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OVERDETERMINED BOUNDARY PROBLEMS
WITH NONCONSTANT DIRICHLET AND NEUMANN DATA

MIGUEL DOMÍNGUEZ-VÁZQUEZ, ALBERTO ENCISO AND DANIEL PERALTA-SALAS

We consider the overdetermined boundary problem for a general second-order semilinear elliptic equation
on bounded domains of Rn, where one prescribes both the Dirichlet and Neumann data of the solution.
We are interested in the case where the data are not necessarily constant and where the coefficients of the
equation can depend on the position, so that the overdetermined problem does not generally admit a radial
solution. Our main result is that, nevertheless, under minor technical hypotheses nontrivial solutions to
the overdetermined boundary problem always exist.

1. Introduction

The study of overdetermined boundary problems, that is, problems where one prescribes both Dirichlet and
Neumann data, has grown into a major field of research in the theory of elliptic PDEs since its appearance
in Lord Rayleigh’s classic treatise [1877]. An outburst of activity started with the groundbreaking paper
[Serrin 1971], where he combined an adaptation of Alexandrov’s moving planes method with a subtle refine-
ment of the maximum principle to prove a symmetry result for an overdetermined problem. More precisely,
Serrin proved that, under mild technical hypotheses, positive solutions to elliptic equations of the form

1u + F(u)= 0

inside a bounded domain �⊂ Rn satisfying the boundary conditions

u = 0 and ∂νu = −c on ∂�, (1-1)

where c is an unspecified constant that can be picked freely, only exist if � is a ball, in which case u
is radial. The result remains true if F also depends on the norm of the gradient of u and if we replace
the Laplacian by other position-independent operators of variational form [Cianchi and Salani 2009].

The influence of Serrin’s result is such that the very considerable body of literature devoted to
overdetermined boundary problems is mostly limited to proofs that solutions need to be radial in cases
that can be handled using the method of moving planes. Without attempting to be comprehensive, some
remarkable results about overdetermined boundary value problems include alternative approaches to radial
symmetry results using P-functions [Garofalo and Lewis 1989; Kawohl 1998] or Pohozaev-type integral
identities [Brandolini et al. 2008; Magnanini and Poggesi 2020a; 2020b], extensions of the moving
plane method to the hyperbolic space and the hemisphere [Kumaresan and Prajapat 1998], to degenerate
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elliptic equations such as the p-Laplace equation [Damascelli et al. 1999], and to exterior [Aftalion and
Busca 1998; Garofalo and Sartori 1999], unbounded [Farina and Valdinoci 2010] or nonsmooth domains
[Prajapat 1998], and stability of symmetry [Aftalion et al. 1999]. Another direction of research that
has attracted considerable recent attention is the study of connections with the theory of constant mean
curvature surfaces and the construction of nontrivial solutions to Serrin-type problems in exterior domains
[Traizet 2014; del Pino et al. 2015; Ros et al. 2020]. Nontrivial solutions for partially overdetermined
problems or with degenerate ellipticity are also known to exist [Alessandrini and Garofalo 1989; Fragalà
and Gazzola 2008; Fragalà et al. 2006; Farina and Valdinoci 2013].

In two surprising papers, Pacard and Sicbaldi [2009] and Delay and Sicbaldi [2015] proved the existence
of extremal domains with small volume for the first eigenvalue of the Laplacian in any compact Riemannian
manifold, that is, domains for which the overdetermined problem for the linear elliptic equation

1gu + λu = 0

has a positive solution with zero Dirichlet data and constant Neumann data. Here 1g is the Laplacian
operator associated with a Riemannian metric g on a compact manifold and the constant λ (which one
eventually chooses as the first Dirichlet eigenvalue of the domain �) is not specified a priori. Very
recently we managed to show the existence of nontrivial solutions, with the same overdetermined Dirichlet
and Neumann conditions, for fairly general semilinear elliptic equations of second order with possibly
nonconstant coefficients [Domínguez-Vázquez et al. 2019].

In all these results, the fact that one is imposing precisely the standard overdetermined boundary
conditions (1-1) plays a crucial role. Roughly speaking, this is because one can relate the existence
of overdetermined solutions with the critical points of certain functional via a variational argument.
Therefore, the gist of the argument in these papers is that the overdetermined condition with constant
data is connected with the local extrema for a natural energy functional, restricted to a specific class of
functions labeled by points in the physical space. This ultimately permits one to derive the existence of
solutions from the fact that a continuous function attains its maximum on a compact manifold. However,
this strategy is successful only for constant boundary data. To our best knowledge, the only result in
the literature which considers nonconstant (albeit special) Neumann data in relation to overdetermined
boundary problems is [Bianchini et al. 2014].

In the recent paper [Domínguez-Vázquez et al. 2021], we have constructed new families of compactly
supported stationary solutions to the three-dimensional Euler equation by proving that there are solutions
to an associated overdetermined problem in two dimensions where one prescribes (modulo constants
that can be picked freely) zero Dirichlet data and nonconstant Neumann data. The proof uses crucially
that the space is two-dimensional, which ensures that the kernel and cokernel of a certain operator are
one-dimensional, and does not work in higher dimensions.

Our objective in this paper is to prove the existence of solutions to overdetermined problems where
one prescribes general Dirichlet and Neumann data (just as before, up to unspecified constants). For
concreteness, we consider the model semilinear equation

Lu + λF(x, u)= 0 (1-2)
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in a bounded domain �⊂ Rn, with Dirichlet and Neumann boundary conditions

u = f0(x), ν · A(x)∇u = −c f1(x) on ∂�. (1-3)

Here f0, f1 are functions on Rn, F is a function on Rn
× R, λ, c are unspecified positive constants, ν is

the outer unit normal on ∂� and L is the second-order operator

Lu := ai j (x) ∂i j u + bi (x) ∂i u,

where A(x)= (ai j (x)) is a (symmetric) matrix-valued function on Rn satisfying the (possibly nonuniform)
ellipticity condition

min
|ξ |=1

ξ · A(x)ξ > 0 for all x ∈ Rn.

Theorem 1.1. Given any noninteger s > 2, let us take any functions F, f0, f1, b of class C s and A of
class C s+2. Assume that the functions F( · , f0( · )) and f1 are positive and that the function f0 has
a nondegenerate critical point. Then there is a family of domains �ε,λ̄ for which the overdetermined
problem (1-2)-(1-3) admits a solution.

More precisely, let p ∈ Rn be a nondegenerate critical point of f0. Then, for any ε ̸= 0 small enough
and λ̄ > 0, the following statements hold:

(i) The domain �ε,λ̄ is a small deformation of the ball of radius ε centered at p, characterized by an
equation of the form |x − p|

2 < ε2
+ O(ε3).

(ii) The dependence of λ and c on the parameter ε is of the form

λ= ε−2λ̄, c = ε−1c̄,

where c̄ = c̄(ε, λ̄) is a positive constant of order 1.

Remark 1.2. In the case of the torsion problem, i.e.,1u+λ=0 (i.e., F(x, u)=1 in the previous notation),
the condition that f0 has a critical point can be relaxed: it is enough that the function Gκ := f0 + κ log f1

has at least one nondegenerate critical point for some constant κ > 0. The statement then applies if p is a
nondegenerate critical point of Gκ and taking λ̄ := nκ > 0 (not necessarily small).

Also, it is easy to obtain different variations on our main theorem following the same method of
proof. In fact, one obtains new results even for the linear equation 1u + b(x) · ∇u + λ f (x) = 0 with
standard overdetermined boundary data f0 := 0, f1 := 1; specifically, if p is a nondegenerate zero
of the vector field n∇ f − f b, then the statement still holds taking any λ̄ > 0. This does not follow
from [Domínguez-Vázquez et al. 2019]. However, we shall not pursue these generalizations here.

Compared with [Domínguez-Vázquez et al. 2019], a major difference is that the theorem does not
only ensure the existence of domains where the overdetermined problem under consideration admits a
nontrivial solution, but also specifies the points around which those domains are located. This immediately
permits one to translate this existence result to problems that are only defined in a subset of Rn or on a
differentiable manifold. In view of the heuristic but fruitful connection between overdetermined boundary
problems and the study of CMC hypersurfaces, a result that is somehow akin to our existence results for
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overdetermined boundary problems for semilinear equations is Ye’s classical theorem [1991] on foliations
by small CMC spheres on n-dimensional Riemannian manifolds.

The paper is organized as follows. We will start by setting up the problem in Section 2. For clarity
of exposition, in Sections 2 to 4 we have chosen to assume that the matrix A(x) is the identity and
carry out the proof in this context. An essential ingredient of the proof is the computation of asymptotic
expansions for the solution to the Dirichlet problem in small perturbations of a ball of radius ε ≪ 1,
when the constants λ and c scale with the radius as in Theorem 1.1. This computation is carried out
in Section 3. These asymptotic estimates are put to use in Section 4, where we prove Theorem 1.1 in
the particular case when A(x)= I. To obtain the general result, in Section 5 we show that the case of
a general matrix-valued function A(x) reduces to the study of the easiest case A(x) = I subject to an
inessential perturbation of order ε2. Making this precise, however, involves using a heavier notation and
geodesic-type normal coordinates adapted to the matrix A(x) that might unnecessarily obscure the simple
ideas the proof is based on. As a side remark, let us point out that the reason we ask for more regularity of
the matrix A (which is of class C s+2 in contrast with the C s regularity of the other functions) is precisely
due to our use of geodesic coordinates.

2. Setting up the problem

For clarity of exposition, until Section 5 we will assume that A(x)= I. This assumption will enable us to
obtain more compact expressions for the various quantities that appear in the problem and it will make it
easier to point out the salient features of the proof.

Let us fix a point p ∈ Rn and introduce rescaled coordinates z ∈ Rn centered at p as

z :=
x − p
ε

,

where ε is a suitably small nonzero constant. We now consider spherical coordinates (r, ω) ∈ R+
× S

for z, defined as

r := |z| =

∣∣∣∣ x − p
ε

∣∣∣∣, ω :=
z
|z|

=
x − p
|x − p|

.

Here and in what follows,
S := {ω ∈ Rn

: |ω| = 1}

denotes the unit sphere of dimension n − 1. For simplicity of notation, we will notationally omit the
dependence on the point p. Also, with some abuse of notation, we will denote the expression of the
function u(x) in these coordinates simply by u(r, ω).

Let us now consider a C s+1 function B : S → R and, for suitably small ε, let us describe the domain
in terms of the above coordinates as

�p,εB := {r < 1 + εB(ω)}. (2-1)

We now consider (1-2) in the domain �p,εB and choose the constants λ, c as

λ=: ε−2λ̄, c =: ε−1c̄,
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where we think of ε as a small constant and of λ̄, c̄ as positive constants of order 1. Equation (1-2) can
then be rewritten in the rescaled coordinates as

L̃u + λ̄F̃(z, u)= 0, (2-2)

where
F̃(z, u) := F(p + εz, u)

and L̃ is the differential operator
L̃u =1u + εb̃(z) · ∇u,

with b̃i (z) := bi (p + εz). We also denote the functions f0 and f1 in these coordinates as

f̃0(z) := f0(p + εz), f̃1(z) := f1(p + εz).

Here and in what follows, 1 and ∇ denote the Laplacian and gradient operators in the rescaled coordi-
nates z.

The Dirichlet boundary condition on ∂�p,εB can be simply written in rescaled hyperspherical coordi-
nates as

u(1 + εB(ω), ω)= f̃0(1 + εB(ω), ω)=: f̃0(ε, ω). (2-3)

We notice that f̃0(0, ω)= f0(p). Analogously, the Neumann boundary condition reads as

∂νu(1 + εB(ω), ω)= −c̄ f̃1(1 + εB(ω), ω),

where ν is the outwards normal unit vector on ∂�p,εB .
We denote by C s

Dir(B) the space of C s functions on the unit n-dimensional ball B := {|z|< 1} with
zero trace to the boundary. Also, K ⊂ C∞(S) denotes the restriction to the unit sphere of the space of
linear functions on Rn,

K := {V · z : |z| = 1, V ∈ Rn
}.

Equivalently, K is the eigenspace of the Laplacian 1S of the unit sphere corresponding to the second
eigenvalue, n − 1. Also, in what follows we will denote the partial derivatives of F (or F̃) as

F ′(x, u) := ∂u F(x, u), ∇F(x, u) := ∇x F(x, u), ∂j F(x, u) := ∂x j F(x, u).

The following lemma is a reformulation of [Domínguez-Vázquez et al. 2019, Theorem 2.3 and Proposi-
tion 2.4]. Here s > 2 is assumed to be a noninteger real.

Lemma 2.1. For each p ∈ Rn, there is some λ̄p > 0 such that the following statements hold for all
λ̄ ∈ (0, λ̄p):

(i) There is a unique function φp,λ̄(r) of class C s+2 satisfying the ODE

φp,λ̄
′′(r)+

n − 1
r

φp,λ̄
′(r)+ λ̄F(p, f0(p)+φp,λ̄(r))= 0

and the boundary condition φp,λ̄(1)= 0 which is regular at r = 0. The function φp,λ̄ is well-defined
for r ∈ [0, 1 + δp], with δp > 0. Furthermore, φp,λ̄(r) > 0 for r < 1 and φp,λ̄

′(1) < 0.



1994 MIGUEL DOMÍNGUEZ-VÁZQUEZ, ALBERTO ENCISO AND DANIEL PERALTA-SALAS

(ii) The operator
Tp,λ̄v :=1v+ λ̄ F ′(p, f0(p)+φp,λ̄(|z|))v

defines an invertible map Tp,λ̄ : C s+1
Dir (B)→ C s−1(B).

(iii) Consider the map Hp,λ̄ defined for each function ψ on the boundary of the ball as

Hp,λ̄ψ := −φp,λ̄
′(1) ∂νvψ +φp,λ̄

′′(1)vψ ,

where vψ is the only solution to the problem Tp,λ̄vψ = 0 on B, vψ |∂B = ψ . Then Hp,λ̄ maps
C s+1(S)→ C s(S), its kernel is K, and its range is the set C s(B)∩K⊥ of C s functions orthogonal
to K. Furthermore,

∥ψ∥Cs+1 ⩽ C p,λ̄∥Hp,λ̄ψ∥Cs (2-4)

for all ψ ∈ C s+1
∩K⊥.

(iv) The function φp,λ̄ satisfies ∥φp,λ̄
′
∥Cs((0,1+δp)) ⩽ C λ̄ and is of class C s in p and λ̄.

Remark 2.2. When the equation is linear (that is, F(x, u)= f (x)), one can take λ̄p arbitrarily large and

φp,λ̄(r)= −
λ̄

2n
f (p) (r2

− 1).

The operator Hp,λ̄ is then

Hp,λ̄ψ =
λ̄

n
f (p) (30ψ −ψ),

where 30 := [(n/2 − 1)2 −1S]
1/2

− n/2 + 1 is the Dirichlet–Neumann map of the ball.

In what follows we shall always assume that λ̄ < λ̄p.

Proposition 2.3. For any ε small enough and any function B ∈ C s+1(S) with ∥B∥Cs+1 < 1, there is a
unique function u = u p,ε,λ̄,B in a small neighborhood of f0(p)+φp,λ̄ in C s+1(�p,εB) that satisfies (2-2)
and the Dirichlet boundary condition (2-3).

Proof. Let χp,εB : B →�p,εB be the diffeomorphism defined in spherical coordinates as

(ρ, ω) 7→ ([1 + εχ(ρ) B(ω)]ρ, ω),

where χ(ρ) is a smooth cutoff function that is zero for ρ < 1
4 and 1 for ρ > 1

2 . Then one can define a map

Hp,λ̄,B : (−εp, εp)× C s+1
Dir (B)→ C s−1(B)

as
Hp,λ̄,B(ε, φ) := [L̃(φ ◦χ−1

p,εB)] ◦χp,εB + E ◦χp,εB + λ̄[F̃( · , f̃0 +φ ◦χ−1
p,εB)] ◦χp,εB,

with the function E defined as
E := L̃ f̃0. (2-5)

Note that ∥E∥Cs−1(�p,εB) ⩽ Cε2 because f̃0(z) := f0(p + εz). Clearly, Hp,λ̄,B(ε, φ) = 0 if and only
if u := f̃0 +φ ◦χ−1

p,εB solves the Dirichlet problem (2-2)-(2-3) in �p,εB .
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Note that, by definition and using (2-5), Hp,λ̄,B(0, φp,λ̄)= 0. Also, a short computation shows that the
derivative of Hp,λ̄,B(ε, φ) with respect to φ satisfies

DφHp,λ̄,B(0, φp,λ̄)= Tp,λ̄,

so it is an invertible map C s+1
Dir (B)→ C s−1(B); see Lemma 2.1. The implicit function theorem in Banach

spaces then ensures that, for any ε close enough to 0, there is a unique function φε in a small neighborhood
of φp,λ̄ in C s+1

Dir (B) satisfying

Hp,λ̄,B(ε, φ
ε)= 0.

Then u p,ε,λ̄,B := f̃0 +φε ◦χ−1
p,εB is the desired solution to the Dirichlet problem in �p,εB . □

We will henceforth denote by

Pp,λ̄,εB : C s+1(S)→ C s+1(�p,εB)

the map ψ 7→ vψ , where vψ is the only solution to the problem

Tp,λ̄vψ = 0 in �p,εB,

with the boundary condition

vψ(1 + εB(ω), ω)= ψ(ω).

Note that the existence and uniqueness of vψ is an easy consequence of Lemma 2.1.
For future reference, let us record here the definition of the associated Dirichlet–Neumann operator

3p,λ̄,εB : C s+1(S)→ C s(S),

3p,λ̄,εBψ(ω) := ν · A∇Pp,λ̄,εBψ(1 + εB(ω), ω).

As 3p,λ̄,εB reduces to the standard Dirichlet–Neumann map 30 when ε = λ̄= 0, it is standard that

∥3p,λ̄,εB −3p,λ̄,0∥Cs+1(S)→Cs(S) ⩽ C |ε|, (2-6)

∥3p,λ̄,εB −30∥Cs+1(S)→Cs(S) ⩽ C(|ε| + λ̄). (2-7)

3. Asymptotic expansions

In this section we compute asymptotic formulas for the solution to the Dirichlet problem in the domain (2-1)
obtained in Proposition 2.3, valid for |ε| ≪ 1. Let us begin with the estimates for the solutions to the
Dirichlet problem:

Proposition 3.1. The function u p,ε,λ̄,B is of the form

u p,ε,λ̄,B = f0(p)+φp,λ̄(r)+ ε{Wp,λ̄(r) · z + Pp,λ̄,εB[∇ f0(p) ·ω−φp,λ̄
′(1) B]} + O(ε2),

where Wp,λ̄ : [0, 1 + δp] → Rn is a function with ∥Wp,λ̄∥Cs+1 ⩽ C λ̄.



1996 MIGUEL DOMÍNGUEZ-VÁZQUEZ, ALBERTO ENCISO AND DANIEL PERALTA-SALAS

Remark 3.2. In the case when F(x, u)= f (x), the formula is slightly more explicit:

u p,ε,λ̄,B = f0(p)−
λ̄

2n
f (p) (r2

− 1)

+ ε

{[
∇ f0(p)−

λ̄(r2
− 1)

2n + 4

(
∇ f (p)−

f (p)b(p)
n

)]
· z +

λ̄ f (p)
n

PεB B
}

+ O(ε2).

Here we are using the notation PεB ≡ Pp,0,εB , which does not depend on p because F ′
= 0.

Proof. Note that u0 := f0(p)+φp,λ̄(r) satisfies the equation

1u0 + λ̄F(p, u0)= 0, u0|r=1 = f0(p).

Let us write u1 := (u p,ε,λ̄,B − u0)/ε and observe that

F̃(z, u p,ε,λ̄,B)= F(p + εz, u0 + εu1)= F(p, u0)+ ε[∇F(p, u0) · z + F ′(p, u0)u1] + O(ε2).

As L̃u p,ε,λ̄,B + λ̄F̃(z, u p,ε,λ̄,B)= 0 with the boundary condition

u p,ε,λ̄,B(1 + εB(ω), ω)= f̃0(1 + εB(ω), ω)= f0(p)+ ε∇ f0(p) ·ω+ O(ε2),

this ensures that u1 satisfies an equation of the form

Tp,λ̄u1 + λ̄∇F(p, u0) · z + b(p) ·
z
r
φp,λ̄

′(r)+ O(ε)= 0

in �p,εB and the boundary condition

u1(1 + εB(ω), ω)= ∇ f0(p) ·ω−φp,λ̄
′(1) B(ω)+ O(ε).

To analyze u1, we start by noting that

u∗

1 := Pp,λ̄,εB[∇ f0(p) ·ω−φp,λ̄
′(1) B(ω)]

satisfies the equation Tp,λ̄u∗

1 = 0 in �p,εB and the boundary condition

u∗

1(1 + εB(ω), ω)= ∇ f0(p) ·ω−φp,λ̄
′(1) B(ω).

It is an easy consequence of Lemma 2.1 that the equation

Tp,λ̄w+ λ̄∇F(p, u0(|z|)) · z + b(p) ·
z
r

u′

0(|z|)= 0 in B, w|∂B = 0,

has a unique solution w, which is then of the form w = Wp,λ̄(|z|) · z for some Rn-valued function Wp,λ̄.
Specifically, its j-th component Wj (r) := Wp,λ̄(r) · ej satisfies the ODE

W ′′

j (r)+
n + 1

r
W ′

j (r)+ λ̄F ′(p, u0(r))Wj (r)+ λ̄ ∂j F(p, u0(r))+ bj (p)
u′

0(r)
r

= 0,

with the boundary condition Wj (1) = 0 and the requirement that Wj must be regular at 0. As u0(r) is
well-defined up to r = 1 + δp, so is Wj (r). The function Wp,λ̄ is obviously bounded as

∥Wp,λ̄∥Cs+1((0,1+δp)) ⩽ C λ̄∥∂j F(p, u0)∥Cs−1((0,1+δp)) + C
∥∥∥∥u′

0

r

∥∥∥∥
Cs−1((0,1+δp))

.

Since ∥u′

0∥Cs((0,1+δp)) ⩽ C λ̄ by Lemma 2.1, we infer that ∥Wp,λ̄∥Cs+1 = O(λ̄) as well.
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By construction, we immediately obtain that u1 = u∗

1 +w+ O(ε), so the proposition follows. The
expression of Remark 3.2 follows from the same argument taking into account the formula for φp,λ̄

provided in Remark 2.2. □

Next we obtain asymptotic formulas for the normal derivative of u:

Proposition 3.3. The normal derivative of the function u p,ε,λ̄,B satisfies

∂νu p,ε,λ̄,B = φp,λ̄
′(1)+ ε{Hp,λ̄B + [∇ f0(p)+ Vp,λ̄] ·ω} + O(ε2),

where the constant vector Vp,λ̄ ∈ Rn satisfies |Vp,λ̄| ⩽ C λ̄.

Remark 3.4. When F(x, u)= f (x), one can obtain a more compact formula:

∂νu p,ε,λ̄,B

= −
λ̄

n
f (p)+ε

{
−
λ̄

n
f (p) (B −30 B)+∇ f0(p) ·ω−

λ̄

n + 2

(
∇ f (p)−

f (p)b(p)
n

)
·ω

}
+ O(ε2). (3-1)

Proof. Since the boundary of �p,εB is the zero set of the function r − εB(ω)− 1, it is clear that its unit
normal vector at the point (1 + εB(ω), ω) is

ν =

(
ω−

ε

1 + εB(ω)
∇S B(ω)

)(
1 +

ε2

(1 + εB(ω))2
|∇S B(ω)|2

)−1/2

= ω− ε∇S B(ω)+ O(ε2),

where ∇S denotes covariant differentiation on the unit sphere.
Using this formula, it follows from Proposition 3.1 that

∂νu p,ε,λ̄,B = ν · ∇u p,ε,λ̄,B(1 + εB(ω), ω)

= φp,λ̄
′(1 + εB(ω))+ ε{(r Wp,λ̄)

′(1) ·ω+ ν · ∇Pp,λ̄,εB[∇ f0(p) ·ω−φp,λ̄
′(1) B]} + O(ε2).

Since φp,λ̄(r) is C s+1-smooth for r < 1 + δp, let us now expand φp,λ̄
′ and use the definition of the

operator 3p,λ̄,εB to write

∂νu p,ε,λ̄,B = φp,λ̄
′(1)+ε{φp,λ̄

′′(1)B −φp,λ̄
′(1)3p,λ̄,εB B +3p,λ̄,εB(∇ f0(p) ·ω)+ W ′

p,λ̄(1) ·ω}+ O(ε2).

Let us now recall that Hp,λ̄B := φp,λ̄
′′(1)B − φp,λ̄

′(1)3p,λ̄,0 B (see Lemma 2.1) and that the usual
Dirichlet–Neumann map of the ball satisfies 30(V ·ω)= V ·ω for all V ∈ Rn. Therefore, we can use the
bounds (2-6)-(2-7) and the estimate |Vp,λ̄| ⩽ C λ̄ with

Vp,λ̄ := W ′

p,λ̄(1),

proven in Proposition 3.1, to obtain the formula of the statement. The expression of Remark 3.4 follows
from the above argument after taking into account the expression for u p,ε,λ̄,B given in Remark 3.2. □

4. Proof of Theorem 1.1 when A(x) = I

For any given point p ∈ Rn, let us now define a map

Fp,λ̄ : (−εp, εp)× X1
s+1 → C s(S),
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with X1
s := {b ∈ C s(S) : ∥b∥Cs < 1}, as

Fp,λ̄(ε, B) := ∂νu p,ε,λ̄,B −
φp,λ̄

′(1)

f1(p)
f̃1.

Roughly speaking, this map measures how far the Dirichlet solution u p,ε,λ̄,B is from satisfying the
Neumann condition in the domain �p,εB with a constant

c̄ := −
φp,λ̄

′(1)

f1(p)
> 0.

An immediate consequence of the asymptotic formulas for ∂νu p,ε,λ̄,B proved in Proposition 3.3 and
the fact that

f̃1(1 + εB(ω), ω)= f1(p)+ ε∇ f1(p) ·ω+ O(ε2),

is the following:

Proposition 4.1. For any fixed p ∈ Rn, any B ∈ X1
s+1(S) and any |ε|< εp,

Fp,λ̄(ε, B)= ε

{
Hp,λ̄B +

[
∇ f0(p)−

φp,λ̄
′(1)

f1(p)
∇ f1(p)+ Vp,λ̄

]
·ω

}
+ O(ε2).

Remark 4.2. When F(x, u)= f (x), one can obtain a slightly more explicit formula:

Fp,λ̄(ε, B)= ε

{
−
λ̄

n
f (p) (B −30 B)+

[
∇ f0(p)+

λ̄ f (p)
n f1(p)

∇ f1(p)
]

·ω

−
λ̄

n + 2

[
∇ f (p)−

f (p)b(p)
n

]
·ω

}
+ O(ε2). (4-1)

It then follows that the function Fp,λ̄(ε, B)/ε can be defined at ε = 0 by continuity. Furthermore, its
derivative with respect to B involves the operator Hp,λ̄, whose kernel was shown to be the space K in
Lemma 2.1. Consequently, let us define the spaces

Xs := {b ∈ C s(S) : PKb = 0}, X 1
s := {b ∈ Xs : ∥b∥Cs < 1},

with PK being the orthogonal projector onto the subspace K. We also define the operator

Pb := b −PKb.

It is clear from these expressions that P maps each space C s(S) into itself and X 1
s ⊂ X1

s .
By Proposition 4.1, we can now define a map

Gp,λ̄ : (−εp, εp)×X 1
s+1 → Xs

as

Gp,λ̄(ε, B) :=
PFp,λ̄(ε, B)

ε
.
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Lemma 4.3. Let U ⊂ Rn be any bounded domain. For any λ̄ ∈ (0, λ̄U ), with

λ̄U := inf
p∈U

λ̄p > 0,

there exist some εU,λ̄ > 0 and a C s function Yε,λ̄ : U → Rn such that

∂νu p,ε,λ̄,Bε,p,λ̄
−
φp,λ̄

′(1)

f1(p)
f̃1 = Yε,λ̄(p) ·ω

for all p ∈ U and all |ε|< εU,λ̄. Here Yε,λ̄(p) := Y (ε, p, λ̄) is of class C s in all its arguments, and can be
interpreted as a family of parametrized vector fields on U , and Bε,p,λ̄ is a certain function in X 1

s+1.

Proof. Let us begin by showing that the Fréchet derivative DBGp,λ̄(0, 0) : Xs+1 → Xs is one-to-one. To
see this, note that Proposition 4.1 and the fact that P(A ·ω)= 0 for any A ∈ Rn imply that the derivative
of Gp,λ̄ with respect to B is of the form

DBGp,λ̄(ε, 0)= Hp,λ̄ + E,

with ∥E∥Xs+1→Xs ⩽ C |ε|. Here we have used that, by Lemma 2.1, PHp,λ̄ = Hp,λ̄ because the range of the
elliptic first-order operator Hp,λ̄ is contained in K⊥. The estimate (2-4) then ensures that DBGp,λ̄(ε, 0) is
an invertible map Xs+1 → Xs provided that ε is small enough.

As Gp,λ̄(0, 0)= 0, the invertibility of DBGp,λ̄(ε, 0) implies, via the implicit function theorem, that for
any ε small enough, there is a unique function Bε,p,λ̄ in a small neighborhood of 0 such that

Gp,λ̄(ε, Bε,p,λ̄)= 0.

By the definition of Fp,λ̄ and the fact that K={Y ·ω :Y ∈Rn
}, this implies that there is some Y (ε, p, λ̄)∈Rn

such that

∂νu p,ε,λ̄,Bε,p,λ̄
−
φp,λ̄

′(1)

f1(p)
f̃1 = Y (ε, p, λ̄) ·ω.

Furthermore, Y (ε, p, λ̄) is a C s-smooth function of its arguments because so is the left-hand side of this
identity. □

Let us now note that the asymptotic expression of the vector field Yε,λ̄(p) can be read off Proposition 4.1:

Lemma 4.4. The vector field Yε,λ̄ is of the form

Yε,λ̄(p)= ε

[
∇ f0(p)−

φp,λ̄
′(1)

f1(p)
∇ f1(p)+ Vp,λ̄

]
+ O(ε2).

When F(x, u)= f (x), one can write down the more precise expression

Yε,λ̄(p)= ε

{
∇ f0(p)+

λ̄ f (p)
n f1(p)

∇ f1(p)−
λ̄

n + 2

[
∇ f (p)−

f (p)b(p)
n

]}
+ O(ε2).
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Proof of Theorem 1.1 when A(x) = I and of Remark 1.2. Let us suppose that p∗ is a nondegenerate
critical point of the function f0. As φp,λ̄

′(1)= O(λ̄) by Lemma 2.1, Lemma 4.4 implies that

Yε,λ̄(p)
ε

= ∇ f0(p)+ E,

with an error bounded as ∥E∥C1(U ) ⩽ CU |λ̄| + CU |ε| for any bounded domain U ∋ p∗. If |λ̄| and |ε| are
small enough, it is then standard that there is a unique point pε,λ̄ in a small neighborhood of p∗ such that

Yε,λ̄(pε,λ̄)= 0.

By Lemma 4.3, and setting c̄ := −φ′

pε,λ̄,λ̄
(1)/ f1(pε,λ̄), this ensures that

∂νuε,pε,λ̄,λ̄,Bε,p,λ̄ + c̄ f̃1 ≡ 0,

which implies the claim of the theorem with the domain �pε,λ̄,εBε,p,λ̄ .
To prove Remark 1.2 on overdetermined solutions for the torsion problem, let us assume that F(x, u)=

f (x)= 1 and that p∗ is a nondegenerate critical point of the function f0+κ log f1 for some constant κ > 0.
In this case, since f (x)= 1 and b(x)= 0, Lemma 4.4 implies that

Yε,λ̄(p)
ε

= ∇ f0(p)+
λ̄

n
∇ log f1(p)+ E ′,

with ∥E ′
∥C1(U )⩽CUε. As one can pick any positive value of λ̄ by Remark 2.2, let us fix λ̄= λ̄∗

:= nκ > 0.
The previous argument then allows us to conclude that, for any ε small enough, there exists some point pε
close to p∗ for which Yε,λ̄(pε)= 0. Note that the condition that p∗ is a nondegenerate critical point of
f0 + κ log f1 is crucially used to solve

∇ f0(pε)+ κ ∇ log f1(pε)= −E ′

for small ε > 0 via the inverse function theorem. As above, this implies the existence of solutions to the
overdetermined torsion problem. The case of f0 = 0, f1 = 1 and F(x, u)= f (x) is handled similarly, so
Remark 1.2 then follows. □

5. Introduction of a nonconstant matrix A(x) and conclusion of the proof

In this section we will show why the proof of Theorem 1.1 carried out for the case when A(x)= I remains
valid, with only minor variations, in the case of a general matrix A(x).

The key idea is that we are constructing domains that are small deformations of the ball of radius ε,
with ε≪ 1. Over scales of order ε, the function A(x) is essentially constant, so it stands to reason that
one might be able to compensate for the effect of having a nonconstant matrix A(x) (at least, to some
orders when considering an asymptotic expansion in ε) by deforming the balls accordingly. More visually,
this would correspond essentially to picking an ellipsoidal domain at each point x with axes determined
by the matrix A(x).

The way to implement this idea is through (a rescaling of) the normal coordinates associated with the
matrix-valued function A, which we now regard as a Riemannian metric on Rn of class C s+2. These are
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defined through the exponential map at a point p ∈ Rn,

expA
p : Up → Rn,

which maps a certain domain Up ⊂ Rn diffeomorphically onto its image. It is standard [DeTurck and
Kazdan 1981] that expA

p (Z) is a C s+1 function of Z ∈ Up and of p ∈ Rn. The normal coordinates at p
are just the Cartesian coordinates Z = (Z1, . . . , Zn) on Up ⊂ Rn. In these coordinates, the metric reads
as Â(Z) = I + O(|Z |

2). More precisely, Â(Z) = (âi j (Z)) is given by the pullback by the exponential
map of the metric tensor, which is well known to be of the form

(expA
p )

∗
[ai j (x) dxi dx j ] =: âi j (Z) d Zi d Z j ,

with functions âi j of class C s(Up) such that

âi j (0)= δi j , ∂Zk âi j (0)= 0.

Therefore, normal coordinates enable us to write the matrix as the identity plus a C s-smooth quadratic
error. Incidentally, it is well known that the leading-order contribution of the error is determined by the
curvature of the metric A at the point p.

We are now ready to reformulate the overdetermined problem with a general function A as a small
perturbation of the case A(x)= I. For each function B ∈ C s+1(S) with ∥B∥Cs+1 < 1 and each ε small
enough, one can then define the domain �p,εB ⊂ Rn (which will play the same role as (2-1)) as

�p,εB := {expA
p (εz) : |z|< 1 + εB(z/|z|)}.

Note that, in terms of the spherical coordinates associated with a point z,

r := |z| ∈ (0,∞), ω :=
z
|z|

∈ S,

the above condition reads simply as r < 1 + εB(ω). In the domain �p,εB , (1-2) reads in the rescaled
normal coordinates z at p as

L̂u + λ̄F̂(z, u)= 0,

where F̂(z, u) := F(expA
p (εz), u) and now the linear operator L̂ is of the form

L̂u := âi j (εz) ∂zi z j u + εb̂i (εz) ∂zi u,

with âi j (Z) as above and some functions b̂i (Z) of class C s.
Therefore,

L̂u =1u + εb̂i (εz) ∂zi u + Eu,

where the error term is bounded as ∥Eu∥Cs−1 ⩽ Cε2
∥u∥Cs+1 and L̂u − Eu is just like the operator L̃u

introduced below (2-2). One can now go over the proof of Theorem 1.1 and readily see that all the
arguments remain valid when one introduces an error of this form in the expressions. This is not surprising,
as the proof only uses the formulas for the terms in the equations that are of zeroth and first order in ε.
Since the nondegenerate critical points of f0 do not depend on the coordinate system, Theorem 1.1 is
then proven for a general matrix-valued function A.
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MONGE–AMPÈRE GRAVITATION AS A 0-LIMIT OF GOOD RATE FUNCTIONS

LUIGI AMBROSIO, AYMERIC BARADAT AND YANN BRENIER

Monge–Ampère gravitation is a modification of the classical Newtonian gravitation where the linear
Poisson equation is replaced by the nonlinear Monge–Ampère equation. This paper is concerned with
the rigorous derivation of Monge–Ampère gravitation for a finite number of particles from the stochastic
model of a Brownian point cloud, following the formal ideas of a recent work by Brenier (Bull. Inst.
Math. Acad. Sin. 11:1(2016), 23–41). This is done in two steps. First, we compute the good rate function
corresponding to a large deviation problem related to the Brownian point cloud at fixed positive diffusivity.
Second, we study the 0-convergence of this good rate function, as the diffusivity tends to zero, toward a
(nonsmooth) Lagrangian encoding the Monge–Ampère dynamic. Surprisingly, the singularities of the
limiting Lagrangian correspond to dissipative phenomena. As an illustration, we show that they lead to
sticky collisions in one space dimension.

1. Introduction

Monge–Ampère gravitation. On a periodic domain such as Td
= (R/Z)d, Newtonian gravitation is

commonly described in terms of the density of probability f (t, x, ξ) to find gravitating matter at time t ,
position x ∈ Td and velocity ξ ∈ Rd, subject to the Vlasov–Poisson equation

∂t f (t, x, ξ)+ divx(ξ f (t, x, ξ))− divξ (∇ϕ(t, x) f (t, x, ξ)) = 0,

1ϕ(t, x) =

∫
Rd

f (t, x, ξ) dξ − 1, (t, x, ξ) ∈ R × Td
× Rd ,

where ϕ is the gravitational potential. Notice that the averaged density, say 1, has been subtracted out
from the right-hand side of the Poisson equation, due to the periodicity of the spatial domain. This is a
common feature of computational cosmology and it lets the uniform density be a stationary solution. The
Vlasov–Poisson system can be seen as an “approximation” to the more nonlinear Vlasov–Monge–Ampère
(VMA) system

∂t f (t, x, ξ)+ divx(ξ f (t, x, ξ))− divξ (∇ϕ(t, x) f (t, x, ξ)) = 0, (1)

det(I + D2ϕ(t, x)) =

∫
Rd

f (t, x, ξ) dξ, (t, x, ξ) ∈ R × Td
× Rd , (2)

where the fully nonlinear Monge–Ampère equation substitutes for the linear Poisson equation of Newtonian
gravitation. Indeed, for “weak” gravitational potentials, by expanding the determinant around the identity
matrix I, we get

det(I + D2ϕ(t, x)) ∼ 1 + tr(D2ϕ(t, x)) = 1 + 1ϕ(t, x)

MSC2020: 49J52, 60F10, 70F40, 70B05.
Keywords: Monge–Ampère gravitation, large deviations, 0-convergence, Lagrangian mechanics, interacting particle systems.

© 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org/apde/
https://doi.org/10.2140/apde.2023.16-9
https://doi.org/10.2140/apde.2023.16.2005
http://msp.org
http://web.math.sinica.edu.tw/bulletin_ns/20161/2016102.pdf
http://web.math.sinica.edu.tw/bulletin_ns/20161/2016102.pdf
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


2006 LUIGI AMBROSIO, AYMERIC BARADAT AND YANN BRENIER

and recover the Newtonian model approximately (and exactly as d = 1). In this paper, we will speak of
“Monge–Ampère gravitation” (“MAG” in short). The Vlasov–Monge–Ampère system was introduced
and related to the Vlasov–Poisson system in [Brenier and Loeper 2004], and studied as an ODE on the
Wasserstein space in [Ambrosio and Gangbo 2008]. It can also be solved numerically thanks to efficient
Monge–Ampère solvers recently designed by Mérigot [2011]. It was argued in [Brenier 2011] that MAG
may also be seen as an approximation of Newtonian gravitation for which the “Zeldovich approximation”
[1970] (see [Frisch et al. 2002; Brenier et al. 2003]), popular in computational cosmology, becomes exact.

Derivation of a discrete model of MAG. In what follows, we will not be directly interested in the
aforementioned system, but rather in its discrete version, i.e., when the number of particles is finite.
As is well known in optimal transport theory [Brenier 1987; 1991; Villani 2003], the Monge–Ampère
equation (2) is solved by the unique function ϕ such that the map Id+∇ϕ realizes the optimal transport with
quadratic cost from the density

∫
f dξ to the Lebesgue measure. Then, the kinetic equation (1) is known

to be the continuous version of the Newton equations of classical mechanics in a potential given by ϕ.
In the discrete setting, the stationary Lebesgue measure is replaced by a family A = (a1, . . . , aN ) ∈

(Rd)N of N ≥ 1 points in Rd (here we make the presentation in Rd instead of Td for the sake of simplicity).
One can for instance think of a regular lattice approximating in some region a constant density, even though
in the sequel the particular choice of (a1, . . . , aN ) will play no role. We will consider the evolution of a
cloud X = (x1, . . . , xN ) of N particles x1, . . . , xN in Rd whose dynamic is ruled by the (−1/N )-convex
function induced by the discrete optimal transport problem

F(X) := − min
σ∈SN

1
2N

N∑
i=1

|xi − aσ(i)|
2
= −

1
2

W 2
2

(
1
N

N∑
i=1

δai ,
1
N

N∑
i=1

δxi

)
, (3)

where W2 is the so-called Wasserstein distance on P2(R
d), the set of Borel probability measures on Rd

having a finite second-order moment. At least in the case where the optimization problem in (3) admits a
unique minimizer σopt = σ X

opt, the analogue of (1), (2) in this framework is easily seen to be formally,

for all i = 1, . . . , N ,
d 2

dt2 xi (t) = xi (t) − aσopt(i), (4)

which can be rewritten as, letting Xt := (x1(t), . . . , xN (t)),

1
N

d 2

dt2Xt = −∇F(Xt). (5)

Following the ideas of the recent paper [Brenier 2016], we will derive this discrete dynamic from the
very elementary stochastic model of a Brownian point cloud. However, in [Brenier 2016], the derivation
was obtained by applying two successive large deviation principles (LDP), through a purely formal use of
the Freidlin–Wentzell theory [1998]. The main purpose of the present paper is to explain how such a
derivation can be made rigorous by substituting for one of the applications of the LDP a PDE method
inspired by the famous concept of “onde pilote” introduced by Louis de Broglie [1927] at the early stage
of quantum mechanics.
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Dealing with the singularities. Due to the lack of uniqueness in the discrete optimal transport problem,
solutions of (4) are not always well-defined a priori. Otherwise stated, F is singular, and therefore ∇F
in (5) is not everywhere meaningful. A standard choice to give sense to (5) is to restate it as

−
1
N

d 2

dt2Xt ∈ ∂ F(Xt), (6)

where ∂ F(Xt) is the subdifferential of F at Xt , or

−
1
N

d 2

dt2Xt = ∇F(Xt),

where ∇F(Xt) is the element of ∂ F(Xt) with minimal Euclidean norm (see Definition 8 below). In these
formulations, existence results are available even in the nondiscrete case [Ambrosio and Gangbo 2008].

This is not what we do: our approach selects minimizers of actions appearing as 0-limits of good rate
functions associated with some LDP, under endpoint constraints. These curves do solve (4) in the case
where σopt is unique, but this time, the relaxation is made at the level of the Lagrangian formulation, and
not at the level of the Hamiltonian one. In view of (5), we would expect to find the action∫ t1

t0

{
|Ẋt |

2

2
− N F(Xt)

}
dt, (7)

where t0, t1 are some prescribed initial and final times. Instead, our derivation ends up with the smaller
action ∫ t1

t0

{
|Ẋt |

2

2
+

|Xt − ∇ f (Xt)|
2

2

}
dt, (8)

f (X) := max
σ∈SN

N∑
i=1

xi aσ(i) =

N∑
i=1

xi aσ X
opt(i)

, X = (x1, . . . , xN ) ∈ (Rd)N .

Note that these two actions coincide on curves X such that, for almost every t , σ
Xt
opt is unique (see

Section 2.7 for more details). Unexpectedly, this action is exactly the one previously suggested by the
third author in [Brenier 2011] in order to include dissipative phenomena (such as sticky collisions in one
space dimension) in the Monge–Ampère gravitational model!

The classical theory for sticky particles vs. our approach. Systems of particles moving along the line
and that stick together when they meet have been studied for a long time, for instance because they were
suggested to model the formation of large structures in the universe [Zeldovich 1970]. On the mathematical
side, a lot of works have been devoted to studying the limit of this kind of system when the number of
particles tends to infinity (see for instance [E et al. 1996; Brenier and Grenier 1998]), and the most recent
works generally build on a connection with the theory of optimal transport (see [Natile and Savaré 2009;
Brenier et al. 2013; Hynd 2020]). An example illustrating this link, which is one of the main theorems
in [Natile and Savaré 2009], is that up to a change of time, the one-dimensional pressureless Euler system
with sticky collisions is the gradient flow in the Wasserstein space of −

1
2 W 2

2 (m, · ), where m ∈ P2(R) is
a reference probability measure on the line. In plain English, in these models, particles are only allowed
to stick when they meet, and it corresponds to the optimal way of decreasing a certain functional.
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Our approach is different. In fact, our model is a least action principle, and therefore is conservative
and time-reversible. In this context, sticky collisions happen due to the presence of an internal energy,
corresponding to the discontinuities of the potential energy X 7→ −

1
2 |X − ∇ f (X)|2 (see formula (51)),

and which grows when particles aggregate. Kinetic energy can hence be transferred into internal energy
through perfectly inelastic shocks. An output of these considerations is that in our case, particles are not
only allowed to stick together; they can also separate.

Outline. In Section 2 we show how to derive MAG starting from a finite number of Brownian particles.
This is done in several steps, the main one being the 0-convergence towards the “effective” singular
functional (8) of the good rate functions associated with the large deviations of the solutions of a family
of SDEs (up to a change of time). This is stated in Theorem 9, which is our main result. Section 3 is
devoted to the proof of Theorem 9. The purpose of Section 4 is to show that in one space dimension, the
dissipative phenomena induced by this functional lead to sticky collisions.

Notation. We will work with N particles in Rd, and hence in (Rd)N. Points of (Rd)N will be denoted with
capital letters, mainly X , Y or Z . Curves with values in (Rd)N will be denoted with calligraphic letters
X , Y or Z . The positions of X , Y and Z at time t ∈ R will be denoted by Xt , Yt and Zt respectively.

In order to avoid heavy notation, in most cases, the laws of the processes that we will consider will
be continuously parametrized. In these cases, we will use abuses of notation: for instance, we will say
that the family of laws (µη)η>0 is tight whenever it is tight for sufficiently small values of η. This is
equivalent to (µηn )n∈N being tight for all (ηn) ∈ (R∗

+
)N decreasing to 0.

2. Derivation of the discrete model

2.1. The stochastic model of a lattice with Brownian motion. Take A = (a1, . . . , aN ) ∈ (Rd)N to be a
family of N > 1 points in Rd. We assume each point of this lattice to be subject to Brownian motion for
times t ≥ 0. At time t , the position of point i is

ai +
√

εBi
t ,

where (Bi )i=1,...,d is a family of N independent normalized Brownian curves and ε monitors the (common)
level of noise. As a consequence, at time t > 0, the density of probability ρε(t, X) for the point cloud

(a1 +
√

εB1
t , . . . , aN +

√
εB N

t )

to be observed at location X = (x1, . . . , xd) ∈ (Rd)N, up to a permutation σ ∈ SN of the labels, is easy
to compute. We find

ρε(t, X) =
1

N !
√

2πεt
d N

∑
σ∈SN

N∏
i=1

exp
(
−

|xi − aσ(i)|
2

2εt

)
,

or, in short,
1

N !
√

2πεt
Nd

∑
σ∈SN

exp
(
−

|X − Aσ
|
2

2εt

)
,
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where | · | denotes the euclidean norm in Rd or (Rd)N depending on the context, and where, for all
X = (x1, . . . , xN ) ∈ (Rd)N, we let

Xσ
= (xσ(1), . . . , xσ(N )).

This was the starting point of the discussion made in [Brenier 2016], using a double large deviation
principle.

In the present paper, we rather turn to a PDE viewpoint, where ρε is the solution of the heat equation
in (Rd)N,

∂ρε

∂t
(t, X) =

ε

2
1ρε(t, X), (9)

with, as initial condition, the delta measure located at A = (a1, . . . , aN ) ∈ (Rd)N and symmetrized with
respect to σ ∈ SN , namely

ρε(0, X) =
1
N !

∑
σ∈SN

δAσ . (10)

In some sense, we have solved the heat equation in the space of “point clouds” (Rd)N /SN , with initial
position A, defined up to a permutation σ ∈ SN of the labels i = 1, . . . , N.

2.2. “Surfing” the “heat wave”. After solving the heat equation (9)–(10), in the space of “clouds”
(Rd)N /SN , we introduce the companion ODE in the space (Rd)N :

dX ε
t

dt
= vε(t,X ε

t ), vε(t, X) = −
ε

2
∇ log ρε(t, X), (11)

or, more explicitly

vε(t, X) =
1
2t

∑
σ∈SN

(X − Aσ ) exp(−|X − Aσ
|
2/(2εt))∑

σ∈SN
exp(−|X − Aσ |2/(2εt))

=
1
2t

(
X −

∑
σ∈SN

Aσ exp((X · Aσ )/(εt))∑
σ∈SN

exp((X · Aσ )/(εt))

)
, (12)

where if U and V are in (Rd)N, then U · V denotes the inner product between U and V. This velocity is
chosen so that

∂ρε

∂t
(t, X) + div(ρε(t, X)vε(t, X)) = 0,

i.e., for the density ρε to be transported by the velocity field vε. We may solve this ODE for arbitrarily
chosen position Xt0 ∈ (Rd)N (up to reordering) and initial time t0 > 0.

Put another way, we consider the characteristics corresponding to the heat equation (9)–(10), interpreted
as a continuity equation, associated to our Brownian point cloud.

Remark 1. By doing that change of perspective, we just mimic the idea of quantum particles driven by
the “onde pilote”, as imagined by Louis de Broglie [1927; 1959] at the early stage of quantum mechanics.
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Indeed, in our case, the velocity vε
= ∇ϕε is the gradient of the scalar function ϕε

:= (−ε/2) log ρε,
and the pair (ρε, ϕε) is easily seen to solve the system

∂tρ
ε
+ div(ρε

∇ϕε) = 0,

∂tϕ
ε
+

1
2
|∇ϕε

|
2
= −

ε2

2
1

√
ρε

√
ρε

,
(13)

that is, the characteristics follow the trajectories of Newton’s law in a potential induced by ρε.
In the quantum case, something very similar can be found with the help of the Madelung transform

[1927]. Namely, if the complex function 9ε solves the Schrödinger equation

i∂t9
ε
+

ε

2
19ε

= 0,

writing 9ε
=

√
ρεeiϕε/ε for a pair (ρε, ϕε) of real functions, then this pair is shown to formally solve the

very similar system 
∂tρ

ε
+ div(ρε

∇ϕε) = 0,

∂tϕ
ε
+

1
2
|∇ϕε

|
2
=

ε2

2
1

√
ρε

√
ρε

,
(14)

and this observation was the starting point of de Broglie’s interpretation of quantum mechanics. In this
case, the potential in the right-hand side of the second equation is called the Bohm quantum potential.
However, the analysis of (14) is substantially more difficult than the one of (13), due to the possible
vanishing of the wave function 9ε during the evolution.

This analogy is not a coincidence. Indeed, it is known [von Renesse 2012] that the Schrödinger equation
in its Madelung formulation (14) is formally the Hamiltonian flow corresponding to the Lagrangian

Lε
quantum(ρ, ∇ϕ) :=

1
2

∫ {
|∇ϕ|

2
−

∣∣∣ε2∇ log ρ

∣∣∣2}
ρ,

in the geometry of optimal transport, while system (13), which admits solutions of the heat equations as
particular solutions, is rigorously the Hamiltonian flow corresponding to the Lagrangian

Lε
heat(ρ, ∇ϕ) :=

1
2

∫ {
|∇ϕ|

2
+

∣∣∣ε2∇ log ρ

∣∣∣2}
ρ,

in the geometry of optimal transport [Conforti 2019]. The latter Lagrangian appears naturally in the
theory of entropic optimal transport; see [Gentil et al. 2017; Gigli and Tamanini 2020].

2.3. Large deviations of the “heat wave” ODE. Let us now add to the ODE of the previous subsection a
noise of the form

dX ε,η
t = vε(t,X

ε,η
t ) dt +

√
η

t
dWt , (15)

where η is a positive number, (Wt) is a standard Brownian motion in (Rd)N, and where the scaling
prefactor 1/

√
t has been chosen to recover MAG at Section 2.6. That is, we include a second time-

dependent level of noise to the model: we perturb the characteristics that were already generated, through
the heat equation, by the Brownian motion of our original point cloud.
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Our main finding is that when η and ε are small and up to a change of time, the trajectories charged
by the solution of this SDE starting from P ∈ (Rd)N at time t0 > 0 and which happen to be close to
Q ∈ (Rd)N at time t1 > t0 are well-approximated by MAG.

The purpose of the rest of this section will be to make this rough statement precise. When we say that
some random trajectories are well-approximated by MAG, we mean that they are close in the uniform
topology to minimizers of the action (8), with large probability. Justifying this fact will require several steps
and intermediate functionals. As the times t0 and t1, as well as the endpoints P and Q, will be fixed in what
follows, we decided not to refer to them in the notation for the different functionals and laws that will appear.

Since for fixed ε > 0 and t ≥ t0 > 0, vε is a smooth velocity field, the existence of a strong solution
and pathwise uniqueness for (15) is standard once fixed a law for the initial position X ε,η

t0 at some t0 > 0.
Since we want to consider indistinguishable particles, a relevant choice of initial law consists in taking
X ε,η

t0 = Pσ with probability 1/(N !), given some P ∈ (Rd)N and σ ∈ SN . For convenience, from now on,
we denote by {Pσ

} the set {Pσ
: σ ∈SN }. The law just described is nothing but the uniform law on {Pσ

}.

Remark 2. Actually, at this stage, it would be possible to reintroduce distinguishability: Theorem 3,
Corollary 4, Proposition 7 and Theorem 9 below could easily be written for distinguishable particles,
that is, with constraints on the endpoints of the curves, and not on these endpoints up to reordering.
We decided to keep on working on clouds of indistinguishable particles in order to avoid crossings of
trajectories in Section 4.

The first step consists in using classical Freidlin–Wentzell theory [1998] (see also [Dembo and Zeitouni
1998]) in order to pass to the limit η → 0, while ε > 0 is kept fixed, in the sense of large deviations
(we omit the proof since it consists in adapting in a straightforward way [Dembo and Zeitouni 1998,
Theorem 5.6.3] to time-dependent entries and more general initial law for the SDE).

Theorem 3. Let us fix two positive times 0 < t0 < t1 and P ∈ (Rd)N. For fixed ε > 0 and as η → 0, the
family of laws (µε,η) of the solution of (15) between times t0 and t1 and starting from the uniform law on
{Pσ

} satisfies the LDP on C0([t0, t1]; (Rd)N ) with good rate function L0
ε defined for all X = (Xt)t∈[t0,t1] by

L0
ε(X ) =

{ 1
2

∫ t1
t0

|Ẋt − vε(t,Xt)|
2
× t dt if X ∈ H 1([t0, t1]; (Rd)N ) and Xt0 ∈ {Pσ

},

+∞, else.
(16)

In the rest of the article, we will call these kind of functionals “actions”, instead of the usual terminology
“good rate function”.

An outcome of this result is that with large probability, when η is small, X η,ε
t1 is close to the position

at time t1 of the solution of the ODE (11) starting from P, up to reordering. But now, we want to use
Theorem 3 in order to describe the behavior of the solutions of the SDE (15) when η is small, under the
large deviation assumption that its final position X ε,η

t1 is far from this expected value.
For this, we take Q ∈ (Rd)N, and we assume that we observe X ε,η

t1 to be close to Q, up to reordering.
To quantify this closeness, we consider a new small parameter δ > 0, and we work with the laws (µε,η)

from Theorem 3, conditioned to the event
{
X ε,η

t1 ∈
⋃

σ∈SN
B(Qσ , δ)

}
, where for a given X ∈ (Rd)N,

B(X, δ) stands for the closed ball of center X and radius δ. MAG will be obtained by studying the limit
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of these conditional laws when η → 0, then δ → 0 and finally ε → 0. We refer to Remark 12 for a
discussion about the order in which we let the different parameters tend to 0.

Concerning the limit η → 0, Theorem 3 implies the following.

Corollary 4. Let us fix ε, δ > 0, and call Eδ the closed subset of C0([t0, t1]; (Rd)N ) defined by

Eδ
:=

{
X ∈ C0([t0, t1]; (Rd)N ) : Xt1 ∈

⋃
σ∈SN

B(Qσ , δ)

}
.

The family of conditional laws (µδ
ε,η := µε,η( · : Eδ))η>0 is tight. Moreover, its limit points for the topology

of narrow convergence as η → 0 only charge minimizers of the functional

Lδ
ε(X ) =

{1
2

∫ t1
t0

|Ẋt−vε(t,Xt)|
2
×t dt if X ∈ H 1([t0, t1];(Rd)N ),Xt0 ∈ {Pσ

} and Xt1 ∈
⋃

σ∈SN
B(Qσ,δ),

+∞, else.
(17)

Proof. Let us first prove the tightness property. Let X be a curve in the interior of Eδ. As it satisfies an
LDP associated with a good rate function in a Polish space, by virtue of [Dembo and Zeitouni 1998,
Exercise 4.1.10], for fixed ε > 0, the family of laws (µε,η)η>0 is exponentially tight. Hence, there is a
compact K (we call K c its complement in C0([t0, t1]; (Rd)N )) such that

lim sup
η→0

η log µε,η(K c) ≤ −L0
ε(X ) − 1.

Therefore, we find

lim sup
η→0

η log µδ
ε,η(K c) = lim sup

η→0
{η log µε,η(K c

∩ Eδ) − η log µε,η(Eδ)}

≤ lim sup
η→0

η log µε,η(K c) − lim inf
η→0

η log µε,η(E̊δ)

≤ −L0
ε(X ) − 1 + L0

ε(X ) ≤ −1.

The tightness follows.
Now, let us consider µ a limit point of (µδ

ε,η) as η → 0, and (ηn) a sequence of positive numbers
decreasing to 0, with µδ

ε,ηn
→ µ as n → +∞. We will argue that whenever X is not a minimizer of Lδ

ε,
then X is not in the support of µ. First, for all η > 0, the support of µδ

ε,η is a subset of Eδ. As the latter
is closed, this is also the case for the support of µ. So let us take X ∈ Eδ, which is not a minimizer
of Lδ

ε. In particular, L0
ε(X ) > infEδ L0

ε . As L0
ε is lower semicontinuous, there exists an open set U of

C0([t0, t1]; (Rd)N ) containing X such that infU L0
ε > infEδ L0

ε . Let us show that µ(U ) = 0.
By the Portmanteau theorem, we have

µ(U ) ≤ lim inf
n→+∞

µδ
ε,ηn

(U ).

By the definition of (µδ
ε,η), we have

ηn log µδ
ε,ηn

(U ) = ηn log µε,ηn (U ∩ Eδ) − ηn log µε,ηn (E
δ) ≤ ηn log µε,ηn (U ) − ηn log µε,ηn (E̊

δ).

The large deviation principle of Theorem 3 lets us estimate the lim sup of this quantity by

lim sup
n→+∞

ηn log µδ
ε,ηn

(U ) ≤ inf
E̊δ

L0
ε − inf

U
L0

ε.
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To conclude that this quantity is negative, and therefore that µδ
ε,ηn

(U ) tends to 0 as n → +∞, it suffices
to notice that infE̊δ L0

ε = infEδ L0
ε (for instance by the easy fact that the infimum of Lδ

ε is continuous with
respect to δ), and to use the definition of U. The result follows. □

2.4. From the 0-convergence of the actions to the narrow convergence of the laws. In the previous
subsection, we justified why the conditional laws (µδ

ε,η) from Corollary 4 are well-described by the
action Lδ

ε defined by formula (17) as η → 0: in this limit, these laws mainly charge small neighborhoods
of minimizers of that action. Now, we want to argue that in order to study these laws when not only η is
small, but also δ and ε, we have to study the action Lδ

ε in that regime, in the sense of 0-convergence.
This assertion relies on the two following lemmas:

Lemma 5. Let (�, d) be a metric space, and (Ln)n∈N be a sequence of lower semicontinuous functionals
from � to R+ ∪ {+∞} having compact sublevels, uniformly in n ∈ N. Assume that (Ln) has a 0-limit L.
Assume furthermore that L is not uniformly equal to +∞. Finally, consider (µn) ∈ P(�)N a sequence of
Borel probability measures on �, such that, for all n, µn only charges minimizers of Ln . Then, (µn) is
tight, and any of its limit points in the narrow topology only charges minimizers of L.

Lemma 6. The family of actions (Lδ
ε) defined in (17) have compact sublevels in C0([t0, t1]; (Rd)N ),

uniformly in ε, δ > 0.

Using these lemmas, we see that if we manage to identify a 0-limit L for Lδ
ε as ε, δ → 0, then in this

limit, any family (µδ
ε) of limits of (µδ

ε,η) as η → 0 will mainly charge small neighborhoods of minimizers
of the limiting L . Before doing so in the next subsection, let us prove our two lemmas.

Proof of Lemma 5. Let x be a minimizer of L, and (xn) be an associated recovery sequence, that is,
xn → x as n → +∞, and lim supn→+∞ Ln(xn) ≤ L(x) = infL. Up to forgetting the first terms, we can
assume that Ln(xn) is finite for all n ∈ N. Now, call M := supn∈N Ln(xn). By assumption, the set

K :=

⋃
n∈N

{z ∈ � : Ln(z) ≤ M}

is compact, and by definition of M it contains all the minimizers of all the functionals Ln , n ∈ N.
Therefore, for all n ∈ N, µn(K ) = 1, and the tightness follows.

Let µ be a limit point of (µn) for the topology of narrow convergence. Up to considering a subsequence,
we assume that µn → µ. Let x be in the support of µ. It is easy to see that there exists a sequence (xn)

such that xn → x as n → +∞, and, for all n ∈ N, xn is in the support of µn . But then by assumption,
for all n, xn is a minimizer of Ln , and therefore, by standard considerations about 0-convergence, x is a
minimizer of L. □

Proof of Lemma 6. For all ε, δ > 0, the action Lδ
ε coincides with L0

ε (defined in (16)) inside of the closed set
Eδ and is +∞ outside of this closed set. Therefore, we just need to prove that L0

ε has compact sublevels,
uniformly in ε > 0. Actually, precompacity suffices by lower semicontinuity of L0

ε . To do so, we will
use the following bound, which holds as a consequence of (12) for all ε > 0, t ∈ [t0, t1] and X ∈ (Rd)N :

|vε(t, X)| ≤
|A| + |X |

2t0
. (18)
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We will prove that, for all M > 0, there exists M ′ > 0 (uniform in ε) such that, for all ε > 0 and
X ∈ C0([t0, t1]; (Rd)N ), whenever L0

ε(X ) ≤ M, we have

1
2

∫ t1

t0
|Ẋt |

2 dt ≤ M ′.

This is enough to conclude since it is well-known that the set H 1([t0, t1]; (Rd)N ) is compactly embedded
in C0([t0, t1]; (Rd)N ).

So let us consider M, ε > 0, and a curve X such that L0
ε(X ) ≤ M . Note that in particular, Xt0 ∈ {Pσ

}.
We have, for all t ∈ [t0, t1],

1
2

∫ t

t0
|Ẋs |

2 ds =

∫ t

t0

|Ẋs − vε(s,Xs) + vε(s,Xs)|
2

2
ds

≤

∫ t1

t0
|Ẋs − vε(s,Xs)|

2 ds +

∫ t

t0
|vε(s,Xs)|

2 ds

≤
1
t0

∫ t1

t0
|Ẋs − vε(s,Xs)|

2
× s ds +

1
4t2

0

∫ t

t0
(|A| + |Xs |)

2 ds

≤
2M
t0

+
(t1 − t0)|A|

2

2t2
0

+
1

2t2
0

∫ t

t0

∣∣∣∣Xt0 +

∫ s

t0
Ẋτ dτ

∣∣∣∣2

ds

≤
2M
t0

+
t1 − t0

t2
0

{
|A|

2

2
+ |P|

2
+

∫ t

t0

∫ s

t0
|Ẋτ |

2 dτ ds
}
,

where we used (18) to get the third line. We deduce our claim from the Grönwall lemma. □

2.5. The convergence results. As already explained, understanding the behavior of families (µδ
ε) of limit

points of (µδ
ε,η) as η → 0 when ε and δ are small amounts to understanding the behavior of the family

of actions (Lδ
ε) in the 0-convergence sense. This is what we propose to do now. More specifically, we

will see that (Lδ
ε) has a 0-limit, when first δ → 0, and then ε → 0. Doing so, we ensure that limit points

of the family (µδ
ε) in the relevant asymptotic only charge minimizers of the corresponding actions; see

Corollary 11 below. We discuss the question of swapping these limits in Remark 12.
Thanks to the smoothness of vε, the first 0-limit, as δ → 0, is very simple and we omit the proof.

Proposition 7. Let ε > 0. As δ tends to zero, the family of actions (Lδ
ε) 0-converges to

Lε(X ) =

{1
2

∫ t1
t0

|Ẋt − vε(t,Xt)|
2
× t dt if X ∈ H 1([t0, t1]; (Rd)N ),Xt0 ∈ {Pσ

} and Xt1 ∈ {Qσ
},

+∞, else.

The second 0-convergence, as ε → 0, is more intricate and can be seen as the main result of this paper,
because it involves the singular limit of the vector fields (vε) as ε → 0. Before stating it, we need to
introduce a few objects.

Define the following smooth functions, which are convex in X :

for all ε > 0, t > 0, X ∈ (Rd)N , fε(t, X) := εt log
[

1
N !

∑
σ∈SN

exp
(

X · Aσ

tε

)]
. (19)
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It has the property that, for all ε > 0, t > 0, and X ∈ (Rd)N,

vε(t, X) =
X − ∇ fε(t, X)

2t
.

As a consequence, we can rewrite Lε for all ε > 0 as

Lε(X )=

{1
2

∫ t1
t0

|Ẋt−(Xt−∇ fε(t,Xt))/(2t)|2×t dt if X ∈H 1([t0, t1];(Rd)N ),Xt0 ∈{Pσ
} and Xt1 ∈{Qσ

},

+∞ else.

When ε tends to zero, by virtue of the so-called Laplace’s principle, we have the pointwise convergence

lim
ε→0

fε(t, X) = max
σ∈SN

X · Aσ
=: f (X). (20)

Notice that f is linked to the function F defined in (3) by the formula,

for all X ∈ (Rd)N , f (X) =
|A|

2
+ |X |

2

2
+ N F(X). (21)

The function f no longer depends on the time variable, and it is a convex function with finite values.
As a consequence, for each X ∈ (Rd)N, the subdifferential ∂ f (X) of f at X is nonempty. We will consider
the extended gradient ∇ f (X) of f at X defined as:

Definition 8 (extended gradient). We define the extended gradient of a real-valued convex function h
at X , denoted by ∇h(X), to be the element of ∂h(X) with minimal Euclidean norm.

We are now ready to state our result concerning the limit ε → 0.

Theorem 9. As ε tends to 0, the family of actions (Lε)ε>0 0-converges to

L(X ) =

{1
2

∫ t1
t0

|Ẋt−(Xt−∇ f (Xt))/(2t)|2×t dt if X ∈ H 1([t0, t1];(Rd)N ),Xt0 ∈ {Pσ
} and Xt1 ∈ {Qσ

},

+∞ else
(22)

for the topology of uniform convergence of C0([t0, t1]; (Rd)N ).

Remark 10. It is relevant to wonder what exactly in the convergence fε → f implies Theorem 9. It is not
so simple to answer due to the dependence in t of fε and because the proof involves several manipulations
of formula (22). However, the main step of the proof is Lemma 15 below. Now, at least in the autonomous
case, several works that are posterior to the first version of the present paper study results similar to
Lemma 15 in greater generality, namely in Hilbert spaces [Ambrosio et al. 2021] or in measured metric
spaces [Monsaingeon et al. 2023]. In [Ambrosio et al. 2021], the good notion of convergence for fε → f
is Mosco convergence. We give more details on this in Remark 16.

As a consequence of Lemmas 5 and 6, this theorem clearly implies the following.

Corollary 11. Consider the family of laws (µδ
ε,η) defined in Corollary 4, and three sequences (ηn)n∈N,

(δm)m∈N and (εp)p∈N decreasing to 0. Then, there exist subsequences (η′
n)n∈N, (δ′

m)m∈N and (ε′
p)p∈N

such that the triple limit
lim

p→+∞
lim

m→+∞
lim

n→+∞
µδm

εp,ηn

exists in the topology of narrow convergence and only charge minimizers of L as defined by (22).
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In particular, if L admits a unique minimizer X , the whole family converges:

lim
ε→0

lim
δ→0

lim
η→0

µδ
ε,η = δX .

Let us now comment on the order in which these limits are taken.

Remark 12. Up to potentially considering subsequences, we are studying the behavior of the conditioned
laws (µδ

ε,η) in the limit limε→0 limδ→0 limη→0, and one could wonder whether these limits could be
swapped. We recall that ε stands for the level of noise of the original point cloud, that η stands for the
level of perturbation of the companion ODE, and that δ is the precision of the observation at the final time.

• Swapping limε→0 and limδ→0 is easy: it amounts to studying the dependence of the limiting action (22)
when Q varies. Essentially, this swap would be a consequence of the fact that vε is bounded on compact
sets, uniformly in time and ε.

• Swapping limδ→0 and limη→0 would be more delicate, but doable as well. We would first need to prove
that the family (µδ

ε,η) from Corollary 4 converges when δ → 0, with fixed ε and η, as classically done
in the theory of bridges of processes, and then write a large deviation principle for these bridges in place
of Theorem 3.

• Finally, not taking into consideration the limit in δ because of the two previous points, the question
of how to swap limε→0 with limη→0 relates to the question of building solutions to SDEs with singular
coefficients, and lies beyond the scope of this article. A related question that we also do not want to
address is the question of quantifying how small η needs to be with respect to ε to be able to take a
simultaneous limit in ε and η. To answer it, we would need to study the dependence in ε of the rates
of convergence in the large deviation principle, which is probably a very delicate question, once again
because of the singularities of vε appearing as ε → 0.

We will prove Theorem 9 in Section 3 below, but before doing so, let us show that up to changing time,
we recover MAG. Notice L has compact sublevels as a consequence of the 0-convergence and Lemma 6.
Hence, the existence of global minimizers for L (and hence for all the forthcoming functionals) follows
from the direct method of calculus of variations.

2.6. A change of time leading to Monge–Ampère gravitation. Through the change of variable

t = exp(2θ), Zθ = Xexp(2θ), θ0 =
1
2 log t0, θ1 =

1
2 log t1,

we observe that, for all X ∈ C0([t0, t1]; (Rd)N ), L(X ) =
1
23(Z), with

3(Z) =

{
1
2

∫ θ1
θ0

|Żθ − (Zθ − ∇ f (Zθ ))|
2 dθ if Z ∈ H 1([θ0, θ1]; (Rd)N ),Zθ0 ∈ {Pσ

} and Zθ1 ∈ {Qσ
},

+∞ else.

(Recall the definition (20) of f .)
It turns out to be equivalent to the following one (in which we recognize (8)):

3′(Z) =

{∫ θ1
θ0

{ 1
2 |Żθ |

2
+

1
2 |Zθ−∇ f (Zθ )|

2
}

dθ if Z ∈ H 1([θ0,θ1];(R
d)N ),Zθ0 ∈ {Pσ

} and Zθ1 ∈ {Qσ
},

+∞ else.
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To see this, it suffices to expand the square and to remark that the mixed product is an exact time derivative,
so that its integral only involves the endpoints P and Q. This is done in a slightly different context in the
proof of Lemma 14 below.

2.7. Application of the least action principle. We observe that the points Z where f is differentiable are
those for which the maximum in the definition (20) of f is reached by a unique permutation σopt so that
∇ f (Z) is nothing but Aσopt . For such points Z , we get

1
2 |Z − ∇ f (Z)|2 =

1
2 |Z − Aσopt |

2
= −N F(Z)

(by definition (3) of F), while, on the set N of nondifferentiability of f , we rather have

1
2 |Z − ∇ f (Z)|2 < −N F(Z);

see for instance Proposition 27 below in the case of dimension 1. So the action we have obtained in the
previous section, namely 3′, bounds from below

3+(Z) =

{∫ θ1
θ0

{1
2 |Żθ |

2
− N F(Zθ )

}
dθ if Z ∈ H 1([θ0, θ1]; (Rd)N ),Zθ0 ∈ {Pσ

} and Zθ1 ∈ {Qσ
},

+∞ else.

This second action, already announced in (7), is definitely strictly larger than the first one for those curves
θ → Zθ which take values in N (where f and F are not differentiable) on a set of times θ ∈ [θ0, θ1] with
positive Lebesgue measure. So the least action principle may provide different optimal curves, depending
on the action we choose. However, if a curve is optimal for 3′ and almost surely takes value outside of N ,
then it must also be optimal for 3+. Clearly, it is much easier to get the optimality equation for such a
curve, by working with 3+ rather than with 3′. By varying action 3+, we get (6) as optimality equation.
Therefore, the optimal curves of our functional 3′ taking value in N for a negligible set of times solve (4)
(in a distributional sense), which is the MAG discrete model announced in the Introduction.

Of course, these equations have to be suitably modified for those curves which are optimal for the
action 3′ but not for 3+ because they take values in N for a nonnegligible amount of time. At this stage,
we do not know how to do it. However, at least in the one-dimensional case d = 1, such modifications
are tractable and correspond to sticky collisions as xi (t) = x j (t) occurs for different “particles” of labels
i ̸= j and during intervals of times of strictly positive Lebesgue measure; see Section 4.

3. Proof of the 0-convergence

The purpose of this section is to prove Theorem 9.

3.1. The proof as a consequence of three lemmas. As we will see, Theorem 9 will be a consequence
of three lemmas that we state below. Lemmas 14 and 15 both involve a family of smooth functions
(gε)ε>0 on [θ0, θ1]×Rp for some θ0 < θ1 and p ∈ N, pointwise converging to a L1

loc function g. On these
functions, we will assume the following:

Assumptions 13. (H1) For all ε > 0 and θ ∈ [θ0, θ1], gε(θ, 0) = 0.

(H2) For all ε > 0 and θ ∈ [θ0, θ1], gε(θ, · ) is convex. Therefore, g(θ, · ) is convex as well.
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(H3) The maps ∇gε are uniformly bounded, that is,

L := sup
ε>0

sup
θ∈[θ0,θ1]

sup
Y∈Rp

|∇gε(θ, Y )| < +∞. (23)

Therefore, we also have
sup

θ∈[θ0,θ1]

sup
Y∈Rp

|∇g(θ, Y )| ≤ L .

(H4) The distributional derivative ∂θ g is L2([θ0, θ1]; L∞

loc(R
d)N ), and, for all Y ∈ H 1([θ0, θ1]; (Rd)N ),

the map θ 7→ g(θ,Yθ ) is also H 1, with, for almost all θ ∈ [θ0, θ1],

d
dθ

g(θ,Yθ ) = ∂θ g(θ,Yθ ) + ∇g(θ,Yθ ) · Ẏθ . (24)

(H5) The maps ∂θ∇gε are uniformly bounded, that is,

M := sup
ε>0

sup
θ∈[θ0,θ1]

sup
Y∈Rp

|∂θ∇gε(θ, Y )| < +∞. (25)

In order to keep the proofs simple, we did not try to optimize these assumptions for Lemmas 14 and 15,
which are probably true in a far more general context (see Remark 16 in the case of Lemma 15). However,
as we will see in the proof of Theorem 9, it suffices to check these assumptions for the family ( fε)ε>0

after suitable change of temporal and spatial scale. This is done in Lemma 17.

Lemma 14. Let us consider θ0 < θ1 ∈ R, η ∈ C∞([θ0, θ1]; R∗
+
) and a family (gε)ε>0 of smooth functions

from [θ0, θ1] × Rp to R pointwise converging to a function g, which satisfy (H1), (H3), (H4) and (H5)
from Assumptions 13. If a family of curves (Yε)ε>0 in H 1([θ0, θ1]; Rp) uniformly converges to a curve
Y ∈ H 1([θ0, θ1]; Rp), then∫ θ1

θ0

Ẏε
θ · ∇gε(θ,Yε

θ )η(θ) dθ
ε→0−−→

∫ θ1

θ0

Ẏθ · ∇g(θ,Yθ )η(θ) dθ.

Lemma 15. Let us consider θ0 < θ1 ∈ R, η ∈ C∞([θ0, θ1]; R∗
+
) and a family (gε)ε>0 of smooth functions

from [θ0, θ1] × Rp to R pointwise converging to a function g, and satisfying (H2), (H3)and (H5) from
Assumptions 13. Let us fix R, S ∈ Rp and define for ε > 0 and Y ∈ C0([θ0, θ1]; Rp)

Kε(Y) :=

{
1
2

∫ θ1
θ0

{
|Ẏθ |

2
+ |∇gε(θ,Yθ )|

2
}
η(θ) dθ if Y ∈ H 1([θ1, θ1]; Rp),Yθ0 = R and Yθ1 = S,

+∞ else,

K (Y) :=

{
1
2

∫ θ1
θ0

{|Ẏθ |
2
+ |∇g(θ,Yθ )|

2
}η(θ) dθ if Y ∈ H 1([θ1, θ1]; Rp),Yθ0 = R and Yθ1 = S,

+∞, else.

Then (Kε)ε>0 0-converges to K for the topology of uniform convergence of C0([θ0, θ1]; Rp).

Remark 16. This lemma is the keystone of the proof, and one may wonder how it can be generalized and
what is really necessary among our assumptions. In [Ambrosio et al. 2021], we show that at least when (gε)

and g have no dependence on θ and η ≡ 1, the result holds true, even in Hilbert spaces, whenever (gε) is
a family of proper lower semicontinuous uniformly λ-convex functions Mosco converging towards g,
plus some uniform Lipschitz conditions at the extreme points.
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Lemma 17. With the notation of Theorem 9, let us define θ0 := log t0/2, θ1 := log t1/2, p = d N , and for
θ ∈ [θ0, θ1], ε > 0 and Y ∈ (Rd)N ,

gε(θ, Y ) :=
fε(exp(2θ), exp(θ)Y )

exp(2θ)
and g(θ, Y ) :=

f (exp(θ)Y )

exp(2θ)
. (26)

Then (gε)ε>0 converges pointwise to g, and satisfies (H1), (H2), (H3), (H4) and (H5) from Assumptions 13.

In the next subsections, we will prove these three lemmas one by one. The most involved one is
undoubtedly Lemma 15, which can be seen as the main step in the proof of Theorem 9. Let us start by
proving Theorem 9 using Lemmas 14, 15 and 17.

Proof of Theorem 9. In this proof, the notation X = Xt will stand for a generic curve from [t0, t1]
to (Rd)N. Associated with X , we define by Y = Yθ the curve from [θ0, θ1] to (Rd)N, where θ0 := log t0/2,
θ1 := log t1/2, and, for all θ ∈ [θ0, θ1], Yθ := Xexp(2θ)/ exp(θ). Note that X is H 1 if and only if Y
is H 1. If (X ε)ε>0 is a family of curves from [t0, t1] to (Rd)N, we define in the same way the family of
corresponding curves (Yε)ε>0 from [θ0, θ1] to (Rd)N.

A quick computation shows that, for all X ∈ H 1([θ0, θ1]; (Rd)N ), considering η(θ) := exp(2θ) and
(gε)ε>0, g as defined in Lemma 17, we have

Lε(X ) =
1
2

∫ t1

t0

∣∣∣∣Ẋt −
Xt − ∇ fε(t,Xt)

2t

∣∣∣∣2 dt
t

=
1
4

∫ θ1

θ0

|Ẏθ + ∇gε(θ,Yθ )|
2η(θ) dθ (27)

=
1
4

∫ θ1

θ0

{|Ẏθ |
2
+ |∇gε(θ,Yθ )|

2
}η(θ) dθ +

1
2

∫ θ1

θ0

Ẏθ · ∇gε(θ,Yθ )η(θ) dθ (28)

and

L(X ) =
1
2

∫ t1

t0

∣∣∣∣Ẋt −
Xt − ∇ f (Xt)

2t

∣∣∣∣2 dt
t

=
1
4

∫ θ1

θ0

|Ẏθ + ∇g(θ,Yθ )|
2η(θ) dθ

=
1
4

∫ θ1

θ0

{|Ẏθ |
2
+ |∇g(θ,Yθ )|

2
}η(θ) dθ +

1
2

∫ θ1

θ0

Ẏθ · ∇g(θ,Yθ )η(θ) dθ. (29)

(Note that due to Lemma 17, g is convex with respect to the space variable, and so ∇g is well-defined.)

Proof of the 0-lim inf: Let X ε
ε→0−−→ X for the topology of uniform convergence. Of course, we also

have Yε
ε→0−−→ Y . Without loss of generality, we can suppose

lim inf
ε→0

Lε(X ε) < +∞.

Indeed, if it is not the case, there is nothing to prove. Let us take (εn)n∈N to be a sequence tending to 0
along which the lim inf is achieved.

As ∇gε(θ, Y ) is bounded uniformly in ε, θ, Y (this is (H3)), we easily deduce with (27)

lim sup
n→+∞

∫ θ1

θ0

|Ẏεn
θ |

2 dθ < +∞.

In particular, by the lower semicontinuity of this H 1 seminorm with respect to uniform convergence, Y is
in H 1([θ0, θ1]; (Rd)N ). Applying Lemma 14, thanks to Lemma 17, we have∫ θ1

θ0

Ẏεn
θ · ∇gεn (θ,Yεn

θ )η(θ) dθ n→+∞
−−−−→

∫ θ1

θ0

Ẏθ · ∇g(θ,Yθ )η(θ) dθ. (30)
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On the other hand, for n sufficiently large, Lεn (X εn ) < +∞. So the endpoints of X εn belong to a finite
set, and because of the convergence X εn →X , for even larger n the endpoints of X εn are independent of n.
In other terms, X εn

t0 = Pσ0 and X εn
t1 = Qσ1 with σ0, σ1 independent of n. Hence, for such n, Yεn satisfies

the endpoint constraint for Kεn with R := Pσ0/
√

t0 and S := Qσ1/
√

t1. Hence, applying Lemma 15
thanks to Lemma 17, we have

1
2

∫ θ1

θ0

{|Ẏθ |
2
+ |∇g(θ,Yθ )|

2
}η(θ) dθ = K (Y) ≤ lim inf

n→+∞
Kεn (Y

εn )

= lim inf
n→+∞

1
2

∫ θ1

θ0

{|Ẏεn
θ |

2
+ |∇gεn (θ,Yεn

θ )|2}η(θ) dθ. (31)

The result follows easily by gathering (28), (30), (31) and (29).

Proof of the 0-lim sup: Let X ∈ C0([t0, t1]; (Rd)N ). Without loss of generality, we can suppose that
X ∈ H 1([t0, t1]; (Rd)N ) and that it satisfies the endpoint constraint for L . In particular, Y belongs to
H 1([θ0, θ1]; (Rd)N ) and satisfies the endpoint constraint for K with R := Xt0/

√
t0 and S := Xt0/

√
t1.

Lemmas 15 and 17 let us find a family (Yε)ε>0 converging to the corresponding Y such that

lim sup
ε→0

Kε(Yε) ≤ K (Y). (32)

In particular Yε is in H 1 for sufficiently small ε, and by Lemmas 14 and 17,∫ θ1

θ0

Ẏε
θ · ∇gε(θ,Yε

θ )η(θ) dθ
ε→0−−→

∫ θ1

θ0

Ẏθ · ∇g(θ,Yθ )η(θ) dθ. (33)

The result follows easily from (28), (32), (33) and (29), by noticing, that because of (32), Yε satisfies the
endpoint constraint for Kε. Hence, for such ε, X ε satisfies the endpoint constraint for Lε. □

3.2. Proof of Lemma 14. The proof of Lemma 14 just consists in integrating by parts and using the
convergence properties of (gε)ε>0.

Proof of Lemma 14. Integration by parts: First, notice that as soon as Y ∈ H 1([θ0, θ1]; Rp) and ε > 0,
then θ 7→ gε(θ,Yθ ) and θ 7→ g(θ,Yθ ) are also in H 1, with, for almost every θ ,

d
dθ

gε(θ,Yθ ) = ∂θ gε(θ,Yθ ) + ∇gε(θ,Yθ ) · Ẏθ and d
dθ

g(θ,Yθ ) = ∂θ g(θ,Yθ ) + ∇g(θ,Yθ ) · Ẏθ .

It is clear in the case of gε because gε is smooth, and it is the assumption (H4) in the case of g. As a
consequence, by an integration by parts, it suffices to prove that whenever (Yε)ε>0 converges to Y as
ε → 0 for the topology of uniform convergence,

gε(θ1,Yε
θ1

)η(θ1) − gε(θ0,Yε
θ0

)η(θ0) −

∫ θ1

θ0

gε(θ,Yε
θ )η

′(θ) dθ −

∫ θ1

θ0

∂θ gε(θ,Yε
θ )η(θ) dθ

ε→0−−→ g(θ1,Yθ1)η(θ1) − g(θ0,Yθ0)η(θ0) −

∫ θ1

θ0

g(θ,Yθ )η
′(θ) dθ −

∫ θ1

θ0

∂θ g(θ,Yθ )η(θ) dθ.
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Convergence term by term: The convergence

gε(θ1,Yε
θ1

)η(θ1) − gε(θ0,Yε
θ0

)η(θ0) ε→0−−→ g(θ1,Yθ1)η(θ1) − g(θ0,Yθ0)η(θ0)

is an easy consequence of the pointwise convergence and of the uniform Lipschitz bound (H3).
For the same reason, we have, for all θ ∈ [θ0, θ1], gε(θ,Yε

θ ) ε→0−−→ g(θ,Yθ ). But on the other hand,
because of (H1) and (H3), gε is locally bounded, uniformly in ε. Hence,∫ θ1

θ0

gε(θ,Yε
θ )η

′(θ) dθ
ε→0−−→

∫ θ1

θ0

g(θ,Yθ )η
′(θ) dθ

is a consequence of the dominated convergence theorem.
Because of (H1) and (H5), for all θ , (∂θ gε(θ, · ))ε>0 is compact for the topology of local uniform

convergence. But its only possible limit point is the distributional derivative ∂θ g. As a consequence,
(∂θ gε)ε>0 converges pointwise to ∂θ g, and because of the uniform bound (H5), for all θ , ∂θ gε(θ,Yε

θ ) ε→0−−→

∂θ g(θ,Yθ ). Because of (H1) and (H5), ∂θ gε is locally bounded, uniformly in ε, and so∫ θ1

θ0

∂θ gε(θ,Yε
θ )η(θ) dθ

ε→0−−→

∫ θ1

θ0

∂θ g(θ,Yθ )η(θ) dθ

is also a consequence of the dominated convergence theorem. □

3.3. Proof of Lemma 15. Before entering the proof of Lemma 15, we need to state a few standard results
concerning the extended gradient ∇ as defined in Definition 8, and its links with the so-called resolvent
map. These tools could even be set in the infinite-dimensional setting, that is, in Hilbert spaces [Strömberg
1996], or in metric spaces [Ambrosio et al. 2005].

The following proposition is a lower semicontinuity property of the slope with respect to both conver-
gence of the function and of the evaluation point.

Proposition 18. Consider h : Rp
→ R a convex function with finite values. Let (hε)ε>0 be a family of

convex functions on Rp pointwise converging to h, and let (X ε)ε>0 be a family of points in Rp converging
to X. Then

|∇h(X)| ≤ lim inf
ε→0

|∇hε(X ε)|.

Proof. As all these functions are convex and h has finite values, standard arguments show that the
convergence of hε → h is also locally uniform. First of all, if

lim inf
ε→0

|∇hε(X ε)| = +∞,

there is nothing to prove. Else, up to considering a subsequence, there exists D ∈ Rp such that

lim
ε→0

∇hε(X ε) = D.

But sending ε → 0 in the inequality,

for all Y ∈ Rp, hε(Y ) ≥ hε(X ε) + ⟨∇hε(X ε), Y − X ε
⟩,

and using the local uniformity of the convergence, we see that D ∈ ∂h(X) (that is, the subdifferential is
upper semicontinuous). So |D| ≥ |∇h(X)|, and the result follows. □
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For τ > 0 and X ∈ Rp, define the resolvent operator by

Jτ,h(X) := argmin
Y∈Rp

h(Y ) +
|Y − X |

2

2τ
.

Once again, the following proposition is standard. It is an application in the very simple case of convex
functions in finite dimension of the so-called maximal monotone operators theory in Hilbert spaces,
for which we refer for instance to [Brézis 1973] (see in particular Section 2.4 for the properties of the
resolvent in a general setting).

Proposition 19. (1) We have for all X ∈ Rp and τ > 0,

|∇h(Jτ,h(X))| ≤

∣∣∣∣ X − Jτ,h(X)

τ

∣∣∣∣ ≤ |∇h(X)|. (34)

(2) If h is differentiable at Jτ,h(X) for some X ∈ Rp, then the following first-order condition holds:

X − Jτ,h(X)

τ
= ∇h(Jτ,h(X)).

(3) If (hε)ε>0 is a family of convex functions on Rp pointwise converging to h, then, for all τ > 0
and X ∈ Rp,

Jτ,hε
(X)

ε→0−−→ Jτ,h(X). (35)

Proof. By [Brézis 1973, Lemma 2.1], we have

X − Jτ,h(X)

τ
∈ ∂h(Jτ,h(X)). (36)

The first inequality in (34) and the second point of the statement follow.
To get the second inequality in (34), apply the monotone inequality of [Brézis 1973, Definition 2.1]

to the maximal monotone operator ∂h (see [Brézis 1973, Example 2.1.4]), with x1 = X , x2 = Jτ,h(X),
y1 = ∇h(X) ∈ ∂h(X) and (X − Jτ,h(X))/τ ∈ ∂h(Jτ,h(X)), thanks to (36). We find〈

∇h(X) −
X − Jτ,h(X)

τ
, X − Jτ,h(X)

〉
≥ 0,

which can be rewritten as ∣∣∣∣ X − Jτ,h(X)

τ

∣∣∣∣2

≤

〈
X − Jτ,h(X)

τ
, ∇h(X)

〉
.

Therefore, the result follows from the Cauchy–Schwarz inequality.
Let us now focus on the third point. Let us fix τ > 0 and X ∈ Rp, and set,

for all ε > 0, Y ∈ Rp, fε(Y ) := hε(Y ) +
|Y − X |

2

2τ
and f (Y ) := h(Y ) +

|Y − X |
2

2τ
.

The family ( fε)ε>0 converges pointwise to f , but by convexity and finiteness of the limit, as before, this
convergence is also locally uniform. As a consequence, the only thing to prove is that for sufficiently small
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ε0 > 0, the set {Jτ,hε
(X) : 0 < ε ≤ ε0} is bounded. Indeed, if it is the case, by local uniform convergence,

any limit point Z of Jτ,hε
(X) as ε tends to 0 would satisfy

f (Z) ≤ lim sup
ε→0

fε(Jτ,hε
(X)) ≤ lim

ε→0
fε(Jτ,h(X)) = f (Jτ,h(X)),

so that, by the definition of Jτ,h(X), Z = Jτ,h(X), which lets us conclude.
Call B the open ball of center Jτ,h(X) and radius 1. We have by the strict convexity of f and minimality

of Jτ,h(X)

f (Jτ,h(X)) < inf
Y∈∂ B

f (Y ),

and this property is open for the topology of local uniform convergence. Hence, we can find ε0 sufficiently
small so that for all ε ≤ ε0

fε(Jτ,h(X)) < inf
Y∈∂ B

fε(Y ).

Then, if Y /∈ B, we call Y the projection of Y on ∂ B and λ := 1/|Y − Jτ,h(X)| ≤ 1, so that Y =

(1 − λ)Jτ,h(X) + λY. As soon as ε ≤ ε0, fε(Y ) > fε(Jτ,h(X)). By using the convexity inequality

fε(Y ) ≤ (1 − λ) fε(Jτ,h(X)) + λ fε(Y ),

we find fε(Y ) > fε(Jτ,h(X)). As a consequence, {Jτ,hε
(X) : 0 < ε ≤ ε0} ⊂ B and the result follows. □

We are now ready for the proof of Lemma 15.

Proof of Lemma 15. Proof of the 0-lim inf: It is straightforward using Fatou’s lemma, Proposition 18 and
the lower semicontinuity of Y 7→

∫ θ1
θ0

|Ẏθ |
2 dθ with respect to the topology of uniform convergence.

Proof of the 0-lim sup: Let us consider a curve Y ∈ H 1([θ0, θ1]; Rp) with Yθ0 = R and Yθ1 = S (else
there is nothing to prove). For all ε > 0 and τ > 0, we define

Yτ,ε
: θ 7→ Jτ,gε(θ,· )(Yθ ),

and correspondingly
Yτ

: θ 7→ Jτ,g(θ,· )(Yθ ).

First, we prove

lim sup
τ→0

lim sup
ε→0

1
2

∫ θ1

θ0

{|Ẏτ,ε
θ |

2
+ |∇gε(θ,Yτ,ε

θ )|2}η(θ) dθ ≤
1
2

∫ θ1

θ0

{|Ẏθ |
2
+ |∇g(θ,Yθ )|

2
}η(θ) dθ. (37)

We will then choose τ as a function of ε and show how to fix the endpoints.

Proof of (37): By the second point of Proposition 19, for all ε, τ, θ , we have

Yθ = Yτ,ε
θ + τ∇gε(θ,Yτ,ε

θ ).

For all θ , gε(θ, · ) is convex, so Y 7→ Y +∇gε(θ, Y ) is invertible and its inverse is 1-Lipschitz. In addition,
the smoothness of gε = gε(θ, Y ) with respect to θ lets us deduce from Y ∈ H 1 that Yτ,ε is in H 1, and
that, for almost all θ ,

Ẏθ = (I + τD2gε(θ,Yτ,ε
θ )) · Ẏτ,ε

θ + τ∂θ∇gε(θ,Yτ,ε
θ ).
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By the convexity of gε, we have I ≤ I + τD2gε in the sense of symmetric matrices, and hence

|Ẏτ,ε
θ | ≤ |Ẏθ − τ∂θ∇gε(θ,Yτ,ε

θ )| ≤ |Ẏθ | + τ M. (38)

Recall that M was defined in the uniform integrability assumption (25) on ∂θ∇gε. (In the case when
∂θ∇gε = 0, we recover the known fact that for h independent of time, Jτ,h is contractive.) Then, we
deduce

limsup
ε→0

1
2

∫ θ1

θ0

{|Ẏτ,ε
θ |

2
+|∇gε(θ,Yτ,ε

θ )|2}η(θ)dθ
(34),(38)

≤ limsup
ε→0

1
2

∫ θ1

θ0

{
(|Ẏθ |+τ M)2

+

∣∣∣∣Yθ−Yτ,ε
θ

τ

∣∣∣∣2}
η(θ)dθ

(35)
≤

1
2

∫ θ1

θ0

{
(|Ẏθ |+τ M)2

+

∣∣∣∣Yθ−Yτ
θ

τ

∣∣∣∣2}
η(θ)dθ

(34)
≤

1
2

∫ θ1

θ0

{(|Ẏθ |+τ M)2
+|∇g(θ,Yθ )|

2
}η(θ)dθ.

Formula (37) follows.

Choice of τ = τ(ε): Because of (37), and because,

for all ε > 0, Yτ,ε
θ0 τ→0−−→ R and Yτ,ε

θ1 τ→0−−→ S,

it is possible to find a nonincreasing function τ = τ(ε) converging sufficiently slowly to 0 so that

lim sup
ε→0

1
2

∫ θ1

θ0

{|Ẏτ(ε),ε
θ |

2
+ |∇gε(θ,Yτ(ε),ε

θ )|2}η(θ) dθ ≤
1
2

∫ θ1

θ0

{|Ẏθ |
2
+ |∇g(θ,Yθ )|

2
}η(θ) dθ, (39)

Yτ(ε),ε
θ0 ε→0−−→ R and Yτ(ε),ε

θ1 τ→0−−→ S. (40)

Fixing the endpoints: For fixed ε and small δ > 0, we will define Zδ,ε as a slight modification of the
curve Yε,τ (ε) in such a way that Zδ,ε joins R to S. For this, we just set for θ ∈ [θ0, θ1]

Zδ,ε
θ =


R + ((θ − θ0)/δ)(Yτ(ε),ε

δ0+δ − R) if θ ∈ [θ0, θ0 + δ],

Yτ(ε),ε
θ if θ ∈ [θ0 + δ, θ1 − δ],

S + ((θ1 − θ)/δ)(Yτ(ε),ε
δ1−δ − S) if θ ∈ [θ1 − δ, θ1].

A quick computation shows

1
2

∫ θ1

θ0

{|Żδ,ε
θ |

2
+ |∇gε(θ,Zδ,ε

θ )|2}η(θ) dθ

≤
1
2

∫ θ1

θ0

{|Ẏτ(ε),ε
θ |

2
+|∇gε(θ,Yτ(ε),ε

θ )|2}η(θ) dθ +∥η∥∞

(
|Yτ(ε),ε

θ0+δ − R|
2

2δ
+

|Yτ(ε),ε
θ1−δ − S|

2

2δ
+ δL2

)
, (41)

where L is defined in the uniform Lipschitz assumption (23) for gε.
Let us estimate |Yτ(ε),ε

θ0+δ − R|
2/2δ. We have

|Yτ(ε),ε
θ0+δ − R|

2

2δ
≤

|Yτ(ε),ε
θ0

− R|
2

δ
+

|Yτ(ε),ε
θ0+δ −Yτ(ε),ε

θ0
|
2

δ
≤

|Yτ(ε),ε
θ0

− R|
2

δ
+

∫ θ0+δ

θ0

|Ẏτ(ε),ε
θ |

2 dθ.
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Because of (38), (25) and Y ∈ H 1, the integral
∫ θ0+δ

θ0
|Ẏτ(ε),ε

θ |
2 dθ tends to 0 as δ → 0, uniformly in ε: we

bound it by a function vi = vi (δ) tending to 0 as δ → 0. In the same way,

|Yτ(ε),ε
θ1−δ − S|

2

2δ
≤

|Yτ(ε),ε
θ1

− S|
2

δ
+ v f (δ),

where v f (δ) → 0 as δ → 0.
Plugging these bounds into (41), we get

1
2

∫ θ1

θ0

{|Żδ,ε
θ |

2
+ |∇gε(θ,Zδ,ε

θ )|2}η(θ) dθ

≤
1
2

∫ θ1

θ0

{|Ẏτ(ε),ε
θ |

2
+ |∇gε(θ,Yτ(ε),ε

θ )|2}η(θ) dθ + ∥η∥∞

(
u(ε)

δ
+ v(δ)

)
,

where u(ε) := |Yτ(ε),ε
θ0

− R|
2
+ |Yτ(ε),ε

θ1
− S|

2
→ 0 as ε → 0 by (40), and v(δ) := vi (δ)+v f (δ)+δL2

→ 0
as δ → 0. Hence, choosing δ(ε) :=

√
u(ε), we find with the help of (39) that Zδ(ε),ε is a recovery sequence

for the 0 − lim sup of Kε towards K. □

3.4. Proof of Lemma 17. The proof is straightforward, and relies on explicit computations.

Proof of Lemma 17. Let us define for X ∈ (Rd)N

h(X) := log
[

1
N !

∑
σ∈SN

exp(X · Aσ )

]
. (42)

For ε > 0, θ ∈ [θ0, θ1] and Y ∈ (Rd)N, we have by the definition of fε and gε (formulas (19) and (26)
respectively)

gε(θ, Y ) = εh
(

Y
ε exp(θ)

)
. (43)

Proof of (H1): It is obvious.

Proof of (H2): By (43), it suffices to check that h is convex. Differentiating (42) twice, we get for all
X ∈ (Rd)N

D2h(X) = ⟨Aσ
⊗ Aσ

⟩X − ⟨Aσ
⟩X ⊗ ⟨Aσ

⟩X = ⟨Aσ
− ⟨Aσ

⟩X ⟩X ⊗ ⟨Aσ
− ⟨Aσ

⟩X ⟩X , (44)

where if a is a function of σ , then ⟨a(σ )⟩X stands for

⟨a(σ )⟩X :=

∑
σ∈SN

a(σ ) exp(X · Aσ )∑
σ∈SN

exp(X · Aσ )
.

It follows that D2h(X) is a nonnegative symmetric matrix.

Proof of (H3): In view of (43) and as θ0 >−∞, it suffices to check that ∇h is bounded. Differentiating (42)
at X ∈ (Rd)N leads to

∇h(X) = ⟨Aσ
⟩X ,

which is clearly bounded by |A|.

Proof of (H4): By the definitions (20) of f and (26) of g, we have for all θ ∈ [θ0, θ1] and Y ∈ (Rd)N

g(θ, Y ) =
f (Y )

exp(θ)
.
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The integrability property of ∂θ g is clear; let us check (24). Let us consider Y ∈ H 1([θ0, θ1]; (Rd)N ). The
function g is locally Lipschitz both in θ and Y. As a consequence, the map G : θ 7→ g(θ,Yθ ) is also H 1.

Now, instead of proving (24), we will prove that for all curves D = Dθ such that, for almost all
θ ∈ [θ0, θ1], Dθ belongs to the subdifferential of g(θ, · ) at Y = Yθ , we have for almost all θ ∈ [θ0, θ1]

d
dθ

g(θ,Yθ ) = ∂θ g(θ,Yθ ) +Dθ · Ẏθ ,

so that (24) is an application of this property to Dθ := ∇g(θ,Yθ ). Notice that this property implies that
up to negligible sets, Dθ · Ẏθ does not depend on the choice of D. Let us give ourselves such a curve D.

Let us take a point θ ∈ (θ0, θ1) where both Y and G are differentiable (this happens for almost every θ ).
We have

G ′(θ) = lim
δ↓0

1
δ

{
f (Yθ+δ)

exp(θ + δ)
−

f (Yθ )

exp(θ)

}
= −

f (Yθ )

exp(θ)
+ lim

δ↓0

g(θ,Yθ+δ) − g(θ,Yθ )

δ

≥ −
f (Yθ )

exp(θ)
+ lim sup

δ↓0
Dθ ·

Yθ+δ −Yθ

δ
= ∂θ g(θ,Yθ ) +Dθ · Ẏθ ,

where we used g(θ,Yθ+δ) ≥ g(θ,Yθ ) +Dθ · (Yθ+δ −Yθ ) to get the second line.
In the same way, we have

G ′(θ) = lim
δ↓0

1
δ

{
f (Yθ )

exp(θ)
−

f (Yθ−δ)

exp(θ − δ)

}
≤ ∂θ g(θ,Yθ ) +Dθ · Ẏθ .

The result follows from gathering these two inequalities.

Proof of (H5): Using (43), we get for all ε > 0, θ ∈ [θ0, θ1] and Y ∈ (Rd)N,

∂θ∇gε(θ, Y ) = −
1

exp(θ)

(
∇h

(
Y

ε exp(θ)

)
+ D2h

(
Y

ε exp(θ)

)
·

Y
ε exp(θ)

)
.

As we already saw in (H3) that ∇h is bounded, it suffices to prove that X 7→ D2h(X) · X is bounded. Let
us expand everything in (44) and apply X to the right. We get

D2h(X) · X =

∑
σ,η∈SN

X · (Aσ
− Aη)Aσ exp(X · (Aσ

+ Aη))∑
σ,η∈SN

exp(X · (Aσ + Aη))
.

As a consequence, it suffices to show that, for each σ, η ∈ SN ,

T (σ, η, X) :=
X · (Aσ

− Aη) exp(X · (Aσ
+ Aη))∑

σ ′,η′∈SN
exp(X · (Aσ ′

+ Aη′

))

is bounded, uniformly in X . First, if η = σ , then T (σ, σ, X) = 0. Else, let us use the bound∑
σ ′,η′∈SN

exp(X · (Aσ ′

+ Aη′

)) ≤ exp(2X · Aσ ) + exp(2X · Aη),

obtained by only keeping the terms corresponding to σ ′
= η′

= σ and σ ′
= η′

= η in the sum. This leads to

|T (σ, η, X)| ≤
|X · (Aσ

− Aη)| exp(X · (Aσ
+ Aη))

exp(2X · Aσ ) + exp(2X · Aη)
=

|X · (Aσ
− Aη)|

exp(−|X · (Aσ − Aη)|) + exp(|X · (Aσ − Aη)|)
,

which is clearly bounded uniformly in X . The result follows. □
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4. The case of dimension 1: sticky collisions

In this section, we will study the global minimizers of the functional 3′ obtained in Section 2.6, in
dimension d = 1. If we call t the time variable and if we replace θ0 and θ1 by 0 and T respectively, due
to the invariance of the functional through translation in time, 3′ reads

3′(Z) =

{∫ T
0

{1
2 |Żt |

2
+

1
2 |Zt−∇ f (Zt)|

2
}

dt if Z ∈ H 1([0,T ];RN ),Z0 ∈ {Pσ
} and ZT ∈ {Qσ

},

+∞ else,
(45)

where
f (X) = max

σ∈SN
X · Aσ , X ∈ RN . (46)

Here, we chose a strictly ordered A = (a1, . . . , aN ), that is, such that a1 < · · · < aN , P, Q ∈ RN and
T > 0. Once again, when X = (x1, . . . , xN ) ∈ RN and σ ∈ SN , we let Xσ

:= (xσ(1), . . . , xσ(N )), and
{Pσ

} and {Qσ
} refer to {Pσ

: σ ∈SN } and {Qσ
: σ ∈SN } respectively. Of course P = (p1, . . . , pN ) and

Q = (q1, . . . , qN ) can be supposed to be ordered, that is, p1 ≤ · · · ≤ pN and q1 ≤ · · · ≤ qN . We recall
that we defined the extended gradient ∇ f in Definition 8. As already noticed in Section 2.5, the existence
of global minimizers for 3′ follows from the direct method of calculus of variations. Uniqueness does
not hold in general, even up to permutations.

The purpose of the section is two-fold. On the one hand, we will show that the model has nice regularity
properties: any global minimizer of 3′ is smooth except on a finite number of “sticking” or “separation”
times.1 On the other hand, we will justify as claimed in Section 2 that 3′ describes a model with sticky
collisions in the sense that a minimizer Z = (z1(t), . . . , zN (t)) of 3′ will typically exhibit some sticking
effects as zi (t) = z j (t) for i ̸= j on nontrivial intervals.

To describe the sticking effect, it is convenient to introduce the following definition:

Definition 20 (partition of [[1, N ]]). Let X ∈ RN. We say that X is divided according to π(X) when π(X)

is the partition of [[1, N ]] induced by the relation,

for all (i, j) ∈ [[1, N ]]
2, i ∼ j ⇐⇒ xi = x j .

We call C(X, i) the class of i ∈ [[1, N ]] in π(X), namely, C(X, i) = { j : x j = xi }.

The main result of the section is the following:

Theorem 21 (regularity of the optimal trajectories). For given A, P, Q ∈ RN and T > 0 as before, let Z
be a global minimizer of 3′ defined in (45). Then Z is continuous and there exist

0 = t0 < t1 < · · · < tp = T,

a family of times such that, for each i = 1, . . . , p, Z is smooth on [ti−1, ti ], and π(Z) is constant
on (ti−1, ti ).

It will be quite clear from the proof that sticking effects do occur. This exactly means that there exist
trajectories Z for which, with the notation of Section 2.7, 3′(Z) < 3+(Z). For such trajectories, Zt is

1Notice that 3′ is invariant under time inversion, so that if particles are allowed to stick, they are also allowed to separate.
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located on the set where f is not differentiable for a set of times of positive Lebesgue measure. But in
dimension 1, this set is exactly the set where at least two particles are located at the same place. That is,
the set of times when π(Z) ̸= {{1}, . . . , {N }} is typically of positive Lebesgue measure. As a consequence
of Theorem 21, it is even a finite union of intervals.

Still it might be convenient to illustrate the sticking effects included in the model by the following
easy proposition. It asserts that the set of times when all the particles are stuck is an interval: if all the
particles are stuck at two different times, the cheapest behavior between these two times is to remain
stuck. It also shows that this phenomenon occurs: if all the particles are sufficiently close at the initial
and final time, then they necessarily stick together during a nontrivial interval along the evolution.

Proposition 22 (intervals of full degeneration). (1) For given A, P, Q ∈ RN and T > 0 as before, let
Z = (z1(t), . . . , zN (t)) be a global minimizer of 3′. Suppose there exist two times 0 ≤ t1 < t2 ≤ T
such that

z1(t1) = · · · = zN (t1) and z1(t2) = · · · = zN (t2).

Then, for all t ∈ [t1, t2], we have z1(t) = · · · = zN (t).

(2) For given A ∈ RN and T > 0 as before, the set U of endpoints P, Q ∈ RN with the property that, for
all minimizers Z = (z1(t), . . . , zN (t)) of 3′, the set of times

{t ∈ [0, T ] : z1(t) = · · · = zN (t)}

is a nontrivial interval, is a neighborhood of {P, Q ∈ RN
: p1 = · · · = pN and q1 = · · · = qN }.

The proof of Proposition 22 uses almost nothing and is given in Section 4.2. Except for that, the whole
section is dedicated to the proof of Theorem 21. For this we take once for all A, P, Q ∈ RN and T > 0,
A being strictly ordered and P, Q being ordered.

Even if all the arguments are elementary, we will need a certain number of steps, including:

• The explicit computation of the potential |X − ∇ f (X)|2 (Section 4.1 and 4.4).

• The justification of a priori knowledge on the optimal trajectories: they can be supposed to be ordered
at all times (Section 4.3).

• The conservation of energy and momentum holds during shocks2 (Section 4.5).

Then, the main ingredient in the proof of Theorem 21 is an estimate given in Section 4.6: during
a nonpathological shock (pathological shocks are excluded a posteriori), at least one particle has a
lower-bounded jump in its velocity (Proposition 31). We finally provide the proof of Theorem 21 in
Section 4.7.

Throughout the section, we will work with several types of finite sets: the partitions of type π(X)

and the class of particles of type C(X, i). Some of the arguments or computations will deal with their
cardinality. Thus, if F is a finite set, we will denote by #F its cardinality.

2We say that Z presents a shock at time t if t is a discontinuity point of π(Z); see Definition 30.
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4.1. Properties of the extended gradient. In Lemma 24, we gather easy properties of ∇ f that will be
needed in the following. Before doing so, let us introduce some notation.

Definition 23. Let π be a partition of [[1, N ]]. We call Eπ the linear subspace of RN of all X such that π

is a refinement of π(X), that is,

Eπ :=

⋂
C∈π

⋂
i, j∈C

{X = (x1, . . . , xN ) ∈ RN
: xi = x j }.

Lemma 24 (properties of ∇ f ). (1) The extended gradient ∇ f has the following symmetry:

for all X ∈ RN, σ ∈ SN , ∇ f (Xσ ) = (∇ f (X))σ . (47)

(2) The function X 7→ |X − ∇ f (X)| is symmetric:

for all X ∈ RN, σ ∈ SN , |Xσ
− ∇ f (Xσ )|2 = |X − ∇ f (X)|2. (48)

(3) If X is ordered, then ∇ f (X) is the orthogonal projection of A on Eπ(X).

(4) If X is ordered and i ∈ {1, . . . , N },

(∇ f (X))i =
1

#C(X, i)

∑
j∈C(X,i)

aj . (49)

(Recall that C(X, i) is defined in Definition 20.)

Remark 25. The extended gradient ∇ f is completely characterized by points (1) and (3) (or (4)) of
Lemma 24.

Proof. (1) Let σ ∈SN . By the definition (46) of f , for all X ∈ RN, f (Xσ ) = f (X). Letting I σ
: X 7→ Xσ,

we easily deduce that at the level of subdifferentials: ∂ f (Xσ ) = I σ (∂ f (X)). We conclude by the fact that
I σ is orthogonal.

(2) It is a direct consequence of point (1).

(3) Let X = (x1, . . . xN ) ∈ RN be an ordered vector. Considering the definition (46) of f and noticing
that the maximum is achieved exactly for those σ such that Xσ

= X , it appears that ∇ f (X) belongs to
the convex hull:

Conv({Aσ
: σ ∈ SN such that Xσ

= X}).

For a given i ∈ {1, . . . , N }, we call V i
∈ RN the vector whose j -th coordinate is 1 if j ∈ C(X, i) and 0

otherwise. On the one hand, we have Eπ(X) = Span{V i
: i = 1, . . . , N }, and on the other hand, for all i ,

the scalar product V i
· Y is constant on the above-mentioned convex hull. So we deduce

A − ∇ f (X) ∈ (Eπ(X))
⊥.

Hence, we just have to prove that ∇ f (X) ∈ Eπ(X). If i, j ∈ {1, . . . , N } are such that xi = x j , let us apply
formula (47) to the permutation σ := (i, j):

(∇ f (X))i = ((∇ f (X))σ )j = (∇ f (Xσ ))j = (∇ f (X))j .

The result follows.
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(4) Let X be ordered and i ∈ {1, . . . , N }. As ∇ f (X) ∈ Eπ(X), with the notation of the proof of (3),

(∇ f (X))i =
1

#C(X, i)

∑
j∈C(X,i)

(∇ f (X))j =
1

#C(X, i)
∇ f (X) · V i

=
1

#C(X, i)
A · V i

=
1

#C(X, i)

∑
j∈C(X,i)

aj ,

where we used A − ∇ f (X) ⊥ V i to get the first identity in the second line. □

The three next subsections will be dedicated to consequences of this lemma:

• A proof of Proposition 22.

• When proving Theorem 21, it is enough to consider ordered trajectories (Proposition 26).

• For ordered trajectories, the potential in 3′ can be decomposed as sum of a smooth “external”
potential and an “internal” energy only depending on π(X) (Proposition 27).

4.2. Proof of Proposition 22. With the help of Lemma 24, we are ready to prove Proposition 22.

Proof of Proposition 22. (1) Without loss of generality, we can suppose t1 = 0 and t2 = T, that is,
P = (p1, . . . , pN ) and Q = (q1, . . . , qN ) are such that p1 = · · · = pN and q1 = · · · = qN .

Call 9 the orthogonal projection on the line E[[1,N ]] := {X = (x, . . . , xN ) ∈ RN
| x1 = · · · = xN }. It

suffices to prove that when Z is a continuous trajectory joining P to Q, then 3′(9(Z)) ≤ 3′(Z), and with
equality if and only if Z = 9(Z). As 9 is 1-Lipschitz, it reduces the kinetic part of 3′. For the potential
part, we remark that, for all X ∈ RN, Eπ(9(X)) = E[[1,N ]] ⊂ Eπ(X). As a consequence, by point (3) of
Lemma 24, we have as soon as X is ordered ∇ f (9(X)) = 9(∇ f (X)). Hence

|9(X) − ∇ f (9(X))|2 = |9(X − ∇ f (X))|2 ≤ |X − ∇ f (X)|2,

with equality if and only if X ∈ E[[1,N ]], i.e., if and only if 9(X) = X . This property is extended to
nonordered X using (48), and the result follows.

(2) The function 3′ = 3′(P, Q) , defined for all P, Q ∈ RN as the minimal value of 3′, is continuous.
Indeed, if P, P ′, Q, Q′

∈ RN are chosen so that |P ′
− P|+|Q′

− Q| ≪ 1 and if Z is a trajectory joining P
to Q, we can find a trajectory Z̃ joining P ′ to Q′ with3

3′(Z̃) ≤ 3′(Z) + o
(P ′,Q′)→(P,Q)

(1). (50)

To do so, it suffices to choose τ ∼ |P ′
− P| + |Q′

− Q|, and to define Z̃ as the trajectory joining P ′ to P
in straight line between times 0 and τ , joining P to Q between times τ and T − τ by following Z with
a proper affine change of time, and finally joining Q to Q′ in straight line between times T − τ and T.
This shows that 3′ is lower semicontinuous, but the continuity is obtained by noticing that the o in (50)
is locally uniform on P, Q ∈ RN. The argument is easily adapted to show that 3̃′ = 3̃′(P, Q), defined

3With a slight abuse of notation, we do not refer explicitly to the dependence of 3′ on P, Q.
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for P, Q ∈ RN by

3̃′(P, Q) := inf{3′(Z) : Z whose set of t such that Zt ∈ E[[1,N ]] is negligible},

is also continuous. Additionally, the set U defined in the statement clearly satisfies

V := {P, Q ∈ RN
: 3′(P, Q) < 3̃′(P, Q)} ⊂ U .

By the continuity of 3′ and 3̃′, V is an open set. Hence it remains to prove that

{P, Q ∈ RN
: p1 = · · · = pN and q1 = · · · = qN } = E[[1,N ]] × E[[1,N ]] ⊂ V.

To do so, we take P, Q ∈ E[[1,N ]] and Z a curve joining P to Q such that {t : Zt ∈ E[[1,N ]]} is negligible,
we still call 9 the orthogonal projection on E[[1,N ]], and we prove that

3′(Z) ≥ 3′(9(Z)) + a,

where a > 0 does not depend on Z . Let us call 8 := Id −9 the orthogonal projection on the orthogonal
of E[[1,N ]]. As in the proof of the first point, ∇ f ◦ 9 = 9 ◦ ∇ f . As a consequence

3′(Z) =

∫ T

0
{|9(Żt)|

2
+ |9(Zt) − 9(∇ f (Zt))|

2
} dt +

∫ T

0
{|8(Żt)|

2
+ |8(Zt) − 8(∇ f (Zt))|

2
} dt

= 3′(9(Z)) +

∫ T

0
{|Ż⊥

t |
2
+ |Z⊥

t − 8(∇ f (Zt))|
2
} dt,

where Z⊥
=Z⊥

t := 8(Zt) is a curve joining 0 to 0. But for almost all t , Zt /∈ E[[1,N ]], so as we saw in the
proof of the first point, ∇ f (Zt) /∈ E[[1,N ]]. As ∇ f only takes a finite number of values (see Lemma 24),
for almost all t , 8(∇ f (Zt)) belongs to some finite set, say G, which does not contain 0. Hence,∫ T

0
{|Ż⊥

t |
2
+ |Z⊥

t − 8(∇ f (Zt))|
2
} dt ≥

∫ T

0
{|Ż⊥

t |
2
+ dist(Z⊥

t ,G)2
} dt,

where dist(Z ,G) denotes the distance from Z to G. Because Z⊥ joins 0 to 0 and G does not contain 0, this
last integral is easily seen to be bounded below away from 0 independently of Z , and the result follows. □

4.3. Ordering of the particles. The purpose of this subsection is to show that when proving Theorem 21,
we can restrict ourselves to study trajectories that remain ordered (see Figure 1). This is due to the
following proposition.

Proposition 26. Let Z = Zt be a global minimizer of 3′. We call Z̃ = Z̃ t the trajectory obtained by
reordering the coordinates of Z in increasing order. Then Z̃ is also a global minimizer of 3′.

Moreover, Z has the regularity stated in Theorem 21 if and only if Z̃ does.
In particular, 3′ always admits an ordered minimizer, and it is enough to prove Theorem 21 for such

minimizers.

Thanks to this proposition, from now on, we only work with ordered minimizers of 3′. These minimizers
Z = Zt satisfy in particular Z0 = P and ZT = Q (as we chose them to be ordered in the first place).
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0

T

p1 p2 p3

q1 q2 q3

0

T

p1 p2 p3

q1 q2 q3

Figure 1. These two trajectories share their initial and final positions up to ordering and
their actions. But to the right, the order is preserved, while to the left, this is not the case.

Proof. Let Z and Z̃ be as in the statement of the proposition. Point (2) of Lemma 24 implies∫ T

0
|Z̃ t − ∇ f (Z̃ t)|

2 dt =

∫ T

0
|Zt − ∇ f (Zt)|

2 dt.

We call 9 : RN
→ RN the operator that reorders the coordinates of a vector in increasing order, so that

in particular, for all t , Z̃ t = 9(Zt). A simple application of the rearrangement inequality shows that 9 is
1-Lipschitz. In particular, it reduces the action of curves∫ T

0
|
˙̃Z t |

2 dt ≤

∫ T

0
|Żt |

2 dt.

By adding the two last formulas, and by noticing that the endpoint constraint is fulfilled, we get 3′(Z̃) ≤

3′(Z). As Z is a minimizer, this inequality is in fact an equality, and Z̃ is also a minimizer.
Note that both Z and Z̃ are continuous because they have finite action. Hence, the second claim of the

proposition is a consequence of the two following facts:

• For all t ∈ [0, T ], #π(Z̃ t) = #π(Zt).

• For any continuous trajectory t ∈ I 7→ Xt ∈ RN, where I is an interval, t 7→ π(Xt) is constant if and
only if t 7→ #π(Xt) is constant.

Indeed in that case, t 7→ π(Zt) and t 7→ π(Z̃ t) are constant on the same intervals, and the result follows.
The first point and the “only if” part of the second point are trivial.
For the “if” part of the second one, we reason by contraposition. Suppose s 7→π(Xs) has a discontinuity

at time t and we prove that s 7→ #π(Xs) also does. If s 7→ π(Xs) has a discontinuity at time t , we can
find two distinct accumulation points π1 and π2 of s 7→ π(Xs) at time t . As the set Eπ is closed for all π ,
we find that Xt belongs to Eπ1 ∩ Eπ2 . But this set is nothing but Eπ̄ , where π̄ is the finest partition of
which π1 and π2 are refinements, that is, the partition corresponding to the relation

i ∼ j ⇐⇒ there exists C ∈ π1 ∪ π2 such that {i, j} ⊂ C.

In particular, π(Xt) is a refinement of π̄ and as π1 ̸= π2,

#π(Xt) ≤ #π̄ < max(#π1, #π2).

So s 7→ #π(Xs) has a discontinuity at time t , and the result follows. □
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4.4. Decomposition of the potential. Here, we compute explicitly the values of the potential X 7→

|X − ∇ f (X)|2 on ordered vectors X ∈ RN. Notice that, for such vectors X , π(X) has an additional
structure: if C ∈ π(X), then C is an interval of integers. We say that such partitions are ordered. We
prove the following:

Proposition 27. For all ordered X ∈ RN,

|X − ∇ f (X)|2 = |X − A|
2
+ h(π(X)) − |A|

2, (51)

where h is defined on a partition π of [[1, N ]] by

h(π) :=

∑
C∈π

1
#C

∣∣∣∣∑
j∈C

aj

∣∣∣∣2

. (52)

In particular, h has the following monotonicity property: if π and π ′ are two ordered partitions and if π ′

is a strict refinement of π , then h(π) < h(π ′).

The more particles are stuck together, the lower h is. This is the reason for which 3′ favors the sticking
of particles. The function −h/2 can be understood as the internal energy of the system.

Dropping the constant term |A|
2/2 in (51) and defining 3′′ on a trajectory Z by

3′′(Z) =

{
1
2

∫ T
0 {|Żt |

2
+|Zt−A|

2
+h(π(Zt))}dt if Z ∈ H 1([0,T ];RN ),Z0 = P and ZT = Q,

+∞ else,
(53)

it is clear that 3′ and 3′′ have the same minimizers in the class of ordered trajectories. Hence, as a
consequence of Proposition 26, it suffices to prove the conclusion of Theorem 21 for the minimizers
of 3′′ in the class of ordered trajectories.

Proof of Proposition 27. Let X ∈ RN be an ordered vector. By point (3) of Lemma 24, we have
A−∇ f (X) ∈ (Eπ(X))

⊥ and both X and ∇ f (X) ∈ Eπ(X). So using the Pythagorean theorem twice, we get

|X − ∇ f (X)|2 = |X − A|
2
− |A − ∇ f (X)|2 = |X − A|

2
+ |∇ f (X)|2 − |A|

2.

The identities (51) and (52) are obtained by computing |∇ f (X)|2 using (49).
If we recap, h(π) is the squared norm of the orthogonal projection of A on Eπ . But if π ′ is a refinement

of π , Eπ ⊂ Eπ ′ , and hence h(π) ≤ h(π ′). The strict inequality is obtained by noticing with the help
of (49) and using the strict ordering of A that if in addition π and π ′ are ordered and π ′

̸= π , then the
projection of A on Eπ ′ does not belong to Eπ . □

4.5. Conserved quantities. In this subsection, we discuss two simple and yet structural properties of the
dynamic prescribed by the functionals 3′, 3′′: the Hamiltonian of the system is conserved (Proposition 28),
and its center of mass draws a smooth curve (Proposition 29). In particular, the momentum of the system
is conserved during shocks.

Proposition 28. Let Z be an ordered minimizer of 3′′. Then

E = E(t) :=
1
2{|Żt |

2
− |Zt − A|

2
− h(π(Zt))} (54)

is constant in the sense of distributions.
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Proof. The proof is completely standard and is done by comparing the value of 3′′ on Z and t 7→Zt+εϕ(t)

for small ε and functions ϕ that are smooth and compactly supported in (0, T ). □

Proposition 29. Let Z = (z1(t), . . . , zN (t)) be an ordered minimizer of 3′′. Call a := (a1 +· · ·+aN )/N
and for t ∈ [0, T ]

M(t) :=
1
N

N∑
i=1

zi (t) and P(t) :=
1
N

N∑
i=1

żi (t).

(M is well-defined for all t , and P for almost all t .) Then M,P solve distributionally

Ṁ(t) = P(t), Ṗ(t) = M(t) − a.

In particular, M is smooth and P coincide almost surely with a smooth function.

Proof. Here the proof consists in comparing the value of 3′′ on Z and t 7→ Zt + εϕ(t)V for small ε,
smooth and compactly supported ϕ, and where we call V = (1, . . . , 1). The only somehow unusual thing
to remark is that π and hence h ◦ π are invariant under translations in the direction of V. □

4.6. Shocks, isolated shocks and minimal deviation. This subsection contains the main estimate that
allows us to prove Theorem 21. Roughly speaking, if at time t some of the particles stick or separate,
there is a lower bound on the change of the velocity of at least one particle. The proof of Theorem 21
will then consist in showing that this cannot happen an infinite number of times.

Let us first define as “shocks” these sticking and separating behaviors:

Definition 30 (shocks). Let X = Xt = (x1(t), . . . , xN (t)) be a continuous trajectory on RN.

(1) We call a shock of X a triplet (t, q, C) with t ∈ [0, T ], q ∈ R and C ⊂ [[1, N ]] such that

• C ∈ π(Xt),
• for all i ∈ C , xi (t) = q ,
• for all τ > 0, there exists s ∈ (t − τ, t + τ) such that C /∈ π(Xs).

(2) If (t, q, C) is a shock of X , we say that it is isolated if (t, q) is isolated in

{(t ′, q ′) : there exists C ′
⊂ [[1, N ]] such that (t ′, q ′, C ′) is a shock},

i.e., if there is no other shock than (t, q, C) in the neighborhood of (t, q) ∈ [0, T ] × R.

We provide in Figure 2 a picture of a shock which does not seem to be isolated. The following result
is the main step in the proof of Theorem 21.

Proposition 31. Let Z = (z1(t), . . . , zN (t)) be an ordered minimizer of 3′ (or equivalently a minimizer
of 3′′ in the class of ordered trajectories), and let t ∈ [0, T ].

(1) If particle i is not involved in a shock at time t , then for s in the neighborhood of t , C := C(Zs, i) is
constant and zi is a smooth solution of

z̈i (s) = zi (s) −
1

#C

∑
j∈C

aj . (55)
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p1 = p2 = p3

q1 q2 q3

0

T

Figure 2. A shock with three particles which does not seem to be isolated. We will see
later on that this kind of shock cannot occur in our model.

In particular, if i is involved in an isolated shock at time t , then zi admits left and right derivatives at
time t , denoted by żi (t−) and żi (t+) respectively.

(2) There is α = α(N , A) > 0 such that for any isolated shock (t, q, C), calling i := min C ,

żi (t−) − żi (t+) ≥ α. (56)

(Note that the quantity żi (t−) − żi (t+) is not affected by time inversion. In particular, this lower
bound is coherent with the invariance of the Lagrangian through time inversion.)

Proof. (1) If particle i is not involved in a shock at time t , by the definition of a shock, it means that
C := C(Zt , i) ∈ π(Zs) for all s in a neighborhood of t . In particular, for all j ∈ C and s sufficiently close
to t , by (49),

(∇ f (Zs))j =
1

#C

∑
k∈C

ak .

On the other hand, it is easy to find a neighborhood U of (t, zi (t)) in [0, T ] × R such that, for all
j ∈ {1, . . . , N } and all s ∈ [0, T ], (s, z j (s)) ∈ U implies j ∈ C .

As a consequence, if ξ : [0, T ] → R is smooth and compactly supported in a sufficiently small
neighborhood of t , and if ε is sufficiently small, by defining Z̃ = (z̃1(s), . . . , z̃N (s)) for any j ∈{1, . . . , N }

and s ∈ [0, T ] by

z̃ j (s) :=

{
z j (s) + εξ(s) if j ∈ C,

z j (s) else,

then π(Z) and π(Z̃) (and hence ∇ f (Z) and ∇ f (Z̃)) coincide at all time. The ODE follows from
comparing the values of 3′ on Z and trajectories of type Z̃ .

In particular, by boundedness of Z , if particle i is not involved in a shock at time t , |z̈i | is bounded by
a constant that is not depending on t . The existence of żi (t−) and żi (t+) at the times of isolated shocks
follows easily.

(2) This is the heart of our study of the dynamical system, and maybe the less standard part of Section 4.
But still the idea is very easy: with the notation of the statement, if żi (t−) − żi (t+) is too small, then it
is cheaper to stick particle i with other particles, as shown in Figure 3. The proof goes as follows.
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t q

t+λσ

t+σ

t q

t+λσ

t+σ

Figure 3. To the left, a piece of the trajectory Z, and to the right, the competitor Zσ,λ

that we describe in the proof.

Step 1: Definition of a competitor. Let us consider (t, q, C) an isolated shock. Because it is isolated, we
can find τ > 0 such that the particles of C are not involved in another shock between times t − τ and
t + τ . By the definition of a shock, we cannot have C ∈ π(Zs) for all s ∈ (t − τ, t + τ), so either, for all
s ∈ (t − τ, t), C /∈ π(Zs) or, for all s ∈ (t, t + τ), C /∈ π(Zs). Without loss of generality, we suppose
that the second one holds: the particles of C are not all stuck right after the shock. Moreover, by our
choice of τ , for all C ′

⊂ C , the assertion C ′
∈ π(Zs) is either true or false independently of s ∈ (t, t + τ).

Then, for s ∈ (t, t + τ), the following definitions of C1, C2 ∈ π(Zs) do not depend on s:

C1 := C(Zs, i) for i = min C and C2 := C(Zs, i) for i = min C\C1.

(The classes C1 and C2 are the two leftmost packs of particles of C right after the shock.) Let us define
for j = 1, 2

kj := #C j , vj := żi (t+) for i ∈ C j , and p :=
k1v1 + k2v2

k1 + k2
. (57)

For 0 ≤ σ < τ and λ ∈ [0, 1), we define a competitor Zσ,λ
= (zσ,λ

1 (s), . . . , zσ,λ
N (s)) by setting for all

i = {1, . . . , N } and s ∈ [0, T ]

zσ,λ
i (s) =


zi (s) if i /∈ C1 ∪ C2 or s /∈ (t, t + σ),

q + (s − t)p if i ∈ C1 ∪ C2 and s ∈ (t, t + λσ),

t+σ −s
(1−λ)σ

(q + λσ p) +
s−(t+λσ)

(1−λ)σ
zi (t + σ) if i ∈ C1 ∪ C2 and s ∈ (t + λσ, t + σ).

(See Figure 3 for an illustration of this competitor.) We will get a lower bound on v2 − v1 by comparing
the value of 3′′ on Z and Zσ,λ, and by differentiating the corresponding inequality first with respect to σ

at σ = 0 (we zoom so that the particles of Z only travel along straight lines), and then with respect to λ

at λ = 0 (we compute the first variation of the action when we let the particles stick together).

Step 2: A lower bound on v2 −v1. The partitions π(Zσ,λ
s ) and π(Zs) coincide at all times except between

t and t + λσ , when π(Zs) is a strict refinement of π(Zσ,λ
s ). Hence, letting

δ = δ(N , A) := min{h(π) − h(π ′) : (π, π ′) ordered partition of [[1, N ]], π strict refinement of π ′
} > 0,
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we have, for all s ∈ (t, t + λσ),

h(π(Zλ,σ
s )) + δ ≤ h(π(Zs)). (58)

As Zσ coincide with Z for times outside (t, t + σ) and for coordinates that are not in C1 ∪ C2, by
definition (53) of 3′′, we have

3′′(Zσ,λ) − 3′′(Z) =

∑
i∈C1∪C2

∫ t+σ

t
{|żσ,λ

i (s)|2 + |zσ,λ
i (s) − ai |

2
− |żi (s)|2 − |zi (s) − ai |

2
} ds

+

∫ t+λσ

t
{h(π(Zσ,λ

s )) − h(π(Zs))} ds

≤

∑
i∈C1∪C2

∫ t+σ

t
{|żτ,σ

i (s)|2 − |żi (s)|2} ds − δλσ + o
σ→0

(σ ), (59)

where to obtain the second line, we used (58) and the fact that between times t and t +σ , both zi and zσ,λ
i

remain at a distance of order σ of q .
Let us consider i ∈ C j for j = 1, 2. On one hand, as zi admits vj as a right derivative at time t , we have∫ t+σ

t
|żi (s)|2 ds = v2

j σ + o
σ→0

(σ ). (60)

On the other hand, we can compute explicitly∫ t+σ

t
|żσ,λ

i (s)|2 ds = λp2σ + (1 − λ)σ

(
zi (t + σ) − (q + λpσ)

(1 − λ)σ

)2

= λp2σ +
1

(1 − λ)σ
(q + vjσ + o

σ→0
(σ ) − q − λpσ)2

= λp2σ + (vj − λp)2 σ

1 − λ
+ o

σ→0
(σ ). (61)

By plugging (60) and (61) into (59) and by using the definition (57) of k1, k2 and p, we get

3′′(Zσ,λ) − 3′′(Z) ≤

{
(k1 + k2)λp2

+
k1(v1 − λp)2

+ k2(v2 − λp)2

1 − λ
− k1v

2
1 − k2v

2
2 − δλ

}
σ + o

σ→0
(σ )

= {(k1 + k2)p2
+ k1v

2
1 + k2v

2
2 − 2p(k1v1 + k2v2) − δ(1 − λ)}

λ

1 − λ
σ + o

σ→0
(σ )

=

{
k1v

2
1 + k2v

2
2 −

(k1v1 + k2v2)
2

k1 + k2
− δ(1 − λ)

}
λ

1 − λ
σ + o

σ→0
(σ )

=

{
k1k2

k1 + k2
(v2 − v1)

2
− δ(1 − λ)

}
λ

1 − λ
σ + o

σ→0
(σ ).

By the minimality of 3′′(Z), this quantity must be nonnegative. If we divide it by λσ , and if we let σ

and then λ go to zero, we end up with

k1k2

k1 + k2
(v2 − v1)

2
≥ δ. (62)
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Step 3: Conservation of momentum during an isolated shock and conclusion. Because (t, q, C) is isolated,
it is easy to justify that we can replace V by the vector V C whose j-th coordinate is 1 if j ∈ C and 0
otherwise in the proof of Proposition 29. Doing so, we obtain the “local” conservation of momentum

1
#C

∑
i∈C

żi (t−) =
1

#C

∑
i∈C

żi (t+) =: PC(t).

By ordering of the particles, we have, for i = min C ,

żi (t−) ≥ PC(t) =
1

#C

∑
i∈C

żi (t+) ≥
k1

#C
v1 +

#C − k1

#C
v2.

(Indeed, j ∈ C 7→ ż j (t−) and j ∈ C 7→ ż j (t+) are clearly nonincreasing and nondecreasing respectively.)
By recalling that v1 = żi (t+) and using (62), we get

żi (t−) − żi (t+) ≥
#C − k1

#C
(v2 − v1) ≥

#C − k1

#C

√
k1 + k2

k1k2
δ.

The minimal right-hand side’s value is
√

δ/(#C2 − #C), obtained for k1 = #C − 1 and k2 = 1. Hence, we
get the result by choosing α =

√
δ/(N 2 − N ). □

4.7. Conclusion: proof of Theorem 21. We are now ready to give the proof of Theorem 21. We give
ourselves Z a global minimizer of 3′. Thanks to Proposition 26, we can suppose that Z is ordered, and
thanks to Proposition 27, we can consider 3′′ instead of 3′.

Because of Proposition 31, it suffices to prove that there is a finite number of shocks. Indeed, in that
case one can take for 0 = t0 < t1 < · · · < tp = T the moments of these shocks (and the endpoints of
[0, T ]). The smoothness of Z on each [ti−1, ti ], i = 1, . . . , p, follows directly from Proposition 31. Then
π(Z) is constant on each (ti−1, ti ), i = 1, . . . , p, because by Definition 30 of a shock, at each time of
discontinuity of π(Z), there is at least one shock.

The set
{(t ′, q ′) : there exists C ′

⊂ [[1, N ]] such that (t ′, q ′, C ′) is a shock}

is easily seen to be compact. So if it is not finite, it admits at least one accumulation point. That is, if
there is an infinite number of shocks, then there is at least one shock which is not isolated. Let us consider
such a shock (t, q, C) with minimal number of particles involved, i.e., with minimal #C . The rest of the
proof is dedicated to showing that the existence of (t, q, C) leads to a contradiction.

Step 1: The velocities are bounded. As Z is continuous on [0, T ], it is bounded. On the other hand, by
definition, h ≤ |A|

2. Now if i ∈ {1, . . . , N } and t ∈ [0, T ] is such that Z is differentiable at t (which is
true for almost any t), recalling the definition (54) of E ,

żi (t)2
≤ |Żt |

2
≤ 2E + |Zt − A|

2
+ h(π(Zt)),

which is bounded uniformly in t .

Step 2: All the shocks in the neighborhood of (t, q) that are distinct from (t, q) are isolated. Let U be
a neighborhood of (t, q) in [0, T ] × R such that, for all s ∈ [0, T ] and i ∈ {1, . . . , N }, (s, zi (s)) ∈ U
implies i ∈ C . This is possible since Z is continuous and, for all j /∈ C , z j (t) ̸= q by Definition 30 of a
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shock. Let us consider (t ′, q ′, C ′) a shock with (t ′, q ′) ∈ U. If #C ′ < #C , then (t ′, q ′, C ′) is isolated by
the minimality of #C . If #C ′

= #C , then C ′
= C by the definition of U. But then it is easy to adapt the

proof of point (1) of Proposition 22 to prove that C ∈ π(Zs) for all s between t and t ′, and so there is no
shock in U between t and t ′. Hence there exists at most one such shock in U : either one before t or one
after t , but not both because else (t, q, C) would contradict the third point of the definition of a shock.
Up to reducing U, we can then exclude (t ′, q ′, C ′).

Step 3: Conclusion using Proposition 31. As (t, q, C) is not isolated, there is an infinite number of
(isolated) shocks in U. Without loss of generality, we can assume that there is an infinite number of shocks
in U after time t . Call i ∈ C the smallest index such that particle i is involved in an infinite number of
shocks in U after time t . When i ̸= min C , up to reducing U and by the minimality of i , we can assume
that no particle j ∈ C with j < i is involved in a shock in U after time t .

As the shocks in U involving i after time t are isolated (Step 2), we can enumerate their times in
decreasing order (tp)p∈N. The boundedness of Z together with (55) allows us to take M as an upper
bound for z̈i between the times of shocks. For all p ∈ N and s ∈ (tp+1, tp), taking α as in (56), we have

żi (s) = żi (t0−) +

p∑
k=1

{
żi (tk−) − żi (tk+) −

∫ tk

tk−1

z̈i (τ ) dτ

}
−

∫ s

tp

z̈i (τ ) dτ

≥ żi (t0−) + pα − M(t0 − t),

which contradicts Step 1 as soon as p is sufficiently large. □
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IDA AND HANKEL OPERATORS ON FOCK SPACES

ZHANGJIAN HU AND JANI A. VIRTANEN

We introduce a new space IDA of locally integrable functions whose integral distance to holomorphic
functions is finite, and use it to completely characterize boundedness and compactness of Hankel operators
on weighted Fock spaces. As an application, for bounded symbols, we show that the Hankel operator H f

is compact if and only if H f̄ is compact, which complements the classical compactness result of Berger
and Coburn. Motivated by recent work of Bauer, Coburn, and Hagger, we also apply our results to the
Berezin–Toeplitz quantization.

1. Introduction

Denote by L2 the Hilbert space of all Gaussian square-integrable functions f on Cn, that is,∫
Cn

| f (z)|2e−|z|2 dv(z) <∞,

where v is the standard Lebesgue measure on Cn. The Fock space F2 (aka Segal–Bargmann space)
consists of all holomorphic functions in L2. The orthogonal projection of L2 onto F2 is denoted by P
and called the Bergman projection. For a suitable function f : Cn

→ C, the Hankel operator H f and the
Toeplitz operator T f are defined on F2 by

H f = (I − P)M f and T f = P M f .

The function f is referred to as the symbol of H f and T f . Since P is a bounded operator, it follows that
both H f and T f are well-defined and bounded on F2 if f is a bounded function. For unbounded symbols,
despite considerable efforts, see, e.g., [Bauer 2005; Berger and Coburn 1994; Coburn et al. 2021; Hu and
Wang 2018], characterization of boundedness or compactness of these operators has remained an open
problem for more than 20 years.

In this paper, as a natural evolution from BMO (see [John and Nirenberg 1961; Zhu 2012]), we
introduce a notion of integral distance to holomorphic (aka analytic) functions IDA and use it to completely
characterize boundedness and compactness of Hankel operators on Fock spaces. Recently, in [Hu and
Virtanen 2022], which continues our present work, we used IDA in the Hilbert space setting to characterize
the Schatten class properties of Hankel operators. Indeed, the space IDA is broad in scope, and should have
more applications, which we hope to demonstrate in future work in connection with Toeplitz operators.

All our results are proved for weighted Fock spaces F p(ϕ) consisting of holomorphic functions
for which ∫

Cn
| f (z)|pe−pϕ(z) dv(z) <∞,
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where 0< p <∞ and ϕ is a suitable weight function (see Section 2 for further details). Obviously, with
p = 2 and ϕ(z)= (α/2)|z|2, we obtain the weighted Fock space F2

α . The study of L p-type Fock spaces
was initiated in [Janson et al. 1987] and has since grown considerably, as seen in [Zhu 2012].

We also revisit and complement a surprising result due to [Berger and Coburn 1987], which states that
for bounded symbols

H f : F2
→ L2 is compact if and only if H f̄ is compact.

In particular, we give a new proof and show that this phenomenon remains true for Hankel operators from
F p(ϕ) to Lq(ϕ) for general weights. What also makes this result striking is that it is not true for Hankel
operators acting on other important function spaces, such as Hardy or Bergman spaces.

As an application, we will apply our results to the Berezin–Toeplitz quantization, which complements
the results in [Bauer et al. 2018].

1A. Main results. We introduce the following new function spaces to characterize bounded and compact
Hankel operators. Let 0< s ≤ ∞ and 0< q <∞. For f ∈ Lq

loc, set

(Gq,r ( f )(z))q = inf
h∈H(B(z,r))

1
|B(z, r)|

∫
B(z,r)

| f − h|
q dv, z ∈ Cn,

where H(B(z, r)) stands for the set of holomorphic functions in the ball B(z, r). We say that f ∈ Lq
loc is

in IDAs,q if

∥ f ∥IDAs,q = ∥Gq,1( f )∥Ls <∞.

We further write BDAq for IDA∞,q and say that f ∈ VDAq if

lim
z→∞

Gq,1( f )(z)= 0.

The properties of these spaces will be studied in Section 3.

We denote by S the set of all measurable functions f that satisfy the condition in (2-7), which ensures
that the Hankel operator H f is densely defined on F p(ϕ) provided that 0< p <∞ and ϕ is a suitable
weight. Notice that the symbol class S contains all bounded functions. Further, we write HessR ϕ for the
Hessian of ϕ and E for the 2n × 2n identity matrix — these concepts will be discussed in more detail in
Section 2. It is important to notice that the condition HessR ϕ ≃ E in the following theorems is satisfied
by the classical Fock space F2, the Fock spaces F2

α generated by standard weights ϕ(z) = (α/2)|z|2,
α > 0, Fock–Sobolev spaces, and a large class of nonradial weights.

Theorem 1.1. Let f ∈ S and suppose that HessR ϕ ≃ E as in (2-1).

(a) For 0< p ≤ q <∞ and q ≥ 1, H f : F p(ϕ)→ Lq(ϕ) is bounded if and only if f ∈ BDAq, and H f

is compact if and only if f ∈ VDAq. For the operator norm of H f , we have the estimate

∥H f ∥ ≃ ∥ f ∥BDAq . (1-1)
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(b) For 1 ≤ q < p<∞, H f : F p(ϕ)→ Lq(ϕ) is bounded if and only if it is compact, which is equivalent
to f ∈ IDAs,q, where s = pq/(p − q), and

∥H f ∥ ≃ ∥ f ∥IDAs,q . (1-2)

(c) For 0< p ≤ q ≤ 1 and f ∈ L∞, H f : F p(ϕ)→ Lq(ϕ) is bounded with

∥H f ∥ ≤ C∥ f ∥L∞ (1-3)

and compact if and only if f ∈ VDAq.

We first note that Theorem 1.1 is new even for Hankel operators acting from F2 to L2. Previously
only characterizations for H f and H f̄ to be simultaneously bounded (or simultaneously compact) were
known. These were given in terms of the bounded (or vanishing) mean oscillation of f in [Bauer 2005]
for F2 and in [Hu and Wang 2018] for Hankel operators from F p

α to Lq
α. In Theorem 7.1 of Section 7,

we obtain these results as a simple consequence of Theorem 1.1. We also mention our recent work [Hu
and Virtanen 2022], which gives a complete characterization of Schatten class Hankel operators.

Theorem 1.1 should also be compared with the results for Hankel operators on Bergman spaces Ap.
Indeed, characterizations for boundedness and compactness can be found in [Axler 1986] for antianalytic
symbols, in [Hagger and Virtanen 2021] for bounded symbols, and in [Hu and Lu 2019; Li 1994; Luecking
1992; Pau et al. 2016] for unbounded symbols. These two cases are different to study because of properties
such as F p

⊂ Fq for p ≤ q (as opposed to Aq
⊂ Ap) and certain nice geometry on the boundary of these

bounded domains, which in turn helps with the treatment of the ∂̄-problem.
What is very different about the results on Hankel operators acting on these two types of spaces

is that our next result is only true in Fock spaces (see [Hagger and Virtanen 2021] for an interesting
counterexample for the Bergman space).

Theorem 1.2. Let f ∈ L∞ and suppose that HessR ϕ≃ E as in (2-1). If 0< p ≤ q<∞ or 1 ≤ q< p<∞,
then H f : F p(ϕ)→ Lq(ϕ) is compact if and only if H f̄ is compact.

For Hankel operators on the Fock space F2, Theorem 1.2 was proved in [Berger and Coburn 1987]
using C∗-algebra and Hilbert space techniques and in [Stroethoff 1992] using elementary methods. More
recently in [Hagger and Virtanen 2021], limit operator techniques were used to treat the reflexive Fock
spaces F p

α . However, our result is new even in the Hilbert space case because of the more general weights
that we consider. As a natural continuation of our present work, in [Hu and Virtanen 2022], we prove
that, for f ∈ L∞, the Hankel operator H f is in the Schatten class Sp if and only if H f̄ is in the Schatten
class Sp provided that 1< p <∞.

As an application and further generalization of our results, in Section 6, we provide a complete
characterization of those f ∈ L∞ for which

lim
t→0

∥T (t)
f T (t)

g − T (t)
f g ∥t = 0 (1-4)

for all g ∈ L∞, where T (t)
f = P (t)M f : F2

t (ϕ)→ F2
t (ϕ) and P (t) is the orthogonal projection of L2

t (ϕ)

onto F2
t (ϕ). Here L2

t = L2(Cn, dµt) and

dµt(z)=
1
tn exp

{
−2ϕ

(
z

√
t

)}
dv(z).
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The importance of the semiclassical limit in (1-4) stems from the fact that it is one of the essential
ingredients of the deformation quantization of [Rieffel 1989; 1990] in mathematical physics. Our
conclusion related to (1-4) extends and complements the main result in [Bauer et al. 2018].

1B. Approach. A careful inspection shows that the methods and techniques used in [Berger and Coburn
1986; 1987; Hagger and Virtanen 2021; Perälä et al. 2014; Stroethoff 1992] depend heavily upon the
following three aspects. First, the explicit representation of the Bergman kernel K (z, w) for standard
weights ϕ(z)= (α/2)|z|2 has the property that

K (z, w)e−(α/2)|z|2−(α/2)|w|
2
= e(α/2)|z−w|

2
. (1-5)

However, for the class of weights we consider, this quadratic decay is known not to hold (even in
dimension n = 1) and is expected to be very rare [Christ 1991]. The second aspect involves the Weyl
unitary operator Wa defined as

Wa f = f ◦ τaka,

where τa is the translation by a and ka is the normalized reproducing kernel. As a unitary operator
on F p

α (or on L p
α ), Wa plays a very important role in the theory of the Fock spaces F p

α (see [Zhu 2012]).
Unfortunately, no analogue of Weyl operators is currently available for F p(ϕ) when ϕ ̸= (α/2)|w|

2. The
third aspect we mention is Banach (or Hilbert) space techniques, such as the adjoint (for example, H∗

f )
and the duality. However, when 0< p < 1, F p(ϕ) is only an F-space (in the sense of [Rudin 1973]) and
the usual Banach space techniques can no longer be applied.

To overcome the three difficulties mentioned above, we introduce function spaces IDA, BDA and
VDA, and develop their theory, which we use to characterize those symbols f such that H f are bounded
(or compact) from F p(ϕ) to Lq(ϕ). Our characterization of the boundedness of H f extends the main
results of [Bauer 2005; Hu and Wang 2018; Perälä et al. 2014]. It is also worth noting that as a natural
generalization of BMO, the space IDA will have its own interest and will likely be useful to study other
(related) operators (such as Toeplitz operators).

In our analysis, we appeal to the ∂̄-techniques several times. As the canonical solution to ∂̄u = g∂ f ,
H f g is naturally connected with the ∂̄-theory. Hörmander’s theory provides us with the L2-estimate, but
less is known about L p-estimates on Cn when p ̸= 2. With the help of a certain auxiliary integral operator,
we obtain L p-estimates of the Berndtsson–Anderson solution [1982] to the ∂̄-equation. Our approach
to handling weights whose curvature is uniformly comparable to the Euclidean metric form is similar
to the treatment in [Schuster and Varolin 2012] which was initiated in [Berndtsson and Ortega Cerdà
1995], and a number of the techniques we use here were inspired by this approach. Although the work in
[Berndtsson and Ortega Cerdà 1995] is restricted to n = 1, some of the results were extended to higher
dimensions in [Lindholm 2001], and the others are easy to modify.

The outline of the paper is as follows. In Section 2 we study preliminary results on the Bergman kernel
which are needed throughout the paper, and we also establish estimates for the ∂̄-solution developed
in [Berndtsson and Andersson 1982]. In Section 3, a notion of function spaces IDAs,q is introduced.
We obtain a useful decomposition for functions in IDAs,q (compare with the decompositions of BMO
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and VMO). Using this decomposition, we obtain the completeness of IDAs,q/H(Cn) in ∥ · ∥IDAs,q . In
Sections 4 and 5 we prove Theorems 1.1 and 1.2, respectively. For the latter theorem, we also appeal
to the Calderón–Zygmund theory of singular integrals, and in particular employ the Ahlfors–Beurling
operator to obtain certain estimates on ∂- and ∂̄-derivatives. In Section 6, we present an application of
our results to quantization. In the last section, we give further remarks together with two conjectures.

Throughout the paper, C stands for positive constants which may change from line to line, but does not
depend on functions being considered. Two quantities A and B are called equivalent, denoted by A ≃ B,
if there exists some C such that C−1 A ≤ B ≤ C A.

2. Preliminaries

Let Cn
= R2n be the n-dimensional complex Euclidean space and denote by v the Lebesgue measure on Cn.

For z = (z1, . . . , zn) and w= (w1, . . . , wn) in Cn, we write z ·w̄= z1w̄1 +· · ·+znw̄n and |z| =
√

z · z̄. Let
H(Cn) be the family of all holomorphic functions on Cn. Given a domain� in Cn and a positive Borel mea-
sure µ on �, we denote by L p(�, dµ) the space of all Lebesgue measurable functions f on � for which

∥ f ∥L p(�,dµ) =

{∫
�

| f |
p dµ

}1/p
<∞ for 0< p <∞

and ∥ f ∥L∞(�,dv) = ess supz∈� | f (z)|<∞ for p = ∞. For ease of notation, we simply write L p for the
space L p(Cn, dv).

2A. Weighted Fock spaces. For a real-valued weight ϕ ∈ C2(Cn) and 0< p <∞, denote by L p(ϕ) the
space L p(Cn, e−pϕdv) with norm ∥ · ∥p,ϕ = ∥ · ∥L p(Cn,e−pϕdv). Then the Fock space F p(ϕ) is defined as

F p(ϕ)= L p(ϕ)∩ H(Cn),

F∞(ϕ)=
{

f ∈ H(Cn) : ∥ f ∥∞,ϕ = supz∈Cn | f (z)|e−ϕ(z) <∞
}
.

For 1 ≤ p ≤ ∞, F p(ϕ) is a Banach space in the norm ∥·∥p,ϕ and F2(ϕ) is a Hilbert space. For 0< p< 1,
F p(ϕ) is an F-space with metric given by d( f, g)= ∥ f − g∥

p
p,ϕ .

Other related and widely studied holomorphic function spaces include the Bergman spaces Ap
α(B

n)

of the unit ball Bn consisting of all holomorphic functions f in L p(Bn, dvα), where 0 < p < ∞,
dvα(z)= (1 − |z|2)α dv(z) and α >−1.

In this paper we are interested in Fock spaces F p(ϕ) with certain uniformly convex weights ϕ. More
precisely, suppose ϕ = ϕ(x1, x2, . . . , x2n) ∈ C2(R2n) is real-valued, and there are positive constants m
and M such that HessR ϕ, the real Hessian, satisfies

mE ≤ HessR ϕ(x)=

(
∂2ϕ(x)
∂x j∂xk

)2n

j,k=1
≤ ME, (2-1)

where E is the 2n × 2n identity matrix; above, for symmetric matrices A and B, we used the convention
that A ≤ B if B − A is positive semidefinite. When (2-1) is satisfied, we write HessR ϕ ≃ E. A typical
model of such weights is given by ϕ(z)= (α/2)|z|2 for z = (z1, z2, . . . , zn) with z j = x2 j−1 + ix2 j , which
induces the weighted Fock space F p

α studied by many authors (see, e.g., [Zhu 2012]). Another popular
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example is ϕ(z) = |z|2 −
1
2 log(1 + |z|2), which gives the so-called Fock–Sobolev spaces studied for

example in [Cho and Zhu 2012]. Notice that the weights ϕ satisfying (2-1) are not only radial functions,
as the example ϕ(z)= |z|2 + sin[(z1 + z̄1)/2] clearly shows.

For x = (x1, x2, . . . , x2n), t = (t1, t2, . . . , t2n) ∈ R2n , write z j = x2 j−1 + ix2 j , ξj = t2 j−1 + it2 j and
ξ = (ξ1, ξ2, . . . , ξn). An elementary calculation similar to that on page 125 of [Krantz 1992] shows

Re
n∑

j,k=1

∂2ϕ

∂z j∂zk
(z)ξjξk +

n∑
j,k=1

∂2ϕ

∂z j∂ z̄k
(z)ξj ξ̄k =

1
2

2n∑
j,k=1

∂2ϕ

∂x j∂xk
(x)tj tk ≥

1
2

m|ξ |2.

Replacing ξ with iξ in the above inequality gives

− Re
n∑

j,k=1

∂2ϕ

∂z j∂zk
(z)ξjξk +

n∑
j,k=1

∂2ϕ

∂z j∂ z̄k
(z)ξj ξ̄k ≥

1
2

m|ξ |2.

Thus,
n∑

j,k=1

∂2ϕ

∂z j∂ z̄k
(z)ξj ξ̄k ≥

1
2

m|ξ |2.

Similarly, we have an upper bound for the complex Hessian of ϕ. Therefore, mω0 ≤ ddcϕ ≤ Mω0, where
ω0 = ddc

|z|2 is the Euclidean Kähler form on Cn and dc
=

1
4

√
−1(∂̄− ∂). This implies that the theory in

[Schuster and Varolin 2012; Hu and Lv 2014] is applicable in the present setting.
For z ∈ Cn and r > 0, let B(z, r)= {w ∈ Cn

: |w− z|< r} be the ball with center at z with radius r .
For the proof of the following weighted Bergman inequality, we refer to Proposition 2.3 of [Schuster and
Varolin 2012].

Lemma 2.1. Suppose 0< p ≤ ∞. For each r > 0 there is some C > 0 such that if f ∈ F p(ϕ) then

| f (z)e−ϕ(z)
|

p
≤ C

∫
B(z,r)

| f (ξ)e−ϕ(ξ)
|

p dv(ξ).

It follows from the preceding lemma that ∥ f ∥q,ϕ ≤ C∥ f ∥p,ϕ and

F p(ϕ)⊆ Fq(ϕ) for 0< p ≤ q ≤ ∞. (2-2)

This inclusion is completely different from that of the Bergman spaces.

Lemma 2.2. There exist positive constants θ and C1, depending only on n, m and M, such that

|K (z, w)| ≤ C1eϕ(z)+ϕ(w)e−θ |z−w| for all z, w ∈ Cn, (2-3)

and there exist positive constants C2 and r0 such that

|K (z, w)| ≥ C2eϕ(z)+ϕ(w) (2-4)
for z ∈ Cn and w ∈ B(z, r0).

The estimate (2-3) appeared in [Christ 1991] for n = 1 and in [Delin 1998] for n ≥ 2, while the
inequality (2-4) can be found in [Schuster and Varolin 2012].

For z ∈ Cn, write

kz( · )=
K ( · , z)

√
K (z, z)
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for the normalized Bergman kernel. Then Lemma 2.2 implies

1
C

eϕ(z) ≤ ∥K ( · , z)∥p,ϕ ≤ Ceϕ(z) and 1
C

≤ ∥kz∥p,ϕ ≤ C for z ∈ Cn, (2-5)

and lim|z|→∞ kz(ξ)= 0 uniformly in ξ on compact subsets of Cn.

2B. The Bergman projection. For Fock spaces, we denote by P the orthogonal projection of L2(ϕ)

onto F2(ϕ), and refer to it as the Bergman projection. It is well known that P can be represented as an
integral operator

P f (z)=

∫
Cn

K (z, w) f (w)e−2ϕ(w) dv(w) (2-6)

for z ∈ Cn, where K ( · , · ) is the Bergman (reproducing) kernel of F2(ϕ).
As a consequence of Lemma 2.2, it follows that the Bergman projection P is bounded on L p(ϕ) for

1 ≤ p ≤ ∞, and P|F p(ϕ) = I for 0< p ≤ ∞; for further details, see Proposition 3.4 and Corollary 3.7 of
[Schuster and Varolin 2012].

2C. Hankel operators. To define Hankel operators with unbounded symbols, consider

0 =
{∑N

j=1 aj K ( · , z j ) : N ∈ N, aj ∈ C, z j ∈ Cn for 1 ≤ j ≤ N
}
,

and the symbol class

S = { f measurable on Cn
: f g ∈ L1(ϕ) for g ∈ 0}. (2-7)

Given f ∈ S, the Hankel operator H f = (I − P)M f with symbol f is well-defined on 0. According to
Proposition 2.5 of [Hu and Virtanen 2020], for 0< p <∞, the set 0 is dense in F p(ϕ), and hence the
Hankel operator H f is densely defined on F p(ϕ).

2D. Lattices in Cn. Given r > 0, a sequence {ak}
∞

k=1 in Cn is called an r -lattice if the balls {B(ak, r)}∞k=1
cover Cn and {B(ak, r/(2

√
n))}∞k=1 are pairwise disjoint. A typical model of an r -lattice is the sequence{

r
√

n
(m1 + k1i,m2 + k2i, . . . ,mn + kni) ∈ Cn

: m j , kj ∈ Z, j = 1, 2, . . . , n
}
. (2-8)

Notice that there exists an integer N depending only on the dimension of Cn such that, for any
r -lattice {ak}

∞

k=1,

1 ≤

∞∑
k=1

χB(ak ,2r)(z)≤ N (2-9)

for z ∈ Cn, where χE is the characteristic function of E ⊂ Cn. These well-known facts are explained in
[Zhu 2012] when n = 1 and they can be easily generalized to any n ∈ N.

2E. Fock Carleson measures. In the theory of Bergman spaces, Carleson measures provide an essential
tool for treating various problems, especially in connection with bounded operators, functions of bounded
mean oscillation, and their applications; see, e.g., [Zhu 2005]. In Fock spaces, Carleson measures play a
similar role; see [Zhu 2012] for the Fock spaces F p

α . Carleson measures for Fock–Sobolev spaces were
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described in [Cho and Zhu 2012]. In [Schuster and Varolin 2012], Carleson measures for generalized
Fock spaces (which include the weights considered in the present work) were used to study bounded and
compact Toeplitz operators. Finally, their generalization to (p, q)-Fock Carleson measures was carried
out in [Hu and Lv 2014], which is indispensable to the study of operators between distinct Banach spaces
and will be applied to analyze Hankel operators acting from F p(ϕ) to Lq(ϕ) in our work.

We recall the basic theory of these measures. Let 0< p, q<∞ and letµ≥0 be a positive Borel measure
on Cn. We call µ a (p, q)-Fock Carleson measure if the embedding I : F p(ϕ) → Lq(Cn, e−qϕdµ) is
bounded. Further, the measure µ is referred to as a vanishing (p, q)-Fock Carleson measure if in addition

lim
j→∞

∫
Cn

| f j (z)e−ϕ(z)
|
q dµ(z)= 0

whenever { f j }
∞

j=1 is bounded in F p(ϕ) and converges to 0 uniformly on any compact subset of Cn as
j → ∞. Fock Carleson measures were completely characterized in [Hu and Lv 2014] and we only add
the following simple result, which is trivial for Banach spaces and can be easily proved in the other cases.

Proposition 2.3. Let 0 < p, q < ∞ and µ be a positive Borel measure on Cn. Then µ is a vanishing
(p, q)-Fock Carleson measure if and only if the inclusion map I is compact from F p(ϕ)→ Lq(Cn, dµ).

Proof. It is not difficult to show that the image of the unit ball of F p(ϕ) under the inclusion is relatively
compact in Lq(Cn, eqϕ dµ). We leave out the details. □

2F. Differential forms and an auxiliary integral operator. As in [Krantz 1992], given two nonnegative
integers s, t ≤ n, we write

ω =

∑
|α|=s,|β|=t

ωα,β dzα ∧ dz̄β (2-10)

for a differential form of type (s, t). We denote by Ls,t the family of all (s, t)-forms ω as in (2-10) with
coefficients ωα,β measurable on Cn and set

|ω| =

∑
|α|=s,|β|=t

|ωα,β | and ∥ω∥p,ϕ = ∥|ω|∥p,ϕ. (2-11)

Given a weight function ϕ satisfying (2-1), we define an integral operator Aϕ as

Aϕ(ω)(z)=

∫
Cn

e⟨2∂ϕ,z−ξ⟩
∑
j<n

ω(ξ)∧
∂|ξ − z|2 ∧ (2∂̄∂ϕ(ξ)) j

∧ (∂̄∂|ξ − z|2)n−1− j

j ! |ξ − z|2n−2 j (2-12)

for ω ∈ L0,1, where

⟨∂ϕ(ξ), z − ξ⟩ =

n∑
j=1

∂ϕ

∂ξj
(ξ)(z j − ξj )

as denoted on page 92 in [Berndtsson and Andersson 1982].
For an (s1, t1)-form ωA and an (s2, t2)-form ωB with s1 + s2 ≤ n, t1 + t2 ≤ n, it is easy to verify that

|ωA ∧ωB | ≤ |ωA||ωB |. Therefore, for the (n, n)-form inside the integral of the right-hand side of (2-12),
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we obtain ∣∣∣∣ω(ξ)∧ ∂|ξ − z|2 ∧ (2∂̄∂ϕ) j
∧ (∂̄∂|ξ − z|2)n−1− j

j ! |ξ − z|2n−2 j

∣∣∣∣ ≤ C
|ω(ξ)|

|ξ − z|2n−2 j−1

because i∂∂̄ ϕ(ξ)≃ i∂∂̄ |ξ |2.
Recall that

0 =
{∑N

j=1 aj Kz j : N ∈ N, aj ∈ C, z j ∈ Cn for 1 ≤ j ≤ N
}

is dense in F p(ϕ) for all 0< p <∞.

Lemma 2.4. Suppose 1 ≤ p ≤ ∞.

(I) There is a constant C such that ∥Aϕ(ω)∥p,ϕ ≤ C∥ω∥p,ϕ for ω ∈ L0,1.

(II) For g ∈ 0 and f ∈ C2(Cn) satisfying |∂̄ f | ∈ L p, it holds that ∂̄Aϕ(g∂̄ f )= g∂̄ f .

Proof. Let z ∈ Cn. By (2-1), using Taylor expansion of ϕ at ξ , we get

ϕ(z)−ϕ(ξ)≥ 2 Re
n∑

j=1

∂ϕ(ξ)

∂ξj
(z j − ξj )+ m|z − ξ |2.

Then (2-12) gives

|Aϕ(ω)(z)e−ϕ(z)
| ≤ C

∫
Cn

|ω(ξ)|e−ϕ(ξ)

{
1

|ξ − z|
+

1
|ξ − z|2n−1

}
e−m|ξ−z|2 dv(ξ). (2-13)

For l < 2n fixed, define another integral operator A l as

A l : h 7→

∫
Cn

h(ξ)
e−m|ξ−z|2

|ξ − z|l
dv(ξ).

It is easy to verify, by interpolation, that A l is bounded on L p for 1 ≤ p ≤ ∞. Therefore,

∥Aϕ(ω)∥p,ϕ ≤ C∥(A1 +A2n−1)(|ω|e−ϕ)∥L p

≤ C(∥A1∥L p→L p +A2n−1∥L p→L p)∥ω∥p,ϕ,

which completes the proof of part (A).
Notice that the convexity assumption in (2-1) yields ddcϕ≃ω0, which in turn means that |∂∂̄ϕ(ξ)| ≃ 1.

We use p′ to denote the conjugate of p, 1/p + 1/p′
= 1. Now, for f ∈ C2(Cn) satisfying |∂̄ f | ∈ L p, and

z, z0 ∈ Cn, we have∫
Cn

|K (ξ, z0) ∂̄ f (ξ)|
n−1∑
j=0

e−ϕ(ξ)
|∂̄∂ϕ(ξ)| j

|ξ − z|2n−2 j−1 dv(ξ)

≤ C
{

sup
ξ∈B(z,1)

|K (ξ, z0) ∂̄ f (ξ)e−ϕ(ξ)
| +

∫
Cn\B(z,1)

|K (ξ, z0) ∂̄ f (ξ)|e−ϕ(ξ) dv(ξ)
}

≤ Ceϕ(z0)
{

sup
ξ∈B(z,1)

|∂̄ f (ξ)| + ∥∂̄ f ∥L p∥K ( · , z0)∥p′,ϕ

}
<∞.
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Hence, for g ∈ 0 and z ∈ Cn, it holds that∫
Cn

|g(ξ)∂̄ f (ξ)|
n−1∑
j=0

e−ϕ(ξ)
|∂̄∂ϕ(ξ)| j

|ξ − z|2n−2 j−1 dv(ξ) <∞.

From Proposition 10 of [Berndtsson and Andersson 1982], we get (B) (pay attention to the mistake in the
last line of that result where f is left out on the right-hand side). □

Corollary 2.5. Suppose f ∈ S ∩ C1(Cn) and |∂̄ f | ∈ Ls with some 1 ≤ s ≤ ∞. For g ∈ 0, it holds that

H f (g)= Aϕ(g∂̄ f )− P(Aϕ(g∂̄ f )). (2-14)

Proof. Given f ∈ S ∩ C1(Cn) with |∂̄ f | ∈ Ls and g ∈ 0, we have ∥g∂̄ f ∥1,ϕ ≤ ∥g∥s′,ϕ∥∂̄ f ∥Ls < ∞,
where s ′ is the conjugate of s. Lemma 2.4 implies that u = Aϕ(g∂̄ f ) ∈ L1(ϕ) and ∂̄u = g∂̄ f . Then
f g−u ∈ L1(ϕ). Notice that ∂̄( f g−u)= g∂̄ f − ∂̄u = 0, and so f g−u ∈ F1(ϕ). Since P|F1

ϕ
= I, we have

f g − u = P( f g − u)= P( f g)− P(u).

This shows that H f (g)= u − P(u). □

3. The space IDA

We now introduce a new space to characterize boundedness and compactness of Hankel operators. The
space IDA is related to the space of bounded mean oscillation BMO (see, e.g., [John and Nirenberg 1961;
Zhu 2012]), which has played an important role in many branches of analysis and their applications for
decades. We find that IDA is also broad in scope and should have more applications in operator theory
and related areas.

3A. Definitions and preliminary lemmas. Let 0 < q <∞ and r > 0. For f ∈ Lq
loc (the collection of

q-th locally Lebesgue integrable functions on Cn), following [Luecking 1992], we define Gq,r ( f ) as

Gq,r ( f )(z)= inf
{(

1
|B(z, r)|

∫
B(z,r)

| f − h|
q dv

)1/q

: h ∈ H(B(z, r))
}

(3-1)

for z ∈ Cn.

Definition 3.1. Suppose 0< s ≤ ∞ and 0< q <∞. The space IDAs,q (integral distance to holomorphic
functions) consists of all f ∈ Lq

loc such that

∥ f ∥IDAs,q = ∥Gq,1( f )∥Ls <∞.

The space IDA∞,q is also denoted by BDAq. The space VDAq consists of all f ∈ BDAq such that

lim
z→∞

Gq,1( f )(z)= 0.

We will see in Section 6 that IDAs,q is an extension of the space IMOs,q introduced in [Hu and Wang
2018].

Notice that the space BDA2 was first introduced in the context of the Bergman spaces of the unit
disk in [Luecking 1992], where it is called the space of functions with bounded distance to analytic
functions (BDA).
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Remark 3.2. As is the case with the classical BMOq and VMOq spaces, we have

BDAq2 ⊂ BDAq1 and VDAq2 ⊂ VDAq1

properly for 0< q1 < q2 <∞.

Let 0 < q < ∞. For z ∈ Cn, f ∈ Lq(B(z, r), dv) and r > 0, we define the q-th mean of | f | over
B(z, r) by setting

Mq,r ( f )(z)=

(
1

|B(z, r)|

∫
B(z,r)

| f |
q dv

)1/q

.

For ω ∈ L0,1, we set Mq,r (ω)(z)= Mq,r (|ω|)(z).

Lemma 3.3. Suppose 0 < q <∞. Then for f ∈ Lq
loc, z ∈ Cn and r > 0, there is some h ∈ H(B(z, r))

such that
Mq,r ( f − h)(z)= Gq,r ( f )(z) (3-2)

and
sup

w∈B(z,r/2)
|h(w)| ≤ C∥ f ∥Lq (B(z,r),dv), (3-3)

where the constant C is independent of f and r.

Proof. Let f ∈ Lq
loc, z ∈ Cn and r > 0. Taking h = 0 in the integrand of (3-1), we get

Gq,r ( f )(z)≤ Mq,r ( f )(z) <∞.

Then for j = 1, 2, . . . , we can pick h j ∈ H(B(z, r)) such that

Mq,r ( f − h j )(z)→ Gq,r ( f )(z) (3-4)

as j → ∞. Hence, for j sufficiently large,

Mq,r (h j )(z)≤ C{Mq,r ( f − h j )(z)+ Mq,r ( f )(z)} ≤ C Mq,r ( f )(z). (3-5)

This shows that {h j }
∞

j=1 is a normal family. Thus, we can find a subsequence {h jk }
∞

k=1 and a function
h ∈ H(B(z, r)) so that limk→∞ h jk (w)→ h(w) for w ∈ B(z, r). By (3-4), applying Fatou’s lemma, we
have

Gq,r ( f )(z)≤ Mq,r ( f − h)(z)≤ lim inf
k→∞

Mq,r ( f − h jk )(z)= Gq,r ( f )(z),

which proves (3-2). It remains to note that, with the plurisubharmonicity of |h|
q, for w ∈ B(z, r/2), we

have
|h(w)| ≤ Mq,r/2(h)(w)≤ C Mq,r (h)(z)≤ C Mq,r ( f )(z),

which completes the proof. □

Corollary 3.4. For 0 < s < r , there is a constant C > 0 such that for f ∈ Lq
loc and w ∈ B(z, r − s), it

holds that
Gq,s( f )(w)≤ Mq,s( f − h)(w)≤ CGq,r ( f )(z), (3-6)

where h is as in Lemma 3.3.



2052 ZHANGJIAN HU AND JANI A. VIRTANEN

Proof. For 0< s < r and w ∈ B(z, r − s), we have B(w, s)⊂ B(z, r). Then, the first estimate in (3-6)
comes from the definition of Gq,s( f ), while (3-2) yields

Mq,s( f − h)(w)≤ C Mq,r ( f − h)(z)= CGq,r ( f )(z),

which completes the proof. □

For z ∈ Cn and r > 0, let

Aq(B(z, r), dv)= Lq(B(z, r), dv)∩ H(B(z, r))

be the q-th Bergman space over B(z, r). Denote by Pz,r the corresponding Bergman projection induced
by the Bergman kernel for A2(B(z, r), dv). It is well known that Pz,r ( f ) is well-defined for f ∈

L1(B(z, r), dv).

Lemma 3.5. Suppose 1 ≤ q <∞ and 0< s < r . There is a constant C > 0 such that, for f ∈ Lq
loc and

w ∈ B(z, r − s/(2)),

Gq,s( f )(w)≤ Mq,s( f − Pz,r ( f ))(w)≤ CGq,r ( f )(z) for z ∈ Cn. (3-7)

Proof. We only need to prove the second inequality. Suppose 1< q <∞. Notice that P0,1 is the standard
Bergman projection on the unit ball of Cn. Theorem 2.11 of [Zhu 2005] implies that

∥P0,1∥Lq (B(0,1),dv)→Aq (B(0,1),dv) <∞.

Now for r > 0 fixed and f ∈ Lq((B(0, r), dv), set fr (w)= f (rw). Then

∥ fr∥Lq (B(0,1),dv) = r−2n/q
∥ f ∥Lq (B(0,1),dv).

Furthermore, it is easy to verify that the operator f 7→ P0,1( fr )( · /r) is self-adjoint and idempotent, and
it maps L2((B(0, r), dv) onto A2((B(0, r), dv). Therefore,

P0,r ( f )(z)= P0,1( fr )

(
z
r

)
for f ∈ Lq(B(0, r), dv),

and hence

∥P0,r∥Lq (B(0,r),dv)→Aq (B(0,r),dv) = ∥P0,1∥Lq (B(0,1),dv)→Aq (B(0,1),dv).

Now for z ∈ Cn and r > 0, using a suitable dilation, it follows that

∥Pz,r∥Lq (B(z,r),dv)→Aq (B(z,r),dv) = ∥P0,1∥Lq (B(0,1),dv)→Aq (B(0,1),dv) <∞. (3-8)

Unfortunately, Pz,r is not bounded on L1(B(z, r), dv), but with the same approach as above, by Fubini’s
theorem and Theorem 1.12 of [Zhu 2005], we have

∥Pz,r∥L1(B(z,r),dv)→A1(B(z,r),(r2−| ·−z|2)dv) ≤ C (3-9)

for z ∈ Cn and r > 0.
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Choose h as in Lemma 3.3. Then h ∈ Aq(B(z, r), dv) because f ∈ Lq
loc. Thus, Pz,r (h)= h. Now for

w ∈ B(z, (r − s)/2) and 1 ≤ q <∞,{∫
B(w,s)

| f − Pz,r ( f )|q dv
}1/q

≤ C
{∫

B(z,(r+s)/2)
| f − Pz,r ( f )|q dv

}1/q

≤ C
{∫

B(z,r)
| f (ξ)− Pz,r ( f )(ξ)|q(r2

− |ξ − z|2) dv(ξ)
}1/q

≤ C
{[∫

B(z,r)
| f − h|

q dv
]1/q

+

[∫
B(z,r)

|Pz,r ( f − h)(ξ)|q(r2
− |ξ − z|2) dv(ξ)

]1/q}
≤ C

{∫
B(z,r)

| f − h|
q dv

}1/q
. (3-10)

From this and Lemma 3.3, (3-7) follows. □

Given t > 0, let {aj }
∞

j=1 be a (t/2)-lattice, set Jz = { j : z ∈ B(aj , t)} and denote by |Jz| the cardinal
number of Jz . By (2-9), |Jz| =

∑
∞

j=1 χB(aj ,t)(z)≤ N. Choose a partition of unity {ψj }
∞

j=1, ψ j ∈ C∞(Cn),
subordinate to {B(aj , t/2)} such that

suppψj ⊂ B(aj , t/2), ψj (z)≥ 0,
∞∑
j=1

ψj (z)= 1,

|∂̄ψj (z)| ≤ Ct−1,

∞∑
j=1

∂̄ψj (z)= 0.
(3-11)

Given f ∈ Lq
loc, for j = 1, 2, . . ., pick h j ∈ H(B(aj , t)) as in Lemma 3.3 so that

Mq,t( f − h j )(aj )= Gq,t( f )(aj ).

Define

f1 =

∞∑
j=1

h jψj and f2 = f − f1. (3-12)

Notice that f1(z) is a finite sum for every z ∈ Cn and hence well-defined because we have suppψj ⊂

B(aj , t/2)⊂ B(aj , t).
Inspired by a similar treatment on pages 254–255 of [Luecking 1992], using the partition of unity, we

can prove the following estimate.

Lemma 3.6. Suppose 0 < q <∞. For f ∈ Lq
loc and t > 0, decomposing f = f1 + f2 as in (3-12), we

have f1 ∈ C2(Cn) and

|∂̄ f1(z)| + Mq,t/2(∂̄ f1)(z)+ Mq,t/2( f2)(z)≤ CGq,2t( f )(z) (3-13)

for z ∈ Cn, where the constant C is independent of f .

Proof. Observe first that f1 ∈ C2(Cn) follows directly from the properties of the functions h j and ψj . For
z ∈ Cn, we may assume z ∈ B(a1, t/2) without loss of generality. Then for those j that satisfy ∂̄ψj (z) ̸= 0,
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|h j − h1|
q is plurisubharmonic on B(z, t/2)⊂ B(aj , t). Hence, by Corollary 3.4,

|∂̄ f1(z)| =

∣∣∣∣ ∞∑
j=1

(h j (z)− h1(z))∂̄ψj (z)
∣∣∣∣ ≤

∞∑
j=1

|h j (z)− h1(w)||∂̄ψj (z)|

≤ C
∑

{ j : |aj −z|<t/2}

Mq,t/4(h j − h1)(z)

≤ C
∑

{ j : |aj −z|<t/2}

[Mq,t/4( f − h j )(z)+ Mq,t/4( f − h1)(w)]

≤ C
∑

{ j : |aj −z|<t/2}

Gq,t( f )(aj ).

Thus, using Corollary 3.4 again, we get

|∂̄ f1(z)| ≤ CGq,3t/2( f )(z) for z ∈ Cn,

and so,

Mq,t/2(∂̄ f1)(z)q ≤ C
1

|B(z, t/2)|

∫
B(z,t/2)

Gq,3t/2( f )(w)q dw ≤ CGq,2t( f )(z)q .

Similarly, we have | f2(ξ)|
q

≤ C
∑

∞

j=1 | f (ξ)− h j (ξ)|
qψj (ξ)

q, and so

Mq,t/2( f2)(z)q ≤ C
∞∑
j=1

1
|B(z, t/2)|

∫
B(z,t/2)

| f − h j |
qψ

q
j dv ≤ C

∑
{ j : |aj −z|<t/2}

Gq,t( f )(aj )
q .

Therefore,

Mq,t/2( f2)(z)≤ CGq,3t/2( f )(z).

Combining this and the other two estimates above gives (3-13). □

Given {ψj } as in (3-11), we have another decomposition f = F1 +F2, where

F1 =

∞∑
j=1

Paj ,t( f )ψj and F2 = f −F1. (3-14)

When q = 2, the two decompositions coincide.

Corollary 3.7. Suppose 1 ≤ q <∞. For f ∈ Lq
loc and t > 0, we have F1 ∈ C2(Cn) and

|∂̄F1(z)| + Mq,t/2(∂̄F1)(z)+ Mq,t/2(F2)(z)≤ CGq,2t( f )(z) (3-15)

for z ∈ Cn, where the constant C is independent of f .

Proof. The proof can be carried out as that of Lemma 3.6 using (3-7) instead of (3-6). We omit the
details. □

3B. The decomposition. In our analysis, we will appeal to ∂̄-techniques several times. Let �⊂ Cn be
strongly pseudoconvex with C4 boundary, and let S be a ∂̄-closed (0, 1) form on � with L p coefficients,
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1 ≤ p ≤ ∞. As in [Krantz 1992], we denote by H�(S) the Henkin solution of ∂̄-equation ∂̄u = S on �.
We observe that Theorem 10.3.9 of that work implies that, for 1 ≤ q <∞,

∥H�(S)∥Lq (�,dv) ≤ C∥S∥Lq (�,dv), (3-16)

where the constant C is independent of S and of “small” perturbations of the boundary. (We note that the
second item in Theorem 10.3.9 of [Krantz 1992] is stated incorrectly and should read ∥u∥Lq ≤ C p∥ f ∥p

instead.) Indeed, to deduce (3-16), we consider three cases. First, for 1 ≤ q < (2n + 2)/(2n + 1),

∥H�(S)∥Lq (�,dv) ≤ C∥S∥L1(�,dv) ≤ C∥S∥Lq (�,dv).

For q = (2n + 2)/(2n + 1), take 1 < p = q < 2n + 2 and q1 = (2n + 2)/(2n) > q. Then 1/q1 =

1/p − 1/(2n + 2), and by the second item in Theorem 10.3.9 of [Krantz 1992], we have

∥H�(S)∥Lq (�,dv) ≤ C∥H�(S)∥Lq1 (�,dv) ≤ C∥S∥L p(�,dv).

Finally, for q > (2n + 2)/(2n + 1), choose p so that 1/q = 1/p − 1/(2n + 2). Then 1< p < 2n + 2 and
p < q . Now Theorem 10.3.9 of [Krantz 1992] implies

∥H�(S)∥Lq (�,dv) ≤ C∥S∥L p(�,dv) ≤ C∥S∥Lq (�,dv).

Theorem 3.8. Suppose 1 ≤ q <∞, 0< s <∞, and f ∈ Lq
loc. Then f ∈ IDAs,q if and only if f admits a

decomposition f = f1 + f2 such that

f1 ∈ C2(Cn), Mq,r (∂̄ f1)+ Mq,r ( f2) ∈ Ls (3-17)

for some (or any) r > 0. Furthermore, for fixed τ, r > 0, it holds that

∥ f ∥IDAs,q ≃ ∥Gq,τ ( f )∥Ls ≃ inf{∥Mq,r (∂̄ f1)∥Ls + ∥Mq,r ( f2)∥Ls }, (3-18)

where the infimum is taken over all possible decompositions f = f1 + f2 that satisfy (3-17) with a fixed r.

Proof. First, given 0< r < R <∞, we have some a1, a1, . . . , am ∈ Cn so that B(0, R)⊂
⋃m

j=1 B(aj , r).
Then, for g ∈ Lq

loc,

Mq,R(g)(z)s ≤ C
m∑

j=1

Mq,r (g)(z + aj )
s, z ∈ Cn,

and ∫
Cn

Mq,R(g)(z)s dv(z)≤ C
m∑

j=1

∫
Cn

Mq,r (g)(z + aj )
s dv(z)≤ C

∫
Cn

Mq,r (g)(z)s dv(z). (3-19)

This implies that (3-17) holds for some r if and only if it holds for any r .
Suppose that f ∈ Lq

loc with ∥Gq,τ ( f )∥Ls < ∞ for some τ > 0 and decompose f = f1 + f2 as in
Lemma 3.6 with t = τ/2. Then f1 ∈ C2(Cn) and

|∂̄ f1(z)| + Mq,τ/4(∂̄ f1)(z)+ Mq,τ/4( f2)(z)≤ CGq,τ ( f )(z).
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Now for any r > 0, we have

∥Mq,r (∂̄ f1)∥Ls + ∥Mq,r ( f2)∥Ls ≤ C∥Gq,τ ( f )∥Ls . (3-20)

This implies that, f = f1 + f2 satisfies (3-17).
Conversely, suppose f = f1 + f2 with f1 ∈ C2(Cn) and Mq,r (∂̄ f1)+ Mq,r ( f2) ∈ Ls for some r > 0 as

in Theorem 3.8. Then, for any τ > 0,

∥Gq,τ ( f2)∥Ls ≤ C∥Mq,τ ( f2)∥Ls ≤ C∥Mq,r ( f2)∥Ls . (3-21)

So f2 ∈ IDAs,q. To consider f1, we write u = HB(z,2τ)(∂̄ f1) for the Henkin solution of the equation
∂̄u = ∂̄ f1 on B(z, 2τ). From (3-16) and (3-17), u satisfies

Mq,2τ (u)(z)≤ C Mq,2τ (∂̄ f1)(z) for z ∈ Cn, (3-22)

which implies that u ∈ Lq(B(z, 2τ), dv). Similarly to (3-10),

Mq,τ (Pz,2τ (u))(z)≤ C Mq,2τ (u)(z).

Thus,
Mq,τ (u − Pz,2τ (u))(z)≤ Mq,τ (u)(z)+ Mq,τ (Pz,2τ (u))(z)

≤ C Mq,2τ (u)(z). (3-23)

Since
f1 − u ∈ Lq(B(z, 2τ), dv) and ∂̄( f1 − u)= 0,

we have
f1 − u ∈ Aq(B(z, 2τ), dv).

Notice that Pz,2τ |Aq (B(z,2τ),dv) = I, and so

f1(ξ)− Pz,2τ ( f1)(ξ)= u(ξ)− Pz,2τ (u)(ξ) for ξ ∈ B(z, 2τ). (3-24)

Combining (3-22), (3-23) and (3-24), we get

Mq,τ ( f1 − Pz,2τ ( f1))(z)= Mq,τ (u − Pz,2τ (u))(z)

≤ Mq,2τ (u)(z)≤ C Mq,2τ (∂̄ f1)(z).
Therefore, by (3-19),

∥Gq,τ ( f1)∥Ls ≤ ∥Mq,r ( f1 − Pz,2τ ( f1))∥Ls

≤ C∥Mq,2τ (∂̄ f1)∥Ls ≤ C∥Mq,r (∂̄ f1)∥Ls .

This and (3-21) yield
∥Gq,τ ( f )∥Ls ≤ C{∥Mq,r (∂̄ f1)∥Ls + ∥Mq,r ( f2)∥Ls }. (3-25)

Thus, f = f1 + f2 ∈ IDAs,q.
It remains to note that the norm equivalence (3-18) follows from (3-20) and (3-25). □

With a similar proof we have the following corollary.
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Corollary 3.9. Suppose 1 ≤ q <∞, and f ∈ Lq
loc. Then f ∈ BDAq (or VDAq ) if and only if f = f1 + f2,

where
f1 ∈ C2(Cn), ∂̄ f1 ∈ L∞

0,1 (or lim
z→∞

|∂̄ f1| = 0) (3-26)

and
Mq,r ( f2) ∈ L∞ (or lim

z→∞
Mq,r ( f2)= 0) (3-27)

for some (or any) r > 0. Furthermore,

∥ f ∥BDAq ≃ inf{∥∂̄ f1∥L∞

0,1
+ ∥Mq,r ( f2)∥L∞},

where the infimum is taken over all possible decompositions f = f1 + f2, with f1 and f2 satisfying the
conditions in (3-26) and (3-27).

Corollary 3.10. Suppose 1 ≤ q <∞. Different values of r give equivalent seminorms ∥Gq,r ( · )∥Ls on
IDAs,q when 0< s <∞ and on both BDAq and VDAq when s = ∞.

Remark 3.11. Recall that each f in BMOq can be decomposed as f = f1 + f2, where f1 is of bounded
oscillation BO and f2 has a bounded average BAq (see [Zhu 2012] for the one-dimensional case and [Lv
2019] for the general case). Furthermore, we may choose f1 to be a Lipschitz function in C2(Cn) (see
Corollary 3.37 of [Zhu 2012]); that is, f ∈ BMOq if and only if f = f1 + f2 with all ∂ f1/∂x j ∈ L∞ for
j = 1, 2, . . . , 2n and f2 ∈ BAq, or in the language of complex analysis both ∂̄ f1 and ∂̄ f̄1 are bounded.
Therefore, f ∈ BMOq if and only if f, f̄ ∈ BDAq. For a similar relationship between IMOq and the IDA
spaces, see Lemma 6.1 of [Hu and Virtanen 2022] and Theorem 7.1 below.

3C. IDA as a Banach space. We next prove that IDAs,q/H(Cn) with 1 ≤ s, q <∞ is a Banach space
when equipped with the induced norm

∥ f + H(Cn)∥ = ∥ f ∥IDAs,q (3-28)

for f ∈ IDAs,q .

Theorem 3.12. For 1 ≤ s, q <∞, the quotient space IDAs,q/H(Cn) is a Banach space with the norm
induced by ∥ · ∥IDAs,q.

Proof. Obviously H(Cn)⊂ IDAs,q . Now given f ∈ IDAs,q and h ∈ H(Cn), we have Gq,r ( f )=Gq,r ( f +h).
This means that the norm in (3-28) is well-defined on IDAs,q/H(Cn). If ∥ f ∥IDAs,q =0, then Gq,r ( f )(z)=0
in Cn. By Lemma 3.3, f ∈ H(B(z, r)) and hence f ∈ H(Cn).

Let f1, f2 ∈ IDAs,q and z ∈ Cn. According to Lemma 3.3, there are functions h j holomorphic in
B(z, r) such that

Mq,r ( f j − h j )(z)= Gq,r ( f j )(z) for j = 1, 2.

Then, since

Mq,r (( f1 + f2)− (h1 + h2))(z)≤ Mq,r ( f1 − h1)(z)+ Mq,r ( f2 − h2)(z),

we have
Gq,r ( f1 + f2)(z)≤ Gq,r ( f1)(z)+ Gq,r ( f2)(z) for z ∈ Cn.
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Hence, ∥ f1+ f2∥IDAs,q ≤∥ f1∥IDAs,q +∥ f2∥IDAs,q . In addition, ∥ f ∥IDAs,q ≥ 0 and ∥a f ∥IDAs,q =|a|∥ f ∥IDAs,q

for a ∈ C. Therefore, ∥ · ∥IDAs,q induces a norm on IDAs,q/H(Cn).
It remains to prove that the norm is complete. Suppose that { fm}

∞

m=1 is a Cauchy sequence in

∥ · ∥IDAs,q = ∥Gq,1( · )∥Ls .

According to Corollary 3.10, we may assume that { fm}
∞

m=1 is a Cauchy sequence in ∥Gq,r ( · )∥Ls with
r > 0 fixed. We now embark on proving that, for some f ∈ IDAs,q, limm→∞ ∥Gq,r/2( fm − f )∥Ls = 0,
which implies { fm}

∞

m=1 converges to some f ∈ IDAs,q in the ∥ · ∥IDAs,q -topology. For this purpose, let
{aj }

∞

j=1 be some t = (r/4)-lattice. We decompose each fm similarly to (3-14) as

fm,1 =

∞∑
j=1

Paj ,r ( fm)ψj and fm,2 = fm − fm,1,

where {ψj }
∞

j=1 is the partition of unity subordinate to {B(aj , r/4)}∞j=1 as in (3-11). It follows from
Corollary 3.7 that

Mq,r/8( fm,2 − fk,2)(z)s = Mq,r/8

(
( fm − fk)−

∞∑
j=1

Paj ,t( fm − fk)ψj

)
(z)s

≤ CGq,r/2( fm − fk)(z)s

≤ C
∫

B(z,r/2)
Gq,r ( fm − fk)(ξ)

s dv(ξ).

This implies that { fm,2}
∞

j=1 converges to some function f2 in the Lq
loc-topology. In addition, by Lemma 3.5,

we have
Mq,r/2( fm,2 − fk,2 − Pz,r ( fm,2 − fk,2))(z)≤ CGq,r ( fm,2 − fk,2)(z).

Letting k → ∞ and applying Fatou’s lemma, we get

Gq,r/2( fm,2 − f2)(z)s ≤ Mq,r/2( fm,2 − f2 − Pz,r ( fm,2 − f2))(z)s

≤ C lim inf
k→∞

Gq,r ( fm,2 − fk,2)(z)s .

Integrate both sides over Cn and apply Fatou’s lemma again to obtain the estimate∫
Cn

Gq,r/2( fm,2 − f2)
s dv ≤ C lim inf

k→∞

∥ fm,2 − fk,2∥IDAs,q .

Therefore,
lim

m→∞
∥ fm,2 − f2∥IDAs,q = 0. (3-29)

Next we consider { fm,1}
∞

m=1. Applying the estimate (3-15) to fm − fk ,

|∂̄( fm,1 − fk,1)(z)| ≤ CGq,r/2( fm − fk)(z). (3-30)

Hence, {∂̄ fm,1}
∞

m=1 is a Cauchy sequence in Ls
0,1 (see (2-11)). We may assume ∂̄ fm,1 → S =

∑n
j=1 Sj dz̄ j

under the Ls
0,1-norm. Since ∂̄2

= 0, ∂̄ fm,1 is trivially ∂̄-closed, and so, as the Ls
0,1 limit of {∂̄ fm,1}

∞

m=1,
S is also ∂̄-closed weakly. Let φ(z)=

1
2 |z|2 and g = 1 ∈ 0, and define

f1(z)= Aφ(S) and f ∗

m,1 = Aφ(∂̄ fm,1).
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Then, by Lemma 2.4,
f1, f ∗

m,1 ∈ Ls(φ)⊂ Ls
loc, ∂̄ f ∗

m,1 = ∂̄ fm,1,

and { f ∗

m,1}
∞

m=1 converges to f1 in Ls(φ). Therefore, for ψ ∈ C∞
c (C

n) (the family of all C∞ functions
with compact support) and j = 1, 2, . . . , n, it holds that

−

〈
f1,
∂ψ

∂z j

〉
L2

= − lim
m→∞

〈
f ∗

m,1,
∂ψ

∂z j

〉
L2

= lim
m→∞

〈
∂ f ∗

m,1

∂ z̄ j
, ψ

〉
L2

= lim
m→∞

〈
∂ fm,1

∂ z̄ j
, ψ

〉
L2

= ⟨Sj , ψ⟩L2 .

Hence, ∂̄ f1 = S weakly. Then for HB(z,r)(∂̄ fm,1 − S), the Henkin solution to the equation ∂̄u = ∂̄ fm,1 − S
on B(z, r), (3-16) gives

∥HB(z,r)(∂̄ fm,1 − S)∥Lq (B(z,r),dv) ≤ C∥∂̄ fm,1 − S∥Lq (B(z,r),dv). (3-31)

In addition, according to (3-24), it holds that

( fm,1 − f1)− Pz,r ( fm,1 − f1)= HB(z,r)(∂̄ fm,1 − S)− Pz,r (HB(z,r)(∂̄ fm,1 − S))

on B(z, r). Therefore, by (3-8), (3-9), and (3-31) we have

∥( fm,1 − f1)− Pz,r ( fm,1 − f1)∥
q
Lq (B(z,r/2), dv)

= ∥HB(z,r)(∂̄ fm,1 − S)− Pz,r (HB(z,r)(∂̄ fm,1 − S))∥q
Lq (B(z,r/2), dv)

≤ C∥HB(z,r)(∂̄ fm,1 − S)∥q
Lq (B(z,r), dv)

≤ C∥∂̄ fm,1 − S∥
q
Lq (B(z,r),dv). (3-32)

Since S = limk→∞ ∂̄ fk,1 in Ls
0,1, by Fatou’s lemma,

∥∂̄ fm,1 − S∥
q
Lq (B(z,r),dv) ≤ C lim inf

k→∞

∥∂̄( fm,1 − fk,1)∥
q
Lq (B(z,r),dv)

≤ C lim inf
k→∞

Gq,2r ( fm,1 − fk,1)(z)q , (3-33)

where the last inequality follows from (3-30). We combine (3-32) and (3-33) to get

∥( fm,1 − f1)− Pz,r ( fm,1 − f1)∥
s
Lq (B(z,r/2),dv) ≤ C lim inf

k→∞

Gq,2r ( fm,1 − fk,1)(z)s .

Integrating both sides over Cn with respect to dv and applying Fatou’s lemma once more gives the
estimates

∥ fm,1 − f1∥
s
IDAs,q ≤ C

∫
Cn

∥( fm,1 − f1)− Pz,r ( fm,1 − f1)∥
s
Lq (B(z,r/2)) dv

≤ C
∫

Cn
lim inf
k→∞

Gq,2r ( fm,1 − fk,1)
s dv

≤ C lim inf
k→∞

∥ fm,1 − fk,1∥
s
IDAs,q . (3-34)

Therefore, limm→∞ ∥ fm,1 − f1∥IDAs,q = 0. Set f = f1 + f2 ∈ Lq
loc. From (3-29) and (3-34) it follows that

lim
m→∞

∥ fm − f ∥IDAs,q ≤ lim
m→∞

(∥ fm,1 − f1∥IDAs,q + ∥ fm,2 − f2∥IDAs,q )= 0,

which completes the proof of the completeness and of the theorem. □
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Corollary 3.13. Let 1 ≤ q <∞. With the norm induced by ∥ · ∥BDAq , the quotient space BDAq/H(Cn) is
a Banach space and VDAq is a closed subspace of BDAq.

Proof. The proof of Theorem 3.12 works for s = ∞, so BDAq/H(Cn) is a Banach space in ∥ · ∥BDAq .
That VDAq is a closed subspace of BDAq can be proved in a standard way. □

4. Proof of Theorem 1.1

Given two F-spaces X and Y, we write B(X) for the unit ball of X. A linear operator T from X to Y is
bounded (or compact) if T(B(X)) is bounded (or relatively compact) in Y. The collection of all bounded
(and compact) operators from X to Y is denoted by B(X,Y) (and by K(X,Y) respectively). We use
∥T∥X→Y to denote the corresponding operator norm. In particular, we recall that when 0< p < 1, the
Fock space F p(ϕ) with the metric given by d( f, g)= ∥ f − g∥

p
p,ϕ is an F-space.

To deal with the boundedness and compactness of Hankel operators, we need an additional result
involving positive measures and their averages. More precisely, given a positive Borel measure µ on Cn

and r > 0, we write µ̂r (z)= µ(B(z, r)). Notice, in particular, µ̂r is a constant multiple of the averaging
function induced by the measure µ.

Lemma 4.1. Suppose 0 < p ≤ 1 and r > 0. There is a constant C such that, for µ a positive Borel
measure on Cn, � a domain in Cn, and g ∈ H(Cn), it holds that(∫

�

|g(ξ)e−ϕ(ξ)
| dµ(ξ)

)p

≤ C
∫
�+

r

|g(ξ)e−ϕ(ξ)
|

pµ̂r (ξ)
p dv(ξ),

where �+
r =

⋃
{z∈�}

B(z, r).

Proof. Let {aj }
∞

j=1 be an (r/4)-lattice. Notice that

µ̂r/4(aj )≤ C inf
w∈B(aj ,r/2)

µ̂r (w)

for all j ∈ N and (a + b)p
≤ a p

+ bp for a, b ≥ 0. Then(∫
�

|g(ξ)e−ϕ(ξ)
| dµ(ξ)

)p

≤

∞∑
j=1

(∫
B(aj ,r/4)∩�

|g(ξ)e−ϕ(ξ)
| dµ(ξ)

)p

≤ C
∑

{ j : B(aj ,r/4)∩� ̸=∅}

sup
ξ∈B(aj ,r/4)∩�

|g(ξ)e−ϕ(ξ)
|

pµ̂r/4(aj )
p

≤ C
∑

{ j : B(aj ,r/4)∩� ̸=∅}

µ̂r/4(aj )
p
∫

B(aj ,r/2)
|g(ξ)e−ϕ(ξ)

|
p dv(ξ)

≤ C
∑

{ j : B(aj ,r/4)∩� ̸=∅}

∫
B(aj ,r/2)

|g(ξ)e−ϕ(ξ)
|

pµ̂r (ξ)
p dv(ξ)

≤ C
∫
�+

r

|g(ξ)e−ϕ(ξ)
|

pµ̂r (ξ)
p dv(ξ),

which completes the proof. □
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Remark 4.2. To prove compactness of Hankel operators on spaces that are not necessarily Banach spaces,
we use the following result. For 0< p, q <∞, H f : F p(ϕ)→ Lq(ϕ) is compact if and only if

lim
m→∞

∥H f (gm)∥q,ϕ = 0

for any sequences {gm}
∞

m=1 in B(F p(ϕ)) satisfying

lim
m→∞

sup
w∈E

|gm(w)| = 0

for compact subsets E in Cn.
Necessity is trivial. To prove sufficiency, we notice that B(F p(ϕ)) is a normal family, so for any

sequence {gm}
∞

m=1 ⊂ B(F p(ϕ)), there exist a holomorphic function g0 on Cn and a subsequence {gm j }
∞

j=1
such that

lim
j→∞

sup
w∈E

|gm j (w)− g0(w)| = 0.

This and Fatou’s lemma imply that g0 ∈ B(F p(ϕ)), and hence by the hypothesis, we get

lim
j→∞

∥H f (gm j )− H f (g0)∥q,ϕ = lim
j→∞

∥H f (gm j − g0)∥q,ϕ = 0.

Thus, H f (B(F p(ϕ))) is sequentially compact in Lq(ϕ), that is, the Hankel operator H f : F p(ϕ)→ Lq(ϕ)

is compact.

4A. The case 0 < p ≤ q < ∞ and q ≥ 1.

Proof of Theorem 1.1(a). By (2-3)–(2-5),

∥kz∥p,ϕ ≤ C, sup
ξ∈B(z,r0)

|kz(ξ)|e−ϕ(ξ)
≥ C and lim

z→∞
sup
w∈E

|kz(w)| = 0 (4-1)

for any compact subset E ⊂ Cn. As in the proof of Theorem 4.2 of [Hu and Lu 2019], there is an r0 such
that, for all z ∈ Cn, we have

∥H f (kz)∥
q
q,ϕ ≥

∫
B(z,r0)

| f kz − P( f kz)|
qe−qϕ dv

≥ C
1

|B(z, r0)|

∫
B(z,r0)

∣∣∣∣ f −
1
kz

P( f kz)

∣∣∣∣q

dv ≥ CGq
q,r0
( f )(z). (4-2)

If H f ∈ B(F p(ϕ), Lq(ϕ)),

∥ f ∥BDAq ≤ C∥H f ∥F p(ϕ)→Lq (ϕ) <∞; (4-3)

if H f ∈ K(F p(ϕ), Lq(ϕ)), then f ∈ VDAq because

lim
z→∞

Gq
q,r0
( f )(z)≤ C lim

z→∞
∥H f (kz)∥q,ϕ = 0. (4-4)

Next we prove sufficiency. Suppose that f ∈ BDAq and decompose f = f1 + f2 as in (3-12). Write
dµ = | f2|

qdv and dν = |∂̄ f1|
qdv. According to Theorem 2.6 of [Hu and Lv 2014] and Corollary 3.9,
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both dµ and dν are (p, q)-Fock Carleson measures. We claim that both f1, f2 ∈ S. Indeed, since q ≥ 1,
we can use Lemma 4.1 with �= Cn and the measure | f2|dv to get∫

Cn
| f2(ξ)K (ξ, z)|e−ϕ(ξ) dv(ξ)≤ C

∫
Cn

M1,r ( f2)(ζ )|K (ζ, z)|e−ϕ(ζ ) dv(ζ )

≤ C
∫

Cn
Mq,r ( f2)(ζ )|K (ζ, z)|e−ϕ(ζ ) dv(ζ ). (4-5)

Since f ∈ BDAq, Lemma 3.6 implies∫
Cn

| f2(ξ)K (ξ, z)|e−ϕ(ξ) dv(ξ)≤ C∥ f ∥B D Aq

∫
Cn

|K (ξ, z)|e−ϕ(ξ) dv(ξ) <∞

for z ∈ Cn. Hence, f2 ∈ S, and so also f1 = f − f2 ∈ S because f ∈ S by the hypothesis. Since the
Bergman projection P is bounded on Lq(ϕ) when q ≥ 1, we have, for g ∈ 0,

∥H f2(g)∥q,ϕ ≤ (1 + ∥P∥Lq (ϕ)→Fq (ϕ))∥ f2g∥q,ϕ

≤ C∥Mq,r ( f2)∥L∞∥g∥q,ϕ ≤ C∥Mq,r ( f2)∥L∞∥g∥p,ϕ,

where the second inequality follows from Lemma 4.1. For H f1(g) with g ∈ 0, Corollary 2.5 shows that
H f1(g)= Aϕ(g∂̄ f1)− P(Aϕ(g∂̄ f1)). Lemma 2.4 implies

∥H f1(g)∥q,ϕ ≤ C∥g |∂̄ f1|∥q,ϕ ≤ C∥∂̄ f1∥L∞∥g∥q,ϕ ≤ C∥∂̄ f1∥L∞∥g∥p,ϕ. (4-6)

From the above estimates and the fact that 0 is dense in F p(ϕ), it follows that, for 0< p ≤ q <∞, we
have

∥H f ∥F p(ϕ)→Lq (ϕ) ≤ C{∥∂̄ f1∥L∞ + ∥Mq,r ( f2)∥L∞} ≤ C∥ f ∥BDAq , (4-7)

where the latter inequality follows from Lemma 3.6.
For compactness, suppose f ∈ VDAq so that f = f1 + f2 is as (3-12). Notice that both dµ= | f2|

q dv
and dν = |∂̄ f1|

q dv are vanishing (p, q)-Fock Carleson measures. Let {gm} be a bounded sequence in
F p(ϕ) converging to zero uniformly on compact subsets of Cn. Then

∥H f2(gm)∥Lq (ϕ) ≤ ∥gm f2∥q,ϕ + ∥P(gm f2)∥q,ϕ ≤ C
(∫

C

|gme−ϕ
|
q dµ

)1/q

→ 0

as m →∞. To prove limm→∞ ∥H f1(gm)∥Lq (ϕ)=0, for each m we pick some g∗
m ∈0 so that ∥gm−g∗

m∥p,ϕ<

1/m. Clearly, {g∗
m}

∞

m=1 is bounded in F p(ϕ), and limz→∞ supw∈E |g∗
m(w)| = 0 for any compact subset E .

Again by Corollary 2.5,

∥H f1(g
∗

m)∥Lq (ϕ) ≤ C∥g∗

m ∂̄ f1∥Lq (ϕ) ≤ C∥g∗

m∥Lq (Cn,dν) → 0 as m → ∞.

Thus, since Lemma 3.6 guarantees H f1 ∈ B(F p(ϕ), Lq(ϕ)), it follows that limm→∞ ∥H f1(gm)∥Lq (ϕ) = 0,
and so

H f = H f1 + H f2 ∈ K(F p(ϕ), Lq(ϕ)).

Finally, it remains to notice that the norm equivalence (1-1) follows from (4-3) and (4-7). □
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4B. The case 1 ≤ q < p < ∞. We can now prove the case q < p under the assumption that q ≥ 1.

Proof of Theorem 1.1(b). Suppose that H f ∈B(F p(ϕ), Lq(ϕ)). Because the proof of sufficiency is similar
to the implication (A)⇒ (C) of Theorem 4.4 in [Hu and Lu 2019], we only give the sketch here.

Indeed, take r0 as in (4-1), and set t = r0/4. Let {aj }
∞

j=1 be a (t/2)-lattice. By Lemma 2.4 of [Hu and Lv
2014],

∥∥∑
∞

j=1 λj kaj

∥∥
p,ϕ ≤ C∥{λj }∥l p for all {λj }

∞

j=1 ∈ l p, where the constant C is independent of {λj }
∞

j=1.
Let {φj }

∞

j=1 be the sequence of Rademacher functions on the interval [0, 1]. Using the boundedness of H f ,
we get ∥∥∥∥H f

( ∞∑
j=1

λjφj (s)kaj ( · )

)∥∥∥∥
q,ϕ

≤ C∥H f ∥F p(ϕ)→Lq (ϕ)∥{|λj |
q
}∥

1/q
l p/q (4-8)

for s ∈ [0, 1]. On the other hand,∫
B(aj ,t)

|H f (kz)(ξ)e−ϕ(ξ)
|
q dv(ξ)≥ CGq,t( f )(aj )

q . (4-9)

This and Khintchine’s inequality yield∫ 1

0

∥∥∥∥H f

( ∞∑
j=1

λjφj (s)kaj ( · )

)∥∥∥∥q

q,ϕ
dt ≥ C

∞∑
j=1

|λj |
q Gq,t( f )(aj )

q .

Combining this with (4-8) gives
∞∑
j=1

|λj |
q Gq,t( f )(aj )

q
≤ C∥H f ∥

q
F p(ϕ)→Lq (ϕ)∥{|λj |

q
}∥l p/q

for all {|λj |
q
}
∞

j=1 ∈ l p/q. By duality with the exponentials p/q and its conjugate,
∞∑
j=1

Gq,t( f )(aj )
pq/(p−q)

≤ C∥H f ∥
pq/(p−q)
F p(ϕ)→Lq (ϕ).

Therefore, by (3-7),∫
Cn

Gq,t/2( f )(z)pq/(p−q) dv(z)≤

∞∑
j=1

∫
B(aj ,t/2)

Gq,t/2( f )(z)pq/(p−q) dv(z)

≤ C∥H f ∥
pq/(p−q)
F p(ϕ)→Lq (ϕ), (4-10)

which means that f ∈ IDAs,q with the estimate ∥ f ∥IDAs,q ≤ C∥H f ∥.
It should be pointed out that the right-hand side of the estimate (4.24) (the analogue of (4-10) above)

in [Hu and Lu 2019] should read C∥H f ∥
pq/(p−q)
Ap
ω→Lq

ω
, and not C∥H f ∥Ap

ω→Lq
ω

as stated there.
Conversely, suppose f ∈ IDAs,q. As before, decompose f = f1 + f2 as in (3-12). From Lemma 3.6 we

know that ∥Mq,r ( f2)∥pq/(p−q) ≤ C∥ f ∥IDAs,q . Applying Hölder’s inequality to the right-hand side integral
in (4-5) with exponent pq/(p − q) and its conjugate exponent t , since we have ∥K ( · , z)∥t,ϕ <∞, it
follows that ∫

Cn
| f2(ξ)Kz(ξ)|e−ϕ(ξ) dv(ξ)≤ C∥Mq,r ( f2)∥pq/(p−q) · ∥Kz∥t,ϕ <∞.

This implies f2 ∈ S, and so also f1 ∈ S.
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Now for dν = |∂̄ f1|
qdv, applying Hölder’s inequality again with p/(p −q) and its conjugate exponent

p/q, we get

∥ν̂r∥
p/(p−q)
L p/(p−q) = C

∫
Cn

{∫
B(ξ,r)

|∂̄ f1(ζ )|
q dv(ζ )

}p/(p−q)

dv(ξ)

≤ C
∫

Cn
dv(ξ)

∫
B(ξ,r)

|∂̄ f1(ζ )|
pq/(p−q) dv(ζ )

≃ C
∫

Cn
|∂̄ f1(ζ )|

pq/(p−q) dv(ζ ) <∞. (4-11)

Theorem 2.8 of [Hu and Lv 2014] shows that ν is a vanishing (p, q)-Fock Carleson measure; that is,
the multiplier M f1 : g 7→ g|∂̄ f1| is compact from F p(ϕ) to Lq(ϕ) (see Proposition 2.3). Therefore, by
Lemma 2.4(A), Aϕ( · ∂̄ f1) is compact from F p(ϕ) to Lq(ϕ). Moreover, 0 is dense in F p(ϕ) and, by
Corollary 2.5, H f1(g)= Aϕ(g ∂̄ f1)− P ◦ Aϕ(g ∂̄ f1) for g ∈ 0. Hence, H f1 : F p(ϕ)→ Lq(ϕ) is compact
and we obtain the norm estimate

∥H f1∥F p(ϕ)→Lq (ϕ) ≤ C sup
{g∈F p(ϕ): ∥g∥p,ϕ≤1}

∥Aϕ(g∂̄ f1)∥q,ϕ ≤ C∥∂̄ f1∥pq/(p−q). (4-12)

Similarly to (4-11), using Lemma 3.6, for dµ= | f2|
qdv, we get

∥µ̂r∥
p/(p−q)
L p/(p−q) = C

∫
Cn

{∫
B(ξ,r)

| f2(ζ )|
q dv(ζ )

}p/(p−q)

dv(ξ)

= C∥Mq,r ( f2)∥
pq/(p−q)
pq/(p−q) ≤ C∥ f ∥

s
IDAs,q <∞.

Hence, dµ= | f2|
q dv is a vanishing (p, q)-Fock Carleson measure. It follows from Proposition 2.3 that

the identity operator

I : F p(ϕ)→ Lq(Cn, e−qϕ dµ)

is compact. Using the inequality

∥H f2(g)∥q,ϕ ≤ C∥ f2g∥q,ϕ = C∥I(g)∥Lq (C, e−qϕdµ), (4-13)

we see that H f2 is compact from F p(ϕ) to Lq(ϕ).
It remains to notice that the norm equivalence in (1-2) follows from combining the estimates in (4-10),

(4-12), and (4-13). □

Remark 4.3. In [Stroethoff 1992], it was proved that for bounded symbols f , the Hankel operator
H f : F2

→ L2 is compact if and only if

∥(I − P)( f ◦φλ)∥ → 0 (4-14)

as |λ| → ∞, where φλ(z)= z +λ. This characterization was recently generalized to F p
α with 1< p <∞

in [Hagger and Virtanen 2021]. Here we note that, using a generalization of Lemma 8.2 of [Zhu 2012] to
the setting of Cn, one can prove that Stroethoff’s result remains true for Hankel operators acting from F p

α

to Lq
α whenever 1 ≤ p, q <∞ even for unbounded symbols.
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4C. The case 0 < p ≤ q ≤ 1 with bounded symbols. We start with the following preliminary lemma
whose proof can be completed with a standard ε argument.

Lemma 4.4. Suppose that 0 < p < ∞, h ∈ L∞ and limz→∞ h(z) = 0. Then for any bounded se-
quence {gj }

∞

j=1 in L p
ϕ satisfying lim j→∞ gj (z) = 0 uniformly on compact subsets of Cn, it holds that

lim j→∞ ∥gj h∥p,ϕ = 0.

Proof. If R is sufficiently large, there is a C > 0 such that

∥gj h∥
p
p,ϕ =

(∫
B(0,R)

+

∫
Cn\B(0,R)

)
|gj (ξ)h(ξ)e−ϕ(ξ)

|
p dv(ξ)

≤ ∥h∥
p
L∞ sup

|ξ |≤R
|gj (ξ)e−ϕ(ξ)

|
p
+ C∥gj∥

p
p,ϕ → 0

as j → ∞. □

Proof of Theorem 1.1(c). Suppose that f ∈ S. Then f ∈ Lq
loc for 0 < q ≤ 1, and we may decompose

f = f1 + f2 as in (3-12) with t = r/2. We claim that, for g ∈ 0,

∥H f1(g)∥
q
q,ϕ ≤ C

∫
Cn

|g(ξ)e−ϕ(ξ)
|
q
∥∂̄ f1∥

q
L∞(B(ξ,r),dv) dv(ξ), (4-15)

∥H f2(g)∥
q
q,ϕ ≤ C

∫
Cn

|g(ξ)e−ϕ(ξ)
|
q M1,r ( f2)(ξ)

q dv(ξ). (4-16)

To estimate ∥H f1(g)∥q,ϕ , we use the representation

H f1(g)= Aϕ(g∂̄ f1)− P(Aϕ(g∂̄ f1))

(see (2-14)), which suggests that we define a measure dµz as

dµz(ξ)= |∂̄ f1(ξ)|

{
1

|ξ − z|
+

1
|ξ − z|2n−1

}
e−m|ξ−z| dv(ξ).

Then there is a constant C such that, for w ∈ Cn,∫
B(w,r)

|∂̄ f1(ξ)|

{
1

|ξ − z|
+

1
|ξ − z|2n−1

}
e−m|ξ−z|2 dv(ξ)≤ C

∫
B(w,r)

dµz(ξ).

Also, it is easy to verify that

(̂µz)r (w)≤ C sup
η∈B(w,r)

|∂̄ f1(η)|e−m|w−z|,

where the constant C is independent of z, w ∈ Cn. Recall that

Aϕ(g∂̄ f1)(z)=

∫
Cn

e⟨2∂ϕ,z−ξ⟩
∑
j<n

g(ξ)∂̄ f1(ξ)∧
∂|ξ − z|2 ∧ (2∂̄∂ϕ(ξ)) j

∧ (∂̄∂|ξ − z|2)n−1− j

j ! |ξ − z|2n−2 j .

Therefore, using (2-13) and Lemma 4.1, we get

|Aϕ(g∂̄ f1)(z)e−ϕ(z)
|
q

≤ C
(∫

Cn
|g(ξ)e−ϕ(ξ)

| dµz(ξ)

)q

≤ C
∫

Cn
|g(ξ)e−ϕ(ξ)

|
q
∥∂̄ f1∥

q
L∞(B(ξ,r),dv)e

−qm|ξ−z| dv(ξ). (4-17)
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Fubini’s theorem yields

∥Aϕ(g∂̄ f1)∥
q
q,ϕ ≤ C

∫
Cn

dv(z)
∫

Cn
|g(ξ)e−ϕ(ξ)

|
q
∥∂̄ f1∥

q
L∞(B(ξ,r),dv)e

−qm|ξ−z| dv(ξ)

≤ C
∫

Cn
|g(ξ)e−ϕ(ξ)

|
q
∥∂̄ f1∥

q
L∞(B(ξ,r),dv) dv(ξ). (4-18)

To deal with P(Aϕ(g∂̄ f1)), we use Lemma 2.2 to obtain positive constants θ and C so that, for z ∈ Cn,
we have∫

Cn
|K (w, z)|e−m|ξ−z|e−ϕ(z) dv(z)≤ Ceϕ(w)

∫
Cn

e−m|ξ−z|e−θ |w−z| dv(z)

= Ceϕ(w)
(∫

{z:|z−ξ |≥|z−w|}

+

∫
{z:|z−ξ |<|z−w|}

)
e−m|w−z|e−θ |ξ−z| dv(z)

≤ Ceϕ(w)e−τ |ξ−w|,

where τ = min{θ,m}. Therefore, (4-17) and Fubini’s theorem yield

|P(Aϕ(g∂̄ f1))(w)| ≤ C
∫

Cn
|g(ξ)e−ϕ(ξ)

|∥∂̄ f1∥L∞(B(ξ,r/2),dv) dv(ξ)
∫

Cn
|K (w, z)|e−θ |ξ−z|e−ϕ(z) dv(z)

≤ Ceϕ(w)
∫

Cn
|g(ξ)e−ϕ(ξ)

|∥∂̄ f1∥L∞(B(ξ,r/2),dv)e−τ |ξ−w| dv(ξ).

Lemma 4.1 again gives

∥P(Aϕ(g∂̄ f1))(w)∥
q
q,ϕ ≤ C

∫
Cn

|g(ξ)e−ϕ(ξ)
|
q
∥∂̄ f1∥

q
L∞(B(ξ,r),dv) dv(ξ).

Combining this and (4-18), we get (4-15).
For (4-16), notice first that

∥ f2g∥
q
q,ϕ ≤ C

∫
Cn

|g(ξ)e−ϕ(ξ)
|
q Mq

q,r ( f2)(ξ) dv(ξ), (4-19)

and, by Lemma 4.1 with the measure M1,r/2( f2) dv, we have

|P( f2g)(z)|q ≤ C
(∫

Cn
|g(ξ)K (z, ξ)e−2ϕ(ξ)

|M1,r/2( f2)(ξ) dv(ξ)
)q

≤ C
∫

Cn
|g(ξ)K (z, ξ)e−2ϕ(ξ)

|
q M1,r ( f2)(ξ)

q dv(ξ). (4-20)

Integrating both sides of (4-20) against e−qϕ dv over Cn and using (2-5), we get

∥P( f2g)∥q
q,ϕ ≤ C

∫
Cn

|g(ξ)e−ϕ(ξ)
|
q M1,r ( f2)(ξ)

q dv(ξ). (4-21)

This and (4-19) imply (4-16).
Now we suppose that f ∈ L∞ and 0< p ≤q<1. For g ∈ H(Cn), similarly to the proof of (4-16), we have

∥H f (g)∥q,ϕ ≤ C
(∫

Cn
|g(ξ)e−ϕ(ξ)

|
q M1,r ( f )(ξ)q dv(ξ)

)1/q

≤ C∥ f ∥L∞∥g∥p,ϕ.

This implies boundedness of H f with the norm estimate (1-3).
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For the second assertion, suppose first that lim|z|→∞ Gq,r ( f )(z)=0 for some r>0 and write f = f1+ f2

as above. Since the unit ball B(F p(ϕ)) of F p(ϕ) is a normal family, to show that H f is compact from
F p(ϕ) to Lq(ϕ), it suffices to prove that, for k = 1, 2,

lim
j→∞

∥H fk (gj )∥q,ϕ = lim
j→∞

∥ fk gj − P( fk gj )∥q,ϕ = 0

for any bounded sequence {gj }
∞

j=1 in F p(ϕ) with the property that

lim
j→∞

sup
w∈E

|gj (w)| = 0

for E compact in Cn. From the assumption that limz→∞ Mq,r ( f2)(z)= 0, it follows that dµ= | f2|
q dv

is a vanishing (p, q)-Fock Carleson measure (see Theorem 2.7 of [Hu and Lv 2014] and Proposition 2.3).
Therefore, we get

∥ f2gj∥q,ϕ = ∥gj∥Lq (Cn,| f2|q dv) → 0 as j → ∞.

Notice also that ∥g∥q,ϕ ≤ C∥g∥p,ϕ for g ∈ Fq(ϕ) and p ≤ q . Further, by (4-16), we obtain

M1,r ( f2)(ξ)≤ ∥ f2∥
1−q
L∞ Mq,r ( f2)(ξ)

q ,

and applying Lemma 4.4 to h = Mq,r ( f2)
q2

, we get

∥H f2 gj∥
q
q,ϕ ≤ C

∫
Cn

|gj (ξ)e−ϕ(ξ)
|
q M1,r ( f2)(ξ)

q dv(ξ)

≤ C∥ f2∥
(1−q)q
L∞

∫
Cn

|gj (ξ)e−ϕ(ξ)
|
q Mq,r ( f2)(ξ)

q2
dv(ξ)→ 0

as j → ∞. So H f2 ∈ K(F p(ϕ), Lq(ϕ)). As for H f1 , it follows from Lemma 3.6 that

∥∂̄ f1∥L∞(B(ξ,r),dv) ≤ CGq,r ( f )(ξ)→ 0 when ξ → ∞.

Therefore, by (4-15),

∥H f1(gj )∥
q
q,ϕ ≤ C

∫
Cn

|gj (ξ)e−ϕ(ξ)
|
q
∥∂̄ f1∥

q
L∞(B(ξ,r),dv) dv(ξ)→ 0

as j → ∞, and hence we have H f1 ∈ K(F p(ϕ), Lq(ϕ)).
Conversely, suppose that H f is compact from F p(ϕ) to Lq(ϕ). Then, as in (4-4), we have

lim
z→∞

Gq,r ( f )(z)≤ C lim
z→∞

∥H f (kz)∥q,ϕ = 0 (4-22)

for r ∈ (0, r0] fixed. We claim that (4-22) is valid for any r > 0. To see this, we consider the Hankel
operator H f on the Fock space F p

α . From (4-22), using the sufficiency part, it follows that H f is compact
from F p

α to Lq(Cn, e−(qα/2)|z|2 dv). Notice that the equality (1-5) yields

inf
w∈B(z,r)

|K (w, z)| ≥ C > 0

for any r > 0 fixed, where the constant C is independent of z ∈ Cn. As in (4-2), we have

lim
z→∞

Gq,r ( f )(z)≤ C lim
z→∞

∥H f (kz)∥Lq (Cn,e−(qα/2)|z|2 dv) = 0.

Thus, f ∈ VDAq. □
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The following Corollary 4.5 is a direct consequence of the proof of Theorem 1.1(c) which we use to
complement and extend the classical result of Berger and Coburn in the next section.

Corollary 4.5. Suppose that 0<q< 1 and f ∈ L∞. Then the limit limz→∞ Gq,r ( f )(z)= 0 is independent
of r > 0.

5. Proof of Theorem 1.2

Proof of the case 0< p ≤ q <∞. For R > 0, let {ak}
∞

k=1 be the (R/2)-lattice{
R

2
√

n
(m1 + k1i,m2 + k2i, . . . ,mn + kni) ∈ Cn

: m j , kj ∈ Z, j = 1, 2, . . . , n
}
.

Choose ρ ∈ C∞(Cn) such that

0 ≤ ρ ≤ 1, ρ|B(0,1/2) ≡ 1, supp ρ ⊆ B
(
0, 3

4

)
.

Then ∥∇ρ∥L∞ <∞ and

0<
∞∑

k=1

ρ((z − ak)/R)≤ C

for z ∈ Cn. Define ψj,R ∈ C∞(Cn) by

ψj,R(z)=
ρ((z − aj )/R)∑

∞

k=1 ρ((z − ak)/R)
.

Then {ψj,R}
∞

j=1 is a partition of unity subordinate to {B(aj , R)}∞j=1 and

R∥∇ψj,R( · )∥L∞ ≤ C, (5-1)

where the constant C is independent of j and R.
Now we suppose that f ∈ L∞ and H f ∈K(F p(ϕ), Lq(ϕ)). Theorem 1.1 and Corollary 4.5 imply that

lim
z→∞

Gq,2R( f )(z)= 0 (5-2)

for R > 0 fixed. As in (3-2), pick h j,R ∈ H(B(aj , 2R)) so that

1
|B(aj , 2R)|

∫
B(aj ,2R)

| f − h j,R|
q dv = Gq,2R( f )(aj )

q . (5-3)

By (3-3),
sup

z∈B(aj ,R)
|h j,R(z)| ≤ C∥ f ∥L∞ .

Set

f1,R =

∞∑
j=1

ψj,R h j,R and f2,R = f − f1,R.

From estimates (2-9) and (3-3), it follows that there is a positive constant C such that

∥ f1,R∥L∞ + ∥ f2,R∥L∞ ≤ C∥ f ∥L∞ (5-4)
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for R > 0. Lemma 3.6 and (5-2) imply that

lim
z→∞

Mq,R( f̄2,R)(z)= lim
z→∞

Mq,R( f2,R)(z)= 0,

and so

H f̄2,R
∈ K(F p(ϕ), Lq(ϕ)). (5-5)

Recall that Pz,R is the standard Bergman projection from L2(B(z, R), dv) to A2(B(z, R), dv). Since
h j,R is bounded on B(aj , R), we have h j,R = Paj ,R(h j,R), that is,

h j,R(z)=
1
π

∫
B(aj ,R)

R2h j,R(ξ) dv(ξ)

(R2 − (ξ − aj ) · (z − aj ))n+1
, z ∈ B(aj , R).

Hence,

|∂̄h j,R(z)| ≤ C
∥h j,R∥L∞(B(z,R),dv)

R
for z ∈ B(aj , 3R/4). (5-6)

Notice that suppψj,R h j,R ⊆ B(aj , 3R/4), and the estimates (5-1) and (5-6) imply that

|∂̄ f̄1,R| ≤

∞∑
j=1

|(∂̄ψj,R)h̄ j,R| +

∞∑
j=1

ψj,R|∂̄(h̄ j,R)| ≤ C
∥ f ∥L∞

R
.

Therefore, using (4-6) (when q ≥ 1) and (4-15) (when q < 1), we have

∥H f̄1,R
∥

p
F p(ϕ)→Lq (ϕ) ≤ C∥∂̄ f̄1,R∥L∞ ≤ C

∥ f ∥L∞

R
.

The constants C above are all independent of f and R. Therefore,

∥H f̄ − H f̄2,R
∥F p(ϕ)→Lq (ϕ) = ∥H f̄1,R

∥F p(ϕ)→Lq (ϕ) ≤ C
∥ f ∥L∞

R
→ 0

as R → ∞. Finally, using (5-5) and the fact that K(F p(ϕ), Lq(ϕ)) is closed under the operator norm, we
see that H f̄ ∈ K(F p(ϕ), Lq(ϕ)), which completes the proof. □

To deal with the case 1 ≤q< p<∞, we use the Ahlfors–Beurling operator, which is a very well-known
Calderón–Zygmund operator on L p(C), 1< p <∞, defined as

T( f )(z)= p.v.− 1
π

∫
C

f (ξ)
(ξ − z)2

dv(ξ),

where p.v. means the Cauchy principal value. The Ahlfors–Beurling operator connects harmonic analysis
and complex analysis, and it is of fundamental importance in several areas of mathematics including PDE
and quasiconformal mappings. See [Ahlfors 2006; Astala et al. 2009] for further details and examples.

Lemma 5.1. Suppose 1 < s <∞. Then there is some constant C , depending only on s, such that, for
f ∈ C2(Cn)∩ L∞ and j = 1, 2, . . . , n, ∥∥∥∥ ∂ f

∂z j

∥∥∥∥
Ls

≤ C
∥∥∥∥ ∂ f
∂ z̄ j

∥∥∥∥
Ls
. (5-7)
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Proof. We consider the case n = 1 first. Let f ∈ C2(C)∩ L∞. If ∥∂ f/∂ z̄∥Ls = 0, then f ∈ H(C)∩ L∞,
which implies that the function f is constant and the estimate (5-7) follows. Next we suppose that
∥∂ f/∂ z̄∥Ls > 0. Take ψ(r) ∈ C∞(R) to be decreasing such that ψ(x) = 1 for x ≤ 0, ψ(x) = 0 for
x ≥ 1, and 0 ≤ −ψ ′(x)≤ 2 for x ∈ R. For R > 0 fixed, we set ψR(x)= ψ(x − R) for x ∈ R and define
fR(z) = f (z)ψR(|z|) for z ∈ C. Since f ∈ C2(C) ∩ L∞, it is obvious that fR(z) ∈ C2

c (C), the set of
C2 functions on R2 with compact support. From Theorem 2.1.1 of [Chen and Shaw 2001], it follows that

fR(z)=
1

2π i

∫
C

∂ fR/∂ z̄
ξ − z

dξ ∧ d ξ̄ .

Notice that ∂ fR/∂ z̄ = ψR(∂ f/∂ z̄)+ f (∂ψR/∂ z̄). By Lemma 2 on page 52 of [Ahlfors 2006], we get

∂ fR

∂z
(z)= T

(
∂ fR

∂ z̄

)
(z)= T

(
ψR
∂ f
∂ z̄

)
(z)+T

(
f
∂ψR

∂ z̄

)
(z). (5-8)

Now for r > 0 and |z|< r , when R is sufficiently large, it holds that∣∣∣∣T(
f
∂ψR

∂ z̄

)∣∣∣∣(z)≤
∥ f ∥L∞

π(R − r)2

∫
R≤|ξ |≤R+1

dv(ξ)≤
3R∥ f ∥L∞

(R − r)2
,

and hence ∥∥∥∥T(
f
∂ψR

∂ z̄

)∥∥∥∥
Ls(D(0,r),dv)

≤

∥∥∥∥∂ f
∂ z̄

∥∥∥∥
Ls
, (5-9)

where D(0, r) = {z ∈ C : |z| < r}. In addition, by the boundedness of T on Ls (see, for example, the
estimate (11) on page 53 in [Ahlfors 2006]), we get∥∥∥∥T(

ψR
∂ f
∂ z̄

)∥∥∥∥
Ls

≤ C
∥∥∥∥ψR

∂ f
∂ z̄

∥∥∥∥
Ls

≤ C
∥∥∥∥∂ f
∂ z̄

∥∥∥∥
Ls
. (5-10)

For R sufficiently large, from (5-8), (5-9) and (5-10) it follows that∥∥∥∥∂ f
∂z

∥∥∥∥
Ls(D(0,r),dv)

=

∥∥∥∥∂ fR

∂z

∥∥∥∥
Ls(D(0,r),dv)

≤ C
∥∥∥∥∂ f
∂ z̄

∥∥∥∥
Ls
.

Therefore, ∥∥∥∥∂ f
∂z

∥∥∥∥
Ls

≤ C
∥∥∥∥∂ f
∂ z̄

∥∥∥∥
Ls
. (5-11)

Now for n ≥ 2 and f ∈ L∞
∩ C2(Cn), by (5-11), we have∫

Cn

∣∣∣∣ ∂ f
∂z1

(ξ)

∣∣∣∣s

dv(ξ)=

∫
Cn−1

dv(ξ ′)

∫
C

∣∣∣∣ ∂ f
∂z1

(ξ1, ξ
′)

∣∣∣∣s

dv(ξ1)

≤ C
∫

Cn−1
dv(ξ ′)

∫
C

∣∣∣∣ ∂ f
∂ z̄1

(ξ1, ξ
′)

∣∣∣∣s

dv(ξ1).

This implies (5-7) for j = 1. Similarly, (5-7) holds for j = 2, . . . , n, and the proof is complete. □

Proof of the case 1 ≤ q < p <∞. Notice first that if H f ∈ K(F p(ϕ), Lq(ϕ), then by Theorem 1.1, we
have f ∈ IDAs,q with s = pq/(p − q) > 1. We use a decomposition f = f1 + f2 as in (3-17) with r = 1.
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Furthermore, by (5-4), we may assume that ∥ f1∥L∞ ≤ C∥ f ∥L∞ . Then, from Lemma 5.1 it follows that

∥∂̄ f̄1∥Ls ≤ C
n∑

j=1

∥∥∥∥ ∂ f̄
∂ z̄ j

∥∥∥∥
Ls

= C
n∑

j=1

∥∥∥∥ ∂ f
∂z j

∥∥∥∥
Ls

≤ C
n∑

j=1

∥∥∥∥ ∂ f
∂ z̄ j

∥∥∥∥
Ls

≤ C∥∂̄ f1∥Ls .

We also observe that ∥Mq,r ( f̄2)∥Ls = ∥Mq,r ( f2)∥Ls <∞. Now Theorem 3.8 implies that f̄ = f̄1 + f̄2 ∈

IDAs,q, and hence, by Theorem 1.1, we get H f̄ ∈ K(F p(ϕ), Lq(ϕ)). □

Remark 5.2. Notice that it follows from the preceding proof that

∥H f̄ ∥F p(ϕ)→Lq (ϕ) ≤ C∥H f ∥F p(ϕ)→Lq (ϕ).

6. Application to Berezin–Toeplitz quantization

As an application and further generalization of our results, we consider deformation quantization in the
sense of [Rieffel 1989; 1990] and focus on one of its essential ingredients in the noncompact setting
of Cn that involves the limit condition

lim
t→0

∥T (t)
f T (t)

g − T (t)
f g ∥F2

t (ϕ)→F2
t (ϕ)

= 0.

Recently this and related questions were studied in [Bauer and Coburn 2016; Bauer et al. 2018; Fulsche
2020], which also provide further physical background and references for this type of quantization.

Recall that ϕ ∈ C2(Cn) is real-valued and HessR ϕ ≃ E, where E is the 2n × 2n-unit matrix. For t > 0,
we set

dµt(z)=
1
tn exp

{
−2ϕ

(
z

√
t

)}
dv(z)

and denote by L2
t (ϕ) the space of all Lebesgue measurable functions f in Cn such that

∥ f ∥t =

{∫
Cn

| f |
2 dµt(z)

}1/2

.

Further, we let F2
t (ϕ)= L2

t (ϕ)∩ H(Cn). Then clearly F2
1 (ϕ)= F2(ϕ) and L2

1(ϕ)= L2(ϕ) in terms of the
spaces that were considered in the previous sections. Given f ∈ L∞, we use the orthogonal projection P (t)

from L2
t (ϕ) onto F2

t (ϕ) to define the Toeplitz operator T (t)
f and the Hankel operator H (t)

f , respectively, by

T (t)
f = P (t)M f and H (t)

f = (I − P (t))M f .

Let Ut be the dilation acting on measurable functions in Cn as

Ut : f 7→ f ( ·
√

t).

It is easy to verify that Ut is a unitary operator from L2
t (ϕ) to L2(ϕ) (as well as a unitary operator from

F2
t (ϕ) to F2(ϕ)). Further, we have Ut P (t)U−1

t = P (1), which implies that

Ut T
(t)
f U−1

t = T f ( ·
√

t), Ut H (t)
f U−1

t = H f ( ·
√

t). (6-1)

Therefore,
∥T (t)

f ∥F2
t (ϕ)→F2

t (ϕ)
= ∥T f ( ·

√
t)∥F2(ϕ)→F2(ϕ) (6-2)
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and
∥H (t)

f ∥F2
t (ϕ)→L2

t (ϕ)
= ∥H f ( ·

√
t)∥F2(ϕ)→L2(ϕ). (6-3)

Given f ∈ L2
loc, for z ∈ Cn and r > 0 set

M O2,r ( f )(z)=

{
1

|B(z, r)|

∫
B(z,r)

| f − fB(z,r)|
2 dv

}1/2

where fS = (1/|S|)
∫

S f dv for S ⊂ Cn measurable.
The following definitions of BMO and VMO are analogous to the classical definition introduced in [John

and Nirenberg 1961], but they differ from those widely used in the study of Bergman and Fock spaces.

Definition 6.1. We denote by BMO the set of all f ∈ L2
loc such that

∥ f ∥∗ = sup
z∈Cn, r>0

M O2,r ( f )(z) <∞

and by VMO the set of all f ∈ BMO such that

lim
r→0

sup
z∈Cn

M O2,r ( f )(z)= 0.

Definition 6.2. We define BDA∗ to be the family of all f ∈ L2
loc such that

∥ f ∥BDA∗
= sup

z∈Cn,r>0
G2,r ( f )(z) <∞

and VDA∗ to be the subspace of all f ∈ BDA∗ such that

lim
r→0

sup
z∈Cn

G2,r ( f )(z)= 0.

Given a family X of functions on Cn, we set X = { f̄ : f ∈ X}.

Proposition 6.3. It holds that

BMO = BDA∗ ∩ BDA∗ and VMO = VDA∗ ∩ VDA∗.

Furthermore, we have
∥ f ∥BMO∗

≃ ∥ f ∥BDA∗
+ ∥ f̄ ∥BDA∗

(6-4)

for f ∈ L2
loc.

Proof. From a careful inspection of the proof of Proposition 2.5 in [Hu and Wang 2018], it follows that
there is a constant C > 0 such that, for f ∈ L2

loc and z ∈ Cn, r > 0, there is a constant c(z) for which{
1

|B(z, r)|

∫
B(z,r)

| f − c(z)|2 dv
}1/2

≤ C{G2,r ( f )(z)+ G2,r ( f̄ )(z)}.

It is easy to verify that

M O2,r ( f )(z)≤

{
1

|B(z, r)|

∫
B(z,r)

| f − c(z)|2 dv
}1/2

,
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and hence
M O2,r ( f )(z)≤ C{G2,r ( f )(z)+ G2,r ( f̄ )(z)}.

On the other hand, by definition, we have

G2,r ( f )(z)≤ M O2,r ( f )(z).

Thus, we have C1 and C2, independent of f , r and z, such that

C1{G2,r ( f )(z)+ G2,r ( f̄ )(z)} ≤ M O2,r ( f )(z)

≤ C2{G2,r ( f )(z)+ G2,r ( f̄ )(z)}. (6-5)

Therefore, f ∈ BMO (or f ∈ VMO) if and only if f ∈ BDA∗ ∩ BDA∗ (or f ∈ VDA∗ ∩ VDA∗). The
estimate in (6-4) follows from (6-5). □

Theorem 6.4. Suppose f ∈ L∞. Then for all g ∈ L∞, it holds that

lim
t→0

∥T (t)
f T (t)

g − T (t)
f g ∥F2

t (ϕ)→F2
t (ϕ)

= 0 (6-6)

if and only if f ∈ VDA∗.

Proof. Given f ∈ L∞, it follows from (6-3) that

∥(H (t)
f̄
)∗∥L2

t (ϕ)→F2
t (ϕ)

= ∥H (t)
f̄

∥F2
t (ϕ)→L2

t (ϕ)
= ∥H f ( ·

√
t)∥F2(ϕ)→L2(ϕ).

This and Theorem 1.1 imply

1
C

∥G2,1( f ( ·
√

t))∥L∞ ≤ ∥(H (t)
f̄
)∗∥L2

t (ϕ)→F2
t (ϕ)

≤ C∥G2,1( f ( ·
√

t))∥L∞, (6-7)

where the constant C is independent of f and t .
Suppose f ∈ VDA∗. Then, by definition, we have

lim
r→0

sup
z∈Cn

G2,r ( f̄ )(z)= 0.

It is easy to verify that
G2,1( f ( ·

√
t))(z)= G2,

√
t( f )(z

√
t).

Now by (6-7), we get

lim
t→0

∥(H (t)
f̄
)∗∥L2

t (ϕ)→F2
t (ϕ)

≤ C lim
t→0

∥G2,
√

t( f̄ )∥L∞ = 0. (6-8)

In addition, for f, g ∈ L∞, it is easy to verify that

T (t)
f T (t)

g − T (t)
f g = −(H (t)

f̄
)∗H (t)

g . (6-9)

Therefore, for all g ∈ L∞,

lim
t→0

∥T (t)
f T (t)

g − T (t)
f g ∥F2

t (ϕ)→F2
t (ϕ)

≤ ∥g∥L∞ lim
t→0

∥(H (t)
f̄
)∗∥L2

t (ϕ)→F2
t (ϕ)

= 0,

which gives (6-6).
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Conversely, suppose that (6-6) holds for every g ∈ L∞. Let g = f̄ ∈ L∞. Then it follows from (6-9) that

lim
t→0

∥H (t)
f̄

∥
2
F2

t (ϕ)→L2
t (ϕ)

= lim
t→0

∥(H (t)
f̄
)∗H (t)

f̄
∥F2

t (ϕ)→F2
t (ϕ)

= lim
t→0

∥T (t)
f T (t)

f̄
− T (t)

| f |2
∥F2

t (ϕ)→F2
t (ϕ)

= 0.

This and (6-7) imply that f ∈ VDA∗. □

Combining Proposition 6.3 with Theorem 6.4, we obtain the following corollary, which is the main
result of [Bauer et al. 2018] when ϕ(z)=

1
8 |z|2.

Corollary 6.5. Suppose f ∈ L∞. Then for all g ∈ L∞, it holds that

lim
t→0

∥T (t)
f T (t)

g − T (t)
f g ∥ = 0 and lim

t→0
∥T (t)

g T (t)
f − T (t)

f g ∥ = 0 (6-10)

if and only if g ∈ VMO. Here ∥ · ∥ = ∥ · ∥F2
t (ϕ)→F2

t (ϕ)
.

7. Further remarks

For 1 ≤ p, q <∞, we have characterized those f ∈ S for which H f : F p(ϕ)→ Lq(ϕ) is bounded (or
compact). For small exponents 0< p < q < 1, we have proved that this characterization remains true for
compactness when f ∈ L∞. We also note that when p ≤ q and q ≥ 1, boundedness and compactness of
Hankel operators H f : F p(ϕ)→ L p(ϕ) depend on q (see Remark 3.2 and Theorem 1.1), while for p > q
we cannot say the same — we note that we have no statement analogous to Remark 3.2 for IDAs,q.

Moreover, for harmonic symbols f ∈ S and 0< p, q <∞, using the Hardy–Littlewood theorem on the
submean value (see Lemma 2.1 of [Hu et al. 2007], for example), we are able to characterize boundedness
of H f : F p(ϕ)→ Lq(ϕ) with the space IDAs,q. We will return to this topic in a future publication.

We also note that the space F∞(ϕ) does not appear in our results because 0 is not dense in it. Instead,
it may be possible to consider the space

f ∞(ϕ)= { f ∈ F∞(ϕ) : f e−ϕ
∈ C0(C

n)},

which can be viewed as the closure of 0 in F∞(ϕ), and extend our results to this setting.
Regarding weights, the Fock spaces studied in this paper are defined with weights ϕ ∈ C(Cn) satisfying

HessR ϕ ≃ E. As stated in Section 2A, these weights are contained in the class considered in [Schuster
and Varolin 2012]. Now, we note that for the weights ϕ in that work, i∂∂̄ϕ ≃ ω0, and from Hörmander’s
theorem on the canonical solution to the ∂̄-equation it follows that

∥H f g∥
2
2,ϕ ≤

∫
Cn

|g∂̄ f |
2
i∂∂̄e

−2ϕ dv ≤ C∥g|∂̄ f |∥
2
2,ϕ,

and hence we know that the conclusions of Theorem 1.1 remain true when q = 2 (see Theorem 4.3 of
[Hu and Virtanen 2022]). Upon these observations, we raise the following conjecture.

Conjecture 1. Suppose ϕ ∈ C2(Cn) satisfying i∂∂̄ϕ ≃ ω0. Then for f ∈ S and 0 < p, q < ∞, H f ∈

B(F p(ϕ), Lq(ϕ)) if and only if f ∈ IDAs,q, where s = pq/(p − q) if p > q and s = ∞ if p ≤ q .
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In the literature, there are a number of interesting results on the simultaneous boundedness (and
compactness) of Hankel operators H f and H f̄ . These types of characterizations often involve the function
spaces BMOq and IMOs,q in their conditions; see, e.g., [Hu and Wang 2018; Zhu 2012]. For 1 ≤ q <∞

and 1 ≤ s ≤ ∞, set IDAs,q
= { f̄ : f ∈ IDAs,q

}. Then Proposition 2.5 of [Hu and Wang 2018] shows
that IDAs,q

∩ IDAs,q
= IMOs,q and the results of Section 4 provide a description of the simultaneous

boundedness (or compactness) of H f and H f̄ as seen in the following theorem, where as before, we set
s = pq/(p − q) if p > q and s = ∞ if p ≤ q .

Theorem 7.1. Let ϕ ∈ C2(Cn) be real-valued, HessR ϕ ≃ E, and let f ∈ S. For 1 ≤ p, q <∞, Hankel
operators H f and H f̄ are simultaneously bounded from F p(ϕ) to Lq(ϕ)) if and only if f ∈ IMOs,q.

We state one more conjecture related to Theorem 1.2, in which we proved that for f ∈ L∞ and 0< p<∞,
H f is compact on F p(ϕ) if and only if H f̄ in compact on F p(ϕ). Recall that this phenomenon does not
occur for Hankel operators on the Bergman space or on the Hardy space. As predicted in [Zhu 2012],
and verified for Hankel operators on the weighted Fock spaces F p(α) with 1< p <∞ in [Hagger and
Virtanen 2021], a partial explanation for this difference is the lack of bounded holomorphic or harmonic
functions on the entire complex plane. From this point of view it is natural to suggest that a similar result
should remain true for Hankel operators mapping from F p(ϕ) to Lq(ϕ).

Conjecture 2. Suppose that ϕ ∈ C2(Cn) satisfies i∂∂̄ϕ ≃ ω0 and 0 < p, q < ∞. Then for f ∈ L∞,
H f ∈ K(F p(ϕ), Lq(ϕ)) if and only if H f̄ ∈ K(F p(ϕ), Lq(ϕ)).

Notice that IDAs,q
∩ L∞ is a Banach algebra under the norm ∥ · ∥IDAs,q + ∥ · ∥∞. We can also express

Conjecture 2 in algebraic terms; that is, we conjecture that IDAs,q
∩ L∞ on Cn is closed under the

conjugate operation f 7→ f̄ , where 1< s ≤ ∞ and 0< q <∞.

Related to our work on quantization and Theorem 6.4 in particular, we conclude this section with the
following problem: characterize those f ∈ L∞ for which it holds that

lim
t→0

∥T (t)
f T (t)

g − T (t)
f g ∥S2 = 0

for all g ∈ L∞, where ∥ · ∥S2 stands for the Hilbert–Schmidt norm. It would also be important to consider
this question for other Schatten classes Sp.
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GLOBAL STABILITY OF SPACETIMES WITH
SUPERSYMMETRIC COMPACTIFICATIONS

LARS ANDERSSON, PIETER BLUE, ZOE WYATT AND SHING-TUNG YAU

This paper proves the stability, with respect to the evolution determined by the vacuum Einstein equations,
of the Cartesian product of higher-dimensional Minkowski space with a compact, Ricci-flat Riemannian
manifold that admits a spin structure and a nonzero parallel spinor. Such a product includes the example of
Calabi–Yau and other special holonomy compactifications, which play a central role in supergravity and
string theory. The stability result proved in this paper shows that Penrose’s instability argument [2003]
does not apply to localised perturbations.

1. Introduction

Let (R1+n, ηR1+n ) be the (1+n)-dimensional Minkowski spacetime, and let (K, k) be a compact, Ricci-flat
Riemannian manifold that has a cover that admits a spin structure and a nonzero parallel spinor. The
spacetime M = R1+n

× K with metric
ĝ = ηR1+n + k (1)

is globally hyperbolic and Ricci flat, i.e, it is a solution to the (1+n+d)-dimensional vacuum Einstein
equations. Such spacetimes play an essential role in supergravity and string theory [Candelas et al. 1985].
In this paper we refer to (M, ĝ) as a spacetime with a supersymmetric (SUSY) compactification and
(K, k) as the internal manifold.

The simplest spacetime with a supersymmetric compactification, which has been studied since the 1920s,
is the Kaluza–Klein spacetime (R1+3

×S1
θ , ηR1+3 +dθ2) [Kaluza 1921; Klein 1926]. As shown by Witten

in an influential paper [1982], this spacetime is unstable at the semiclassical level. Nonetheless in the
same work Witten argued that the spacetime should be classically linearly stable.

By contrast, Penrose has sketched an argument intended to show that spacetimes with supersymmetric
compactifications are generically classically unstable, for every dimension n and all internal manifolds,
except possibly when the internal manifold is a flat d-dimensional torus [Penrose 2003; 2005]. There are
theorems motivated by these considerations that generalise the classical singularity theorems to trapped
surfaces of arbitrary codimension [Cipriani and Senovilla 2019; Galloway and Senovilla 2010]. However,
the results of the present paper show that for spacetimes with supersymmetric compactifications the
instability argued by Penrose does not hold for n ≥ 9, and we conjecture here that in fact stability holds for
n ≥ 3. The nonnegativity of the spectrum of the Lichnerowicz Laplacian on symmetric 2-tensors, which
holds for the internal spaces by the result of Dai, Wang, and Wei [Dai et al. 2005], plays a crucial role
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in our stability proof. In fact, this nonnegativity, which is conjectured to hold for all compact Ricci-flat
manifolds, is sufficient for our result. See Section 2A for details.

In order to state our main theorem, we need to introduce some notation. For the product spacetime
R1+n

× K we denote spacetime indices by α, µ, ν, . . . , Minkowski indices by i, j, k, . . . , and internal
indices by A, B, C, . . . . For a general pseudo-Riemannian metric g, let ∇[g] denote its Levi-Civita
connection, Riem[g] its Riemann curvature tensor, Ric[g] its Ricci curvature, and dµg its volume form.
Define the contraction

(R[g] ◦ u)µν = Rµρνλ[g]uρλ, (2)

which acts on symmetric (0, 2)-tensors uµν . Given the supersymmetric spacetime metric ĝ on R1+n
× K ,

let
(gE)µν = ĝµν + 2(dt)µ(dt)ν, (3)

where dt is with respect to the standard Cartesian coordinates on R1+n. On K and R1+n
× K , define the

inner products on (0, 2) tensors, respectively, as

⟨u, v⟩k = k AC k B Du ABvC D and ⟨u, v⟩E = gµν
E gρσ

E uµρvνσ . (4)

Define |u|k = (⟨u, u⟩k)
1/2, and similarly for |u|E .

The following is our main result. The details of some of the concepts appearing in the statement of the
theorem appear in Definitions 2.10, 2.11, 2.12, 2.14 and Theorem 2.15.

Theorem 1.1. Let n, d ∈ Z+ be such that n ≥ 9, and let N ∈ Z+ be sufficiently large. Consider a spacetime
(R1+n

× K, ĝ = ηR1+n + k) with a supersymmetric compactification. Let gS denote the Schwarzschild
metric in the ηR1+n -wave gauge with mass parameter CS ≥ 0.

There is an ϵ > 0 such that if (Rn
× K, γ, κ) is an initial data set satisfying that outside the unit ball

the initial data coincides with the product of Schwarzschild initial data with the unperturbed internal
metric (i.e., γ = gS + k and κ = 0 where |x | ≥ 1) and satisfying∑

|I |≤N

∥∇[γ ]
I (γ − ĝ|t=0)∥

2
L2(Rn×K )

+

∑
|I |≤N−1

∥∇[γ ]
I κ∥

2
L2(Rn×K )

+ C2
S ≤ ϵ, (5)

then there is a solution g of the vacuum Einstein equations on R1+n
× K with initial data (Rn

× K, γ, κ)

and satisfying the ĝ-wave gauge. There is the bound

sup
(t,x i,ω)∈6s×K

t2δ(n)
|g(t, x i, ω)− ĝ(t, x i, ω)|2E ≲ ϵ, (6)

where the decay rate is given by
δ(n) =

1
4(n − 2). (7)

Finally (R1+n
× K, g) is globally hyperbolic and causally geodesically complete.

The stability result obtained in Theorem 1.1 covers a large class of product spacetimes, including
many special holonomy compactifications relevant in supergravity and string theory. Although this
paper succeeds in its goal of providing a counterexample to the dimension-independent argument in
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[Penrose 2003], from a PDE perspective, Theorem 1.1 should be seen as a preliminary result, and we
expect that the assumptions that n ≥ 9 and that the Cauchy data is Schwarzschild near infinity can be
relaxed. In fact we make the following conjecture.

Conjecture 1.2. Spacetimes with a supersymmetric compactification1 and n = 3 are nonlinearly stable.

As explained below, this paper uses a relatively simple vector field argument, while, for example, the
proof of global stability for the coupled Einstein–Klein–Gordon system in (1+3)-dimensions [LeFloch
and Ma 2016] has required combining vector field arguments with estimates arising from control on the
fundamental solution for the wave equation. Such detailed analysis is beyond the scope of this paper, but
we intend to explore this in future work. Note that our current method can be easily used to show linear
stability as far as n = 3.

The decay rate of |h| ≲ t−δ(n) arises essentially as a linear estimate. The linearisation of the Einstein
equation is

(□η + 1k + 2R[ĝ] ◦ )hµν = 0. (8)

To study conservation properties of the linear equations we introduce a novel stress-energy tensor

T [h]
µ

ν = ĝµα
⟨∇[ĝ]αh, ∇[ĝ]νh⟩E −

1
2 ĝαβ

⟨∇[ĝ]βh, ∇[ĝ]αh⟩Eδµ
ν + ⟨R[ĝ] ◦ h, h⟩Eδµ

ν , (9)

which is specifically adapted to the tensorial operator appearing in (8). The conditions on (K, k) imply
(see Section 2A) that the energy integral derived from (9) is nonnegative.

The conditions on (K, k) imply that the operator −(1k +2R ◦) has a nonnegative discrete spectrum, so
a spectral decomposition can be applied to solutions h of the linearised Einstein equation (8). The spectral
component corresponding to the zero eigenvalue satisfies an effective wave equation □η(h0)µν = 0,
and the components corresponding to positive eigenvalues λ satisfy effective Klein–Gordon equations
(□η −λ)(hλ)µν = 0. A decomposition of this type has been used in the analysis of wave guides, where K
is replaced by a compact subset of Rd with Neumann boundary conditions; see e.g., [Metcalfe and Stewart
2008; Metcalfe et al. 2005]. When applying the vector field method to the wave and Klein–Gordon
equations, there is a unified approach using a basic energy of the form

∫ ∑n
i=0 |∂i h|

2
+ λ|h|

2 dµ that
can be strengthened by commuting the equation with 0, the set of generators of translations, rotations,
and boosts. The use of this set of vector fields in the vector field method, with particular application to
Klein–Gordon equations, goes back to [Klainerman 1985].

This unified approach then bifurcates: the Klein–Gordon equation does not admit any further commuting
first-order operators but the energy has a nonvanishing lower-order term λ|h|

2; in contrast, the wave
equation allows for commutation with the generator of dilations, S = t∂t + r∂r , but the lower-order term
in the energy vanishes. For the quasilinear Einstein equation, we refrain from performing a spectral
decomposition into wave and Klein–Gordon components. Thus, we use only the unified part of the
approach (following especially the treatment of quasilinear Klein–Gordon equations in [Hörmander 1997]),

1Recall that the definition of a spacetime with a supersymmetric compactification, as introduced in the opening paragraph of
this paper, includes the assumption that the spacetime is a fibre bundle with base space (R1+n, ηR1+n ). Stability for a certain
class of cosmological spacetimes as base spaces is proved in [Branding et al. 2019].
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leaving us with a decay rate that is far from the sharp decay rates of the wave and Klein–Gordon equations.
In particular, the vector field method can be used to prove decay rates, for the wave and Klein–Gordon
equations, of t−(n−1)/2 and t−n/2, respectively.

In light of this, it seems likely that some novel refinement should allow for a significantly better decay
rate than t−δ(n) with δ(n) =

1
4(n − 2). This paper contains two types of refinement. First, the decay rate

is shown to be s−2δ(n), where s2
= t2

− x2 inside light cones. The exponent 2δ(n) =
1
2(n − 2) is much

closer to the decay rate for the wave and Klein–Gordon equations. Second, the same decay rates are
proved for 0 I h as for h, but, since the 0 contain t- and x-dependent weights, with respect to a translation
invariant basis in Minkowski space, derivatives decay faster than the field h itself.

Having obtained a linear estimate that improves with increasing n, we take n large enough that
2δ(n)−2 > 1, so that the nonlinear terms decay sufficiently fast for the linear estimates to remain valid. In
particular, we take n large enough that we can ignore all nonlinear structure in the Einstein equation. It is
well known that global existence results for semilinear equations in (1+3)-dimensions depend delicately
on the nonlinearities, for example the null condition [Klainerman 1986]. Christodoulou and Klainerman
[1993] used the vector field method to prove the stability of Minkowski spacetime. One of the major
advances in the simplified vector field argument in [Lindblad and Rodnianski 2003; 2005; 2010] was the
introduction of the weak null condition and the observation that the Einstein equations in the harmonic
gauge satisfy this condition. LeFloch and Ma [2016] identified the relevant nonlinear structures for
Klein–Gordon equations coupled to the (1+3)-dimensional Einstein equation.

The dimension of the compact manifold only appears in the required regularity of the initial data,
which is given explicitly in Theorem 5.1. The restriction to initial data which is exactly Schwarzschild
outside of a compact set mirrors the proof of Minkowski stability in (1+3)-dimensions by Lindblad and
Rodnianski [2005].

Background and previous work. Theories of higher-dimensional gravity are of great interest in super-
gravity and string theory as possible models of quantum gravity. Many of these theories are built around
the spacetimes with supersymmetric compactifications discussed above.

The background spacetimes considered in this paper are of the form Rn+1
× K , with K compact

and Ricci flat, and are hence anisotropic. Among the first stability results for anisotropic spacetimes
of a related form was the proof of future stability of flat cosmological spacetimes of the form M3

× S1,
where M3 is a flat (2+1)-dimensional Milne spacetime with metric −dt2

+ t2 H 2 and H 2 is a hyperbolic
surface, was considered by Choquet-Bruhat and Moncrief [2001]. See also [Andersson 2014; Reiris 2010].

Until now, the only nonlinear stability results for spacetimes with supersymmetric compactification
have concerned the simplest Kaluza–Klein case when the internal space is the circle S1, or in slightly
more generality, the flat d-dimensional torus. It was shown by one of the authors [Wyatt 2018] that this
spacetime is classically stable to toroidal-independent perturbations. A model problem to remove this
restriction with toroidal internal space has recently appeared [Huneau and Stingo 2021]. We remark that in
the physics literature, these are known as zero-mode perturbations. An analogous result for cosmological
Kaluza–Klein spacetimes, where the Minkowski spacetime is replaced by the four-dimensional Milne
spacetime, has also recently been shown [Branding et al. 2019].



GLOBAL STABILITY OF SPACETIMES WITH SUPERSYMMETRIC COMPACTIFICATIONS 2083

The spacetimes of importance in supergravity and string theory involve a nontrivial (i.e., nontoroidal)
internal manifold with parallel spinors, such as a Calabi–Yau, G2 or Spin(7) manifold. Note that a
solution of the 10- or 11-dimensional vacuum Einstein equations can be considered as a particular solution
of the supergravity equations. Local-in-time existence results are known for both the vacuum Einstein
equations [Choquet-Bruhat 1952; Choquet-Bruhat and Geroch 1969] and for the supergravity equations
[Choquet-Bruhat 1985]. Furthermore, global-in-time existence and decay results for a nonlinear wave
equation for 3-form fields, on a fixed background spacetime with compact internal dimensions have
been shown in [Ettinger 2015]. The field equation studied in that paper is modelled on the supergravity
equations with the gravitational interaction turned off. In our present work, we consider the stability of
spacetimes with supersymmetric compactifications as solutions to the vacuum Einstein equations. In
future work we intend to study their stability under the supergravity equations.

In addition to determining the dynamics, the Einstein equations also imply that any initial data set must
satisfy the constraint equations, which are themselves an important topic of study and have important
consequences. A positive mass theorem holds for initial data (6, γ, κ) provided that 6\60 for some
compact 60 is topologically (Rn

\B) × K for some ball B, that the dimension of the base space is at
least n ≥ 3, that the initial data (6, γ, κ) is asymptotically flat in the sense that the metric (including
its derivatives) converges to δ + k sufficiently fast and that κ converges to zero sufficiently rapidly, that
the background internal space (K, k) is a simply connected Calabi–Yau manifold, and that the scalar
curvature is nonnegative [Dai 2004]. Recent work has shown the existence of such solutions in the case
(K, k) = (Td , δ) [Huneau and Vâlcu 2021].

L2 stability and L∞ instability. Several people have suggested that the instability argument of Penrose
[2003; 2005] should be interpreted as a statement with respect to perturbations that are not localised.2

This unlocalised interpretation could be stated as saying that SUSY compactifications are unstable against
perturbations of the initial data that depend only upon the position in the internal space K but are
independent of x ∈ Rn. Considering the behaviour of the initial data in x ∈ Rn, this distinction can be
interpreted as a being between unlocalised perturbations that merely have a small supremum (for the
metric and a suitable number of derivatives) and localised perturbations that have finite and small norms
based on the square integral of the perturbation (again including a suitable number of derivatives), such
as we use in (5) of Theorem 1.1. We view this as a distinction between, on the one hand, instability in
L∞-based Sobolev spaces and, on the other, stability in L2-based Sobolev spaces.

Although it is true that SUSY compactifications are unstable against perturbations in L∞-based Sobolev
spaces, this instability does not arise from the presence of the internal space but is already present in
Minkowski space for n ≥ 3. In particular, there is the explicit Kasner solution

g = − dt2
+ (1 + ϵt)4/3 d(x1)2

+ (1 + ϵt)4/3 d(x2)2
+ (1 + ϵt)−2/3 d(x3)2.

This is typically considered with (x1, x2, x3) being taken as coordinates on the torus T3, but it applies
equally well on R3. By taking a tensor product with (Rn−3, δRn−3) or (Rn−3

× K, δRn−3 + k) one can

2We thank the first reviewer for emphasising this perspective.
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extend this example to show L∞ instability also for higher-dimensional Minkowski space and for SUSY
compactifications.

The L∞ instability of Minkowski space and SUSY compactifications can be viewed as part of a
broader set of instability phenomena. The L∞ instability of Minkowski space can be viewed as essentially
equivalent to the instability of (R × Tn, −dt2

+ δTn ). Bartnik [1988] has conjectured that a globally
hyperbolic spacetime with compact Cauchy surface and satisfying the strong energy condition is either
causally incomplete or split as a metric product (and hence flat in the (3+1)-dimensional case). See also
[Galloway 2019]. One heuristic justification for this conjecture follows a contradiction argument, which
begins by considering what would happen if there were not some major divergence from the original
solution. In this case, the metric perturbations would satisfy something close to energy conservation,
would exhibit something close to Poincaré recurrence, and would eventually be found in any configuration
compatible with the bound on the initial energy. However, just as it is possible to imagine black holes
of arbitrarily small mass, it is possible to form trapped surfaces with arbitrarily small energy. Thus, the
Poincaré recurrence would imply the eventual formation of trapped surfaces and hence of singularities.
This would imply instability, which concludes the contradiction argument. There is a further extension
of this belief that if a spacetime with a compact hypersurface does not expand sufficiently rapidly, then
metric perturbations will not decay sufficiently rapidly and singularities will form. It is essential to make
the distinction between L∞ and L2 perturbations when making PDE estimates.

Outline of paper. In Section 2 we introduce: the Lichnerowicz Laplacian, the foliation by hyperboloids,
the gauge condition, and the higher-dimensional Schwarzschild-product spacetime. In Section 3 we prove a
Sobolev estimate on hyperboloids with respect to wave-like energies. In Section 4 we define an energy func-
tional adapted to the internal manifold and to hyperboloids. Finally in Section 5 we prove the main theorem.

There are four key elements that we add to the standard energy-estimates framework to prove the
stability of SUSY compactifications. First, we observe that we can obtain arbitrarily rapid decay by
going to sufficiently high dimension and that this decay allows us to control nonlinear terms. Second,
the new Sobolev estimates in Section 3 give decay estimates that do not require decomposing metric
perturbations into massive and massless parts. Following an argument of Hörmander, the Sobolev estimate
in Lemma 3.2 holds on hyperboloids to exploit the fact that the initial data is essentially trivial outside
the unit ball. Third, it is possible to introduce an energy that simultaneously enjoys several desirable
properties. Namely, the energy introduced in Definition 4.1 is not merely the energy constructed from the
energy-momentum tensor (9) for the linearised Einstein equation (8), but we show it is positive using
known results on Ricci-flat compact manifolds with special holonomy which we review in Section 2A,
and it is the basis for the Sobolev norms in Section 3. Fourth, in defining pointwise norms of derivatives
(e.g., Definition 2.4), we commute the equation with the second-order 1k rather than just first-order vector
fields, which are sufficient in Minkowski space. The higher-order Sobolev estimate in Corollary 4.7 has to
use separate indices to count the Minkowski and internal derivatives, because our L∞-norms use only an
even number of derivatives in internal directions, while our L2-norms use integer number of derivatives.
Once we have used these four elements, it is possible to control the nonlinear (including quasilinear)
terms in the Einstein equation using standard energy-estimate techniques.
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2. Preliminaries

2A. Parallel spinors and the Lichnerowicz Laplacian. Our main theorem has been stated for an internal
manifold that has a cover that admits a spin structure and a nonzero parallel spinor. In this subsection we
detail how this condition relates to a linear stability condition involving the eigenvalues of an operator
closely related to the Lichnerowicz Laplacian.

Definition 2.1 (Riemannian linear stability). Define 1k = k AB
∇[k]A∇[k]B to be the standard Laplacian

on (K, k). Let u AB be a symmetric (0, 2) tensor defined on K . Define L to act on such tensors by

(Lu)AB = −1ku AB − 2(R[k] ◦ u)AB . (10)

We define a Ricci-flat manifold (K, k) to be Riemannian linearly stable if and only if∫
K
⟨Lu, u⟩k dµk ≥ 0, (11)

for all symmetric (0, 2)-tensors u AB .

The operator L is closely related to the Lichnerowicz Laplacian 1L , which acts on symmetric tensors by

(1Lu)AB = (Lu)AB + Ric[k]AC uC
B + Ric[k]

C
Bu AC . (12)

Clearly on a Ricci-flat space these operators are equivalent. The operator L is self-adjoint and elliptic,
and consequently by the compactness of K and spectral theory, it has a discrete set of eigenvalues of
finite multiplicity. Hence definition (11) amounts to a condition λmin ≥ 0 on the lowest eigenvalue λmin

of L. For further details see, e.g., [Besse 1987].
Our main Theorem 1.1 in fact applies more generally to internal manifolds which are Riemannian lin-

early stable. For the purposes of this paper, the crucial relation between spacetimes with a supersymmetric
compactification and with an internal space that is Riemannian linearly stable is the following.

Theorem 2.2 [Dai et al. 2005, Theorem 1.1]. If a compact, Ricci-flat Riemannian manifold (K, k) has a
cover which is spin and admits a nonzero parallel spinor then it is Riemannian linearly stable.

Note that some of the ideas established in [Dai et al. 2005] date back to work of Wang [1991] on the
deformation theory of parallel and Killing spinors. A spin manifold (K, k) with a nonzero parallel spinor is
Ricci flat and has special holonomy; see [Wang 1989] for a classification. It is not known if any hypotheses
on the internal space beyond Ricci flatness are necessary for stability to hold, as all known examples of
compact Ricci-flat manifolds admit a spin cover with nonzero parallel spinors. The problem of constructing
Ricci-flat manifolds including ones with nonspecial holonomy has been widely studied. A few relevant
references on the topic are [Biquard 2013; Brendle and Kapouleas 2017; Tian and Yau 1990; 1991].

The spatial equivalent of the ĝ-wave gauge was used in the proof of Milne stability [Andersson
and Moncrief 2011]. This led to terms involving L appearing in their PDEs, which were treated using
Riemannian linear stability properties specific to the Milne spacetime. Further results on Riemannian
linear stability for Einstein manifolds can be found in [Kröncke 2015].
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2B. Cartesian, hyperbolic, and hyperbolic polar coordinates.

Definition 2.3 (Minkowski space). Let n ≥ 1 be an integer, let (x0, x1, . . . , xn) = (t, x1, . . . , xn) = (t, x⃗)

be Cartesian coordinates parametrising R1+n, and define

ηR1+n = − dt2
+

n∑
i=1

(dx i )2. (13)

Define, for i ∈ {1, . . . , n}, the translation vector fields T and X i so that, in the Cartesian coordinates, they
are given by

X i = ∂x i , T = X0 = ∂t . (14)

Define, for i, j ∈ {0, . . . , n}, the vector fields Zi j so that, in the Cartesian coordinates, they are given by

Zi j = (ηR1+n )jk xk∂i − (ηR1+n )ik xk∂j . (15)

Define the collection of Lorentz generators by

Z = {Zi j , T, X i }. (16)

Define |x |
2
=

∑n
i=1(x i )2 and define, in the region t ≥ |x |, the hyperboloidal coordinates to be

s = (t2
− |x |

2)1/2, y = x . (17)

Define, for i ∈ {1, . . . , n}, the vector fields Yi so that, in the hyperboloidal coordinates, they are given by

Yi = ∂yi . (18)

For s0 ≥ 0, define the spacelike hyperboloidal hypersurface

6s0 = {(t, x) ∈ R1+n
: t > 0, s = s0}. (19)

Note that, because (ηR1+n )00 = −1, we have Z0i = t∂x i + xi∂t . Furthermore the collection Z is closed
under commutation and forms a basis for the Poincaré Lie algebra.

Definition 2.4 (pointwise derivative norms based on commuting operators). On R1+n
× K , define,

for i ∈ {0, . . . , n}, X i , Yi , and Zi j to be as in R1+n. Let primed roman letters denote spatial indices
i ′, j ′

∈ {1, . . . , n + d + 1}. Define the following collection of vector fields

0 = Z ∪ {1k}. (20)

Note that [Z , 1k] = 0. Define N = {0, 1, 2, . . . }. We will now define {Zi }
(n+1)(n+2)/2
i=1 to be a reindexing

of {X i }
n
i=0 ∪ {Zi j }0≤i< j≤n , define a multi-index to be an ordered list of arbitrary length of elements

from
{
1, . . . , 1

2(n + 1)(n + 2)
}
, and for a multi-index I = (i1, . . . , ik) define the length |I | = k and the

differential operator Z I
= Zik ◦ · · · ◦ Zi1 . For I ∈ N and uµν a tensor defined on R1+n

× K , define the
generalised multi-index notation

|0 I u|
2
E =

∑
I1:|I1|+2 j=|I |

|Z I11
j
k u|

2
E , (21)

where the sum is taken over all multi-indices I1 of length |I1| = k and integers j such that k + 2 j = |I |.
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Definition 2.5 (Sobolev norms). Let uµν be a tensor defined on R1+n
× K and let j ∈ N. Define

|∇[k]
j u|

2
E = k A1 B1 · · · k Aj Bj gµν

E gρσ
E (∇[k]Aj · · · ∇[k]A1uµρ)(∇[k]Bj · · · ∇[k]B1uνσ ). (22)

For ℓ ∈ N, define the norms

∥u( · , · , ω)∥H ℓ(K ) =

(∫
K

∑
0≤ j≤ℓ

|∇[k]
j u( · , · , ω)|2E dµk

)1/2

, (23)

∥u(t, x, ω)∥L2(6s×K ) =

(∫
6s×K

|u(t, x, ω)|2E dx dµk

)1/2

, (24)

where dx = dx1
· · · dxn is defined to be the flat Euclidean volume form.

Lemma 2.6. Yi = X i + (xi/t)T, Z0i = tYi , Zi j = yi Yj − yj Yi .

Proof. Since t =
√

s2 + y2, by the chain rule, for j ∈ {1, . . . , n},

∂

∂y j =
∂x i

∂y j

∂

∂x i =
∂

∂x j +
∂t
∂y j

∂

∂t
=

∂

∂x j +
yj

t
∂

∂t
,

which gives the first result. The second follows from multiplying both sides of the first by t . The third
follows from

Zi j = xi X j − x j X i = xi (X j + x j t−1T ) − x j (X i + xi t−1T ). □

The following two lemmas relate the t coordinate to the s coordinate.

Lemma 2.7. Let s ≥ 1. Suppose (t0, x0)∈6s and (t, x)∈6s with |x −x0|≤
1
2 t0. In this case, 1

2 t0 ≤ t ≤ 2t0.

Proof. For the graph t =
√

s2 + |x |2, the gradient∣∣∣∣ ∂t
∂x

∣∣∣∣ =

∣∣∣∣ x√
s2 + |x |2

∣∣∣∣ ≤ 1, (25)

so the change from t to t0 is less than the change from |x | to |x0|. □

Lemma 2.8. There is a constant C > 0 such that for all s > 1, in the portion of 6s where |x | ≤ t −1, one
has 2t − 1 ≤ s2

≤ t2.

Proof. Observe that t2
= s2

+ |x |
2
≥ s2. Since |x |

2
≤ t2

− 2t + 1, one has s2
= t2

− |x |
2
≥ 2t − 1. □

The following are standard elliptic estimates; see for example [Besse 1987, Appendix H].

Lemma 2.9 (elliptic estimates on (K, k)). For ℓ ∈ N and uµν a sufficiently regular tensor defined on
R1+n

× K , there exist constants c1, c2, c3 > 0 such that

∥u∥H2ℓ(K ) ≤ c1∥(1k)
ℓu∥L2(K ) + c2∥u∥L2(K ) ≤ c3∥u∥H2ℓ(K ). (26)

In Lemma 2.9, if u is orthogonal to the kernel of 1k , then there is a c1 such that the first estimate holds
with c2 = 0.
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2C. The Einstein equations. The theory of the Einstein equations is well known. In this section, we
review this theory, for the sake of providing a self-contained presentation in this paper, and in particular
to provide a self-contained statement of our main Theorem 1.1.

Definition 2.10 (geometric initial data set). Let m ∈ N+. An m-dimensional initial data set is defined
to be a triple (6, γ, κ) such that 6 is an m-dimensional manifold, γi ′ j ′ is a Riemannian metric on 6,
κi ′ j ′ is a symmetric 2-tensor on 6, and the following equations (the constraint equations) are satisfied:

R[γ ] − |κ|
2
+ (tr(κ))2

= 0, ∇[γ ]i ′ tr(κ) − ∇[γ ]
j ′

(κ)i ′ j ′ = 0, (27)

where tr(κ) = γ i ′ j ′

κi ′ j ′ .

Definition 2.11 (solution of the Einstein equations with specified initial data). Let M be a manifold. A
Lorentzian metric g on M is defined to be a solution of the vacuum Einstein equations if and only if its
Ricci curvature vanishes,

Ric[g]µν = 0. (28)

Let (6, γ, κ) be a geometric initial data set. A solution to the (geometric) Einstein equations with
initial data (6, γ, κ) is defined to be a Lorentzian metric g on I ×6 for some interval I where one has:
0 ∈ I , g is a solution of the Einstein equations (28), {0}×6 and g restricted to vectors in T ({0}×6) are
isometric in the category of Riemannian manifolds to (6, γ ), and, with the identification given by this
isometry, the second fundamental form of the embedding of {0} ×6 into I × 6 is κ .

As is well known, Definition 2.11 is stated in a more restrictive form than necessary. In Definition 2.11,
for convenience, we have required that the initial data be specified at t = 0. This may initially appear more
restrictive than definitions that are stated in other sources. By a translation in the t variable, Definition 2.11
could be stated on any level set of t . Furthermore, because of the freedom to introduce new coordinate
systems on the manifold I × 6, Definition 2.11 is actually equivalent to definitions that allow initial data
to specified on more general spacelike hypersurfaces.

2D. The reduced Einstein equations. To obtain a well-posed evolution problem for the Einstein equations
we choose a gauge with respect to a fixed Lorentzian metric êµν defined on M.

Definition 2.12 (ê-wave gauge). For Lorentzian metrics g and ê defined on some manifold M, let ∇[g]

and ∇[ê] be the Levi-Civita connections with corresponding Christoffel symbols 0[g] and 0[ê] in local
coordinates. Define the vector field V γ in local coordinates by

V γ
= gαβ(0

γ

αβ[g] −0
γ

αβ[ê]). (29)

Define also Vλ = gλβ V β. The ê-wave gauge condition is given by

V γ
= 0. (30)

Recall that the difference of two Christoffel symbols is a tensor, and so V γ is in fact a well-defined
vector field on M.
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Definition 2.13 (reduced Einstein equations). Let M be a manifold with Lorentzian metric ê. A Lorentzian
metric g on M is defined to be a solution of the reduced Einstein equations if and only if

gαβ
∇[ê]α∇[ê]βgµν − gγ δ(gµλêλρ Riem[ê]ργ νδ + gνλêλρ Riem[ê]ργµδ) = Qµν[g](∇[ê]g, ∇[ê]g), (31a)

where we have defined

Qµν[g](∇[ê]g, ∇[ê]g) = gγ δgαβ
(
∇[ê]νgδβ∇[ê]αgµγ + ∇[ê]µgγα∇[ê]βgνδ −

1
2∇[ê]νgδβ∇[ê]µgγα

+ ∇[ê]γ gµα∇[ê]δgνβ − ∇[ê]γ gµα∇[ê]βgνδ

)
. (31b)

2E. The higher-dimensional Schwarzschild spacetime. In this subsection, the higher-dimensional
Schwarzschild solution is considered and its relationship to the initial data for the Einstein equations (28)
and the reduced Einstein equations (31) is discussed. The form of the metric follows.

Definition 2.14. Let n ∈ Z be such that n ≥ 5, and let CS ∈ [0, ∞). In Schwarzschild coordinates, the
Schwarzschild metric is defined, for (t, r̄ , ω) ∈ R × (C1/(n−2)

S , ∞) × Sn−1, to be

gS = −

(
1 −

CS

r̄n−2

)
dt2

+

(
1 −

CS

r̄n−2

)−1

dr̄2
+ r̄2σSn−1 . (32)

The above metric can also be written in the wave gauge. For n = 3, it is sufficient to replace

(t, r̄ , ω) ∈ R × (C1/(n−2)

S , ∞) × Sn−1

by (t, x) = (t, rω) with r = r̄ − M ; the resulting explicit metric can be found in [LeFloch and Ma 2016;
Lindblad and Rodnianski 2005]. Although the case n = 4 leads to complicated terms involving logarithms,
for n ≥ 5, there is the following theorem.

Theorem 2.15 [Choquet-Bruhat et al. 2006, Section 5.2]. Let n ∈ Z be such that n ≥ 5, and let CS ∈ [0, ∞).
There are coordinates (t, x) related to those in Definition 2.14 by (x i )n

i=0 = (t, r(r̄)ω) with

r(r̄) = r̄ −
CS

2r̄n−3 + O(r̄5−2n),

such that the (x i )n
i=0 satisfy the harmonic gauge, that is, the ηR1+n -wave gauge. Furthermore, there exist

functions h00(R), h(R), and ĥ(R), defined on an interval around R = 0, that are analytic and bounded
by a multiple of CS near R = 0, and such that

gS = −

(
1 −

h00(r−1)

rn−2

)
(dx0)2

+

n∑
i, j=1

[(
1 +

h(r−1)

rn−2

)
δi j

+
ĥ(r−1)

rn−2

x i x j

r2

]
dx i dx j. (33)

In particular, the difference between the components of gS with respect to the harmonic coordinates and
the corresponding components of the Minkowski metric are such that any ∂ I derivative decays at least as
fast as CSr−(n−2)−|I |.

Note a result in [Dai 2004] ensures that CS ≥ 0 for the spacetimes of interest in our main Theorem 1.1.
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3. Sobolev estimates on hyperboloids

We begin in Lemma 3.1 by recalling Hörmander’s proof of a Sobolev estimate on hyperboloids. This
allows us to introduce some of the key ideas that appear in our proof of the main result of this section,
Lemma 3.2. The use of the vector field method to prove Sobolev estimates on hyperboloids originates in
[Klainerman 1985].

Lemma 3.1 (Sobolev estimate for compactly supported functions on hyperboloids in Minkowski space
[Hörmander 1997, Lemma 7.6.1]). Let ν be the smallest integer greater than 1

2 n, and let v ∈ Cν(R1+n)

have support in |x | < t − 1. There is a constant C such that

sup
6s

tn
|v(t, x)|2 ≤ C

∑
|I |≤ν

∫
6s

|Z I v|
2 dx . (34)

Proof. Consider a point (t0, x0) ∈ 6s with |x0|
2
≤ t2

0 −1. Set r0 =
1
2 t0 and y0 = x0. Set 6 to be the portion

of 6s on which |x − x0| ≤ r0. Let (t, x) ∈ 6. This implies |t − t0| ≤ r0, which implies 1
2 t ≤ t0 ≤ 2t . Thus,∑

|I |≤ν

∫
6s

|Z I v(t, x)|2 dx ≥ C
∑
|I |≤ν

∫
6s

|t |I |
0 Y I v(t, y)|2 dy.

The right side can be rewritten, by introducing rescaled coordinates

ỹ = 2t−1
0 (y − y0) and ṽ(ỹ) = v(t, y).

One can now decompose the portion of 6s where |x | ≤ t − 1 into many subregions where t does not vary
by more than a factor of 2. Let χ(ỹ) be a smooth cut-off such that χ is 1 on a neighbourhood of 0 and
is 0 for |ỹ| ≥

1
2 , it can further be bounded from below. A Sobolev estimate can then be applied to give a

further lower bound on v. Combining these yields∑
|I |≤ν

∫
6s

|t |I |
0 Y I v(t, x)|2 dy =

∑
|I |≤ν

∫
|ỹ|≤1

|∂ I
ỹ ṽ(ỹ)|2tn

0 dỹ

≥ Ctn
0

∑
|I |≤ν

∫
|ỹ|≤1

|∂ I
ỹ ((χṽ)(ỹ))|2 dỹ

≥ Ctn
0 |ṽ(0)|2

= Ctn
0 |v(t0, x0)|

2,

which completes the proof. □

In the following lemma we obtain a Sobolev estimate for functions supported on product spacetimes
with specified properties outside a compact set. In particular we obtain a pointwise estimate (36) in terms
of the hyperboloidal time s, as well as a t-weighted pointwise estimate on a fixed hyperboloid (37).

Lemma 3.2 (Sobolev estimate for eventually prescribed functions on hyperboloids foliating product
spacetimes). Let n ≥ 4, let d̃ be the smallest even integer larger than 1

2 d , and let ν̃ be the smallest integer
greater than 1

2 n + d̃. Let uµν and fµν be tensors on R1+n
× K with f depending only on the Minkowski
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coordinates x i. Let u ∈ C ν̃(R1+n
× K ) satisfy u = f for |x | ≥ t − 1. Let f ∈ C∞(R1+n

× K ) be smooth
and be such that, for all I ∈ N, there is a C I such that3

|∇[ĝ]
I f |E ≤ C|I ||x |

−(n−1)/2−|I |. (35)

Let δ(n) =
1
4(n − 2). There is a constant C such that

sup
(t,x i,ω)∈6s×K

s4δ(n)
|u(t, x i, ω)|2E ≤ C

∑
|I |≤ν̃

n∑
i=1

∫
6s×K
|x |≤t−1

|Yi Z I u|
2
E dx dµk + C

∑
|I |≤ν̃−1

C2
I . (36)

Furthermore there is a constant C such that

sup
(t,x i,ω)∈6s×K

t2δ(n)
|u(t, x i, ω)|2E ≤ C

∑
|I |≤ν̃

n∑
i=1

∫
6s×K
|x |≤t−1

|Yi Z I u|
2
E dx dµk + C

∑
|I |≤ν̃−1

C2
I . (37)

Proof. Lemma 2.9 and the standard Sobolev estimate imply

sup
ω∈K

|u( · , · , ω)|E ≤ ∥u∥H d̃ (K )
≤ ∥(1k)

d̃/2u∥L2(K ) + ∥u∥L2(K ),

for d̃ the smallest even integer greater than 1
2 d . This choice of d̃ being even is simply to make the elliptic

estimate cleaner. Note the trivial estimate∑
|I |≤ν̃−d̃

(|Yi Z I (1k)
d̃/2u|

2
E + |Yi Z I u|

2
E) ≤

∑
|I |+2 j≤ν̃

|Yi Z I (1k)
j u|

2
E .

It is thus sufficient to prove in Minkowski space that

sup
6s

sn−2
|u(t, x)|2E ≤ C

∑
|I |≤ν̃−d̃

n∑
i=1

∫
6s

|Yi Z I u|
2
E dx + C

∑
|I |≤ν̃−1

C2
I , (38)

since this would then imply

sup
6s×K

sn−2
|u(t, x i, ω)|2E ≲

∑
|I |≤ν̃−d̃

n∑
i=1

∥ sup
K

(Yi Z I u)∥2
L2

x
+ C

∑
|I |≤ν̃−1

C2
I

≲
∑

|I |≤ν̃−d̃

n∑
i=1

∥Yi Z I (1k)
d̃/2u∥

2
L2

x L2
K

+ C
∑

|I |≤ν̃−1

C2
I .

For |x | ≥ t − 1 and (t, x) ∈ 6s , one has t ∼ |x |, and so

sn−2
|u(t, x)|2E ≤ tn−2

|u(t, x)|2E ≤ C |x |
n−2

|u(t, x)|2E ≤ C |x |
n−2

| f (x)|2E ≤ CC2
0 .

Thus, it remains to prove (38) for |x | ≤ t − 1.

3The exponent on f is set to match that corresponding to the exponent arising from the pointwise estimate (36) on u in the
region |t − r | ≤ C . The limiting factor on the exponent in (36) arises from estimates on the hyperboloid, not from the decay of
the prescribed function f . If a faster decay rate t−β could be proved (using similar methods) on hyperboloids for compact data,
then a similar t−β decay could be proved for prescribed functions satisfying f ≤ r−β.
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Consider the region |x | ≤ t − 1. Set tmax =
1
2(s2

+ 1), which is the value of t at which 6s intersects
|x | = t − 1 and which satisfies t ≤ tmax ≤

1
2(t2

+ 1) on the portion of 6s where |x | ≤ t − 1 by Lemma 2.8.
Let χ : R → [0, 1] be a smooth cut-off function such that χ(α) = 1 for α < 1 and χ(α) = 0 for α > 2, and
define the (0, 2) tensor vµν(t, x) = χ(|x |/tmax)uµν(t, x). Observe that uµν = vµν in the region |x | ≤ t −1.

Hormander’s proof of Lemma 3.1 relies on a carefully chosen rescaling of a portion of the hyperboloid,
and the rest of this proof follows the same idea, although the scaling is chosen differently. Recall both
the Cartesian (t, x) and hyperboloidal (s, y) coordinates in Minkowski space, which are related via
(s, y) = (

√
t2 − |x |2, x). Given a choice of s, define ỹ = s−1 y and set ṽ(ỹ) to be the value of v at

hyperboloidal coordinates (s, s ỹ). With this, dn ỹ = s−n dy and ∂ỹi = s∂yi = sYi . Recall that Zi = tYi .
Thus, by a Sobolev estimate that exploits the fact that 1 < 1

2 n < 1
2 n + 1,

sup
6s

|v(t, x)|2E = sup |ṽ(ỹ)|2E ≲
∑

1≤|J |≤
n
2 +1

∫
|∂ J

ỹ ṽ|
2
E dn ỹ.

From rescaling and the facts that s ≤ t and that Z0i = tYi , it follows that

sup
6s

|v(t, x)|2E ≲ s−n
∑

1≤|J |≤
n
2 +1

∫
|(sY )J v|

2
E dn y ≲ s−n+2

∑
0≤|J |≤

n
2

∑
i

∫
s2|J |

|Y J Yiv|
2
E dn y

≲ s−n+2
∑

0≤|J |≤
n
2

∑
i

∫
t2|J |

|Y J Yiv|
2
E dn y ≲ s−n+2

∑
0≤|J |≤

n
2

∑
i

∫
|Yi Z J v|

2
E dn y.

The last integral can be decomposed into the regions where |x | ≤ t −1 and |x | > t −1. Where |x | ≤ t −1,
the integral can be bounded by the integral term on the right-hand side of (38) since ν̃ − d̃ > 1

2 n. Now
consider the region |x | > t − 1. Because of the support of χ , it is sufficient to consider the region
tmax − 1 ≤ |x | ≤ 2(tmax − 1). In this region, v = χ f . When a derivative is applied to v, it is applied to
either χ or to f , in which case one obtains an additional factor of t−1

max or |x |
−1, from the properties of χ

and f , respectively. Since |x |/tmax ∈ [1, 2] in the support of ∂χ , effectively one obtains an extra factor
of |x |

−1 in all cases, so |Yi Z J v|E ≤ CC|J |+1|x |
−(n−1)/2−1, and∫

|x |≥tmax−1
|Yi Z J u|

2
E dx ≤ CC2

|J |+1

∫
Sn−1

∫ 2(tmax−1)

tmax−1
(|r |

−(n−1)/2−1)2
|r |

n−1 dr dn−1ωSn−1 ≤ CC2
|J |+1.

Observing that s ≥ Ct1/2 in the region |x | ≤ t − 1 allows us to obtain

sup
6s×K

t2δ(n)
|u|

2
E ≤ sup

6s×K∩{|x |≤t−1}

t2δ(n)
|u|

2
E + sup

6s×K∩{|x |>t−1}

t2δ(n)
|u|

2
E

≲ sup
6s×K∩{|x |≤t−1}

s4δ(n)
|u|

2
E + sup

6s×K∩{|x |>t−1}

r2δ(n)
| f |

2
E

≲
∑
|I |≤ν̃

n∑
i=1

∫
6s×K
|x |≤t−1

|Yi Z I u|
2
E dx dµk +

∑
|I |≤ν̃−1

C2
I + C0 sup

6s×K∩{|x |>t−1}

r (n−2)/2r−(n−1)/2.

In the final line we applied estimate (36) to the first term and assumption (35) to the second term. □
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4. Energy integrals and inequalities

4A. Basic properties of the energy. The energy introduced in the following definition is related to the
standard energy used to study quasilinear hyperbolic PDEs, albeit with additional terms included in order
to be compatible with the linearised equations (8).

Definition 4.1 (Lichnerowicz-type energy on hyperboloids). Let n ∈ Z+ and let Uµν and uµν be tensors
defined on R1+n

× K . For u, U ∈ C1(R1+n
× K ) and s ≥ 2, define

E[U ; u; s] =

∫
6s×K

(
(s/t)2

|∂t u|
2
E +

n∑
i=1

|Yi u|
2
E + ⟨∇[k]

Au, ∇[k]Au⟩E − 2⟨R[ĝ] ◦ u, u⟩E

− 2Uαβ
⟨∇[ĝ]βu, ∂t u⟩E nα + Uαβ

⟨∇[ĝ]αu, ∇[ĝ]βu⟩E

)
dx dµk, (39)

where n0 = 1 and ni = −xi/t for i ∈ {1, . . . , n} and n A = 0, and dx is the flat Euclidean volume form.

The final terms on the first line could equally well be written as ⟨∇[k]
Au, ∇[k]Au⟩E −2⟨R[k] ◦u, u⟩E ,

since the covariant derivative with respect to ĝ in directions tangent to K are given by the covariant
derivative with respect to k, and similarly for the curvature.

The terms on the second line of (39) are chosen so that, for solutions to the wave equation (42), the
change in energy E[U ; u; s2]− E[U ; u; sa] is given in (43) by an integral which has an integrand with no
terms involving (∇[ĝ]u)(∇[ĝ]∇[ĝ]u). The relevant cancellations to eliminate such terms follow from
the properties of T [U ; u]

µ
ν introduced in the proof of Lemma 4.2.

Note that, following [Hörmander 1997; LeFloch and Ma 2016], we have defined E[U ; u; s] so that it is
not the naturally induced energy associated with the metric ĝ + U . This is because we have endowed 6s

with the flat Euclidean volume form dx , instead of the induced Riemannian volume form (s/t) dx .
The following lemma provides us with an energy functional which allows us to measure the perturbation

of the spacetime. Note that in (40) we require some weighted t-decay on hyperboloids which we recover
from (37) in Lemma 3.2.

Lemma 4.2 (basic properties of the energy). Take the conditions of Definition 4.1.

(i) There is an ϵn > 0 such that if
sup

6s×K
t |U |E ≤ Cϵn, (40)

then for s ≥ 2,
1
2E[U ; u; s] ≤ E[0; u; s] ≤ 2E[U ; u; s]. (41)

(ii) If uµν is a solution of

(ĝ + U )αβ
∇[ĝ]α∇[ĝ]βuµν + 2(R[ĝ] ◦ u)µν = Fµν, (42)

then

E[U ; u; s1] = E[U ; u; s2] +

∫ s2

s1

∫
6s×K

⟨F, ∂t u⟩E(s/t) dy dµk ds

+

∫ s2

s1

∫
6s×K

(−2(∇[ĝ]αUαβ)⟨∇[ĝ]βu, ∂t u⟩E + (∂tUαβ)⟨∇[ĝ]αu, ∇[ĝ]βu⟩E)(s/t) dy dµk ds. (43)
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Proof. We first derive the energy E[U ; u; s] by considering the following nonlinear version of the stress
energy tensor (9)

T [U ; u]
µ

ν = (ĝ+U )µα
⟨∇[ĝ]αu, ∇[ĝ]νu⟩E −

1
2(ĝ+U )αβ

⟨∇[ĝ]βu, ∇[ĝ]αu⟩Eδµ
ν +⟨R[ĝ]◦u, u⟩Eδµ

ν . (44)

We calculate

∇[ĝ]µT [U ; u]
µ

ν = ⟨(ĝ + U )αβ
∇[ĝ]α∇[ĝ]βu, ∇[ĝ]νu⟩E + (ĝ + U )µα

⟨∇[ĝ]αu, ∇[ĝ]µ∇[ĝ]νu⟩E

− (ĝ + U )αβ
⟨∇[ĝ]ν∇[ĝ]βu, ∇[ĝ]αu⟩E + ∇[ĝ]ν⟨R[ĝ] ◦ u, u⟩E

+ (∇[ĝ]µUµα)⟨∇[ĝ]αu, ∇[ĝ]νu⟩E −
1
2(∇[ĝ]νUαβ)⟨∇[ĝ]αu, ∇[ĝ]βu⟩E . (45)

Let Xµ be a vector field on R1+n
× K tangent to R1+n. We have

∇[ĝ]α∇[ĝ]βuγ δ = ∇[ĝ]β∇[ĝ]αuγ δ + Riem[ĝ]αβγ
ρuρδ + Riem[ĝ]αβδ

ρuργ .

Since (R1+n, ηR1+n ) has zero Riemann curvature, and since the Riemann curvature for a product manifold
is given by Riem[ĝ] = Riem[ηR1+n ] + Riem[k], it follows that all components of the Riemann curvature
Riem[ĝ]αβγ

δ vanish unless all the indices α, β, γ, δ correspond to internal directions tangent to K . Thus,
the contraction with a vector tangent to R1+n vanishes, and, in particular,

Riem[ĝ]αβγ δ X δ
= 0. (46)

Consequently
⟨∇[ĝ]α∇[ĝ]βu, ∇[ĝ]νu⟩E Xα

= ⟨∇[ĝ]β∇[ĝ]αu, ∇[ĝ]νu⟩E Xα.

and also
∇[ĝ]ν⟨R[ĝ] ◦ u, u⟩E Xν

= 2⟨R[ĝ] ◦ u, Xν
∇[ĝ]νu⟩E .

This allows us to calculate

∇[ĝ]µ(T [U ; u]
µ

ν Xν) = T µ
ν[U ]∇[ĝ]µXν

+ ⟨F, Xν
∇[ĝ]νu⟩E + (∇[ĝ]µUµα)⟨∇[ĝ]αu, Xν

∇[ĝ]νu⟩E

−
1
2(Xν

∇[ĝ]νUαβ)⟨∇[ĝ]αu, ∇[ĝ]βu⟩E .

Consider the hyperboloidal energy

E[U ; u; s] =

∫
6s×K

−2T [U ; u]
µ

ν(∂t)
νnµ dx dµk

=

∫
6s×K

(
|∂t u|

2
E +

n∑
i=1

|∂i u|
2
E +

n∑
i=1

2(x i/t)⟨∂t u, ∂i u⟩E + k AB
⟨∇[ĝ]Au, ∇[ĝ]Bu⟩E

− 2⟨R[ĝ] ◦ u, u⟩E − 2Uµρ
⟨∇[ĝ]ρu, ∂t u⟩E nµ + Uρλ

⟨∇[ĝ]ρu, ∇[ĝ]λu⟩E

)
dx dµk,

where n0 = 1, ni = −ηi j x j/t for i ∈ {1, . . . , n} and n A = 0. Note that

E[0; u; s] =

∫
6s×K

(
|∂t u|

2
E +

n∑
i=1

|∂i u|
2
E + 2(x i/t)⟨∂t u, ∂i u⟩E

+ ⟨∇[ĝ]
Au, ∇[ĝ]Au⟩E − 2⟨R[ĝ] ◦ u, u⟩E

)
dx dµk, (47)
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which alternatively can be written in hyperboloidal coordinates as

E[0; u; s] =

∫
6s×K

(
(s/t)2

|∂t u|
2
E +

n∑
i=1

|Yi u|
2
E + ⟨∇[ĝ]

Au, ∇[ĝ]Au⟩E − 2⟨R[ĝ] ◦ u, u⟩E

)
dx dµk . (48)

Since the contraction of R[ĝ] with any direction tangent to R1+n vanishes, and since |w|E ≥ |w|k for any
tensor field w, it follows from the definition of L that∫

K
(⟨∇[ĝ]

Au, ∇[ĝ]Au⟩E − 2⟨R[ĝ] ◦ u, u⟩E) dµk ≥

∫
K
(⟨∇[ĝ]

Au, ∇[ĝ]Au⟩k − 2⟨R[ĝ] ◦ u, u⟩k) dµk

=

∫
K
⟨Lu, u⟩k dµk .

Thus, from Theorem 2.2 and the condition of Riemannian linear stability (11), it follows that∫
K
(⟨∇[ĝ]

Au, ∇[ĝ]Au⟩E − 2⟨R[ĝ] ◦ u, u⟩E) dµk ≥ 0. (49)

Thus, E[0, u, s] ≥ 0.
Using our previously calculated expression for the divergence of T [U ; u]

µ
ν Xν , we obtain

E[U ; u; s1] = E[U ; u; s2] +

∫ s2

s1

∫
6s×K

⟨−2F, ∂t u⟩E(s/t) dy dµk ds

+

∫ s2

s1

∫
6s×K

(
−2(∇[ĝ]αUαβ)⟨∇[ĝ]βu, ∂t u⟩E

+ (∂tUαβ)⟨∇[ĝ]αu, ∇[ĝ]βu⟩E
)
(s/t) dy dµk ds

via Stoke’s theorem. This proves equality (43).
Condition (40) combined with s ≥ Ct1/2 implies sup6s×K |U |E(t/s)2

≤ Cεn . For simplicity denote
k AB

⟨∇[ĝ]Au, ∇[ĝ]Bu⟩E by |∂Au|
2
E , then

s2

2t2

(
|∂t u|

2
E

∑
i

+|∂i u|
2
E + |∇[k]u|

2
E

)
≤

(
|∂t u|

2
+

∑
i

|∂i u|
2
+ |∇[k]u|

2
E

)
(1 − |x |/t)

≤ |∂t u|
2
E + |∂i u|

2
E + 2(x i/t)⟨∂t u, ∂i u⟩E + |∇[k]u|

2
E . (50)

Using this and Young’s inequality we find

|E[U ; u; s] − E[0; u; s]| =

∣∣∣∣∫
6s×K

(2Uαβ
⟨∇[ĝ]αu, ∂t u⟩E nβ − Uαβ

⟨∇[ĝ]αu, ∇[ĝ]βu⟩E) dx dµk

∣∣∣∣
≤ CεnE[0; u; s],

and thus the energies are equivalent for sufficiently small εn . This proves estimate (41) and the lemma. □

Having defined the energy involving first-order derivatives, we now introduce higher-order energies.

Definition 4.3 (symmetry boosted energy). Let (R1+n
× K, ĝ) be a spacetime with a supersymmetric

compactification and N ∈ N. For k ≤ N , define the energy of a symmetric tensor field g to be

Ek+1(s) =

∑
|I |≤k

E[g−1
− ĝ−1

; 0 I g; s]. (51)
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We end this section with the following Hardy estimate on hyperboloids. The proof is standard; see for
example [LeFloch and Ma 2016, Lemma 2.4].

Lemma 4.4 (Hardy estimate on hyperboloids). Let uµν be a tensor defined on R1+n. Then one has

∥r−1u∥L2(6s) ≲
n∑

i=1

∥Yi u∥L2(6s). (52)

4B. Preliminary L2 and L∞ estimates. In our nonlinear estimates we will estimate terms of the form

Z I (1k)
j (uv) =

∑
|I1|+|I2|=|I |
|J1|+|J2|=2 j

Z I1∇[k]
J1u · Z I2∇[k]

J2v. (53)

In the following lemma we estimate terms which appear as factors in the right-hand side of (53) in L2 by
using the elliptic estimates of Lemma 2.9 and the Hardy estimate of Lemma 4.4. Note the use of elliptic
estimates allows us to avoid commuting derivatives, such as [∇[k], 1k], which shortens the argument.

Lemma 4.5 (L2 estimate for distributed derivatives). Let uµν be a tensor defined on R1+n
×K. Suppose N

is even, ℓ ∈ N, and ℓ ≤ N + 1, then∑
|I |+|J |≤ℓ

∥t−1 Z I
∇[k]

J u∥L2(6s×K ) ≲ EN+1(s)1/2. (54)

Proof. We prove the estimate by considering separately the cases of |I | = 0 and |I | ̸= 0. Firstly take
|I | ≥ 1, suppose |J | = 2m where m ∈ N, and consider |I |+ |J | = ℓ ≤ N + 1. Using the elliptic estimates
of Lemma 2.9 we find

∥t−1 Z I
∇[k]

J u∥L2(6s×K ) ≲
∥∥∥t−1 Z I u∥H2m(K )

∥∥
L2(6s)

≲ ∥t−1 Z I (1k)
mu∥L2(6s×K ) + ∥t−1 Z I u∥L2(6s×K )

≲
n∑

i=1

∥Yi Z I−1(1k)
mu∥L2(6s×K ) +

n∑
i=1

∥Yi Z I−1u∥L2(6s×K )

≲ E[0; Z I−1(1k)
mu; s]1/2

+ E[0; Z I−1u; s]1/2 ≲ Eℓ(s)1/2.

Next take |I | ≥ 1 and suppose |J | = 2m + 1 where m ∈ N. For |I | + |J | = ℓ ≤ N + 1, again using
Lemma 2.9, we have

∥t−1 Z I
∇[k]

J u∥L2(6s×K )

≲
∥∥∥t−1 Z I u∥H2m+1(K )

∥∥
L2(6s)

≲
n∑

i=1

∥Yi Z I−1u∥L2(6s×K ) +

n∑
i=1

∥Yi Z I−1(1k)
mu∥L2(6s×K ) + ∥∇[k](Z I (1k)

mu)∥L2(6s×K )

≲ E[0; Z I−1u; s]1/2
+ E[0; Z I−1(1k)

mu; s]1/2
+ E[0; Z I (1k)

mu; s]1/2 ≲ Eℓ(s)1/2.

We now turn to the case |I | = 0. Again we split into the cases of |J | being even and odd. Start with
|J | = 2m for m ∈ N. Note that N is chosen to be even so that we have the strict inequality 2m < N + 1.
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Applying the Hardy estimate from Lemma 4.4, and recalling that t ≥ r on the hyperboloid, yields

∥t−1
∇[k]

J u∥L2(6s×K ) ≲
∥∥∥r−1u∥H2m(K )

∥∥
L2(6s)

≲ ∥r−1(1k)
mu∥L2(6s×K ) + ∥r−1u∥L2(6s×K )

≲
n∑

i=1

∥Yi (1k)
mu∥L2(6s×K ) +

n∑
i=1

∥Yi u∥L2(6s×K )

≲ E[0, (1k)
mu; s]1/2

+ E[0, u; s]1/2 ≲ EN+1(s)1/2.

Finally we have the case |I | = 0 and |J | = 2m +1 ≤ N +1 for m ∈ N. Again using Lemma 4.4 we obtain

∥t−1
∇[k]

J u∥L2(6s×K ) ≲
∥∥∥r−1u∥H2m+1(K )

∥∥
L2(6s)

≲ ∥r−1
∇[k](1k)

mu∥L2(6s×K ) + ∥r−1u∥L2(6s×K )

≲ ∥∇[k](1k)
mu∥L2(6s×K ) +

n∑
i=1

∥Yi u∥L2(6s×K )

≲ E[0, (1k)
mu; s]1/2

+ E[0, u; s]1/2 ≲ E|J |(s)1/2.

Adding together the above estimates over all appropriate multi-indices gives the required result. □

Corollary 4.6 (L2 estimate for eventually prescribed functions on hyperboloids foliating product space-
times). Let n ≥ 4. Let uµν and fµν be tensors defined on R1+n

× K with f depending only on the
Minkowski coordinates. Suppose u = f for |x | ≥ t − 1. Let f ∈ C∞(R1+n

× K ) be smooth and such that,
for all I ∈ N, there is a C I such that4

|∇[ĝ]
I f |E ≤ C|I ||x |

−(n+1)/2−|I |. (55)

Suppose N is even, ℓ ∈ N, and ℓ ≤ N + 1, then∑
|I |+|J |≤ℓ

∥(s/t)Z I
∇[k]

J u∥L2(6s×K ) ≲ sEN+1(s)1/2
+

∑
|I |+|J |≤ℓ

C|I |,|J |. (56)

Proof. We will consider separately the regions |x | ≤ t − 1 and |x | > t − 1. The estimate in the region
|x | ≤ t − 1 follows by applying Lemma 4.5 with an additional factor of s. Next consider the region
|x | > t − 1 ≥ t0 − 1, where we let t0 =

1
2(s2

+ 1) be the value of t at which 6s intersects |x | = t − 1.
Using assumption (55) we find

∥(s/t)Z I
∇[k]

J u∥
2
L2(6s×K∩{|x |>t−1})

≤

∫
6s×K∩{|x |>t0−1}

|Z I
∇[k]

J u|
2
E dx dµk ≤ C

∫
6s∩{|x |>t0−1}

|Z I
∇[k]

J f |
2
E dx

≤ CC2
|I |,|J |

∫
Sn−1

∫
6s∩{|x |≥t0−1}

(|r |
−(n+1)/2)2

|r |
n−1 dr dωSn−1

≤ CC2
|I |,|J |

∫
Sn−1

∫
6s∩{|x |≥t0−1}

r−2 dr dωSn−1 ≤ CC2
|I |,|J |

.

Adding together the above estimates over all appropriate multi-indices yields (56). □

4Note that the decay assumption on f is stronger here than the assumption (35) in Lemma 3.2.
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We next use Lemma 3.2 to obtain L∞ estimates for terms which appear as factors in the right-hand
side of (53).

Corollary 4.7 (higher-order Sobolev estimates). Let n ≥ 7. Let d̃ , ν̃, uµν , and fµν be as defined in
Lemma 3.2. Then for |I | + |J | = ℓ ∈ N there is a constant C such that

sup
6s×K

(s4δ(n)
|Z I

∇[k]
J u|

2
E + s4δ(n)−2

|(t/s)Z I
∇[k]

J u|
2
E)

≤ C
∑

|I |+2 j≤ν̃+ℓ+1

E[0; Z I (1k)
j u; s] + C

∑
|I |≤ν̃+ℓ−1

C2
|I |. (57)

Proof. We consider the left-most term in (57) first. Let ȷ̃ be the smallest even integer such that ȷ̃ ≥ |J |.
In particular this means

|I | + |J | ≤ |I | + ȷ̃ ≤ ℓ + 1.

Recall that d̃ is the smallest even integer larger than 1
2 d and ν̃ is the smallest integer greater than 1

2 n + d̃ .
Applying Lemma 2.9 yields

sup
K

|∇[k]
J u|E ≤ ∥u∥H d̃+ȷ̃ (K )

≤ ∥(1k)
(d̃+ȷ̃ )/2u∥L2(K ) + ∥u∥L2(K ).

Thus, using in particular (38), we have

sup
(t,x,ω)∈6s×K

s4δ(n)
|Z I

∇[k]
J u(t, x i, ω)|2E

≲
∑

|I1|≤ν̃−d̃

n∑
i=1

∥ sup
K

(Yi Z I1 Z I
∇[k]

J u)∥2
L2(6s)

+

∑
|I1|≤ν̃−1

C2
I1

≲
∑

|I1|≤ν̃−d̃

n∑
i=1

(∥Yi Z I+I1u∥
2
L2(6s×K )

+ ∥Yi Z I+I1(1k)
(d̃+ȷ̃ )/2u∥

2
L2(6s×K )

) + C
∑

|I1|≤ν̃−1

C2
I1

≲
∑

|I |+2 j≤ν̃+ℓ+1

E[0; Z I (1k)
j u; s] + C

∑
|I |≤ν̃−1

C2
I .

To complete the proof for the second term of (57) we observe that s ≥ Ct1/2 in the region |x | ≤ t − 1
while we only have s ≤ t ≤ r in the region |x | > t − 1. Since n ≥ 7 we have δ(n) ≥ 1 and thus

sup
6s×K

s4δ(n)−2
|(t/s)Z I

∇[k]
J u|

2
E

≲ sup
6s×K∩{|x |≤t−1}

(t2/s4)s4δ(n)
|Z I

∇[k]
J u|

2
E + sup

6s×K∩{|x |>t−1}

s4δ(n)−4r2
|Z I

∇[k]
J f |

2
E

≲
∑

|I |+2 j≤ν̃+ℓ+1

E[0; Z I (1k)
j u; s] +

∑
|I |≤ν̃+ℓ−1

C2
I + C2

I sup
6s×K∩{|x |>t−1}

r (n−2)−2r−(n−1).

Note in the final line we applied (35) and the first estimate of (57). □
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5. Proof of stability

5A. Stability for the reduced Einstein equations. We now restate our main Theorem 1.1 in terms of the
reduced Einstein equations. For convenience we translate the initial data of Theorem 1.1 to {t = 4}.

Theorem 5.1 (stability for the reduced Einstein equations). Let n, d ∈ Z+ be such that n ≥ 9, and let
N ∈ N be an even integer strictly larger than 1

2(n +d +8). Let (R1+n
× K, ĝ = ηR1+n + k) be a spacetime

with a supersymmetric compactification.
Let ({t = 4} × Rn

× K, g0, g1) be Cauchy data for the reduced Einstein equations (31). Assume
that, for |x | ≥ 1 with respect to Minkowski coordinates on R1+n, (g0, g1) = (gS + k, 0) where gS is the
Schwarzschild metric in the ηR1+n -wave gauge with parameter CS ∈ [0, ∞).

There is an ϵ > 0 such that, if the initial data satisfies∑
|I |≤N

∥∇[g0]
I (g0 − ĝ|t=4)∥

2
L2(Rn×K )

+

∑
|I |≤N−1

∥∇[g0]
I g1∥

2
L2(Rn×K )

+ C2
S ≤ ϵ, (58)

then there is a future global solution gµν of the reduced Einstein equations (31) with initial data
(h, ∂t h)|t=4 = (g0, g1). Furthermore, there is the bound

sup
(t,x,ω)∈6s×K

s4δ(n)
|g(t, x i, ω)− ĝ(t, x i, ω)|2E ≲ ϵ, (59)

where δ(n) was defined in (7).

Proof. Let the perturbation and inverse perturbation be denoted, respectively, by

hµν = gµν − ĝµν and Hµν
= gµν

− ĝµν.

Since g is a solution of the reduced Einstein equation (31), it follows that

(ĝαβ
+ Hαβ)∇[ĝ]α∇[ĝ]βhµν + 2(R[ĝ] ◦ h)µν = Qµν[g](∇[ĝ]h, ∇[ĝ]h) + Fµν(H, h), (60)

where Qµν is defined in (31b) and Fµν is defined by

Fµν(H, h) = Hαβ(hαδ Riem[ĝ]
δ
µνβ + hαδ Riem[ĝ]

δ
νµβ) + Hαβ(hµδ Riem[ĝ]

δ
ανβ + hνδ Riem[ĝ]

δ
αµβ).

By commuting the symmetries Z I (1k)
j through the system (60) we obtain

(ĝαβ
+ Hαβ)∇[ĝ]α∇[ĝ]β(Z I (1k)

j hµν) − 2(R[ĝ] ◦ Z I (1k)
j h)µν =

3∑
i=1

F i,I, j
µν , (61)

where
F1,I, j

µν = Z I (1k)
j Qµν[g](∇[ĝ]h, ∇[ĝ]h),

F2,I, j
µν = Z I (1k)

j Fµν(H, h),

F3,I, j
µν = [Z I (1k)

j , Hαβ
∇[ĝ]α∇[ĝ]β]hµν .

(62)

The symmetry boosted energy is given by

Ek+1(s) =

∑
|I |+2 j≤k

E[H ; Z I (1k)
j g; s]. (63)
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From Lemma 4.2 and the Cauchy–Schwarz inequality we obtain

EN+1(s ′)1/2
≤ EN+1(4)1/2

+

∑
|I |+2 j≤N

∫ s′

4

(∫
6s×K

( 3∑
i=1

|F i,I, j
|
2
E + |G I, j

|
2
E

)
dy dµk

)1/2

ds, (64)

where the G I, j terms arise from applying Z I (1k)
j to the terms involving ∇[ĝ]γ or ∂tγ on the right side

of the energy equality (43). In particular, these can be bounded by

|G I, j
|
2
E ≤ C |∇[ĝ]H |

2
E |Z I (1k)

j
∇[ĝ]h|

2
E . (65)

The reduced field equations (60) are a system of quasilinear, quasidiagonal wave equations for the
perturbation hµν of the spacetime metric. The existence of unique local solutions emanating from Cauchy
data is standard [Choquet-Bruhat 2009, Theorem 4.6 Appendix III].

The proof then follows a bootstrap argument (or continuous induction): we prove that there exist C > 0
and ϵ > 0 such that, if EN+1(4) + CS < ϵ and EN+1(s) ≤ Cϵ for all s, then EN+1(s) ≤ ϵ + Cϵ2 for all s
and hence EN+1(s) ≤

1
2Cϵ. We note that there is no loss of generality in placing our initial data at t = 4.

We consider the integral term on the right-hand side in (64) as the sum of integrals over 6s ∩{|x |≤ t −1}

and over 6s ∩ {|x | > t − 1}. Our approach is that, for sufficiently small CS , in the latter exterior region
the solution is identically the product of Schwarzschild with the internal manifold. Thus in the region
|x |≥ t−1 the perturbation hµν is only nonzero on its Minkowski indices and on these indices it is identically
Schwarzschild. We note that sufficiently small compactly supported initial data on {t = 4}∩ {|x | ≤ 1} can
be extended to compactly supported initial data on 64 [LeFloch and Ma 2014, Chapter 39].

Recall from Section 2E that the difference between components of the Minkowski metric and the
Schwarzschild metric in wave coordinates decay as CSr−n+2 and the Christoffel symbols decay as CSr−n+1.
Along a geodesic parametrised by λ, one has

d2x i

dλ2 = 0i
jk

dx j

dλ

dxk

dλ
.

Since CSr−n+1 is integrable in r , there are geodesics along which t and r grow linearly and the dx j/dλ

approach constant values, not all of which are vanishing. In particular, dr/dt asymptotically approaches a
constant, and this constant is 1 for null geodesics. The next-to-leading-order term in the geodesic equation
arises from the metric, so it is of the form Cr−n+2, which is again integrable. Furthermore, the smaller
the mass CS the sooner this asymptotic behaviour comes to dominate. In particular, if CS is sufficiently
small, then any causal curve launched from within 64 ∩ {|x | ≤ t − 2} can never reach the region where
|x | ≥ t − 1. Furthermore, by uniqueness of solutions to quasilinear wave equations, since the initial
data on 64 is identically Schwarzschild for |x | > t − 2, the solution is identically Schwarzschild for
|x | > t −1. In particular, when estimating the components of the solution to (61), we can use the Sobolev
Lemma 3.2 and Corollary 4.6 on hyperboloids with eventually prescribed functions. (The conclusion of
this paragraph is essentially Proposition 2.3 of [LeFloch and Ma 2016].)

The estimate (40) required by Lemma 4.2 is established by combining (37) with the bootstrap as-
sumptions and noting that since n ≥ 9 we certainly have δ(n) > 1. Similarly since n ≥ 9 the decay
assumptions (55) in Corollary 4.6 and (35) in Lemma 3.2 are satisfied.
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We are now in a position to apply the results from Section 4B to the nonlinearities in (64). In general
we will distribute (s/t)(t/s) = 1 across the terms and estimate high-derivative terms with a factor of (s/t)
using Corollary 4.6 and low-derivative terms with a factor of (t/s) using Corollary 4.7. We begin by
estimating the term G I, j. Using (65) we find∑

|I |+2 j≤N

∥G I, j
∥L2(6s×K ) ≲

∑
|I |+|J |≤N

(∫
6s×K

|(t/s)∇[ĝ]H |
2
E |(s/t)Z I

∇[k]
J
∇[ĝ]h|

2
E dy dµk

)1/2

≤ sup
6s×K

(|(t/s)∇[ĝ]h|E)

(∫
6s×K

|(s/t)Z I
∇[k]

J
∇[ĝ]h|

2
E dy dµk

)1/2

≲
1

s2δ(n)−1 (Eν̃+3(s)1/2
+ CS)(sEN+1(s)1/2

+ CS). (66)

The term F1
µν involves the standard quadratic derivative nonlinearities of the Einstein equations. Their

weak null structure is of course not relevant here since the Minkowski dimension is taken so high. We
first look at what type of terms are contained in F1

µν :∑
|I |+2 j≤N

∥F1,I, j
µν ∥L2(6s×K )

≲
∑

|I |+|J |≤N

(∫
6s×K

|(ĝ + H)−1
|
2
E |Z I

∇[k]
J (∇[ĝ]h∇[ĝ]h)|2E dy dµk

)1/2

+

∑
|Ii |+|Ji |≤N
|I1|+|J1|≥1

(∫
6s×K

|Z I1∇[k]
J1h|

2
E |Z I2∇[k]

J2(∇[ĝ]h∇[ĝ]h)|2E dy dµk

)1/2

. (67)

We treat the first term on the right-hand side of (67) since the second term is higher-order and thus easier
to estimate. Once again we estimate high-derivative terms with a factor of (s/t) using Corollary 4.6 and
low-derivative terms with a factor of (t/s) using Corollary 4.7. This yields∑
|I |+|J |≤N

(∫
6s×K

|(ĝ + H)−1
|
2
E |Z I

∇[k]
J (∇[ĝ]h∇[ĝ]h)|2E dy dµk

)1/2

≲
∑

|Ii |+|Ji |≤N
|I2|+|J2|≤N/2+1

(∫
6s×K

C |Z I1∇[k]
J1∇[ĝ]h||Z I2∇[k]

J2∇[ĝ]h|
2
E dy dµk

)1/2

, (68)

where by symmetry we can assume |I2| + |J2| ≤
1
2 N + 1. After using (s/t)(t/s) = 1 we find∑

|Ii |+|Ji |≤N
|I2|+|J2|≤N/2+1

(∫
6s×K

C |(s/t)Z I1∇[k]
J1∇[ĝ]h||(t/s)Z I2∇[k]

J2∇[ĝ]h|
2
E dy dµk

)1/2

≲ sup
6s×K

( ∑
|I2|+|J2|≤N/2+1

|(t/s)Z I2∇[k]
J2∇[ĝ]h|E

)

×

∑
|I1|+|J1|≤N

(∫
6s×K

|(s/t)Z I1∇[k]
J1∇[ĝ]h|

2
E dy dµk

)1/2
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≲
1

s2δ(n)−1

( ∑
|I |+2 j≤ν̃+N/2+3

E[0; Z I (1k)
j u; s]1/2

+ CS

∑
|I |≤ν̃+N/2

C2
I

)
(sEN+1(s)1/2

+ CS)

≲
1

s2δ(n)−2 (Eν̃+N/2+4(s)1/2
+ CS)(EN+1(s)1/2

+ CS). (69)

The term F2
µν involves the new nonlinearities which are only nonzero when both µ, ν ∈ {A, . . . , B}.

This means we can control F2
µν as follows:∑

|I |+2 j≤N

∥F2,I, j
µν ∥L2(6s×K ) ≲ sup

6s×K

( ∑
|I0|≤N

|∇[k]
I0 Riem[k]|

)

×

∑
|Ii |+|Ji |≤N

(∫
6s×K

|Z I1∇[k]
J1h|

2
E |Z I2∇[k]

J2h|
2
E dy dµk

)1/2

. (70)

The Riemann curvature components of k are bounded (since K is compact) which allows us to control the
first factor in (70). To estimate the second factor in (70) we follow the same procedure as in F1

µν , by con-
trolling high-derivatives with a factor of (s/t) using Corollary 4.6 and low-derivatives with a compensating
factor of (t/s) using Corollary 4.7. The result of this procedure leads to a term controlled by (69).

The final term F3
µν is a commutator involving the quasilinear perturbation of the principal part of the

differential operator. Note first the identity∑
|I |+2 j≤N

|F3,I, j
µν |E ≤ C

∑
|Ii |+|Ji |≤N

|I2|+|J2|≤N−1

|Z I1∇[k]
J1 H |E |Z I1∇[k]

J1∇[ĝ]∇[ĝ]h|E . (71)

Once again we distribute the product (s/t)(t/s) = 1 across the two terms appearing here depending on
where the derivatives land. The term with high-derivatives gains a factor of (s/t) and is controlled using
Corollary 4.6 while the term with low-derivatives absorbs a compensating factor of (t/s) and is estimated
using Corollary 4.7. Note that when the term Z I2∇[k]

J2(∇[ĝ]∇[ĝ]h) is estimated in L∞, the Sobolev
inequality will lead to a symmetry boosted energy at order ν̃ +

1
2 N + 5. We eventually obtain∑

|I |+2 j≤N

∥F3,I, j
µν ∥L2(6s×K ) ≲

1
s2δ(n)−2 (Eν̃+N/2+5(s)1/2

+ CS)(EN+1(s)1/2
+ CS). (72)

Putting these all together, inserting the bootstrap assumptions, and using also C2
S < ϵ, we find∑

|I |+2 j≤N

∫ s′

4

(∫
6s×K

( 3∑
i=1

|F i,I, j
|
2
E + |G I, j

|
2
E

)
dy dµk

)1/2

ds ≲ ϵ

∫ s′

4

1
s2δ(n)−2 ds. (73)

For integrability we require 2δ(n) − 2 > 1, which is equivalent to each of the following:

δ(n) > 3
2 and n > 8. (74)

This implies n ≥ 9. For the Sobolev estimates we require

ν̃ +
1
2 N + 4 ≤ N . (75)

Recalling the definition of ν̃ given in Lemma 3.2, this holds provided N > 1
2(n + d + 8) and N is even.
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Consequently for sufficiently small ϵ and by Grönwall’s inequality applied to the energy estimate (64)
we find Eν+1(s) ≤

1
2C1ϵ. We have thus obtained a future global solution hµν = gµν − ĝµν to the reduced

Einstein equations which clearly satisfies the decay bounds given in Theorem 5.1. □

Remark 5.2. The system (60) contains quadratic nonlinearities FAB and Fi A that are new compared to
the weak null terms identified in the proof of Minkowski stability in [Lindblad and Rodnianski 2003;
2010] and the proof of zero-mode Kaluza–Klein stability in [Wyatt 2018].

5B. Proof of Theorem 1.1. We are now in a position to use the results from Theorem 5.1 in order to
prove our main result. Take an initial data set (Rn

× K, γ, κ) as specified in Theorem 1.1 with smallness
conditions (5). We now transform this data into the form required by Theorem 5.1, which is a standard
procedure; see for example [Lindblad and Rodnianski 2005]. We first set ((g0)i ′ j ′, (g1)i ′ j ′) = (γi ′ j ′, κi ′ j ′).
Diffeomorphism invariance allows us the freedom to choose the lapse and shift. We set the shift to be
zero: X i ′ = 0. We choose the lapse to be a smooth function satisfying

N (r) = 1, r ≤
1
2 ,

|N − 1| ≲ CS,
1
2 ≤ r ≤ 1,

N (r) =

(
1 −

h00(r−1)

rn−2

)1/2

, r ≥ 1.

We relate the lapse and shift with the Cauchy data for the reduced equations in Theorem 5.1 by setting
(g0)00 =−N 2 and (g0)0i ′ = X i ′ . The initial data for (∂t N , ∂t X i ′)= ((g1)00, (g1)0i ′) is chosen by satisfying
V γ

= 0. This amounts to solving the following equations on Rn
× K :

N−3((g1)00 + N 2γ i ′ j ′

κi ′ j ′) = g0
i ′ j ′

0[ê]0
i ′ j ′,

−N−2γ i ′ j ′

(g1)0 j ′ − N−1γ i ′ j ′

∂j ′ N + γ j ′k′

0i ′

j ′k′[γ ] = g0
j ′k′

0[ê]i ′

j ′k′ .
(76)

We have now brought the initial data of Theorem 1.1 into the form of Theorem 5.1. It remains to check
that our assumptions on the lapse and shift are compatible with smallness conditions (58). To do this,
recall the final sentence of Theorem 2.15. This implies that∫

{r≥1}∩Rn
|∇[g0]

I (−N 2
− η00)|

2 dx ≤

∫
{r≥1}∩Rn

C2
S(r

−(n−2)−|I |)2rn−1 dr dn−1ωSn−1

≤ C2
S

∫
{r≥1}∩Rn

r−(n−3)−2|I | dr dn−1ωSn−1 ≤ CC2
S.

By inverting the expressions (76) for (∂t N , ∂t X i ′) it is clear that the smallness conditions (58) are satisfied.
Furthermore it is a standard result, see for example [Choquet-Bruhat 2009, Theorem 8.3], that the future
global solution constructed in Theorem 5.1 is in fact also a solution to the full Einstein equations.

Finally, note that the solution found in Theorem 5.1 is only defined to the future t ≥ 4. Nonetheless, by
time translation, we can treat the initial data as being on {t = 0} instead of {t = 4}, so that Theorem 5.1
ensures the existence of a solution for t ≥ 0. By time reversibility for the Einstein equation (and the
reduced Einstein equation), we similarly obtain a solution for t ≤ 0. Thus, we can construct the global
solution required in Theorem 1.1.
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It now remains to prove the causal geodesic completeness of (R1+n
× K, g).

Globally, the metrics g and ĝ are very close, in the sense that, with respect to a basis constructed
from the X i and an orthonormal basis on K , their components vanish to order ϵ globally. Denote from
now onwards T = dt . This is a globally timelike one-form such that |g(T, T ) − 1| ≲ ϵ. Thus, g − 2T T
defines a Riemannian metric. (Note that in the introduction, we used the slightly different Euclidean
metric ĝ − 2T T .) Within this proof, we define, for a vector u, the Euclidean length to be

|u|
2
= uαuβ(gαβ + 2TαTβ). (77)

Note that the fact that g and ĝ are very close implies the equivalence |u|E ∼ |u|.
Consider a causal geodesic γ that is affinely parametrised by λ. For the remainder of this paragraph,

let t = t (λ) denote the value of the Cartesian coordinate t at the point γ (λ). By rescaling, we may assume
that dt/dλ = 1 at t = 0. Let v be the (artificial, Euclidean) speed defined by v ≥ 0 and

v2
=

∣∣∣∣dγ α

dλ

∣∣∣∣2

. (78)

Since g and ĝ are very close, the rate of change in the t direction cannot be (much) greater than the
Euclidean speed, i.e., ∣∣∣∣ dt

dλ

∣∣∣∣ =

∣∣∣∣dγ 0

dλ

∣∣∣∣ ≲ v.

On the other hand, since γ is causal, the component of dγ/dλ in the T direction cannot vanish faster than
the length of the component in the orthogonal spatial directions, and the square of the Euclidean velocity
is the sum of the squares of the lengths of the T components and the orthogonal spatial component (up to
order ϵ multiplicative errors); thus ∣∣∣∣ dt

dλ

∣∣∣∣ =

∣∣∣∣dγ 0

dλ

∣∣∣∣ ≳ v.

In particular, there is the equivalence |dt/dλ| ∼ v.
Since ∇[g]g = 0 and ∇[g]dγ/dλdγ/dλ = 0, the rate of change of the velocity is given by

d
dλ

v2
= 4

(
dγ α

dλ
Tα

)(
dγ β

dλ
∇[g]dγ/dλTβ

)
. (79)

Since the absolute value of (dγ α/dλ)Tα = dt/dλ and the Euclidean length of dγ/dλ are dominated by v,

dv

dλ
≲ |∇[g]dγ/dλT |v. (80)

The ∇[g]T can be expanded in terms of g and ∇[ĝ]g. Both of these have norms that decay as t−δ(n) due
to (74). Thus,

dv

dλ
≲ ϵt−δ(n)v2. (81)

Thus, for ϵ sufficiently small, a simple bootstrap argument shows that v ∼ 1 along all of γ , and hence
dt/dλ ∼ 1. In particular, t is monotone along γ .
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Let tsup be the supremum of the t values that are achieved along γ . For contradiction, suppose tsup < ∞.
Since the length of the spatial component of dγ/dλ is also uniformly equivalent to v, and hence to dt/dλ,
it follows that, as t ↗ tsup, the curve γ has a limit in R1+n

× K . Because of the global bounds on g and
its derivatives, by the standard Picard–Lindelöf theorem for ODEs, the curve γ must smoothly extend
through this limiting point, contradicting the definition of tsup. Thus, tsup = ∞. The only other way in
which γ can be future incomplete is if t diverges to ∞ in a finite λ interval, but this is also impossible,
since dt/dλ ∼ 1. By time symmetry, the same argument holds in the past. Thus, any causal geodesic is
complete.

The previous construction shows that every causal geodesic goes through each level set of t . Thus, the
level sets of t are Cauchy surfaces, and (R1+n

× K, g) is globally hyperbolic.
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We consider smooth solutions of the Burgers–Hilbert equation that are a small perturbation δ from a
global periodic traveling wave with small amplitude ϵ. We use a modified energy method to prove the
existence time of smooth solutions on a time scale of 1/(ϵδ), with 0< δ ≪ ϵ ≪ 1, and on a time scale of
ϵ/δ2, with 0< δ ≪ ϵ2

≪ 1. Moreover, we show that the traveling wave exists for an amplitude ϵ in the
range (0, ϵ∗), with ϵ∗

∼ 0.23, and fails to exist for ϵ > 2/e.
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1. Introduction

1A. The Burgers–Hilbert equation (BH). We study the size and stability of traveling waves of the
Burgers–Hilbert equation (BH),

ft = H f + f fx for (x, t) ∈�× R, (1-1)

f (x, 0)= f0(x), (1-2)

where � is the real line R or the torus T = R/2πZ and H f is the Hilbert transform which is defined for
f : R (resp. T)→ R by

H f (x)=
1
π

P.V.
∫

R

f (y)
x − y

dy resp. H f (x)=
1

2π
P.V.

∫ 2π

0
f (y) cot

x − y
2

dy.

Its action in the frequency space is Ĥ f (k)= −i sgn k f̂ (k) for k ̸= 0, and Ĥ f (0)= 0.
This equation arose in [Marsden and Weinstein 1983] as a quadratic approximation for the evolution

of the boundary of a simply connected vorticity patch in two dimensions. Later, Biello and Hunter [2010]
proposed the model as an approximation for describing the dynamics of small slope vorticity fronts in the
2-dimensional incompressible Euler equations. Recently, the validity of this approximation was proved in
[Hunter et al. 2022].
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By standard energy estimates the initial value problem for (BH) is locally well-posed in H s for s > 3
2 .

Bressan and Nguyen [2014] established in global existence of weak solutions for initial data f0 ∈ L2(R),
with f (x, t) ∈ L∞(R) ∩ L2(R) for all t > 0. Bressan and Zhang [2017] constructed locally in time
piecewise continuous solutions to the BH equation with a single discontinuity where the Hilbert transform
generates a logarithmic singularity. Uniqueness for general global weak solutions of [Bressan and Nguyen
2014] is open. But piecewise continuous solutions are shown to be unique in [Krupa and Vasseur 2020].

The Burgers–Hilbert equation can indeed form shocks in finite time. Various numerical simulations
have been performed in [Biello and Hunter 2010; Hunter 2018; Klein and Saut 2015]. Finite time
singularities, in the C1,δ norm, with 0 < δ < 1, were shown to exist in [Castro et al. 2010] for initial
data f0 in L2(R)∩C1,δ(R) that has a point x0 ∈ R such that H( f0)(x0) > 0 and f0(x0)≥ (32π∥ f0∥L2)1/3.
Recently, with a different approach, Saut and Wang [2022] proved shock formation in finite time for (BH)
and Yang [2021] constructed solutions that develop an asymptotic self-similar shock at one single point
with an explicitly computable blowup profile for (BH).

In this paper we are concerned with the dynamics in the small amplitude regime where (BH) can be
viewed as a perturbation of the linearized (BH) equation ft = H [ f ]. Since the nonlinear term in (1-1) is
quadratic and the Hilbert transform is orthogonal in L2, standard energy estimates yield a time of existence
of smooth solutions T ∼ 1/∥ f0∥. Thanks to the effect of the Hilbert transform and using the normal form
method, Hunter, Ifrim, Tataru and Wong (see [Hunter and Ifrim 2012; Hunter et al. 2015]) were able to im-
prove this time of existence. More precisely, if ϵ is the size of the initial data, they prove a lifespan T ∼1/ϵ2

for small enough ϵ (see also [Ehrnström and Wang 2019] for a similar approach with a modified version of
the (BH) equation). The proofs are based on the normal form method and on the modified energy method.
Furthermore, Hunter [2018] showed for 0<ϵ≪1 the existence of C∞-traveling wave solutions of the form

fϵ(x, t)= uϵ(x + vϵ t),
with

uϵ(x)= ϵ cos(x)+ O(ϵ2), (1-3)

vϵ = −1 + O(ϵ2). (1-4)

Notice that, (uϵ(nx)/n, vϵ/n) is also a C∞-traveling wave solution.
Throughout the paper we will assume that the initial data f0 has zero mean. Since (1-1) preserves

the mean, ∫ 2π

0
f (x, t) dx = 0 for all t .

Since in the construction above uϵ also has zero mean,∫ 2π

0
f (x, t) dx = 0 for all t .

1B. The main theorem. In the present work we extend the results in the small amplitude regime in the
following way:

(1) Size of the traveling waves: We show that the traveling waves exist for an amplitude ϵ in the range
(0, ϵ∗), with ϵ∗

∼ 0.23, and fail to exist for ϵ > 2/e.
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(2) Extended lifespan from a traveling wave: We prove that a δ-perturbation of uϵ lives, at least, for a
time T ∼ 1/(δϵ) for 0 < δ ≪ ϵ ≪ 1, and for a time T ∼ ϵ/δ2 for 0 < δ ≪ ϵ2

≪ 1. This is an
improvement compared with the time T ∼ 1/ϵ2 provided by the results in [Hunter and Ifrim 2012;
Hunter et al. 2015]. Indeed, our main theorem reads:

Theorem 1.1. For 0< |ϵ|, δ ≪ 1 let (uϵ, vϵ) ∈ C∞(T)× R be a traveling wave solution of (1-1) as in
(1-3) and (1-4) and

∥ f0 − uϵ∥H4(T) < δ.

Then there exist 0< ϵ0 ≪ 1, T (ϵ, δ) > 0 and a solution of (1-1)

f (x, t) ∈ C([0, T (ϵ, δ)); H 4(T))

such that

(1) if δ ≪ |ϵ| and |ϵ| ≤ ϵ0, then T (ϵ, δ)∼ 1/(ϵδ),

(2) if δ ≪ ϵ2 and |ϵ| ≤ ϵ0, then T (ϵ, δ)∼ ϵ/δ2.

Moreover, there are two differentiable functions ϵ(t) and a(t) such that

∥ f (x, t)− uϵ(t)(x + a(t))∥H4 ≲ δ.

1C. Sketch of the proof of Theorem 1.1. Now we briefly describe the proof of Theorem 1.1. Assume
that the solution

f (x, t)= uϵ(x + vϵ t)+ g(x + vϵ t, t)

is a small perturbation around the traveling wave uϵ(x +vϵ t). Then the linearization of the Burgers–Hilbert
equation (1-1) is

Lϵg := −vϵgx + Hg + (uϵ(x)g)x = 0

so to the first order, the perturbation g solves the equation gt = Lϵg, with solution

g(x, t)= et Lϵg(x, 0).

Therefore the linear evolution of g is determined by the eigenvalues of Lϵ .
The full nonlinear evolution of g is

gt = Lϵg + N (g, g),

where N (g, g) is a nonlinearity that is (at least) quadratic in g. We plug in the linear solution to get

gt = et Lϵ Lϵg(x, 0)+ N (et Lϵg(x, 0), et Lϵg(x, 0))

to second order, which integrates to

g(x, t)= et Lϵg(x, 0)+ et Lϵ
∫ t

0
e−sLϵ N (esLϵg(x, 0), esLϵg(x, 0)) ds.
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Expand (at least formally) the initial data and the nonlinearity in terms of the eigenvectors of Lϵ as

g(x, 0)=

∑
n

cnϕn(x), N (ϕl, ϕm)=

∑
n

clmnϕn,

where the eigenvalue of ϕn is λn . Then

g(x, t)≈

∑
n

cneλn tϕn(x)+
∑
l,m,n

e(λl+λm)t − eλn t

λl + λm − λn
clmnϕn(x) (1-5)

to second order, provided that the denominator λl + λm − λn is not equal to 0, i.e., that the eigenvalues
are “nonresonant”. Then we can integrate (1-1) up to a cubic error term, yielding the “cubic lifespan”,
i.e., initial data of size ϵ leads to a solution that exists for a time at least comparable to ϵ−2. This is the
“normal form transformation”, first proposed by Poincaré in the setting of ordinary differential equations
(see [Arnold 1983] for a book reference). Its application to partial differential equations was initiated by
Shatah [1985] in the study of the nonlinear Klein–Gordon equation, and then extended to the water wave
problem by Germain, Masmoudi and Shatah [Germain et al. 2012; 2015] and Ionescu and Pusateri [2015;
2018], the Burgers–Hilbert equation by Hunter, Ifrim, Tataru and Wang [Hunter et al. 2015], and more
recently, the Einstein–Klein–Gordon equation by Ionescu and Pausader [2022].

Unfortunately, nonresonance fails for Lϵ because 0 is an eigenvalue, and 0 + λn − λn = 0. The
eigenvalue 0 arises from the symmetry of (1-1). Indeed, the initial data uϵ(x + δ) ≈ uϵ(x)+ δu′

ϵ(x)
produces the solution

f (x, t)= uϵ(x + vϵ t + δ)≈ uϵ(x + vϵ t)+ δu′

ϵ(x + vϵ t).

In this case g(x, t)= δu′
ϵ(x), with gt = 0, so u′

ϵ ∈ ker Lϵ . Also, the initial data uϵ+δ(x)≈ uϵ(x)+δ∂ϵuϵ(x)
produces the solution

f (x, t)= uϵ+δ(x + vϵ+δt)≈ uϵ(x + vϵ t)+ δ∂ϵuϵ(x + vϵ t)+ δv′

ϵ tu
′

ϵ(x + vϵ t).

In this case g(x, t)= δ∂ϵuϵ(x)+ δv′
ϵ tu

′
ϵ(x), so

Lϵg = δLϵ∂ϵuϵ = gt = δv′

ϵu
′

ϵ ∈ ker Lϵ,

and thus ∂ϵuϵ is in the generalized eigenspace corresponding to the eigenvalue 0.
These perturbations generate translations and variations along the bifurcation curve. We treat them

separately using a more sophisticated ansatz

f (x, t)= uϵ(t)(x + a(t))+ g(x + a(t), t).

We will show in Proposition 4.1 that if |ϵ0| and ∥ f − uϵ0∥H2/|ϵ0| are sufficiently small, then f can
always be put in the form above, with |ϵ− ϵ0|/|ϵ0| also small and the expansion of g not involving any
eigenvector with eigenvalue 0. This way we remove the resonance caused by the eigenvalue 0 from the
evolution of g.

We also need to analyze the other eigenvalues of Lϵ , a first-order differential operator with variable
coefficients, and a quasilinear perturbation from L0 =∂x+H, whose eigenvectors are the Fourier modes einx.
Just like the Schrödinger operator with potential −1+ V, with a basis of eigenvectors known as the “Jost
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functions”, giving rise to the “distorted Fourier transform” (see [Agmon 1975]), Lϵ can also be diagonalized
using a combination of conjugation and perturbative analysis. More precisely, let g = hx . Then

Lϵg = ((uϵ(x)− vϵ)g)x + Hg = ((uϵ(x)− vϵ)hx + Hh)x ,

so Lϵ is conjugate to the operator h 7→ (uϵ(x)−vϵ)hx + Hh. Let h = h̃ ◦φϵ , where φ′
ϵ(x) is proportional

to (uϵ(x)− vϵ)−1. Then

Lϵg = ((cϵ∂x + H + Rϵ)h̃ ◦φϵ)x ,

where cϵ → 1 as ϵ→ 0, and Rϵ is a small smoothing remainder (i.e., it gains derivatives of arbitrarily high
orders). Thus Lϵ is conjugate to cϵ∂x +H +Rϵ , whose eigenvalues can be approximated by those of cϵ∂x +

H, which are ±(ncϵi − i), n = 1, 2, . . . . The general theory of unbounded analytic operators developed
in [Kato 1976] allows us to justify this approximation up to O(ϵ6) (see Corollary 3.10), and to relate
the eigenvectors of Lϵ to the Fourier modes (see Lemma 3.7), in the sense that another linear map h̃ 7→ h

conjugates Lϵ into a Fourier multiplier whose action on ei(n+sgn n)x is multiplication by λn (n ̸= 0).
At the end of the day we have the following estimate for small ϵ:

|λl + λm − λn|>

{
1
2 , l + m ̸= n,
1
5ϵ

2, l + m = n;

see Proposition 3.11. Because this value appears in the denominator in (1-5), if g has size δ, a direct
application of the normal form transformation yields a lifespan comparable to ϵ2/δ2. To improve on this,
we will make use of the structure of the nonlinearity:

N (h, h)=
1
2h

2
x + O(|ϵ|).

The first term is the usual product-style nonlinearity, which imposes the restriction l +sgn l +m +sgn m =

n + sgn n, and implies l + m − n = ±1 ̸= 0, so the normal form transformation can be carried out as
before. The second term is of size |ϵ| and gains a factor of 1/|ϵ| in the lifespan. Thus the usual energy
estimate can show a lifespan comparable to 1/|ϵδ|, and the normal form transformation can show a
lifespan comparable to |ϵ|/δ2. This decomposition of the nonlinearity into one part satisfying classical
additive frequency restrictions and another part enjoying better estimates analytically was first used by
Germain, Pusateri and Rousset [Germain et al. 2018] to show global well-posedness of the 1-dimensional
Schrödinger equation with potential (see also [Chen and Pusateri 2022]). Our result shows that this
approach can be adapted to quasilinear equations and to the case of discrete spectrum.

1D. Outline of the paper. In Section 2 we study the traveling waves solutions for (1-1). For sake of
completeness we sketch the proof of existence which follows from bifurcation theory. In addition we
analyze the size of the traveling waves. In Section 3 we study the linearization of (1-1) around the
traveling waves. In Section 4, we introduce a new frame of reference which will help us to avoid the
resonances found in Section 3. Finally, in Section 5 we prove Theorem 1.1.
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2. Traveling waves

The existence of traveling waves for (1-1) was shown in [Hunter 2018]. Here we will study their size
after we give some details about the existence proof. We look for solutions of (1-1) of the form

fϵ(x, t)= uϵ(x + vϵ t);

thus we have to find (uϵ, vϵ) solving

Huϵ − vϵu′

ϵ + uϵu′

ϵ = 0. (2-1)

If (uϵ, vϵ) is a solution, so is (un
ϵ (x), v

n
ϵ )= (uϵ(nx)/n, vϵ/n). Thus from one solution we can get n-fold

symmetric solutions for all n ≥ 1.
To solve (2-1) we can apply the Crandall–Rabinowitz theorem [1971] to

F : H k,+
r (T)× C → H k−1,−

r (T),

(u, µ) 7→ Hu + uu′
− (−1 +µ)u′,

where

H k,+
r (T)= {2π -periodic, mean zero, even functions analytic in the strip {|Im(z)|< r}},

endowed with the norm
∥ f ∥H k,+

r (T)
=

∑
±

∥ f ( · ± ir)∥H k(T),

and
H k,−

r (T)= {2π -periodic, odd functions analytic in the strip {|Im(z)|< r}},

endowed with the norm
∥ f ∥H k,−

r (T)
=

∑
±

∥ f ( · ± ir)∥H k(T).

Here ∥ · ∥H k(T) is the usual Sobolev norm, and it is enough to take k ≥ 1 and r = 1.
We notice that F(0, µ)= 0 and the derivative of F at u = 0, µ= 0,

Du F(0, 0)h = Hh + h′

has a nontrivial element in its kernel belonging to H k,+
r (T), namely, h = cos(x).

Thus, the application of the Crandall–Rabinowitz theorem allows to show the existence of a branch of
solutions (uϵ, vϵ) ∈ (H 1,+

1 ,R), bifurcating from (0,−1) for (2-1) with the leading-order term

uϵ(x)= ϵ cos(x)+ O(ϵ2), vϵ = −1 + O(ϵ).

We remark that we obtain a bifurcation curve

ϵ → (uϵ, vϵ),

Bδ = {z ∈ C : |z|< δ} → (H k−1,−
r ,R),

(2-2)

which is differentiable and hence analytic on Bδ for δ small enough.
The rest of this section is devoted to proving further properties of these solutions.
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Introducing the asymptotic expansion

uϵ(x)=

∞∑
n=1

un(x)ϵn, vϵ =

∞∑
n=0

vnϵ
n, (2-3)

taking u1 = cos(x), λ0 = −1 and comparing the coefficient in ϵn we obtain that

u′

n + Hun = −vn−1 sin(x)+
n−2∑
m=1

vmu′

n−m −
1
2
∂x

n−1∑
m=1

un−mum = −vn−1 sin(x)+ fn

for n = 2, 3, . . . .
We notice that in order to solve the equation Hu + u′

= f we need ( f, sin(x)) = 0. Therefore we
have to choose vn−1 =

1
π
(sin(x), fn). This gives us a recurrence for (un, vn−1), n ≥ 2, in terms of

{(um, vm−1)}
n−1
m=1. In order to study this recurrence we will introduce the ansatz

un =

n∑
k=2

un,k cos(kx). (2-4)

By induction, one can check that the rest of coefficients in the expansion on cosines of un must be zero.
In addition, if uϵ(x) solves (2-1), u−ϵ(x +π) is also a bifurcation curve in the direction of cos(x), and
then by uniqueness, uϵ(x)= u−ϵ(x +π), which yields un,k = 0 if n − k = 1 (mod 2).

Comparing the coefficient of sin(kx), with k = n (mod 2), and 2 ≤ k ≤ n, we have

(1 − k)un,k + k
n−k∑
m=1

vmun−m,k −
k
4

n−1∑
m=1

min(m,k−1)∑
l=max(1,k−n+m)

um,lun−m,k−l

−
k
2

n−1∑
m=1

min(m,n−m−k)∑
l=1

um,lun−m,k+l = 0. (2-5)

And comparing with sin(x) we have

vn−1 =
1
2

n−1∑
m=1

min(m,n−m−1)∑
l=1

um,lun−m,1+l . (2-6)

Up to order O(ϵ4) we find

uϵ(x)= ϵ cos x −
1
2ϵ

2 cos 2x +
3
8ϵ

3 cos 3x + O(ϵ4),

vϵ = −1 −
1
4ϵ

2
+ O(ϵ4).

(2-7)

The recurrence (2-5)–(2-6) allows us to prove the following result.

Theorem 2.1. The radius of convergence of the series (2-3), with the coefficients given by (2-4)–(2-6), is
not bigger than 2/e.

Proof. From (2-5) and (2-6) we have

(1 − n)un,n =
1
2

n−1∑
k=1

(n − k)uk,kun−k,n−k .

Let

y = y(x)= x +

∞∑
n=2

un,nxn.
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Then y − xy′
= xyy′/2, which, together with y ∼ x for small x , yields y = 2W (x/2), where W is the

Lambert W -function. Since the radius of convergence of W at 0 is 1/e, the radius of convergence of y
at 0 is 2/e, so the radius of convergence of (2-5) and (2-6) is at most 2/e. □

In addition we can get a bound for how large the traveling wave can be.

Theorem 2.2. The series (2-3), with the coefficients given by (2-4)–(2-6), converges for any ϵ < x∗
∼ 0.23.

Proof. This proof is based on the implicit function theorem.
First we introduce the spaces

L2,−
= {odd functions f ∈ L2(T)},

H 1,+
= {even functions f ∈ H 1(T)}.

The space X is the orthogonal complement of the span of cos(x) in H 1,+. We will equip L2,− with the
norm

∥u∥
2
L2,− =

1
π

∫ π

−π

|u(x)|2 dx (2-8)

in such a way that ∥sin(nx)∥L2,− = 1 for n ≥ 1. We also define

∥u∥
2
X =

1
π

∫ π

−π

(|u′(x)|2 + |u(x)|2 − 2u(x)3u(x)) dx . (2-9)

Thus ∥cos(nx)∥X = n − 1 for n ≥ 2. The reason why we take these norms is technical and it will arise
below. Finally we define

X = X × R

equipped with the norm

∥(ũ, ν)∥X =

√
∥ũ∥

2
X + |ν|2.

Since uϵ = ϵ cos x −
1
2ϵ

2 cos 2x + O(ϵ3) and vϵ = −1 + O(ϵ2), we can let

G(ϵ, ũ, µ)

=
1
ϵ2 F

(
ϵ cos x −

1
2ϵ

2 cos 2x + ϵ2ũ, ϵµ
)

= Hũ + ϵ
(
cos x(sin 2x + ũ′)+

( 1
2 cos 2x − ũ

)
(sin x − ϵ sin 2x − ϵũ′)

)
+ ũ′

−µ(sin x − ϵ sin 2x − ϵũ′)

map R ×X to L2,−.
Because of the existence of traveling waves, we already know that there exists ϵ∗ such that, for every

ϵ ∈ [0, ϵ∗), there exist ũϵ and µϵ satisfying

G(ϵ, ũϵ, µϵ)= 0.

In addition we have
dG(ϵ, ũϵ+sṽ,µ+sν)

ds

∣∣∣∣
s=0

≡ dGϵ,ũϵ ,µ(ṽ,ν)

= H ṽ+ϵ
(
ṽ′ cos x−ṽ(sin x−ϵ sin2x−ϵũ′)−ϵ

( 1
2 cos2x−ũ

)
ṽ′

)
+ṽ′

−ν(sin x−ϵ sin2x−ϵũ′)+ϵµṽ′

maps (ṽ, ν) ∈ X linearly to L2,−.
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Thus as far as dGϵ,ũϵ ,µϵ (ũ, µ) is invertible from X to L2,− for ϵ ∈ [0, x∗) we will be able to extend
the solution (uϵ, µϵ) from [0, ϵ∗) to [0, x∗) by the implicit function theorem.

Note that
dG0,0,0(ṽ, ν)= H ṽ+ ṽ′

− ν sin x

is an isometry from X to L2,− under the norms given by (2-8) and (2-9). Therefore one can compute

dGϵ,ũϵ ,µϵ = dG−1
0,0,0(I + dG−1

0,0,0(dGϵ,ũϵ ,µϵ − dG0,0,0)).

By the Neumann series and the fact that dG0,0,0 is an isometry, dGϵ,ũϵ ,µϵ will be invertible, as long as
∥dGϵ,ũϵ ,µϵ − dG0,0,0∥X→L2,− < 1. In order to show this last inequality we will bound

Aϵ := ∥dGϵ,ũϵ ,µϵ − dG0,0,0∥X→L2,−

in terms of ∥ũϵ∥X and µϵ . After that we will bound ∥ũϵ∥X and µϵ . To do it we will use the information
we have about ∂ϵ ũϵ and ∂ϵµϵ .

Along the bifurcation curve,

dGϵ,ũϵ ,µϵ (∂ϵ ũϵ,µ
′

ϵ)

= −∂ϵG(ϵ, ũϵ,µϵ)

= cos x(sin2x+ũ′

ϵ)+
1
2 sin x(cos2x−2ũϵ)−ϵ(cos2x−2ũϵ)(sin2x+ũ′

ϵ)+µϵ(sin2x+ũ′

ϵ). (2-10)

Thus
(∂ϵ ũϵ, µ′

ϵ)= dG−1
ϵ,ũϵ ,µϵ

(−∂ϵG(ϵ, ũϵ, µϵ)).

Therefore √
∥∂ϵ ũϵ∥2

X + |µ′

ϵ |
2
≤

1
1− Aϵ

∥∂ϵG(ϵ, ũϵ, µϵ)∥L2,− . (2-11)

In addition we have, for rϵ =

√
∥ũϵ∥2

X + |µϵ |
2,

∂ϵrϵ ≤

√
∥∂ϵ ũϵ∥2

X + |µ′

ϵ |
2
≤

1
1− Aϵ

∥∂ϵG(ϵ, ũϵ, µϵ)∥L2,− .

Thus, explicit estimates for Aϵ and ∥∂ϵG(ϵ, ũϵ, µϵ)∥L2,− in terms of rϵ and ϵ give a differential
inequality for rϵ which can be used to bound Aϵ .

We will need the following lemmas to bound Aϵ and the norm ∥∂ϵG(ϵ,ũϵ,µϵ)∥L2,− , where ∂ϵG(ϵ,ũϵ,µϵ)
is given by the right-hand side of (2-10).

Lemma 2.3. If f ∈ X then ∥ f sin x − f ′ cos x∥L2 ≤
√

3∥ f ∥X .

Lemma 2.4. If f ∈ X then ∥2 f sin 2x − f ′ cos 2x∥L2 ≤
1
2

√
17∥ f ∥X .

Proof. We only show Lemma 2.3. The proof of Lemma 2.4 is similar.
Let f =

∑
∞

n=2 fn cos nx . Then

2( f sin x − f ′ cos x)= f2 sin x + 2 f3 sin 2x +

∞∑
n=3

n( fn−1 + fn+1) sin nx,
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and

4∥ f sin(x)− f ′ cos(x)∥2
L2 = f 2

2 + 4 f 2
3 +

∞∑
n=3

n2( fn−1 + fn+1)
2

≤ 10 f 2
2 + 20 f 2

3 + 59 f 2
4 + 88 f 2

5 + 18 f2 f4 + 32 f3 f5 + 4
∞∑

n=6

(n2
+ 1) f 2

n .

The infinite sum is bounded by 1.48
∑

∞

n=6(n − 1)2 f 2
n , and it remains a finite-dimensional problem to

show that the remaining terms are bounded by 12
∑5

n=2(n − 1)2 f 2
n . □

Lemma 2.5. If f , g ∈ X then ∥( f g)′∥L2 ≤ B∥ f ∥X∥g∥X , where

B =

√
π2

3
+

869
144

≈ 3.05.

Proof. Let f =
∑

∞

n=2 fn cos nx , g =
∑

∞

n=2 gn cos nx ∈ X . Then

( f g)′ = −
1
2

∑
n≥1

n
∑

|m|≥2,|n−m|≥2

f|m|g|n−m| sin nx,

so by Cauchy–Schwarz,

∥( f g)′∥2
L2 =

1
8

∑
|n|≥1

n2
( ∑

|m|≥2,|n−m|≥2

f|m|g|n−m|

)2

≤ C∥ f ∥
2
X∥g∥

2
X ,

where

C =
1
2

∞

sup
n=1

∑
|m|≥2,|n−m|≥2

n2

(|m| − 1)2(|n − m| − 1)2
=
π2

3
+

869
144

. □

Now, with Lemmas 2.3, 2.5 and 2.4 we are ready to bound the right-hand side of (2-10). Indeed,

∥right-hand side of (2-10)∥L2 ≤

√
10+4ϵ2

4
+ 2rϵ +

√
17
2
ϵ∥ũϵ∥X + Bϵ∥ũϵ∥2

X + ∥ũϵ∥2
X + |µϵ |

2.

Turning to the other side, we have

(dG(ϵ,ũϵ ,µϵ) − dG(0,0,0))(ṽ, ν)

= ϵ
(
ṽ′ cos x − ṽ(sin x − ϵ sin 2x − ϵũ′

ϵ)− ϵ
( 1

2 cos 2x − ũϵ
)
ṽ′

)
+ ϵν(sin 2x + ũ′

ϵ)+ ϵµϵ ṽ
′. (2-12)

Again by Lemmas 2.3, 2.5 and 2.4 we find

∥left-hand side of (2-12)∥L2 ≤

(√
3ϵ+

√
17
4
ϵ2

+ Bϵ2
∥ũϵ∥X + 2ϵ|µϵ |

)
∥ṽ∥X + ϵ(1 + 2∥ũϵ∥X )|ν|

= ϵ(
√

3 + 2|µϵ |, 1 + 2∥ũϵ∥X ) · (∥ṽ∥X , |ν|)+
(√

17
4
ϵ2

+ Bϵ2
∥ũϵ∥X

)
∥ṽ∥X ,

so

Aϵ ≤ 2ϵ+ 2ϵrϵ +

√
17
4
ϵ2

+ Bϵ2rϵ .

Since dG(0,0,0) is an isometry, the Neumann series (1 − T )−1
=

∑
∞

n=0 T n shows that if Aϵ < 1, then
dG(ϵ,ũϵ ,µϵ) is invertible, and ∥dG−1

(ϵ,ũϵ ,µϵ)
∥ ≤ (1 − Aϵ)−1, so√

∥∂ϵ ũϵ∥2
X + |µ′

ϵ |
2
≤

1
1 − Aϵ

(√
10+4ϵ2

4
+ 2rϵ +

√
17
2
ϵ∥ũϵ∥X + Bϵr2

ϵ + r2
ϵ

)
.
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Then r0 = 0 and

r ′

ϵ ≤

1
4

√
10 + 4ϵ2 +

(
2 +

√
17
2 ϵ

)
rϵ + Bϵr2

ϵ + r2
ϵ

1 − 2ϵ− 2ϵrϵ −

√
17
4 ϵ2 − Bϵ2rϵ

.

By the comparison principle, rϵ is bounded from above by the solution to

dy
dx

= y′
=

√
10 + 4x2 + (8 + 2

√
17x)y + 4Bxy2

+ 4y2

4 − 8x − 8xy −
√

17x2 − 4Bx2 y
, (2-13)

with y(0)= 0, which is

(2Bx2
+ 4x)y2

+ (8x +
√

17x2
− 4)y + x

√
x2 + 2.5 + 2.5 sinh−1(

√
0.4x)= 0.

When x > 0, the quadratic coefficient and the constant are positive, so this equation has a nonnegative
root if and only if

8x +
√

17x2
− 4 ≤ −2

√
(2Bx2 + 4x)(x

√

x2
+ 2.5 + 2.5 sinh−1(

√
0.4x)),

whose solution is x ≤ x∗
≈ 0.23 numerically. Hence the solution can be extended to ϵ = x∗

≈ 0.23. In
order to achieve this last conclusion we notice that the solution to (2-13), with y(0)= 0 can be extended
only if Aϵ < 1, since 1 − Aϵ arises in the denominator.

The above argument shows that for ϵ ∈ (−x∗, x∗), the bifurcation curve produces a traveling wave
uϵ = ϵ cos x −

1
2ϵ

2 cos 2x + ϵ2ũϵ , which travels at speed vϵ = −1 − ϵµϵ . Since all the operators involved
are analytic in all its arguments, the bifurcation curve is analytic in ϵ on (−x∗, x∗). It may be the case,
however, that the power series for uϵ and vϵ around ϵ = 0 has a smaller radius of convergence than x∗ (for
example, the function f (x)= (x2

+ 1)−1 is analytic on the whole real line, but the radius of convergence
of its power series around 0 is only 1.) We now show that the radius of convergence of the power series
for uϵ and vϵ are indeed at least x∗.

We note that the above argument also works if ϵ is replaced with ϵeia (a ∈ R), so the bifurcation curve
(uϵ, vϵ) is also analytic in a neighborhood of {ϵeia

: ϵ ∈ (−x∗, x∗)}. Hence the curve is analytic in the
disk of radius x∗ centered at 0, so the radius of convergence of its power series around 0 is at least x∗. □

3. Linearization around traveling waves

In this section we will analyze the spectrum of the operator

Lϵg = −vϵgx + Hg + (uϵ(x)g)x

corresponding to the linearization of (1-1) around the traveling wave (uϵ, vϵ) bifurcating from zero in the
direction of the cosine studied in the previous section.

Actually, let
f (x, t)= fϵ(x, t)+ g(x + vϵ t, t),

with fϵ(x, t)= uϵ(x + vϵ t). Then

ft(x, t)= ∂t fϵ(x, t)+ (vϵgx + gt)(x + vϵ t, t)
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and

(H f + f fx)(x, t)= (H fϵ + fϵ∂x fϵ)(x, t)+ Hg(x + vϵ t, t)

+ ∂x( fϵ(x, t)g(x + vϵ t, t))+ g(x + vϵ t, t)∂x g(x + vϵ t, t).

Putting these in (1-1), we get the equation for g(x, t)

∂t g(x, t)= −vϵg(x, t)x + Hg(x, t)+ (uϵ(x)g(x, t))x + g(x, t)g(x, t)x .

The linearization around g = 0 is
∂t g = Lϵg,

where

Lϵg = −vϵgx + Hg + (uϵg)x = Hg + gx︸ ︷︷ ︸
Lg

+

∞∑
n=1

ϵn ((u(n) − v(n))g)x︸ ︷︷ ︸
L(n)g

. (3-1)

3A. The eigenvalue 0. The action of L on the Fourier modes is

F(Lg)(m)= i(m − sgn m)ĝ(m),

with eigenvalues 0 (double), ±i , ±2i , . . . (on L2(T) with zero mean). We first study the perturbation of
the eigenspace corresponding to the double eigenvalue of 0. By translational symmetry, for any δ ∈ R,
uϵ(x + δ) is also a solution to

Hu − vϵu + uu′
= 0.

Differentiation with respect to δ then shows that

Lϵu′

ϵ = Hu′

ϵ − vϵu′

ϵ + (uϵu′

ϵ)
′
= 0.

Also, since uϵ lies on a bifurcation curve, we can differentiate

Huϵ − vϵu′

ϵ + uϵu′

ϵ = 0,
with respect to ϵ to get

Lϵ∂ϵuϵ = H∂ϵuϵ − (∂ϵvϵ)u′

ϵ + uϵ∂ϵu′

ϵ + u′

ϵ∂ϵuϵ = (∂ϵvϵ)u′

ϵ,

so on the span Vϵ of u′
ϵ and ∂ϵuϵ , Lϵ acts nilpotently by the matrix(

0 ∂ϵvϵ

0 0

)
.

3B. Simplifying the linearized operator. We want to solve the eigenvalue problem

Lϵg = ((uϵ − vϵ)g)′ + Hg = λ(ϵ)g.

Let g = h′. Then the antiderivative of the above is

(uϵ − vϵ)h′
+ Hh = λ(ϵ)h (mod 1). (3-2)

Let h = h̃ ◦φϵ , where φϵ satisfies

φ′

ϵ =
2π

uϵ − vϵ

(∫ 2π

0

dy
uϵ(y)− vϵ

)−1

. (3-3)



STABILITY OF TRAVELING WAVES FOR THE BURGERS–HILBERT EQUATION 2121

Then

(uϵ − vϵ)φ
′

ϵ(h̃
′
◦φϵ)+ H(h̃ ◦φϵ)= λ(ϵ)h̃ ◦φϵ (mod 1).

When ϵ is small enough, φϵ is a diffeomorphism of R/2πZ, so

2π
(∫ 2π

0

dy
uϵ(y)− vϵ

)−1

h̃′
+ H(h̃ ◦φϵ) ◦φ

−1
ϵ = λ(ϵ)h̃ (mod 1).

By the change of variable z = φϵ(y),

H(h̃ ◦φϵ) ◦φ
−1
ϵ (x)=

1
2π

∫ 2π

0
h̃(φϵ(y)) cot

(
φ−1
ϵ (x)− y

2

)
dy

=
1

2π

∫ 2π

0
h̃(z) cot

(
φ−1
ϵ (x)−φ−1

ϵ (z)
2

)
(φ−1
ϵ )′(z) dz.

The convolution kernel of the operator

Rϵ h̃ = H(h̃ ◦φϵ) ◦φ
−1
ϵ − Hh̃

is

Kϵ(x, z)= cot
(
φ−1
ϵ (x)−φ−1

ϵ (z)
2

)
(φ−1
ϵ )′(z)− cot

(
x − z

2

)
(3-4)

and the ϵ-derivative of the kernel is

∂ϵKϵ(x, z)= − csc2
(
φ−1
ϵ (x)−φ−1

ϵ (z)
2

)
∂ϵφ

−1
ϵ (x)− ∂ϵφ−1

ϵ (z)
2

(φ−1
ϵ )′(z)

+ cot
(
φ−1
ϵ (x)−φ−1

ϵ (z)
2

)
∂ϵ(φ

−1
ϵ )′(z).

Near x = 0, csc x −1/x2 and cot x −1/x are smooth, and (φ−1
ϵ )′ is smooth everywhere, so when x − z is

small enough, up to a smooth function in (x, z),

∂ϵKϵ(x, z)
2

= −
(∂ϵφ

−1
ϵ (x)−∂ϵφ−1

ϵ (z))(φ−1
ϵ )′(z)

(φ−1
ϵ (x)−φ−1

ϵ (z))2
+

∂ϵ(φ
−1
ϵ )′(z)

φ−1
ϵ (x)−φ−1

ϵ (z)

=
∂ϵ(φ

−1
ϵ )′(z)(φ−1

ϵ (x)−φ−1
ϵ (z))−(∂ϵφ−1

ϵ (x)−∂ϵφ−1
ϵ (z))(φ−1

ϵ )′(z)

(φ−1
ϵ (x)−φ−1

ϵ (z))2

=
∂ϵ(φ

−1
ϵ )′(z)(x−z)2

∫ 1
0 (1−t)(φ−1

ϵ )′′((1−t)z+t x)dt

(φ−1
ϵ (x)−φ−1

ϵ (z))2

−
(φ−1
ϵ )′(z)(x−z)2

∫ 1
0 (1−t)∂ϵ(φ−1

ϵ )′′((1−t)z+t x)dt

(φ−1
ϵ (x)−φ−1

ϵ (z))2
,

which is itself a smooth function of (x, z) when x − z is small enough (because φ−1
ϵ is smooth). Then

∥∂ϵRϵ h̃(m)∥Ḣ k ≲k,m ∥h̃∥L2/(1), k,m = 0, 1, . . . ,
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where the constant does not depend on ϵ, for all h̃ ∈ H m/(1), or, equivalently,

∥∂ϵRϵ h̃∥Ḣ k ≲k,m ∥h̃∥Ḣ−m , k,m = 0, 1, . . . , (3-5)

where the dot over H means that the norm does not measure frequency zero.

Definition 3.1. We say an operator is of class S if it satisfies (3-5). We say a family of operators is of
class S uniformly if for each k and m there is an implicit constant that makes (3-5) true for all operators
in the family.

Thus ∂ϵRϵ is of class S uniformly in ϵ. Since R0 = 0, Rϵ/ϵ is also of class S uniformly in ϵ.
Now the eigenvalue problem for h̃ is of the form

(cϵ∂x + H + Rϵ)h̃ = λ(ϵ)h̃ (mod 1)

or, equivalently,
(∂x + c−1

ϵ H + c−1
ϵ Rϵ)h̃ = c−1

ϵ λ(ϵ)h̃ (mod 1), (3-6)

where

cϵ = 2π
(∫ 2π

0

dy
uϵ(y)− vϵ

)−1

(3-7)

and Rϵ/ϵ is of class S uniformly in ϵ. Note that since uϵ and vϵ are analytic functions of ϵ on a
neighborhood of 0, with u0 = 0 and v0 = −1, so are φϵ , Rϵ and cϵ with φ0 = I, R0 = 0 and c0 = 1.

3C. Spectral analysis of the linearization. The eigenvalue problem (3-6) is a perturbation of the eigen-
value problem

h̃′
+ Hh̃ = λh̃ (mod 1),

with explicit eigenvalues
0 (double), ni, n = ±1,±2, . . . ,

and eigenfunctions
e±i x, ei(n+sgn n)x, n = ±1,±2, . . . .

They form an orthogonal basis of H k/(1) for any nonnegative integer k.

Definition 3.2. Let T : Ḣ k(T)→ Ḣ k(T) for k ∈ N be a linear operator. We will define

∥T ∥ := ∥T ∥Ḣ k(T)→Ḣ k(T).

The resolvent (∂x + H − z)−1 is also a Fourier multiplier whose action on Fourier modes is

(∂x + H − z)−1e±i(n+1)x
= (±ni − z)−1e±i(n+1)x, n = 0, 1, . . . . (3-8)

The circle
0n =

{
z : |z − ni | =

1
2

}
, n = ±1,±2, . . . ,

encloses a single eigenvalue ±ni , and the circle

00 =
{
z : |z| =

1
2

}
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encloses the double eigenvalue 0. On 0n and 00 we have

|z − mi | ≥
1
2 , m ∈ Z, (3-9)

so by (3-8),
∥(∂x + H − z)−1

∥ ≤ 2, z ∈ 0n, n ∈ Z. (3-10)

Moreover the projection

Pn = −
1

2π i

∫
0n

(∂x + H − z)−1 dz, n = ±1,±2, . . . ,

is the projection on the span of ei(n+sgn n)x and the projection

P0 = −
1

2π i

∫
00

(∂x + H − z)−1 dz

is the projection on the span of ei x and e−i x.
Now when ϵ is small enough and z ∈ 0n , we have

∂x + c−1
ϵ H + c−1

ϵ Rϵ − z = (∂x + H − z)(1 + (∂x + H − z)−1 R′

ϵ),

where
R′

ϵ = (∂x + c−1
ϵ H + c−1

ϵ Rϵ)− (∂x + H)= (c−1
ϵ − 1)H + c−1

ϵ Rϵ (3-11)

is analytic in ϵ near 0, with R′

0 = 0, thanks to the analyticity of cϵ . Taking the inverse gives

(∂x + c−1
ϵ H + c−1

ϵ Rϵ − z)−1
= (1 + (∂x + H − z)−1 R′

ϵ)
−1(∂x + H − z)−1

and the Neumann series

(1 + (∂x + H − z)−1 R′

ϵ)
−1

=

∞∑
n=0

((∂x + H − z)−1 R′

ϵ)
n (3-12)

converges because
∥(∂x + H − z)−1 R′

ϵ∥ ≤ 2∥R′

ϵ∥ ≲k ϵ < 1

when ϵ is small enough (depending on k). Moreover,

∥(1 + (∂x + H − z)−1 R′

ϵ)
−1

− I∥ ≲k ϵ

and so
∥(∂x + c−1

ϵ H + c−1
ϵ Rϵ − z)−1

− (∂x + H − z)−1
∥ ≲ ϵ

uniformly for z ∈ 0n . Hence the projections

Qn(ϵ)= −
1

2π i

∫
0n

(∂x + c−1
ϵ H + c−1

ϵ Rϵ − z)−1 dz, n ∈ Z, (3-13)

exist and satisfy
∥Qn(ϵ)− Pn∥ ≲k ϵ, n ∈ Z, (3-14)

uniformly in n. Then by [Kato 1976, Chapter I, Section 4.6], when ϵ is small enough, Qn(ϵ) is conjugate
to Pn . Thus dim ran Qn(ϵ) = 1 for n ̸= 0 and dim ran Q0(ϵ) = 2. So ∂x + c−1

ϵ H + c−1
ϵ Rϵ has a single
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eigenvalue enclosed by 0n for n ̸= 0. In Section 3A we showed that the action on the range of Q0(ϵ) is
given by a nonzero nilpotent 2-by-2 matrix. If z is outside all these circles, then (3-10) still holds and
the Neumann series (3-12) still converges to show that ∂x + c−1

ϵ H + c−1
ϵ Rϵ − z is invertible, so it has no

other eigenvalues.

3D. Analyticity of eigenvalues and eigenvectors. By (3-8) and (3-9), (∂x + H − z)−1 is analytic in (z, ϵ)
for z in a neighborhood U of

⋃
n∈Z 0n , and ϵ near 0. By (3-11), R′

ϵ is analytic in ϵ near 0, so the series
(3-12) shows that (∂x + c−1

ϵ H + c−1
ϵ Rϵ − z)−1 is analytic in (z, ϵ) for z ∈ U and ϵ near 0, and the integral

(3-13) shows that all the projections Qn(ϵ) (n ∈ Z) are analytic in a neighborhood of 0 independent of n.
Let ψn(ϵ) be the corresponding eigenvectors to Qn(ϵ) for n ̸= 0. Thanks to (3-14), a good choice is

ψn(ϵ)= Qn(ϵ)ei(n+sgn n)x , which is nonzero and analytic in a neighborhood of 0 independent of n. Then
by (3-6),

Qn(ϵ)(∂x + c−1
ϵ (H + Rϵ))ei(n+sgn n)x

= (∂x + c−1
ϵ (H + Rϵ))ψn(ϵ)= c−1

ϵ λn(ϵ)ψn(ϵ).

On the other hand, the left-hand side equals

(n + sgn n)i Qn(ϵ)ei(n+sgn n)x
+ c−1

ϵ Qn(ϵ)(H + Rϵ)e±i(n+sgn n)x ,

which is another vector analytic in ϵ near 0. Then by the next lemma, all the eigenvalues c−1
ϵ λn(ϵ), and

hence λn(ϵ), are analytic in a neighborhood of 0 independent of n.

Lemma 3.3. Let u(ϵ) and v(ϵ) be two vectors analytic in ϵ ∈ U satisfying

u(ϵ) ̸= 0 and v(ϵ)= λ(ϵ)u(ϵ), ϵ ∈ U.

Then λ(ϵ) is analytic in ϵ ∈ U.

Proof. Without loss of generality assume that 0 ∈ U. Since the result is local in ϵ, it suffices to show that
λ(ϵ) is analytic in a smaller neighborhood of 0.

Since u(0) ̸= 0, we can find a linear functional f such that f (u(0)) ̸= 0. Then f (u(ϵ)) ̸= 0 in a
neighborhood of 0, and so

λ(ϵ)=
f (v(ϵ))
f (u(ϵ))

is analytic in a neighborhood of 0. □

Regarding the double eigenvalue 0, in Section 3A we showed that u′
ϵ and ∂ϵuϵ are two generalized

eigenvectors of the operator Lϵ . Using the relation given in Section 3B, they correspond to two generalized
eigenvectors ψ−

0 (ϵ) and ψ+

0 (ϵ) of the operator ∂x + c−1
ϵ H + c−1

ϵ Rϵ , via the relation (ψ−

0 (ϵ) ◦φϵ)
′
= u′

ϵ

and (ψ+

0 (ϵ) ◦φϵ)
′
= ∂ϵuϵ . Then clearly ψ±

0 (ϵ) are both analytic in ϵ.
From the analyticity of the eigenvalues c−1

ϵ λn(ϵ), it is easy to derive bounds on their Taylor coefficients.

Proposition 3.4. For k ≥ 1 and n ̸= 0, the coefficient of ϵk in c−1
ϵ λn(ϵ) is bounded in absolute value

by Ck for a constant C > 0 independent of n,
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Proof. At the end of Section 3C we showed that when ϵ is in a neighborhood of 0 independent of n, the
eigenvalues c−1

ϵ λn(ϵ) are enclosed in the circle 0n . Then

|c−1
ϵ λn(ϵ)− ni |< 1

2 , n = ±1,±2, . . . .

The result follows from Cauchy’s integral formula for Taylor coefficients. □

Corollary 3.5. For k ≥ 0 and n ̸= 0, the coefficient of ϵk in λn(ϵ) is bounded in absolute value by |n|Ck

for a constant C > 0 independent of n.

Proof. Since cϵ is analytic in ϵ near 0 with c0 =1, and λn(0)=ni , the result follows from Leibniz’s rule. □

3E. Conjugation to a Fourier multiplier. We have conjugated the eigenspaces of T = ∂x +c−1
ϵ H +c−1

ϵ Rϵ
(and also of cϵ∂x + H + Rϵ) to Fourier modes via the operator

1 + Wϵ =

∑
n∈Z

Pn Qn(ϵ),

where P0 is the projection onto the span of e±i x, Q0(ϵ) is the projection onto the span of ψ±

0 (ϵ), Pn is the
projection onto the span of ei(n+sgn n)x, and Qn(ϵ) is the projection onto the span ofψn(ϵ), n =±1,±2, . . . .

We will view T as a perturbation of ∂x + c−1
ϵ H and follow the proof of [Kato 1976, Chapter V,

Theorem 4.15a]. In the process we will extract more information from the fact that Rϵ is of class S. Since

P2
n = Pn,

∑
n∈Z

Pn = 1, (3-15)

we have
Wϵ =

∑
n∈Z

Pn(Qn(ϵ)− Pn) (3-16)

and W0 = 0.

Proposition 3.6. Wϵ/ϵ is of class S uniformly in ϵ.

Proof. We bound each term on the right-hand side separately. By [Kato 1976, Chapter V, (4.38)],

Qn(ϵ)− Pn = −c−1
ϵ Qn(ϵ)RϵZn(ϵ)− c−1

ϵ Z ′

n(ϵ)RϵPn,

where
Zn(ϵ)=

1
2π i

∫
0n

(z − (n + (1 − c−1
ϵ ) sgn n)i)−1(∂x + c−1

ϵ H − z)−1 dz,

Z ′

n(ϵ)=
1

2π i

∫
0n

(z − c−1
ϵ λn(ϵ))

−1(T − z)−1 dz.

We now bound the operator norms of the right-hand side, with uniformity in ϵ and decay in n, in order to
show that the sum in n converges.

First note that it is clear from the frequency side that when ϵ is in a neighborhood of 0 independent of n
and z ∈

⋃
n∈Z 0n for all m ≥ 0, the operator (∂x + c−1

ϵ H − z)−1 is bounded from H m to H m, uniformly in
ϵ and z. Since Rϵ/ϵ is of class S uniformly in ϵ (see (3-5) and notice that R0 = 0), it follows from the
Neumann series that ∥(T −z)−1

∥Ḣm→Ḣm is finite and only depends on m. Since |z−(n+(1−c−1
ϵ ) sgn n)i |

and |z − c−1
ϵ λn(ϵ)| are uniformly bounded from below, both Zn(ϵ) and Z ′

n(ϵ) are bounded from Ḣ m



2126 ÁNGEL CASTRO, DIEGO CÓRDOBA AND FAN ZHENG

to Ḣ m, uniformly in ϵ and n. Since Qn(ϵ) is given by a similar integral (3-13), it also has this property,
which is also trivially true for Pn . Now, for all n,m, k ∈ Z, m, k ≥ 0 and h̃ ∈ L2,

∥Z ′

n(ϵ)RϵPn h̃∥Ḣ k ≲k ∥RϵPn h̃∥Ḣ k ≲m,k |ϵ|∥Pn h̃∥Ḣ−m−2

≲m,k |ϵ|(1 + |n|)−2
∥h̃∥Ḣ−m (3-17)

because Pn is the projection onto very specific Fourier modes. For the first term we have

∥RϵZn(ϵ)h̃∥Ḣ k ≲m,k |ϵ|∥Zn(ϵ)h̃∥Ḣ−m ≲m,k |ϵ|∥h̃∥Ḣ−m .

To introduce the action of Qn(ϵ), note that the image of Qn(ϵ) lies in the eigenspace of the operator
cϵ∂x + H + Rϵ , with eigenvalue λn(ϵ), so for n ̸= 0 and u ∈ Im Qn(ϵ) we have

u = λn(ϵ)
−1(cϵu′

+ Hu + Rϵu),

so ∥u∥Ḣ k ≲k |λn(ϵ)|
−1

∥u∥Ḣ k+1 ≲ |n|
−1

∥u∥Ḣ k+1 . Hence

∥Qn(ϵ)RϵZn(ϵ)∥Ḣ k ≲k n−2
∥RϵZn(ϵ)∥Ḣ k+2 ≲m,k |ϵ|(1 + |n|)−2

∥h̃∥Ḣ−m . (3-18)

This also holds for n = 0 because Rϵ/ϵ is of class S uniformly, so Wϵ/ϵ is of class S uniformly in ϵ
thanks to the convergence of

∑
n∈Z(1 + |n|)−2. □

Now for k = 0, 1, . . . , there is a neighborhood of 0 such that when ϵ is in this neighborhood,
∥Wϵ∥Ḣ k→Ḣ k < 1, so 1 + Wϵ : Ḣ k

→ Ḣ k is invertible. By (3-15) and (3-16) it follows easily that

(1 + Wϵ)Qn(ϵ)= Pn(1 + Wϵ), (3-19)

so the eigenspace of T is conjugated to the (span of) Fourier modes, and hence T is conjugated to a
Fourier multiplier.

We have proven the following lemma:

Lemma 3.7. For ϵ small enough, there exists an operator Wϵ such that Wϵ/ϵ is of class S, uniformly in ϵ.
Moreover:

(1) 1 + Wϵ : Ḣ k
→ Ḣ k is invertible.

(2) (1 + Wϵ)Qn(ϵ)= Pn(1 + Wϵ), n ∈ Z.

(3) If ψ is in the closed linear span of the eigenvectors ψn(ϵ) (n ̸= 0) of cϵ∂x + H + Rϵ , then

(1 + Wϵ)(cϵ∂x + H + Rϵ)ψ =3ϵ(1 + Wϵ)ψ,

where 3ϵ is a multiplier such that

3ϵei(n+sgn n)x
= λn(ϵ)ei(n+sgn n)x , n = ±1,±2, . . . .

3F. Taylor expansion of eigenvalues. Now we Taylor expand the eigenvalues λn(ϵ) for n ̸= 0. To do so
it is more convenient to study the eigenvalue problem (3-2) for h:

Lϵg := ((uϵ − vϵ)g)′ + Hg = λ(ϵ)g.
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Recall the operator L = L0 = ∂x + H whose action on the Fourier modes is

F(Lg)(m)= i(m − sgn m)ĝ(m),

with eigenvalues 0 (double), ±i , ±2i , . . . (g mean zero).
Since (uϵ, vϵ) is analytic in ϵ on a neighborhood of 0, and

∥h′
∥L2 ≤ ∥h′

+ Hh∥L2 + ∥Hh∥L2 = ∥Lh∥L2 + ∥h∥L2,

by [Kato 1976, Chapter VII, Theorem 2.6], Lϵ is a holomorphic family of operators of type (A), so by
Chapter VII, Section 2.3, all the results in Chapter II, Sections 1 and 2 apply, and we can compute the
Taylor coefficients of λ(ϵ) as if Lϵ acted on a finite-dimensional vector space.

We start with computing the resolvent of L ,

R(z)= (L − z)−1

whose action on the Fourier modes is

F(R(z)g)(m)= (i(m − sgn m)− z)−1ĝ(m).

Around the eigenvalue ni (n = ±1,±2, . . . ) we have the expansion

R(z)= (ni − z)−1 Pn +

∞∑
k=0

(z − ni)k Sk+1
n ,

where Pn is the projection on the span of ei(n+sgn n)x and

F(Sng)(m)=
ĝ(m)

i(m − sgn m − n)
, m ̸= n + sgn n. (3-20)

By [Kato 1976, (II.2.33)],

λn(ϵ)= ni +

∞∑
k=1

ϵkλ(k)n , n = ±1,±2, . . . ,

where

λ(k)n =

k∑
p=1

(−1)p

p

∑
v1+···+vp=n, vj ≥1

h1+···+h p=p−1

Tr L(vp)S(h p)
n · · · L(v1)S(h1)

n ,

where S(0)n = −Pn and, for h ≥ 1, S(h)n = Sh
n , with Sn defined in (3-20), and L(v) is the coefficient of

ϵv in the Taylor expansion of Lϵ . Note that the constraints in the summation imply that there is some
j ∈ {1, . . . , p} such that h j = 0 and so S(h j )

n = −Pn , so every summand is a finite-rank operator whose
trace is thus well-defined.

Lemma 3.8. If A is a finite-rank operator, then Tr AB = Tr B A.

Proof. By linearity we can assume A has the form A( · )= f ( · )v for some (not necessarily continuous)
linear functional f . Then Tr A = f (v). Since AB( · )= f (B · )v and B A( · )= f ( · )Bv, it follows that
Tr AB = f (Bv)= Tr B A. □
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Using the lemma above, we can simplify the sum in λ(k)n a little. Indeed, there are p circular rotations
of the tuple (h1, . . . , h p). Since

(∑
j h j , p

)
= 1, the p circular rotations are all distinct, so we can choose

the lexicographically smallest one as a representative. For such a representative, h1 = minj h j = 0, so
S(h1)

n = −Pn , and thus we only need to act L(vp)S(h p)
n · · · L(v1) on ei(n+sgn n)x and take the (n+ sgn n)-th

mode to compute the trace. Thus

λ(k)n =

k∑
p=1

(−1)p−1
∑

v1+···+vp=k, vj ≥1
h1+···+h p=p−1

(h1,...,h p) is a representative

F [L(vp)S(h p)
n · · · L(v1)ei(n+sgn n)x

](n + sgn n). (3-21)

Let us compute some terms λ(k)n by using the formula (3-21). We have

λ(1)n = Tr L(1)Pn = 0

because L1 shifts the mode by 1, and

λ(2)n = Tr(L(2)Pn − L(1)Sn L(1)Pn).

Put s = sgn n. We extract the (n+s)-th mode of each term:

Tr L(2)Pn = F [L(2)2ei(n+s)x
](n + s)=

i(n + s)
4

,

L(1)Sn L(1)ei(n+s)x
=

i L(1)Sn

2
((n + s + 1)ei(n+s+1)x

+ (n + s − 1)ei(n+s−1)x)

=
L(1)

2
((n + s + 1)ei(n+s+1)x

− (n + s − 1)ei(n+s−1)x),

Tr L(1)Sn L(1)Pn =
i(n + s + 1)(n + s)− i(n + s − 1)(n + s)

4
=

i(n + s)
2

,

so

λ(2)n =
i(n + s)

4
−

2i(n + s)
4

= −
i(n + s)

4
.

We can further compute that

λn(ϵ)= in −
ϵ2i(n + s)

4
−

11ϵ4i(n + s)
32

−
527iϵ6(n + s)

768
+ On(ϵ

7)

for n = ±1,±2,±3, . . . .

Proposition 3.9. For n = ±1,±2, . . . ,

λ(k)n =

{
0, 2 ∤ k,
ic(k)(n + sgn n), k ≤ 2|n| + 2,

where c(k) is the k-th Taylor coefficient of cϵ as defined in (3-7).
When k ≥ 2|n| + 4, λ(k)n is still purely imaginary but the formula λ(k)n = ic(k)(n + sgn n) does not hold

in general.
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Proof. Firstly we notice that, for n = ±1, the coefficient of ϵ6 in λ±1(ϵ) is

λ1(ϵ)= i −
ϵ2i
2

−
11ϵ4i

16
−

529ϵ6i
384

+ O(ϵ7),

which does not hold for λ(6)
±1 = ±2ic(6).

Next, we prove the fist part of the lemma. In each summand of (3-21), all the coefficients are real,
except that each operator L brings a factor of i to the Fourier coefficients (via the operator ∂x ), and each
operator Sn removes a factor of i (see (3-20)). Hence each summand is purely imaginary, and so is λ(k)n .

In each summand of (3-21), the operator S(h j )
n is a Fourier multiplier that does not shift the modes,

while the operator L(m)g = ((u(m) − v(m))g)′ shifts the modes by at most m because u(m) only contains
modes up to e±imx. Also the amount of shift is equal to m (mod 2). Thus when acting the sequence
L(vp)S(h p)

n · · · L(v1) on ei(n+s)x, the mode is consecutively shifted by at most v1, v2, . . . , vp, and the total
amount of shift is equal to

∑
j vj = k (mod 2). Since in the end we are taking the (n+s)-th mode, the

total amount of shift must be 0 in order to count, so when k is odd λ(k)n = 0. When k is even, the mode
ei(n+s)x can only be shifted as far as ei(n+s±k/2)x ; otherwise it can never be shifted back. Hence when
k ≤ 2|n|+2 = 2|n + s|, the frequency always has the same sign as n or becomes 0. In the former case we
can take sgn m = sgn n in (3-20), while in the latter case the derivative in L kills it, so it does not hurt if
we still take sgn m = sgn n in (3-20). Either way we can take sgn m = sgn n in (3-20). Thus the action of
Sn is the same as that of S′

n , where

F(S′

ng)(m)=
ĝ(m)

i(m − n − sgn n)
, m ̸= n + sgn n.

For n > 0, the operator S′
n is the analog of Sn for L+, with

F(L+g)(m)= i(m − 1)ĝ(m),

i.e., L+g = g′
− ig. Hence λ(k)n remains the same if we replace L with L+. Now we have

L+

ϵ g := L+g +

∞∑
n=1

ϵn L(n)g = −vϵg′
− ig + (uϵg)′ = ((uϵ − vϵ)g)′ − ig,

whose eigenvalue problem is
((uϵ − vϵ)g)′ − ig = λ+(ϵ)g.

Using the same change of variable as in Section 3B, the problem above can be transformed to

h̃′
− ic−1

ϵ h̃ = c−1
ϵ λ

+(ϵ)h̃,

whose eigenvalues are
λ+

n′(ϵ)= n′cϵi − i.

Since when ϵ → 0, λn(ϵ)→ ni and cϵ → 1, we must have n′
= n + 1, and so

λn(ϵ)= (n + 1)cϵi − i + On(ϵ
2n+4).

For n < 0, note that since L preserves real-valued functions, its eigenvalues come in conjugate pairs,
so λn(ϵ)= λ|n|(ϵ)= −λ|n|(ϵ) has the same property. □
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Corollary 3.10. When |ϵ| is small enough,

|λn(ϵ)− (n + sgn n)cϵi + i sgn n|< |n|(Cϵ)2|n|+4 < C ′ϵ6, n ∈ Z\{0},

|λ′

n(ϵ)− (n + sgn n)∂ϵcϵi |< |n|(Cϵ)2|n|+3 < C ′ϵ5, n ∈ Z\{0},

for some constant C , C ′ > 0 independent of n.

Proof. By Proposition 3.9. the Taylor expansions of λn(ϵ) and (n + sgn n)cϵi − i sgn n differ only from
the term ϵ2|n|+4. By Corollary 3.5, the error terms of the former sum up to O

(
|n|

∑
∞

k=2|n|+4(Cϵ)
k
)
=

O(|n|(Cϵ)2|n|+4) if, say, C |ϵ|< 1
2 . The error term of the latter clearly also satisfy this bound.

To extend the chain of inequalities it suffices to note that |n|(Cϵ)2|n|−2 is uniformly bounded for n ̸= 0
if |Cϵ|< 1

2 . □

3G. Time resonance analysis. For m, n and l ∈ Z we consider

λm(ϵ)+ λn(ϵ)+ λl(ϵ)= (m + n + l)cϵi + (sgn m + sgn n + sgn l)(cϵ − 1)i + O(ϵ6).

Proposition 3.11. If m, n, l ∈ Z and mnl ̸= 0, then when ϵ is small enough, |λm(ϵ)+λn(ϵ)+λl(ϵ)|>
1
5ϵ

2.

Proof. By (3-7) and (2-7),

cϵ
2π

=

(∫ 2π

0

dy
uϵ(y)− vϵ

)−1

=

(∫ 2π

0

dy

1 + ϵ cos y −
1
2ϵ

2 cos 2y +
1
4ϵ

2

)−1

+ O(ϵ3)

=

(∫ 2π

0

(
1 − ϵ cos y + ϵ2 cos2 y +

1
2ϵ

2 cos 2y −
1
4ϵ

2) dy
)−1

+ O(ϵ3),

cϵ =
(
1 +

1
4ϵ

2)−1
+ O(ϵ3)= 1 −

1
4ϵ

2
+ O(ϵ3).

We distinguish three cases.

Case 1: m + n + l ̸= 0. Then |m + n + l| ≥ 1. Since cϵ − 1 ≲ ϵ2,

λm(ϵ)+ λn(ϵ)+ λl(ϵ)= (m + n + l)cϵi + O(ϵ2).

Since cϵ → 1 as ϵ → 0, we have |λm(ϵ)+ λn(ϵ)+ λl(ϵ)|>
1
2 |m + n + l| for small ϵ.

Case 2: m + n + l = 0 and mnl ̸= 0. Then

λm(ϵ)+ λn(ϵ)+ λl(ϵ)= −
1
4(sgn m + sgn n + sgn l)ϵ2i + O(ϵ3).

Since |sgn m|= |sgn n|= |sgn l|= 1, we have |sgn m+sgn n+sgn l| ≥ 1, so |λm(ϵ)+λn(ϵ)+λl(ϵ)|>
1
5ϵ

2

when ϵ is small enough. □

When m + n + l = 0 and mnl = 0, since λn(ϵ) is odd in n, it follows that λm(ϵ)+ λn(ϵ)+ λl(ϵ)= 0.
We do have time resonance in this case. We will eliminate this case by choosing a new frame of reference.

4. A new frame of reference

Recall that the traveling wave solution

fϵ(x, t)= uϵ(x + vϵ t)
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satisfies
∂t fϵ = H fϵ + fϵ∂x fϵ,

i.e.,
vϵu′

ϵ = Huϵ + uϵu′

ϵ .

Now we aim to find a new reference frame. Let P±

0 (ϵ) be the projection on the 1-dimensional space
spanned by the eigenvector ϕ+

0 (ϵ)= ∂ϵuϵ and ϕ−

0 (ϵ)= −ϵ−1u′
ϵ , respectively. Then we aim to rewrite

f (x, t)= uϵ(t)(x + a(t))+ g(x + a(t), t),

where ϵ, a ∈ R and P±

0 (ϵ(t))g = 0. We first show that it is always possible, provided that f is close to a
traveling wave.

Proposition 4.1. Let k ≥ 2. Then there is r = r(k) > 0 such that if |ϵ0| < r and ∥ f − uϵ0∥H k < r |ϵ0|,
then there is ϵ ∈ R, a ∈ R/2πZ and g ∈ H k such that

f (x)= uϵ(x + a)+ g(x + a), (4-1)

P±

0 (ϵ)g = 0, (4-2)

|ϵ− ϵ0| + ∥g∥H k ≲ ∥ f − uϵ0∥H k . (4-3)

Moreover, ϵ, a and g depend smoothly on f .

Proof. Define the map F : (−r, r)2 → R2, (ϵ, a) 7→ (y+, y−), with

P±

0 (ϵ)( f (x − a)− uϵ(x))= y±ϕ±

0 (ϵ). (4-4)

We now find the solution to the equation F(ϵ, a) = 0. Since P±

0 (ϵ) is uniformly bounded in L2 and
∥ϕ±

0 (ϵ)∥ is uniformly bounded from below,

|F(ϵ, a)| ≲ ∥ f (x − a)− uϵ∥L2 . (4-5)

Summing the two equations in (4-4) and taking the total derivative yields

− (P+

0 (ϵ)+ P−

0 (ϵ))( f ′(x − a))da −ϕ+

0 (ϵ)dϵ+ (∂ϵP+

0 (ϵ)+ ∂ϵP−

0 (ϵ))( f (x − a)− uϵ(x))dϵ (4-6)

= ϕ+

0 (ϵ)dy+
+ϕ−

0 (ϵ)dy−
+ y+∂ϵϕ

+

0 (ϵ)dϵ+ y−∂ϵϕ
−

0 (ϵ)dϵ. (4-7)

Since ∥ f ∥H2 ≤ ∥uϵ0∥H2 + r |ϵ0| ≲ |ϵ0|, we have

∥ f (x − a)− uϵ∥H1 ≤ ∥ f (x − a)− f (x)∥H1 + ∥ f − uϵ0∥H1 + ∥uϵ − uϵ0∥H1

≲ |aϵ0| + r |ϵ0| + |ϵ− ϵ0|. (4-8)

Since both P±

0 (ϵ) and ∂ϵP±

0 (ϵ) are uniformly bounded on L2, and u′
ϵ = −ϵϕ−

0 (ϵ),

∥(4-6) − ϵϕ−

0 (ϵ)da +ϕ+

0 (ϵ)dϵ∥L2 ≲ (|aϵ0| + r |ϵ0| + |ϵ− ϵ0|)(|da| + |dϵ|).

By (4-5) and (4-8),
∥y±∂ϵϕ

±

0 (ϵ)∥L2 ≲ |F(ϵ, a)| ≲ |aϵ0| + r |ϵ0| + |ϵ− ϵ0|,
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so
∥(4-7) −ϕ+

0 (ϵ)dy+
−ϕ−

0 (ϵ)dy−
∥L2 ≲ (|aϵ0| + r |ϵ0| + |ϵ− ϵ0|)|dϵ|.

Hence the equality between (4-6) and (4-7) gives an estimate of the differential∥∥∥∥d F(ϵ, a)−
(

1 0
0 −ϵ

)∥∥∥∥ ≲ |aϵ0| + r |ϵ0| + |ϵ− ϵ0|.

We assume that the solution (ϵ, a) satisfies |ϵ− ϵ0| + |aϵ0|< r0|ϵ0|, where r0 is small enough. This in
particular implies 1

2 |ϵ0|< |ϵ|< 2|ϵ0|. Then∥∥∥∥d F(ϵ, a)−
(

1 0
0 −ϵ0

)∥∥∥∥ ≲ (r0 + r)|ϵ0|

is also small enough. Let

G = I +

(
d F(ϵ, a)−

(
1 0
0 −ϵ0

)) (
1 0
0 −1/ϵ0

)
.

Then

d F = G
(

1 0
0 −ϵ0

)
and

∥G − I∥ ≲ r0 + r.

If r0 and r are small enough, then ∥G∥ and ∥G−1
∥< 2.

Let (ϵ1, a1)= (ϵ0, 0)− d F(ϵ0, 0)−1 F(ϵ0, 0). Then (recalling (4-5))

|ϵ1 − ϵ0| + |a1ϵ0| ≲ |G−1 F(ϵ0, 0)| ≲ |F(ϵ0, 0)| ≲ ∥ f − uϵ0∥L2 ≲ r |ϵ0|.

Since |∂2
ϵ F | and |∂aϵF | ≲ 1, and |∂2

a F | ≲ ∥ f ∥H2 ≲ |ϵ0|, by Taylor’s theorem,

|F(ϵ1, a1)| ≲ |ϵ1 − ϵ0|
2
+ |ϵ1 − ϵ0||a1| + |ϵ0||a1|

2 ≲ r |F(ϵ0, 0)|.

Hence the iteration (ϵn+1, an+1)= (ϵn, an)+ d F(ϵn, an)
−1 F(ϵn, an) converges when r is small enough.

Moreover |ϵn − ϵ0| + |anϵ0| ≲ |F(ϵ0, 0)|. Then (ϵ, a) := limn→∞(ϵn, an) satisfies F(ϵ, a) = 0 and
|ϵ− ϵ0| + |aϵ0| ≲ |F(ϵ0, 0)| ≲ r |ϵ0|< r0|ϵ0| if r is small compared to r0.

Let g = f (x − a)− uϵ . Then (4-1) and (4-2) clearly hold. Moreover,

∥g∥H k = ∥g(x + a)∥H k = ∥ f (x)− uϵ(x + a)∥H k

≤ ∥ f − uϵ0∥H k + ∥uϵ(x + a)− uϵ0(x)∥H k

≲ ∥ f − uϵ0∥H k + |ϵ− ϵ0| + |aϵ0|

≲ ∥ f − uϵ0∥H k + |F(ϵ0, 0)| ≲ ∥ f − uϵ0∥H k

showing (4-3). The smooth dependence of ϵ, a and g on f is also clear. □

By translation symmetry, if f is r |ϵ0|-close to uϵ0(x + a) for some a ∈ R/2πZ, we can reach a similar
conclusion. Then we can write

f (x, t)= uϵ(t)(x + a(t))+ g(x + a(t), t).
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We will obtain an energy estimate for g. Combined with local well-posedness of (1-1) and Proposition 4.1,
we can show that the solution extends as long as the energy estimate closes, see the end of Section 5B.

To get the energy estimate, we first need to derive an evolution equation for g. Since f is differentiable
in t , so are ϵ(t), a(t) and g, and we get

ft(x, t)= a′(t)(u′

ϵ + gx)(x + a(t))+ ϵ′(t)∂ϵuϵ(x + a(t))+ gt(x + a(t), t)

and

(H f + f fx)(x, t)= (Huϵ + uϵu′

ϵ)(x + a(t))+ Hg(x + a(t), t)
+ ∂x(uϵ(x + a(t))g(x + a(t), t))+ (ggx)(x + a(t), t).

The equation for g is then

gt = vϵu′

ϵ − a′(t)(u′

ϵ + gx)− ϵ
′(t)∂ϵuϵ + Hg + (uϵg)x + ggx

= Lϵg + (vϵ − a′(t))(u′

ϵ + gx)− ϵ
′(t)∂ϵuϵ + ggx .

Since P±

0 (ϵ)g(t)= 0, we have P±

0 (ϵ)gt = −ϵ′(t)∂ϵP±

0 (ϵ)g, so the action of the projections P±

0 (ϵ) on
the above equation is

(vϵ − a′(t))P+

0 (ϵ)gx + ϵ′(t)(∂ϵP+

0 (ϵ)g − ∂ϵuϵ)+ P+

0 (ϵ)(ggx)= 0,

(vϵ − a′(t))(u′

ϵ + P−

0 (ϵ)gx)+ ϵ
′(t)∂ϵP−

0 (ϵ)g + P−

0 (ϵ)(ggx)= 0.

Since P±

0 (ϵ) are bounded on L2, we have ∥P±

0 (ϵ)gx∥L2 ≲ ∥g∥H1 . Since P±

0 (ϵ) are analytic in ϵ, we have
∥∂ϵP±

0 (ϵ)g∥L2 ≲ ∥g∥L2 . Since P±

0 (ϵ) is a projection, we have P±

0 (ϵ)
2
= P±

0 (ϵ). Taking the derivative
in ϵ and using the constraint P±

0 (ϵ)g = 0, we have P±

0 (ϵ)∂ϵP±

0 (ϵ)g = ∂ϵP±

0 (ϵ)g, i.e., ∂ϵP±

0 (ϵ)g is in
the 1-dimensional space spanned by ϕ±

0 (ϵ). Hence

|P±

0 (ϵ)gx/ϕ
+

0 (ϵ)| ≲ ∥g∥H1, |∂ϵP±

0 (ϵ)g/ϕ
±

0 (ϵ)| ≲ ∥g∥L2 .

Thus, dividing the two equations by ϕ±

0 (ϵ) we get∣∣∣∣((
0 1
ϵ 0

)
+ O(∥g∥H1)

) (
vϵ − a′(t)
ϵ′(t)

)∣∣∣∣ =

∣∣∣∣(P+

0 (ϵ)(ggx)/ϕ
+

0 (ϵ)

P−

0 (ϵ)(ggx)/ϕ
−

0 (ϵ)

)∣∣∣∣ ≲ ∥g(t)∥2
H1 .

Assuming ∥g(t)∥H1/|ϵ| is small enough we have(
vϵ − a′(t)
ϵ′(t)

)
=

(
O(∥g(t)∥2

H1/|ϵ|)

O(∥g(t)∥2
H1)

)
. (4-9)

4A. Diagonalization. To find the evolution of other modes, we diagonalize the equation for g. Let
g = hx and h = h̃ ◦φϵ , where φϵ satisfies (3-3). Recall from (3-1) that Lϵg = −vϵgx + Hg + (uϵg)x , so

ht = −vϵhx + Hh + uϵhx − ϵ′(t)∂ϵUϵ + (vϵ − a′(t))(uϵ + hx)+
1
2 h2

x (mod 1),

where Uϵ is a primitive of uϵ . Differentiating h = h̃ ◦φϵ with respect to ϵ we get

ht = h̃t ◦φϵ + ϵ′(t)(∂ϵφϵ)(h̃x ◦φϵ).
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On the other hand,

(−vϵhx + Hh + uϵhx)x = Lϵg = (((cϵ∂x + H + Rϵ)h̃) ◦φϵ)x ,

so

h̃t = (cϵ∂x + H + Rϵ)h̃ − ϵ′(t)(∂ϵφϵ ◦φ−1
ϵ )h̃x − ϵ′(t)∂ϵUϵ ◦φ−1

ϵ

+ (vϵ − a′(t))(uϵ + hx) ◦φ
−1
ϵ +

1
2 h2

x ◦φ−1
ϵ (mod 1).

By the chain rule, hx = φ′
ϵ(h̃x ◦φϵ), so hx ◦φ−1

ϵ = (φ′
ϵ ◦φ−1

ϵ )h̃x , and

h̃t = (cϵ∂x + H + Rϵ)h̃ +8ϵ h̃x − ϵ′(t)∂ϵUϵ ◦φ−1
ϵ + (vϵ − a′(t))uϵ ◦φ−1

ϵ +
1
2(φ

′

ϵ ◦φ−1
ϵ )2h̃2

x (mod 1),

8ϵ = −ϵ′(t)(∂ϵφϵ ◦φ−1
ϵ )+ (vϵ − a′(t))(φ′

ϵ ◦φ−1
ϵ ).

Using the operator Wϵ from Lemma 3.7 we have

(1 + Wϵ)(cϵ∂x + H + Rϵ)=3ϵ(1 + Wϵ),

where 3ϵ is a Fourier multiplier whose action on the Fourier mode ei(n+sgn n)x is multiplication by λn(ϵ).
Since Wϵ/ϵ is of class S, uniformly in ϵ, for any smooth function F , the operator

h̃ 7→ Rϵ(F)h̃ := (1 + Wϵ)(Fh̃x)− F((1 + Wϵ)h̃)x

is of class S, with the implicit constants depending on the Ck norms of F .
Let h = (1 + Wϵ)h̃. Then

(1 + Wϵ)h̃t =3ϵh+8ϵhx − ϵ′(t)(1 + Wϵ)(∂ϵUϵ ◦φ−1
ϵ )

+ (vϵ − a′(t))(1 + Wϵ)(uϵ ◦φ−1
ϵ )+ Nϵ[h, h] +Rϵ(8ϵ)h̃ (mod 1),

where
Nϵ[h, h] =

1
2(φ

′

ϵ ◦φ−1
ϵ )2((1 + Wϵ)

−1h)2x . (4-10)

Both Rϵ(∂ϵφϵ ◦φ−1
ϵ ) and Rϵ(φ

′
ϵ ◦φ−1

ϵ − 1)/ϵ are of class S, uniformly in ϵ when ϵ is small. Moreover,
since Wϵ is analytic in ϵ with W0 = 0, so is Rϵ(1) with R0(1)= 0. Hence Rϵ(1)/ϵ is of class S uniformly
in ϵ, and so is Rϵ(φ

′
ϵ ◦φ−1

ϵ )/ϵ.
Since ∂ϵuϵ and u′

ϵ are in the generalized eigenspace of Lϵ associated with the eigenvalue 0, we have
∂ϵUϵ ◦φ−1

ϵ and uϵ ◦φ−1
ϵ are in the corresponding space of cϵ∂x + H + Rϵ , so (1 + Wϵ)(∂ϵUϵ ◦φ−1

ϵ ) and
(1 + Wϵ)(uϵ ◦φ−1

ϵ ) are in the space spanned by sin x and cos x , according to Lemma 3.7.
Now we have

ht = (1 + Wϵ)h̃t + ϵ′(t)∂ϵWϵ h̃

=3ϵh+8ϵhx + Nϵ[h, h] + Rest (mod 1, sin x, cos x), (4-11)

where Nϵ[h, h] is given by (4-10) and

Rest = ϵ′(t)(∂ϵWϵ)h̃ +Rϵ(8ϵ)h̃

is also of class S uniformly in ϵ when ϵ is small.
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Recall that ϵ′(t) and a′(t) are chosen such that P0(ϵ)g(t)= 0 for all t , where P0(ϵ) is the projection
onto the span of ∂ϵuϵ and u′

ϵ . This implies Q0(ϵ)h̃(t)= 0 for all t , where Q0(ϵ) is the projection onto
the span of ∂ϵUϵ ◦φ−1

ϵ and uϵ ◦φ−1
ϵ . Since 1 + Wϵ maps the span of ∂ϵUϵ ◦φ−1

ϵ and uϵ ◦φ−1
ϵ to the span

of sin x and cos x , we have ĥ(1)= ĥ(−1)= 0 for all t .

5. Energy estimates

Since ĥ(1)= ĥ(−1)= 0 for all t , for k = 0, 1, . . . we define the energy

Ek =
1
2∥h∥2

Ḣ k =
1
2∥h∥2

H k/(1,sin x,cos x)

and aim to control its growth.
Using the evolution equation (4-11) for h and the anti-self-adjointness of 3ϵ we get

d
dt

Ek(t)= E8(t)+ EN (t)+ ERest(t),

E8(t)= ⟨8ϵhx , h⟩Ḣ k ,

EN (t)= ⟨Nϵ[h(t), h(t)], h(t)⟩Ḣ k ,

ERest(t)= ⟨ϵ′(t)∂ϵWϵ h̃(t)+Rϵ(8ϵ)h̃(t), h(t)⟩Ḣ k .

Recall that g = hx , h = h̃ ◦φϵ and h = (1 + Wϵ)h̃. When ϵ is small enough, the last two are bounded
operators with bounded inverse between Ḣ k, k = 0, 1, . . . , so

∥g∥H k ≈k ∥h∥Ḣ k+1 ≈k ∥h̃∥Ḣ k+1 ≈k ∥h∥Ḣ k+1 . (5-1)

Since Rϵ(∂ϵφϵ ◦φ−1
ϵ ), Rϵ(φ

′
ϵ ◦φ−1

ϵ )/ϵ and ∂ϵWϵ are of class S uniformly in ϵ,

∥(ϵ′(t)∂ϵWϵ − ϵ′(t)Rϵ(∂ϵφϵ ◦φ−1
ϵ ))h̃(t)∥Ḣ k ≲k ∥g(t)∥2

H1∥h̃(t)∥Ḣ1 ≲k E2(t)3/2,

∥(vϵ − a′(t))Rϵ(φ
′

ϵ ◦φ−1
ϵ )h̃(t)∥Ḣ k ≲k (∥g(t)∥2

H1/ϵ)ϵ∥h̃(t)∥Ḣ1 ≲k E2(t)3/2

so
|ERest(t)| ≲k E2(t)3/2 Ek(t)1/2. (5-2)

To bound E8 we use (4-9) and (5-1) to get

∥8′

ϵ∥Ck ≲k ∥g(t)∥2
H1 + (∥g(t)∥2

H1/|ϵ|)|ϵ| ≲k E2(t).

Since E8 loses only one derivative in h, we have

|E8(t)− ⟨8ϵ∂
k+1
x h(t), ∂k

xh(t)⟩L2/(1)| ≲k E2(t)Ek(t). (5-3)

For the sake of bounding this term, since the inner product is taken in the space L2/(1), we can without
loss of generality assume that ĥ(0)= 0 (which is not true in general) and integrate by parts to get

2⟨8ϵ∂
k+1
x h(t), ∂k

xh(t)⟩L2/(1) =

∫ 2π

0
8ϵ∂x(∂

k
xh(t))

2 dx = −

∫ 2π

0
8′

ϵ(∂
k
xh(t))

2 dx

so again by (4-9) and (5-1),
|E8(t)| ≲k E2(t)Ek(t). (5-4)
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Combining (5-2), (5-3) and (5-4) shows that∣∣∣ d
dt

Ek(t)− EN (t)
∣∣∣ ≲k E2(t)Ek(t). (5-5)

5A. Normal form transformation. To bound EN we recall the expression of Nϵ from (4-10). Since Nϵ
does not depend on the constant mode of h, we can also assume without loss of generality that ĥ(0)= 0.
We further have the decompositions

EN (t)= EN1(t)+ EN2(t),

EN1(t)=
1
2

∫ 2π

0
∂k

xh(t)∂
k
x (∂xh(t))2 dx =

[k/2]+1∑
j=2

ck j

∫ 2π

0
∂k

xh(t)∂
k+2− j
x h(t)∂ j

x h(t),
(5-6)

where ck j ∈ R are constants and we integrated by parts to get rid of the terms with k +1 derivatives falling
on a single factor of h.

We use the normal form transformation to bound them. Define the trilinear map

Dϵ[ f1, f2, f3] =

∑
mnl ̸=0

1
λm(ϵ)+ λn(ϵ)+ λl(ϵ)

∫ 2π

0
f̂1(m + sgn m)ei(m+sgn m)x

× f̂2(n + sgn n)ei(n+sgn n)x f̂3(l + sgn l)ei(l+sgn l)x dx

and put
D1,k, j (t)= Dϵ(t)[∂

k
xh(t), ∂

k+2− j
x h(t), ∂ j

x h(t)].

Then
d
dt

D1,k, j (t)= ϵ′(t)(∂ϵDϵ)[∂k
xh(t), ∂

k+2− j
x h(t), ∂ j

x h(t)]

+ Dϵ[∂k
x ∂th(t), ∂k+2− j

x h(t), ∂ j
x h(t)]

+ Dϵ[∂k
xh(t), ∂

k+2− j
x ∂th(t), ∂ j

x h(t)]

+ Dϵ[∂k
xh(t), ∂

k+2− j
x h(t), ∂ j

x ∂th(t)].

Note that EN1(t) is a linear combination of the last three lines on the right-hand side, with ∂t replaced
with 3ϵ , so (d/dt)

∑[k/2]+1
j=2 cjk D1,k, j (t)− EN1(t) is a linear combination of

ϵ′(t)(∂ϵDϵ)[∂k
xh(t), ∂

k+2− j
x h(t), ∂ j

x h(t)], (5-7)

Dϵ[∂k
x (∂t −3ϵ)h(t), ∂k+2− j

x h(t), ∂ j
x h(t)], (5-8)

Dϵ[∂k
xh(t), ∂

k+2− j
x (∂t −3ϵ)h(t), ∂ j

x h(t)], (5-9)

Dϵ[∂k
xh(t), ∂

k+2− j
x h(t), ∂ j

x (∂t −3ϵ)h(t)]. (5-10)

We estimate these terms one by one.
By the definition of Dϵ ,

(5-7) = ϵ′(t)
∑

mnl ̸=0

(λ′
m(ϵ)+λ

′
n(ϵ)+λ

′

l(ϵ))

2(λm(ϵ)+λn(ϵ)+λl(ϵ))2

×

∫ 2π

0
ĥ(m+sgnm, t)∂k

x ei(m+sgnm)x ĥ(n+sgnn, t)∂k+2− j
x ei(n+sgnn)x ĥ(l+sgn l, t)∂ j

x ei(l+sgn l)x dx .
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We first bound the fraction. By Corollary 3.10, when ϵ is small enough,

λ′

m(ϵ)+ λ
′

n(ϵ)+ λ
′

l(ϵ)= (m + n + l + sgn m + sgn n + sgn l)∂ϵcϵi + O(ϵ5)

≲ (|m + n + l| + 1)|ϵ|. (5-11)

On the other hand, the integral vanishes unless

m + n + l + sgn m + sgn n + sgn l = 0, (5-12)

in which case m + n + l is an odd number, and so is nonzero. Then by Case 1 of Proposition 3.11,

|λm(ϵ)+ λn(ϵ)+ λl(ϵ)|>
1
2 |m + n + l|, (5-13)

so
|λ′

m(ϵ)+ λ
′
n(ϵ)+ λ

′

l(ϵ)|

|λm(ϵ)+ λn(ϵ)+ λl(ϵ)|2
≲ |ϵ|. (5-14)

Then for k ≥ 3,

|(5-7)| ≲ |ϵ(t)ϵ′(t)|
∑
mnl ̸=0
(5-12)

|(m + sgn m)k ĥ(m + sgn m, t)

× (n + sgn n)k+2− j ĥ(n + sgn n, t)(l + sgn l) j ĥ(l + sgn l, t)|

≈ |ϵ(t)ϵ′(t)|
∣∣∣∣∫ 2π

0
∂k

x H(x, t)∂k+2− j
x H(x, t)∂ j

x H(x, t)
∣∣∣∣ dx

≲k |ϵ(t)ϵ′(t)|∥H(x, t)∥2
H k

x
∥H(x, t)∥W [k/2]+1,∞

x
≲k |ϵ(t)ϵ′(t)|∥H(x, t)∥3

H k
x

(5-15)

since k ≥ [k/2] + 2, where

H(x, t)=

∑
m ̸=0

|ĥ(m + sgn m, t)|ei(m+sgn m)x

satisfies

∥H(x, t)∥H k
x

= ∥h(t)∥Ḣ k ≲ Ek(t)1/2

so by (4-9) and (5-1),

|(5-7)| ≲k |ϵ|E2(t)Ek(t)3/2. (5-16)

To bound the other terms (5-8), (5-9) and (5-10), we use the evolution equation (4-11) of h, which
loses one derivative in h, so

∥(∂t −3ϵ)h(t)∥Ḣ k−1 ≲ (∥g∥
2
H1/|ϵ|)∥h(t)∥Ḣ k + ∥h(t)∥2

Ḣ k .

If ∥g(t)∥H1/|ϵ| is small enough and k ≥ 2, the first term is dominated by the second term thanks to (5-1).
Since in the summation of Dϵ it holds that m + n + l ̸= 0, the denominator is uniformly bounded from
below thanks to (5-13). Unless j = 2 in (5-8) and (5-9), we can integrate by parts if necessary to ensure
that at most k − 1 derivatives in x hit each factor of j . Then similarly to (5-15) it follows that for k ≥ 5,

|((5-8), j ≥ 3)+ ((5-9), j ≥ 3)+ (5-10)| ≲k Ek(t)2. (5-17)
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For j = 2, by symmetry of Dϵ it is clear that

((5-9), j =2)= ((5-8), j =2), (5-18)

which according to (4-11) equals

Dϵ[∂k
x (8ϵhx(t)+ Nϵ[h(t), h(t)] + R(t)), ∂k

xh(t), ∂
2
xh(t)].

Similarly to (5-15),
|Dϵ[∂k

x R(t), ∂k
xh(t), ∂

2
xh(t)]| ≲k E3(t)2 Ek(t)1/2. (5-19)

Similarly to (5-3),

|Dϵ[∂k
x (8ϵhx(t))−8ϵ∂k+1

x h(t), ∂k
xh(t), ∂

2
xh(t)]| ≲k E3(t)3/2 Ek(t). (5-20)

By the definition of Dϵ ,

Dϵ[8ϵ∂k+1
x hx(t), ∂k

xh(t), ∂
2
xh(t)]

=

∑
mm′nl ̸=0

1
λm′(ϵ)+ λn(ϵ)+ λl(ϵ)

∫ 2π

0
8̂ϵ(p)ei px ĥ(m+sgn m, t)∂k+1

x ei(m+sgn m)x ĥ(n+sgn n, t)

× ∂k
x ei(n+sgn n)x ĥ(l + sgn l, t)∂2

x ei(l+sgn l)x dx, (5-21)

where m′
+ sgn m′

= p + m + sgn m ̸= 0,±1. We break the summation into several parts.

Part 1: |p| ≥
1
3 |m + sgn m|. Then we can transfer the extra derivative from h to 8ϵ , and compute as in

(5-3) to get
|Part 1| ≲k E3(t)3/2 Ek(t). (5-22)

Part 2: |p|< |m + sgn m|/3 but |p| ≥ |n + sgn n|/3. If |n + sgn n| ≥ |m|/3 then |p| ≥ |m|/9, and we get
the same bound as before. Otherwise, since the integral vanishes unless

p + m + n + l + sgn m + sgn n + sgn l = 0 (5-23)

in which case we have |l + sgn l|> |n + sgn n|/3, we can transfer the extra derivative to the factor ∂2
xh to

get (note that ∥8ϵ∥Ck ≲k ∥g∥
2
H1/|ϵ|)

|Part 2| ≲k (∥g(t)∥2
H1/|ϵ|)E4(t)1/2 Ek(t)≲ E4(t)Ek(t) (5-24)

provided that ∥g(t)∥H1/|ϵ| is small enough.

Part 3: |p| < 1
3 |m + sgn m| and |p| < 1

3 |n + sgn n|. Then sgn(m′
+ sgn m′) = sgn(m + sgn m), i.e.,

sgn m′
= sgn m, so m′

= m + p. By symmetry,

Part 3 =

∑
mnl ̸=0

|p|<|m+sgnm|/3
|p|<|n+sgnn|/3

1
2

λm+p(ϵ)+λn(ϵ)+λl(ϵ)

∫ 2π

0
ĥ(l+sgn l, t)∂2

x ei(l+sgn l)x8̂ϵ(p)ei px ĥ(m+sgnm, t)

×∂k+1
x ei(m+sgnm)x ĥ(n+sgnn, t)∂k

x ei(n+sgnn)x dx

+

∑
mnl ̸=0

|p|<|m+sgnm|/3
|p|<|n+sgnn|/3

1
2

λm(ϵ)+λn+p(ϵ)+λl(ϵ)

∫ 2π

0
ĥ(l+sgn l, t)∂2

x ei(l+sgn l)x8̂ϵ(p)ei px ĥ(m+sgnm, t)

×∂k
x ei(m+sgnm)x ĥ(n+sgnn, t)∂k+1

x ei(n+sgnn)x dx .
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Note that the two denominators are uniformly bounded from below. Also, sgn(m + p) = sgn m and
|m + p| > 1

3(2|m| − 1), and similarly for l. Then by Corollary 3.10, the two denominators differ by
O(|m|ϵ4|m|/3+3

+ |n|ϵ4|n|/3+3), so

Part 3 =

∑
mnl ̸=0

|p|<|m+sgnm|/3
|p|<|n+sgnn|/3

1
2

λm+p(ϵ)+λn(ϵ)+λl(ϵ)

∫ 2π

0
ĥ(l+sgn l, t)∂2

x ei(l+sgn l)x8̂ϵ(p)ei px∂x(ĥ(m+sgnm, t)

×∂k
x ei(m+sgnm)x ĥ(n+sgnn, t)∂k

x ei(n+sgnn)x)dx

+

∑
(5-23)

O(|m|ϵ4|m|/3+3
+|n|ϵ4|n|/3+3)

∫ 2π

0
|(l+sgn l)2ĥ(l+sgn l, t)8̂ϵ(p)(m+sgnm)k

×ĥ(m+sgnm, t)(n+sgnn)k+1ĥ(n+sgnn, t)|

=

∑
mnl ̸=0

|p|<|m+sgnm|/3
|p|<|n+sgnn|/3

−
1
2

λm+p(ϵ)+λn(ϵ)+λl(ϵ)

∫ 2π

0
∂x(ĥ(l+sgn l, t)∂2

x ei(l+sgn l)x8̂ϵ(p)ei px)ĥ(m+sgnm, t)

×∂k
x ei(m+sgnm)x ĥ(n+sgnn, t)∂k

x ei(n+sgnn)x dx

+

∑
(5-23)

O(ϵ4)

∫ 2π

0
|(l+sgn l)2ĥ(l+sgn l, t)

×8̂ϵ(p)(m+sgnm)k ĥ(m+sgnm, t)(n+sgnn)k ĥ(n+sgnn, t)|,

where we integrated by parts in the first integral and used the bounds |m|ϵ4|m|/3+3 and

|n(n + sgn n)ϵ4|n|/3+3
| ≲ ϵ4

in the second. Then as in (5-15) it follows that

|Part 3| ≲k (∥g(t)∥2
H1/|ϵ|)E4(t)1/2 Ek(t)+ ϵ4(∥g(t)∥2

H1/|ϵ|)E3(t)1/2 Ek(t)

≲ E4(t)Ek(t) (5-25)

provided that ϵ and ∥g(t)∥H1/|ϵ| are small enough.
Combining (5-20), (5-22), (5-24) and (5-25) shows that

|Dϵ[∂k
x (8ϵhx(t)), ∂k

xh(t), ∂
2
xh(t)]| ≲k E4(t)(1 + E4(t)1/2)Ek(t) (5-26)

provided that ϵ and ∥g(t)∥H1/|ϵ| are small enough.
We now turn to Dϵ[∂

k
x Nϵ[h(t), h(t)], ∂k

xh(t), ∂
2
xh(t)]. Similarly to (5-3),∣∣Dϵ[∂k

x Nϵ[h(t),h(t)],∂k
xh(t),∂

2
xh(t)]

−Dϵ[(φ′

ϵ◦φ
−1
ϵ )2∂x((1+Wϵ)

−1h(t))(∂k+1
x (1+Wϵ)

−1h(t)),∂k
xh(t),∂

2
xh(t)]

∣∣≲k |ϵ|E3(t)1/2 Ek(t)3/2. (5-27)

Since Wϵ/ϵ is of class S uniformly in ϵ, so is ((1 + Wϵ)
−1

− 1)/ϵ, so

|Dϵ[(φ′

ϵ ◦φ−1
ϵ )2(∂x(1 + Wϵ)

−1h(t))(∂k+1
x ((1 + Wϵ)

−1
− 1)h(t)), ∂k

xh(t), ∂
2
xh(t)]|

≲k |ϵ|E3(t)3/2 Ek(t)1/2. (5-28)
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Finally, Dϵ[(φ′
ϵ ◦φ

−1
ϵ )2(∂x(1+Wϵ)

−1h(t))(∂k+1
x h(t)), ∂k

xh(t), ∂
2
xh(t)] is of the same form as the left-hand

side of (5-21), so we trace the same argument to get

|Part 1| ≲k E3(t)Ek(t),

|Part 2| ≲k E4(t)Ek(t),

|Part 3| ≲k E4(t)Ek(t)+ ϵ4 E3(t)Ek(t)≲ E4(t)Ek(t)

provided that ϵ is small enough. Hence

|Dϵ[(φ′

ϵ ◦φ−1
ϵ )2(∂x(1 + Wϵ)

−1h(t))(∂k+1
x h(t)), ∂k

xh(t), ∂
2
xh(t)]| ≲k E4(t)Ek(t). (5-29)

Combining (5-27), (5-28) and (5-29) shows that, for k ≥ 4,

|Dϵ[∂k
x Nϵ[h(t), h(t)], ∂k

xh(t), ∂
2
xh(t)]| ≲k E4(t)1/2 Ek(t)3/2 (5-30)

provided that ϵ is small enough.
Combining (5-19), (5-26) and (5-30) shows that, for k ≥ 4,

|((5-8), j = 2)| ≲k E4(t)1/2(1 + E4(t)1/2)Ek(t)3/2 (5-31)

provided that ϵ and ∥g(t)∥H1/|ϵ| are small enough.
Finally, combining (5-16), (5-17), (5-18) and (5-31) shows that, for k ≥ 5,∣∣∣∣ d

dt

[k/2]+1∑
j=2

cjk D1,k, j (t)− EN1(t)
∣∣∣∣ ≲k (1 + E4(t)1/2)Ek(t)2 (5-32)

provided that ϵ and ∥g(t)∥H1/|ϵ| are small enough.

5B. Lifespan when δ ≪ ϵ. In this section we will obtain a preliminary bound for EN2 = EN − EN1 and
show a lifespan of 1/(ϵδ) when ∥g0∥H5(T) = δ ≪ ϵ, i.e., δ ≤ cϵ for some c > 0 independent of ϵ.

Recall from (5-6) that

EN (t)=
1
2

∫ 2π

0
∂k

xh(t)∂
k
x ((φ

′

ϵ ◦φ−1
ϵ )2((1 + Wϵ)

−1h(t))2x) dx .

Similarly to (5-3), for k ≥ 3,∣∣∣∣EN (t)−
∫ 2π

0
(φ′

ϵ ◦φ−1
ϵ )2∂k

xh(t)∂
k
x (((1 + Wϵ)

−1hx(t))2) dx
∣∣∣∣ ≲k |ϵ|Ek(t)3/2.

Since ((1 + Wϵ)
−1

− 1)/ϵ is of class S uniformly in ϵ,∣∣∣∣∫ 2π

0
(φ′

ϵ ◦φ−1
ϵ )2∂k

xh(t)∂
k
x (((1 + Wϵ)

−1hx(t)− hx(t))2) dx
∣∣∣∣ ≲k ϵ

2 Ek(t)3/2,

2
∣∣∣∣∫ 2π

0
(φ′

ϵ ◦φ−1
ϵ )2∂k

xh(t)∂
k
x (((1 + Wϵ)

−1hx(t)− hx(t))hx(t)) dx

−

∫ 2π

0
(φ′

ϵ ◦φ−1
ϵ )2((1 + Wϵ)

−1hx(t)− hx(t))∂k
xh(t)∂

k+1
x h(t) dx

∣∣∣∣ ≲k |ϵ|Ek(t)3/2.
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Finally, by integration by parts,∣∣∣∣2 ∫ 2π

0
(φ′

ϵ ◦φ−1
ϵ )2((1 + Wϵ)

−1hx(t)− hx(t))∂k
xh(t)∂

k+1
x h(t) dx

∣∣∣∣
=

∣∣∣∣∫ 2π

0
∂x((φ

′

ϵ ◦φ−1
ϵ )2((1 + Wϵ)

−1hx(t)− hx(t)))(∂k
xh(t))

2 dx
∣∣∣∣ ≲k |ϵ|Ek(t)3/2.

Combining the bounds above shows that, for k ≥ 3,

|EN2(t)| = |EN (t)− EN1(t)| ≲k |ϵ|Ek(t)3/2 (5-33)

provided that ϵ is small enough.
Now combining (5-5), (5-32) and (5-33) shows that, for k ≥ 5,

d
dt

∣∣∣∣[k/2]+1∑
j=2

cjk D1,k, j (t)− Ek(t)
∣∣∣∣ ≲k (1 + E4(t)1/2)Ek(t)2 + |ϵ|Ek(t)3/2. (5-34)

provided that ϵ and ∥g(t)∥H1/|ϵ| are small enough. Hence

Ek(t)− Ek(0)=

[k/2]+1∑
j=2

cjk(D1,k, j (t)− D1,k, j (0))+ Ok(∥(1 + E1/2
4 )E2

k + |ϵ|E3/2
k ∥L1([0,t])).

Similarly to (5-15),

|D1,k, j (t)| = |Dϵ(t)[∂
k
xh(t), ∂

k+2− j
x h(t), ∂ j

x h(t)]| ≲k Ek(t)3/2.

Now we are able to show a lifespan longer than what follows from local well-posedness. Assume that
the initial data is

f (x, 0)= uϵ(x)+ g(x),

where |ϵ| ≤ ϵ0 is small enough, the energy Ek(0) computed from g is Ek(0)= δ2, and |δ/ϵ| is also small
enough. Let

T ∗
= sup

{
T : there exists a solution f (x, t)= uϵ(t)(x + a(t))+ g(x + a(t), t), (5-35)

t ∈ [0, T ] such that 1
2 |ϵ| ≤ |ϵ(t)| ≤ 2|ϵ|, Ek(t)≤ 4δ2}. (5-36)

Then the above conditions hold for all t < T ∗. Moreover, the energy estimate implies

Ek(t)= δ2
+ Ok(δ

3
+ t (δ4

+ |ϵ|δ3))= δ2
+ Ok(δ

3(1 + t |ϵ|)).

Then there is ck > 0 such that if T ∗
≤ ck/|ϵ|δ, then Ek(t)≤ 2δ2. Also,

|∥ f (x, t)∥L2 − ∥uϵ∥L2 | = |∥ f (x, 0)∥L2 − ∥uϵ∥L2 | ≤ ∥g∥L2 ≲ δ

by conservation of the L2 norm. Meanwhile |∥ f (x, t)∥L2 −∥uϵ(t)∥L2 | ≲ δ, so |∥uϵ(t)∥L2 −∥uϵ∥L2 | ≲ δ.
When |ϵ| is small enough, ∥uϵ∥L2 is differentiable in ϵ with nonzero derivative at ϵ = 0. Since |δ/ϵ| is
small enough, |ϵ(t)− ϵ| ≲ δ.
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By local well-posedness, the solution can be extended to a time t∗ > T ∗, with

∥ f (x, t)− f (x, T ∗)∥H2 ≲ (t∗
− T ∗)(∥ f (x, t)∥H3 + ∥ f (x, t)∥2

H3)≤ (t∗
− T ∗)|ϵ|

for t ∈ [T ∗, t∗
]. Then ∥ f (x, t)− uϵ(T ∗)(x + a(T ∗))∥H2 ≲ (t∗

− T ∗)|ϵ| + δ. Take t∗
= T ∗

+ δ/|ϵ|. Then
f (x, t) satisfies the conditions in Proposition 4.1, so (5-35) holds up to time t∗. Since f (x, T ∗) is small
in H 4, f (x, t) is uniformly bounded in H 4 on [T ∗, t∗

], so it stays within a compact set in H 2. Since ϵ
is differentiable in f ∈ H 2, |ϵ(t)− ϵ(T ∗)| ≲ (t∗

− T ∗)|ϵ| ≲ δ, so |ϵ(t)− ϵ| ≲ δ, so |ϵ|/2 ≤ |ϵ(t)| ≤ 2|ϵ|

holds up to time t∗. The energy estimate then implies Ek ≤ 3δ2 also up to time t∗, so (5-36) holds up to
time t∗, contradicting the definition of T ∗. Hence the lifespan T ∗ ≳k 1/|ϵ|δ.

5C. Longer lifespan when δ ≪ ϵ2. When the perturbation g is very small compared to ϵ2, that is,
∥g0∥H5(T) = δ ≪ ϵ2, we can obtain a longer lifespan by applying the normal form transformation to

EN2 = EN − EN1 = EN21 + EN22 + EN23 + EN24,

where

EN21 =

[k/2]+1∑
j=1

c′

k j

∫ 2π

0
∂k

xh(t)∂
k+2− j
x ((φ′

ϵ ◦φ−1
ϵ )((1 + Wϵ)

−1
− 1)h(t))∂ j

x ((φ
′

ϵ ◦φ−1
ϵ )(1 + Wϵ)

−1h(t)) dx,

EN22 =

[k/2]+1∑
j=1

k+2− j∑
i=1

ck ji

∫ 2π

0
∂k

xh(t)∂
i
x(φ

′

ϵ ◦φ−1
ϵ )∂k+2−i− j

x h(t)∂ j
x ((φ

′

ϵ ◦φ−1
ϵ )(1 + Wϵ)

−1h(t)) dx,

EN23 =

[k/2]+1∑
j=2

ck j

∫ 2π

0
∂k

xh(t)(φ
′

ϵ ◦φ−1
ϵ − 1)∂k+2− j

x h(t)∂ j
x ((φ

′

ϵ ◦φ−1
ϵ )(1 + Wϵ)

−1h(t)) dx,

EN24 =

[k/2]+1∑
j=2

ck j

∫ 2π

0
∂k

xh(t)∂
k+2− j
x h(t)∂ j

x ((φ
′

ϵ ◦φ−1
ϵ )(1 + Wϵ)

−1h− h) dx,

where ck j , c′

k j and ck ji ∈ R are constants and we integrated by parts to get rid of the terms with
k + 1 derivatives falling on a single factor of h, except for the term with j = 1 in EN21, in which
the k + 1 derivatives do not matter in view of the fact that the operator (φ′

ϵ ◦φ−1
ϵ )((1 + Wϵ)

−1
− 1) is of

class S.
Now we define

Dϵ,21[ f1, f2, f3]

=

[k/2]+1∑
j=1

mnl ̸=0

c′

k j

λm(ϵ)+ λn(ϵ)+ λl(ϵ)

∫ 2π

0
f̂1(m + sgn m)ei(m+sgn m)x

× ∂k+2− j
x ((φ′

ϵ ◦φ−1
ϵ )((1 + Wϵ)

−1
− 1) f̂2(n + sgn n)ei(n+sgn n)x)

× ∂ j
x ((φ

′

ϵ ◦φ−1
ϵ )(1 + Wϵ)

−1 f̂3(l + sgn l)ei(l+sgn l)x),

and
D21(t)= Dϵ,21[h(t), h(t), h(t)],
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and similarly define D22, D23 and D24. Then

d
dt

D21(t)− EN21(t)= ϵ′(t)(∂ϵDϵ,21)[h(t), h(t), h(t)] (5-37)

+ Dϵ,21[(∂t −3ϵ)h(t), h(t), h(t)] (5-38)

+ Dϵ,21[h(t), (∂t −3ϵ)h(t), h(t)] (5-39)

+ Dϵ,21[h(t), h(t), (∂t −3ϵ)h(t)]. (5-40)

We estimate these terms one by one.
For (5-37), (5-11) still holds, but there are nontrivial actions on h in the slots, so no frequency restriction

such as (5-12) exists. When m + n + l ̸= 0, we are in Case 1 of Proposition 3.11, so (5-13), and hence
(5-14), still hold. When m + n + l = 0, by Case 2 of Proposition 3.11, when ϵ is small enough,

|λm(ϵ)+ λn(ϵ)+ λl(ϵ)|>
1
5ϵ

2, (5-41)

which, combined with (5-11), shows that the multiplier in ∂ϵDϵ is bounded by

|λ′
m(ϵ)+ λ

′
n(ϵ)+ λ

′

l(ϵ)|

|λm(ϵ)+ λn(ϵ)+ λl(ϵ)|2
≲ |ϵ|−3 (5-42)

instead of (5-14). Since both (φ′
ϵ ◦ φ−1

ϵ )((1 + Wϵ)
−1

− 1)/ϵ and ∂ϵ(φ′
ϵ ◦ φ−1

ϵ )((1 + Wϵ)
−1

− 1) are of
class S uniformly in ϵ, it follows that, for k ≥ 3,

|(5-37)| ≲k |ϵ′(t)|ϵ−2 Ek(t)3/2 ≲ ϵ−2 E2(t)Ek(t)3/2 (5-43)

provided that ϵ is small enough.
The terms (5-38), (5-39) and (5-40) are like (5-8), (5-9) and (5-10) respectively, except that instead of

the uniform lower bound of λm(ϵ)+λn(ϵ)+λl(ϵ) we now have (5-41), which loses two factors of ϵ, but
we are helped by the ϵ-smallness of (φ′

ϵ ◦φ−1
ϵ )((1 + Wϵ)

−1
− 1), which wins back a factor of ϵ. All told

we lose a factor of ϵ compared to (5-32), so, for k ≥ 5,

|(5-38) + (5-39) + (5-40)| ≲k |ϵ|−1(1 + E4(t)1/2)Ek(t)2 (5-44)

provided that ϵ and ∥g(t)∥H1/|ϵ| are small enough.
Combining (5-43) and (5-44) shows that, for k ≥ 5,∣∣∣ d

dt
D21(t)− EN21(t)

∣∣∣ ≲k |ϵ|−1(1 + E4(t)1/2)Ek(t)2 (5-45)

provided that ϵ and ∥g(t)∥H1/|ϵ| are small enough. We can also save a factor of ϵ in the other terms
EN22, EN23 and EN24 thanks to the ϵ-smallness of (φ′

ϵ ◦φ−1
ϵ )′ and φ′

ϵ ◦φ−1
ϵ − 1. Hence the bound (5-45)

also holds for EN22, EN23 and EN24.
Combining (5-5), (5-32) and (5-45) shows that, for k ≥ 5,

Ek(t)− Ek(0)=

[k/2]+1∑
j=2

cjk(D1,k, j (t)− D1,k, j (0))+
4∑

j=1

(D2 j (t)− D2 j (0))

+ Ok(|ϵ|
−1

∥(1 + E1/2
4 )E2

k ∥L1([0,t]))
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provided that ϵ and ∥g(t)∥H1/|ϵ| are small enough. Similarly to (5-33), for k ≥ 3,

|D2,k, j (t)| ≲k ϵ(t)−2
|ϵ(t)|Ek(t)3/2 = Ek(t)3/2/|ϵ|.

Hence if Ek(0)= δ2 ≲ 1 and Ek ≤ 2δ2 on [0, t] then

Ek(t)= δ2
+ |ϵ|−1δ3

+ Ok(t |ϵ|−1δ4).

Assume δ/ϵ2 is small. Then the second term on the right-hand side is ≲ δ5/2, so we close the estimate for
a time t ≲k |ϵ|/δ2, which is also the lifespan in this case.
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DEFINING THE SPECTRAL POSITION OF A NEUMANN DOMAIN

RAM BAND, GRAHAM COX AND SEBASTIAN K. EGGER

A Laplacian eigenfunction on a two-dimensional Riemannian manifold provides a natural partition into
Neumann domains, a.k.a. a Morse–Smale complex. This partition is generated by gradient flow lines of
the eigenfunction, which bound the so-called Neumann domains. We prove that the Neumann Laplacian
defined on a Neumann domain is self-adjoint and has a purely discrete spectrum. In addition, we prove that
the restriction of an eigenfunction to any one of its Neumann domains is an eigenfunction of the Neumann
Laplacian. By comparison, similar statements about the Dirichlet Laplacian on a nodal domain of an
eigenfunction are basic and well-known. The difficulty here is that the boundary of a Neumann domain
may have cusps and cracks, so standard results about Sobolev spaces are not available. Another very useful
common fact is that the restricted eigenfunction on a nodal domain is the first eigenfunction of the Dirichlet
Laplacian. This is no longer true for a Neumann domain. Our results enable the investigation of the result-
ing spectral position problem for Neumann domains, which is much more involved than its nodal analogue.

1. Introduction and statement of results

Let M be a closed, connected, orientable surface with a smooth Riemannian metric g. It is well known
that the Laplace–Beltrami operator 1 is self-adjoint and has a purely discrete spectrum. We arrange the
eigenvalues in increasing order

0 = λ0 < λ1 ≤ λ2 ≤ · · · (1-1)

and let { fn}
∞

n=0 denote a corresponding complete system of orthonormal eigenfunctions, so that

1 fn = λn fn. (1-2)

While we are motivated by the study of eigenfunctions, most of the results and constructions in this paper
are valid for arbitrary Morse functions. It is well known that for a generic Riemannian metric all of the
Laplace–Beltrami eigenfunctions are Morse [Uhlenbeck 1976].

The main objects of study in this paper are the Neumann domains of a Morse function, to be defined
next. Given a smooth function f on M, we let ϕ : R × M → M denote the flow along the gradient vector
field, i.e., the solution to

∂tϕ(t, x)= − grad f |ϕ(t,x), ϕ(0, x)= x . (1-3)

For a critical point c of f , we define its stable and unstable manifolds by

W s(c) :=
{

x ∈ M : lim
t→∞

ϕ(t, x)= c
}
, W u(c) :=

{
x ∈ M : lim

t→−∞
ϕ(t, x)= c

}
. (1-4)

We denote the sets of minima, maxima and saddles of f by Min( f ), Max( f ) and Sad( f ), respectively.
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Figure 1.1. Left: An eigenfunction corresponding to the eigenvalue � = 17
on the flat torus with fundamental domain [0, 2⇡]⇥ [0, 2⇡]. Circles mark sad-
dle points and triangles mark extremal points (maxima by triangles pointing
upwards and vice verse for minima). The nodal set is marked by dashed
lines and the Neumann line set by solid lines. The Neumann domains are
the domains bounded by the Neumann line set. Right: A magnification of
the marked square from the left figure, showing Neumann domains with and
without cusps. (This figure was produced using [Tay18].)

While the Dirichlet Laplacian on any bounded open set has a purely discrete spectrum,
the same is not necessarily true of the Neumann Laplacian. Indeed, the essential spectrum
may be nonempty, and in fact can be an arbitrary closed subset of [0,1), see [HSS91].
Nevertheless, the Neumann Laplacian of a Neumann domain is well behaved.

Theorem 1.2. Let ⌦ be a Neumann domain of a Morse function f . Then the Neumann
Laplacian �N

⌦ on ⌦ (see Definition 4.1) is a non-negative, self-adjoint operator with purely
discrete spectrum, i.e. consisting only of isolated eigenvalues of finite multiplicity.

The main di�culty in proving this theorem is due to possible cusps on the boundary
of the Neumann domain; see Proposition 2.5 and the discussion preceding it. Such cusps
prevent the application of standard results on density and compact embeddings of Sobolev
spaces. We overcome this di�culty in the proof of Theorem 1.2 by using some particular
geometric properties that the Neumann domain boundary possesses.

It is well known that the restriction of f to any of its nodal domains is an eigenfunction
of the Dirichlet Laplacian. Similarly, we have
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While the Dirichlet Laplacian on any bounded open set has a purely discrete spectrum,
the same is not necessarily true of the Neumann Laplacian. Indeed, the essential spectrum
may be nonempty, and in fact can be an arbitrary closed subset of [0,1), see [HSS91].
Nevertheless, the Neumann Laplacian of a Neumann domain is well behaved.

Theorem 1.2. Let ⌦ be a Neumann domain of a Morse function f . Then the Neumann
Laplacian �N

⌦ on ⌦ (see Definition 4.1) is a non-negative, self-adjoint operator with purely
discrete spectrum, i.e. consisting only of isolated eigenvalues of finite multiplicity.

The main di�culty in proving this theorem is due to possible cusps on the boundary
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prevent the application of standard results on density and compact embeddings of Sobolev
spaces. We overcome this di�culty in the proof of Theorem 1.2 by using some particular
geometric properties that the Neumann domain boundary possesses.

It is well known that the restriction of f to any of its nodal domains is an eigenfunction
of the Dirichlet Laplacian. Similarly, we have

Figure 1. Left: An eigenfunction corresponding to the eigenvalue λ= 17 on the flat torus
with fundamental domain [0, 2π ]×[0, 2π ]. Circles mark saddle points and triangles mark
extremal points (maxima by triangles pointing upwards and vice versa for minima). The
nodal set is marked by dashed lines and the Neumann line set by solid lines. The Neumann
domains are the domains bounded by the Neumann line set. Right: A magnification of
the marked square from the left figure, showing Neumann domains with and without
cusps. (This figure was produced using [Taylor 2018].)

Definition 1.1 [Band and Fajman 2016]. Let f be a Morse function on M.

(1) Let p ∈ Min( f ) and q ∈ Max( f ) such that W s( p)∩W u(q) ̸=∅. Each of the connected components
of W s( p)∩ W u(q) is called a Neumann domain of f .

(2) The Neumann line set of f is

N :=

⋃
r∈Sad( f )

W s(r)∪ W u(r). (1-5)

This defines a partition of the manifold M, which we call the Neumann partition. It is not hard to show
that M equals the disjoint union of all Neumann domains and the Neumann line set, under the assumption
that N ̸= ∅; see [Band and Fajman 2016, Proposition 1.3]. (Note that N = ∅ means f has no saddle
points; this is only possible when M is a sphere and f has exactly two critical points.) Figure 1 depicts
the Neumann partition of a particular eigenfunction on the flat torus.

By construction we have that grad f is parallel to the boundary of any Neumann domain �, as
the boundary is made up of gradient flow lines, so we conclude that the normal derivative vanishes,
∂ν f |∂� = 0, assuming ∂� is sufficiently smooth. This formal observation motivates our study of the
Neumann Laplacian on �, which we precisely define in Definition 4.1.

While the Dirichlet Laplacian on any bounded open set has a purely discrete spectrum, the same is
not necessarily true of the Neumann Laplacian. Indeed, the essential spectrum may be nonempty, and in
fact can be an arbitrary closed subset of [0,∞); see [Hempel et al. 1991]. Nevertheless, the Neumann
Laplacian of a Neumann domain is well-behaved.

Theorem 1.2. Let� be a Neumann domain of a Morse function f . Then the Neumann Laplacian1N
� on�

(see Definition 4.1) is a nonnegative, self-adjoint operator with purely discrete spectrum, i.e., consisting
only of isolated eigenvalues of finite multiplicity.
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The main difficulty in proving this theorem is due to possible cusps on the boundary of the Neumann
domain; see Proposition 2.5 and the discussion preceding it. Such cusps prevent the application of
standard results on density and compact embeddings of Sobolev spaces. We overcome this difficulty
in the proof of Theorem 1.2 by using some particular geometric properties that the Neumann domain
boundary possesses.

It is well known that the restriction of f to any of its nodal domains is an eigenfunction of the Dirichlet
Laplacian. Similarly, we have:

Theorem 1.3. If � is a Neumann domain of a Morse function f , then f |� ∈ D(1N
�). In particular, if f

is an eigenfunction of 1, then f |� is an eigenfunction of 1N
� with the same eigenvalue.

In fact, we prove much more: in Proposition 4.3 we completely characterize the domain of the Neumann
Laplacian, and in Proposition 4.8 and Corollary 4.9 we give some easily verified sufficient conditions for a
function to be in the domain of 1N

� . Given a Morse eigenfunction, by which we mean an eigenfunction of
the Laplace–Beltrami operator that is also a Morse function, Theorem 1.2 allows us to define its spectral
position as follows.

Definition 1.4. Let f be a Morse eigenfunction for an eigenvalue λ, and let � be a Neumann domain
of f . We define the spectral position of � as the position of λ in the Neumann spectrum of �, i.e.,

N�(λ) := |{µn ∈ σ(1N
�) : µn < λ}|, (1-6)

where σ(�) := {µn}
∞

n=0 is the Neumann spectrum of � (which is discrete by Theorem 1.2), containing
multiple appearances of degenerate eigenvalues and including µ0 = 0.

From Theorem 1.3 we in fact have λ= µn for some n, and so we can equivalently write

N�(λ)= min{n : µn = λ}.

In particular, if λ ∈ σ(1N
�) is simple, then λ= µn for a unique n, and hence N�(λ)= n. This equality

explains the terminology “spectral position” for N�(λ).
The spectral position is a key notion for Neumann domains. Finding its value is a great challenge

and is of major importance in studying Neumann domains and their properties [Band and Fajman 2016;
Band et al. 2021; Alon et al. 2020]. The corresponding notion for a nodal domain is trivial: if D is a
nodal domain of f , then f |D is always the first eigenfunction of the Dirichlet Laplacian on D. This is a
basic observation which serves as an essential ingredient in many nodal domain proofs. No such result
holds for Neumann domains, and in fact the spectral position of an eigenfunction restricted to a Neumann
domain can be arbitrarily high, by [Band et al. 2021, Theorem 1.4].

Structure of the paper. In Section 2 we describe some essential geometric properties of Neumann domains,
emphasizing the potentially singular nature of their boundary. In Section 3 we use this geometric structure
to establish fundamental properties of Sobolev spaces on Neumann domains, including nonstandard
density and compactness results. Finally, in Section 4 we use these properties to study the Neumann
Laplacian, in particular proving Theorems 1.2 and 1.3.
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2. Geometric properties of Neumann domains

As above, we take M to be a closed, connected, orientable surface with a smooth Riemannian metric g.
Note that all of the statements in this section hold for arbitrary Morse functions, and not only for
eigenfunctions. For convenience we recall the following definitions.

Definition 2.1. Let f : M → R be a smooth function.

(1) f is said to be a Morse function if the Hessian, Hess f ( p), is nondegenerate at every critical point p
of f .

(2) A Morse function f is said to be Morse–Smale if for all critical points p and q, the stable and unstable
manifolds W s( p) and W u(q) intersect transversely (see Lemma 2.4 for an equivalent definition in
two dimensions).

We now recall some basic topological properties of Neumann domains.

Theorem 2.2 [Band and Fajman 2016, Theorem 1.4]. Let f be a Morse function with a nonempty set
of saddle points. Let p ∈ Min( f ), q ∈ Max( f ) with W s( p) ∩ W u(q) ̸= ∅, and let � be a connected
component of W s( p)∩ W u(q), i.e., a Neumann domain. The following properties hold:

(1) The Neumann domain � is a simply connected open set.

(2) All critical points of f belong to the Neumann line set.

(3) The extremal points of f on � are exactly p and q.

(4) If f is a Morse–Smale function, then ∂� consists of Neumann lines connecting saddle points with p
or q. In particular, ∂� contains either one or two saddle points.

(5) If c ∈ R is such that f ( p) < c < f (q), then � ∩ f −1(c) is a smooth, non-self-intersecting one-
dimensional curve in �, with its two boundary points lying on ∂�.

Parts (2) and (4) of this theorem motivate us to examine individual Neumann lines and their connectivity
to the critical points of f .

Definition 2.3. (1) A Neumann line is the closure of a connected component of W s(r)\{r} or W u(r)\{r}
for some r ∈ Sad( f ).

(2) For a critical point c of f , we define its degree, deg(c), to be the number of Neumann lines connected
to c.

Each Neumann line is thus the closure of a gradient flow line, connecting a saddle point to another
critical point. Note that r is removed prior to taking the closure, as the closure of either W s(r) or W u(r)
will consist of two Neumann lines meeting tangentially at r . The connectivity of Neumann lines is directly
related to the Morse–Smale property of f .

Lemma 2.4 [Alon et al. 2020]. On a two-dimensional manifold a Morse function is Morse–Smale if and
only if there is no Neumann line connecting two saddle points.

The following properties of Neumann lines will be used throughout the rest of the paper.
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Proposition 2.5. Let f be a Morse function and � one of its Neumann domains.

(1) If c is a saddle point of f , then deg(c)= 4 and the angle between any two adjacent Neumann lines
which meet at c is π

2 .

(2) If c is an extremal point of f whose Hessian is not proportional to the metric g, then any two
Neumann lines meet at c with angle 0, π2 or π .

(3) Let c be an intersection point of a nodal line and a Neumann line. If c is a saddle point, then the
angle between those lines is π

4 . Otherwise, the angle is π
2 .

Remark 2.6. More generally, if c is a saddle point and there exist coordinates (x, y) near c in which f is
given by the homogeneous harmonic polynomial Re(x + iy)k , then deg(c)= 2k. For a nondegenerate
saddle the existence of such coordinates (with k = 2) is an immediate consequence of the Morse lemma,
so we obtain Proposition 2.5(1) as a special case of this remark. Sufficient conditions for f to be written
in this form are given in [Cheng 1976, Lemma 2.4].

The first and third parts of Proposition 2.5 were proved in [McDonald and Fulling 2014; Banyaga and
Hurtubise 2004, Theorem 4.2; Alon et al. 2020, Proposition 4.1]. The second part of the proposition is
proved below (see Remark 2.9 after the proof) using the following version of Hartman’s theorem, which
will also be used in the proofs of Lemma 3.2 and Proposition 3.3 to give a canonical description of the
boundary of a Neumann domain near a cusp point.

Proposition 2.7 [Hartman 1960]. Let E be an open neighbourhood of p ∈ R2. Suppose F ∈ C2(E,R2)

and let ϕ be the flow of the nonlinear system ∂tϕ(t, x) = F(ϕ(t, x)). Assume that F( p) = 0 and the
Jacobian DF( p) is diagonalizable and its eigenvalues have nonzero real part. Then, there exists a
C1-diffeomorphism 8 : U → V of an open neighbourhood U of p onto an open neighbourhood V of the
origin such that D8( p)= I and for each x ∈ U the flow line through x is mapped by 8 to

8(ϕ(t, x))= eDF( p)t8(x) (2-1)

for small enough t values.

Remark 2.8. The textbook version of Hartman’s theorem in n dimensions (see, for instance, [Perko
2001, p. 120]) only guarantees the existence of a homeomorphism 8. For n = 2, the proposition above
guarantees that 8 is a C1-diffeomorphism, but for n > 2 further assumptions on the Jacobian are required
to obtain this additional regularity. For instance, it suffices to assume that all of the eigenvalues of DF( p)
are in the same (left or right) half-plane; see [Perko 2001, p. 127]. That version of the theorem would
be sufficient for our purposes, since we only apply Proposition 2.7 at nondegenerate extrema, where all
eigenvalues have the same sign. However, it is interesting to note that Proposition 2.7 also applies at
saddle points in two dimensions.

Proof of Proposition 2.5(2). Let c be an extremal point of f whose Hessian is not proportional to g. Since
Hess f (c) is nondegenerate, both eigenvalues of Hess f (c) are either strictly positive or strictly negative.
We choose normal coordinates in an open neighbourhood Ẽ of c, with respect to which Ẽ is represented
by an open subset E ⊂ R2, c corresponds to the origin 0 ∈ R2, and gi j (0)= δi j .
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We now apply Proposition 2.7 to F = − grad f . Since DF(0)= − Hess f (0) is diagonalizable and has
nonzero eigenvalues, there exist U ⊂ E and V ⊂ R2, both containing the origin, and a C1-diffeomorphism
8 : U → V such that the gradient flow lines are mapped by 8 to the flow lines e−t Hess f (0)8(x) of the
linearized system. In [McDonald and Fulling 2014, Theorem 3.1; Alon et al. 2020, Proposition 4.1] it
was shown that the angle between such flow lines at an extremal point is either 0, π2 or π , under the
assumption that Hess f (0) is not a scalar matrix. This assumption holds, as the Hessian is not proportional
to the metric and we have chosen coordinates with respect to which g(0) is the identity.

It is left to relate the meeting angle between the gradient flow lines in M and the corresponding flow
lines e−t Hess f (0)8(x) in V. Since the tangent map D8(0) : T0U → T0V is the identity, and gi j (0)= δi j ,
the meeting angle of any two curves at 0 is preserved by 8; hence this angle is either 0, π2 or π . □

Remark 2.9. The argument for Proposition 2.5(2) given in [Alon et al. 2020, Proposition 4.1] is incomplete
and hence we have supplied a complete proof here. In particular, the Taylor expansion argument used in
the proofs of [McDonald and Fulling 2014, Theorem 3.1; Alon et al. 2020, Proposition 4.1] does not
suffice. Substituting the Taylor expansion of F into ∂tϕ(t, x)= F(ϕ(t, x)) gives(

x ′(t)
y′(t)

)
= DF( p)

(
x(t)
y(t)

)
+O(∥(x(t), y(t))∥2

R2), (2-2)

but this does not allow us to conclude that the flow may be approximated by et DF( p)( x0
y0

)
due to the

possible coupling of higher-order terms in (2-2). A simple example is F(x, y) = (−λ1x,−λ2 y + x2),
with 0< 2λ1 < λ2. For the resulting system x ′

= −λ1x , y′
= −λ2 y + x2 we have x(t)= x0e−λ1t, but

y(t)=

[
y0 −

x2
0

λ2 − 2λ1

]
e−λ2t

+
x2

0

λ2 − 2λ1
e−2λ1t (2-3)

is dominated by e−2λ1t for large t , and hence is not approximated by a solution to the linearized equation
y′

= −λ2 y.

From Proposition 2.5(2) we see that the boundary of a Neumann domain may possess a cusp (when
the meeting angle is 0) and so it can fail to be Lipschitz continuous. Furthermore, it may even fail to be
of class C , where we recall that the boundary of a domain is of class C if it can be locally represented as
the graph of a continuous function, alternatively, if the domain has the segment property (see [Edmunds
and Evans 1987; Mazya and Poborchi 1997] for details). To demonstrate that this is a subtle property, we
bring as an example the domains

�1 =
{
(x, y) ∈ R2

:
1
2 x2 < y < x2, 0< x < 1

}
,

�2 = {(x, y) ∈ R2
: −x2 < y < x2, 0< x < 1},

(2-4)

which are shown in Figure 2. The domain �1 does not satisfy the segment property at the origin, and
hence is not of class C , even though its boundary is the union of two smooth curves. On the other hand,
�2 (which contains �1) is of class C . This example will be important later, in the proof of Proposition 3.3.
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Figure 2. The regions �1 (left) and �2 (right) defined in (2-4) both have a cusp at the
origin. However, �1 is not of class C , whereas �2 is.

p

q

p

q
η

p

q

Figure 3. Possible types of Neumann domains for a Morse function: regular (left);
cracked (centre); and doubly cracked (right). Saddle points are represented by balls,
maxima by triangles pointing upwards and vice versa for minima. If f is Morse–Smale,
its Neumann domains must look like one of the first two examples, with either one or
two saddle points on the boundary. For the cracked domain shown in the centre, η is
the only Neumann line connected to q, hence deg(q)= 1. If f is not Morse–Smale, its
Neumann domains can have additional saddle points on the boundary, and can have both
extremal points of degree one, as shown on the right. (This last example has a Neumann
line connecting two saddle points, which is not possible if f is Morse–Smale, by
Lemma 2.4.)

We add that there is very little known in general regarding the asymptotic behaviour of Neumann lines
near cusps. In particular, methods to treat cusps in a spectral-theoretic context, as in, e.g., [Jakšić et al.
1992; Flamencourt and Pankrashkin 2020; Band et al. 2021], have to be generalized for our purpose.

We end this section by examining Theorem 2.2 and its implications for the structure of Neumann
domains. By the statement of the theorem, the boundary of a Neumann domain always contains a
maximum and a minimum, but no other extrema. It follows that each Neumann domain must belong to
one of the following two types (illustrated in Figure 3):

• a regular Neumann domain has on its boundary a maximum and a minimum, each of degree at least 2
(see Definition 2.3);

• a cracked Neumann domain has on its boundary an extremal point which is of degree 1.
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Moreover, since the boundary is made up of Neumann lines, it must contain at least one saddle point. If
f is Morse–Smale, the boundary contains at most two saddle points, by Theorem 2.2(4), but for a general
Morse function it is possible to have more. The possible existence of additional saddle points is irrelevant
for our analysis, however, since the boundary is Lipschitz near these points by Proposition 2.5(1).

Numerical observations suggest that generic Neumann domains are regular. However, it is not hard to
construct Morse functions having cracked Neumann domains; see the Appendix. Theorems 1.2 and 1.3
apply to both types of domains, but in the proofs we need to pay careful attention to cracked domains. In
particular, a cracked Neumann domain is not of class C , as the domain lies on both sides of its boundary.

Remark 2.10. In summary, a Neumann domain may fail to be of class C for two reasons: a cusp on the
boundary or a crack in the domain, i.e., a Neumann line contained in the interior of �. These are the
main technical obstacles to overcome in proving Theorems 1.2 and 1.3.

3. Sobolev spaces on Neumann domains

We now discuss properties of Sobolev spaces on Neumann domains. As described in the Introduction, and
indicated in Proposition 2.5(2) (see also Remark 2.10), the difficulty is that the boundary of a Neumann
domain need not be of class C , so standard density and compactness results do not apply.

In Section 3A we define Sobolev spaces on a Neumann domain and various subsets of its boundary. In
Sections 3B and 3C we describe some technical constructions (dissection and truncation) that allow us to
deal with cracks and cusps. Finally, in Section 3D we prove the main result of this section, Proposition 3.3,
which establishes density and embedding properties for the space W 1,2(�) on a Neumann domain.

3A. Preliminaries. As above, we assume that (M, g) is a smooth, closed, connected, oriented Riemannian
surface. For an open submanifold N ⊂ M, the Sobolev space W k,2(N ) is defined to be the completion of
C∞(N ) with respect to the norm

∥ f ∥
2
W k,2(N ) :=

k∑
j=0

∫
N

|∇
j f |

2, (3-1)

where ∇ denotes the covariant derivative with respect to the metric g. The norm depends on g, but since
M is compact, different metrics will produce equivalent norms. We will sometimes take advantage of
this fact and compute the Sobolev norm using a metric g̃ defined in a local coordinate chart to have
components g̃i j = δi j (so that covariant derivatives become partial derivatives, the Riemannian volume
form reduces to the Euclidean one, etc.). This allows us to apply standard methods in the theory of
Sobolev spaces on Lipschitz domains in M.

Now suppose that N ⊂ M is an open submanifold with Lipschitz boundary. We will later choose N to
be a Neumann domain �, or a proper subset thereof (see Section 3C) if ∂� has a crack or a cusp. We
define the boundary Sobolev spaces H s(∂N ) for |s| ≤ 1 via the Fourier transform and a suitable partition
of unity, following [McLean 2000, p. 96], so that the dual space is given by H s(∂N )∗ = H−s(∂N ).
Moreover, for any open subset 0 ⊂ ∂N we let

H s(0) := { f |0 : f ∈ H s(∂N )}, H̃ s(0) := closure of C∞

0 (0) in H s(0). (3-2)
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The space H̃ s(0) has an equivalent description that is often useful in practice:

H̃ s(0)= { f ∈ H s(∂N ) : supp f ⊂ 0}. (3-3)

This equivalence follows from [McLean 2000, Theorem 3.29]. Another convenient description, valid for
s ≥ 0, is

H̃ s(0)= { f ∈ L2(0) : f̃ ∈ H s(∂N )}, (3-4)

where f̃ denotes the extension of f by zero to ∂N \0; this is [McLean 2000, Theorem 3.33].
It follows from the definitions that H̃ s(0) ⊂ H s(0) for all |s| ≤ 1, and it is well known that these

spaces coincide for |s|< 1
2 . However, for |s| ≥ 1

2 we have H̃ s(0)⊊ H s(0) whenever 0 is a proper subset
of ∂N. To see this, consider the constant function f ≡ 1 on 0, which is clearly in H s(0) for any s. It is
easily verified that its extension f̃ , which is just the indicator function χ

0
, is not in H s(∂N ) for s ≥

1
2 , in

which case we conclude from (3-4) that f /∈ H̃ s(0). This distinction between the H s and H̃ s spaces will
be important when we consider the normal derivative of a function restricted to a subset of the boundary;
see in particular Lemma 3.1 and its application in the proof of Proposition 4.3.

The H̃ s spaces arise naturally as duals to the H s spaces. That is, for any |s| ≤ 1 we have H s(0)∗ =

H̃−s(0), from [McLean 2000, Theorem 3.30]. In particular,

H̃−1/2(0)= H 1/2(0)∗ ⊊ H̃ 1/2(0)∗ = H−1/2(0). (3-5)

Using (3-2) we obtain

ℓ= 0 in H−s(0) ⇐⇒ ℓ( f )= 0 for all f ∈ C∞

0 (0). (3-6)

We thus define for 0 ≤ s ≤ 1 the mapping

·
dual

: L2(0)→ H s(0)∗,

gdual( f ) := ⟨ f, g⟩L2(0), f ∈ H s(0),
(3-7)

observing that the L2 inner product is well-defined because H s(0)⊂ L2(0) for 0 ≤ s ≤ 1. As a result,
we will often abuse notation and use integral notation to denote the action of ℓ ∈ H s(0)∗ on f ∈ H s(0),
i.e., we will write

ℓ( f )=

∫
0

ℓ f

even when ℓ is not in the range of the map ·
dual; see in particular Green’s identity (3-10) below.

Given a decomposition ∂N = 01 ∪ 02, where 01 and 02 are disjoint, open subsets of ∂N, and a
distribution ℓ ∈ H−s(∂N ) for some s ≥ 0, we have ℓ|0i ∈ H−s(0i ) for i = 1, 2. For 0 ≤ s < 1

2 we obtain
the decomposition

ℓ(φ)= ℓ|01(φ|01)+ ℓ|02(φ|02)

for every φ ∈ H s(∂N ). However, this is not true for s ≥
1
2 , and in fact the right-hand side is not even

defined in this case, since φ|0i ∈ H s(0i ), whereas ℓ|0i ∈ H−s(0i ) might not be contained in H s(0i )
∗, as

indicated in (3-5). However, such a splitting does hold for ℓ if we assume that 01 and 02 are separated by
a third subset 00 on which ℓ vanishes.
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Lemma 3.1. Suppose ∂N = 00 ∪ 01 ∪ 02, where 00, 01, 02 are disjoint, open subsets of ∂N with
01 ∩02 = ∅. If ℓ ∈ H−1/2(∂N ) vanishes on 00, then ℓ|0i ∈ H̃−1/2(0i ) for i = 1, 2, and

ℓ(φ)= ℓ|01(φ|01)+ ℓ|02(φ|02) (3-8)

for every φ ∈ H 1/2(∂N ).

Such a partition of the boundary is illustrated in Figure 6, where N =�t ∩�r, 00 = γ0,t , 01 = η̃ and
02 = γ−,t .

Proof. We will use (3-3) to prove that ℓ|01 ∈ H̃−1/2(01). This does not follow immediately, however,
since ℓ is not necessarily supported in 01. Therefore, we will create a modified distribution, ℓ1, such that
supp ℓ1 ⊂ 01 and ℓ|01 = ℓ1|01 .

Since 01 ∩02 = ∅, we can find a smooth bump function χ1 that equals 1 on 01 and 0 on 02. Consider
the distribution ℓ1(φ) := ℓ(χ1φ), which is in H−1/2(∂N ). If suppφ ⊂00 ∪02, then supp(χ1φ)⊂00, and
hence ℓ1(φ)= ℓ(χ1φ)= 0, because ℓ vanishes on 00. This shows that supp ℓ1 ⊂ ∂N \ (00 ∪02)= 01.
On the other hand, if suppφ ⊂ 01, then χ1φ = φ, and hence ℓ1(φ) = ℓ(φ). We have thus shown that
ℓ|01 = ℓ1|01 ∈ H̃−1/2(01).

Similarly, we obtain ℓ2 ∈ H−1/2(∂N ), with supp ℓ2 ⊂ 02 and ℓ|02 = ℓ2|02 ∈ H̃−1/2(02). It follows
that the distribution

ℓ̂ := ℓ− ℓ1 − ℓ2 ∈ H−1/2(∂N )

has support in ∂N \ (00 ∪01 ∪02)= (00 ∩01)∪ (00 ∩02), which is a finite set. However, a distribution
in H−1/2 cannot be supported on a finite set of points, by [McLean 2000, Lemma 3.39], so we conclude
that ℓ̂ is identically zero, which completes the proof. □

Since N was assumed to have Lipschitz boundary, the trace map · |∂N : W 1,2(N ) → H 1/2(∂N ) is
continuous. To define the normal derivative we first introduce the weak Laplace–Beltrami operator,
1 : W 1,2(�)→ W 1,2

0 (�)∗, where �⊂ M is any open subset of M. By definition, 1ψ = f means∫
�

⟨gradψ, gradφ⟩ =

∫
�

f φ (3-9)

for all φ ∈ W 1,2
0 (�), where the integral on the right-hand side is shorthand for the action of f ∈ W 1,2

0 (�)∗

on φ ∈ W 1,2
0 (�). If 1ψ = f ∈ L2(�), then this is a genuine L2 inner product of f and φ.

The weak version of Green’s identity then says that for any ψ ∈ W 1,2(N ) with 1ψ ∈ L2(N ), there
exists a unique ∂νψ ∈ H−1/2(∂N ) such that∫

N
⟨gradψ, gradφ⟩ =

∫
N
(1ψ)φ+

∫
∂N
(∂νψ)φ (3-10)

for all φ ∈ W 1,2(N ) [McLean 2000, Theorem 4.4]. The boundary term has to be understood as the action
of ∂νψ ∈ H−1/2(∂N ) on φ|∂N ∈ H 1/2(∂N ), i.e., (∂νψ)(φ|∂N ), but to simplify the presentation we use
the integral notation of (3-10).

Finally, consider an open subset 0 ⊂ ∂N. For a function ψ ∈ W 1,2(N ) we define ψ |0 to be the
restriction of ψ |∂N ∈ H 1/2(∂N ) to 0, so that (3-2) implies ψ |0 ∈ H 1/2(0). Similarly, if ψ ∈ W 1,2(N )
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and 1ψ ∈ L2(N ), we have ∂νψ |0 ∈ H−1/2(0). It is not necessarily true that ∂νψ |0 is contained in the
smaller space H̃−1/2(0)= H 1/2(0)∗; see (3-5). However, this will be the case if ∂νψ vanishes on ∂N \0,
by Lemma 3.1. This fact will play a crucial role in the proof of Proposition 4.3 below.

We conclude the section by explaining our decision to use W k,2-Sobolev spaces on N but H s-Sobolev
spaces on ∂N. Recall that H 1(�) ⊂ W 1,2(�) holds for any open set �, but the inclusion can be strict
unless one has additional regularity of the boundary. In Definition 4.1 we construct the Neumann Laplacian
as the self-adjoint operator corresponding to a nonnegative, symmetric bilinear form. For this we require
the form to be closed, which is the case if the form domain is W 1,2(�), but need not be true if the form
domain is H 1(�). On the other hand, the H s-Sobolev spaces, defined via the Fourier transform, provide
a more natural setting for the discussion of traces: If N is an open submanifold with Lipschitz boundary,
there is a bounded, surjective trace map · |∂N : H 1(N )→ H 1/2(∂N ). For N Lipschitz we have the equality
H 1(N )= W 1,2(N ), and hence a well-defined trace map · |∂N : W 1,2(N )→ H 1/2(∂N ).

3B. Dissections of Neumann domains. The boundary of a cracked Neumann domain cannot be of
class C , whether or not there is a cusp on the boundary, due to the Neumann line η contained in the
interior of �; see Figure 3. We deal with this by dissecting such a Neumann domain into two pieces, as
shown in Figure 4, where one piece has Lipschitz boundary, and the other has boundary that is Lipschitz
except possibly at a cusp point; i.e., it has the same regularity as a regular Neumann domain. For doubly
cracked domains as in Figure 3, an analogous statement holds as the proof for that case is essentially the
same. The dissection thus reduces many of the proofs for cracked domains to the corresponding results
for regular domains.

This dissection is made possible by the following lemma.

Lemma 3.2. Assume f is a Morse function and let γ be a Neumann line. Then γ has finite length
L(γ ) <∞, and admits an arc-length parametrization with γ ∈ C1([0, L(γ )]), i.e., boundary points are
included.

Proof. We decompose γ = γ0 ∪ γ1 ∪ γ2, where γ1 is defined in a small neighbourhood of the initial
endpoint of γ and γ2 is defined in a small neighbourhood of the terminal endpoint. Then it is enough to
prove the corresponding statement for γ0, γ1 and γ2.

The result for γ0 follows by standard results for flows of smooth vector fields. Definition 2.3 implies
that the endpoints of γ are critical points of f . If the initial endpoint (which we label c) is a saddle,
then the result for γ1 follows, e.g., by [Banyaga and Hurtubise 2004, Theorem 4.2 (p. 94)]. On the other
hand, if c is an extremum we use the map 8 from Proposition 2.7. Then 8 ◦ γ1 is a flow line generated
by e− Hess f (c)t, and hence satisfies the properties of the claim, i.e., it is C1 up to the endpoint and has
finite length. As 8−1 is a C1 map and γ1 =8−1

◦ (8 ◦ γ1) is a composition of C1 functions, the claim
for γ1 follows. The proof for γ2 is identical. □

Now suppose that � is a cracked Neumann domain. The doubly cracked case in Figure 3 can be treated
analogously. Denote by q the extremum in the interior of �, and let η be the Neumann line attached to q;
see Figure 4. Choosing a Lipschitz curve η̃ in � that joins q with a noncusp point of ∂�, we obtain a
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p p

q q

η

η̃

�1

�2

Figure 4. The dissection of a cracked Neumann domain, as given in (3-11). The Neumann
line η is extended to a Lipschitz curve η ∪ η̃, so that �l is a Lipschitz domain and �r

possesses a cusp at p.

dissection of � into disjoint parts �l and �r, i.e.,

� \ η̃ =�l ∪�r, (3-11)

as shown in Figure 4. Lemma 3.2 guarantees that η∪ η̃ is a Lipschitz curve, so �l has Lipschitz boundary,
and �r has Lipschitz boundary with the possible exception of a cusp at p. This dissection induces an
isometric embedding

W 1,2(�)→ W 1,2(�l)⊕ W 1,2(�r),

φ 7→ (φ|�l, φ|�r).
(3-12)

3C. Truncated Neumann domains. To deal with potential cusps at the maximum and minimum of f ,
we introduce truncated versions of �. Denoting by p ∈ Min( f ) and q ∈ Max( f ) the minimum and
maximum of f in �, we observe that f (q) < f ( p), since otherwise f would be constant on �, which is
not possible as it is a Morse function. Adding a constant to f , which does not affect the gradient flow
lines, we can thus assume that f (q) < 0 < f ( p). (In the special case that f is an eigenfunction this
condition holds automatically, so it is not necessary to shift f .)

We then define for each 0< t < 1 the truncated domains

�t :=


{x ∈� : f (x) < t f (q)}, q is a cusp, p is not,
{x ∈� : t f ( p) < f (x)}, p is a cusp, q is not,
{x ∈� : t f ( p) < f (x) < t f (q)}, q and p are cusps,
�, otherwise.

(3-13)

Some examples of this construction are shown in Figure 5.
The boundary of �t can be decomposed as ∂�t = γ±,t ∪ γ0,t , where γ±,t are level lines defined by

γ+,t = {x : f (x)= t f (q)}, γ−, t = {x : f (x)= t f ( p)}, (3-14)

and γ0,t = ∂�t ∩ ∂� is the part of ∂� that remains after the truncation. Note that γ0,t ̸= ∅, and
Proposition 2.5(3) implies that γ±,t meets ∂� perpendicularly, except for a finite number of exceptional
times where γ±,t meets ∂� at a saddle point, in which case the meeting angle is π

4 ; see Figure 5.
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Figure 5. Neumann domains and their truncations, with the dotted line indicating the
curve γ±,t . The top two figures show regular and cracked domains for t close to 1. For
the same cracked domain the bottom left figure shows an exceptional value of t , where
γ±,t meets ∂� at angle π

4 , and the bottom right figure shows a smaller value of t .

For a truncated Neumann domain�t we denote its complement in� by�c
t :=�\�t . For any 0< t < 1

and sufficiently small ϵ > 0, we can find a smooth cutoff function χ on M such that

χ(x)=

{
0, x ∈�t ,

1, x ∈�c
t+ϵ .

(3-15)

If desired, we can assume that χ is of the form α ◦ f for some α ∈ C∞(R), in which case χ has the same
level lines as f . For the arguments to follow, however, a generic smooth cutoff will suffice.

3D. Density and embedding results. We now state and prove the main result of this section.

Proposition 3.3. Let (M, g) be a closed, connected, oriented Riemannian surface. If � ⊂ M is a
Neumann domain of a Morse function f , the following hold:

(1) The embedding W 1,2(�)→ L2(�) is compact.

(2) If � is regular, then C1(�) is dense in W 1,2(�).

(3) If � is cracked, then there exists t ∈ (0, 1) such that the set of functions

{φ ∈ W 1,2(�) : φ|�c
t
∈ C1(�c

t )} (3-16)

is dense in W 1,2(�).

The result is known if ∂� is of class C (see [Mazya and Poborchi 1997]) but, as noted above, the
boundary of a Neumann domain does not need to have this property. If � is cracked and φ ∈ W 1,2(�),
its values on opposite sides of the crack η need not be close, so we cannot hope to approximate it by a
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function in C1(�). However, by choosing t sufficiently large, we can ensure that �c
t is disjoint from η,

and hence (3-16) holds.
The idea of the proof is to use Hartman’s theorem (Proposition 2.7) to find a canonical description of

the boundary near a cusp, and then apply the following lemma, which allows us to extend functions to a
larger domain which still has a cusp but is of class C ; see the domains �1 and �2 in Figure 2.

Lemma 3.4 [Mazya and Poborchi 1997, §5.4.1, Lemma 1, p. 285]. Consider the domain

�̃= {(x, y) ∈ R2
: c1ϑ(x) < y < c2ϑ(x), 0< x < 1}

for some c1 < c2, where ϑ ∈ C0,1([0, 1]) is an increasing function with ϑ(0)= 0 and ϑ ′(t)→ 0 as t → 0,
and define

G = {(x, y) ∈ R2
: |y|< Mϑ(x), 0< x < 1} (3-17)

for M ≥ max{|c1|, |c2|}. Then there exists a continuous extension operator E : W 1,2(�̃)→ W 1,2(G).

We will apply this lemma with ϑ(x)= xα for some α > 1.

Proof of Proposition 3.3. We first prove (1) and (2) for regular Neumann domains. Only the behaviour
near the cusps has to be investigated, as they are the only possible non-Lipschitz points on ∂�. A cusp is
either a maximum or a minimum by Proposition 2.5. Without loss of generality, let c ∈ Max( f ) be the
only cusp on ∂�.

We localize at c by taking a smooth cutoff function χ , as in (3-15), that equals 1 in �c
t+ϵ and vanishes

in �t , and hence is supported in �c :=�c
t . Now take φ ∈ W 1,2(�). We write φ = χφ+ (1 −χ)φ and

observe that χφ, (1 −χ)φ ∈ W 1,2(�). Thus, it is sufficient to prove the statements for both functions
separately. For the latter function the observation that it is supported in a Lipschitz domain implies both
(1) and (2) in Proposition 3.3.

For the former we choose t close to 1 and employ Proposition 2.7. Let 8 be the resulting C1-
diffeomorphism and define �̃c =8(�c). Owing to (2-1), the image in �̃c of the two boundary curves
meeting at c consists of flow lines obeying ∂tγ = − Hess f (c)γ . These are generated by e−t Hess f (c)x0,
where x0 is a suitable point on γ . An easy calculation as in [McDonald and Fulling 2014, Section 3; Alon
et al. 2020, Proof of Proposition 4.1] shows that the flow lines near the origin may be parametrized in
suitable coordinates by γ (x)= (x, cxα), where α > 0 depends only on the eigenvalues of Hess f (c) (in
fact only on their ratio). This implies that near the origin the domain �̃c is described by

(x, y) ∈ �̃c ⇐⇒ c1xα < y < c2xα and x > 0. (3-18)

We can assume that α > 1. (If α = 1, then �̃c is in fact Lipschitz near c, so there is nothing to prove;
if α < 1, we exchange x and y to obtain a similar description of the boundary with α replaced by 1/α.)
Now Lemma 3.4 says that there exists a continuous extension operator E : W 1,2(�̃c)→ W 1,2(G), where
�̃c ⊂ G and near 0 the domain G is characterized by

(x, y) ∈ G ⇐⇒ |y|< Mxα and x > 0, (3-19)



DEFINING THE SPECTRAL POSITION OF A NEUMANN DOMAIN 2161

with M large enough. Since the boundary ∂G is of class C , we can now infer by [Edmunds and Evans
1987, Theorem 4.17, p. 267; Mazya and Poborchi 1997, §1.4.2, Theorem 1, p. 28] that W 1,2(G) satisfies
statements (1) and (2) of the proposition. In particular, W 1,2(G) → L2(G) is compact and C1(G) is
dense in W 1,2(G).

Using the fact that 8 is a C1-diffeomorphism, it is easily shown that the pull-back map

8∗
: W 1,2(�̃c)→ W 1,2(�c), φ 7→ φ ◦8, (3-20)

is well-defined and bijective, with

1
C ′

∥φ∥
2
W 1,2(�̃c)

< ∥φ ◦8∥
2
W 1,2(�c)

< C ′
∥φ∥

2
W 1,2(�̃c)

for some C ′ > 0. Therefore, the inclusion W 1,2(�c)→ L2(�c) can be written as the composition of a
compact operator

W 1,2(�c)
(8−1)∗

−−−→ W 1,2(�̃c)
E

−→ W 1,2(G)−→ L2(G)

and a bounded operator

L2(G)−→ L2(�̃c)
8∗

−−→ L2(�c)

(where the first map is restriction), and hence is compact. This completes the proof of (1) for regular
Neumann domains.

To prove (2), let φ ∈ W 1,2(�c), so that φ ◦8−1
∈ W 1,2(�̃c) and E(φ ◦8−1) ∈ W 1,2(G). For any δ > 0,

there exists φ̃ ∈ C1(G) with ∥φ̃− E(φ ◦8−1)∥W 1,2(G) < δ, and hence

∥φ̃|�̃c
◦8−φ∥W 1,2(�c) ≤ C ′

∥φ̃|�̃c
−φ ◦8−1

∥W 1,2(�̃c)

≤ C ′
∥φ̃− E(φ ◦8−1)∥W 1,2(G) < C ′δ.

Since φ̃|�̃c
◦8 ∈ C1(�c), this completes the proof of (2).

We next prove (1) for cracked Neumann domains, using the decomposition (3-12). More precisely,
using Lemma 3.2 we may dissect � as in (3-11) and, without loss of generality, assume that the cusp is
located on the boundary of �r, as in Figure 3. Note that

W 1,2(�)→ W 1,2(�l)⊕ W 1,2(�r)→ L2(�l)⊕ L2(�r)= L2(�)

and so it is enough to prove compactness of the embedding W 1,2(�•)→ L2(�•) for • = l, r. For • = l
this follows from the Lipschitz property of ∂�l. For • = r we observe that ∂�r is Lipschitz except at the
cusp, and so the proof given above for regular domains applies.

Finally, we prove (3). For 0< t < 1 sufficiently close to 1 we have �c
t ⊂�• for either • = l or r (the

case • = r is shown in Figure 4), so we choose t sufficiently close to 1 and ϵ > 0 small enough that
�c =�c

t ⊂�•. Now let φ ∈ W 1,2(�). Given δ > 0, there exists by (2) a function φδ ∈ C1(O c) such that
∥φ−φδ∥W 1,2(�c) < δ. Choosing a smooth cutoff function χ that equals 1 in �c

t+ϵ and vanishes in �t , we
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define φ̃δ = χφδ + (1 −χ)φ ∈ W 1,2(�) and compute

∥φ− φ̃δ∥W 1,2(�) = ∥χ(φ−φδ)∥W 1,2(�c)

≤ K∥φ−φδ∥W 1,2(�c) < K δ, (3-21)

where K is a constant depending only on χ . Finally, since suppχ ⊂�c
t , we have

φ̃δ|�c
t
= χφδ|�c

t
∈ C1(�c

t ). □

4. The Neumann Laplacian on a Neumann domain

In this section we define the Neumann Laplacian on a Neumann domain �, and establish some of its
fundamental properties, in particular proving Theorems 1.2 and 1.3. This relies on the technical results of
the previous section, namely Proposition 3.3.

4A. Definition and proof of Theorem 1.2. We define the Neumann Laplacian in the usual way, via a
symmetric bilinear form.

Definition 4.1. The Neumann Laplacian on an open set �⊂ M, denoted by 1N
� , is the unique self-adjoint

operator corresponding to the bilinear form

a(ψ, φ) :=

∫
�

⟨gradψ, gradφ⟩, D(a) := W 1,2(�). (4-1)

More precisely, 1N
� is an unbounded operator on L2(�), with domain

D(1N
�)={ψ∈W 1,2(�):there exists fψ∈L2(�) with a(ψ,φ)=⟨ fψ ,φ⟩L2(�) for all φ∈W 1,2(�)}, (4-2)

and for any ψ ∈ D(1N
�) we have 1N

�ψ = fψ . The existence and uniqueness of such an operator follows
immediately from the completeness of the form domain D(a) = W 1,2(�) and standard theory of self-
adjoint operators, for instance [Reed and Simon 1972, Theorem VIII.15]. If ψ ∈ D(1N

�), then (4-2)
implies ∫

�

⟨gradψ, gradφ⟩ =

∫
�

(1N
�ψ)φ

for all φ ∈ W 1,2
0 (�), and hence 1ψ =1N

�ψ ∈ L2(�). That is, 1N
� acts as the weak Laplace–Beltrami

operator 1 defined in (3-9).
The next result is nontrivial, and relies on the special geometric structure of Neumann domains.

Proposition 4.2. If �⊂ M is a Neumann domain for a Morse function, then 1N
� has compact resolvent,

and hence has purely discrete spectrum σ(1N
�)⊂ [0,∞).

Proof. Proposition 3.3(1) says that the form domain W 1,2(�) is compactly embedded in L2(�), so the
result follows from [Reed and Simon 1978, Theorem XIII.64]. □
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4B. Domain of the Neumann Laplacian. We now describe the domain of the Neumann Laplacian,
working towards the proof of Theorem 1.3. Recalling the truncated domain �t introduced in Section 3C,
and the decomposition ∂�t = γ±,t ∪ γ0,t of its boundary in (3-14), we have the following.

Proposition 4.3. Let � be a Neumann domain of a Morse function f . The domain of the Neumann
Laplacian is given by

D(1N
�)=

{
ψ ∈ W 1,2(�) :1ψ ∈ L2(�), ∂ν(ψ |�t )|γ o

0,t
= 0 for all 0< t < 1

and lim
t→1

∫
γ±,t

∂ν(ψ |�t )φ = 0 for all φ ∈ W 1,2(�)
}

(4-3)

if � is regular, and

D(1N
�)=

{
ψ ∈ W 1,2(�) :1ψ ∈ L2(�), ∂ν(ψ |�t∩�l)|γ o

0,t
= ∂ν(ψ |�t∩�r)|γ o

0,t
= 0

for all 0< t < 1, and lim
t→1

∫
γ±,t

∂ν(ψ |�t )φ = 0 for all φ ∈ W 1,2(�)
}

(4-4)

if � is cracked.

That is, to be in the domain of 1N
� , a function must satisfy Neumann boundary conditions on the

Lipschitz part of the boundary, as well as a limiting boundary condition at each cusp. While this completely
characterizes the domain of 1N

� , the limiting boundary conditions on γ±,t may be difficult to check in
practice. Therefore, in the following section we will give simple criteria (Proposition 4.8 and Corollary 4.9)
which guarantee these limiting conditions are satisfied.

Remark 4.4. Our techniques actually give a more general result, not just valid for Neumann domains.
The key points are that ∂� is Lipschitz except for a finite number of cusps and cracks, and the cracks
admit a Lipschitz continuation. A stronger result will be given below (in Remark 4.7) that relies on the
detailed structure of the cusps, which for Neumann domains is a consequence of Hartman’s theorem.

In proving the proposition, we must take into account the fact that �l and �r need not be Lipschitz;
see Figure 4, where �r has a cusp on its boundary. We therefore combine the dissection and truncation of
Sections 3B and 3C, respectively. The resulting domains are shown in Figure 6. Note that the boundaries
of �t ∩�l and �t ∩�r can be partitioned into three parts: γ±,t coming from the truncation; η̃ coming
from the dissection; and γ0,t , coming from the original domain �. We emphasize that the dissection
(3-11) is an auxiliary construction, and our analysis does not depend on the specific choice of η̃.

Since η∪ η̃ has a Lipschitz neighbourhood in both �t ∩�l and �t ∩�r, see Figure 6, we have

(φ|�l)|η̃o = (φ|�r)|η̃o ∈ H 1/2(η̃o) for φ ∈ W 1,2(�), (4-5)

with ·
o denoting the interior in γ0,t ∪ η̃. Therefore, the map

W 1,2(�)→ H 1/2(ηo)⊕ H 1/2(ηo)⊕ H 1/2(η̃o),

φ 7→ ((φ|�l)|ηo, (φ|�r)|ηo, φ|η̃o),
(4-6)

is well-defined, where φ|η̃o denotes the common value in (4-5). We first analyze the normal derivatives on η̃.

Lemma 4.5. Let � be a cracked Neumann domain. If ψ ∈ W 1,2(�) and 1ψ ∈ L2(�), then

∂ν(ψ |�l)|η̃o + ∂ν(ψ |�r)|η̃o = 0 ∈ H−1/2(η̃o). (4-7)



2164 RAM BAND, GRAHAM COX AND SEBASTIAN K. EGGER

p

q ′

�c
t

η̃

�4�1
q

�t ∩�1
�t ∩�r

η̃

γ−,t

γ0,t

Figure 6. The dissected and truncated domains appearing in the proof of Proposition 4.3.
Here γ±,t is a result of the truncation, η̃ is from the dissection, and γ0,t is the part of the
original boundary, ∂�, that remains after the truncation.

Proof. The hypothesis 1ψ ∈ L2(�) means∫
�

⟨gradψ, gradφ⟩ = ⟨1ψ,φ⟩L2(�) (4-8)

for all φ ∈ C∞

0 (�). Together with Green’s formula (3-10), this implies∫
η̃

(∂ν(ψ |�l)+ ∂ν(ψ |�r))φ = 0 (4-9)

for all φ ∈ C∞

0 (�). Since any function in C∞

0 (η̃) can be realized as φ|η̃ for some φ ∈ C∞

0 (�), the result
follows from (3-6). □

We next analyze the normal derivative on the Lipschitz part of the boundary, γ0,t .

Lemma 4.6. If ψ ∈ D(1N
�), then

∂ν(ψ |�t∩�•
)|γ o

0,t
= 0 ∈ H−1/2((∂(�t ∩�•)∩ γ0,t)

o) (4-10)

for any 0< t < 1, where • = l, r.

Proof. We prove the result for�l, the argument for�r is identical. For any test function φ ∈ W 1,2(�t ∩�l)

with φ|η̃ = 0 and φ|γ+,t = 0, we get from Green’s formula (3-10) that∫
∂(�t∩�l)∩γ0,t

∂ν(ψ |�t∩�l)φ = 0.

The image of the trace map restricted to

{φ ∈ W 1,2(�t ∩�l) : φ|η̃ = φ|γ+,t = 0}

is precisely H̃ 1/2
(
(∂(�t∩�l)∩γ0,t)

o
)
, by (3-3) and [McLean 2000, Theorem 3.37], so the result follows. □

Now, equipped with our preliminary analysis of normal derivatives, we prove Proposition 4.3.

Proof of Proposition 4.3. We only prove (4-4); the proof of (4-3) for regular domains is similar but
less involved, so we omit it. Let ψ ∈ W 1,2(�). From (4-2) we have that ψ ∈ D(1N

�) if and only if
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1ψ ∈ L2(�) and ∫
�

(1ψ)φ =

∫
�

⟨gradψ, gradφ⟩ (4-11)

for all φ ∈ W 1,2(�). Thus, we fix ψ, φ ∈ W 1,2(�) with 1ψ ∈ L2(�). Since ⟨gradψ, gradφ⟩ and (1ψ)φ
are in L1(�), their integrals over �t converge to their integrals over � as t → 1 by the dominated
convergence theorem; hence (4-11) is equivalent to

lim
t→1

∫
�t

(1ψ)φ = lim
t→1

∫
�t

⟨gradψ, gradφ⟩. (4-12)

We now use the dissection (3-11), applying Green’s formula on the truncated and dissected domains to
obtain ∫

�t

⟨gradψ, gradφ⟩ =

∫
�t

(1ψ)φ+

∫
∂(�t∩�l)

∂ν(ψ |�t∩�l)φ+

∫
∂(�t∩�r)

∂ν(ψ |�t∩�r)φ.

Comparing with (4-12), we see that ψ ∈ D(1N
�) if and only if

lim
t→1

{∫
∂(�t∩�l)

∂ν(ψ |�t∩�l)φ+

∫
∂(�t∩�r)

∂ν(ψ |�t∩�r)φ

}
= 0 (4-13)

for each φ ∈ W 1,2(�). Therefore, it suffices to show that (4-13) is equivalent to the conditions in (4-4).
We claim that if ψ ∈ W 1,2(�) satisfies 1ψ ∈ L2(�) and ∂ν(ψ |�t∩�l)|γ o

0,t
= ∂ν(ψ |�t∩�r)|γ o

0,t
= 0, then∫

∂(�t∩�l)

∂ν(ψ |�t∩�l)φ+

∫
∂(�t∩�r)

∂ν(ψ |�t∩�r)φ =

∫
γ±,t

∂ν(ψ |�t∩�r)φ (4-14)

for any 0 < t < 1 and φ ∈ W 1,2(�). To prove this, we decompose the integrals over ∂(�t ∩�l) and
∂(�t ∩�r) into a sum of integrals over the different parts of the boundary. This is nontrivial, since this
integral notation actually represents the action of the normal derivative distribution on a test function
in H 1/2, and a distribution in H−1/2 does not necessarily split into the sum of its restriction to different
parts of the boundary, as discussed in Section 3A.

Here we make use of Lemma 3.1, as well as the assumption that ∂ν(ψ |�t∩�l)|γ o
0,t

= ∂ν(ψ |�t∩�r)|γ o
0,t

= 0.
Applying the lemma to N = �t ∩ �l, with the boundary decomposed into 01 = η̃, 02 = γ+,t and
00 = ∂(�t ∩�l)∩ γ0,t , we obtain∫

∂(�t∩�l)

∂ν(ψ |�t∩�l)φ =

∫
η̃

∂ν(ψ |�t∩�l)φ+

∫
γ+,t

∂ν(ψ |�t∩�l)φ.

Similarly, for �t ∩�r we get∫
∂(�t∩�r)

∂ν(ψ |�t∩�r)φ =

∫
η̃

∂ν(ψ |�t∩�r)φ+

∫
γ−,t

∂ν(ψ |�t∩�r)φ.

Adding these together and using Lemma 4.5 to cancel the η̃ terms completes the proof of (4-14).
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To finish the proof of the proposition, suppose that ψ ∈ D(1N
�), so (4-13) holds. Lemma 4.6 implies

that ∂ν(ψ |�t∩�l)|γ o
0,t

= ∂ν(ψ |�t∩�r)|γ o
0,t

= 0, so we can use (4-14) to conclude that

lim
t→1

∫
γ−,t

∂ν(ψ |�t∩�r)φ = 0

for any φ ∈ W 1,2(�). Therefore, the boundary conditions given in (4-4) are satisfied. Conversely, if ψ
satisfies the boundary conditions in (4-4), we take the limit of (4-14) to find that (4-13) holds and so
ψ ∈ D(1N

�). □

Remark 4.7. For the γ±,t boundary condition in (4-3) or (4-4), it is enough to check that

lim
t→1

∫
γ±,t

∂ν(ψ |�t )φ = 0 (4-15)

for test functions φ ∈ W 1,2(�) that are C1 in a neighbourhood of the cusp. If ψ satisfies this, and the
other conditions in (4-3) or (4-4), the proof of Proposition 4.3 shows that (4-11) holds for all such φ. It
then follows from Proposition 3.3(3) that (4-11) in fact holds for all φ ∈ W 1,2(�), and so ψ ∈ D(1N

�).

4C. Proof of Theorem 1.3. If � has no cusps or cracks, then Proposition 4.3 says that D(1N
�) simply

consists of functions that are sufficiently regular and satisfy Neumann boundary conditions everywhere
on ∂�. On the other hand, when a cusp is present we must also impose the condition (4-15), which says
the normal derivative of ψ on γ±,t does not blow up as the cusp is approached. We now give a simple
condition that guarantees this is the case.

For simplicity we only state the result for a cusp at q; the corresponding statement for a cusp at p is
analogous. We define the “doubly truncated domain”

�′

t = {x ∈� : t0 f (q) < f (x) < t f (q)} (4-16)
for a fixed 0< t0 < 1.

Proposition 4.8. If ψ ∈ W 1,2(�) and there exists t0 such that ψ ∈ W 2,2(�′
t) for all t0 < t < 1 and

(1 − t)1/2∥ψ∥
2
W 2,2(�′

t )
is bounded near t = 1, then (4-15) holds.

The proposition does not assume ψ is in W 2,2(�), but only that its W 2,2(�′
t) norm does not blow up

too quickly near the cusp. Of course this condition is automatically satisfied if ψ ∈ W 2,2(�).

Corollary 4.9. If ψ ∈ W 2,2(�), then (4-15) holds.

Since the Morse function f that generated the Neumann domain � was assumed to be smooth, f |�

satisfies the hypotheses of Corollary 4.9, and Theorem 1.3 follows immediately.
The main ingredient in the proof is a trace estimate for the doubly truncated domain �′

t , with controlled
dependence on t .

Lemma 4.10. There exist constants A, B > 0 such that∫
γ±,t

u2
≤

A
√

1 − t

∫
�′

t

u2
+ B

∫
�′

t

|∇u|
2 (4-17)

for all u ∈ W 1,2(�′
t) and t sufficiently close to 1.
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Proof. Increasing t0 if necessary, we can assume that q is the only critical point of f in �c
t0 . Consider the

vector field
X := χu2 ∇ f

|∇ f |
,

where χ is a smooth cutoff function that vanishes on γ+,t0 and equals 1 in a neighbourhood of q. Since
f is smooth and has no critical points in �′

t , we have X ∈ W 1,1(�′
t). Observe that ∇ f/|∇ f | is tangent

to γ0,t , whereas on γ+,t it coincides with the outward unit normal. This implies∫
∂�′

t

X · ν =

∫
γ+,t

u2

for any t large enough that χ |γ+,t ≡ 1. On the other hand, the divergence theorem implies∫
∂�′

t

X · ν =

∫
�′

t

div X =

∫
�′

t

(
∇(χu2) ·

∇ f
|∇ f |

+χu2 div
∇ f
|∇ f |

)
,

so we obtain ∫
γ+,t

u2
≤ B∥u∥

2
H1(�′

t )
+

∫
�′

t

u2
∣∣∣∣div

∇ f
|∇ f |

∣∣∣∣ (4-18)

for some constant B depending only on χ .
To estimate the integral on the right-hand side, we observe that the level sets of f have mean curvature

div(∇ f/|∇ f |). Using the Morse lemma, we can find coordinates (x, y) in a neighbourhood of q such
that f (x, y)= f (q)− x2

− y2. A straightforward computation (see [Beck et al. 2021, Lemma 4.7]) gives∣∣∣∣div
∇ f
|∇ f |

(x, y)
∣∣∣∣ ≤

C√
x2 + y2

=
C

√
f (q)− f (x, y)

and so we have the uniform estimate ∣∣∣∣div
∇ f
|∇ f |

∣∣∣∣ ≤
C

√
f (q)(t − 1)

on �′
t . Substituting this into (4-18) completes the proof. □

The other ingredient in the proof of Proposition 4.8 is the following geometric estimate.

Lemma 4.11. The length of γ±,t is o((1 − t)1/2) near t = 1.

Proof. We prove the result for γ+,t , assuming there is a cusp at the maximum q; the proof for γ−,t is
identical. Using the Morse lemma, we can find coordinates (x, y) near q such that f (x, y)= f (q)−x2

−y2,
and so γ+,t is contained in the circle of radius ρ =

√
(1 − t) f (q). More precisely, it is the arc bounded by

the angles θ1(t) and θ2(t). Parametrizing this as γ (θ)= (ρ cos θ, ρ sin θ), we have |γ ′(θ)|g ≤ C
√

1 − t ,
where | · |g denotes the length computed using the metric g and C is some constant depending on f (q)
and the components of g in this coordinate chart. This implies

L(γ+,t)=

∫ θ2(t)

θ1(t)
|γ ′(θ)|g dθ ≤ C

√
1 − t |θ2(t)− θ1(t)|.

Near q, the boundary ∂� consists of two Neumann lines meeting tangentially at q (since there is a cusp).
This implies |θ2(t)− θ1(t)| → 0 as t → 1 and completes the proof. □
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We are now ready to prove Proposition 4.8.

Proof. Since |∂νψ | ≤ |∇ψ |, it is enough to show that

lim
t→1

∫
γ±,t

|∇ψ |φ = 0 (4-19)

for all φ ∈ W 1,2(�) that are C1 in a neighbourhood of q; see Remark 4.7. Fix such a φ and define
u = χ |∇ψ |φ, where χ is a smooth cutoff function that equals 1 near q and is supported in the region
where φ is smooth. The hypotheses on ψ imply u ∈ L2(�) and u ∈ W 1,2(�′

t) for all t0 < t < 1, with

∥u∥L2(�) ≤ C∥ψ∥W 1,2(�), ∥u∥W 1,2(�′
t )

≤ C∥ψ∥W 2,2(�′
t )

for some constant C depending only on φ and χ .
Using Hölder’s inequality and Lemma 4.10, we obtain(∫

γ±,t

u
)2

≤

(∫
γ±,t

u2
)

L(γ±,t)

≤

(
A

√
1 − t

∥u∥
2
L2(�t )

+ B∥u∥
2
W 1,2(�′

t )

)
L(γ±,t)

≤ (A∥u∥
2
L2(�)

+ B
√

1 − t∥u∥
2
W 1,2(�′

t )
)

L(γ±,t)
√

1 − t
.

By Lemma 4.11 this tends to zero as t → 1. □

Appendix: Morse–Smale functions with cracked Neumann domains

In this appendix we construct Morse–Smale functions having cracked Neumann domains. As in the rest
of the paper, we assume M is a smooth, closed, connected orientable surface.

Theorem A.1. Let f be a Morse–Smale function on M and � a Neumann domain of f . Then there exists
a Morse–Smale function f̃ that has a cracked Neumann domain �̃⊂�.

We will see in the proof that f̃ can be chosen to agree with f outside an arbitrary open set U ⊂�.
However, the difference f̃ − f may be large inside U. The existence of f̃ is given by the following
general lemma.

Lemma A.2. Let U ⊂ M be an open subset and f : U → R a smooth function having no critical points.
There exists a smooth function f̃ : U → R, with supp ( f̃ − f ) ⊂ U, whose only critical points are a
nondegenerate maximum and a nondegenerate saddle.

Proof. Since f has no critical points in U, we can invoke the canonical form theorem for smooth
vector fields and find local coordinates (x, y) with respect to which f (x, y) = Ax + B for (x, y) ∈

(−1, 1)× (−1, 1). Now choose a smooth function α(x) with supp α ⊂ (−1, 1) and∫ 1

−1
α(x) dx = 0, (A-1)
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−A
x1 x2

Figure 7. The function α(x) used in the proof of Lemma A.2.

so that there exist points −1< x1 < x2 < 1 with

α(x) >−A, − 1< x < x1,

α(x)= −A, x = x1,

α(x) <−A, x1 < x < x2,

α(x)= −A, x = x2,

α(x) >−A, x2 < x < 1,

(A-2)

as shown in Figure 7.
We define

f̃ (x, y)= f (x, y)+β(x)γ (y) , (A-3)

where β(x) =
∫ x
−1 α(t) dt and γ (y) = exp{−1/(1 − y2)}. Note that γ is a nonnegative bump function

supported in (−1, 1) with γ ′(0)= 0 and γ ′′(0) < 0. It follows that

∂ f̃
∂x

= A +α(x)γ (y) and
∂ f̃
∂y

= β(x)γ ′(y),

and so the only critical points of f̃ in U are (x1, 0) and (x2, 0). We compute

∂2 f̃
∂x2 (x1, 0)= α′(x1)γ (0) < 0,

∂2 f̃
∂x2 (x2, 0)= α′(x2)γ (0) > 0,

∂2 f̃
∂y2 (xi , 0)= β(xi )γ

′′(0) < 0,

and conclude (x1,0) and (x2,0) are a nondegenerate maximum and a nondegenerate saddle, respectively. □

Proof of Theorem A.1. If � is cracked we simply choose f̃ = f and there is nothing to prove. Therefore
we assume that � is regular. Since f is Morse–Smale, Theorem 2.2 says the closure of � contains exactly
four critical points, all of which are on the boundary: a maximum q, a minimum p, and saddle points r1

and r2; see Figure 3.
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p

r2

r∗

q∗

r1

q

p

r2

r∗

q∗

r1

q
Figure 8. Left: The cracked Neumann domain constructed in Theorem A.1, with Neu-
mann lines shown in purple. Right: If two Neumann lines connected r∗ to q, one of them
(shown in red) would have to intersect another Neumann line, which is impossible. The
dashed line represents the boundary of the set U containing supp ( f̃ − f ).

Now choose f̃ according to Lemma A.2, for some open set U ⋐�. By construction, f̃ has two critical
points in �: a maximum q∗ and a saddle point r∗. Since f̃ is a Morse function, r∗ has degree 4; i.e., there
are four Neumann lines connected to r∗. We obtain the result by studying the endpoints of these lines, as
depicted in Figure 8. Since f̃ agrees with f in a neighbourhood of ∂�, the invariant manifolds W s(ri )

and W u(ri ) are unchanged by the perturbation. As a result, it is not possible for any of the Neumann
lines coming from r∗ to end at r1 or r2. Therefore, the four Neumann lines from r∗ can only end at q, p
or q∗, so it follows from Lemma 2.4 that f̃ is Morse–Smale. The two lines along which f̃ is decreasing
must end at p, since it is the only minimum in �. This means the two lines along which f is increasing
are connected to either q or q∗. We claim that there is one Neumann line connected to each maximum.

Suppose instead that both ended at q. Then the union of these Neumann lines forms a closed loop.
Similarly, the union of the two lines ending at p is a closed loop. Both loops intersect at r∗, where they
are orthogonal by Proposition 2.5(1). Since � is simply connected, this can only happen if the loops also
intersect at a point other than r∗, but this is impossible since gradient flow lines cannot cross. The same
argument shows that these lines cannot both be connected to q∗; hence one must end at each maximum.

Since all of the Neumann lines in � have been accounted for, this means q∗ has degree 1; hence the
Neumann domain with q∗ on its boundary is cracked. □
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A UNIQUENESS RESULT FOR THE TWO-VORTEX TRAVELING WAVE
IN THE NONLINEAR SCHRÖDINGER EQUATION

DAVID CHIRON AND ELIOT PACHERIE

For the nonlinear Schrödinger equation in dimension 2, the existence of a global minimizer of the energy
at fixed momentum has been established by Bethuel, Gravejat and Saut (2009) (see also work of Chiron
and Maris, (2017)). This minimizer is a traveling wave for the nonlinear Schrödinger equation. For large
momenta, the propagation speed is small and the minimizer behaves like two well-separated vortices. In
that limit, we show the uniqueness of this minimizer, up to the invariances of the problem, hence proving
the orbital stability of this traveling wave. This work is a follow up to two previous papers, where we
constructed and studied a particular traveling wave of the equation. We show a uniqueness result on this
traveling wave in a class of functions that contains in particular all possible minimizers of the energy.

1. Introduction and statement of the results

We consider the nonlinear Schrödinger equation

i∂t9 +19 − (|9|
2
− 1)9 = 0 (NLS)

in dimension 2 for 9 : Rt × R2
x → C, also called the Gross–Pitaevskii equation without potential. The

nonlinear Schrödinger equation is a physical model for Bose–Einstein condensation [1; 23; 37; 42],
superfluidity [40] and nonlinear optics [30]. The condition at infinity for (NLS) will be

|9| → 1 as |x | → +∞.

The (NLS) equation is associated with the Ginzburg–Landau energy

E(v) :=
1
2

∫
R2

|∇v|2 +
1
4

∫
R2
(1 − |v|2)2,

which is formally conserved by the (NLS) flow. We denote by E the set of functions with finite energy,
that is,

E := {u ∈ H 1
loc(R

2,C) : E(u) <+∞}.

Remark 1.1. The Cauchy problem for (NLS) is globally well-posed in the energy space; see [20; 21; 22].

Besides the energy, the momentum is another quantity formally conserved by the (NLS) flow and is asso-
ciated with the invariance by translation of (NLS). Formally, the momentum of u is 1

2

∫
R2 Re(i∇uū) ∈ R2,

but its precise definition requires some care in the energy space due to the condition at infinity (see [34]
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in dimension larger than 2 and [13] in dimension 2). If u ∈ 1 + C∞
c (R

2) for instance, or if u is a traveling
wave tending to 1 at infinity, then the expression of the momentum reduces to

P⃗(u)= (P1(u), P2(u))=
1
2

∫
R2

Re(i∇u(ū − 1)).

In addition to the translation invariance, the (NLS) equation is also phase-shift-invariant, that is, invariant
by multiplication by a complex of modulus 1, and rotation-invariant.

1A. Traveling waves for (NLS). Following the works in the physical literature of Jones and Roberts [28;
29], there has been a large number of mathematical works on the question of existence and properties of
traveling wave solutions in the (NLS) equation, which are solutions of

0 = (TWc)(u) := −ic∂x2u −1u − (1 − |u|
2)u

for some c > 0, corresponding to particular solutions of (NLS) of the form 9(t, x)= u(x1, x2 + ct) (due
to the rotational invariance, we may always assume that the traveling wave moves along the direction −e⃗2).
We refer to [9] for an overview on these problems in several dimensions. A natural approach is to look at
the minimizing problem for p> 0

Emin(p) := inf
u∈E

{E(u) : P2(u)= p}.

It was shown by Bethuel, Gravejat and Saut that there exists a minimizer to this problem.

Theorem 1.2 [10]. For any p > 0, there exists a nonconstant function up ∈ E and c(up) > 0 such that
P2(up)= p, up is a solution to (TWc(up))(up)= 0 and

E(up)= Emin(p).

Furthermore, any minimizer for Emin(p) is, up to a translation in x1, even in x1.

The strategy is to look at the corresponding minimization problem on larger and larger tori (this avoids
the problems with the definition of the momentum), and then pass to the limit. For the minimizing
problem Emin(p), the compactness of minimizing sequences has been shown later on in [13] for the
natural semidistance on E

D0(u, v) := ∥∇u − ∇v∥L2(R2) + ∥|u| − |v|∥L2(R2).

Theorem 1.3 [13]. For any p > 0 and any minimizing sequence (un)n∈N for Emin(p), there exists a
subsequence (un j ) j∈N, a sequence of translations (yj ) j∈N and a nonconstant function up ∈ E such that
D0(un j , up)→ 0, P2(un j )→ P2(up) = p and E(un j )→ E(up) = Emin(p) as j → +∞. In particular,
there exists c(up) > 0 such that P2(up)= p, up is a solution to (TWc(up))(up)= 0 and

E(up)= Emin(p).

Furthermore, the set Sp := {v ∈ E : P2(v)= p and E(v)= Emin(p)} of minimizers for Emin(p) is orbitally
stable for the semidistance D0.
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An open and difficult question is to show, up to the invariances of the problem, the uniqueness of the
energy minimizer at fixed momentum. In other words, the problem is to determine if Sp consists of a
single orbit under phase shift and space translation; that is, do we have, for some minimizer Up,

Sp = {Up( · − X)eiγ
: γ ∈ R, X ∈ R2

}?

The main consequence of our work is to solve this open problem of uniqueness for large momentum.

Theorem 1.4. There exists p0 > 0 such that, for any p> p0, if u, v ∈ E with P2(u)= P2(v)= p satisfy

E(u)= E(v)= Emin(p),

then, there exist X ∈ R2 and γ ∈ R such that

u = v( · − X)eiγ .

In fact, we will be able to show slightly stronger results than Theorem 1.4; see Theorem 1.11 below.
Even though we focus on the Ginzburg–Landau nonlinearity, it is plausible that our results hold true

(still for large momentum) for more general nonlinearities, provided vortices exist. For the Ginzburg–
Landau (cubic) nonlinearity, it is also possible that uniqueness of minimizers holds true for Emin(p) for
any p> 0. However, the numerical results given in [16] suggest that this may no longer be the case for
more general nonlinearities.

In the analysis of the minimization problem in [10] (and also [13]), the following properties of Emin

play a key role.

Proposition 1.5 [10]. The function Emin :R+ →R is concave, nondecreasing and
√

2-Lipschitz continuous.
In addition, there exists K ⩾ 0 such that, for any p⩾ 1, we have

Emin(p)⩽ 2π ln p+ K . (1-1)

1B. A smooth branch of traveling waves for large momentum. There have been several ways of
constructing traveling waves of the (NLS) equation, with different approaches. For instance, we may use
variational methods, such as a mountain-pass argument in [3; 5], or by minimizing the energy at fixed
kinetic energy [10; 13]. Also, we have constructed in [14] a traveling wave by perturbative methods,
taking for ansatz a pair of vortices, by following the Lyapunov–Schmidt reduction method as initiated
in [39]. Vortices are stationary solutions of (NLS) of degrees n ∈ Z∗ (see [12; 23; 26; 37; 45]):

Vn(x)= ρn(r)einθ ,

where x = reiθ, solving {
1Vn − (|Vn|

2
− 1)Vn = 0,

|Vn| → 1 as |x | → ∞.

In the previous paper [14], we constructed solutions of (TWc) for small values of c > 0 as a perturbation
of two well-separated vortices (the distance between their centers is large when c is small). We have
shown the following result.
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Theorem 1.6 [14, Theorem 1.1; 15, Proposition 1.2]. There exists c0 > 0 a small constant such that, for
any 0< c ⩽ c0, there exists a solution of (TWc) of the form

Qc = V1( · − dce⃗1)V−1( · + dce⃗1)+0c,

where dc = (1 + oc→0(1))/c is a C1 function of c. This solution has finite energy; that is, Qc ∈ E , and
Qc → 1 at infinity.

Furthermore, for all 2< p ⩽ +∞, there exists c0(p) > 0 such that, if 0< c ⩽ c0(p), for the norm

∥h∥p := ∥h∥L p(R2) + ∥∇h∥L p−1(R2)

and the space X p := { f ∈ L p(R2) : ∇ f ∈ L p−1(R2)}, one has

∥0c∥p = oc→0(1).
In addition,

c 7→ Qc − 1 ∈ C1(]0, c0(p)[, X p),

with the estimate∥∥∥∥∂c Qc +

(
1 + oc→0(1)

c2

)
∂d(V1( · − de⃗1)V−1( · + de⃗1))|d=dc

∥∥∥∥
p
= oc→0

(
1
c2

)
.

Finally, we have
d
dc
(P2(Qc))=

−2π + oc→0(1)
c2 < 0;

hence the C1 mapping
P : ]0, c0] → R, c 7→ P2(Qc),

is a strictly decreasing diffeomorphism from ]0, c0] onto [P2(Qc0),+∞[.

Remark 1.7. With the same kind of approach, [33] also provides an existence result of traveling waves
for (NLS), including some cases with more than two vortices. Our result has the advantage of showing
the smoothness of the branch with respect to the speed. In particular, with the last part of Theorem 1.6,
we see that we may also parametrize the branch c 7→ Qc by its momentum P.

It is conjectured that all these constructions yield the same branch of traveling waves (for large
momentum) when they are all defined, and that they are the solutions numerically observed in [16; 28]
for more general nonlinearities (see also [17]). We will show here that the construction of Theorem 1.6
yields the unique, up to the natural translation and phase invariances, constrained energy minimizers.

1C. A uniqueness result for symmetric functions. We have shown in [15] several coercivity results for
the traveling waves constructed in Theorem 1.6. This will allow us to show the following uniqueness
result for symmetric functions close to the branch constructed in Theorem 1.6. There, for d ∈ R, we use
the notation r̃d = min(| · −de⃗1|, | · +de⃗1|).

Proposition 1.8. There exists λ∗> 1 such that, for any λ⩾ λ∗, there exists ε(λ)> 0 such that if a function
u ∈ E satisfies

(1) for all (x1, x2) ∈ R2, u(x1, x2)= u(−x1, x2),

(2) u = V1(x − de⃗1)V−1(x + de⃗1)+0, with d > 1/ε(λ), ∥0∥L∞({r̃d⩽2λ}) ⩽ ε(λ),
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(3) ∥|u| − 1∥L∞({r̃d⩾λ}) ⩽ 1/λ∗,

(4) (TWc)(u)= 0 for some c > 0 such that |dc − 1| ⩽ ε(λ),

then, there exist X ∈ R and γ ∈ R such that u = Qc( · − Xe⃗2)e
iγ, where Qc is defined in Theorem 1.6.

Remark 1.9. In view of the symmetry assumption, we may replace the second hypothesis by

∥u − V1( · − de⃗1)∥L∞(B(de⃗1,2λ)) ⩽ ε(λ).

We will discuss the main arguments of the proof of Proposition 1.8 in the next section. This result can
be seen as a local uniqueness result, but the uniqueness turns out to be in a rather large class of functions.
Indeed, two functions that satisfy the hypotheses of Proposition 1.8 can be very far from each other, for
two main reasons. First, in condition (2), the vortices that compose one of them have no reason to be
close to the ones composing the other function since d depends on u: their centers ±de⃗1 only need to
satisfy |dc − 1| ⩽ ε(λ), but for instance both d = 1/c and d = 1/c + 1/

√
c satisfy these conditions for

c > 0 small enough at fixed λ. Secondly, we only have that far from the vortices, the modulus is close
to 1 from condition (3), but we have no information on the phase. The proof of Proposition 1.8 will rely
on methods used in [15] in order to prove some coercivity, and we shall need to be very precise to take
into account all these cases.

A way to see that Proposition 1.8 is a strong unicity result is that it implies the following local
uniqueness result in L∞ for even functions in x1.

Corollary 1.10. There exist c0, ε > 0 such that, for 0< c < c0, if a function u ∈ E satisfies

(1) for all (x1, x2) ∈ R2, u(x1, x2)= u(−x1, x2),

(2) (TWc)(u)= 0 in the distributional sense,

(3) ∥u − Qc∥L∞(R2) ⩽ ε,

then, there exist X ∈ R and γ ∈ R such that u = Qc( · − Xe⃗2)e
iγ.

We may now state our main result. It establishes that any traveling wave solution which is even
in x1 and within O(1) of the minimizing energy must be, for large momentum, the Qc traveling wave
constructed in Theorem 1.6, up to the natural translation and phase invariances.

Theorem 1.11. For any 30 > 0 there exists p0(30) > 0 such that, if u ∈ E satisfies

(1) for all (x1, x2) ∈ R2, u(x1, x2)= u(−x1, x2),

(2) (TWc)(u)= 0 for some c > 0,

(3) P2(u)⩾ p0(30),

(4) E(u)⩽ 2π ln P2(u)+30,

then, there exist X ∈ R and γ ∈ R such that

u = Qc( · − Xe⃗2)e
iγ ,

where Qc is defined in Theorem 1.6. In particular, P2(u)= P(c) (where P is defined in Theorem 1.6).
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Section 3 is devoted to the proof of this result. We show there that a function satisfying the hypotheses
of Theorem 1.11 also satisfies the hypotheses of Proposition 1.8. Our result applies in particular to the
constraint minimizers for the problem Emin(p) for large p.

Corollary 1.12. There exist p0 > 0 such that, for any p ⩾ p0 and any minimizer U for Emin(p), there
exist γ ∈ R and X ∈ R2 such that, with c = P−1(p),

U = Qc( · − X)eiγ .

Moreover, (TWc)(U )= 0.

Proof. By a first translation in x1, we may assume, by Theorem 1.2, that this minimizer U is even in x1. By
Proposition 1.5, the last hypothesis (4) of Theorem 1.11 is satisfied; hence we may translate in x2 and use
phase shift and get that this minimizer U is Qc. Necessarily, P2(U )= p = P2(Qc); thus c = P−1(p). □

Theorem 1.4 is a direct consequence of this corollary. This allows us to derive several interesting
consequences on the function Emin. This also shows that the branch of Theorem 1.6 coincides with the
global energy minimizer at fixed momentum (up to translation and phase shift).

Theorem 1.13. There exists c∗ > 0 such that, for 0 < c ⩽ c∗, Qc is a minimizer for Emin(P2(Qc)).
Moreover, there exists p0 > 0 such that the following statements hold:

(1) The function Emin is of class C2 in [p0,+∞[ and

0> E ′′

min(p)∼ −
2π
p2 , 0< E ′

min(p)∼
2π
p
, Emin(p)= 2π ln p+O(1).

(2) For p⩾ p0, Sp = {QP−1(p)( · − X)eiγ
: γ ∈ R, X ∈ R2

}; hence, for any p⩾ p0, E ′

min(p) is the speed
of any minimizer for Emin(p).

(3) For any p⩾ p0, QP−1(p) is orbitally stable for the semidistance D0 (or, equivalently, for 0< c ⩽ c∗,
Qc is orbitally stable for the semidistance D0).

(4) For p⩾ p0 and any minimizer u for Emin(p), up to a space translation and a phase shift, u enjoys the
symmetry,

for all (x1, x2) ∈ R2, u(x1,−x2)= ū(x1, x2),

in addition to the symmetry in x1.

(5) For any 3 > 0, there exists p0(3) > 0 such that, if u ∈ E satisfies (TWc)(u) = 0 for some c > 0,
P2(u)⩾ p0(3) and u is even in x1, then either E(u)= Emin(P2(u)) or E(u)⩾ Emin(P2(u))+3.

Proof. By Theorems 1.2 and 1.3, we have the existence of at least one minimizer Up for Emin(p), where
p> 0. For large p, by applying Corollary 1.12, we have Up = Qc( · − X)eiγ for some X ∈ R2 and γ ∈ R,
thus proving that Qc is a minimizer for Emin(p) and that P2(Qc)= P(c)= p.

For (1), it suffices to notice that, in view of Corollary 1.12 applied to any minimizer (we have
existence by Theorems 1.2 and 1.3) Emin(p) = E(QP−1(p)). We then conclude by using that P is a
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C1 diffeomorphism and that c 7→ E(Qc) is also of class C1 (see [15, Proposition 1.2]), that Emin is of
class C1 in [p0,+∞[ and that

E ′

min(p)=
d
dc

E(Qc)|c=P−1(p) ×
1

P ′(P−1(p))
= P−1(p),

in view of the Hamilton-like relation (formally shown in [28] and rigorously proved for the branch
constructed in Theorem 1.6 in [15])

d
dc

E(Qc)= c d
dc

P2(Qc).

Since P is a C1 diffeomorphism, we deduce that E ′

min is of class C1. The asymptotics for E ′

min and
E ′′

min then follow from Proposition 1.2 in [15]. Integration would yield Emin(p)∼ 2π ln p, but we may
slightly improve this estimate. Indeed, Proposition 1.5 gives Emin(p) ⩽ 2π ln p+O(1), and the lower
bound is a straightforward consequence of Theorem 3.4(i) and the study in Section 3B3.

Statement (2) is a rephrasing of Corollary 1.12, combined with the existence of at least one constrained
minimizer. Statement (3) is then a direct consequence of Theorem 1.3. Statement (4) simply follows
from the fact that Qc enjoys by construction this symmetry (see [14]). Finally, statement (5) is also a
rephrasing of Theorem 1.11. □

Remark 1.14. Concerning the stability given in statement (3) in the above theorem, we quote [32], where
a linear “spectral” stability result is proved (through ad hoc hypotheses that were checked in [15]), namely
that the linearized equation i∂tv = L Qc(v) does not have exponentially growing solutions (in Ḣ1(R

2
; C),

say). Statement (3) in the above theorem does not rely on the result in [32], and is needed for the nonlinear
(orbital) stability (following the Cazenave–Lions approach).

Let us conclude this section with several comments on our result. First, let us explain the relevance of
the symmetry hypothesis, namely that we restrict to mappings that are even in x1. This symmetry is used
in the coercivity of the branch of Theorem 1.6, through the following arguments. The quadratic form
around the traveling wave Qc is decomposed in three areas, close to the two vortices, and far from them.
In the latter region, the coercivity can be shown without any orthogonality condition. Close to the vortices,
the quadratic form is close to the one of a single vortex, which was studied in [38]. Its coercivity requires
three orthogonality conditions, two for the translation, and one for the phase. Therefore, we can show the
coercivity of the full quadratic form with six orthogonality conditions, three for each vortex. However,
the family of traveling waves of Theorem 1.6 has only five parameters (two for the speed, two for the
translation, and one for the phase). The symmetry is then used to reduce the problem to three orthogonality
conditions into a family with three parameters. With this symmetry, both orthogonality conditions on
the phase for the two vortices become the same condition. It is possible to prove a coercivity result with
only five orthogonality conditions without symmetry (see [15]), but then the coercivity constant goes to 0
when c → 0. This would pose a problem for the uniqueness result. The last statement in Theorem 1.13
shows that, when restricting ourselves to symmetric traveling waves, there is an energy threshold under
which there is no traveling wave except the Qc branch.
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Secondly, the proof of the fact that Qc is a minimizer of the energy for fixed momentum relies on the
existence of such minimizers. In particular, we have not been able to use our coercivity results in [15] in
order to prove directly that Qc is orbitally stable (for small c).

Thirdly, the symmetry in x2 for the minimizers (statement (4)) is established as a consequence of the
uniqueness result and not in itself. Notice that the numerical studies in [16; 17; 28] assume the two
symmetries.

1D. The traveling wave Qc and two other variational characterizations. Before providing other varia-
tional characterizations of Qc, we have to define a distance on the energy space E . One can use (see [22])

DE(ψ1, ψ2) := ∥ψ1 −ψ2∥L2(R2)+L∞(R2) + ∥∇ψ1 − ∇ψ2∥L2(R2) + ∥|ψ1| − |ψ2|∥L2(R2),

which is adapted to the Cauchy problem. Actually, we may also use the pseudodistance1

D0(ψ1, ψ2) := ∥∇ψ1 − ∇ψ2∥L2(R2) + ∥|ψ1| − |ψ2|∥L2(R2).

Is it shown in [13, Corollary 4.13] that both the energy E and the momentum P2 are continuous for the
distance DE , and actually even for the pseudodistance D0.

The traveling wave Qc as a mountain-pass solution. Thanks to the results in Theorem 1.13, it is easy to
show that we have locally, near Qc, a mountain-pass geometry. Indeed, let c∗ > 0 be small, and define

ϒc∗
:= {υ : [−1,+1] → E continuous : v(−1)= Q3c∗/2, v(+1)= Qc∗/2},

the set of continuous paths from Q3c∗/2 to Qc∗/2 in E . Then, we claim that

inf
υ∈ϒc∗

max
t∈[−1,+1]

(E − c∗ P2)(υ(t))= (E − c∗ P2)(Qc∗
). (1-2)

Indeed, let υ ∈ ϒc∗
. By the intermediate value theorem, there exists t∗ ∈ [−1,+1] such that P2(υ(t))=

P2(Qc∗
) (c 7→ P2(Qc) is a C1 function (see [15, Proposition 1.2]). Since Qc∗

is a minimizer for Emin(Qc∗
),

we infer

max
t∈[−1,+1]

(E − c∗ P2)(υ(t))⩾ E(v(t∗))− c∗ P2(Qc∗
)⩾ E(Qc∗

)− c∗ P2(Qc∗
).

Moreover, considering the particular C1 path υ∗ : [−1,+1] → E defined by υ(t) := Qc∗−tc∗/2, we see that

d
dt
(E − c∗ P2)(υ∗(t))= −

c∗

2

( d
dc

E(Qc)− c∗

d
dc

P2(Qc)
)

|c=c∗−tc∗/2
=

c2
∗
t

4

( d
dc

P2(Qc)
)

|c=c∗−tc∗/2

in view of the Hamilton group relation d
dc E(Qc)= c d

dc P2(Qc) (see [15, Proposition 1.2]). Since
d
dc P2(Qc) < 0, we deduce that (E −c∗ P2)(υ∗(t)) increases in [−1, 0] and decreases in [0,+1], and hence
has maximal value E(Qc∗

)− c∗ P2(Qc∗
), as wished.

1 D0(ψ1, ψ2) is zero if and only if ψ2 −ψ1 is constant with |ψ1| − 1 = |ψ2| − 1 ∈ L2(R2).
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Furthermore, by the asymptotics given in [15] and the above-mentioned Hamilton group relation
d
dc E(Qc)= c d

dc P2(Qc), we have

(E − c∗ P2)(Qc∗
)− (E − c∗ P2)(Qc∗/2)=

∫ c∗

c∗/2
(c − c∗)

d
dc

P2(Qc) dc > 0

since c − c∗ < 0 and d
dc P2(Qc) < 0. Similarly, we prove that (E − c∗ P2)(Qc∗

)− (E − c∗ P2)(Q3c∗/2) < 0.
We now claim that if u ∈ E is such that (TWc∗

)(u)= 0 and

(E − c∗ P2)(u)= inf
υ∈ϒc∗

max
t∈[−1,+1]

(E − c∗ P2)(υ(t))= (E − c∗ P2)(Qc∗
), (1-3)

by (1-2), that is, if u is a critical point of E − c∗ P2 at the good critical value, then we must have
P2(u)= P2(Qc∗

). Indeed, by the Pohozaev identity (2-2), we have

c∗ P2(u)=
1
2

∫
R2
(1 − |u|

2)2 dx ⩾ 0,

and hence P2(u) ⩾ 0. Furthermore, we know that Emin is concave in R+ (Proposition 1.5), and that
Emin is of class C1 and strictly concave on [p0,+∞[ (by statement (1) of Theorem 1.13). Therefore, if
P2(u) ̸= P2(Qc∗

), then

E(u)⩾ Emin(P2(u)) > Emin(P2(Qc∗
))+ E ′

min(P2(Qc∗
))(P2(u)− P2(Qc∗

))

= E(Qc∗
)+ c∗(P2(u)− P2(Qc∗

)),

in contradiction with (1-3).
As a consequence, we have

E(u)= E(Qc∗
)= Emin(P2(u))= Emin(P2(Qc∗

)),

implying that u is a minimizer for Emin(P2(Qc∗
)); hence there exist γ ∈ R and X ∈ R2 such that

u = Qc∗
( · −X)eiγ , proving a uniqueness result for mountain-pass-type traveling wave solutions. However,

stating rigorously a useful uniqueness result for this kind of variational solution is not so easy: In [5], the
mountain pass is implemented in the space 1 + H 1(R2), whereas we know (by the result in [25]) that
the nontrivial traveling wave does not belong to this affine space; in [3], the solution is constructed by
working first on [−N ,+N ]×R and then passing to the limit, and it is then not immediate to compute the
functional E − cP on the solution; in addition, the method does not provide easily some explicit bounds
on the energy or the momentum. We shall then not go further in this discussion even though the previous
arguments indicate that mountain-pass solutions are (at least for small c) only the orbit of Qc.

The traveling wave Qc as a minimizer of E − cP2 for fixed kinetic energy. In [13], for κ ⩾ 0, the
following variational problem is investigated:

Imin(κ)= inf
{

1
4

∫
R2
(1 − |v|2)2 dx − P2(v), v ∈ E :

1
2

∫
R2

|∇v|2 dx = κ

}
.

Any minimizer v for Imin(κ) is such that there exists c > 0 satisfying (TWc)(v( · /c)) = 0. In two
dimensions and for the Ginzburg–Landau nonlinearity, existence of minimizers for κ > 0 is established in
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Theorem 1.2 there. Furthermore, it is shown in [13] (see Proposition 8.4 there) that if p> 0 and if U is a
minimizer for Emin(p) with speed c, then U (c · ) is a minimizer for Imin(κ) with κ =

1
2

∫
R2 |∇U |

2 dx (this
last quantity is scale-invariant in two dimensions) and Imin is differentiable at this κ , with I ′

min(κ)=−1/c2.
Since Qc is a minimizer for Emin(P2(Qc)), if we prove that c 7→

1
2

∫
R2 |∇Qc|

2 dx is a decreasing
C1-diffeomorphism from ]0, c0], for some small c0, onto [κ0,+∞[, with κ0 :=

1
2

∫
R2 |∇Qc0 |

2 dx , then
we shall conclude that Imin is of class C1 on [κ0,+∞[, and that (by the arguments in [13]) the only
minimizer for κ =

1
2

∫
R2 |∇Qc|

2 dx (for some suitable c ∈ ]0, c0]) is Qc(c · ) up to the natural translation
and phase invariances and, in addition, I ′

min(κ)= −1/c2. In order to prove that statement, it suffices to
use the Pohozaev identity (2-2) and deduce

1
2

∫
R2

|∇Qc|
2 dx = E(Qc)−

1
4

∫
R2
(1 − |Qc|

2)2 dx = E(Qc)−
cP2(Qc)

2
.

Therefore, by using the Hamilton-like relation d
dc E(Qc)= c d

dc P2(Qc) and then the asymptotics of
c 7→ P2(Qc) obtained in [15], we arrive at

d
2dc

∫
R2

|∇Qc|
2 dx =

d
dc
(E(Qc))−

c
2

d
dc

P2(Qc)−
1
2

P2(Qc)=
c
2

d
dc

P2(Qc)−
1
2

P2(Qc)∼ −
2π
c
< 0.

The paper is organized as follows. In Section 2, we give the proof of the uniqueness result given in
Proposition 1.8. Section 3 is devoted to the vortex analysis of traveling waves with energy Emin(p)+O(1),
that are even in x2, in order to show that they satisfy the hypotheses of Proposition 1.8. Section 3D
contains a few remarks on the nonsymmetrical case. Finally, in Section 3C, we provide some decay
estimates slightly away from the vortices. For the Ginzburg–Landau (stationary) model, such estimates
were first given in [35] for minimizing solutions and later generalized in [18] to nonminimizing solutions.
They improve some estimates in [14] and are not specific to the way we construct the solutions.

2. Proof of the local uniqueness result (Proposition 1.8)

This section is devoted to the proofs of Proposition 1.8 and Corollary 1.10. The proof of Proposition 1.8
uses arguments from the proof of [15, Theorem 1.14], another local uniqueness result for this problem,
but in different spaces. We explain here the core ideas of the proof.

Let us explain schematically the proof of Proposition 1.8. We first pick c′, X , γ ′ in such a way that
Q = Q′

c( · − X)eiγ has the same vortices as u. This is possible because c → dc, the position of the
vortices, is smooth. We then use the decomposition u = Qeψ, where ψ is the error term. This cannot be
done near the zeros of Q, but we focus here on the domain far from the vortices.

The equation satisfied by ψ is then (TWc)(u)= 0 = (TWc)(Q)+ L(ψ)+ NL(ψ), where we regroup
the linear terms in L and the nonlinear terms in NL, and (TWc)(Q) ̸= 0 because c ̸= c′. We then take the
scalar product of this equation with ψ , and we get 0 = ⟨(TWc)(Q), ψ⟩ + BQ(ψ)+ ⟨NL(ψ), ψ⟩. Now,
the coercivity of BQ has been studied in [15]. It holds (for even functions in x1) up to three orthogonality
conditions, which can be satisfied by changing slightly the modulation parameters c′, X, γ . We deduce
that BQ(ψ)⩾ K∥ψ∥

2
1 for some norm ∥ · ∥1.
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There are two main difficulties at this point. First, since the hypotheses on u in Proposition 1.8 are
weak, we simply have ∥ψ∥1 <+∞, but not the fact that it is small. Therefore, an estimate of the form
|⟨NL(ψ), ψ⟩| ⩽ K∥ψ∥

3
1 would not be enough to conclude. Secondly, the norm ∥ · ∥1 is rather weak, and

in fact ⟨NL(ψ), ψ⟩ cannot be controlled by powers of ∥ψ∥1.
Concerning the term ⟨(T Wc)(Q), ψ⟩, we may show that we always have |c − c′

| ⩽ o(1)∥ψ∥1, and
thus |⟨(T Wc)(Q), ψ⟩| ⩽ o(1)∥ψ∥

2
1. Therefore, we are led to

K
2

∥ψ∥
2
1 ⩽ ⟨(TWc)(Q), ψ⟩ + BQ(ψ)= −⟨NL(ψ), ψ⟩.

Then, even if ∥ψ∥1 is not small, by the hypotheses of Proposition 1.8, ψ will be small in other (nonequiv-
alent) norms. Let us write one of them ∥ · ∥2. Our goal is then to show an estimate of the form
|⟨NL(ψ), ψ⟩|⩽ K∥ψ∥2 ∥ψ∥

2
1, which would conclude the proof. This is possible, except for one nonlinear

term, which contains two derivatives. We then perform some integrations by parts on it. When both
derivatives fall on the same term, we get a term containing 1ψ , which also appears in the equation
0 = (TWc)(Q)+L(ψ)+NL(ψ) (in L(ψ)). We thus replace it using this equation, which leads to another
term containing two derivatives (from NL(ψ)), and other terms that can be successfully estimated. After
n such integrations by parts, we have an estimate of the form

|⟨NL(ψ), ψ⟩| ⩽ K∥ψ∥2 ∥ψ∥
2
1 + ∥ψ∥3 ∥ψ∥

n
2 ∥ψ∥

2
1,

where ∥ · ∥3 is another (semi-)norm in which ψ is not necessarily small. Now, taking n large enough
(depending on ψ), since ∥ψ∥2 ≪ 1, we get |⟨NL(ψ), ψ⟩| ⩽ o(1)∥ψ∥

2
1, concluding the proof.

The problem is a lot simpler near the vortices. There, we write u = Q +φ and the coercivity norm is
equivalent to the H 1 norm, and the hypotheses of Proposition 1.8 give us ∥φ∥L∞ = o(1). The estimate of
the nonlinear terms then becomes trivial.

As stated in the Introduction, the symmetry condition is necessary to have a coercivity result where the
coercivity constant is uniform; see Corollary 2.6 below. This is the only place where the symmetry is
used in a crucial way.

2A. Some properties of the branch of traveling waves from Theorem 1.6. We recall here properties on
the branch c 7→ Qc from Theorem 1.6, coming mainly from [14; 15]. In this section, we will use the
notation

⟨ f, g⟩ :=

∫
R2

Re( f ḡ).

2A1. Properties of vortices. We start with some estimates on vortices, which compose the traveling wave
(see Theorem 1.6).

Lemma 2.1 [12; 26]. A vortex centered around 0, V1(x)= ρ1(r)eiθ, satisfies V1(0)= 0, E(V1)= +∞

and there exist constants K , κ > 0 such that,

for all r > 0, 0< ρ1(r) < 1, ρ1(r)∼r→0 κr, ρ ′

1(r)∼r→0 κ,

for all r > 0, ρ ′

1(r) > 0, ρ ′

1(r)= Or→∞

(
1
r3

)
, |ρ ′′

1 (r)| + |ρ ′′′

1 (r)| ⩽ K ,
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1 − |V1(x)| =
1

2r2 + Or→∞

(
1
r3

)
,

|∇V1| ⩽
K

1 + r
, |∇

2V1| ⩽
K

(1 + r)2
,

∇V1(x)= iV1(x)
x⊥

r2 + Or→∞

(
1
r3

)
,

where x⊥
:= (−x2, x1), x = reiθ

∈ R2. Furthermore, similar properties hold for V−1, since

V−1(x)= V1(x).

2A2. Toolbox. We list in this section some results useful for the analysis of traveling waves for not
necessarily small speeds.

Theorem 2.2 (uniform L∞ bound [19]). Assume that U ∈ L3
loc(R

d) solves

1U + ic∂2U + U (1 − |U |
2)= 0.

Then,

∥U∥L∞(Rd ) ⩽ 1 +
c2

4
.

Corollary 2.3. There exists K > 0 such that, for any c ∈ [−
√

2,+
√

2] and any U ∈ L3
loc(R

d) satisfying
(TWc)(U )= 0, we have

∥∇U∥L∞(Rd ) + ∥∇
2U∥L∞(Rd ) ⩽ K . (2-1)

The following Pohozaev identity (see [10] for instance) will be useful in our analysis. If c ∈ R and
U ∈ E satisfies (TWc), then

1
2

∫
R2
(1 − |U |

2)2 dx = cP2(U ). (2-2)

We shall also make use of the algebraic decay of the traveling waves conjectured in [28] and shown
in [24].

Theorem 2.4 (algebraic decay of the traveling waves [24]). Let c ∈ [0,
√

2[. Assume that U ∈ E is a
solution of (TWc)(U )= 0. Up to a phase shift, we may assume U (x)→ 1 for |x | → +∞. Then, there
exists M, depending on U and c such that, for x ∈ R2,

|U (x)− 1| ⩽
M

1 + |x |
, |∇U (x)| ⩽

M
(1 + |x |)2

, ||U (x)| − 1| ⩽
M

(1 + |x |)2
.

2A3. Symmetries of the traveling waves from Theorem 1.6. We recall from [14] that the traveling wave Qc

constructed in Theorem 1.6 satisfies, for all x = (x1, x2) ∈ R2,

Qc(x1, x2)= Qc(−x1, x2)= Qc(x1,−x2).

This implies that, for all x = (x1, x2) ∈ R2,

∂c Qc(x1, x2)= ∂c Qc(−x1, x2)= ∂c Qc(x1,−x2),
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∂x1 Qc(x1, x2)= −∂x1 Qc(−x1, x2)= ∂x1 Qc(x1,−x2),

∂x2 Qc(x1, x2)= ∂x2 Qc(−x1, x2)= −∂x2 Qc(x1,−x2),

∂c⊥ Qc(x1, x2)= −∂c⊥ Qc(−x1, x2)= −∂c⊥ Qc(x1,−x2),

where ∂c⊥ Qc := x⊥.∇Qc; see Section 2.2 of [15]. Note that these quantities all have different symmetries.

2A4. A coercivity result. From Proposition 1.2 of [15], we recall that Qc defined in Theorem 1.6 has
two zeros, at ±d̃ce⃗1, with

dc − d̃c = oc→0(1). (2-3)

We define (as in [15]) the symmetric expended energy space by

H exp,s
Qc

:=
{
ϕ ∈ H 1

loc(R
2,C) : ∥ϕ∥H exp

Qc
<+∞ for all (x1, x2) ∈ R2, ϕ(−x1, x2)= ϕ(x1, x2)

}
,

where, with ϕ = Qcψ , r̃ = r̃d̃c
= min(r̃1, r̃−1), r̃±1 being the distances to the zeros of Qc (we use r̃

instead of r̃d̃c
to simplify the notation here), we define

∥ϕ∥
2
H exp

Qc
:= ∥ϕ∥

2
H1({r̃⩽10})

+

∫
{r̃⩾5}

|∇ψ |
2
+Re2(ψ)+

|ψ |
2

r̃2 ln2 r̃
.

By using (2-1), we deduce, for any R > 0, ∥ϕ∥H1({r̃⩽R}) ⩽ K (R)∥ϕ∥H exp
Qc

. The linearized operator
around Qc is

L Qc(ϕ) := −1ϕ− ic∂x2ϕ− (1 − |Qc|
2)ϕ+ 2Re(Qcϕ)Qc.

We take a smooth cutoff function η̃ such that

η̃(x)=

{
0 on B(±d̃ce⃗1, 2R),
1 on R2

\B(±d̃ce⃗1, 2R + 1),

where ±d̃ce⃗1 are the zeros of Qc and R > 0 will be defined later on (it will be a universal constant,
independent of any parameters of the problem). We define the quadratic form (as in [15])

Bexp
Qc
(ϕ) :=

∫
R2
(1 − η̃)

(
|∇ϕ|

2
−Re(ic∂x2ϕϕ̄)− (1 − |Qc|

2)|ϕ|
2
+ 2Re2(Qcϕ)

)
−

∫
R2

∇η̃.
(
Re(∇Qc Qc)|ψ |

2
− 2 Im(∇Qc Qc)Re(ψ) Im(ψ)

)
+

∫
R2

c∂x2 η̃Re(ψ) Im(ψ)|Qc|
2

+

∫
R2
η̃(|∇ψ |

2
|Qc|

2
+ 2Re2(ψ)|Qc|

4)

+

∫
R2
η̃
(
4 Im(∇Qc Qc) Im(∇ψ)Re(ψ)+ 2c|Qc|

2 Im(∂x2ψ)Re(ψ)
)
. (2-4)

We recall from [15] (or by integration by parts) that, for ϕ∈C∞
c (R

2,C), we have Bexp
Qc
(ϕ)=⟨L Qc(ϕ), ϕ⟩

and that Bexp
Qc
(ϕ) is well-defined for ϕ ∈ H exp,s

Qc
. This last point is the reason why we write the quadratic
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form as (2-4), which is equal, up to some integration by parts, to the more natural definition∫
R2

|∇ϕ|
2
− (1 − |Qc|

2)|ϕ|
2
+ 2Re2(Qcϕ)−Re(ic∂x2ϕϕ̄),

but this integral is not well-defined for ϕ ∈ H exp,s
Qc

. See [15] for more details on this point. We now quote
the following coercivity result:

Theorem 2.5 [15, Theorem 1.13]. There exist R, K , c0 > 0 such that, for 0 < c ⩽ c0, Qc defined in
Theorem 1.6, if a function ϕ ∈ H exp,s

Qc
satisfies the three orthogonality conditions

Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

∂c Qc ϕ̄ = Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

∂x2 Qc ϕ̄ = 0,

Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

i Qc ϕ̄ = 0,

then
1
K

∥ϕ∥
2
H exp

Qc
⩾ Bexp

Qc
(ϕ)⩾ K∥ϕ∥

2
H exp

Qc
.

We will use a slight variation of this result, given in the next corollary.

Corollary 2.6. There exist R, K , c0 > 0 such that, for 0 < c ⩽ c0, Qc defined in Theorem 1.6, if a
function ϕ ∈ H exp,s

Qc
satisfies the three orthogonality conditions

Re

∫
B(dc e⃗1,R)∪B(−dc e⃗1,R)

∂d(V1( · − de⃗1)V−1( · + de⃗1))|d=dc ϕ̄ = Re

∫
B(dc e⃗1,R)∪B(−dc e⃗1,R)

∂x2 Qc ϕ̄ = 0,

Re

∫
B(dc e⃗1,R)∪B(−dc e⃗1,R)

i Qc ϕ̄ = 0,

then
1
K

∥ϕ∥
2
H exp

Qc
⩾ Bexp

Qc
(ϕ)⩾ K∥ϕ∥

2
H exp

Qc
.

Note, with Theorem 1.6 (for p = +∞), that −(1/c2)∂d(V1( · − de⃗1)V−1( · + de⃗1))|d=dc is the first
order of ∂c Qc when c → 0 in L∞(R2,C), and that (with Lemma 2.1) they both have the same symmetries.
We need to change the quantity Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

∂c Qc ϕ̄ in the orthogonality conditions because
we will differentiate it with respect to c, and

c 7→ ∂d
(
V1( · −de⃗1)V−1( · +de⃗1)

)
|d=dc

=−∂x1 V1( · −dce⃗1)V−1( · +dce⃗1)+∂x1 V−1( · +dce⃗1)V1( · −dce⃗1)

is a C1 function (c 7→ dc ∈ C1(]0, c0[,R) for c0 > 0 a small constant (see Section 4.6 of [14]), but it is
not clear that c 7→ ∂c Qc can be differentiated with respect to c. Precise estimates on

∂d(V1( · − de⃗1)V−1( · + de⃗1))|d=dc

can be found in Lemma 2.6 of [14]. Furthermore, we changed, in the area of the integrals, d̃c to dc (they
are close when c → 0, see (2-3)).
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Proof. Step 1: changing the integrand but not the integration domain. Take a function ϕ ∈ H exp,s
Qc

satisfying

Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

∂d(V1( · − de⃗1)V−1( · + de⃗1))|d=dc ϕ̄ = Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

∂x2 Qc ϕ̄ = 0,

Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

i Qc ϕ̄ = 0.

Let us show that it satisfies (1/K )∥ϕ∥
2
H exp

Qc
⩾ Bexp

Qc
(ϕ)⩾ K∥ϕ∥H exp

Qc
. For µ ∈ R, we define

ϕ∗
= ϕ+ c2µ∂c Qc.

We have that ∂c Qc ∈ H exp,s
Qc

. We want to choose µ∈ R such that ϕ∗ satisfies the hypothesis of Theorem 2.5.
By the symmetries of Section 2A3 and the hypotheses on ϕ, we have that

Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

i Qc ϕ∗ = Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

∂x2 Qc ϕ∗ = 0,

and we compute, using

Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

∂d
(
V1( · − de⃗1)V−1( · + de⃗1)

)
|d=dc

ϕ̄ = 0,

that

Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

c2∂c Qc ϕ∗

= Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

c2∂c Qc ϕ̄+µRe

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

c4
|∂c Qc|

2

= Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

(
c2∂c Qc − ∂d(V1( · − de⃗1)V−1( · + de⃗1))|d=dc

)
ϕ̄

+µRe

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

c4
|∂c Qc|

2.

By Theorem 1.6 (for p = +∞) and Lemma 2.6 of [14], we have∥∥c2∂c Qc − ∂d
(
V1( · − de⃗1)V−1( · + de⃗1)

)
|d=dc

∥∥
L∞(R2)

= oc→0(1),

and also that there exists a universal constant K > 0 (we recall that R > 0 is a universal constant) such
that

1
K

⩽Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

c4
|∂c Qc|

2 ⩽ K .

Now, taking

µ=
−Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

(
c2∂c Qc − ∂d(V1( · − de⃗1)V−1( · + de⃗1))|d=dc

)
ϕ̄

Re
∫

B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)
c4|∂c Qc|

2 ,

we have
Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

c2∂c Qc ϕ∗ = 0,

with
|µ| ⩽ oc→0(1)∥ϕ∥L2(B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)) ⩽ oc→0(1)∥ϕ∥H exp

Qc
.
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Since ∂c Qc ∈ H exp,s
Qc

by Lemma 2.8 of [15], we deduce that ϕ∗ satisfies all the hypotheses of Theorem 2.5;
therefore

1
K

∥ϕ∗
∥

2
H exp

Qc
⩾ Bexp

Qc
(ϕ∗)⩾ K∥ϕ∗

∥
2
H exp

Qc
.

Now, from Lemma 6.3 of [15], we have 1/K ⩽ ∥c2∂c Qc∥H exp
Qc

⩽ K for a universal constant K > 0. With
|µ| ⩽ oc→0(1)∥ϕ∥H exp

Qc
, we deduce that, taking c > 0 small enough,

1
K

∥ϕ∥
2
H exp

Qc
⩾ Bexp

Qc
(ϕ∗)⩾ K∥ϕ∥

2
H exp

Qc

for some universal constant K > 0. Now, we have the decomposition (using Lemmas 6.2 and 6.3 of [15])

Bexp
Qc
(ϕ∗)= Bexp

Qc
(ϕ+ c2µ∂c Qc)

= Bexp
Qc
(ϕ)+ 2c2µ⟨L Qc(∂c Qc), ϕ⟩ + c4µ2 Bexp

Qc
(∂c Qc),

and by Lemmas 2.8, 5.4 and 6.1 of [15],

|⟨L Qc(∂c Qc), ϕ⟩| = |⟨i∂x2 Qc, ϕ⟩| ⩽ K ln
(1

c

)
∥ϕ∥H exp

Qc
;

hence
|2c2µ⟨L Qc(∂c Qc), ϕ⟩| ⩽ K c2 ln

(1
c

)
|µ|∥ϕ∥H exp

Qc
⩽ oc→0(1)∥ϕ∥

2
H exp

Qc
.

By Proposition 1.2 of [15], Bexp
Qc
(∂c Qc)= (2π + oc→0(1))/c2; thus

|c4µ2 Bexp
Qc
(∂c Qc)| ⩽ oc→0(1)∥ϕ∥

2
H exp

Qc
,

which concludes the proof of (1/K )∥ϕ∥
2
H exp

Qc
⩾ Bexp

Qc
(ϕ)⩾ K∥ϕ∥

2
H exp

Qc
by taking c > 0 small enough.

Step 2: Changing the integration domain. To change the conditions

Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

∂d(V1( · − de⃗1)V−1( · + de⃗1))|d=dc ϕ̄ = Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

∂x2 Qc ϕ̄ = 0,

Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

i Qc ϕ̄ = 0

to

Re

∫
B(dc e⃗1,R)∪B(−dc e⃗1,R)

∂d(V1( · − de⃗1)V−1( · + de⃗1))|d=dc ϕ̄ = Re

∫
B(dc e⃗1,R)∪B(−dc e⃗1,R)

∂x2 Qc ϕ̄ = 0,

Re

∫
B(dc e⃗1,R)∪B(−dc e⃗1,R)

i Qc ϕ̄ = 0,

we use similar arguments, using |dc − d̃c| = oc→0(1) by (2-3). We check for instance that∣∣∣∣Re

∫
B(d̃c e⃗1,R)∪B(−d̃c e⃗1,R)

∂x2 Qc ϕ̄−Re

∫
B(dc e⃗1,R)∪B(−dc e⃗1,R)

∂x2 Qc ϕ̄

∣∣∣∣ ⩽ K (R)|dc − d̃c|∥ϕ∥H exp
Qc

and |dc − d̃c| = oc→0(1).
Notice that the integration domain remains symmetric with respect to the x2-axis. □
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2B. Proof of Proposition 1.8. In this subsection, we take ν ∈ ]0, 1[ to be a small but universal constant,
which will be fixed at the end of the proof. We take

λ∗ = max
(

3R + 1,
1
ν2

)
in the statement of Proposition 1.8 (where R > 0 is defined in Corollary 2.6). Then, for any λ⩾ λ∗, we
take

ε(λ)= min
(
ν,

1
10λ2 + 100

)
in the statement of Proposition 1.8. The condition ε(λ)⩽ 1/(10λ2

+ 100) is required only to make sure
that the two balls B(de⃗1, 2λ) and B(−de⃗1, 2λ) are disjoint and at a distance at least 1 from one another.
This will be used only in the proof of Lemma 2.8.

We take u a function satisfying the hypotheses of Proposition 1.8 for these values of λ∗, λ and ε(λ). In
the rest of the subsection, K , K ′ > 0 denote universal constants, independent of any parameters of the
problem (in particular, λ, λ∗, ε(λ) and ν).

2B1. Modulation on the parameters of the branch. From Theorem 1.1 and the end of Section 4.6 of [14],
we have that Qc = V1( · − dce⃗1)V−1( · + dce⃗1)+0c, with dc = (1 + oc→0(1))/c, ∥0c∥L∞ → 0, and

c 7→ dc ∈ C1(]0, c0[,R),

with ∂cdc ∼ −1/c2 for c → 0 (see Section 4.6 of [14]). In particular, c 7→ dc is a smooth decreasing
diffeomorphism from ]0, c0] onto [d0,+∞[, and thus, given d > 1/ν > d0 (for ν small enough), there
exists a unique c′ > 0 such that dc′ = d . In addition, c′

∼d→∞ 1/d ⩽ Kν. Furthermore,

u(x)− Qc′(x)= V1(x − de⃗1)V−1(x + de⃗1)+0(x)− V1(x − dc′ e⃗1)V−1(x + dc′ e⃗1)−0c′(x)

= 0(x)−0c′(x).

From the hypotheses on 0, and the fact that ∥0c′∥L∞(R2) ⩽ 2ν (since c′ ⩽ 2/d ⩽ 2ν), we deduce that (we
write r̃ = r̃d = r̃dc′

to simplify the notation)

∥u − Qc′∥L∞({r̃⩽2λ}) ⩽ Kν.

Since (1 + oc′→0(1))/c′
= dc′ = d by Theorem 1.6, and |dc − 1| ⩽ ν, we have

d|c − c′
| ⩽ Kν. (2-5)

We now claim that, for a universal constant K > 0,

∥u − Qc′∥C1({r̃⩽λ}) ⩽ Kν. (2-6)

That is, u is close to Qc′ near the vortices (in the region {r̃ ⩽ λ}) in the C1 norm and not only in L∞. In
order to show this, we use the elliptic equation satisfied by u − Qc′ , that is,

1(u − Qc′)= −ic∂x2(u − Qc′)− (u − Qc′)(1 − |u|
2)+ (|u|

2
− |Qc′ |

2)Qc′ .
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Let us fix x ∈ {r̃ ⩽ λ}. We have ∥u − Qc′∥L∞({r̃⩽2λ}) ⩽ K ′ν by hypothesis; thus the right-hand side of the
equation is small in H−1(B(x, 4)). By a standard H 1

− H−1 estimate, we deduce

∥u − Qc′∥H1(B(x,3)) ⩽ K ′ν.

Then, the right-hand side is small in L2, and standard L2 elliptic regularity yields first

∥u − Qc′∥H2(B(x,2)) ⩽ K ′ν

and then

∥u − Qc′∥H3(B(x,1)) ⩽ K ′ν,

and we conclude by Sobolev imbedding.
Outside of this domain, u and Qc′ are close only in modulus. Indeed, by equation (2.6) of [15]

(
for

σ =
1
2

)
and the hypotheses on u, we have for a universal constant K > 0 that on {r̃ ⩾ λ},

∣∣|u| − |Qc′ |
∣∣ ⩽ ∣∣|u| − 1

∣∣ + ∣∣|Qc′ | − 1
∣∣ ⩽ ν+

K
λ3/2 ⩽ K ′ν.

Now, we modulate on the parameters of the family of traveling waves to get the orthogonality conditions
of Corollary 2.6. For c′′ > 0 close enough to c′ and X, γ ∈ R, we define

Q := Qc′′( · − Xe⃗2)e
iγ . (2-7)

Lemma 2.7. There exist K > 0, ν0 > 0 universal constants such that, for u satisfying the hypotheses of
Proposition 1.8 for values of λ∗, λ, ε(λ), ν described above, if ν ⩽ ν0, then there exists c′′ > 0, X, γ ∈ R

such that, for R > 0 defined in Corollary 2.6, and d⃗± := ±dc′′ e⃗1 + Xe⃗2,

Re

∫
B(d⃗+,R)∪B(d⃗−,R)

∂d
(
V1( · − de⃗1 − Xe⃗2)V−1( · + de⃗1 − Xe⃗2)e

iγ )
|d=dc′′

(u − Q)

= Re

∫
B(d⃗+,R)∪B(d⃗−,R)

∂x2 Q(u − Q)= Re

∫
B(d⃗+,R)∪B(d⃗−,R)

i Q(u − Q)= 0.

Furthermore,
|c′′

− c′
|

c′2 + |X | + |γ | ⩽ Kν.

Proof. To simplify the notation, in this proof, we define

∂d V := ∂d
(
V1( · − de⃗1 − Xe⃗2)V−1( · + de⃗1 + Xe⃗2)e

iγ )
|d=dc′′

.

We will keep the notation r̃ for the minimum of the distance to the zeros of Q.
First, from equation (7.5) of [15], there exists a universal constant K > 0 such that, for c′′ < c0,

c′/2 ⩽ c′′ ⩽ 2c′,

∥Q − Qc′∥L∞(R2) ⩽ K
(
|X | +

|c′′
− c′

|

c′2 + |γ |

)
. (2-8)
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Now, we follow closely the proof of Lemma 7.6 of [15], which is done in Appendix C.3 there. We define

G

 X
c′′

γ

 :=

Re
∫

B(d⃗+,R)∪B(d⃗−,R)
∂x2 Q(u − Q)

Re
∫

B(d⃗+,R)∪B(d⃗−,R)
∂d V (u − Q)

Re
∫

B(d⃗+,R)∪B(d⃗−,R)
i Q(u − Q)

 .

Note that Q, ∂d V and d⃗± all depend on X and c′′, and Q depends also on γ . From (2-6) and the fact
that λ⩾ λ∗ > 2R, we have ∥u − Qc′∥L∞({r̃⩽R}) ⩽ Kν, and from Theorem 1.6 with p = +∞, as well as
Lemma 2.6 of [14],

∥∂x2 Qc′∥L∞(R2) + ∥∂d V ∥L∞(R2) + ∥i Qc′∥L∞(R2) ⩽ K (2-9)

for some universal constant K > 0. Therefore, since Q = Qc′ for X = γ = 0, c′′
= c′, we obtain∣∣∣∣∣∣G

 0
c′

0

∣∣∣∣∣∣ ⩽ K∥u − Qc′∥L∞({r̃⩽λ}) ⩽ Kν.

We want to show that G is invertible in a vicinity of (0 c′ 0)⊤. With (2-6) and (2-8), we check that (we
recall that r̃ = min(|x − d⃗+|, |x − d⃗−|))

∥u − Q∥L∞({r̃⩽2R}) ⩽ ∥u − Qc′∥L∞({r̃⩽2R}) + ∥Q − Qc′∥L∞(R2)

⩽ Kν+ K
(
|X | +

|c′′
− c′

|

c′2 + |γ |

)
,

and as in Lemma 7.1 of [15], this implies

∥u − Q∥C1({r̃⩽R}) ⩽ Kν+ K
(
|X | +

|c′′
− c′

|

c′2 + |γ |

)
. (2-10)

Now, we compute∣∣∣∣∂X

(
Re

∫
B(d⃗+,R)∪B(d⃗−,R)

∂x2 Q(u − Q)
)

−

∫
B(d⃗+,R)∪B(d⃗−,R)

|∂x2 Q|
2
∣∣∣∣

⩽
∫
∂B(d⃗+,R)∪∂B(d⃗−,R)

|∂x2 Q(u − Q)| +
∫

B(d⃗+,R)∪B(d⃗−,R)
|∂2

x2
Q(u − Q)|.

Therefore, with (2-1) and (2-10), we check that∫
∂B(d⃗+,R)∪∂B(d⃗−,R)

|∂x2 Q(u − Q)| +
∫

B(d⃗+,R)∪B(d⃗−,R)
|∂2

x2
Q(u − Q)| ⩽ Kν+ K

(
|X | +

|c′′
− c′

|

c′2 + |γ |

)
;

hence∣∣∣∣∂X

(
Re

∫
B(d⃗+,R)∪B(d⃗−,R)

∂x2 Q(u−Q)
)

−

∫
B(d⃗+,R)∪B(d⃗−,R)

|∂x2 Q|
2
∣∣∣∣⩽ Kν+K

(
|X |+

|c′′
−c′

|

c′2 +|γ |

)
.
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With similar computations, using Lemma 2.6 of [14], (2-1) and (2-10), we infer that∣∣∣∣∣∣∣∂X G −


∫

B(d⃗+,R)∪B(d⃗−,R)
|∂x2 Q|

2

Re
∫

B(d⃗+,R)∪B(d⃗−,R)
∂d V ∂x2 Q

Re
∫

B(d⃗+,R)∪B(d⃗−,R)
i Q∂x2 Q


∣∣∣∣∣∣∣ ⩽ Kν+ K

(
|X | +

|c′′
− c′

|

c′2 + |γ |

)
.

By the symmetries of Q( · + Xe⃗2)e
−iγ and ∂d V ( · + Xe⃗2)e

−iγ, we have that

Re

∫
B(d⃗+,R)∪B(d⃗−,R)

∂d V ∂x2 Q = 0,

and from Theorem 1.6 (with p = +∞), with the symmetries of Qc and V1 (see Sections 2A1 and 2A3),
we have ∣∣∣∣Re

∫
B(d⃗+,R)∪B(d⃗−,R)

i Q∂x2 Q − 2Re

∫
B(0,R)

iV1∂x2 V1

∣∣∣∣ ⩽ K
(
|X | +

|c′′
− c′

|

c′2

)
.

By decomposition in harmonics and Lemma 2.1, we check easily that Re
∫

B(0,R) iV1∂x2 V1 = 0; thus∣∣∣∣∣∣∂X G −


∫

B(d⃗+,R)∪B(d⃗−,R)
|∂x2 Q|

2

0
0

∣∣∣∣∣∣ ⩽ Kν+ K
(
|X | +

|c′′
− c′

|

c′2 + |γ |

)
.

Similarly, we check that (using ∂c(dc)= (−1 + oc→0(1))/c2 from Section 4.6 and Lemma 2.6 of [14])∣∣∣∣∣∣c′2∂c′′ G −

 0∫
B(d⃗+,R)∪B(d⃗−,R)

|∂d V |
2

0

∣∣∣∣∣∣ ⩽ Kν+ K
(
|X | +

|c′′
− c′

|

c′2 + |γ |

)

(we use here the fact that c 7→ ∂d V and c 7→ d⃗± are differentiable) and∣∣∣∣∣∣∂γG −

 0
0

−
∫

B(d⃗+,R)∪B(d⃗−,R)
|Q|

2

∣∣∣∣∣∣ ⩽ Kν+ K
(
|X | +

|c′′
− c′

|

c′2 + |γ |

)
.

From (2-1) and Theorem 1.6 (for p = +∞) as well as Lemma 2.6 of [14], there exists a universal constant
K > 0 such that

1
K

⩽
∫

B(d⃗+,R)∪B(d⃗−,R)
|∂x2 Q|

2 ⩽ K ,

1
K

⩽
∫

B(d⃗+,R)∪B(d⃗−,R)
|∂d V |

2 ⩽ K ,

1
K

⩽
∫

B(d⃗+,R)∪B(d⃗−,R)
|Q|

2 ⩽ K ,

provided |X | + c′′ is small enough. We deduce that there exists K1, K2, ν0 > 0 such that, for 0< ν ⩽ ν0

and u satisfying the hypotheses of Proposition 1.8 with the parameters λ, ν, dG is invertible in the ball{
(X, c′′, γ ) ∈ R3

: |X | +
|c′′

− c′
|

c′2 + |γ | ⩽ K1ν

}
,
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and there exists X , c′′, γ ∈ R such that

G

 X
c′′

γ

 = 0,

with
|c′′

− c′
|

c′2 + |X | + |γ | ⩽ K2ν. □

2B2. Construction and properties of the perturbation term. We define η a smooth cutoff function with

η(x)=

{
0 for x ∈ B(d⃗±, 2R),
1 for x ∈ R2

\B(±d⃗±, 2R + 1),

which is even in x1. We infer the following result, where the space H exp,s
Q is simply defined by

H exp,s
Q := {ϕ ∈ H 1

loc(R
2,C) : ∥ϕ∥H exp

Q
<+∞ for all (x1, x2) ∈ R2, ϕ(−x1, x2)= ϕ(x1, x2)},

with, for r̃ the minimum of the distances to the zeros of Q, ϕ = Qψ ,

∥ϕ∥
2
H exp

Q
:= ∥ϕ∥

2
H1({r̃⩽10})

+

∫
{r̃⩾5}

|∇ψ |
2
+Re2(ψ)+

|ψ |
2

r̃2 ln2 r̃
,

and Bexp
Q has the same definition as Bexp

Qc
, replacing η̃ by η and Qc by Q.

Lemma 2.8. There exist K1, K2 > 0, ν0 > ν1 > 0 universal constants such that, for u satisfying the
hypotheses of Proposition 1.8 for values of λ∗, λ, ε(λ), ν described above, if ν ⩽ ν1, then there exists a
function ϕ = Qψ ∈ H exp,s

Q ∩ C1(R2,C) such that, for Q defined in (2-7) with the values of c′′, X, γ ∈ R

from Lemma 2.7,
u − Q = (1 − η)ϕ+ ηQ(eψ − 1).

Furthermore,
Bexp

Q (ϕ)⩾ K1∥ϕ∥
2
H exp

Q

and
∥ϕ∥C1({r̃⩽λ}) + ∥Re(ψ)∥L∞({r̃⩾λ}) ⩽ K2ν.

The goal of this lemma is to decompose the error u − Q into a particular form. In the area {η= 1}, that
is, far from the zeros of Q, the error is written in an exponential form: u = Qeψ. This form was already
used in [14; 15], and it is useful to have a particular form on the cubic error terms. Furthermore, we fix the
parameters of Q such that ϕ satisfies the orthogonality conditions of Corollary 2.6, yielding the coercivity.

Note that we have no smallness on Im(ψ) in {r̃ ⩾ λ}, where ϕ = Qψ . We will simply be able to show
that it is bounded (see (2-11) below), with no a priori bound on it. This lack of smallness is one of the
main difficulties in the proof of Proposition 1.8. Analogously, we show that ϕ ∈ H exp,s

Q , but we have no
good control on ∥ϕ∥H exp

Q
: this quantity might be a priori very large at this point.

Proof. This proof follows some ideas of the proofs of Lemmas 7.2 and 7.3 of [15]. First, in the area
{r̃ ⩽ λ}, the proof is identical to that of Lemma 7.2 of [15] for the existence of ϕ = Qψ ∈ C1({r̃ ⩽ λ},C)

such that u − Q = (1 − η)ϕ+ ηQ(eψ − 1) in {r̃ ⩽ λ}, with ∥ϕ∥C1({r̃⩽λ}) ⩽ Kν (this is a consequence of
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the estimate ∥u − Q∥C1({r̃⩽λ}) ⩽ Kν, obtained using Lemma 2.7). The main idea is that u − Q is small
there (in C1({r̃ ⩽ λ},C)), and the equation on ϕ is a perturbation of the identity for functions ϕ that are
small in C1({r̃ ⩽ λ},C). In particular, since u and Q are symmetric with respect to the x2-axis, ϕ and ψ
are also symmetric with respect to the x2-axis.

We then focus our attention in the area {r̃ ⩾ λ}, where η≡ 1, so that the problem reduces to the equation

u = Qeψ .

By Theorem 1.6 and the hypotheses of Proposition 1.8, there exists ν1 > 0 such that, if ν ⩽ ν1, then, as a
consequence of

ε(λ)⩽ min
(
ν1,

1
10λ2 + 100

)
,

the domain {r̃ ⩾ λ} consists of the complement of the two disjointed disks B(d⃗±, λ), with

|Q| ⩾ 1
2 , |u| ⩾ 1

2 in {r̃ ⩾ λ}

and
deg(Q, ∂B(d⃗±, λ))= deg(u, ∂B(d⃗±, λ))= ±1,

so that u/Q is smooth in {r̃ ⩾ λ} = R2
\ (B(d⃗+, λ)∪ B(d⃗−, λ)), does not vanish and has degree zero on

the two circles ∂B(d⃗±, λ). It then follows from standard lifting theorems (even though {r̃ ⩾ λ} is not
simply connected) that there exists ψ†

∈ C1({r̃ ⩾ λ}) such that eψ
†
= u/Q, as wished. We then notice that

u and Q are symmetric with respect to the x2-axis; thus x 7→ ψ†(−x1, x2) is also a lifting of u/Q in the
connected set {r̃ ⩾ λ}, which implies that there exists q ∈ Z such that ψ†(−x1, x2)= ψ†(x1, x2)+ 2iqπ
in {r̃ ⩾ λ}. Letting x1 = 0, we obtain q = 0; ψ† is also symmetric with respect to the x2-axis.

Recalling that ψ := ϕ/Q in the set {λ ⩽ r̃ ⩽ 2λ} (where Q does not vanish), we see that, since
η ≡ 1 there, the equation u − Q = (1 − η)ϕ+ ηQ(eψ − 1) becomes u = Qeψ. We then infer that there
exists m ∈ Z such that ψ = ψ†

+ 2imπ in the connected annulus B(d⃗+, 2λ) \ B(d⃗+, λ). By symmetry
in x1, this is also true in the annulus B(d⃗−, 2λ) \ B(d⃗−, λ). It then suffices to extend ψ by the formula
ψ = ψ†

+ 2imπ in {r̃ ⩾ λ} to obtain the formula u − Q = (1 −η)ϕ+ηQ(eψ − 1). In the region {r̃ ⩾ λ},
the relation u = Qeψ yields

eRe(ψ)
=

∣∣∣∣ u
Q

∣∣∣∣;
thus, taking the decomposition∣∣∣∣ u

Q

∣∣∣∣ = 1 + |u| − 1 +
(|u| − 1)− (|Q| − 1)

|Q|
,

since there exists a universal constant K ′ > 0 such that in this region∣∣∣∣|u| − 1 +
(|u| − 1)− (|Q| − 1)

|Q|

∣∣∣∣ ⩽ K ′ν,

we deduce that, for ν ⩽ ν1with ν1 small enough,

∥Re(ψ)∥L∞({r̃⩾λ}) ⩽ Kν.
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Since u is a traveling wave and E(u) < +∞, u converges to a constant at infinity (uniformly in all
directions) by [24]. Therefore, u/Q converges to a constant at infinity, and the function ψ converges to a
constant, and thus it is bounded near infinity, that is,

∥ψ∥L∞({r̃⩾λ}) <+∞. (2-11)

Now, we want to show that ϕ ∈ H exp,s
Q . We already know that ϕ satisfies the symmetry,

for all (x1, x2) ∈ R2, ϕ(−x1, x2)= ϕ(x1, x2).

Furthermore, to check that ∥ϕ∥H exp
Q
<+∞, since ϕ ∈ C1(R2,C), we only have to check the integrability

in {r̃ ⩾ λ}, where eψ = u/Q. We check that there, with (2-11),∫
{r̃⩾λ}

|ψ |
2

r̃2 ln2(r̃)
<+∞.

Now, using Theorem 11 of [24] (we recall that E(u) <+∞, E(Q) <+∞),

|eRe(ψ)
− 1| =

∣∣|u| − |Q|
∣∣

|Q|
⩽ 2

(∣∣|u| − 1
∣∣ + ∣∣|Q| − 1

∣∣) ⩽ K (u, c, Q, c′′)

(1 + r)2
,

where K (u, c, Q, c′′) > 0 is a constant depending on u, c, c′′ and Q; hence

|Re(ψ)| ⩽
K (u, c, Q, c′′)

(1 + r)2

and ∫
{r̃⩾λ}

Re2(ψ)⩽
∫

{r̃⩾λ}

K (u, c, Q, c′′)

(1 + r)4
<+∞.

We finally compute

∇ψ =
∇u
u

−
∇Q
Q
,

and with Theorem 11 of [24], in {r̃ ⩾ λ}, we deduce that

(1 + r)2|∇ψ | ⩽ (1 + r)2
∣∣∣∣∇u

u

∣∣∣∣ + (1 + r)2
∣∣∣∣∇Q

Q

∣∣∣∣ ⩽ K (u, c, Q, c′′);

therefore ∫
{r̃⩾λ}

|∇ψ |
2 <+∞.

This concludes the proof that ϕ = Qψ ∈ H exp,s
Q . The fact that Bexp

Q (ϕ)⩾ K∥ϕ∥
2
H exp

Q
is a consequence of

Corollary 2.6 and Lemma 2.7, using in particular that

Bexp
Q (ϕ)= Bexp

Qc′′
(ϕ( · + Xe⃗2)e

−iγ ) and ∥ϕ∥H exp
Q

= ∥ϕ( · + Xe⃗2)e
−iγ

∥H exp
Qc′′
. □

We now compute the equation satisfied by ϕ. By Lemma 2.8, in {0< η < 1} = {2R < r̃ < 2R +1}, we
have |Re(ψ)| = |Re(ϕ/Q)| ⩽ Kν uniformly; thus |eRe(ψ)

− 1| ⩽ Kν uniformly in this region and then
|(1 − η)+ ηeψ | ⩾ 1

2 for ν ⩽ ν1, possibly diminishing ν1 of Lemma 2.8.
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Lemma 2.9. For u satisfying the hypotheses of Proposition 1.8 for values of λ∗, λ, ε(λ), ν described
above, if ν ⩽ ν1 (where ν1 is defined in Lemma 2.8), then the function ϕ = Qψ defined in Lemma 2.8
satisfies the equation

L Q(ϕ)− i(c − c′′)e⃗2.H(ψ)+ NLloc(ψ)+ F(ψ)= 0,

with L Q the linearized operator around Q: L Q(ϕ)= −1ϕ− ic′′∂x2ϕ− (1 − |Q|
2)ϕ+ 2Re(Qϕ)Q,

S(ψ) := e2Re(ψ)
− 1 − 2Re(ψ),

F(ψ) := Qη(−∇ψ.∇ψ + |Q|
2S(ψ)),

H(ψ) := ∇Q +
∇(Qψ)(1 − η)+ Q∇ψηeψ

(1 − η)+ ηeψ

and NLloc(ψ) is a sum of terms at least quadratic in ψ , localized in the area where η ̸= 1. Furthermore,

|⟨NLloc(ψ), Qψ⟩| ⩽ K∥ NLloc(ψ)∥L2({η<1})∥ϕ∥L∞({η<1}) ⩽ Kν∥ϕ∥
2
H1({η ̸=1})

.

Notice that F(ψ) (the notation X.Y for complex vector fields stands for X1Y1 + X2Y2) contains all the
nonlinear terms far from the zeros of Q, and its structure relies on the fact that the error is written in an
exponential form far from the vortices. Close to the zeros of Q, this particular form does not hold, but it
will not be necessary, since there the error ϕ is small in the C1 norm, whereas, at infinity, it is small only
in a weaker norm.

Proof. The proof is identical to the proof of Lemma 7.5 of [15], and it is in the particular case where all
the speeds are along e⃗2. The proof consists simply of decomposing the equation

0 = (TWc)(u)= TWc(Q + (1 − η)ϕ+ ηQ(eψ − 1))

into the different terms.
The last estimate uses Lemmas 2.8 and 2.7. □

This result shows in particular that ψ ∈ C2({η ̸= 0},C), and we can check with it, as in Lemma 7.3
of [15], that ∥1ψ(1 + r)2∥L∞({r̃⩾λ}) ⩽ K (u, Q, c, c′′).

We now infer a critical estimate on the differences of the speeds of the problem, namely c (the speed
of u) and c′′ (the speed of Q). The method for the estimate has been used in [15] (we take the scalar
product of the equation of Lemma 2.9 with ∂c Q), but since we have worse estimates on the error term,
we need to be more careful (∥ϕ∥H exp

Q
is not a priori small at this point).

Lemma 2.10. There exist universal constants K > 0, ν1 ⩾ ν2 > 0 (where ν1 is defined in Lemma 2.8),
such that, for u satisfying the hypotheses of Proposition 1.8 for values of λ∗, λ, ε(λ), ν described above, if
ν ⩽ ν2, then, with ϕ = Qψ defined in Lemma 2.8, we have

|c′′
− c| ⩽ K

√
c′′∥ϕ∥H exp

Q
.

Proof. First, from (2-5) and Lemma 2.7, taking ν > 0 small enough, we have

|c′′
− c| ⩽ |c′′

− c′
| + |c′

− c| ⩽ K c′′. (2-12)
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We will show the estimate

|c′′
− c| ⩽ K

(
c′′2 ln

( 1
c′′

)
∥ϕ∥H exp

Q
+ ∥ϕ∥

2
H exp

Q

)
+ K |c′′

− c|∥ϕ∥H exp
Q
. (2-13)

This is related to equation (7.13) of [15] (its proof is in Step 1 in Section 7.3.1 of [15]). With both
estimates, we can conclude the proof of this lemma. Indeed, either ∥ϕ∥H exp

Q
⩾

√
c′′, and in that case

|c′′
− c| ⩽ K c′′ ⩽ K

√
c′′∥ϕ∥H exp

Q
,

or ∥ϕ∥H exp
Q

⩽
√

c′′, and then with (2-13),

|c′′
− c| ⩽ K

(
c′′2 ln

( 1
c′′

)
∥ϕ∥H exp

Q
+ ∥ϕ∥

2
H exp

Q

)
+ K |c′′

− c|∥ϕ∥H exp
Q

⩽ K
√

c′′∥ϕ∥H exp
Q

+ C2
√

c′′|c′′
− c|.

Therefore, for c′′ > 0 small enough such that C2
√

c′′ < 1
2 (which is implied by taking ν > 0 small enough,

independently of λ), we have |c′′
− c| ⩽ K

√
c′′∥ϕ∥H exp

Q
.

We now focus on the proof of (2-13). We take the scalar product of the equation

L Q(ϕ)− i(c − c′′)e⃗2.H(ψ)+ NLloc(ψ)+ F(ψ)= 0,

with c′′2∂c′′ Q. We estimate, as in Section 7.3.1 of [15], that

|⟨L Q(ϕ), c′′2∂c′′ Q⟩| = c′′2
|⟨ϕ, L Q(∂c′′ Q)⟩| = c′′2

|⟨ϕ, i∂x2 Q⟩| ⩽ K c′′2 ln
( 1

c′′

)
∥ϕ∥H exp

Q
.

We recall that

i e⃗2.H(ψ)= i∂x2 Q + i
∂x2(Qψ)(1 − η)+ Q∂x2ψηe

ψ

(1 − η)+ ηeψ
,

and we check that (estimating the local terms in the area where η ̸= 1 by Cauchy–Schwarz and
∥c′′2∂c′′ Q∥L∞(R2) ⩽ K from Theorem 1.6 for p = +∞ and Lemma 2.6 of [14])

|(c − c′′)⟨i e⃗2.H(ψ), c′′2∂c′′ Q⟩ − (c − c′′)⟨i∂x2 Q, c′′2∂c′′ Q⟩|

⩽ K (|c − c′′
|∥ϕ∥H1({η ̸=1}) + |(c − c′′)⟨ηQi∂x2ψ, c′′2∂c′′ Q⟩|)

⩽ K (|c − c′′
|∥ϕ∥H exp

Q
+ |(c − c′′)⟨ηQi∂x2ψ, c′′2∂c′′ Q⟩|).

We recall from Section 7.3.1 of [15] (using decay estimates on c′′2∂c′′ Q Q and integrations by parts), that

|(c − c′′)⟨ηQi∂x2ψ, c′′2∂c′′ Q⟩| ⩽ K |c − c′′
|∥ϕ∥H exp

Q

and, from Proposition 1.2 of [15] (we check easily that the translation and phase on Q instead of Qc′′ do
not change the computation),

(c − c′′)⟨i∂x2 Q, c′′2∂c′′ Q⟩ = (2π + oc′′→0(1))(c − c′′)= (2π + oν→0(1))(c − c′′).

We deduce that, taking ν > 0 small enough (independently of λ), that

|c − c′′
| ⩽ K c′′2 ln

( 1
c′′

)
∥ϕ∥H exp

Q
+ K |c − c′′

|∥ϕ∥H exp
Q

+ K |⟨NLloc(ψ)+ F(ψ), c′′2∂c′′ Q⟩|.
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We take ν2 > 0 with ν2 ⩽ ν1 such that all the above conditions on the smallness of ν are satisfied if
ν ⩽ ν2. Since NLloc(ψ) contains terms at least quadratic in ϕ, ∥ϕ∥C1({η ̸=1}) ⩽ C3ν from Lemma 2.8 and
∥c′′2∂c′′ Q∥L∞(R2)⩽ K , we obtain that for ν⩽ν2, diminishing ν2 if necessary so that ∥ϕ∥C1({η ̸=1})⩽ Kν⩽1,

|⟨NLloc(ψ), c′′2∂c′′ Q⟩| ⩽ K∥ϕ∥
2
H1({η ̸=1})

⩽ K∥ϕ∥
2
H exp

Q
.

Finally, we estimate, using ∥c′′2∂c′′ Q∥L∞(R2) ⩽ K ,

|⟨Qη∇ψ.∇ψ, c′′2∂c′′ Q⟩| ⩽ K
∫

R2
η|∇ψ |

2
∥c′′2∂c′′ Q∥L∞(R2) ⩽ K∥ϕ∥

2
H exp

Q
.

Similarly, since ∥ηRe(ψ)∥L∞({r̃⩾λ}) ⩽ Kν by Lemma 2.8, diminishing ν2 if necessary, for ν ⩽ ν2, we
have ∥ηRe(ψ)∥L∞({r̃⩾λ}) ⩽ 1, and hence

|Qη|Q|
2S(ψ)| = |Qη|Q|

2(e2Re(ψ)
− 1 − 2Re(ψ))| ⩽ KηRe2(ψ).

Therefore

|⟨Qη|Q|
2S(ψ), c′′2∂c′′ Q⟩| ⩽ K

∫
R2
ηRe2(ψ)∥c′′2∂c′′ Q∥L∞(R2) ⩽ K∥ϕ∥

2
H exp

Q
.

This concludes the proof of (2-13), and therefore of the lemma. □

2B3. Proof of Proposition 1.8 completed. We take u satisfying the hypotheses of Proposition 1.8 for
values of λ∗, λ, ε(λ), ν described above, with ν ⩽ ν2, where ν2 is defined in Lemma 2.10. We want to
take the scalar product of the equation of Lemma 2.9 with ϕ. It is however not clear at this point that
every term is integrable. In Section 7.3 of [15], we took the scalar product of the equation with ϕ+ iγ Q
for some γ ∈ R, using a decay estimate ∥ Im(ψ + iγ )(1 + r)∥L∞({r̃⩽λ}) ⩽ K (u, Q, c, c′′) to justify that
some terms are well-defined, and to do some integration by parts. Here, we need to change our approach
a little. We first require better decay estimates on ψ . At this stage, we know (see Theorem 11 of [24] and
the proof of Lemma 2.8) that

∥1ψ(1 + r)2∥L∞({r̃⩾λ}) + ∥(1 + r)2∇ψ∥L∞({r̃⩾λ})

+ ∥ψ∥L∞({r̃⩾λ}) + ∥(1 + r)2 Re(ψ)∥L∞({r̃⩾λ}) ⩽ K (u, Q, c, c′′).

Now, let us show the following improvements:

∥ Im(1ψ)(1 + r)3∥L∞({r̃⩾λ}) + ∥(1 + r)3 Re(∇ψ)∥L∞({r̃⩾λ}) ⩽ K (u, Q, c, c′′). (2-14)

The proof of ∥(1 + r)3|Re(∇ψ)|∥L∞({r̃⩾λ}) ⩽ K (u, Q, c, c′′) is identical to the one for the same result in
Lemma 7.3 of [15] (see the penultimate estimate of its proof). We focus on the estimate on Im(1ψ). In
{r̃ ⩾ λ}, we have u = Qeψ ; therefore,

1ψ = −
1Q
Q

+
1u
u

− 2
∇Q
Q
.∇ψ − ∇ψ.∇ψ.

With the previous estimates and Theorem 11 of [24], we have∥∥∥∥(
−2

∇Q
Q
.∇ψ − ∇ψ.∇ψ

)
(1 + r)4

∥∥∥∥
L∞({r̃⩾λ})

⩽ K (u, Q, c, c′′),
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and since (TWc′′)(Q)= 0,
1Q
Q

= ic′′
∂x2 Q

Q
− (1 − |Q|

2);

therefore, with [24] (E(Q) <+∞),∣∣∣∣Im(
1Q
Q

)∣∣∣∣ ⩽ c′′

∣∣∣∣Re

(
∂x2 Q

Q

)∣∣∣∣ ⩽ K (Q, c′′)

(1 + r)3
.

Similarly, since (TWc)(u)= 0 and E(u) <+∞,∣∣∣∣Im(
1u
u

)∣∣∣∣ ⩽ c
∣∣∣∣Re

(
∂x2u

u

)∣∣∣∣ ⩽ K (u, c)
(1 + r)3

;

thus
∥ Im(1ψ)(1 + r)3∥L∞({r̃⩾λ}) ⩽ K (u, Q, c, c′′).

We infer, with these two additional estimates on ψ , that we can do the same computations as in the proof
of [15, Lemma 7.4], with γ =0. The only difference is that where we used ∥ Im(ψ+iγ )(1+r)∥L∞({r̃⩾λ})⩽
K (u, Q) we can use (2-14) instead to get the same decay for these terms, with ∥ Im(ψ)∥L∞({r̃⩽λ}) ⩽
K (u, Q). The only two terms where this change is needed are∣∣∣∣∫

R

η|Q|
2 Re(1ψψ̄)

∣∣∣∣ ⩽ ∣∣∣∣∫
R

η|Q|
2 Re(1ψ)Re(ψ)

∣∣∣∣ + ∣∣∣∣∫
R

η|Q|
2 Im(1ψ) Im(ψ)

∣∣∣∣
⩽ K (∥Re(1ψ)(1 + r)2∥L∞({r̃⩾λ})∥Re(ψ)(1 + r)2∥L∞({r̃⩾λ}))

+ K (∥ Im(1ψ)(1 + r)3∥L∞({r̃⩾λ})∥ Im(ψ)∥L∞({r̃⩾λ}))

and∣∣∣∣∫
R

η|Q|
2 Re(i∂x2ψψ̄)

∣∣∣∣ ⩽ ∣∣∣∣∫
R

η|Q|
2 Re(∂x2ψ) Im(ψ)

∣∣∣∣ + ∣∣∣∣∫
R

η|Q|
2 Im(∂x2ψ)Re(ψ)

∣∣∣∣
⩽ K (∥Re(∂x2ψ)(1 + r)3∥L∞({r̃⩾λ})∥ Im(ψ)∥L∞({r̃⩾λ}))

+ K (∥ Im(∂x2ψ)(1 + r)2∥L∞({r̃⩾λ})∥Re(ψ)(1 + r)2∥L∞({r̃⩾λ})).

We deduce, taking the scalar product of the equation of Lemma 2.9 with ϕ, that

Bexp
Q (ϕ)− ⟨i(c − c′′)e⃗2.H(ψ), ϕ⟩ + ⟨NLloc(ψ), ϕ⟩ + ⟨F(ψ), ϕ⟩ = 0. (2-15)

From Lemma 2.8,
Bexp

Q (ϕ)⩾ K∥ϕ∥
2
H exp

Qc
, (2-16)

and from Lemma 2.9,

|⟨NLloc(ψ), ϕ⟩| ⩽ Kν∥ϕ∥
2
H1({η ̸=1})

⩽ Kν∥ϕ∥
2
H exp

Qc
. (2-17)

Let us now show that
|⟨i(c − c′′)e⃗2.H(ψ), ϕ⟩| ⩽ Kν∥ϕ∥

2
H exp

Qc
. (2-18)

We recall that

i e⃗2.H(ψ)= i∂x2 Q + i
∂x2(Qψ)(1 − η)+ Q∂x2ψηe

ψ

(1 − η)+ ηeψ
.
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We compute, with Lemma 2.10 and Lemma 5.4 of [15],

|(c − c′′)⟨i∂x2 Q, ϕ⟩| ⩽ K
√

c′′∥ϕ∥H exp
Q

|⟨i∂x2 Q, ϕ⟩| ⩽ K
√

c′′ ln
( 1

c′′

)
∥ϕ∥

2
H exp

Q
⩽ Kν∥ϕ∥

2
H exp

Q
.

Indeed, although Q = Qc′′( · − Xe⃗2)e
iγ has a phase that is not present in Lemma 5.4 of [15], since

ϕ = Qψ , we have ∂x2 Qϕ̄ = ∂x2 Q Qψ̄ , which no longer depends on γ .
Now, with ∥ϕ∥H1({η ̸=1}) ⩽ Kν from Lemmas 2.7 and 2.8, we compute easily that∣∣∣∣〈i

∂x2(Qψ)(1 − η)+ Q∂x2ψηe
ψ

(1 − η)+ ηeψ
, ϕ

〉
− ⟨i Q∂x2ψη, ϕ⟩

∣∣∣∣ ⩽ Kν∥ϕ∥H exp
Q

since the left-hand side is supported in {η ̸= 1}; therefore

|⟨i(c − c′′)e⃗2.H(ψ), ϕ⟩| ⩽ Kν∥ϕ∥
2
H exp

Qc
+ |(c − c′′)⟨i Q∂x2ψη, ϕ⟩|.

With the same computations as in Section 7.3.2 of [15] (taking γ ′
= 0), we check that

|⟨i Q∂x2ψη, ϕ⟩| ⩽ K∥ϕ∥
2
H exp

Q
;

therefore, using Lemma 2.7 and (2-12), for ν > 0 small enough,

|(c − c′′)⟨i Q∂x2ψη, ϕ⟩| ⩽ K |c − c′′
|∥ϕ∥

2
H exp

Q
⩽ Kν∥ϕ∥

2
H exp

Q
.

This completes the proof of (2-18). We focus now on the proof of

|⟨F(ψ), ϕ⟩| ⩽ Kν∥ϕ∥
2
H exp

Q
. (2-19)

We compute ∫
R2

Re(Qη(|Q|
2S(ψ))ϕ̄)=

∫
R2

|Q|
4η(e2Re(ψ)

− 1 − 2Re(ψ))Re(ψ),

and since, as already seen at the end of the proof of Lemma 2.10, we have ∥Re(ψ)∥L∞({r̃⩾λ}) ⩽ 1 if
ν ⩽ ν2, we deduce

|e2Re(ψ)
− 1 − 2Re(ψ)| ⩽ K Re2(ψ)

and ∣∣∣∣∫
R2

Re
(
Qη(|Q|

2S(ψ))ϕ̄
)∣∣∣∣ ⩽ K

∫
R2
ηRe3(ψ)⩽ Kν

∫
R2
ηRe2(ψ)⩽ Kν∥ϕ∥

2
H exp

Q
.

We are left with the estimation of
∫

R2 Re(Qη(−∇ψ.∇ψ)ϕ̄), which will be slightly more delicate. First,
we compute, using ϕ = Qψ∫

R2
Re

(
Qη(−∇ψ.∇ψ)ϕ̄

)
= −

∫
R2

|Q|
2ηRe(∇ψ.∇ψψ̄)

= −

∫
R2

|Q|
2ηRe(∇ψ.∇ψ)Re(ψ)−

∫
R2

|Q|
2η Im(∇ψ.∇ψ) Im(ψ)

= −

∫
R2

|Q|
2ηRe(∇ψ.∇ψ)Re(ψ)−2

∫
R2

|Q|
2ηRe(∇ψ). Im(∇ψ) Im(ψ).
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Note that there exists a universal constant K > 0 such that ∥Re(ψ)∥L∞({r̃⩾R}) ⩽ Kν by Lemma 2.8
(considering the regions {r̃ ⩾ λ} with ψ and {r̃ ⩽ λ} with ϕ). Then, we estimate∣∣∣∣− ∫

R2
|Q|

2ηRe(∇ψ.∇ψ)Re(ψ)

∣∣∣∣ ⩽ Kν
∫

R2
η|∇ψ |

2 ⩽ Kν∥ϕ∥
2
H exp

Q
.

Now, by integration by parts (that can be justified as in [15]), we have∫
R2

|Q|
2ηRe(∇ψ). Im(∇ψ) Im(ψ)

= −

∫
R2

∇(|Q|
2)ηRe(ψ). Im(∇ψ) Im(ψ)−

∫
R2

|Q|
2
∇ηRe(ψ). Im(∇ψ) Im(ψ)

−

∫
R2

|Q|
2ηRe(ψ) Im(1ψ) Im(ψ)−

∫
R2

|Q|
2ηRe(ψ) Im(∇ψ). Im(∇ψ),

and with |∇(|Q|
2)| ⩽ K/(1 + r̃)5/2 from equation (2.9) of [15]

(
for σ =

1
2

)
with K > 0 a universal

constant, we have by Cauchy–Schwarz∣∣∣∣∫
R2

∇(|Q|
2)ηRe(ψ). Im(∇ψ) Im(ψ)

∣∣∣∣ ⩽ Kν

√∫
R2
η|∇ψ |

2
∫

R2
η

|ψ |
2

(1 + r̃)5
⩽ Kν∥ϕ∥

2
H exp

Q
,∣∣∣∣∫

R2
|Q|

2ηRe(ψ) Im(∇ψ). Im(∇ψ)

∣∣∣∣ ⩽ Kν
∫

R2
η|∇ψ |

2 ⩽ Kν∥ϕ∥
2
H exp

Qc
.

Since ∇η is supported in {0< η < 1}, we check easily that∣∣∣∣∫
R2

|Q|
2
∇ηRe(ψ). Im(∇ψ) Im(ψ)

∣∣∣∣ ⩽ Kν∥ϕ∥
2
H exp

Q
.

We focus now on the estimation of the last remaining term,
∫

R2 |Q|
2ηRe(ψ) Im(1ψ) Im(ψ). For that

purpose, we define more generally for n ⩾ 1

An :=

∫
R2

|Q|
2ηn Ren(ψ) Im(1ψ) Im(ψ).

Note that we want to estimate A1.

We compute, using (TWc′′)(Q)= 0, that

L Q(ϕ)= Q
(
−1ψ − ic′′∂x2ψ − 2

∇Q
Q
.∇ψ + 2Re(ψ)|Q|

2
)

;

therefore, by Lemma 2.9, in {η ̸= 0},

Im(1ψ)= Im

(
−ic′′∂x2ψ − 2

∇Q
Q
.∇ψ + 2Re(ψ)|Q|

2
+

−i(c − c′′)e⃗2.H(ψ)+ NLloc(ψ)+ F(ψ)
Q

)
= −c′′ Re(∂x2ψ)− 2 Im

(
∇Q
Q
.∇ψ

)
+ Im

(
−i(c − c′′)e⃗2.H(ψ)+ NLloc(ψ)+ F(ψ)

Q

)
.
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We compute, by integration by parts, with Ren(ψ)Re(∂x2ψ)= (1/(n + 1))∂x2(Ren+1(ψ)), that∫
R2

|Q|
2ηn Ren(ψ)c′′ Re(∂x2ψ) Im(ψ)

= −
1

n+1

∫
R2
(∂x2 |Q|

2)ηn Ren+1(ψ)c′′ Im(ψ)

−
n

n+1

∫
R2

|Q|
2∂x2ηη

n−1 Ren+1(ψ)c′′ Im(ψ)−
1

n+1

∫
R2

|Q|
2ηn Ren+1(ψ)c′′ Im(∂x2ψ).

Since |c′′
| ⩽ ν by (2-5) (diminishing ν2 if necessary), Lemma 2.7 and the hypotheses of Proposition 1.8,

∥ϕ∥C1({r̃⩽λ})+∥Re(ψ)∥L∞({r̃⩾λ})⩽ Kν by Lemma 2.8 and |∇(|Q|
2)|⩽ K/(1 + r̃)5/2 from equation (2.9)

of [15], we infer by Cauchy–Schwarz that∣∣∣∣∫
R2
(∂x2 |Q|

2)ηn Ren+1(ψ)c′′ Im(ψ)

∣∣∣∣ ⩽ K c′′νn

√∫
R2
η Im2(ψ)(∂x2 |Q|

2)2
∫

R2
ηRe2(ψ)

⩽ Kνn
∥ϕ∥

2
H exp

Q
, (2-20)∣∣∣∣∫

R2
|Q|

2∂x2ηη
n−1 Ren+1(ψ)c′′ Im(ψ)

∣∣∣∣ ⩽ Kνn
∥ϕ∥

2
H exp

Q
, (2-21)∣∣∣∣∫

R2
|Q|

2ηn Ren+1(ψ)c′′ Im(∂x2ψ)

∣∣∣∣ ⩽ Kνn

√∫
R2
η|∇ψ |

2
∫

R2
ηRe2(ψ)⩽ Kνn

∥ϕ∥
2
H exp

Q
. (2-22)

We deduce that ∣∣∣∣∫
R2

|Q|
2ηn Ren(ψ)c′′ Re(∂x2ψ) Im(ψ)

∣∣∣∣ ⩽ (Kν)n∥ϕ∥
2
H exp

Q
. (2-23)

For ∫
R2

|Q|
2ηn Ren(ψ) Im

(
∇Q
Q
.∇ψ

)
Im(ψ),

we compute

Im

(
∇Q
Q
.∇ψ

)
= Re

(
∇Q
Q

)
. Im(∇ψ)+Re(∇ψ). Im

(
∇Q
Q

)
,

and with previous estimates, we check easily that∣∣∣∣∫
R2

|Q|
2ηn Ren(ψ)Re

(
∇Q
Q

)
. Im(∇ψ) Im(ψ)

∣∣∣∣
⩽ (Kν)n

√∫
R2
η|∇ψ |

2
∫

R2
η Im2(ψ)Re2

(
∇Q
Q

)
⩽ (Kν)n∥ϕ∥

2
H exp

Q
, (2-24)

and by integration by parts, with computations similar to those for the proof of (2-23), using∣∣∣∣∇. Im(
∇Q
Q

)∣∣∣∣ ⩽ K
(1 + r̃)3/2

from (2.9) to (2.11) of [15]
(
for σ =

1
2

)
for a universal constant K > 0 and Lemma 2.1, we infer that∣∣∣∣∫

R2
|Q|

2ηn Ren(ψ)Re(∇ψ). Im

(
∇Q
Q

)
Im(ψ)

∣∣∣∣ ⩽ (Kν)n∥ϕ∥
2
H exp

Q
, (2-25)
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and we check easily that∣∣∣∣∫
R2

|Q|
2ηn Ren(ψ) Im

(
NLloc(ψ)

Q

)
Im(ψ)

∣∣∣∣ ⩽ (Kν)n∥ϕ∥
2
H exp

Q
. (2-26)

Now, we look at ∫
R2

|Q|
2ηn Ren(ψ) Im

(
−i(c − c′′)e⃗2.H(ψ)

Q

)
Im(ψ)

for the part of e⃗2.H(ψ) related to the cutoff, the estimation can be done as previously, and we are left
with the estimation of

(c − c′′)

∫
R2

|Q|
2ηn Ren(ψ) Im

(
−i
∂x2 Q

Q
− i∂x2ψ

)
Im(ψ)

= (c − c′′)

∫
R2

|Q|
2ηn Ren(ψ)Re

(
∂x2 Q

Q
+ ∂x2ψ

)
Im(ψ).

From (2-5) and Lemma 2.7, we have |c − c′′
| ⩽ ν (diminishing ν2 if necessary), and from equation (2.9)

of [15], ∣∣∣∣Re

(
∂x2 Q

Q

)∣∣∣∣ ⩽ K
(1 + r̃)5/2

.

Therefore∣∣∣∣(c − c′′)

∫
R2

|Q|
2ηn Ren(ψ)Re

(
∂x2 Q

Q

)
Im(ψ)

∣∣∣∣
⩽ (Kν)n

√∫
R2
ηRe2(ψ)

∫
R2
ηRe2

(
∂x2 Q

Q

)
Im2(ψ)⩽ (Kν)n∥ϕ∥

2
H exp

Q
, (2-27)

and we estimate ∣∣∣∣(c − c′′)

∫
R2

|Q|
2ηn Ren(ψ)Re(∂x2ψ) Im(ψ)

∣∣∣∣ ⩽ (Kν)n∥ϕ∥
2
H exp

Q
(2-28)

by (2-23). For the last remaining term, since

Im

(
F(ψ)

Q

)
= Im(−η∇ψ.∇ψ),

we have∫
R2

|Q|
2ηn Ren(ψ) Im

(
F(ψ)

Q

)
Im(ψ)= −2

∫
R2

|Q|
2ηn+1 Ren(ψ) Im(∇ψ).Re(∇ψ) Im(ψ).

In particular,∣∣∣∣∫
R2

|Q|
2ηn Ren(ψ) Im

(
F(ψ)

Q

)
Im(ψ)

∣∣∣∣ ⩽ (Kν)n∥η Im(ψ)∥L∞(R2)

∫
R2
η|∇ψ |

2

⩽ (Kν)n∥η Im(ψ)∥L∞(R2)∥ϕ∥
2
H exp

Q
. (2-29)

Combining this result with the previous estimates, this implies that

|An| ⩽ (C6ν)
n(1 + ∥η Im(ψ)∥L∞(R2))∥ϕ∥

2
H exp

Q
(2-30)
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for some universal constant C6 > 0, but that is not enough to show that we have∣∣∣∣∫
R2

|Q|
2ηn Ren(ψ) Im

(
F(ψ)

Q

)
Im(ψ)

∣∣∣∣ ⩽ (Kν)n∥ϕ∥
2
H exp

Q
,

since we have no control on ∥η Im(ψ)∥L∞(R2) other than the fact that it is a finite quantity. By integration
by parts (integrating Re(∇ψ)), with computations similar to those for the proof of (2-23), we infer that∣∣∣∣2 ∫

R2
|Q|

2ηn+1 Ren(ψ) Im(∇ψ).Re(∇ψ) Im(ψ)

∣∣∣∣
⩽

∣∣∣∣2 ∫
R2

|Q|
2ηn+1 Ren(ψ) Im(1ψ)Re(ψ) Im(ψ)

∣∣∣∣ + (Kν)n∥ϕ∥
2
H exp

Q

⩽ 2|An+1| + (Kν)n∥ϕ∥
2
H exp

Q
.

Combining this result with estimates (2-20) to (2-29), we deduce that, for some universal constant C7 > 0,

|An| ⩽ 2|An+1| + (C7ν)
n
∥ϕ∥

2
H exp

Q
.

Therefore, by induction,

|A1| ⩽ 2n
|An| +

n−1∑
k=1

(2C7ν)
k
∥ϕ∥

2
H exp

Q
.

Hence, with (2-30),

|A1| ⩽

(
(2C6ν)

n(1 + ∥η Im(ψ)∥L∞(R2))+

n−1∑
k=1

(2C7ν)
k
)

∥ϕ∥
2
H exp

Q
.

Taking ν > 0 such that ν ⩽ ν2 and 2C6ν <
1
2 and 2C7ν <

1
2 , then n ⩾ 1 large enough (depending on

∥η Im(ψ)∥L∞(R2)) such that
1

2n−1 (1 + ∥η Im(ψ)∥L∞(R2))⩽ 1,

we conclude that

|A1| ⩽

(
2C6 + 2C7

n−2∑
k=0

1
2k

)
ν∥ϕ∥

2
H exp

Q
⩽ 2(C6 + 2C7)ν∥ϕ∥

2
H exp

Q
.

This concludes the proof of (2-19).
Combining estimates (2-16) to (2-19) in (2-15), we deduce that

(1 − C8ν)∥ϕ∥
2
H exp

Q
⩽ 0

for some universal constant C8> 0; therefore, taking ν > 0 small enough such that the previous constraints
are satisfied and C8ν <

1
2 , we have ∥ϕ∥H exp

Q
= 0. From Lemma 2.10, we deduce c′′

= c. The proof is
complete.

2C. Proof of Corollary 1.10. Take a function u satisfying the hypotheses of Corollary 1.10. Then, u is
even in x1 and it has finite energy. Furthermore, by Theorem 1.6 (for p = +∞),

∥u−V1( ·−dce⃗1)V−1( ·+dce⃗1)∥L∞(R2)⩽ ∥u−Qc∥L∞(R2)+∥Qc−V1( ·−dce⃗1)V−1( ·+dce⃗1)∥L∞(R2)

⩽ ε+oc→0(1).
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Next,

∥|u| − 1∥L∞({r̃d⩾λ}) ⩽ ∥u − Qc∥L∞({r̃d⩾λ}) + ∥|Qc| − 1∥L∞({r̃d⩾λ}) ⩽ ε+
K
λ

by equation (2.6) of [15]. We now fix the parameters. We first choose λ ⩾ λ∗ large enough so that
K/λ⩽ 1/(2λ∗). Then, we fix c0 > 0 and ε > 0 so small that ε ⩽ 1/(2λ∗), |cdc − 1|⩽ ε(λ), dc ⩾ 1/ε(λ)
and ε+ oc→0(1)⩽ ε(λ) for c < c0. Therefore, u satisfies the hypotheses of Proposition 1.8 with d = dc,
and this concludes the proof.

3. Properties of quasiminimizers of the energy and proof of Theorem 1.11

3A. Tools for the vortex analysis. We list in this section some results useful for the analysis of traveling
waves for small speeds or, equivalently, large momentum, with vorticity. We shall denote by ⟨u | v⟩ =

Re(uv̄) the real scalar product of the complex numbers u, v. The Jacobian (or vorticity)

Jv := ⟨i∂1v | ∂2v⟩ =
1
2∂1⟨iv | ∂2v⟩ −

1
2∂2⟨iv | ∂1v⟩

is then relevant, and we shall use the following concentration property of the Jacobian. We define

Eε(u, �) :=
1
2

∫
�

|∇u|
2
+

1
2ε2 (1 − |u|

2)2 dx .

Theorem 3.1 (concentration of the Jacobian [2; 27]). Let M0 > 0, R > 0 and β ∈ ]0, 1]. Then, for every
δ > 0, there exists ε0 > 0 (depending only on β, δ, R and M0) such that, for any 0< ε < ε0, and for any
u ∈ H 1(B(0, 4R)) such that Eε(u, B(0, 4R)) ⩽ M0|ln ε| and |u| ⩾ 1

2 in B(0, 4R) \ B(0, R), there exist
N ∈ N, y1, . . . , yN ∈ B(0, R), d1, . . . , dN ∈ Z such that∥∥∥∥Ju −π

N∑
k=1

dkδyk

∥∥∥∥
[C0,β

c (B(0,4R))]∗
⩽ δ

and

π

N∑
k=1

|dk | ⩽
Eε(u, B(0, 4R))

|ln ε|
+ δ.

Finally, we may choose the points yk , 1 ⩽ k ⩽ N , in
{
|u| ⩽ 1

2

}
.

Here, we recall that the space [C0,β
c (B(0, R))]∗ is endowed with the dual norm associated with

∥ζ∥C0,β
c (B(0,R)) = sup

x ̸=y∈B(0,R)

|ζ(x)− ζ(y)|
|x − y|β

for ζ ∈ C0,β(B(0, R)) compactly supported.

Remark 3.2. The above-mentioned theorem is actually Lemma 3.3 in [8]. It is related to the works [2; 27],
which both correspond to the limit ε→ 0, whereas we have here a statement (obtained by compactness)
at fixed ε. The hypothesis “|u| ⩾ 1

2 in B(0, 4R) \ B(0, R)” ensures that the vortices do not approach the
boundary ∂B(0, 4R).
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Theorem 3.3 (clearing-out theorem [8]). Let M0 > 0 and σ > 0 be given. Then there exist ϵ0 > 0 and
η > 0, depending only on M0 and σ , such that, if R0 = 1/(1 + M0), if U : B(0, R0)→ C solves

1U + ic∂2U +
1
ϵ2 U (1 − |U |

2)= 0 (3-1)

in B(0, R0)⊂ R2, with ϵ < ϵ0, |c| ⩽ M0|ln ϵ|, and

Eϵ(U, B(0, R0))⩽ η|ln ϵ|,
then

|U (0)| ⩾ 1 − σ.

For the elliptic PDE

1U +
1
ε2U(1 − |U |

2)= 0, (3-2)

that is, without the transport term i∂2U , this result has been shown in two dimensions in [6] for minimizing
maps, and in [4] for the Ginzburg–Landau equation with magnetic field. In higher dimensions, see [7; 31]
for (3-2) and [8] for an equation including the Ginzburg–Landau equation with magnetic field and (3-1).
One may use the change of unknown

U(x) := (1 + c2ϵ2/4)−1/2eicx2/2U (x), ε = ϵ(1 + c2ϵ2/4)−1/2,

to transform (3-2) without the transport term into (3-1) with the transport term. However, the assumptions
Eϵ(U, B(0, R0))⩽ η|ln ϵ| and Eε(U, B(0, R0))⩽ η|ln ε| are not equivalent (due to the extra phase term).

3B. Vortex structure for quasiminimizers of E at fixed P. In this section, some 30 > 0 is fixed and we
consider a large momentum p and up such that

E(up)⩽ 2π ln p+30 (3-3)

and such that there exists cp > 0 (depending on up) such that

0 = (TWcp)(up)= −icp∂x2up −1up − (1 − |up|
2)up.

It then follows from [24] (see Theorem 2.4) that we may assume, using the phase-shift invariance, that
up → 1 at spatial infinity. In particular, we have

p = P2(up)=
1
2

∫
R2

⟨i∂2up|up − 1⟩ dx .

Our goal is to show that up satisfies the hypotheses of Proposition 1.8. We shall follow [5; 8] in order
to analyze the vortex structure of up.

3B1. Localizing the vorticity set at scale x/p. We define the following rescaling ûp of up:

ûp(x̂)= up(px̂). (3-4)
Therefore, ûp solves

1ûp + icpp∂2ûp + p2ûp(1 − |ûp|
2)= 0, (3-5)

which is a particular case of (3-1) with
ϵ = 1/p, c = cpp.
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The universal L∞ bound on the gradient of Corollary 2.3 reads now

∥∇ûp∥L∞(R2) ⩽ Kp. (3-6)

We shall have, in the end, cp ∼ 1/p. The first step provides a rough upper bound for the speed cp (the
Lagrange multiplier for the minimization problem Emin(p)).

Step 1: There exists p1 = p1(30) such that, for p⩾ p1, we have

0< cp ⩽
2E(up)

p
⩽ 13

ln p
p
.

In particular, cp ⩽ 1
2 and ln p⩽ 2|ln cp|.

We shall use the Pohozaev identity (2-2), that is,

1
2

∫
R2
(1 − |up|

2)2 dx = cpp.

At this stage, we only have the rough upper bound 0 ⩽ 1
4

∫
R2(1 − |up|

2)2 dx ⩽ E(up) ⩽ 2π ln p+30,
which concludes this step.

Another argument we could use for minimizers is that we know from [10] (see also [13]) that 0 ⩽ cp ⩽
d+Emin(p)⩽ Emin(p)/p.

Step 2: There exists p2 > p1, R∗ ⩾ 1
8 and n∗ ∈ N, depending only on 30, such that, if p > p2, there

exist np points ẑp, j , 1 ⩽ j ⩽ np, with np ⩽ n∗ such that
{
|ûp(x̂)| ⩽ 1

2

}
⊂

⋃np

j=1 B(ẑp, j , R∗) and the disks
B(ẑp, j , 4R∗), 1 ⩽ j ⩽ np, are mutually disjoint.

We apply Theorem 3.3 with ϵ = 1/p, c = cpp and σ =
1
2 to ûp. This is possible in view of the upper

bound on 0 ⩽ cpp⩽ 13 ln p of Step 1 (that is, M0 = 13). We then let R0 := 1/(1 + 13)=
1

14 for p⩾ p1

and denote by η1/2 the positive constant η given by Theorem 3.3.
We now proceed in this way: we choose (if it exists) some ẑp,1 ∈ R2 such that |ûp(ẑp,1)| < 1

2 . If{
|ûp|⩽

1
2

}
⊂ B(ẑp,1, 2R0), then we stop. If not, we choose ẑp,2 ∈ R2

\B(ẑp,1, 2R0) such that |ûp(ẑp,2)|< 1
2 .

If
{
|ûp|⩽

1
2

}
⊂

⋃2
j=1 B(ẑp, j , 2R0), then we stop, if not, we continue. This process ends in a finite number

of steps (depending only on K0) since, by construction, the disks B(ẑp, j , R0), 1 ⩽ j ⩽ n, are pairwise
disjoint. Hence, by Theorem 3.3, we have

2π ln p+ K0 ⩾ E(up)= E1/p(ûp)⩾
n∑

j=1

E1/p(ûp, B(ẑp, j , R0))⩾ n × η1/2 ln p,

which implies

n ⩽
2π ln p+ K0

η1/2 ln p
⩽

7
η1/2

for p large enough, say p⩾ p2.
At this stage, the disks B(ẑp, j , 2R0), 1 ⩽ j ⩽ np, cover the vorticity set

{
|ûp| ⩽

1
2

}
, but the disks

B(ẑp, j , 8R0) may not be pairwise disjoint. To get this property, we argue as in [6, Theorem IV.1]. Let
us recall the idea: if the disks B(ẑp, j , 8R0), 1 ⩽ j ⩽ np, are pairwise disjoint, then we are done with
R∗ = 2R0. If not, then we have, for instance, |ẑp,1 − ẑp,2| ⩽ 16R0. We then remove the disk B(ẑp,1, 8R0)
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from the list and set R1 := 17R0. The disks B(ẑp, j , R1), 2 ⩽ j ⩽ np, cover
⋃

1⩽ j⩽np
B(ẑp, j , 2R0), and

hence the vorticity set
{
|ûp|⩽

1
2

}
, and their number has decreased. In a finite number of steps (depending

only on K0), we obtain the conclusion. The radius R∗ is necessarily ⩽ R0 × 17np ⩽ R0 × 17n∗ .
Similar arguments are given in [8], whereas in [5] the vorticity set is included in some disks of radii of

order cγp , which requires some extra work.

Step 3: We have

p2
∫

R2
(1 − |ûp|

2)2 dx̂ = op→+∞(ln p).

This follows exactly as in [8] (see Proposition A.1 in the Appendix there). Notice that the result in [8] is
stated for the potential on a compact set in a domain �, but it holds as well in the entire plane.

We then define, as in [8], the function û′
p : R2

→ C by

û′

p(x̂) :=



ûp(x̂) if x̂ ∈
⋃np

j=1 B(ẑp, j , 2R∗),

ûp(x̂)
|ûp(x̂)|

if x̂ ̸∈
⋃np

j=1 B(ẑp, j , 3R∗),(
3 −

|x̂− ẑp, j |

R∗

)
ûp(x̂)+

(
−2 +

|x̂− ẑp, j |

R∗

) ûp(x̂)
|ûp(x̂)|

if x̂ ∈ B(ẑp, j , 3R∗) \ B(ẑp, j , 2R∗)

for some 1 ⩽ j ⩽ np (this last formula is valid since the disks B(ẑp, j , 4R∗), 1 ⩽ j ⩽ np, are mutually
disjoint).

Step 4: We have, as p → +∞,

E1/p(û′

p)⩽ 2π ln p+ o(ln p).

Letting �R :=
⋃np

j=1 B(ẑp, j , R), we have∫
R2
(1 − |û′

p|
2)2 dx̂ =

∫
�2R∗

(1 − |ûp|
2)2 dx̂ +

∫
�3R∗\�2R∗

(1 − |û′

p|
2)2 dx̂ .

We notice that in �3R∗
\�2R∗

, say for x̂ ∈ B(ẑp, j , 3R∗) \ B(ẑp, j , 2R∗), we have

|û′

p(x̂)| =

(
3 −

|x̂ − ẑp, j |

R∗

)
|ûp(x̂)| +

(
−2 +

|x̂ − ẑp, j |

R∗

)
∈ [|ûp(x̂)|, 1];

hence |1 − |û′
p(x̂)|

2
| ⩽ |1 − |ûp(x̂)|2| and thus∫
R2
(1 − |û′

p|
2)2 dx̂ ⩽

∫
�2R∗

(1 − |ûp|
2)2 dx̂ +

∫
�3R∗\�2R∗

(1 − |ûp|
2)2 dx̂

=

∫
�3R∗

(1 − |ûp|
2)2 dx̂ . (3-7)

For the kinetic term, we have

|∇û′

p(x̂)|
2
= |∇ûp(x̂)|2
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if x̂ ∈�2R∗
. Outside

⋃np

j=1 B(ẑp, j , R∗) we have |ûp|⩾
1
2 and we may then lift, at least locally, ûp = Aeiφ

and get
|∇ûp|

2
= A2

|∇φ|
2
+ |∇ A|

2.

If x̂ ̸∈�3R∗
, then, by (3-6),

|∇û′

p|
2
= |∇φ|

2
= A2

|∇φ|
2
+

1 − A2

A2 × A2
|∇φ|

2 ⩽ |∇ûp|
2
+ 4Kp|1 − A2

| × |∇ûp|

since A = |ûp| ⩾
1
2 outside �R∗

. Finally, in B(ẑp, j , 3R∗) \ B(ẑp, j , 2R∗) (for some unique 1 ⩽ j ⩽ np),
we have

|∇û′

p|
2
= |∇φ|

2
((

3−
|x̂−ẑp, j |

R∗

)
A+

(
−2+

|x̂−ẑp, j |

R∗

))2

+

∣∣∣∣∇[(
3−

|x̂−ẑp, j |

R∗

)
A+

(
−2+

|x̂−ẑp, j |

R∗

)]∣∣∣∣2

.

We then use that, since |ûp(x̂)| ⩾ 1
2 and letting θ = 3 − |x̂ − ẑp, j |/R∗ ∈ [0, 1],

|∇φ|
2
[(

3 −
|x̂ − ẑp, j |

R∗

)
A +

(
−2 +

|x̂ − ẑp, j |

R∗

)]2

= A2
|∇φ|

2
×

1
A2 [1 + θ(A − 1)]2 ⩽ A2

|∇φ|
2
× (1 + K |A2

− 1|)

⩽ A2
|∇φ|

2
+ Kp|∇ûp| × |A2

− 1|,

by Corollary 2.3. On the other hand, since | · | is 1-Lipschitz continuous,∣∣∣∣∇[(
3 −

|x̂ − ẑp, j |

R∗

)
A +

(
−2 +

|x̂ − ẑp, j |

R∗

)]∣∣∣∣2

⩽
1
R2

∗

|1 − A|
2
+ |∇ A|

2
+

2
R∗

|1 − A| × |∇ A|

⩽ |∇ A|
2
+ K (A2

− 1)2 + K |∇ A| × |A2
− 1|.

Therefore, by the Cauchy–Schwarz inequality, for some absolute constant K > 0,∫
R2

|∇û′

p|
2 dx̂ ⩽

∫
R2

|∇ûp|
2 dx̂ + K

(∫
R2

p2(1 −|ûp|
2)2 dx̂

)1/2(∫
R2

|∇ûp|
2 dx̂

)1/2

+ K
∫

R2
(1 −|ûp|

2)2 dx̂ .

Combining this with (3-7) yields

E1/p(û′

p)⩽ Ep(ûp)+ K
√

Ep(ûp)

(∫
R2

p2(1 − |ûp|
2)2 dx̂

)1/2

+ K
Ep(ûp)

p2 ⩽ 2π ln p+ o(ln p),

by the upper bound (3-3) and the estimate for the potential term of Step 3.

Step 5: We claim that for any δ ∈
]
0, π2

[
, there exist p†

δ > p2 such that, for all p⩾ p†
δ , we are in one of the

following cases:

(I) For any 1 ⩽ j ⩽ np,
∥J û′

p∥[C0,1
c (B(ẑp, j ,4R∗))]∗

⩽ δ.

(II) There exist (up to a relabeling) two points ŷp,± ∈ R2, depending on ûp, such that

max
1⩽ j⩽np

∥J û′

p −π(δŷp,+ − δŷp,−)∥[C0,1
c (B(ẑp, j ,4R∗))]∗

⩽ δ.
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We apply Theorem 3.1 to û′
p on each disk B(ẑp, j , 4R∗), 1 ⩽ j ⩽ np. This yields points ŷp, j,k ∈{

|ûp| ⩽
1
2

}
⊂ B(ẑp, j , R∗)⊂ B(ẑp, j , 4R∗) and integers dp, j,k ∈ Z, 1 ⩽ k ⩽ Np, j , such that∥∥∥∥J û′

p −π

Np, j∑
k=1

dp, j,kδŷp, j,k

∥∥∥∥
[C0,1

c (B(ẑp, j ,4R∗))]∗
⩽ δ (3-8)

and

π

Np, j∑
k=1

|dp, j,k | ⩽
E1/p(û′

p, B(ẑp, j , 4R∗))

ln p
+ δ. (3-9)

By summing the inequalities (3-9) over 1 ⩽ j ⩽ np, we infer

π

np∑
j=1

Np, j∑
k=1

|dp, j,k | ⩽
E1/p(û′

p, �4R∗
)

ln p
+ δ ⩽ 2.5π

by using δ < π
2 and Step 3, and for p large enough. Therefore,

np∑
j=1

Np, j∑
k=1

|dp, j,k | ⩽ 2 (3-10)

and two cases may occur: all the integers dp, j,k are zero (this is case (I)) or at least one of the integers
dp, j,k is not zero.

In addition, we have, for 1 ⩽ j ⩽ np,
Np, j∑
k=1

dp, j,k = deg(ûp, ∂B(ẑp, j , 3R∗)). (3-11)

Indeed, since |û′
p| = 1 on B(ẑp, j , 4R∗) \ B(ẑp, j , 3R∗), we have J û′

p = 0 there. Therefore, by fixing
χ ∈ C∞

c (B(0, 4R∗)) such that χ ≡ 1 on B(0, 3R∗), we deduce∣∣∣∣Np, j∑
k=1

dp, j,k − deg(ûp, ∂B(ẑp, j , 3R∗))

∣∣∣∣ =

∣∣∣∣∫
B(ẑp, j ,3R∗)

Np, j∑
k=1

dp, j,kδŷp, j,k dx̂ −
1
π

∫
B(ẑp, j ,4R∗)

J û′

p dx̂
∣∣∣∣

=
1
π

∣∣∣∣∫
B(ẑ j

p,4R∗)

χ(x̂ − ẑp, j )

( Np, j∑
k=1

dp, j,kδŷp, j,k − J û′

p

)
dx̂

∣∣∣∣
⩽ 1
π

∥χ∥ ×

∥∥∥∥J û′

p −π

Np, j∑
k=1

dp, j,kδŷp, j,k

∥∥∥∥
[C0,1

c (D(ẑp, j ,4R∗))]∗

by (3-8). Since the left-hand side is an integer and the right-hand side is ⩽ 1
2 provided p⩾ p2,1(δ,30),

(3-11) follows.
We finally notice that the degree of û′

p on some large circle ∂B(0, R) (with R ≫ max1⩽ j⩽np |ẑp, j |) is
zero, for otherwise û′

p (and ûp) would have infinite kinetic energy. Therefore,

0 =

np∑
j=1

deg(ûp, ∂B(ẑp, j , 3R∗))=

np∑
j=1

Np, j∑
k=1

dp, j,k .



A UNIQUENESS RESULT FOR THE TWO-VORTEX TRAVELING WAVE IN THE NLS EQUATION 2211

Combining this with (3-10), we deduce that if we are not in case (I), then one of the dp, j,k must be equal
to +1 and another one must be equal to −1, which is case (II).

Notice that for case (II), if B(ẑp, j , 4R∗) contains neither yp,+ nor yp,−, then ∥J û′
p∥[C0,1

c (B(ẑp, j ,4R∗))]∗
⩽ δ.

As in [5], we now relate the location of the points ŷp,± to the momentum P(ûp).

Step 6: Case (I) does not occur for p sufficiently large, say p⩾ p3. In addition, we have

1 = P(ûp)= π((ŷp,+)1 − (ŷp,−)1)+ o(1).

First, we have, by computations similar to those of Step 3, ûp = Aeiϕ locally outside �R∗
; hence

⟨i ûp | ∇ûp⟩ = A2
∇ϕ and then, outside �3R∗

,

⟨i ûp | ∇ûp⟩ − ⟨i û′

p | ∇û′

p⟩ = A2
∇ϕ− ∇ϕ =

A2
− 1
A

× A∇ϕ.

In B(ẑp, j , 3R∗) \ B(ẑp, j , 2R∗), we obtain

|⟨i ûp | ∇ûp⟩ − ⟨i û′

p | ∇û′

p⟩| = |A2
∇ϕ− |û′

p|
2
∇ϕ| ⩽

|A2
− 1|

A
× |A∇ϕ|,

since |û′
p| ∈ [|ûp|, 1]. Therefore,

∥⟨i ûp | ∇ûp⟩ − ⟨i û′

p | ∇û′

p⟩∥L1(R2) ⩽ K
∫

R2\�2R∗

|1 − |ûp|
2
| × |∇ûp| dx̂ ⩽

K
p

E1/p(ûp)⩽ K
ln p
p
. (3-12)

Following [5; 8], we write

1 =
P(up)

p
= P(ûp)=

1
2

∫
R2

⟨i∂2ûp | ûp − 1⟩ dx̂

=
1
2

∫
R2

⟨i∂2û′

p | û′

p − 1⟩ dx̂ +
1
2

∫
R2
(⟨i∂2ûp | ûp − 1⟩ − ⟨i∂2û′

p | û′

p − 1⟩) dx̂ .

For the second integral, we write that, on the one hand,∣∣∣∣∫
R2
(⟨i ûp | ∂2ûp⟩ − ⟨i û′

p | ∂2û′

p⟩) dx̂
∣∣∣∣ ⩽ ∥⟨i ûp | ∇ûp⟩ − ⟨i û′

p | ∇û′

p⟩∥L1(R2) ⩽ K
ln p
p

→ 0

when p → +∞; on the other hand, by the decays given in Theorem 2.4,∣∣∣∣∫
R2
(⟨i∂2ûp | 1⟩ − ⟨i∂2û′

p | 1⟩) dx̂
∣∣∣∣ = lim

r→+∞

∣∣∣∣∫
∂B(0,r)

ν2 Im(ûp − û′

p) dℓ
∣∣∣∣

⩽ lim
r→+∞

∫
∂B(0,r)

|A − 1| dℓ= lim
r→+∞

O(1/r)= 0.

We then integrate by parts to get

1
2

∫
R2

⟨i∂2û′

p | û′

p − 1⟩ dx̂ =
1
2

∫
R2
∂1 x̂1⟨i∂2û′

p | û′

p − 1⟩ − ∂2 x̂1⟨i∂1û′

p | û′

p − 1⟩ dx̂ =

∫
R2

J û′

p x̂1 dx̂ .
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The integration by parts is justified by the algebraic decay at infinity given in Theorem 2.4:

x̂1⟨i∂2û′

p | û′

p − 1⟩ = O
(

1
|x |2

)
.

Then, since J û′
p is supported in �R∗

, we obtain∫
R2

x̂1 J û′

p dx̂ =

np∑
j=1

∫
B(ẑp, j ,3R∗)

x̂1 J û′

p dx̂

=

np∑
j=1

∫
B(ẑp, j ,3R∗)

(x̂1 − (ẑp, j )1)J û′

p dx̂ +

np∑
j=1

ẑp, j,1

∫
B(ẑp, j ,3R∗)

J û′

p dx̂ .

We then fix χ ∈ C∞
c (B(0, 4R∗)) such that χ ≡ 1 on B(0, 3R∗). Next, for any 1 ⩽ j ⩽ np, we write∫

B(ẑp, j ,3R∗)

(x̂1 − (ẑp, j )1)J û′

p dx̂

=

∫
B(ẑp, j ,4R∗)

(x̂1 − (ẑp, j )1)χ(x̂ − ẑp, j )J û′

p dx̂

=

∫
B(ẑp, j ,4R∗)

(x̂1 − (ẑp, j )1)χ(x̂ − ẑp, j )

(
J û′

p −π

Np, j∑
k=1

dp, j,kδyp, j,k

)
dx̂ +π

Np, j∑
k=1

dp, j,k((yp, j,k)1 − (ẑp, j )1).

We now estimate the first integral (actually, a duality bracket) by using Step 5:∣∣∣∣∫
B(ẑp, j ,2R∗)

(x̂1 − (ẑp, j )1)χ( · − ẑp, j )

(
J û′

p −π

Np, j∑
k=1

dp, j,kδyp, j,k

)
dx̂

∣∣∣∣
⩽ ∥(x̂1 − (ẑp, j )1)χ( · − ẑp, j )∥C0,1

c (B(ẑp, j ,2R∗))

∥∥∥∥J û′

p −π

Np, j∑
k=1

dp, j,kδyp, j,k

∥∥∥∥
[C0,1

c (B(ẑp, j ,2R∗))]∗

⩽ K o(1).

As a consequence of (3-11), which implies, for each 1 ⩽ j ⩽ np,
Np, j∑
k=1

dp, j,k = deg(ûp, ∂B(ẑp, j , 3R∗))= deg(û′

p, ∂B(ẑp, j , 3R∗))=

∫
B(ẑp, j ,3R∗)

J û′

p dx̂,

we infer, after some cancellation,∣∣∣∣P(ûp)−π

np∑
j=1

Np, j∑
k=1

dp, j,k(yp, j,k)1

∣∣∣∣ ⩽ K
ln p
p

+ n∗K o(1). (3-13)

Since P(ûp) = 1, it follows that for p large enough, we cannot be in Case (I), and the conclusion is a
recasting of (3-13).

Step 7: There exists p4 large such that, for p⩾ p4, we have
{
|ûp| ⩽

1
2

}
⊂ B

(
ŷp,+, 3

20

)
∪ B

(
ŷp,−, 3

20

)
and

deg
(
u, ∂B

(
ŷp,±, 3

20

))
= ±1.

From Step 6, we know that 1 = P(ûp)= π((ŷp,+)1 − (ŷp,−)1)+ o(1); hence the two points ŷp,± are
far away from each other:

|ŷp,+ − ŷp,−| ⩾ 4
10
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since 1

π
≈ 0.318< 4

10

)
for p large enough (but they may be, at this stage, very far away from each other).

By applying Theorem 1.1(i) of [2] or Theorem 3.1 of [27] (this is not very far from Theorem 3.1), since
J ûp(ŷp,± + · )→ ±πδ0 weakly, we deduce

E1/p
(
ûp, B

(
ŷp,±, 1

10

))
⩾ (π + o(1)) ln p;

hence, by the upper bound (3-3),

E1/p
(
ûp,R2

\
(
B

(
ŷp,+, 1

10

)
∪ B

(
ŷp,−, 1

10

)))
⩽ o(ln p),

and this in turn implies, by the clearing-out theorem (Theorem 3.3), that if p is large enough, say p⩾ p4,
then,

for all x̂ ∈ R2
\
(
B

(
ŷp,+, 3

20

)
∪ B

(
ŷp,−, 3

20

))
, |ûp(x̂)| ⩾ 3

4 ,

as wished. In particular, ẑp,± ∈ B
(
ŷp,+, 3

20

)
∪ B

(
ŷp,−, 3

20

)
.

We emphasize that at this stage, we have |ŷp,+− ŷp,−|≳ 1, but we do not know whether |ŷp,+− ŷp,−|≲ 1
or |ŷp,+ − ŷp,−| ≫ 1. We may now take advantage of the fact that ûp is by hypothesis symmetric with
respect to the x2-axis (i.e., ûp(−x̂1, x̂2)= ûp(x̂1, x̂2)), so that, possibly translating along the x2-axis, we
may assume

(ŷp,−)2 = (ŷp,+)2 = 0 and − (ŷp,−)1 = (ŷp,+)1 →
1

2π . (3-14)

If we do not assume a priori the symmetry in x1, then we may remove the translation invariance by
imposing ŷp,+ + ŷp,− = 0, and then we may still show that ŷp,+ = −ŷp,− →

( 1
2π , 0

)
by using the Hopf

differential as in [6, Chapter VII].

3B2. Strong convergence outside the vorticity set at scale x/p. We start with a W 1,p
loc bound at scale x̂ for

1 ⩽ p < 2.

Step 1: For any 1 ⩽ p < 2, there exists C p such that, for any X̂ ∈ R2, we have∫
B(X̂ ,1)

|∇ûp|
p dx̂ ⩽ C p.

We shall adapt the proof of [8] (see the proof of Theorem 4, Step 3, p. 83) to the two-dimensional
case. Actually, the only modification to make in the estimate is to replace (C.26) there by the standard
convolution

ψ0,i (x̂)= −
ln r
2π

⋆ω0,i (x̂)= −
1

2π

∫
Supp(ω0,i )

ω0,i (ŷ) ln |x̂ − ŷ| d ŷ,

and then use, for |x̂ − ŷp,±| ⩾ 3R∗, that

|∇ψ0,±(x̂)| =

∣∣∣∣ 1
2π

∫
Supp(ω0,±)

ω0,i (ŷ)∇x̂ ln |x̂ − ŷ| d ŷ
∣∣∣∣

⩽ 1
2π

∥ω0,±∥
[C0,1

c (B(ŷp,±,2R∗))]∗
∥(x̂ − ŷ)/|x̂ − ŷ|

2
∥C0,1(B(ŷp,±,3R∗))

⩽ K
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(the estimate ∥ψ0,±∥Ck(R2\B(ŷp,±,3R∗))
⩽ Ck does not hold since the two-dimensional fundamental solution

(ln r)/(2π) goes to +∞ at spatial infinity, but ∥∇ψ0,±∥Ck(R2\B(ŷp,±,3R∗))
⩽ Ck is true). The rest of the

proof remains unchanged.

Step 2: For any X̂ ∈ R2
\
(
B

(
ŷp,+, 2

10

)
∪ B

(
ŷp,−, 2

10

))
, we may write ûp = Aeiφ in B

(
X̂ , 1

20

)
, with, for

any k ∈ N, ∥∥∥∥2(1 − A)−
cp
p
∂2φ

∥∥∥∥
Ck(B(X̂ ,1/20))

⩽
Ck

p2 , ∥∇φ∥Ck(B(X̂ ,1/20)) ⩽ Ck, (3-15)

for some constant Ck independent of X̂ .
The proof (relying on Step 1) follows the lines of the proof of Step 7 (p. 48) of Theorem 1 in [8] and

is omitted.

In view of the upper bound of Step 1 of Section 3B1, we infer the uniform estimate

∥1 − |ûp|∥Ck(B(X̂ ,1/20)) ⩽ Ck
ln p
p2 (3-16)

for X̂ ∈ R2
\
(
B

(
ŷp,+, 2

10

)
∪ B

(
ŷp,−, 2

10

))
.

3B3. Lower bound for the energy and upper bound for the potential energy.
Step 1: Upper bound for the potential. We claim that∫

R2
|∇|ûp||

2
+

p2

2
(1 − |ûp|

2)2 dx̂ ⩽ C(30),∫
R2\(B(ŷp,+,2/10)∪B(ŷp,−,2/10))

|∇ûp|
2
+

p2

2
(1 − |ûp|

2)2 dx̂ ⩽ C(30).

The proof of this upper bound will be a direct consequence of the lower bounds established in [43]
(see Theorems 2 and 3 there).

Theorem 3.4 [43]. Let � ⊂ R2 be a bounded smooth domain. Assume that u ∈ H 1(�,C) and that
u|∂� ∈ C1(∂�,S1). Let δ ∈ ]0, 1[.

(i) There exists a constant 31, depending on � and ∥u|∂�∥C1 , such that

1
2

∫
�

|∇u|
2
+

1
2δ2 (1 − |u|

2)2 ⩾ π |deg(u|∂�, ∂�)| ln(1/δ)−31.

(ii) If , moreover, for some constant 32, we have

1
2

∫
�

|∇u|
2
+

1
2δ2 (1 − |u|

2)2 ⩽ π |deg(u|∂�, ∂�)| ln(1/δ)+32,

then
1
2

∫
�

|∇|u||
2
+

1
2δ2 (1 − |u|

2)2 ⩽ C(�,32, ∥u|∂�∥C1).

We shall apply this result with δ = 1/p ≪ 1, �= B
(
ŷp,±, 2

10

)
and u = ûp. In view of the upper bound

(3-3) on the energy of ûp and since deg
(
ûp, ∂B

(
ŷp,±, 2

10

))
= ±1, this yields∫

B(ŷp,±,2/10)
|∇ûp|

2
+

p2

2
(1 − |ûp|

2)2 dx̂ ⩾ π ln p−31,
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B(ŷp,±,2/10)

|∇|ûp||
2
+

p2

2
(1 − |ûp|

2)2 dx̂ ⩽ C(30).

We conclude by using once again the upper bound (3-3). Actually, ûp does not belong to C1
(
∂B

(
ŷp,±, 2

10

))
,

but it is easy, using (3-15), to construct an extension of ûp on B
(
ŷp,±, 3

10

)
with the required properties by

linear interpolation (see, for instance the lemma on p. 395-396 in [43]).

Step 2: There exists σ0 > 0 such that we have, for R ⩾ 1,∫
R2\B(0,R)

|∇ûp|
2
+

p2

2
(1 − |ûp|

2)2 dx̂ ⩽
C(30)

Rσ0
.

The proof is similar to that of Lemma 5.1 (p. 50) in [8], and relies on the fact that |ûp| ⩾
1
2 in

R2
\ B(0, 1) (hence we may write the PDE in terms of modulus and phase), and the upper bound in

R2
\

(
B

(
ŷp,+, 2

10

)
∪ B

(
ŷp,−, 2

10

))
⊃ R2

\ B(0, 1) of the energy of ûp (in [8], this last upper bound was
derived differently).

3B4. Convergence on the scale x/p. By Step 1 of Section 3B3 and (3-14), we have, as p → +∞,

ŷp,± → ŷ∞,± := ±(1/(2π), 0) ∈ R2. (3-17)

We then define (identifying R2 and C)

û∞(x̂) :=
x̂ − ŷ∞,+

|x̂ − ŷ∞,+|
×

x̂ + ŷ∞,−

|x̂ + ŷ∞,−|
.

Step 1: For any p ∈ [1, 2[, there holds, in W 1,p
loc (R

2),

ûp ⇀ û∞.

From the W 1,p
loc upper bound of Step 1 in Section 3B2 and by weak compactness, there exists Û ∈

W 1,p
loc (R

2) such that ûp ⇀ Û in W 1,p
loc (R

2). Moreover, Û ∈ C∞

loc(R
2
\ {ŷ∞,+, ŷ∞,−}) and the convergence

holds in Ck
loc(R

2
\ {ŷ∞,+, ŷ∞,−}) by Step 2 of Section 3B2 (for any k ∈ N). In order to determine Û , we

shall pass to the limit in the system{
∇ · (ûp ∧ ∇ûp)= −

1
2 cpp∂2(|ûp|

2
− 1),

∇
⊥

· (ûp ∧ ∇ûp)= 2J ûp

obtained from (3-5) and the definition of the Jacobian. From (3-3) (implying cpp∂2(|ûp|
2
− 1)→ 0 in the

distributional or the H−1 sense) and Step 5 of Section 3B1, we then infer{
∇ · (Û ∧ ∇Û )= 0,
∇

⊥
· (Û ∧ ∇Û )= 2π(δŷ∞,+

− δŷ∞,−
).

It then follows that Û ∧ ∇Û = û∞ ∧ ∇û∞; hence we have the existence of 2 ∈ R such that Û = ei2û∞.
We finally use the x1-symmetry to infer 2= 0.
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Step 2: As p → +∞, we have

pcp =
p2

2

∫
R2
(1 − |ûp|

2)2 dx̂ → 2π.

This is claimed in [5, Proposition VI.7], but the proof is not clearly given.
One way to prove this point is to use the Hopf differential as in [6, Chapter VII]. We shall follow the alter-

native proof of Theorem VII.2 given in Section VII.1 there. The first equality is the Pohozaev identity (2-2).
First, notice that

Wp :=
p2

2
(1 − |ûp|

2)2

is a nonnegative function which is bounded in L1(R2) by Step 1 of Section 3B3 and enjoys the decay
estimate of Step 2 of Section 3B3. In addition, by (3-16) (see Step 2 of Section 3B2), we have Wp → 0
locally uniformly in R2

\ {±(1/(2π), 0)}. Up to a subsequence, we may then assume that

Wp ⇀µ+δŷ∞,+
+µ−δŷ∞,−

in the weak ∗ topology of Cb(R
2) for some reals µ± ⩾ 0, with µ+ +µ− = limp→+∞

∫
R2 Wp.

We shall now compute µ+ (the case of µ− is similar). First, we write, for some R5 ⩽
2

10 , the Pohozaev
identity for ûp on B(ŷ∞,+, R5) (obtained by multiplying the equation by the conjugate of (x̂ − ŷ∞,+) ·∇ûp

and integrating the real part over B(ŷ∞,+, R5)), which yields∫
B(ŷ∞,+,R5)

p2

2
(1 − |ûp|

2)2 + cpp
∫

B(ŷ∞,+,R5)

(x̂1 − ŷ∞,+,1)⟨i∂2ûp | ∂1ûp⟩

=
R5

2

∫
∂B(ŷ∞,+,R5)

|∂τ ûp|
2
− |∂ν ûp|

2
+

p2

4
(1 − |ûp|

2)2.

We then pass to the limit p → +∞. For the boundary term, we use the strong convergences outside the
vorticity set; for the second term of the first line, we prove that it tends to zero by following the arguments
given for Step 6 in Section 3B1. We then get

µ+ =
R5

2

∫
∂B(ŷ∞,+,R5)

|∂τ û∞|
2
− |∂ν û∞|

2.

By Step 1, we know that û∞ = exp(i Arg(x̂ − ŷ∞,+)−i Arg(x̂ − ŷ∞,−)) on ∂B(ŷ∞,+, R5), and the second
term Arg(x̂ − ŷ∞,−) is smooth and harmonic in D(ŷ∞,+, R5). As a consequence, we have the Pohozaev
identity for Arg( · − ŷ∞,−)

0 =
R5

2

∫
∂B(ŷ∞,+,R5)

|∂τ Arg(x̂ − ŷ∞,−)|
2
− |∂ν Arg(x̂ − ŷ∞,−)|

2,

∂τ Arg(x̂ − ŷ∞,+)= 1/R5, ∂ν Arg(x̂ − ŷ∞,+)= 0, and thus by expansion

µ+ =
R5

2

∫
∂B(ŷ∞,+,R5)

|∂τ û∞|
2
− |∂ν û∞|

2
=

R5

2

∫
∂B(ŷ∞,+,R5)

1
R2

5
+

2∂τ Arg(x̂ − ŷ∞,−)

R5
= π.

This concludes the proof.
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3B5. Convergence on the scale x. We shall now focus on verifying hypothesis (2) of Proposition 1.8.
The main tool is the following result. We now work on the scale x .

Proposition 3.5. Assume that ẑp ∈ R2 is such that

lim sup
p→+∞

|ûp(ẑp)|< 1

and consider the rescaled mapping
Up(y) := ûp(ẑp + y/p).

Then, there exists a sign ± and β ∈ R (depending on the choice of the family (ẑp)) such that, up to a
subsequence, we have, in Ck

loc(R
2) for any k ∈ N,

Up → eiβV±.

Proof. The rescaling Up solves

1Up + icp∂2Up + Up(1 − |Up|
2)= 0

and satisfies lim supp→+∞|Up(0)|< 1 and, by Step 2 of Section 3B4,∫
R2
(1 − |Up|

2)2 dy = 4π + op→+∞(1).

Then, from the uniform bounds of Theorem 2.2 and Corollary 2.3, we may assume, up to a subsequence,

Up → U∞ (3-18)

in Ck
loc(R

2) with |U∞(0)|< 1,
1U∞ + U∞(1 − |U∞|

2)= 0

and, by Fatou’s lemma, ∫
R2
(1 − |U∞|

2)2 dy ⩽ 4π.

By [11], we know that
∫

R2(1−|U∞|
2)2 dy = 2πd2, where d ∈ Z is the degree of U∞ at infinity. It follows

that |d| ⩽ 1, and that the case d = 0 is excluded since |U∞(0)|< 1; hence |U∞| ̸≡ 1. Therefore d = ±1.
It then follows from [36] that U∞ = eiβVd for some β ∈ R. □

We may now localize the set {|ûp| ⩽ 1 − 1/λ∗}, where λ∗ is as in Proposition 1.8, rather precisely.

Step 1: There exists p6 large such that, for p⩾ p6, ûp has exactly two zeros ẑp,±. Up to a translation in
the x2-direction, we may assume

R × {0} ∋ ẑp,± →
(
±

1
2π , 0

)
∈ R2.

Moreover, there exists R0 > 0 such that {|ûp|⩽ 1−1/λ∗} ⊂ B(ẑp,+, R0/p)∪ B(ẑp,−, R0/p). Here, λ∗> 0
is the large universal constant appearing in Proposition 1.8.

By Step 8 of Section 3B1, we know (due to the nonzero degree) that ûp has at least two zeros, one in
each disk B

(
ŷp,±, 3

20

)
.
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Now, if ẑp is a zero of ûp, we know by Proposition 3.5 that, for some β ∈ R (depending on the sequence
(ẑp)p) and d0 = ±1, we have

ûp(ẑp + py)→ eiβVd0(y) (3-19)

in Ck
loc(R

2). As noticed in [41], since V± : R2
→ C ≈ R2 has nonzero Jacobian at the origin, we deduce

that for any R > 0, and for p⩾ pR large enough, 0 is the only zero of Up in B(0, R). Roughly speaking,
there do not exist zeros ẑ, ẑ′ of ûp such that 0< |ẑ − ẑ′

| = O(1/p).
We now fix R0 > 0 sufficiently large so that∫

{|y|⩽R0/2}

(1 − |V1(y)|2)2 dy ⩾ 3π
2 .

and we assume that (for any large p) {|ûp|⩽1−1/λ∗} (where λ∗>0 is the one appearing in Proposition 1.8)
is not included in B(ẑp,+, R0/p) ∪ B(ẑp,−, R0/p). This means that there exists Ẑp ∈ B

(
ẑp,+, 3

20

)
\

B(ẑp,+, R0/p) (say) with |ûp(Ẑp)| ⩽ 1 − 1/λ∗. By Proposition 3.5, the rescaled mapping Up(y) :=

ûp(Ẑp + py) converges (up to a subsequence) in Ck
loc(R

2) to U∞ ∈ S1V± and we know (from [11]) that∫
R2(1 − |U∞|

2)2 dy = 2π . As a consequence, since |ẑp,+ − Ẑp| ⩾ R0/p,

2π + o(1)= p2
∫

B(ŷp,+,3/20)
(1 − |ûp|

2)2 dx̂

⩾ p2
∫

B(ẑp,+,R0/(2p))
(1 − |ûp|

2)2 dx̂ + p2
∫

B(Ẑp,R0/(2p))
(1 − |ûp|

2)2 dx̂

⩾
∫

{|y|⩽R0/2}

(1 − |V1|
2)2 dy +

∫
{|y|⩽R0/2}

(1 − |U∞|
2)2 dy + o(1)

⩾ 3π
2 +

3π
2 + o(1),

which is absurd. We then conclude ∥|up| − 1∥L∞({r̃d⩾R0}) ⩽ 1/λ∗ for p sufficiently large, then proving
hypothesis (3) of Proposition 1.8 with λ = max(R0, λ∗). Another consequence of this fact is that ûp

possesses at most two (simple) zeros ẑp,±.
We then define d = dp such that the unique zero ẑp,+ of ûp in the right half-plane is

ẑp,+ =
dp
p

e⃗1 →
( 1

2π , 0
)
∈ R2.

We deduce from Step 2 of Section 3B4 that

dp ∼
p

2π
∼

1
cp
,

so that hypothesis (4) of Proposition 1.8 is satisfied for p large enough (still for λ = max(R0, λ∗)).
Furthermore, hypothesis (2) of Proposition 1.8 is satisfied by taking p large enough, associated with the
choice λ= max(R0, λ∗).

Step 2: Conclusion. Applying Proposition 1.8 to e−iβup, we infer that there exists γp ∈ R such that (for
large p)

up = eiγp Qcp

(no translation is needed in the x2-direction at this stage since the zeros of ûp are on the x1-axis).
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3C. Decay slightly away from the vortices. In this section, we provide some estimates for ûp in the region
B(ẑp,+, 2R0) ∪ B(ẑp,−, 2R0). For the Ginzburg–Landau (stationary) model, such estimates were first
given in [35] for minimizing solutions and later generalized in [18] to nonminimizing solutions. However,
since the paper [35] is difficult to find, we give here a proof of these estimates that includes the transport
term. They improve some estimates in [14] and are not specific to the way we construct the solutions.

Proposition 3.6. We have, for |ŷ|⩽ 3
20 ,∣∣|ûp(ẑp,± + ŷ)| − 1

∣∣ ⩽ C
p2|ŷ|2

, |∇|ûp|(ẑp,± + ŷ)| ⩽
C

p2|ŷ|3
, |∇ûp(ẑp,± + ŷ)| ⩽

C
|ŷ|
.

Proof. We work near ẑp,+ (the minus sign is similar), say in the annulus B
(
ẑp,+, 1

10

)
\ B(ẑp,+, 1/p) and set

ûp(ẑp,+ + ŷ)= Âp(ŷ)eiθ+i ϕ̂p(ŷ),

with Âp and ϕ̂p real-valued and smooth in the annulus (θ is the polar angle centered at ẑp,+). Then, we
obtain the system1 Âp − Âp|∇ϕ̂p|

2
+ p2 Âp|V1|

2(1 − Â2
p)− 2 Âp

∂θϕ

r2 − cpp Âp∂2ϕ̂p − cpp
cos θ

r
Âp = 0,

Âp1ϕ̂p + 2∇ Âp · ∇ϕ̂p + 2
∂θ Âp

r2 + cpp∂2 Âp = 0.

The second equation may be recast as

∇ · ( Â2
p∇ϕ̂p)+

∂θ Â2
p

r2 = −
cpp
2
∂2( Â2

p − 1). (3-20)

Multiplying by ϕ̂p and integrating over B
(
0, 3

20

)
\ B(0, R0/p), we obtain∫

B(0,3/20)\B(0,R0/p)
Â2
p|∇ϕ̂p|

2 d ŷ =

∫
B(0,3/20)\B(0,R0/p)

(1 − Â2
p)
∂θ ϕ̂p

r2 +
cpp
2
(1 − Â2

p)∂2ϕ̂p d ŷ

+

∫
∂B(0,3/20)

Â2
p

∂ϕ̂p

∂ν
+

cpp
2
( Â2

p − 1)ϕ̂pν2 dℓ.

By the Cauchy–Schwarz inequality, (3-3) and Step 1 of Section 3B3, we infer

∥∇ϕ̂p∥
2
L2(B(0,3/20)\B(0,R0/p))

⩽ C(1 + cp)∥∇ϕ̂p∥L2(B(0,3/20)\B(0,R0/p)) + C,

where, for the contribution of the integral over ∂B
(
0, 3

20

)
, we have used (3-16) and (3-15) (see Step 2

of Section 3B2). This implies

∥∇ϕ̂p∥L2(B(0,3/20)\B(0,R0/p)) ⩽ C. (3-21)

We fix ŷ ∈ R2 such that 2R0/p⩽ |ŷ|⩽ 3
20 . Then, since |ûp|⩾

1
2 in the annulus B

(
0, 3

20

)
\ B(0, R0/p)⊃

B(ŷ, |ŷ|/2), we deduce∫
B(ŷ,|ŷ|/2)

Â2
p|∇ϕ̂p + e⃗θ/r |

2 dx̂ ⩽ C
∫

B(ŷ,|ŷ|/2)
|∇ϕ̂p|

2
+

1
r2 dx̂ ⩽ C
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by (3-21) and the fact that r = |x̂ | ⩾ |ŷ|/2. By Step 1 of Section 3B3, we then infer the upper bound
(also shown in [35])

E1/p(ûp, B(ŷ, |ŷ|/2))⩽ C. (3-22)

We now make some rescaling and consider

v(X) := ûp

(
ŷ +

|ŷ|

2
X
)

in B(0, 1) (v depends on ŷ and p), which solves

1v+ i
cp
δ
∂2v+

1
δ2 v(1 − |v|2)= 0

in B(0, 1), with δ := 2/(p|ŷ|). This equation is of the type (3-1) with “ϵ = δ” and “c = cp/δ”. Let us
check that the assumption |c| ⩽ M0|ln ϵ| is satisfied with M0 = 1. As a matter of fact, we have

δ =
2

p|ŷ|
∈

]
40
3p
,

1
2

]
;

thus

M0δ|ln δ| ⩾
40
3p

ln 2 ⩾ cp =
2π
p

+ o(1)

by Step 2 of Section 3B4 (note 40(ln 2)/3≈9.24(1)>2π ). Furthermore, the upper bound (3-22) reads now

Eδ(v, B(0, 1))⩽ C.

It then follows from the proof of Step 7 (p. 48) of Theorem 1 in [8] that, for δ sufficiently small,

∥2δ−2(1 − |v|)− cpδ−1∂2 arg(v)∥C1(B(0,1/2)) ⩽ C, ∥∇ arg(v)∥C1(B(0,1/2)) ⩽ C.

Therefore, by Step 2 of Section 3B3,∣∣1 − |v(0)|
∣∣ + ∣∣∇|v|(0)

∣∣ ⩽ Ccpδ+ Cδ2 ⩽
C

p2|ŷ|2
, |∇ arg(v)(0)| ⩽ C,

and scaling this back yields the conclusion, at least for δ = 2/(p|ŷ|) sufficiently small, say p|ŷ|⩾ δ0/2,
but the estimate is easy to show if p|ŷ|⩽ δ0/2. □

3D. Some remarks on the nonsymmetrical case. In the case where we do not assume the x1-symmetry
for up, the location of the vortices ŷp,± is more delicate. Indeed, we can no longer assume (3-14), that is,

(ŷp,−)2 = (ŷp,+)2 = 0 and − (ŷp,−)1 = (ŷp,+)1 →
1

2π .

Up to a translation, we may assume ŷp,+ + ŷp,− = 0, and it remains true that ŷp,+,1 − ŷp,−,1 →
1
π

, but we
may have |ŷp,+ − ŷp,−| ≫ 1. By carefully following the proof in [43], one could show that

|ŷp,+ − ŷp,−| ⩽ C.

Then, the location of the limiting vortices ŷ∞,± = limp→+∞ ŷp,± can be obtained through the use of the
Hopf differential as in [6] (Chapter VII), and would lead as before to ŷ∞,± =

(
±

1
2π , 0

)
. This is of course
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related to the fact that the only critical point of the action functional

F(ŷ∞,+, ŷ∞,−) := 2π
(
2 ln|ŷ∞,+ − ŷ∞,−| − 2π [(ŷ∞,+)1 − (ŷ∞,−)1]

)
associated with the action of the Kirchhoff energy is (up to translation) (ŷ∞,+, ŷ∞,−)=

( 1
2π ,−

1
2π

)
∈ C2.

Next, Step 1 of Section 3B4 becomes, for any p ∈ [1, 2[, and in W 1,p
loc (R

2),

ûp ⇀ ei2û∞.

The term 2 is somewhat the phase at infinity, even though we do not claim some uniformity at infinity in
space. Next, for the local convergences, there are two phases β± ∈ R such that

ûp(ẑp,± + p · )→ eiβ± V± (3-23)

in Ck
loc(R

2) for any k ∈ N. We are then simply able to show that β± =2, but this is not enough for the
uniqueness result. This follows from the arguments given in [44], as we explain.

We work for the + sign. Integrating (3-20) over the disk B(0, R) yields∫
∂B(0,R)

Â2
p

∂ϕ̂p

∂ν
dℓ+ cpp

∫
∂B(0,R)

ν2( Â2
p − 1) dℓ= 0.

We now consider the average

βp(r) :=
1

2πr

∫
∂B(0,r)

ϕ̂p dℓ,

which satisfies, for 1/p⩽ r0 ⩽ r1 ⩽
3
20 ,

βp(r0)−βp(r1)=

∫ r1

r0

∂rβp(r) dr =

∫ r1

r0

1
2πr

∫
∂B(0,r)

∂r ϕ̂p dℓ dr

=

∫ r1

r0

1
2πr

∫
∂B(0,r)

(1 − Â2
p)∂r ϕ̂p dℓ dr + cpp

∫ r1

r0

1
2πr

∫
∂B(0,r)

ν2( Â2
p − 1) dℓ dr.

Therefore, by Step 5,

|βp(r0)−βp(r1)| ⩽ C
∫ r1

r0

dr
p2r3 + C

∫ r1

r0

dr
p2r2 ⩽

C
(r0p)2

+
C
p
.

We now fix η ∈ ]0, 1]. Taking r0 = 1/(
√
ηp) and r1 =

3
20 , we infer

|βp(r0)−βp(r1)| ⩽ Cη+
C
p
.

Moreover, by (3-23), we have
βp(r0)= βp(1/(

√
ηp))→ β+

as p → +∞, and by Step 1 of Section 3B4, we deduce

βp(r1)→2.

As a consequence,
|β+ −2| ⩽ Cη,

and the conclusion follows by letting η→ 0.
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CLASSIFICATION OF CONVEX ANCIENT FREE-BOUNDARY
CURVE-SHORTENING FLOWS IN THE DISC

THEODORA BOURNI AND MAT LANGFORD

Using a combination of direct geometric methods and an analysis of the linearization of the flow about
the horizontal bisector, we prove that there exists a unique (modulo rotations about the origin) convex
ancient curve-shortening flow in the disc with free boundary on the circle. This appears to be the first
result of its kind in the free-boundary setting.

1. Introduction

Curve-shortening flow is the gradient flow of length for regular curves. It models the evolution of grain
boundaries [Mullins 1956; von Neumann 1952] and the shapes of worn stones [Firey 1974] in two
dimensions, and has been exploited in a multitude of further applications; see, for example, [Sapiro 2001].

The evolution of closed planar curves by curve-shortening was initiated by Mullins [1956] and was later
taken up by Gage [1984] and Gage and Hamilton [1986], who proved that closed convex curves remain
convex and shrink to “round” points in finite time. Soon after, Grayson showed that closed embedded
planar curves become convex in finite time under the flow, thereafter shrinking to round points according
to the Gage–Hamilton theorem. Different proofs of these results were discovered later by others [Andrews
2012; Andrews and Bryan 2011a; 2011b; Hamilton 1995b; Huisken 1998]. Ancient solutions to geometric
flows (that is, solutions defined on backwards-infinite time-intervals) are important from an analytical
standpoint as they model singularity formation [Hamilton 1995a]. They also arise in quantum field theory,
where they model the ultraviolet regime in certain Dirichlet sigma models [Bakas and Sourdis 2007].
They have generated a great deal of interest from a purely geometric standpoint due to their symmetry and
rigidity properties. For example, ancient solutions to curve-shortening flow of convex planar curves have
been classified through the work of Daskalopoulos, Hamilton and Sesum [Daskalopoulos et al. 2010] and
the authors in collaboration with Tinaglia [Bourni et al. 2020]. Bryan and Louie [2016] proved that the
shrinking parallel is the only convex ancient solution to curve-shortening flow on the two-sphere, and
Choi and Mantoulidis [2022] showed that it is the only embedded ancient solution on the two-sphere
with uniformly bounded length.

The natural Neumann boundary value problem for curve-shortening flow, called the free-boundary
problem, asks for a family of curves whose endpoints lie on (but are free to move on) a fixed barrier curve
which is met by the solution curve orthogonally. Study of the free-boundary problem was initiated by
Huisken [1989] and further developed by Stahl [1996a; 1996b]. In particular, Stahl proved that convex
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curves with free boundary on a smooth, convex, locally uniformly convex barrier remain convex and
shrink to a point on the barrier curve.

The analysis of ancient solutions to free-boundary curve-shortening flow remains in its infancy. Indeed,
to our knowledge, the only examples previously known seem to be those inherited from closed or complete
examples (one may restrict the shrinking circle, for example, to the upper halfplane). We provide here a
classification of convex1 ancient free-boundary curve-shortening flows in the disc.

Theorem 1.1. Modulo rotation about the origin and translation in time, there exists exactly one convex,
locally uniformly convex ancient solution to free-boundary curve-shortening flow in the unit disc D ⊂ R2.
It converges to the point (0, 1) as t → 0 and smoothly to the segment [−1, 1] × {0} as t → −∞. It is
invariant under reflection across the y-axis. As a graph over the x-axis, it satisfies

eλ2t y(x, t) → A cosh(λx) uniformly in x as t → −∞

for some A > 0, where λ is the solution to λ tanh λ = 1.

Theorem 1.1 is a consequence of Propositions 2.8, 3.4, and 3.5 proved below. Note that it is actually a
classification of all convex ancient solutions, since the strong maximum principle and the Hopf boundary
point lemma imply that any convex solution to the flow is either a stationary segment (and hence a bisector
of the disc by the free-boundary condition) or is locally uniformly convex at interior times.

A higher-dimensional counterpart of Theorem 1.1 will be treated in a forthcoming paper.
Another natural setting in which to seek ancient solutions is within the class of soliton solutions. Since

free-boundary curve-shortening flow in the disc is invariant under ambient rotations, one might expect to
find rotating solutions. In Section 4, we provide a short proof that none exist.

Theorem 1.2. There exist no proper rotating solutions to free-boundary curve-shortening flow in the disc.

2. Existence

Our first goal is the explicit construction of a nontrivial ancient free-boundary curve-shortening flow in
the disc. It will be clear from the construction that the solution is reflection-symmetric about the vertical
axis, emerges at time negative infinity from the horizontal bisector, and converges at time zero to the
point (0, 1). We shall also prove an estimate for the height of the constructed solution (which will be
needed to prove its uniqueness).

2A. Barriers. Given θ ∈
(
0, π

2

)
, denote by Cθ the circle centered on the y-axis which meets ∂ B2

orthogonally at (cos θ, sin θ). That is,

Cθ ≑ {(x, y) ∈ R2
: x2

+ (csc θ − y)2
= cot2 θ}. (1)

If we set
θ−(t) ≑ arcsin et and θ+(t) ≑ arcsin e2t ,

1A free-boundary curve in the open disc B2 is convex if it bounds a convex region in B2 and locally uniformly convex if it is
of class C2 and its curvature is positive.
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then Cθ±(t) is defined for t ∈ (−∞, 0) and flows from the x-axis to the point (0, 1). Moreover, since the
inward normal speed of Cθ−(t) is no greater than its curvature κ− and the inward normal speed of Cθ+(t)

is no less than its curvature κ+, the maximum principle and the Hopf boundary point lemma imply that:

Proposition 2.1. A solution to free-boundary curve-shortening flow in B2 which lies below (resp. above)
the circle Cθ0 at time t0 lies below Cθ+(t+0 +t−t0) (resp. above Cθ−(t−0 +t−t0)) for all t > t0, where 2t+

0 =

log sin θ0 (resp. t−

0 = log sin θ0).

Consider now the shifted scaled Angenent oval {Aλ
t }t∈(−∞,0), where

Aλ
t ≑

{
(x, y) ∈ R ×

(
0,

π

2λ

)
: sin(λy) = eλ2t cosh(λx)

}
.

This evolves by curve-shortening flow, passes through the point (cos θ, sin θ) ∈ ∂ B2 at a time t given by

t = λ−2 log
(

sin(λ sin θ)

cosh(λ cos θ)

)
and at that point, the normal satisfies

νλ(cos θ, sin θ) · (cos θ, sin θ) =
cos θ tanh(λ cos θ) − sin θ cot(λ sin θ)√

tanh2(λ cos θ) + cot2(λ sin θ)
.

Lemma 2.2. For each θ ∈
(
0, π

2

)
, there is a unique λ(θ) ∈ (0, π/(2 sin θ)) such that

νλ(θ)(cos θ, sin θ) · (cos θ, sin θ) = 0.

Given θ, θ0 ∈
(
0, π

2

)
with θ > θ0,

νλ(θ0)(cos θ, sin θ) · (cos θ, sin θ) < 0.

Proof. Define
f (λ, θ) ≑ cos θ tanh(λ cos θ) − sin θ cot(λ sin θ)).

Observe that
lim
λ↘0

f (λ, θ) = −∞, lim
λ↗π/(2 sin θ)

f (λ, θ) = cos θ tanh
(

π
2 cot θ

)
> 0

and
∂ f
∂λ

= cos2 θ(1 − tanh2(λ cos θ)) + sin2 θ(1 + cot2(λ sin θ)) > 0. (2)

The first claim follows.
Next observe that

∂ f
∂θ

= − sin θ tanh(λ cos θ)−λ cos θ sin θ sech2(λ cos θ)− cos θ cot(λ sin θ)+λ sin θ cos θ csc2(λ sin θ).

Given θ ∈
(
0, π

2

)
, we obtain, at the unique zero λ ∈ (0, π/(2 sin θ)) of f ( · , θ),

∂ f
∂θ

= − sin θ tan θ cot(λ sin θ) − λ cos θ sin θ(1 − tan2 θ cot2(λ sin θ))

− cos θ cot(λ sin θ) + λ sin θ cos θ csc2(λ sin θ)

= − sec θ cot(λ sin θ)(1 − λ sin θ cot(λ sin θ)).

Since Y cot Y < 1 for Y ∈
(
0, π

2

)
, this is less than zero. The second claim follows. □
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The maximum principle and the Hopf boundary point lemma now imply the following.

Proposition 2.3. Let {0t }t∈[α,ω) be a solution to free-boundary curve-shortening flow in B2. Suppose that
λ ≤ λ(θα), where θα denotes the smaller, in absolute value, of the two turning angles to 0α at its boundary.
If 0α lies above Aλ

s , then 0t lies above Aλ
s+t−α for all t ∈ (α, ω)∩ (−∞, α − s).

Proof. By the strong maximum principle, the two families of curves can never develop contact at an
interior point. Since the families are monotonic, they cannot develop boundary contact at a boundary
point (cos θ, sin θ) with |θ | ≤ θα. On the other hand, since λ ≤ λ(θα), (2) implies that

f (λ, θα) ≤ f (λα, θα) = 0,

and hence, by the argument of Lemma 2.2,

f (λ, θ) ≤ 0 for θ ≥ θα.

So the Hopf boundary point lemma implies that no boundary contact can develop for θ ≥ θα either. □

Remark 2.4. Since s cot s → 1 as s → 0, we have that f (λ, θ) is nonnegative at θ = 0 so long as λ ≥ λ0,
where λ0 tanh λ0 = 1.

2B. Old-but-not-ancient solutions. For each ρ >0, choose a curve 0ρ in B2 with the following properties:

• 0ρ meets ∂ B2 orthogonally at (cos ρ, sin ρ).

• 0ρ is reflection-symmetric about the y-axis.

• 0ρ
∩ B2 is the relative boundary of a convex region �ρ

⊂ B2.

• κ
ρ
s > 0 in B2

∩ {x > 0}.

For example, we could take 0ρ ≑ Aλρ

tρ ∩ B2, where λρ > λ0 and tρ are (uniquely) chosen so that

cos ρ tanh(λρ cos ρ) − sin ρ cot(λρ sin ρ)) = 0

and

−tρ = λ−2
ρ log

(
cosh(λρ cos ρ)

sin(λρ sin ρ)

)
.

Observe that the circle Cθρ
defined by

sin θρ =
2 sin ρ

1 + sin2 ρ

is tangent to the line y = sin ρ, and hence lies above 0ρ.
Work of Stahl [1996b; 1996a] now yields the following old-but-not-ancient solutions.

Lemma 2.5. For each ρ ∈
(
0, π

2

)
, there exists a smooth solution2

{0
ρ
t }t∈[αρ ,0) to curve-shortening flow

with 0
ρ
αρ

= 0ρ which satisfies the following properties:

• 0
ρ
t meets ∂ B2 orthogonally for each t ∈ (αρ, 0).

2Given by a one parameter family of immersions X : [−1, 1] × [αρ , 0) → B2 satisfying X ∈ C∞([−1, 1] × (αρ , 0)) ∩

C2+β,1+β/2([−1, 1] × [αρ , 0)) for some β ∈ (0, 1).
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• 0
ρ
t is convex and locally uniformly convex for each t ∈ (αρ, 0).

• 0
ρ
t is reflection-symmetric about the y-axis for each t ∈ (αρ, 0).

• 0
ρ
t → (0, 1) uniformly as t → 0.

• κ
ρ
s > 0 in B2

∩ {x > 0}.

• αρ < 1
2 log(2 sin ρ/(1 + sin2 ρ)) → −∞ as ρ → 0.

Proof. Existence of a maximal solution to curve-shortening flow out of 0ρ which meets ∂ B2 orthogonally
was proved by Stahl [Stahl 1996b, Theorem 2.1]. Stahl [1996a, Proposition 1.4] also proved that this
solution remains convex and locally uniformly convex and shrinks to a point on the boundary of B2 at
the final time (which is finite). We obtain {0

ρ
t }t∈[αρ ,0) by time-translating Stahl’s solution.

By uniqueness of solutions 0
ρ
t remains reflection-symmetric about the y-axis for t ∈ (αρ, 0), so the

final point is (0, 1).
The reflection symmetry also implies that κ

ρ
s = 0 at the point pt ≑ 0

ρ
t ∩ {x = 0} for all t ∈ [αρ, 0). By

[Stahl 1996a, Proposition 2.1], κ
ρ
s = κρ > 0 at the boundary point qt ≑ ∂0

ρ
t ∩ {x > 0} for all t ∈ (αρ, 0).

Applying Sturm’s theorem [Angenent 1988] to κ
ρ
s , we thus find that κ

ρ
s > 0 on 0

ρ
t ∩ B2

∩ {x > 0} for all
t ∈ (αρ, 0).

Since Cθρ
⊂ �ρ, the final property follows from Proposition 2.1. □

We now fix ρ > 0 and drop the super/subscript ρ. Set

κ(t) ≑ min
0t

κ = κ(pt) and κ̄(t) ≑ max
0t

κ = κ(qt),

and define y(t), ȳ(t) and θ̄ (t) by

pt = (0, y(t)), qt = (cos θ̄ (t), sin θ̄ (t)), and ȳ(t) = sin θ̄ (t).

Lemma 2.6. Each old-but-not-ancient solution satisfies

κ ≤ tan θ̄ ≤ κ̄, (3)

sin θ̄ ≤ et , (4)
sin θ̄

1 + cos θ̄
≤ y ≤ sin θ̄ . (5)

Proof. To prove the lower bound for κ̄ , it suffices to show that the circle Cθ̄ (t) (see (1)) lies locally below 0t

near qt . If this is not the case, then, locally around qt , 0t lies below Cθ̄ (t) and hence κ(qt) ≤ tan θ̄ (t). But
then we can translate Cθ̄ (t) downwards until it touches 0t from below in an interior point at which the
curvature must satisfy κ ≥ tan θ̄ (t). This contradicts the unique maximization of the curvature at qt .

The estimate (4) now follows by integrating the inequality

d
dt

sin θ̄ = cos θ̄ κ̄ ≥ sin θ̄

between any initial time t and the final time 0 (at which θ̄ =
π
2 since the solution contracts to the

point (0, 1)).
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The upper bound for y follows from convexity and the boundary condition ȳ = sin θ̄ . To prove the
lower bound, we will show that the circle Cθ̄ (t) lies nowhere above 0t . Suppose that this is not the case.
Then, since Cθ̄ (t) lies locally below 0t near qt , we can move Cθ̄ (t) downwards until it is tangent from
below to a point p′

t on 0t ∩ {x ≥ 0}, at which we must have κ ≥ tan θ̄ (t). But then, since κs ≥ 0 in
{x > 0}, we find that κ ≥ tan θ̄ (t) for all points between p′

t and qt . But this implies that this whole arc
(including p′

t ) lies above Cθ̄ (t), a contradiction. To prove the upper bound for κ , fix t and consider the
circle C centered on the y-axis through the points pt and qt . Its radius is r(t), where

r ≑
cos2 θ̄ + (sin θ̄ − y)2

2(sin θ̄ − y)
.

We claim that 0t lies locally below C near pt . Suppose that this is not the case. Then, by the symmetry
of 0t and C across the y-axis, 0t lies locally above C near pt . This implies two things: first, that

κ(pt) ≥ r−1,

and second, that, by moving C vertically upwards, we can find a point p′
t (the final point of contact)

which satisfies
κ(p′

t) ≤ r−1.

These two inequalities contradict the (unique) minimization of κ at pt . We conclude that

κ ≤
2(sin θ̄ − y)

cos2 θ̄ + (sin θ̄ − y)2
≤ tan θ̄

due to the lower bound for y. □

Remark 2.7. If we parametrize by turning angle θ ∈ [−θ̄ , θ̄ ], so that

τ = (cos θ, sin θ),

then the estimates (3) are also easily obtained from the monotonicity of κ and the formulas

x(θ) = x0 +

∫ θ

0

cos u
κ(u)

du and y(θ) = y0 +

∫ θ

0

sin u
κ(u)

du. (6)

2C. Taking the limit.

Proposition 2.8. There exists a convex, locally uniformly convex ancient curve-shortening flow in the disc
with free boundary on the circle.

Proof. For each ρ > 0, consider the old-but-not-ancient solution {0
ρ
t }t∈[αρ ,0), 0

ρ
t = ∂�

ρ
t , constructed in

Lemma 2.5. By (4), �
ρ
t contains Cω(t) ∩ B2, where ω(t) ∈

(
0, π

2

)
is uniquely defined by

1 − cos ω(t)
sin ω(t)

= et .

If we represent 0
ρ
t as a graph x 7→ yρ(x, t) over the x-axis, then convexity and the boundary condition

imply that |yρ
x | ≤ tan ω. Since ω(t) is independent of ρ, the (global-in-space, interior-in-time) Ecker–

Huisken-type estimates in [Stahl 1996b] imply uniform-in-ρ bounds for the curvature and its derivatives.
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So the limit
{0

ρ
t }t∈[αρ ,0) → {0t }t∈(−∞,0)

exists in C∞ (globally in space on compact subsets of time) and the limit {0t }t∈(−∞,0) satisfies curve-
shortening flow with free boundary in B2. On the other hand, since {0

ρ
t }t∈(αρ ,0) contracts to (0, 1) as t → 0,

(the contrapositive of) Proposition 2.1 implies that 0
ρ
t must intersect the closed region enclosed by Cθ+(t)

for all t < 0. It follows that 0t must intersect the closed region enclosed by Cθ+(t) for all t < 0. Since
each 0t is the limit of convex boundaries, each is convex. It follows that 0t converges to (0, 1) as t → 0
and, by [Stahl 1996b, Corollary 4.5], that 0t is locally uniformly convex for each t . □

2D. Asymptotics for the height. For the purposes of this section, we fix an ancient solution {0t }(−∞,0)

obtained as in Proposition 2.8 by taking a sublimit as λ ↘ λ0 of the specific old-but-not ancient solutions
{0λ

t }t∈[αλ,0) corresponding to 0λ
αλ

= Aλ
tλ ∩ B2, tλ being the time at which {Aλ

t }t∈(−∞,0) meets ∂ B2

orthogonally. The asymptotics we obtain for this solution will be used to prove its uniqueness.
We will need to prove that the limit limt→−∞ e−λ2

0t y(t) exists in (0, ∞). The following speed bound
will imply that it exists in [0, ∞).

Lemma 2.9. The ancient solution {0t }(−∞,0) satisfies

κ

cos θ
≥ λ0 tan(λ0 y). (7)

Proof. It suffices to prove that κ/cos θ ≥λ tan(λy) on each of the old-but-not-ancient solutions {0λ
t }t∈[αλ,0).

Note that equality holds on the initial timeslice 0λ
αλ

= Aλ
tλ .

Given any µ < λ, set u ≑ µ tan(µy) and v ≑ xs = cos θ = ⟨ν, e2⟩. Observe that

us = µ2 sec2(µy) sin θ, (∂t − 1)u = −2µ2 sec2(µy) sin2 θu,

vs = −κ sin θ and (∂t − 1)v = κ2v.

At an interior maximum of uv/κ we observe that

∇κ

κ
=

∇u
u

+
∇v

v
and hence

0 ≤ (∂t − 1)
uv

κ
=

uv

κ

(
(∂t − 1)u

u
− 2

〈
∇u
u

,
∇v

v

〉)
= 2µ2 sec2(µy) sin2 θ

(
1 −

uv

κ

)
. (8)

At a (without loss of generality right) boundary maximum of uv/κ , we have ys = y and κs = κ , and
hence (

uv

κ

)
s
=

uv

κ

(
us

u
+

vs

v
−

κs

κ

)
=

uv

κ

(
sec2(µy)µy

tan µy
− κ

y
v

− 1
)

=

(
µy

tan(µy)
− 1

)
uv

κ
+

(
uv

κ
− 1

)
tan(µy)µy

≤

(
uv

κ
− 1

)
tan(µy)µy. (9)
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We may now conclude that max0λ
t

uv/κ remains less than 1. Indeed, if uv/κ ever reaches 1, then there
must be a first time t0 > 0 and a point x0 ∈ 0t at which this occurs (note that uv/κ is continuous on 0t up
to the initial time). The point x0 cannot be an interior point, due to (8), and it cannot be a boundary point,
due to (9) and the Hopf boundary point lemma. We conclude that

κ

cos θ
≥ µ tan(µy)

on {0λ
t }t∈[αλ,0) for all µ < λ. Now take µ → λ. □

If we parametrize 0t as a graph x 7→ y(x, t) over the x-axis, then (7) yields

(sin(λ0 y))t = λ0 cos(λ0 y)κ
√

1 + |yx |
2
= λ0 cos(λ0 y)

κ

cos θ
≥ λ2

0 sin(λ0 y)

and hence
(e−λ2

0t sin(λ0 y(x, t)))t ≥ 0. (10)

In particular, the limit
A(x) ≑ lim

t→−∞
e−λ2

0t y(x, t)

exists in [0, ∞) for each x ∈ (−1, 1), as claimed.
We want next to prove that the above limit is positive. We will achieve this through a suitable upper

bound for the speed. Recall that

(∂t − 1)κs = 4κ2κs and (∂t − 1)⟨γ, ν⟩ = κ2
⟨γ, ν⟩ − 2κ, (11)

where γ denotes the position and s is an arc-length parameter. The good −2κ-term in the second equation
may be exploited to obtain the following crude speed bound.

Lemma 2.10. There exist T > −∞ and C < ∞ such that

κ̄ ≤ Cet for all t < T . (12)

Proof. We will prove the estimate for each old-but-not-ancient solution {0λ
t }t∈(αλ,0). We first prove a

crude gradient estimate of the form
|κs | ≤ 2κ (13)

for t sufficiently negative. It will suffice to prove that

|κs | − κ + ⟨γ, ν⟩ ≤ 0, (14)

where γ denotes the position. Indeed, since ⟨γ, ν⟩s = κ⟨γ, τ ⟩ has the same sign as the x-coordinate, we
may estimate, as in (7),

|⟨γ, ν⟩| ≤ |⟨γ, ν⟩|x=0 ≤ λ−2κ|x=0 = λ−2 min
0t

κ ≤ κ. (15)

For λ sufficiently close to λ0, we have κ|t=αλ
< 1

2 . Denote by T λ the first time at which κ reaches 1
2 .

Since κ is continuous up to the initial time αλ, we have T λ > αλ. We claim that (14) holds for t < T λ.
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Indeed, it is satisfied on the initial timeslice 0λ
αλ

= Aλ
tλ since

κ2
s − κ2

= λ2(cos2 θ sin2 θ − sin2 θ − a2
λ) = −λ2(sin4 θ + a2

λ) ≤ 0,

whereas ⟨γ, ν⟩ ≤ 0. We will show that

fε ≑ |κs | − κ + ⟨γ, ν⟩ − εet−αλ

remains negative up to time T λ. Suppose, to the contrary, that fε reaches zero at some time t < T λ at
some point p ∈ 0λ

t . Since |κs | − κ +⟨γ, ν⟩ vanishes at the boundary, p must be an interior point. Since
κs vanishes at the y-axis, and the curve is symmetric, we may assume that x(p) > 0. At such a point,
using the evolution equations (11), we have

0 ≤ (∂t − 1) fε = κ2(4κs − κ + ⟨γ, ν⟩) − 2κ − εet−αλ

= κ2(3[κ − ⟨γ, ν⟩] + 4εet−αλ) − 2κ − εet−αλ .

Recalling (15) and estimating κ ≤
1
2 yields

0 ≤ 6κ3
− 2κ + (4κ2

− 1)εet−αλ < 0,

which is absurd. So fε does indeed remain negative, and taking ε → 0 yields (13) for t < T λ.
Since Length(0λ

t ∩ {x ≥ 0}) ≤ 1, integrating (13) yields

κ̄ ≤ e2κ for t < T λ.

Recalling (3) and (4), this implies that

κ̄ ≤ e2 et
√

1 − e2t
for t < T λ.

Taking t = T λ we find that T λ
≥ T, where T is independent of λ, so we conclude that

κ̄ ≤ Cet for t < T,

where C and T do not depend on λ. □

We now bootstrap (12) to obtain the desired speed bound.

Lemma 2.11. There exist C < ∞ and T > −∞ such that
κ

y
≤ λ2

0 + Ce2t for t < T .

Proof. Consider the old-but-not-ancient solutions {0λ
t }t∈(−∞,0). By (12), we can find C <∞ and T >−∞

such that

(∂t − 1)
κ

y
= κ2 κ

y
+ 2

〈
∇

κ

y
,
∇ y
y

〉
≤ Ce2t κ

y
+ 2

〈
∇

κ

y
,
∇ y
y

〉
for t < T .

Since, at a boundary point, (
κ

y

)
s
=

κs

y
−

κ

y
ys

y
= 0,
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the Hopf boundary point lemma and the ODE comparison principle yield

max
0λ

t

κ

y
≤ C max

0λ
αλ

κ

y
for t ∈ (αλ, T ).

But now

(∂t − 1)
κ

y
≤ Ce2t max

0λ
αλ

κ

y
+ 2

〈
∇

κ

y
,
∇ y
y

〉
for t < T,

and hence, by ODE comparison,

max
0λ

t

κ

y
≤ max

0λ
αλ

κ

y
(1 + Ce2t) for t ∈ (αλ, T ).

Since, on the initial timeslice 0λ
αλ

= Aλ
tλ ,

κ

y
=

λ tan(λy)

y
cos θ,

the claim follows upon taking λ → λ0. □

It follows that
(log y(t) − λ2

0t)t ≤ Ce2t for t < T,

and hence, integrating from time t up to time T,

log y(t) − λ2
0t ≥ log y(T ) − λ2

0T − C for t < T .

So we indeed find that:

Lemma 2.12. The limit
A ≑ lim

t→−∞
e−λ2

0t y(t) (16)

exists in (0, ∞) on the particular ancient solution {0t }(−∞,0).

3. Uniqueness

Now let {0t }t∈(−∞,0), 0t = ∂rel�t , be any convex, locally uniformly convex ancient free-boundary curve-
shortening flow in the disc. By Stahl’s theorem [1996a], we may assume that 0t contracts to a point on
the boundary as t → 0.

3A. Backwards convergence. We first show that 0t converges to a bisector as t → −∞.

Lemma 3.1. Up to a rotation of the plane,

0t C∞−−→ [−1, 1] × {0} as t → −∞.

Proof. Set A(t) ≑ area(�t). Integrating the variational formula for area yields

A(t) =

∫ 0

t

∫
0t

dθ,
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where θ is the turning angle. Since convexity ensures that the total turning angle
∫
0t

dθ is increasing and
A(t) ≤ π for all t , we find that ∫

0t

dθ → 0 as t → −∞.

Monotonicity of the flow, the free-boundary condition and convexity now imply that the enclosed
regions �t satisfy

�t → B2
∩ {y ≥ 0} as t → −∞

in the Hausdorff topology.
If we now represent 0t graphically over the x-axis, then convexity and the boundary condition ensure

that the height and gradient are bounded by the height at the boundary. Stahl’s estimates [1996b] now
give bounds for κ and its derivatives up to the boundary depending only on the height at the boundary. We
then get smooth subsequential convergence along any sequence of times t j → −∞. The claim follows
since any sublimit is the horizontal segment. □

We henceforth assume, without loss of generality, that the backwards limit is the horizontal bisector.

3B. Reflection symmetry. We can now prove that the solution is reflection-symmetric using Alexandrov
reflection across lines through the origin; see [Chow and Gulliver 2001].

Lemma 3.2. 0t is reflection-symmetric about the y-axis for all t .

Proof. Given any ω ∈
(
0, π

2

)
, we define the halfspace

Hω = {(x, y) : (x, y) · (− sin ω, cos ω) > 0}

and denote by Rω the reflection about ∂ Hω. We first claim that, for every ω, there exists t = tω such that

(Rω · 0t) ∩ (0t ∩ Hω) = ∅ for all t < tω. (17)

Assume that the claim is not true. Then there exists ω ∈
(
0, π

2

)
, a sequence of times ti → −∞, and a

sequence of pairs of points pi , qi ∈0ti such that Rω(pi )= qi . This implies that the line passing through pi

and qi is parallel to the vector (sin ω, − cos ω), so the mean value theorem yields for each i a point ri

on 0ti where the normal is parallel to (cos ω, sin ω). This contradicts Lemma 3.1.
The strong maximum principle now implies that (17) holds for all t < 0 (note that Rω ·0t also intersects

∂ B2 orthogonally). In fact, (Rω · 0t) ∩ Hω lies above 0t ∩ Hω for all t < 0 and all ω ∈
(
0, π

2

)
and by

continuity the same holds for ω =
π
2 . Repeating the argument on the “other side” with the halfspaces

Hω = {(x, y) : (x, y) · (sin ω, − cos ω) > 0}, ω ∈
(

π
2 , π

)
,

implies the reflection symmetry. □

3C. Asymptotics for the height. We begin with a lemma.

Lemma 3.3. For all t < 0,
κs > 0 in {x > 0} ∩0t
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and hence
sin θ̄

1 + cos θ̄
≤ y. (18)

Proof. Choose T > −∞ so that κ < 2
7 for t < T and, given ε > 0, set

vε ≑ κs + ε(1 − ⟨γ, ν⟩).

We claim that vε ≥ 0 in {x ≥ 0}∩(−∞, T ). Suppose that this is not the case. Since at the spatial boundary
vε > ε, and vε → ε as t → −∞, there must exist a first time in (−∞, T ) and an interior point at which
vε = 0. But, at such a point,

0 ≥ (∂t − 1)vε = κ2(κs − ε⟨γ, ν⟩) + 3κ2κs + 2εκ

= −εκ2
− 3εκ2(1 − ⟨γ, ν⟩) + 2εκ

≥ ε(2 − 7κ)κ > 0,

which is absurd. Now take ε → 0 to obtain κs ≥ 0 in {x ≥ 0} ∩ 0t for t ∈ (−∞, T ]. Since κs = 0 at the
y-axis and κs = κ > 0 at the right boundary point, the strong maximum principle and the Hopf boundary
point lemma imply that κs > 0 in {x > 0}∩0t for t ∈ (−∞, T ]. But then Sturm’s theorem implies that κs

does not develop additional zeroes up to time 0.
Having established the first claim, the second follows as in Lemma 2.6. □

Proposition 3.4. If we define A ∈ (0, ∞) as in (16), then

eλ2
0t y(x, t) → A cosh(λ0x) uniformly as t → −∞.

Proof. Given τ < 0, consider the rescaled height function

yτ (x, t) ≑ e−λ2
0τ y(x, t + τ),

which is defined on the time-translated flow {0τ
t }t∈(−∞,−τ), where 0τ

t ≑ 0t+τ . Note that{
(∂t − 1τ )yτ

= 0 in {0τ
t }t∈(−∞,−τ),

⟨∇
τ yτ , N ⟩ = y on {∂0τ

t }t∈(−∞,−τ),
(19)

where ∇
τ and 1τ are the gradient and Laplacian on {0τ

t }t∈(−∞,−τ), respectively, and N is the outward
unit normal to ∂ B2.

Since {0t }t∈(−∞,0) reaches the origin at time zero, it must intersect the constructed solution for all
t < 0. In particular, the value of y on the former can at no time exceed the value of ȳ on the latter. But
then (16) and (18) yield

lim sup
t→−∞

e−λ2
0t ȳ < ∞. (20)

This implies a uniform bound for yτ on {0τ
t }t∈(−∞,T ] for any T ∈ R. So Alaoglu’s theorem yields

a sequence of times τ j → −∞ such that yτ j converges in the weak∗ topology as j → ∞ to some
y∞

∈ L2
loc([−1, 1]× (−∞, ∞)). Since convexity and the boundary condition imply a uniform bound for

∇
τ yτ on any time interval of the form (−∞, T ], we may also arrange that the convergence is uniform in

space at time zero, say.
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Weak∗ convergence ensures that y∞ satisfies the problem{
yt = yxx in [−1, 1] × (−∞, ∞),

yx(±1) = ±y(±1).
(21)

Indeed, a smooth function yτ satisfies the boundary value problem (19) (and analogously for (21)) if and
only if ∫

−τ

−∞

∫
0τ

t

yτ (∂t − 1τ )∗η = 0

for all smooth η which are compactly supported in time and satisfy

∇
τη · N = η on ∂0τ

t ,

where (∂t−1τ )∗≑−(∂t+1τ ) is the formal L2-adjoint of the heat operator. Since {0τ
t }t∈(−∞,−τ) converges

uniformly in the smooth topology to the stationary interval {[−1, 1] × {0}}t∈(−∞,∞) as τ → −∞, we
conclude that the limit y∞ must satisfy (21) in the L2 sense (and hence in the classical sense due to
the L2 theory for the heat equation). Indeed, by the definition of smooth convergence, we may (after
possibly applying a diffeomorphism) parametrize each flow {0

τ j
t }t∈(−∞,−τ j ) over I ≑ [−1, 1] by a family

of embeddings γ
j

t : I × (−∞, −τ j ) → B2 which converge in C∞

loc(I × (−∞, ∞)) as j → ∞ to the
stationary embedding (x, t) 7→ xe1. Given η ∈ C∞

0 (I ×(−∞, ∞)) satisfying ηζ (±1) = ±η, set η j ≑ ϕ jη,
where ϕ j

: [−1, 1] × (−∞, −τ j ) → R is defined by

ϕ
j
ζ + (1 − |γ

j
ζ |)ϕ j

= 0, ϕ j (0, t) = 1.

That is, ϕ j (ζ, t) = es j (ζ,t)−ζ , where s j (ζ, t) ≑
∫ ζ

0 |γ
j

ζ (ξ, t)| dξ . This ensures that ∇
τ j

η j
· N = η j at the

boundary, and hence

0 =

∫
∞

−∞

∫
I

yτ j (∂t − 1τ j )∗η j ds j dt.

Since ϕ j
→ 1 in C∞

loc(I × (−∞, ∞)), a short computation reveals that

0 =

∫
∞

−∞

∫
I

y∞(∂t − 1)∗η dζ dt.

Finally, we characterize the limit (uniqueness of which implies full convergence, completing the proof).
Separation of variables leads us to consider the problem{

−φxx = µφ in [−1, 1],

φx(±1) = ±φ(±1).

There is only one negative eigenspace, and its frequency turns out to be λ0, with the corresponding mode
given by

φ−1(x) ≑ cosh(λ0x).

Thus, recalling (20), we are able to conclude that

y∞(x, t) = Aeλ2
0t cosh(λ0x)



2238 THEODORA BOURNI AND MAT LANGFORD

for some A ≥ 0. In particular,

e−λ2
0τ j y(x, τ j ) = yτ j (x, 0) → A cosh(λ0x) uniformly as j → ∞.

Now, if A is not equal to the corresponding value on the constructed solution (note that the full limit
exists for the latter), then one of the two solutions must lie above the other at time τ j for j sufficiently
large. But this violates the avoidance principle. □

3D. Uniqueness. Uniqueness of the constructed ancient solution now follows directly from the avoidance
principle.

Proposition 3.5. Modulo time translation and rotation about the origin, there is only one convex, locally
uniformly convex ancient solution to free-boundary curve-shortening flow in the disc.

Proof. Denote by {0t }t∈(−∞,0) the constructed ancient solution and let {0′
t }t∈(−∞,0) be a second ancient

solution which, without loss of generality, contracts to the point (0, 1) at time 0. Given any τ > 0, consider
the time-translated solution {0τ

t }t∈(−∞,−τ) defined by 0τ
t = 0′

t+τ . By Proposition 3.4,

e−λ2
0t yτ (x, t) → Aeλ2

0τ cosh(λ0x) as t → −∞

uniformly in x . So 0τ
t lies above 0t for −t sufficiently large. The avoidance principle then ensures that 0τ

t

lies above 0t for all t ∈ (−∞, 0). Taking τ → 0, we find that 0′
t lies above 0t for all t < 0. Since the

two curves reach the point (0, 1) at time zero, they intersect for all t < 0 by the avoidance principle. The
strong maximum principle then implies that the two solutions coincide for all t . □

4. Supplement: nonexistence of rotators

Free-boundary curve-shortening flow in B2 is invariant under rotations about the origin, so it is natural to
seek solutions which move by rotation, that is, solutions γ : (−L/2, L/2)× (−∞, ∞) → B2 satisfying

γ ( · , t) = ei Btγ ( · , 0)

for some B > 0. Differentiating yields the rotator equation

κ = −B⟨γ, τ ⟩. (22)

It turns out, however, that there are no solutions to (22) in B2 satisfying the free-boundary condition.

Proof of Theorem 1.2. Following [Halldorsson 2012], we rewrite the rotator equation as the pair of
ordinary differential equations

x ′
= B + xy and y′

= −x2, (23)

where
x ≑ B⟨γ, τ ⟩ and y ≑ B⟨γ, ν⟩.

Arc-length parametrized solutions γ to the rotator equation (22) can be recovered from solutions to the
system (23) via

γ ≑ B−1(x + iy)eiθ , θ(s) ≑ −

∫ s

0
x(σ ) dσ,
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and this parametrization is unique up to an ambient rotation and a unit linear reparametrization, i.e.,
(θ, s) 7→ (±θ + θ0, ±s + s0).

Note that
|γ | = B−1

√
x2

+ y2.

So we seek solutions (x, y) : (−L/2, L/2) → B2 to (23) satisfying the free-boundary condition(
x
(
±

L
2

)
, y

(
±

L
2

))
= (±B, 0).

Let γ be such a solution. Since (23) can be uniquely solved with initial condition (x(s0), y(s0)) = (B, 0)

(which corresponds to γ (s0) ∈ ∂ B2 with ⟨γ, τ ⟩|s0 = 1), we find that γ must be invariant under rotation
by π about the origin. In particular, the points γ (−L/2) and γ (L/2) are diametrically opposite. It follows
that γ (0) is the origin. Indeed, for topological reasons, γ must cross the line orthogonally bisecting
the segment joining its endpoints an odd number of times (with multiplicity). But since the rotational
invariance pairs each crossing above the origin with one below, we are forced to include the origin in the
set of crossings. We conclude that

0 = y
( L

2

)
=

∫ L/2

0
y′

= −

∫ L/2

0
x2 ds,

which is impossible since x(L/2) = B > 0. □
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