@ ‘

0
+ O (2 4 sv)e s HENHdr g g0 zeQ 1<i<p, (3-5)
-5 (2)
with vf‘ and Q:’k defined in (2-3). An i-characteristics is a segment of points [Z — s;r (Z)v;, Z], where
Z € 0Q2;". Define I' = max;_ j ; m Ff]’”

Lemma 3.2. Fori e {l,..., p}, k e N* and € > 0, there is a subset Qf’e of i-characteristics of 2 with
measure smaller than cpe such that for any 7 € Q '\ Qf’e

1 r 5 (@ r
Fl-k(z) < exp(p—2>, / vf(z +sv;)ds < p_z (3-6)
€ € *S,-JF(Z) €
Proof of Lemma 3.2. By the strict convexity of €2, there are for every i € {1, ..., p} two points of 9€2,

denoted by Z- and Z;, such that
vi-n(Z;) =v;-n(Z;) =0.

Let J; (resp. I;) be the largest boundary arc included in 02, with one endpoint Zi (resp. Z;) such that
—e<v-n(Z)<0, ZelUl. (3-7)
Let J; be the subset of {1, ..., p} such that,
for some (I, m) € {1,....p}>, T/">0, jel. (3-8)
It follows from the exponential form of Fl.k that

Flz) < Flz + 57 (2)v;) exp(F Z/

s; (@)
jes Y s @

Fj(z+rvl-)dr), zeQ. (3-9)
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The boundedness of the mass flow of (Fik)keN* across 02 is
f |v,--n(Z)|Fi"(Z)do(Z) <cp, keN*, (3-10)
0Q

It follows from (3-7)—(3-10) that the measure of the set

{zeoornicnle: Flz) > Eiz}

is smaller than cpe. The boundedness of the mass of (F jk)keN* can be written
0
/ Fi(z)dz = / lv; -n(Z)l(/ Fi(z +rv,-)dr) do(Z)<cp, jelJ.
Q aQ; —sH(2)

Hence the measure of the set

{Z €dQ NIFNIe :/
—57(2)

0
1 .
ij(Z—l—rv,')dr>€—2}, j € Ji,

is smaller than c,e. Consequently, the measure of the set of Z € 92, N l:"' N l_i‘“ outside of which
1 0 1
FFZ)< = and / ij(Z—i—rvi)drfe—z, jel;

2
€ —s7(2)

is bounded by cpe. Together with (3-9), this implies that the measure of the complement of the set of
Z € 3L2; such that

1 r 5; (@) r
Fik(z) < —zexp(p—2> and / v,k(z—krv,-)dr < p_2

forz =Z +sv;, s € [—s;“(Z), 0], is bounded by cpe. With it cpe is a bound for the measure of
the complement, denoted by Qf’e, of the set of i-characteristics in €2 such that for all points z on the
i-characteristics, (3-6) holds. O

Givenie{l,..., p}ande >0, let Xik’e denote the characteristic function of the complement of Qf‘ . The
following lemma proves the compactness in L!(2) of the k-sequence of integrated collision frequencies.

Lemma 3.3. The sequences

0
(/ vf‘(z+svi)ds> , 1<i<p,
-5 (2) keN*

are strongly compact in L' ().

Proof of Lemma 3.3. Take I’Z" > 0. By (1-3), v; and v; span R2. Denote by (a, b) the corresponding
coordinate system, (a~, at) defined by

a” =min{a € R: (a, b) € Q for some b}, a" =max{a €R: (a, b) € Q for some b},
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and by D the Jacobian of the change of variables z — (a, ). The uniform bound for the mass of
(FF)ens proven in Lemma 2.3, implies

0
(// vlk(z+sv,~)dsdz>
QJ—s'(2) keN*

is bounded in L' uniformly with respect to k. Indeed, for some (b~ (a), b*(a)), a € [a~,a™],

0 at pbt(a) pa
// ij(Z—I—sv,-)dsdz:D/ / / Ff(bvj +sv;)ds dbda
QJ-s@ a= Jb (@) J—stbvy)

at  pbt(a) ps7(bv))
< D/ / / Ff(bvj +svi)ds dbda
a= Jb=(a) J—s;"(bvj)

Scf Ff(z)dz, jeJ.
Q

By the Kolmogorov—Riesz theorem [Kolmogorov 1931; Riesz 1933], the compactness of

0
(/ v{‘(z%—sv,-)a’s)
—si (@) keN*

will follow from its translational equicontinuity in L'(£2). Equicontinuity in the direction v;, and in the
direction v; with the mild form (1-8) for ij , come naturally. Here the assumption (1-3) becomes crucial.
The sequence

0

(/ F]-]‘(z-l—sv,')ds) . e (3-11)
) keN*

is translationally equicontinuous in the v;-direction. Indeed, s;r (z+hv) = sl.Jr (z) + h so that, denoting by

1(0, h) the interval with endpoints 0 and 4 and using the uniform bound on the mass of (ij )keN*,

/ dz=// Ff(z+sv;)ds dz
Q Q Jsel(0,h)

< clhl.
Let us prove the translational equicontinuity of (3-11) in the v;-direction. By the weak L' compactness

0 0
/ F;‘(z—i-hv,-—l—svi)ds—/ Ff(z—i-sv,-)ds
—s;t (z4+hvy) =5 (2)

of (ij)keN*, it is sufficient to prove the translational equicontinuity in the v;-direction of

0

(/ X{"GF-"(z—i-sv,-)ds) .
Lo AT
S; (2) keN*

Expressing ij (z+hvj +sv;) (resp. ij (z + sv;)) as integral along its vj-characteristics, it holds that

0 0
‘/ X“Ef G suds— [ )P E G suds| < 1k @)+ B G,
—s; (z+hv)) -5 ()
where
0 0
Afi(z. h) = / XU @+ hvp 4 svp) ds — / XO @ @+ sv) ds,
7si+(z+hvj) *S,-+(Z)
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and
0 0 '
Bl?‘j(z,h):/ X / X Xj’eQ}“(z-i—hvj +sv; +rvj)drds
—s;" (z+hvj) —s; (z+hvj+sv;) B
_/ / Xf’éQf(ersviJrrvj)drds,
—si*(z) —S]-+(Z+Sv,')

with Qf defined in (2-3). Denote by (z;r (z;r (), zf(z;r (z + hvj))) the boundary arc with endpoints
z;.r (z;r (z)) and z‘;r (z;r (z+ hv;)) and of length tending to zero with i. Performing the change of variables
s —> Z= z;.r(z +hvj +sv;) (resp. s > Z = z;.’(z + sv;)) in the first (resp. second) term of Af.‘j (z, h), and
using that the sequence ( f[fi)keN* is bounded by f3;, it holds that

lim f 1A% 2, )| dz =0, (3-12)

uniformly with respect to k. Moreover, for some wy(z) C €2 of measure or order || uniformly with
respect to z € €2,

B{;(z,h)zf ()XJ("GQ";(Z)dZ. (3-13)
wp(Z

The sequence (x }"6 Q}‘)keN* is weakly compact in L'. Indeed,

X< ot <1_Dk+FA(ZF)(x] )

ieJ;
1 ~ 'A x
e Be()E), e
ielJ;
with (Bk)keN* uniformly bounded in L' and (F,-k)keN* weakly compact in L'. Hence,

hm / |B (z,h)|dz =0, uniformly with respect to k. O

4. The passage to the limit in the approximations

Let f be the weak L' limit of a subsequence of the solutions (F Ky kens to (2-6)—(2-7), still denoted
by (F¥)gene. For proving that f is a mild solution of (1-5)—(1-6), it is sufficient to prove that, for any
n>0andie{l,..., p}, thereisaset X l” of i-characteristics with complementary set of measure smaller
than c¢n, such that

/wa,”fi(Z)dz=/ ox! fri(z (2)) dz
+f/ X" 0if, P+ 1 fivs - Vo) (e +supdsdz, g eCl @), @-1)
o5t

where Xi” denotes the characteristic function of X 1'7 . Define the set X l” as follows. For every € > 0, pass
to the limit when kK — 400 in
s (2)

X FN@) < xRN @) eXP( f

vf(z—l—sv,-)ds), aa. z€Q, keNF, (4-2)
-5 (@)



1878 LEIF ARKERYD AND ANNE NOURI

and use the weak L' compactness of ( )(l.k’6 Fl.k) ken, the weak L' compactness and the uniform boundedness
in L® of (Xl.k’eFl." (z; (2)))ken, and the strong L' compactness of

s; (@)
(f vf‘(z—i—svi)ds) .
—57(2) keN*

s; (@)

It implies

Ff(z) < Ff(zi(z))exp(/ vi(f)(z—i—svi)ds), aa.zeQ, €€]0,1],
-5 (2)

p
J.lom=1

in € of (F¢)eejo,11 (resp. (F€(z; (2)))eero,11) and the uniform boundedness of their masses, it holds that
s; @)

where F is the limit of a subsequence of ( Xik o« F,'k)keN* and v;(f) = FZ” fj. By the monotonicity

ﬁ(z)ffi(zi(z))exp</ vi(f)(z+svi)ds>, a.a.z € Q.

—s57(2)

From here the proof follows the lines of the proof of Lemma 3.2, so that given n > 0, there is a set X l" of
i-characteristics, with complementary set of measure smaller than c», such that
s; (2)
r/ ' pr
film) < ep T and vi(f)(z+sv)ds <—, aa.zeX,. 4-3)
-5 (2) n
Denote by CJF(Q) the subspace of nonnegative functions of C!().

Lemma 4.1. The function f is a subsolution of (1-5)—(1-6), i.e.,
0
[exis@az< [ opuct@nazs [ [ xipu-Voetsuasa:
Q Q QJ—st @)
0
+// _¢Qmﬁﬂ@+wmhﬂ,15i5n¢ecﬂ91(¢®
QJ—s5"(2)

Proof of Lemma 4.1. Leti € {1, ..., p} and ¢ € C} () be given. Write the mild form of ¢ x,"x ¢ F} and
integrate it on 2. This yields

0
/(pxﬁxl"eF"‘(z)dz=/ (pxlnxlkefbi(zf(z))dz-l—// XlnxlkeF.kv,--V(p(z+sv,~)dsdz
—st (@)
// ox! X QM — Fvh (e +sv)dsdz. (4-5)
=5 (2)

By the weak L! compactness of (Fik)keN* and the linearity with respect to Xl.k’eFik of the first line of
(4-5), its passage to the limit when k — +o0 is straightforward. Let us pass to the limit when kK — 400
in any term of the loss term of (4-5), denoted by Ff;” LK, where

Fk

Lt = /x"x'“(z) 0 @ i (z+svi)dsdz, jel, (4-6)
t _@@1+WM1+WM
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and J; is defined in (3-8). By integration by parts, L equals

0
/ / L X @@ = FEVD + (i VO F @+ svi)
-5 (2)

0 Fk
ke J )
x(/s Xi (1+I7ik/k)(1+F."/k)(Z+rv')dr>deZ
1 fk + Fk ds d 4-7
+/QX;’ Xi' 1+sz/k(z (2)) o 1+Fk/k(z+sv,) sdz. 4-7)

Denote by (a, b) the coordinate system in the (v;, v;) basis, (a™, at) e R? and (b~ (a), bt (a)) € R? for
every a € la—, a™[, such that

={avi+bvj:a€la",a’[, belb (a), b (a)[}. (4-8)
The first term in L* can be written as faaj 1¥(a) da with I¥ defined as
b*(a)
Ma) = f f XX (0O = FEvf) + (vi - Vo) FY) (svi + bj)
b —s; (bvj)

(@) i

¢ ke j
L ) . ' 4-
X(/ . (1"'Fik/k)(1+Fj"/k)(rU’+bvf)dr>d8db (4-9)

For each rational number a, the sequence of functions
(b, s) € [b™ (@), b* @] x [=s] (bvp), al = 1 1 (9(QF* = FFvP) + (i - V) Ff) (svi + bu))

is weakly compact in L', whereas
F*

J (rv; +bvj) dr

k,e

is by Lemma 3.3 strongly compact in L', and by Lemma 3.2 uniformly bounded in L. The convergence
follows for any rational number a. With a diagonal process, there is a subsequence of (IX), still denoted
by (1¥), converging for any rational a. Moreover,

]lir% (*a+h)—1%@)) =0, (4-10)

uniformly with respect to k and a, by the weak L' compactness of

(XA (@ = FFvb + (i VO F)) oy and  (Ff)kens.

Thus (%) is a uniform converging sequence on [a~, a™]. The second term in L¥ can be treated analogously,
(x l.k’s flfi) ren+ being uniformly bounded in L*°. The convergence follows. In order to determine the limit
of L¥ when k — o0, note that

XA (0O — FFbY + (0 - V) FY = v - V(X xF 0 FR),
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which weakly converges in L! to v; - V( x;'¢ Ff) when k — +o0. Hence

0 0
lim Lk=// Ui'V(X,-nprf)(Z—Fsvi)(/ jfj-(z—i-rv,-)dr)dsdz
k—+4o00 Q —S,-+(Z) P )
+/ Xinfﬂfbi(Z;r(Z))(/ J”,'(z-i—svi)ds) dz.
Q

-5 (2)

By a backwards integration by parts,

0
lim L*= ox Ff fi(z+sv)ds dz. (4-11)
Q —s,-*(z) l

k——+00

In order to prove (4-4), let us prove that each

l 0 0 ke Flk Fk
rim My Ko n z+sv)dsdz, jeJ 4-12
ij /Q/_Sﬂz)wx, Xi 1+F,k/k1+Fn’;/k( i) J€Ji (4-12)

term from Qi+k in (4-5) converges when k — +o00 to a limit smaller than
O ’
FZ”/ f ox; Ff fu(z+svi)dsdz+a(e'), € €]0,1[, with limoa(e/) =0. (4-13)
QJ-s7 () €=

Take Ff;" =1, j € J;, for simplicity. Let (£1/,)nen+ be the sequence of mollifiers defined at the beginning
of Section 2 for « = 1/n, and split (4-12) into

0 n ke ke Flk Fk
e x5 ™ (z+sv;)dsdz
/sz/s;@(p(x‘ R T ST N ANl

0 k k
/ F F
+ f / OO i1 ) A= xS x b e —
QJ-s"@

n z+sv;)dsdz
1+FF/k 1+F,{;/k( )

k k

+/ [0 o) — O i1 ) X6 Fi Fo (z+sv;)dsdz
o —s?’(z) 2 2 /ﬂ l 1+Flk/k1+F’£(1/k 2

0 P Fk
5// §0()(,'n>'<lL1/n)Xlk’G lk o (z+sv;)dsdz
o)t 1+FF/k 14+FE [k

c cA 2
et Z( / L @det /Q </)|X,-”—(X,-"*M1/n)Iij(z)dz)

InA €2 4
JEJi !

0 . FF Fk
5// (10(X,‘n*llbl/n)XIk’6 lk n]1( (z+sv;)dsdz
QJ—s (2 1+Ff/k 1+Fy/k

c cA 2
- - pl/e /!
+lnA+eze <A€+

+

~ 1
————+ Al x"— (X 41 — ) by (2-8)=(3-1),
s A= Gy >||L1+lnA> y 2-8)=G-1)

A>1, AN>1, A>1, €>0. (414



DISCRETE VELOCITY BOLTZMANN EQUATIONS IN THE PLANE: STATIONARY SOLUTIONS 1881

Denote by D the Jacobian of the change of variables z — (a, b). For some smooth function A, and any
integrable function g,

0 bt pat(b)
/ / g(z+sv))dsdz = / / / g(sv; +bvj)dsdadb
QJ—st() a= () J—si" (bv))

bt pat(b)
- D/ / (a* (b) — max{a™ (b), s})g(sv; +bv;) ds db
—s; (bvj

:/ Ao, y)glav + yv,)dady.
Q

Hence,
0 k k
r F F
lim T ke L = 74+sv;)ds dz
m /fsr(z)fp(x, Ki/n) X 1+F,"/k1+F,’,;/k( i)

0
://+ o(x" % 1) FS fu(z+sv)dsdz, € €10,1[. (4-15)
—s; (2)

For A large enough, pass to the limit when k — +o00 and n — 400 in (4-14). Up to subsequences, the
weak L' limits F€ and Ff of (¢ FF)rens and (x°€ FF)ien when k — 400 satisfy

fwxl Ff(z)dz</<px, fb,(z+<z)>dz+f / Efu Vet ds dz
—s; (z)

+/ / SDX,-W(Q;L(Fg/, )= Ffvi(f)(z+sv)dsdz
=5 (2)

+ . + _el’r/6 <A/€/ +

. (6,€)el0 1%, A>1, A'>1. (4-16)
In A

In A’/

Choose A large enough, € small enough, A’ large enough, ¢’ small enough, in this order. The pas-
sage to the limit when € — 0 and € — 0 in (4-16) results from the monotone convergence theorem,
the family (F€)ccj0,1] being nondecreasing, with mass uniformly bounded, together with the mass of
()(l.'7 Q;F(Fél, I )Neero.1r and (XinF}e/Vi(f))e/e]o,lp Consequently, (4-4) holds. O

Lemma 4.2. The function f is a solution to (1-5)—(1-6).

Proof of Lemma 4.2. For proving Lemma 4.2, it remains to prove that
/ ox fi(z)dz >f PX sz(z+(z))dz+/ / X fivi - Vo(z +sv;) ds dz
-5 (2)
/ / ox! Qi(f, Nz +svi)dsdz, 1=<i<p, peCL(Q). 417
—s5; @)

For B > 0, start from the equation for ¢ x; F written in renormalized form,

B lox In(1+BF) () —B ox In(1+Bf5) (z (2)

° 0 Ntk k. k
+ otk Fkyh
_/ B %' In(14BFY) viV(P(Z-I-Svi)ds_/ 2G5 i Vi)

(z4+sv;)ds. (4-18)
-5 (2) =5 () 1+ Fl-k l
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It holds
ﬂ_l In(1+8x)<x, Be€]0,1[ and girr})ﬂ_l In(1+Bx)=x, x>0.

Hence in weak L' the sequence (87! In(1 + ,BFik))keN* converges modulo a subsequence to a function
FP < f when k — +00. The mass of the limit increases to the mass of f, when g — 0. This gives in
the final limit 8 — O for the left-hand side of (4-18)

0

ox fi(2) —ox] fri(z () —f X, fivi- Vo(z+sv;) ds. (4-19)
-5 (2)

Using analogous arguments as for the limit of the loss term in Lemma 4.1, it holds that

77 ka
lim F’m// ——— L (z+sv)dsdz
k— 400 —s+(z) 1 + ’BF

Fk
= im / / <weak L' lim —) z+sv)dsdz, jelJ;.
L Q _Si‘F(Z) k—>+OO 1+ﬂFl f]( l) J '

But
k

F
weak L! lim —k < weak L' lim Fk
k—+oo 14 BF] k—+o0

and

FFk
/ weak L' lim —’k(z) dz increases to / weak L' lim Fik () dz
Q k—o+oo 14+ IBF,‘ Q k—4o00
when 8 — 0. Hence

k

lim lim Flm// Z+sv; dsdz—Flm// i fi(z+sv))dsdz. (4-20
B—0k— 400 —5(2) 1—{—[3Fk ( ) st (Z)(sz ff]( ) ( )

For the gain term and any (/, m) € {1, ..., p}2 such that Fllj”’ > 0 for some j € {1, ..., p},

// Xin Flk F']:l (z+sv;)dsdz
QJost@) L+ BFE 1+ Ff/k 1+ FE/k ’

n. ke k k

F, F,

// X sz lk ——(z+sv)dsdz
o L+ BFF 1+ Ffjk 1+ F&/k

:// @anlk’e Flk Fr]y{l (Z+SU,’)deZ
ot T 14+ Ff/k1+FL/k

/ / ké lBFk Flk Fk ( + )d d
ZT4svj)asdz
—ﬁn‘px’ XY BFF I+ FFJk 1+ FEJk ’

F
+ i d d
//S+(Z)</)Xz X 1+Fk/k1+Fk/k(Z svi)ds dz
( k)2 k c
_CAZ// e v oGS dsds— . A>1 eel0 1l @2D)

jed;
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It holds

0 Fk Fk 0
lim S o (s dsdz:/f "Ff fX (z4svi)dsdz. (422
kﬁ+oo/9/_s,}+<z>% N Rk TRk oy O T It sui) ds dz- (4:22)

Choose A large enough and split the domain of integration of every j € J; term in (4-21) into
k
F Fy, }
1+ Ff/k14+Fk/k

(FF< A'YyU{FF> A and FFFF > A
i 1 rJ

k
F F,
1+ Ff/k1+Fk/k

U{Fik>A’andFiijk§7\ } A>1, A>1.

It holds that
0 B(FF)?Fk
n., ke i J
ox:'x;  ————(z+sv;)dsdz
‘/;/;S?_(Z) i N 1+13ij i
1 A ~
§c<ﬂ(A’)2+—~+—2el’F/€2f Ff(2) dz), Belo, 1, A'>0, A>1. (4-23)
In A € F[k>A’

The last term in (4-23) tends to zero when A — +00, A" — 400, B — 0 in this order, uniformly with
respect to k. Consequently,

0 n Fk Fk 0
lim lim // PXi L n (z—i—sv,-)dsdzz// ox; Ff fin(z+sv;) ds dz.
p0k—+o0 Jo |ty 1+ BFE 1+ Ff/k 1+ FE/k olsto

This holds for every € > 0. Hence

0 n Fk Fk 0
lim lim // PXi 1 m (z+sv,-)dsdz2f/ 0x" fi fon(z+sv;) ds dz.
p—0k—+oo Jo J i) 1+ BFf 1+ Ff/k 1+ Fi/k ol-st
And so, (4-17) holds. Together with (4-4), this proves (4-1). O
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