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IDA AND HANKEL OPERATORS ON FOCK SPACES

ZHANGJIAN HU AND JANI A. VIRTANEN

We introduce a new space IDA of locally integrable functions whose integral distance to holomorphic
functions is finite, and use it to completely characterize boundedness and compactness of Hankel operators
on weighted Fock spaces. As an application, for bounded symbols, we show that the Hankel operator H f

is compact if and only if H f̄ is compact, which complements the classical compactness result of Berger
and Coburn. Motivated by recent work of Bauer, Coburn, and Hagger, we also apply our results to the
Berezin–Toeplitz quantization.

1. Introduction

Denote by L2 the Hilbert space of all Gaussian square-integrable functions f on Cn, that is,∫
Cn

| f (z)|2e−|z|2 dv(z) <∞,

where v is the standard Lebesgue measure on Cn. The Fock space F2 (aka Segal–Bargmann space)
consists of all holomorphic functions in L2. The orthogonal projection of L2 onto F2 is denoted by P
and called the Bergman projection. For a suitable function f : Cn

→ C, the Hankel operator H f and the
Toeplitz operator T f are defined on F2 by

H f = (I − P)M f and T f = P M f .

The function f is referred to as the symbol of H f and T f . Since P is a bounded operator, it follows that
both H f and T f are well-defined and bounded on F2 if f is a bounded function. For unbounded symbols,
despite considerable efforts, see, e.g., [Bauer 2005; Berger and Coburn 1994; Coburn et al. 2021; Hu and
Wang 2018], characterization of boundedness or compactness of these operators has remained an open
problem for more than 20 years.

In this paper, as a natural evolution from BMO (see [John and Nirenberg 1961; Zhu 2012]), we
introduce a notion of integral distance to holomorphic (aka analytic) functions IDA and use it to completely
characterize boundedness and compactness of Hankel operators on Fock spaces. Recently, in [Hu and
Virtanen 2022], which continues our present work, we used IDA in the Hilbert space setting to characterize
the Schatten class properties of Hankel operators. Indeed, the space IDA is broad in scope, and should have
more applications, which we hope to demonstrate in future work in connection with Toeplitz operators.

All our results are proved for weighted Fock spaces F p(ϕ) consisting of holomorphic functions
for which ∫

Cn
| f (z)|pe−pϕ(z) dv(z) <∞,
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where 0< p <∞ and ϕ is a suitable weight function (see Section 2 for further details). Obviously, with
p = 2 and ϕ(z)= (α/2)|z|2, we obtain the weighted Fock space F2

α . The study of L p-type Fock spaces
was initiated in [Janson et al. 1987] and has since grown considerably, as seen in [Zhu 2012].

We also revisit and complement a surprising result due to [Berger and Coburn 1987], which states that
for bounded symbols

H f : F2
→ L2 is compact if and only if H f̄ is compact.

In particular, we give a new proof and show that this phenomenon remains true for Hankel operators from
F p(ϕ) to Lq(ϕ) for general weights. What also makes this result striking is that it is not true for Hankel
operators acting on other important function spaces, such as Hardy or Bergman spaces.

As an application, we will apply our results to the Berezin–Toeplitz quantization, which complements
the results in [Bauer et al. 2018].

1A. Main results. We introduce the following new function spaces to characterize bounded and compact
Hankel operators. Let 0< s ≤ ∞ and 0< q <∞. For f ∈ Lq

loc, set

(Gq,r ( f )(z))q = inf
h∈H(B(z,r))

1
|B(z, r)|

∫
B(z,r)

| f − h|
q dv, z ∈ Cn,

where H(B(z, r)) stands for the set of holomorphic functions in the ball B(z, r). We say that f ∈ Lq
loc is

in IDAs,q if

∥ f ∥IDAs,q = ∥Gq,1( f )∥Ls <∞.

We further write BDAq for IDA∞,q and say that f ∈ VDAq if

lim
z→∞

Gq,1( f )(z)= 0.

The properties of these spaces will be studied in Section 3.

We denote by S the set of all measurable functions f that satisfy the condition in (2-7), which ensures
that the Hankel operator H f is densely defined on F p(ϕ) provided that 0< p <∞ and ϕ is a suitable
weight. Notice that the symbol class S contains all bounded functions. Further, we write HessR ϕ for the
Hessian of ϕ and E for the 2n × 2n identity matrix — these concepts will be discussed in more detail in
Section 2. It is important to notice that the condition HessR ϕ ≃ E in the following theorems is satisfied
by the classical Fock space F2, the Fock spaces F2

α generated by standard weights ϕ(z) = (α/2)|z|2,
α > 0, Fock–Sobolev spaces, and a large class of nonradial weights.

Theorem 1.1. Let f ∈ S and suppose that HessR ϕ ≃ E as in (2-1).

(a) For 0< p ≤ q <∞ and q ≥ 1, H f : F p(ϕ)→ Lq(ϕ) is bounded if and only if f ∈ BDAq, and H f

is compact if and only if f ∈ VDAq. For the operator norm of H f , we have the estimate

∥H f ∥ ≃ ∥ f ∥BDAq . (1-1)
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(b) For 1 ≤ q < p<∞, H f : F p(ϕ)→ Lq(ϕ) is bounded if and only if it is compact, which is equivalent
to f ∈ IDAs,q, where s = pq/(p − q), and

∥H f ∥ ≃ ∥ f ∥IDAs,q . (1-2)

(c) For 0< p ≤ q ≤ 1 and f ∈ L∞, H f : F p(ϕ)→ Lq(ϕ) is bounded with

∥H f ∥ ≤ C∥ f ∥L∞ (1-3)

and compact if and only if f ∈ VDAq.

We first note that Theorem 1.1 is new even for Hankel operators acting from F2 to L2. Previously
only characterizations for H f and H f̄ to be simultaneously bounded (or simultaneously compact) were
known. These were given in terms of the bounded (or vanishing) mean oscillation of f in [Bauer 2005]
for F2 and in [Hu and Wang 2018] for Hankel operators from F p

α to Lq
α. In Theorem 7.1 of Section 7,

we obtain these results as a simple consequence of Theorem 1.1. We also mention our recent work [Hu
and Virtanen 2022], which gives a complete characterization of Schatten class Hankel operators.

Theorem 1.1 should also be compared with the results for Hankel operators on Bergman spaces Ap.
Indeed, characterizations for boundedness and compactness can be found in [Axler 1986] for antianalytic
symbols, in [Hagger and Virtanen 2021] for bounded symbols, and in [Hu and Lu 2019; Li 1994; Luecking
1992; Pau et al. 2016] for unbounded symbols. These two cases are different to study because of properties
such as F p

⊂ Fq for p ≤ q (as opposed to Aq
⊂ Ap) and certain nice geometry on the boundary of these

bounded domains, which in turn helps with the treatment of the ∂̄-problem.
What is very different about the results on Hankel operators acting on these two types of spaces

is that our next result is only true in Fock spaces (see [Hagger and Virtanen 2021] for an interesting
counterexample for the Bergman space).

Theorem 1.2. Let f ∈ L∞ and suppose that HessR ϕ≃ E as in (2-1). If 0< p ≤ q<∞ or 1 ≤ q< p<∞,
then H f : F p(ϕ)→ Lq(ϕ) is compact if and only if H f̄ is compact.

For Hankel operators on the Fock space F2, Theorem 1.2 was proved in [Berger and Coburn 1987]
using C∗-algebra and Hilbert space techniques and in [Stroethoff 1992] using elementary methods. More
recently in [Hagger and Virtanen 2021], limit operator techniques were used to treat the reflexive Fock
spaces F p

α . However, our result is new even in the Hilbert space case because of the more general weights
that we consider. As a natural continuation of our present work, in [Hu and Virtanen 2022], we prove
that, for f ∈ L∞, the Hankel operator H f is in the Schatten class Sp if and only if H f̄ is in the Schatten
class Sp provided that 1< p <∞.

As an application and further generalization of our results, in Section 6, we provide a complete
characterization of those f ∈ L∞ for which

lim
t→0

∥T (t)
f T (t)

g − T (t)
f g ∥t = 0 (1-4)

for all g ∈ L∞, where T (t)
f = P (t)M f : F2

t (ϕ)→ F2
t (ϕ) and P (t) is the orthogonal projection of L2

t (ϕ)

onto F2
t (ϕ). Here L2

t = L2(Cn, dµt) and

dµt(z)=
1
tn exp

{
−2ϕ

(
z

√
t

)}
dv(z).
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The importance of the semiclassical limit in (1-4) stems from the fact that it is one of the essential
ingredients of the deformation quantization of [Rieffel 1989; 1990] in mathematical physics. Our
conclusion related to (1-4) extends and complements the main result in [Bauer et al. 2018].

1B. Approach. A careful inspection shows that the methods and techniques used in [Berger and Coburn
1986; 1987; Hagger and Virtanen 2021; Perälä et al. 2014; Stroethoff 1992] depend heavily upon the
following three aspects. First, the explicit representation of the Bergman kernel K (z, w) for standard
weights ϕ(z)= (α/2)|z|2 has the property that

K (z, w)e−(α/2)|z|2−(α/2)|w|
2
= e(α/2)|z−w|

2
. (1-5)

However, for the class of weights we consider, this quadratic decay is known not to hold (even in
dimension n = 1) and is expected to be very rare [Christ 1991]. The second aspect involves the Weyl
unitary operator Wa defined as

Wa f = f ◦ τaka,

where τa is the translation by a and ka is the normalized reproducing kernel. As a unitary operator
on F p

α (or on L p
α ), Wa plays a very important role in the theory of the Fock spaces F p

α (see [Zhu 2012]).
Unfortunately, no analogue of Weyl operators is currently available for F p(ϕ) when ϕ ̸= (α/2)|w|

2. The
third aspect we mention is Banach (or Hilbert) space techniques, such as the adjoint (for example, H∗

f )
and the duality. However, when 0< p < 1, F p(ϕ) is only an F-space (in the sense of [Rudin 1973]) and
the usual Banach space techniques can no longer be applied.

To overcome the three difficulties mentioned above, we introduce function spaces IDA, BDA and
VDA, and develop their theory, which we use to characterize those symbols f such that H f are bounded
(or compact) from F p(ϕ) to Lq(ϕ). Our characterization of the boundedness of H f extends the main
results of [Bauer 2005; Hu and Wang 2018; Perälä et al. 2014]. It is also worth noting that as a natural
generalization of BMO, the space IDA will have its own interest and will likely be useful to study other
(related) operators (such as Toeplitz operators).

In our analysis, we appeal to the ∂̄-techniques several times. As the canonical solution to ∂̄u = g∂ f ,
H f g is naturally connected with the ∂̄-theory. Hörmander’s theory provides us with the L2-estimate, but
less is known about L p-estimates on Cn when p ̸= 2. With the help of a certain auxiliary integral operator,
we obtain L p-estimates of the Berndtsson–Anderson solution [1982] to the ∂̄-equation. Our approach
to handling weights whose curvature is uniformly comparable to the Euclidean metric form is similar
to the treatment in [Schuster and Varolin 2012] which was initiated in [Berndtsson and Ortega Cerdà
1995], and a number of the techniques we use here were inspired by this approach. Although the work in
[Berndtsson and Ortega Cerdà 1995] is restricted to n = 1, some of the results were extended to higher
dimensions in [Lindholm 2001], and the others are easy to modify.

The outline of the paper is as follows. In Section 2 we study preliminary results on the Bergman kernel
which are needed throughout the paper, and we also establish estimates for the ∂̄-solution developed
in [Berndtsson and Andersson 1982]. In Section 3, a notion of function spaces IDAs,q is introduced.
We obtain a useful decomposition for functions in IDAs,q (compare with the decompositions of BMO
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and VMO). Using this decomposition, we obtain the completeness of IDAs,q/H(Cn) in ∥ · ∥IDAs,q . In
Sections 4 and 5 we prove Theorems 1.1 and 1.2, respectively. For the latter theorem, we also appeal
to the Calderón–Zygmund theory of singular integrals, and in particular employ the Ahlfors–Beurling
operator to obtain certain estimates on ∂- and ∂̄-derivatives. In Section 6, we present an application of
our results to quantization. In the last section, we give further remarks together with two conjectures.

Throughout the paper, C stands for positive constants which may change from line to line, but does not
depend on functions being considered. Two quantities A and B are called equivalent, denoted by A ≃ B,
if there exists some C such that C−1 A ≤ B ≤ C A.

2. Preliminaries

Let Cn
= R2n be the n-dimensional complex Euclidean space and denote by v the Lebesgue measure on Cn.

For z = (z1, . . . , zn) and w= (w1, . . . , wn) in Cn, we write z ·w̄= z1w̄1 +· · ·+znw̄n and |z| =
√

z · z̄. Let
H(Cn) be the family of all holomorphic functions on Cn. Given a domain� in Cn and a positive Borel mea-
sure µ on �, we denote by L p(�, dµ) the space of all Lebesgue measurable functions f on � for which

∥ f ∥L p(�,dµ) =

{∫
�

| f |
p dµ

}1/p
<∞ for 0< p <∞

and ∥ f ∥L∞(�,dv) = ess supz∈� | f (z)|<∞ for p = ∞. For ease of notation, we simply write L p for the
space L p(Cn, dv).

2A. Weighted Fock spaces. For a real-valued weight ϕ ∈ C2(Cn) and 0< p <∞, denote by L p(ϕ) the
space L p(Cn, e−pϕdv) with norm ∥ · ∥p,ϕ = ∥ · ∥L p(Cn,e−pϕdv). Then the Fock space F p(ϕ) is defined as

F p(ϕ)= L p(ϕ)∩ H(Cn),

F∞(ϕ)=
{

f ∈ H(Cn) : ∥ f ∥∞,ϕ = supz∈Cn | f (z)|e−ϕ(z) <∞
}
.

For 1 ≤ p ≤ ∞, F p(ϕ) is a Banach space in the norm ∥·∥p,ϕ and F2(ϕ) is a Hilbert space. For 0< p< 1,
F p(ϕ) is an F-space with metric given by d( f, g)= ∥ f − g∥

p
p,ϕ .

Other related and widely studied holomorphic function spaces include the Bergman spaces Ap
α(B

n)

of the unit ball Bn consisting of all holomorphic functions f in L p(Bn, dvα), where 0 < p < ∞,
dvα(z)= (1 − |z|2)α dv(z) and α >−1.

In this paper we are interested in Fock spaces F p(ϕ) with certain uniformly convex weights ϕ. More
precisely, suppose ϕ = ϕ(x1, x2, . . . , x2n) ∈ C2(R2n) is real-valued, and there are positive constants m
and M such that HessR ϕ, the real Hessian, satisfies

mE ≤ HessR ϕ(x)=

(
∂2ϕ(x)
∂x j∂xk

)2n

j,k=1
≤ ME, (2-1)

where E is the 2n × 2n identity matrix; above, for symmetric matrices A and B, we used the convention
that A ≤ B if B − A is positive semidefinite. When (2-1) is satisfied, we write HessR ϕ ≃ E. A typical
model of such weights is given by ϕ(z)= (α/2)|z|2 for z = (z1, z2, . . . , zn) with z j = x2 j−1 + ix2 j , which
induces the weighted Fock space F p

α studied by many authors (see, e.g., [Zhu 2012]). Another popular
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example is ϕ(z) = |z|2 −
1
2 log(1 + |z|2), which gives the so-called Fock–Sobolev spaces studied for

example in [Cho and Zhu 2012]. Notice that the weights ϕ satisfying (2-1) are not only radial functions,
as the example ϕ(z)= |z|2 + sin[(z1 + z̄1)/2] clearly shows.

For x = (x1, x2, . . . , x2n), t = (t1, t2, . . . , t2n) ∈ R2n , write z j = x2 j−1 + ix2 j , ξj = t2 j−1 + it2 j and
ξ = (ξ1, ξ2, . . . , ξn). An elementary calculation similar to that on page 125 of [Krantz 1992] shows

Re
n∑

j,k=1

∂2ϕ

∂z j∂zk
(z)ξjξk +

n∑
j,k=1

∂2ϕ

∂z j∂ z̄k
(z)ξj ξ̄k =

1
2

2n∑
j,k=1

∂2ϕ

∂x j∂xk
(x)tj tk ≥

1
2

m|ξ |2.

Replacing ξ with iξ in the above inequality gives

− Re
n∑

j,k=1

∂2ϕ

∂z j∂zk
(z)ξjξk +

n∑
j,k=1

∂2ϕ

∂z j∂ z̄k
(z)ξj ξ̄k ≥

1
2

m|ξ |2.

Thus,
n∑

j,k=1

∂2ϕ

∂z j∂ z̄k
(z)ξj ξ̄k ≥

1
2

m|ξ |2.

Similarly, we have an upper bound for the complex Hessian of ϕ. Therefore, mω0 ≤ ddcϕ ≤ Mω0, where
ω0 = ddc

|z|2 is the Euclidean Kähler form on Cn and dc
=

1
4

√
−1(∂̄− ∂). This implies that the theory in

[Schuster and Varolin 2012; Hu and Lv 2014] is applicable in the present setting.
For z ∈ Cn and r > 0, let B(z, r)= {w ∈ Cn

: |w− z|< r} be the ball with center at z with radius r .
For the proof of the following weighted Bergman inequality, we refer to Proposition 2.3 of [Schuster and
Varolin 2012].

Lemma 2.1. Suppose 0< p ≤ ∞. For each r > 0 there is some C > 0 such that if f ∈ F p(ϕ) then

| f (z)e−ϕ(z)
|

p
≤ C

∫
B(z,r)

| f (ξ)e−ϕ(ξ)
|

p dv(ξ).

It follows from the preceding lemma that ∥ f ∥q,ϕ ≤ C∥ f ∥p,ϕ and

F p(ϕ)⊆ Fq(ϕ) for 0< p ≤ q ≤ ∞. (2-2)

This inclusion is completely different from that of the Bergman spaces.

Lemma 2.2. There exist positive constants θ and C1, depending only on n, m and M, such that

|K (z, w)| ≤ C1eϕ(z)+ϕ(w)e−θ |z−w| for all z, w ∈ Cn, (2-3)

and there exist positive constants C2 and r0 such that

|K (z, w)| ≥ C2eϕ(z)+ϕ(w) (2-4)
for z ∈ Cn and w ∈ B(z, r0).

The estimate (2-3) appeared in [Christ 1991] for n = 1 and in [Delin 1998] for n ≥ 2, while the
inequality (2-4) can be found in [Schuster and Varolin 2012].

For z ∈ Cn, write

kz( · )=
K ( · , z)

√
K (z, z)
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for the normalized Bergman kernel. Then Lemma 2.2 implies

1
C

eϕ(z) ≤ ∥K ( · , z)∥p,ϕ ≤ Ceϕ(z) and 1
C

≤ ∥kz∥p,ϕ ≤ C for z ∈ Cn, (2-5)

and lim|z|→∞ kz(ξ)= 0 uniformly in ξ on compact subsets of Cn.

2B. The Bergman projection. For Fock spaces, we denote by P the orthogonal projection of L2(ϕ)

onto F2(ϕ), and refer to it as the Bergman projection. It is well known that P can be represented as an
integral operator

P f (z)=

∫
Cn

K (z, w) f (w)e−2ϕ(w) dv(w) (2-6)

for z ∈ Cn, where K ( · , · ) is the Bergman (reproducing) kernel of F2(ϕ).
As a consequence of Lemma 2.2, it follows that the Bergman projection P is bounded on L p(ϕ) for

1 ≤ p ≤ ∞, and P|F p(ϕ) = I for 0< p ≤ ∞; for further details, see Proposition 3.4 and Corollary 3.7 of
[Schuster and Varolin 2012].

2C. Hankel operators. To define Hankel operators with unbounded symbols, consider

0 =
{∑N

j=1 aj K ( · , z j ) : N ∈ N, aj ∈ C, z j ∈ Cn for 1 ≤ j ≤ N
}
,

and the symbol class

S = { f measurable on Cn
: f g ∈ L1(ϕ) for g ∈ 0}. (2-7)

Given f ∈ S, the Hankel operator H f = (I − P)M f with symbol f is well-defined on 0. According to
Proposition 2.5 of [Hu and Virtanen 2020], for 0< p <∞, the set 0 is dense in F p(ϕ), and hence the
Hankel operator H f is densely defined on F p(ϕ).

2D. Lattices in Cn. Given r > 0, a sequence {ak}
∞

k=1 in Cn is called an r -lattice if the balls {B(ak, r)}∞k=1
cover Cn and {B(ak, r/(2

√
n))}∞k=1 are pairwise disjoint. A typical model of an r -lattice is the sequence{

r
√

n
(m1 + k1i,m2 + k2i, . . . ,mn + kni) ∈ Cn

: m j , kj ∈ Z, j = 1, 2, . . . , n
}
. (2-8)

Notice that there exists an integer N depending only on the dimension of Cn such that, for any
r -lattice {ak}

∞

k=1,

1 ≤

∞∑
k=1

χB(ak ,2r)(z)≤ N (2-9)

for z ∈ Cn, where χE is the characteristic function of E ⊂ Cn. These well-known facts are explained in
[Zhu 2012] when n = 1 and they can be easily generalized to any n ∈ N.

2E. Fock Carleson measures. In the theory of Bergman spaces, Carleson measures provide an essential
tool for treating various problems, especially in connection with bounded operators, functions of bounded
mean oscillation, and their applications; see, e.g., [Zhu 2005]. In Fock spaces, Carleson measures play a
similar role; see [Zhu 2012] for the Fock spaces F p

α . Carleson measures for Fock–Sobolev spaces were
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described in [Cho and Zhu 2012]. In [Schuster and Varolin 2012], Carleson measures for generalized
Fock spaces (which include the weights considered in the present work) were used to study bounded and
compact Toeplitz operators. Finally, their generalization to (p, q)-Fock Carleson measures was carried
out in [Hu and Lv 2014], which is indispensable to the study of operators between distinct Banach spaces
and will be applied to analyze Hankel operators acting from F p(ϕ) to Lq(ϕ) in our work.

We recall the basic theory of these measures. Let 0< p, q<∞ and letµ≥0 be a positive Borel measure
on Cn. We call µ a (p, q)-Fock Carleson measure if the embedding I : F p(ϕ) → Lq(Cn, e−qϕdµ) is
bounded. Further, the measure µ is referred to as a vanishing (p, q)-Fock Carleson measure if in addition

lim
j→∞

∫
Cn

| f j (z)e−ϕ(z)
|
q dµ(z)= 0

whenever { f j }
∞

j=1 is bounded in F p(ϕ) and converges to 0 uniformly on any compact subset of Cn as
j → ∞. Fock Carleson measures were completely characterized in [Hu and Lv 2014] and we only add
the following simple result, which is trivial for Banach spaces and can be easily proved in the other cases.

Proposition 2.3. Let 0 < p, q < ∞ and µ be a positive Borel measure on Cn. Then µ is a vanishing
(p, q)-Fock Carleson measure if and only if the inclusion map I is compact from F p(ϕ)→ Lq(Cn, dµ).

Proof. It is not difficult to show that the image of the unit ball of F p(ϕ) under the inclusion is relatively
compact in Lq(Cn, eqϕ dµ). We leave out the details. □

2F. Differential forms and an auxiliary integral operator. As in [Krantz 1992], given two nonnegative
integers s, t ≤ n, we write

ω =

∑
|α|=s,|β|=t

ωα,β dzα ∧ dz̄β (2-10)

for a differential form of type (s, t). We denote by Ls,t the family of all (s, t)-forms ω as in (2-10) with
coefficients ωα,β measurable on Cn and set

|ω| =

∑
|α|=s,|β|=t

|ωα,β | and ∥ω∥p,ϕ = ∥|ω|∥p,ϕ. (2-11)

Given a weight function ϕ satisfying (2-1), we define an integral operator Aϕ as

Aϕ(ω)(z)=

∫
Cn

e⟨2∂ϕ,z−ξ⟩
∑
j<n

ω(ξ)∧
∂|ξ − z|2 ∧ (2∂̄∂ϕ(ξ)) j

∧ (∂̄∂|ξ − z|2)n−1− j

j ! |ξ − z|2n−2 j (2-12)

for ω ∈ L0,1, where

⟨∂ϕ(ξ), z − ξ⟩ =

n∑
j=1

∂ϕ

∂ξj
(ξ)(z j − ξj )

as denoted on page 92 in [Berndtsson and Andersson 1982].
For an (s1, t1)-form ωA and an (s2, t2)-form ωB with s1 + s2 ≤ n, t1 + t2 ≤ n, it is easy to verify that

|ωA ∧ωB | ≤ |ωA||ωB |. Therefore, for the (n, n)-form inside the integral of the right-hand side of (2-12),
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we obtain ∣∣∣∣ω(ξ)∧ ∂|ξ − z|2 ∧ (2∂̄∂ϕ) j
∧ (∂̄∂|ξ − z|2)n−1− j

j ! |ξ − z|2n−2 j

∣∣∣∣ ≤ C
|ω(ξ)|

|ξ − z|2n−2 j−1

because i∂∂̄ ϕ(ξ)≃ i∂∂̄ |ξ |2.
Recall that

0 =
{∑N

j=1 aj Kz j : N ∈ N, aj ∈ C, z j ∈ Cn for 1 ≤ j ≤ N
}

is dense in F p(ϕ) for all 0< p <∞.

Lemma 2.4. Suppose 1 ≤ p ≤ ∞.

(I) There is a constant C such that ∥Aϕ(ω)∥p,ϕ ≤ C∥ω∥p,ϕ for ω ∈ L0,1.

(II) For g ∈ 0 and f ∈ C2(Cn) satisfying |∂̄ f | ∈ L p, it holds that ∂̄Aϕ(g∂̄ f )= g∂̄ f .

Proof. Let z ∈ Cn. By (2-1), using Taylor expansion of ϕ at ξ , we get

ϕ(z)−ϕ(ξ)≥ 2 Re
n∑

j=1

∂ϕ(ξ)

∂ξj
(z j − ξj )+ m|z − ξ |2.

Then (2-12) gives

|Aϕ(ω)(z)e−ϕ(z)
| ≤ C

∫
Cn

|ω(ξ)|e−ϕ(ξ)

{
1

|ξ − z|
+

1
|ξ − z|2n−1

}
e−m|ξ−z|2 dv(ξ). (2-13)

For l < 2n fixed, define another integral operator A l as

A l : h 7→

∫
Cn

h(ξ)
e−m|ξ−z|2

|ξ − z|l
dv(ξ).

It is easy to verify, by interpolation, that A l is bounded on L p for 1 ≤ p ≤ ∞. Therefore,

∥Aϕ(ω)∥p,ϕ ≤ C∥(A1 +A2n−1)(|ω|e−ϕ)∥L p

≤ C(∥A1∥L p→L p +A2n−1∥L p→L p)∥ω∥p,ϕ,

which completes the proof of part (A).
Notice that the convexity assumption in (2-1) yields ddcϕ≃ω0, which in turn means that |∂∂̄ϕ(ξ)| ≃ 1.

We use p′ to denote the conjugate of p, 1/p + 1/p′
= 1. Now, for f ∈ C2(Cn) satisfying |∂̄ f | ∈ L p, and

z, z0 ∈ Cn, we have∫
Cn

|K (ξ, z0) ∂̄ f (ξ)|
n−1∑
j=0

e−ϕ(ξ)
|∂̄∂ϕ(ξ)| j

|ξ − z|2n−2 j−1 dv(ξ)

≤ C
{

sup
ξ∈B(z,1)

|K (ξ, z0) ∂̄ f (ξ)e−ϕ(ξ)
| +

∫
Cn\B(z,1)

|K (ξ, z0) ∂̄ f (ξ)|e−ϕ(ξ) dv(ξ)
}

≤ Ceϕ(z0)
{

sup
ξ∈B(z,1)

|∂̄ f (ξ)| + ∥∂̄ f ∥L p∥K ( · , z0)∥p′,ϕ

}
<∞.
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Hence, for g ∈ 0 and z ∈ Cn, it holds that∫
Cn

|g(ξ)∂̄ f (ξ)|
n−1∑
j=0

e−ϕ(ξ)
|∂̄∂ϕ(ξ)| j

|ξ − z|2n−2 j−1 dv(ξ) <∞.

From Proposition 10 of [Berndtsson and Andersson 1982], we get (B) (pay attention to the mistake in the
last line of that result where f is left out on the right-hand side). □

Corollary 2.5. Suppose f ∈ S ∩ C1(Cn) and |∂̄ f | ∈ Ls with some 1 ≤ s ≤ ∞. For g ∈ 0, it holds that

H f (g)= Aϕ(g∂̄ f )− P(Aϕ(g∂̄ f )). (2-14)

Proof. Given f ∈ S ∩ C1(Cn) with |∂̄ f | ∈ Ls and g ∈ 0, we have ∥g∂̄ f ∥1,ϕ ≤ ∥g∥s′,ϕ∥∂̄ f ∥Ls < ∞,
where s ′ is the conjugate of s. Lemma 2.4 implies that u = Aϕ(g∂̄ f ) ∈ L1(ϕ) and ∂̄u = g∂̄ f . Then
f g−u ∈ L1(ϕ). Notice that ∂̄( f g−u)= g∂̄ f − ∂̄u = 0, and so f g−u ∈ F1(ϕ). Since P|F1

ϕ
= I, we have

f g − u = P( f g − u)= P( f g)− P(u).

This shows that H f (g)= u − P(u). □

3. The space IDA

We now introduce a new space to characterize boundedness and compactness of Hankel operators. The
space IDA is related to the space of bounded mean oscillation BMO (see, e.g., [John and Nirenberg 1961;
Zhu 2012]), which has played an important role in many branches of analysis and their applications for
decades. We find that IDA is also broad in scope and should have more applications in operator theory
and related areas.

3A. Definitions and preliminary lemmas. Let 0 < q <∞ and r > 0. For f ∈ Lq
loc (the collection of

q-th locally Lebesgue integrable functions on Cn), following [Luecking 1992], we define Gq,r ( f ) as

Gq,r ( f )(z)= inf
{(

1
|B(z, r)|

∫
B(z,r)

| f − h|
q dv

)1/q

: h ∈ H(B(z, r))
}

(3-1)

for z ∈ Cn.

Definition 3.1. Suppose 0< s ≤ ∞ and 0< q <∞. The space IDAs,q (integral distance to holomorphic
functions) consists of all f ∈ Lq

loc such that

∥ f ∥IDAs,q = ∥Gq,1( f )∥Ls <∞.

The space IDA∞,q is also denoted by BDAq. The space VDAq consists of all f ∈ BDAq such that

lim
z→∞

Gq,1( f )(z)= 0.

We will see in Section 6 that IDAs,q is an extension of the space IMOs,q introduced in [Hu and Wang
2018].

Notice that the space BDA2 was first introduced in the context of the Bergman spaces of the unit
disk in [Luecking 1992], where it is called the space of functions with bounded distance to analytic
functions (BDA).
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Remark 3.2. As is the case with the classical BMOq and VMOq spaces, we have

BDAq2 ⊂ BDAq1 and VDAq2 ⊂ VDAq1

properly for 0< q1 < q2 <∞.

Let 0 < q < ∞. For z ∈ Cn, f ∈ Lq(B(z, r), dv) and r > 0, we define the q-th mean of | f | over
B(z, r) by setting

Mq,r ( f )(z)=

(
1

|B(z, r)|

∫
B(z,r)

| f |
q dv

)1/q

.

For ω ∈ L0,1, we set Mq,r (ω)(z)= Mq,r (|ω|)(z).

Lemma 3.3. Suppose 0 < q <∞. Then for f ∈ Lq
loc, z ∈ Cn and r > 0, there is some h ∈ H(B(z, r))

such that
Mq,r ( f − h)(z)= Gq,r ( f )(z) (3-2)

and
sup

w∈B(z,r/2)
|h(w)| ≤ C∥ f ∥Lq (B(z,r),dv), (3-3)

where the constant C is independent of f and r.

Proof. Let f ∈ Lq
loc, z ∈ Cn and r > 0. Taking h = 0 in the integrand of (3-1), we get

Gq,r ( f )(z)≤ Mq,r ( f )(z) <∞.

Then for j = 1, 2, . . . , we can pick h j ∈ H(B(z, r)) such that

Mq,r ( f − h j )(z)→ Gq,r ( f )(z) (3-4)

as j → ∞. Hence, for j sufficiently large,

Mq,r (h j )(z)≤ C{Mq,r ( f − h j )(z)+ Mq,r ( f )(z)} ≤ C Mq,r ( f )(z). (3-5)

This shows that {h j }
∞

j=1 is a normal family. Thus, we can find a subsequence {h jk }
∞

k=1 and a function
h ∈ H(B(z, r)) so that limk→∞ h jk (w)→ h(w) for w ∈ B(z, r). By (3-4), applying Fatou’s lemma, we
have

Gq,r ( f )(z)≤ Mq,r ( f − h)(z)≤ lim inf
k→∞

Mq,r ( f − h jk )(z)= Gq,r ( f )(z),

which proves (3-2). It remains to note that, with the plurisubharmonicity of |h|
q, for w ∈ B(z, r/2), we

have
|h(w)| ≤ Mq,r/2(h)(w)≤ C Mq,r (h)(z)≤ C Mq,r ( f )(z),

which completes the proof. □

Corollary 3.4. For 0 < s < r , there is a constant C > 0 such that for f ∈ Lq
loc and w ∈ B(z, r − s), it

holds that
Gq,s( f )(w)≤ Mq,s( f − h)(w)≤ CGq,r ( f )(z), (3-6)

where h is as in Lemma 3.3.
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Proof. For 0< s < r and w ∈ B(z, r − s), we have B(w, s)⊂ B(z, r). Then, the first estimate in (3-6)
comes from the definition of Gq,s( f ), while (3-2) yields

Mq,s( f − h)(w)≤ C Mq,r ( f − h)(z)= CGq,r ( f )(z),

which completes the proof. □

For z ∈ Cn and r > 0, let

Aq(B(z, r), dv)= Lq(B(z, r), dv)∩ H(B(z, r))

be the q-th Bergman space over B(z, r). Denote by Pz,r the corresponding Bergman projection induced
by the Bergman kernel for A2(B(z, r), dv). It is well known that Pz,r ( f ) is well-defined for f ∈

L1(B(z, r), dv).

Lemma 3.5. Suppose 1 ≤ q <∞ and 0< s < r . There is a constant C > 0 such that, for f ∈ Lq
loc and

w ∈ B(z, r − s/(2)),

Gq,s( f )(w)≤ Mq,s( f − Pz,r ( f ))(w)≤ CGq,r ( f )(z) for z ∈ Cn. (3-7)

Proof. We only need to prove the second inequality. Suppose 1< q <∞. Notice that P0,1 is the standard
Bergman projection on the unit ball of Cn. Theorem 2.11 of [Zhu 2005] implies that

∥P0,1∥Lq (B(0,1),dv)→Aq (B(0,1),dv) <∞.

Now for r > 0 fixed and f ∈ Lq((B(0, r), dv), set fr (w)= f (rw). Then

∥ fr∥Lq (B(0,1),dv) = r−2n/q
∥ f ∥Lq (B(0,1),dv).

Furthermore, it is easy to verify that the operator f 7→ P0,1( fr )( · /r) is self-adjoint and idempotent, and
it maps L2((B(0, r), dv) onto A2((B(0, r), dv). Therefore,

P0,r ( f )(z)= P0,1( fr )

(
z
r

)
for f ∈ Lq(B(0, r), dv),

and hence

∥P0,r∥Lq (B(0,r),dv)→Aq (B(0,r),dv) = ∥P0,1∥Lq (B(0,1),dv)→Aq (B(0,1),dv).

Now for z ∈ Cn and r > 0, using a suitable dilation, it follows that

∥Pz,r∥Lq (B(z,r),dv)→Aq (B(z,r),dv) = ∥P0,1∥Lq (B(0,1),dv)→Aq (B(0,1),dv) <∞. (3-8)

Unfortunately, Pz,r is not bounded on L1(B(z, r), dv), but with the same approach as above, by Fubini’s
theorem and Theorem 1.12 of [Zhu 2005], we have

∥Pz,r∥L1(B(z,r),dv)→A1(B(z,r),(r2−| ·−z|2)dv) ≤ C (3-9)

for z ∈ Cn and r > 0.
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Choose h as in Lemma 3.3. Then h ∈ Aq(B(z, r), dv) because f ∈ Lq
loc. Thus, Pz,r (h)= h. Now for

w ∈ B(z, (r − s)/2) and 1 ≤ q <∞,{∫
B(w,s)

| f − Pz,r ( f )|q dv
}1/q

≤ C
{∫

B(z,(r+s)/2)
| f − Pz,r ( f )|q dv

}1/q

≤ C
{∫

B(z,r)
| f (ξ)− Pz,r ( f )(ξ)|q(r2

− |ξ − z|2) dv(ξ)
}1/q

≤ C
{[∫

B(z,r)
| f − h|

q dv
]1/q

+

[∫
B(z,r)

|Pz,r ( f − h)(ξ)|q(r2
− |ξ − z|2) dv(ξ)

]1/q}
≤ C

{∫
B(z,r)

| f − h|
q dv

}1/q
. (3-10)

From this and Lemma 3.3, (3-7) follows. □

Given t > 0, let {aj }
∞

j=1 be a (t/2)-lattice, set Jz = { j : z ∈ B(aj , t)} and denote by |Jz| the cardinal
number of Jz . By (2-9), |Jz| =

∑
∞

j=1 χB(aj ,t)(z)≤ N. Choose a partition of unity {ψj }
∞

j=1, ψ j ∈ C∞(Cn),
subordinate to {B(aj , t/2)} such that

suppψj ⊂ B(aj , t/2), ψj (z)≥ 0,
∞∑
j=1

ψj (z)= 1,

|∂̄ψj (z)| ≤ Ct−1,

∞∑
j=1

∂̄ψj (z)= 0.
(3-11)

Given f ∈ Lq
loc, for j = 1, 2, . . ., pick h j ∈ H(B(aj , t)) as in Lemma 3.3 so that

Mq,t( f − h j )(aj )= Gq,t( f )(aj ).

Define

f1 =

∞∑
j=1

h jψj and f2 = f − f1. (3-12)

Notice that f1(z) is a finite sum for every z ∈ Cn and hence well-defined because we have suppψj ⊂

B(aj , t/2)⊂ B(aj , t).
Inspired by a similar treatment on pages 254–255 of [Luecking 1992], using the partition of unity, we

can prove the following estimate.

Lemma 3.6. Suppose 0 < q <∞. For f ∈ Lq
loc and t > 0, decomposing f = f1 + f2 as in (3-12), we

have f1 ∈ C2(Cn) and

|∂̄ f1(z)| + Mq,t/2(∂̄ f1)(z)+ Mq,t/2( f2)(z)≤ CGq,2t( f )(z) (3-13)

for z ∈ Cn, where the constant C is independent of f .

Proof. Observe first that f1 ∈ C2(Cn) follows directly from the properties of the functions h j and ψj . For
z ∈ Cn, we may assume z ∈ B(a1, t/2) without loss of generality. Then for those j that satisfy ∂̄ψj (z) ̸= 0,
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|h j − h1|
q is plurisubharmonic on B(z, t/2)⊂ B(aj , t). Hence, by Corollary 3.4,

|∂̄ f1(z)| =

∣∣∣∣ ∞∑
j=1

(h j (z)− h1(z))∂̄ψj (z)
∣∣∣∣ ≤

∞∑
j=1

|h j (z)− h1(w)||∂̄ψj (z)|

≤ C
∑

{ j : |aj −z|<t/2}

Mq,t/4(h j − h1)(z)

≤ C
∑

{ j : |aj −z|<t/2}

[Mq,t/4( f − h j )(z)+ Mq,t/4( f − h1)(w)]

≤ C
∑

{ j : |aj −z|<t/2}

Gq,t( f )(aj ).

Thus, using Corollary 3.4 again, we get

|∂̄ f1(z)| ≤ CGq,3t/2( f )(z) for z ∈ Cn,

and so,

Mq,t/2(∂̄ f1)(z)q ≤ C
1

|B(z, t/2)|

∫
B(z,t/2)

Gq,3t/2( f )(w)q dw ≤ CGq,2t( f )(z)q .

Similarly, we have | f2(ξ)|
q

≤ C
∑

∞

j=1 | f (ξ)− h j (ξ)|
qψj (ξ)

q, and so

Mq,t/2( f2)(z)q ≤ C
∞∑
j=1

1
|B(z, t/2)|

∫
B(z,t/2)

| f − h j |
qψ

q
j dv ≤ C

∑
{ j : |aj −z|<t/2}

Gq,t( f )(aj )
q .

Therefore,

Mq,t/2( f2)(z)≤ CGq,3t/2( f )(z).

Combining this and the other two estimates above gives (3-13). □

Given {ψj } as in (3-11), we have another decomposition f = F1 +F2, where

F1 =

∞∑
j=1

Paj ,t( f )ψj and F2 = f −F1. (3-14)

When q = 2, the two decompositions coincide.

Corollary 3.7. Suppose 1 ≤ q <∞. For f ∈ Lq
loc and t > 0, we have F1 ∈ C2(Cn) and

|∂̄F1(z)| + Mq,t/2(∂̄F1)(z)+ Mq,t/2(F2)(z)≤ CGq,2t( f )(z) (3-15)

for z ∈ Cn, where the constant C is independent of f .

Proof. The proof can be carried out as that of Lemma 3.6 using (3-7) instead of (3-6). We omit the
details. □

3B. The decomposition. In our analysis, we will appeal to ∂̄-techniques several times. Let �⊂ Cn be
strongly pseudoconvex with C4 boundary, and let S be a ∂̄-closed (0, 1) form on � with L p coefficients,
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1 ≤ p ≤ ∞. As in [Krantz 1992], we denote by H�(S) the Henkin solution of ∂̄-equation ∂̄u = S on �.
We observe that Theorem 10.3.9 of that work implies that, for 1 ≤ q <∞,

∥H�(S)∥Lq (�,dv) ≤ C∥S∥Lq (�,dv), (3-16)

where the constant C is independent of S and of “small” perturbations of the boundary. (We note that the
second item in Theorem 10.3.9 of [Krantz 1992] is stated incorrectly and should read ∥u∥Lq ≤ C p∥ f ∥p

instead.) Indeed, to deduce (3-16), we consider three cases. First, for 1 ≤ q < (2n + 2)/(2n + 1),

∥H�(S)∥Lq (�,dv) ≤ C∥S∥L1(�,dv) ≤ C∥S∥Lq (�,dv).

For q = (2n + 2)/(2n + 1), take 1 < p = q < 2n + 2 and q1 = (2n + 2)/(2n) > q. Then 1/q1 =

1/p − 1/(2n + 2), and by the second item in Theorem 10.3.9 of [Krantz 1992], we have

∥H�(S)∥Lq (�,dv) ≤ C∥H�(S)∥Lq1 (�,dv) ≤ C∥S∥L p(�,dv).

Finally, for q > (2n + 2)/(2n + 1), choose p so that 1/q = 1/p − 1/(2n + 2). Then 1< p < 2n + 2 and
p < q . Now Theorem 10.3.9 of [Krantz 1992] implies

∥H�(S)∥Lq (�,dv) ≤ C∥S∥L p(�,dv) ≤ C∥S∥Lq (�,dv).

Theorem 3.8. Suppose 1 ≤ q <∞, 0< s <∞, and f ∈ Lq
loc. Then f ∈ IDAs,q if and only if f admits a

decomposition f = f1 + f2 such that

f1 ∈ C2(Cn), Mq,r (∂̄ f1)+ Mq,r ( f2) ∈ Ls (3-17)

for some (or any) r > 0. Furthermore, for fixed τ, r > 0, it holds that

∥ f ∥IDAs,q ≃ ∥Gq,τ ( f )∥Ls ≃ inf{∥Mq,r (∂̄ f1)∥Ls + ∥Mq,r ( f2)∥Ls }, (3-18)

where the infimum is taken over all possible decompositions f = f1 + f2 that satisfy (3-17) with a fixed r.

Proof. First, given 0< r < R <∞, we have some a1, a1, . . . , am ∈ Cn so that B(0, R)⊂
⋃m

j=1 B(aj , r).
Then, for g ∈ Lq

loc,

Mq,R(g)(z)s ≤ C
m∑

j=1

Mq,r (g)(z + aj )
s, z ∈ Cn,

and ∫
Cn

Mq,R(g)(z)s dv(z)≤ C
m∑

j=1

∫
Cn

Mq,r (g)(z + aj )
s dv(z)≤ C

∫
Cn

Mq,r (g)(z)s dv(z). (3-19)

This implies that (3-17) holds for some r if and only if it holds for any r .
Suppose that f ∈ Lq

loc with ∥Gq,τ ( f )∥Ls < ∞ for some τ > 0 and decompose f = f1 + f2 as in
Lemma 3.6 with t = τ/2. Then f1 ∈ C2(Cn) and

|∂̄ f1(z)| + Mq,τ/4(∂̄ f1)(z)+ Mq,τ/4( f2)(z)≤ CGq,τ ( f )(z).
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Now for any r > 0, we have

∥Mq,r (∂̄ f1)∥Ls + ∥Mq,r ( f2)∥Ls ≤ C∥Gq,τ ( f )∥Ls . (3-20)

This implies that, f = f1 + f2 satisfies (3-17).
Conversely, suppose f = f1 + f2 with f1 ∈ C2(Cn) and Mq,r (∂̄ f1)+ Mq,r ( f2) ∈ Ls for some r > 0 as

in Theorem 3.8. Then, for any τ > 0,

∥Gq,τ ( f2)∥Ls ≤ C∥Mq,τ ( f2)∥Ls ≤ C∥Mq,r ( f2)∥Ls . (3-21)

So f2 ∈ IDAs,q. To consider f1, we write u = HB(z,2τ)(∂̄ f1) for the Henkin solution of the equation
∂̄u = ∂̄ f1 on B(z, 2τ). From (3-16) and (3-17), u satisfies

Mq,2τ (u)(z)≤ C Mq,2τ (∂̄ f1)(z) for z ∈ Cn, (3-22)

which implies that u ∈ Lq(B(z, 2τ), dv). Similarly to (3-10),

Mq,τ (Pz,2τ (u))(z)≤ C Mq,2τ (u)(z).

Thus,
Mq,τ (u − Pz,2τ (u))(z)≤ Mq,τ (u)(z)+ Mq,τ (Pz,2τ (u))(z)

≤ C Mq,2τ (u)(z). (3-23)

Since
f1 − u ∈ Lq(B(z, 2τ), dv) and ∂̄( f1 − u)= 0,

we have
f1 − u ∈ Aq(B(z, 2τ), dv).

Notice that Pz,2τ |Aq (B(z,2τ),dv) = I, and so

f1(ξ)− Pz,2τ ( f1)(ξ)= u(ξ)− Pz,2τ (u)(ξ) for ξ ∈ B(z, 2τ). (3-24)

Combining (3-22), (3-23) and (3-24), we get

Mq,τ ( f1 − Pz,2τ ( f1))(z)= Mq,τ (u − Pz,2τ (u))(z)

≤ Mq,2τ (u)(z)≤ C Mq,2τ (∂̄ f1)(z).
Therefore, by (3-19),

∥Gq,τ ( f1)∥Ls ≤ ∥Mq,r ( f1 − Pz,2τ ( f1))∥Ls

≤ C∥Mq,2τ (∂̄ f1)∥Ls ≤ C∥Mq,r (∂̄ f1)∥Ls .

This and (3-21) yield
∥Gq,τ ( f )∥Ls ≤ C{∥Mq,r (∂̄ f1)∥Ls + ∥Mq,r ( f2)∥Ls }. (3-25)

Thus, f = f1 + f2 ∈ IDAs,q.
It remains to note that the norm equivalence (3-18) follows from (3-20) and (3-25). □

With a similar proof we have the following corollary.
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Corollary 3.9. Suppose 1 ≤ q <∞, and f ∈ Lq
loc. Then f ∈ BDAq (or VDAq ) if and only if f = f1 + f2,

where
f1 ∈ C2(Cn), ∂̄ f1 ∈ L∞

0,1 (or lim
z→∞

|∂̄ f1| = 0) (3-26)

and
Mq,r ( f2) ∈ L∞ (or lim

z→∞
Mq,r ( f2)= 0) (3-27)

for some (or any) r > 0. Furthermore,

∥ f ∥BDAq ≃ inf{∥∂̄ f1∥L∞

0,1
+ ∥Mq,r ( f2)∥L∞},

where the infimum is taken over all possible decompositions f = f1 + f2, with f1 and f2 satisfying the
conditions in (3-26) and (3-27).

Corollary 3.10. Suppose 1 ≤ q <∞. Different values of r give equivalent seminorms ∥Gq,r ( · )∥Ls on
IDAs,q when 0< s <∞ and on both BDAq and VDAq when s = ∞.

Remark 3.11. Recall that each f in BMOq can be decomposed as f = f1 + f2, where f1 is of bounded
oscillation BO and f2 has a bounded average BAq (see [Zhu 2012] for the one-dimensional case and [Lv
2019] for the general case). Furthermore, we may choose f1 to be a Lipschitz function in C2(Cn) (see
Corollary 3.37 of [Zhu 2012]); that is, f ∈ BMOq if and only if f = f1 + f2 with all ∂ f1/∂x j ∈ L∞ for
j = 1, 2, . . . , 2n and f2 ∈ BAq, or in the language of complex analysis both ∂̄ f1 and ∂̄ f̄1 are bounded.
Therefore, f ∈ BMOq if and only if f, f̄ ∈ BDAq. For a similar relationship between IMOq and the IDA
spaces, see Lemma 6.1 of [Hu and Virtanen 2022] and Theorem 7.1 below.

3C. IDA as a Banach space. We next prove that IDAs,q/H(Cn) with 1 ≤ s, q <∞ is a Banach space
when equipped with the induced norm

∥ f + H(Cn)∥ = ∥ f ∥IDAs,q (3-28)

for f ∈ IDAs,q .

Theorem 3.12. For 1 ≤ s, q <∞, the quotient space IDAs,q/H(Cn) is a Banach space with the norm
induced by ∥ · ∥IDAs,q.

Proof. Obviously H(Cn)⊂ IDAs,q . Now given f ∈ IDAs,q and h ∈ H(Cn), we have Gq,r ( f )=Gq,r ( f +h).
This means that the norm in (3-28) is well-defined on IDAs,q/H(Cn). If ∥ f ∥IDAs,q =0, then Gq,r ( f )(z)=0
in Cn. By Lemma 3.3, f ∈ H(B(z, r)) and hence f ∈ H(Cn).

Let f1, f2 ∈ IDAs,q and z ∈ Cn. According to Lemma 3.3, there are functions h j holomorphic in
B(z, r) such that

Mq,r ( f j − h j )(z)= Gq,r ( f j )(z) for j = 1, 2.

Then, since

Mq,r (( f1 + f2)− (h1 + h2))(z)≤ Mq,r ( f1 − h1)(z)+ Mq,r ( f2 − h2)(z),

we have
Gq,r ( f1 + f2)(z)≤ Gq,r ( f1)(z)+ Gq,r ( f2)(z) for z ∈ Cn.



2058 ZHANGJIAN HU AND JANI A. VIRTANEN

Hence, ∥ f1+ f2∥IDAs,q ≤∥ f1∥IDAs,q +∥ f2∥IDAs,q . In addition, ∥ f ∥IDAs,q ≥ 0 and ∥a f ∥IDAs,q =|a|∥ f ∥IDAs,q

for a ∈ C. Therefore, ∥ · ∥IDAs,q induces a norm on IDAs,q/H(Cn).
It remains to prove that the norm is complete. Suppose that { fm}

∞

m=1 is a Cauchy sequence in

∥ · ∥IDAs,q = ∥Gq,1( · )∥Ls .

According to Corollary 3.10, we may assume that { fm}
∞

m=1 is a Cauchy sequence in ∥Gq,r ( · )∥Ls with
r > 0 fixed. We now embark on proving that, for some f ∈ IDAs,q, limm→∞ ∥Gq,r/2( fm − f )∥Ls = 0,
which implies { fm}

∞

m=1 converges to some f ∈ IDAs,q in the ∥ · ∥IDAs,q -topology. For this purpose, let
{aj }

∞

j=1 be some t = (r/4)-lattice. We decompose each fm similarly to (3-14) as

fm,1 =

∞∑
j=1

Paj ,r ( fm)ψj and fm,2 = fm − fm,1,

where {ψj }
∞

j=1 is the partition of unity subordinate to {B(aj , r/4)}∞j=1 as in (3-11). It follows from
Corollary 3.7 that

Mq,r/8( fm,2 − fk,2)(z)s = Mq,r/8

(
( fm − fk)−

∞∑
j=1

Paj ,t( fm − fk)ψj

)
(z)s

≤ CGq,r/2( fm − fk)(z)s

≤ C
∫

B(z,r/2)
Gq,r ( fm − fk)(ξ)

s dv(ξ).

This implies that { fm,2}
∞

j=1 converges to some function f2 in the Lq
loc-topology. In addition, by Lemma 3.5,

we have
Mq,r/2( fm,2 − fk,2 − Pz,r ( fm,2 − fk,2))(z)≤ CGq,r ( fm,2 − fk,2)(z).

Letting k → ∞ and applying Fatou’s lemma, we get

Gq,r/2( fm,2 − f2)(z)s ≤ Mq,r/2( fm,2 − f2 − Pz,r ( fm,2 − f2))(z)s

≤ C lim inf
k→∞

Gq,r ( fm,2 − fk,2)(z)s .

Integrate both sides over Cn and apply Fatou’s lemma again to obtain the estimate∫
Cn

Gq,r/2( fm,2 − f2)
s dv ≤ C lim inf

k→∞

∥ fm,2 − fk,2∥IDAs,q .

Therefore,
lim

m→∞
∥ fm,2 − f2∥IDAs,q = 0. (3-29)

Next we consider { fm,1}
∞

m=1. Applying the estimate (3-15) to fm − fk ,

|∂̄( fm,1 − fk,1)(z)| ≤ CGq,r/2( fm − fk)(z). (3-30)

Hence, {∂̄ fm,1}
∞

m=1 is a Cauchy sequence in Ls
0,1 (see (2-11)). We may assume ∂̄ fm,1 → S =

∑n
j=1 Sj dz̄ j

under the Ls
0,1-norm. Since ∂̄2

= 0, ∂̄ fm,1 is trivially ∂̄-closed, and so, as the Ls
0,1 limit of {∂̄ fm,1}

∞

m=1,
S is also ∂̄-closed weakly. Let φ(z)=

1
2 |z|2 and g = 1 ∈ 0, and define

f1(z)= Aφ(S) and f ∗

m,1 = Aφ(∂̄ fm,1).
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Then, by Lemma 2.4,
f1, f ∗

m,1 ∈ Ls(φ)⊂ Ls
loc, ∂̄ f ∗

m,1 = ∂̄ fm,1,

and { f ∗

m,1}
∞

m=1 converges to f1 in Ls(φ). Therefore, for ψ ∈ C∞
c (C

n) (the family of all C∞ functions
with compact support) and j = 1, 2, . . . , n, it holds that

−

〈
f1,
∂ψ

∂z j

〉
L2

= − lim
m→∞

〈
f ∗

m,1,
∂ψ

∂z j

〉
L2

= lim
m→∞

〈
∂ f ∗

m,1

∂ z̄ j
, ψ

〉
L2

= lim
m→∞

〈
∂ fm,1

∂ z̄ j
, ψ

〉
L2

= ⟨Sj , ψ⟩L2 .

Hence, ∂̄ f1 = S weakly. Then for HB(z,r)(∂̄ fm,1 − S), the Henkin solution to the equation ∂̄u = ∂̄ fm,1 − S
on B(z, r), (3-16) gives

∥HB(z,r)(∂̄ fm,1 − S)∥Lq (B(z,r),dv) ≤ C∥∂̄ fm,1 − S∥Lq (B(z,r),dv). (3-31)

In addition, according to (3-24), it holds that

( fm,1 − f1)− Pz,r ( fm,1 − f1)= HB(z,r)(∂̄ fm,1 − S)− Pz,r (HB(z,r)(∂̄ fm,1 − S))

on B(z, r). Therefore, by (3-8), (3-9), and (3-31) we have

∥( fm,1 − f1)− Pz,r ( fm,1 − f1)∥
q
Lq (B(z,r/2), dv)

= ∥HB(z,r)(∂̄ fm,1 − S)− Pz,r (HB(z,r)(∂̄ fm,1 − S))∥q
Lq (B(z,r/2), dv)

≤ C∥HB(z,r)(∂̄ fm,1 − S)∥q
Lq (B(z,r), dv)

≤ C∥∂̄ fm,1 − S∥
q
Lq (B(z,r),dv). (3-32)

Since S = limk→∞ ∂̄ fk,1 in Ls
0,1, by Fatou’s lemma,

∥∂̄ fm,1 − S∥
q
Lq (B(z,r),dv) ≤ C lim inf

k→∞

∥∂̄( fm,1 − fk,1)∥
q
Lq (B(z,r),dv)

≤ C lim inf
k→∞

Gq,2r ( fm,1 − fk,1)(z)q , (3-33)

where the last inequality follows from (3-30). We combine (3-32) and (3-33) to get

∥( fm,1 − f1)− Pz,r ( fm,1 − f1)∥
s
Lq (B(z,r/2),dv) ≤ C lim inf

k→∞

Gq,2r ( fm,1 − fk,1)(z)s .

Integrating both sides over Cn with respect to dv and applying Fatou’s lemma once more gives the
estimates

∥ fm,1 − f1∥
s
IDAs,q ≤ C

∫
Cn

∥( fm,1 − f1)− Pz,r ( fm,1 − f1)∥
s
Lq (B(z,r/2)) dv

≤ C
∫

Cn
lim inf
k→∞

Gq,2r ( fm,1 − fk,1)
s dv

≤ C lim inf
k→∞

∥ fm,1 − fk,1∥
s
IDAs,q . (3-34)

Therefore, limm→∞ ∥ fm,1 − f1∥IDAs,q = 0. Set f = f1 + f2 ∈ Lq
loc. From (3-29) and (3-34) it follows that

lim
m→∞

∥ fm − f ∥IDAs,q ≤ lim
m→∞

(∥ fm,1 − f1∥IDAs,q + ∥ fm,2 − f2∥IDAs,q )= 0,

which completes the proof of the completeness and of the theorem. □
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Corollary 3.13. Let 1 ≤ q <∞. With the norm induced by ∥ · ∥BDAq , the quotient space BDAq/H(Cn) is
a Banach space and VDAq is a closed subspace of BDAq.

Proof. The proof of Theorem 3.12 works for s = ∞, so BDAq/H(Cn) is a Banach space in ∥ · ∥BDAq .
That VDAq is a closed subspace of BDAq can be proved in a standard way. □

4. Proof of Theorem 1.1

Given two F-spaces X and Y, we write B(X) for the unit ball of X. A linear operator T from X to Y is
bounded (or compact) if T(B(X)) is bounded (or relatively compact) in Y. The collection of all bounded
(and compact) operators from X to Y is denoted by B(X,Y) (and by K(X,Y) respectively). We use
∥T∥X→Y to denote the corresponding operator norm. In particular, we recall that when 0< p < 1, the
Fock space F p(ϕ) with the metric given by d( f, g)= ∥ f − g∥

p
p,ϕ is an F-space.

To deal with the boundedness and compactness of Hankel operators, we need an additional result
involving positive measures and their averages. More precisely, given a positive Borel measure µ on Cn

and r > 0, we write µ̂r (z)= µ(B(z, r)). Notice, in particular, µ̂r is a constant multiple of the averaging
function induced by the measure µ.

Lemma 4.1. Suppose 0 < p ≤ 1 and r > 0. There is a constant C such that, for µ a positive Borel
measure on Cn, � a domain in Cn, and g ∈ H(Cn), it holds that(∫

�

|g(ξ)e−ϕ(ξ)
| dµ(ξ)

)p

≤ C
∫
�+

r

|g(ξ)e−ϕ(ξ)
|

pµ̂r (ξ)
p dv(ξ),

where �+
r =

⋃
{z∈�}

B(z, r).

Proof. Let {aj }
∞

j=1 be an (r/4)-lattice. Notice that

µ̂r/4(aj )≤ C inf
w∈B(aj ,r/2)

µ̂r (w)

for all j ∈ N and (a + b)p
≤ a p

+ bp for a, b ≥ 0. Then(∫
�

|g(ξ)e−ϕ(ξ)
| dµ(ξ)

)p

≤

∞∑
j=1

(∫
B(aj ,r/4)∩�

|g(ξ)e−ϕ(ξ)
| dµ(ξ)

)p

≤ C
∑

{ j : B(aj ,r/4)∩� ̸=∅}

sup
ξ∈B(aj ,r/4)∩�

|g(ξ)e−ϕ(ξ)
|

pµ̂r/4(aj )
p

≤ C
∑

{ j : B(aj ,r/4)∩� ̸=∅}

µ̂r/4(aj )
p
∫

B(aj ,r/2)
|g(ξ)e−ϕ(ξ)

|
p dv(ξ)

≤ C
∑

{ j : B(aj ,r/4)∩� ̸=∅}

∫
B(aj ,r/2)

|g(ξ)e−ϕ(ξ)
|

pµ̂r (ξ)
p dv(ξ)

≤ C
∫
�+

r

|g(ξ)e−ϕ(ξ)
|

pµ̂r (ξ)
p dv(ξ),

which completes the proof. □
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Remark 4.2. To prove compactness of Hankel operators on spaces that are not necessarily Banach spaces,
we use the following result. For 0< p, q <∞, H f : F p(ϕ)→ Lq(ϕ) is compact if and only if

lim
m→∞

∥H f (gm)∥q,ϕ = 0

for any sequences {gm}
∞

m=1 in B(F p(ϕ)) satisfying

lim
m→∞

sup
w∈E

|gm(w)| = 0

for compact subsets E in Cn.
Necessity is trivial. To prove sufficiency, we notice that B(F p(ϕ)) is a normal family, so for any

sequence {gm}
∞

m=1 ⊂ B(F p(ϕ)), there exist a holomorphic function g0 on Cn and a subsequence {gm j }
∞

j=1
such that

lim
j→∞

sup
w∈E

|gm j (w)− g0(w)| = 0.

This and Fatou’s lemma imply that g0 ∈ B(F p(ϕ)), and hence by the hypothesis, we get

lim
j→∞

∥H f (gm j )− H f (g0)∥q,ϕ = lim
j→∞

∥H f (gm j − g0)∥q,ϕ = 0.

Thus, H f (B(F p(ϕ))) is sequentially compact in Lq(ϕ), that is, the Hankel operator H f : F p(ϕ)→ Lq(ϕ)

is compact.

4A. The case 0 < p ≤ q < ∞ and q ≥ 1.

Proof of Theorem 1.1(a). By (2-3)–(2-5),

∥kz∥p,ϕ ≤ C, sup
ξ∈B(z,r0)

|kz(ξ)|e−ϕ(ξ)
≥ C and lim

z→∞
sup
w∈E

|kz(w)| = 0 (4-1)

for any compact subset E ⊂ Cn. As in the proof of Theorem 4.2 of [Hu and Lu 2019], there is an r0 such
that, for all z ∈ Cn, we have

∥H f (kz)∥
q
q,ϕ ≥

∫
B(z,r0)

| f kz − P( f kz)|
qe−qϕ dv

≥ C
1

|B(z, r0)|

∫
B(z,r0)

∣∣∣∣ f −
1
kz

P( f kz)

∣∣∣∣q

dv ≥ CGq
q,r0
( f )(z). (4-2)

If H f ∈ B(F p(ϕ), Lq(ϕ)),

∥ f ∥BDAq ≤ C∥H f ∥F p(ϕ)→Lq (ϕ) <∞; (4-3)

if H f ∈ K(F p(ϕ), Lq(ϕ)), then f ∈ VDAq because

lim
z→∞

Gq
q,r0
( f )(z)≤ C lim

z→∞
∥H f (kz)∥q,ϕ = 0. (4-4)

Next we prove sufficiency. Suppose that f ∈ BDAq and decompose f = f1 + f2 as in (3-12). Write
dµ = | f2|

qdv and dν = |∂̄ f1|
qdv. According to Theorem 2.6 of [Hu and Lv 2014] and Corollary 3.9,
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both dµ and dν are (p, q)-Fock Carleson measures. We claim that both f1, f2 ∈ S. Indeed, since q ≥ 1,
we can use Lemma 4.1 with �= Cn and the measure | f2|dv to get∫

Cn
| f2(ξ)K (ξ, z)|e−ϕ(ξ) dv(ξ)≤ C

∫
Cn

M1,r ( f2)(ζ )|K (ζ, z)|e−ϕ(ζ ) dv(ζ )

≤ C
∫

Cn
Mq,r ( f2)(ζ )|K (ζ, z)|e−ϕ(ζ ) dv(ζ ). (4-5)

Since f ∈ BDAq, Lemma 3.6 implies∫
Cn

| f2(ξ)K (ξ, z)|e−ϕ(ξ) dv(ξ)≤ C∥ f ∥B D Aq

∫
Cn

|K (ξ, z)|e−ϕ(ξ) dv(ξ) <∞

for z ∈ Cn. Hence, f2 ∈ S, and so also f1 = f − f2 ∈ S because f ∈ S by the hypothesis. Since the
Bergman projection P is bounded on Lq(ϕ) when q ≥ 1, we have, for g ∈ 0,

∥H f2(g)∥q,ϕ ≤ (1 + ∥P∥Lq (ϕ)→Fq (ϕ))∥ f2g∥q,ϕ

≤ C∥Mq,r ( f2)∥L∞∥g∥q,ϕ ≤ C∥Mq,r ( f2)∥L∞∥g∥p,ϕ,

where the second inequality follows from Lemma 4.1. For H f1(g) with g ∈ 0, Corollary 2.5 shows that
H f1(g)= Aϕ(g∂̄ f1)− P(Aϕ(g∂̄ f1)). Lemma 2.4 implies

∥H f1(g)∥q,ϕ ≤ C∥g |∂̄ f1|∥q,ϕ ≤ C∥∂̄ f1∥L∞∥g∥q,ϕ ≤ C∥∂̄ f1∥L∞∥g∥p,ϕ. (4-6)

From the above estimates and the fact that 0 is dense in F p(ϕ), it follows that, for 0< p ≤ q <∞, we
have

∥H f ∥F p(ϕ)→Lq (ϕ) ≤ C{∥∂̄ f1∥L∞ + ∥Mq,r ( f2)∥L∞} ≤ C∥ f ∥BDAq , (4-7)

where the latter inequality follows from Lemma 3.6.
For compactness, suppose f ∈ VDAq so that f = f1 + f2 is as (3-12). Notice that both dµ= | f2|

q dv
and dν = |∂̄ f1|

q dv are vanishing (p, q)-Fock Carleson measures. Let {gm} be a bounded sequence in
F p(ϕ) converging to zero uniformly on compact subsets of Cn. Then

∥H f2(gm)∥Lq (ϕ) ≤ ∥gm f2∥q,ϕ + ∥P(gm f2)∥q,ϕ ≤ C
(∫

C

|gme−ϕ
|
q dµ

)1/q

→ 0

as m →∞. To prove limm→∞ ∥H f1(gm)∥Lq (ϕ)=0, for each m we pick some g∗
m ∈0 so that ∥gm−g∗

m∥p,ϕ<

1/m. Clearly, {g∗
m}

∞

m=1 is bounded in F p(ϕ), and limz→∞ supw∈E |g∗
m(w)| = 0 for any compact subset E .

Again by Corollary 2.5,

∥H f1(g
∗

m)∥Lq (ϕ) ≤ C∥g∗

m ∂̄ f1∥Lq (ϕ) ≤ C∥g∗

m∥Lq (Cn,dν) → 0 as m → ∞.

Thus, since Lemma 3.6 guarantees H f1 ∈ B(F p(ϕ), Lq(ϕ)), it follows that limm→∞ ∥H f1(gm)∥Lq (ϕ) = 0,
and so

H f = H f1 + H f2 ∈ K(F p(ϕ), Lq(ϕ)).

Finally, it remains to notice that the norm equivalence (1-1) follows from (4-3) and (4-7). □
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4B. The case 1 ≤ q < p < ∞. We can now prove the case q < p under the assumption that q ≥ 1.

Proof of Theorem 1.1(b). Suppose that H f ∈B(F p(ϕ), Lq(ϕ)). Because the proof of sufficiency is similar
to the implication (A)⇒ (C) of Theorem 4.4 in [Hu and Lu 2019], we only give the sketch here.

Indeed, take r0 as in (4-1), and set t = r0/4. Let {aj }
∞

j=1 be a (t/2)-lattice. By Lemma 2.4 of [Hu and Lv
2014],

∥∥∑
∞

j=1 λj kaj

∥∥
p,ϕ ≤ C∥{λj }∥l p for all {λj }

∞

j=1 ∈ l p, where the constant C is independent of {λj }
∞

j=1.
Let {φj }

∞

j=1 be the sequence of Rademacher functions on the interval [0, 1]. Using the boundedness of H f ,
we get ∥∥∥∥H f

( ∞∑
j=1

λjφj (s)kaj ( · )

)∥∥∥∥
q,ϕ

≤ C∥H f ∥F p(ϕ)→Lq (ϕ)∥{|λj |
q
}∥

1/q
l p/q (4-8)

for s ∈ [0, 1]. On the other hand,∫
B(aj ,t)

|H f (kz)(ξ)e−ϕ(ξ)
|
q dv(ξ)≥ CGq,t( f )(aj )

q . (4-9)

This and Khintchine’s inequality yield∫ 1

0

∥∥∥∥H f

( ∞∑
j=1

λjφj (s)kaj ( · )

)∥∥∥∥q

q,ϕ
dt ≥ C

∞∑
j=1

|λj |
q Gq,t( f )(aj )

q .

Combining this with (4-8) gives
∞∑
j=1

|λj |
q Gq,t( f )(aj )

q
≤ C∥H f ∥

q
F p(ϕ)→Lq (ϕ)∥{|λj |

q
}∥l p/q

for all {|λj |
q
}
∞

j=1 ∈ l p/q. By duality with the exponentials p/q and its conjugate,
∞∑
j=1

Gq,t( f )(aj )
pq/(p−q)

≤ C∥H f ∥
pq/(p−q)
F p(ϕ)→Lq (ϕ).

Therefore, by (3-7),∫
Cn

Gq,t/2( f )(z)pq/(p−q) dv(z)≤

∞∑
j=1

∫
B(aj ,t/2)

Gq,t/2( f )(z)pq/(p−q) dv(z)

≤ C∥H f ∥
pq/(p−q)
F p(ϕ)→Lq (ϕ), (4-10)

which means that f ∈ IDAs,q with the estimate ∥ f ∥IDAs,q ≤ C∥H f ∥.
It should be pointed out that the right-hand side of the estimate (4.24) (the analogue of (4-10) above)

in [Hu and Lu 2019] should read C∥H f ∥
pq/(p−q)
Ap
ω→Lq

ω
, and not C∥H f ∥Ap

ω→Lq
ω

as stated there.
Conversely, suppose f ∈ IDAs,q. As before, decompose f = f1 + f2 as in (3-12). From Lemma 3.6 we

know that ∥Mq,r ( f2)∥pq/(p−q) ≤ C∥ f ∥IDAs,q . Applying Hölder’s inequality to the right-hand side integral
in (4-5) with exponent pq/(p − q) and its conjugate exponent t , since we have ∥K ( · , z)∥t,ϕ <∞, it
follows that ∫

Cn
| f2(ξ)Kz(ξ)|e−ϕ(ξ) dv(ξ)≤ C∥Mq,r ( f2)∥pq/(p−q) · ∥Kz∥t,ϕ <∞.

This implies f2 ∈ S, and so also f1 ∈ S.
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Now for dν = |∂̄ f1|
qdv, applying Hölder’s inequality again with p/(p −q) and its conjugate exponent

p/q, we get

∥ν̂r∥
p/(p−q)
L p/(p−q) = C

∫
Cn

{∫
B(ξ,r)

|∂̄ f1(ζ )|
q dv(ζ )

}p/(p−q)

dv(ξ)

≤ C
∫

Cn
dv(ξ)

∫
B(ξ,r)

|∂̄ f1(ζ )|
pq/(p−q) dv(ζ )

≃ C
∫

Cn
|∂̄ f1(ζ )|

pq/(p−q) dv(ζ ) <∞. (4-11)

Theorem 2.8 of [Hu and Lv 2014] shows that ν is a vanishing (p, q)-Fock Carleson measure; that is,
the multiplier M f1 : g 7→ g|∂̄ f1| is compact from F p(ϕ) to Lq(ϕ) (see Proposition 2.3). Therefore, by
Lemma 2.4(A), Aϕ( · ∂̄ f1) is compact from F p(ϕ) to Lq(ϕ). Moreover, 0 is dense in F p(ϕ) and, by
Corollary 2.5, H f1(g)= Aϕ(g ∂̄ f1)− P ◦ Aϕ(g ∂̄ f1) for g ∈ 0. Hence, H f1 : F p(ϕ)→ Lq(ϕ) is compact
and we obtain the norm estimate

∥H f1∥F p(ϕ)→Lq (ϕ) ≤ C sup
{g∈F p(ϕ): ∥g∥p,ϕ≤1}

∥Aϕ(g∂̄ f1)∥q,ϕ ≤ C∥∂̄ f1∥pq/(p−q). (4-12)

Similarly to (4-11), using Lemma 3.6, for dµ= | f2|
qdv, we get

∥µ̂r∥
p/(p−q)
L p/(p−q) = C

∫
Cn

{∫
B(ξ,r)

| f2(ζ )|
q dv(ζ )

}p/(p−q)

dv(ξ)

= C∥Mq,r ( f2)∥
pq/(p−q)
pq/(p−q) ≤ C∥ f ∥

s
IDAs,q <∞.

Hence, dµ= | f2|
q dv is a vanishing (p, q)-Fock Carleson measure. It follows from Proposition 2.3 that

the identity operator

I : F p(ϕ)→ Lq(Cn, e−qϕ dµ)

is compact. Using the inequality

∥H f2(g)∥q,ϕ ≤ C∥ f2g∥q,ϕ = C∥I(g)∥Lq (C, e−qϕdµ), (4-13)

we see that H f2 is compact from F p(ϕ) to Lq(ϕ).
It remains to notice that the norm equivalence in (1-2) follows from combining the estimates in (4-10),

(4-12), and (4-13). □

Remark 4.3. In [Stroethoff 1992], it was proved that for bounded symbols f , the Hankel operator
H f : F2

→ L2 is compact if and only if

∥(I − P)( f ◦φλ)∥ → 0 (4-14)

as |λ| → ∞, where φλ(z)= z +λ. This characterization was recently generalized to F p
α with 1< p <∞

in [Hagger and Virtanen 2021]. Here we note that, using a generalization of Lemma 8.2 of [Zhu 2012] to
the setting of Cn, one can prove that Stroethoff’s result remains true for Hankel operators acting from F p

α

to Lq
α whenever 1 ≤ p, q <∞ even for unbounded symbols.
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4C. The case 0 < p ≤ q ≤ 1 with bounded symbols. We start with the following preliminary lemma
whose proof can be completed with a standard ε argument.

Lemma 4.4. Suppose that 0 < p < ∞, h ∈ L∞ and limz→∞ h(z) = 0. Then for any bounded se-
quence {gj }

∞

j=1 in L p
ϕ satisfying lim j→∞ gj (z) = 0 uniformly on compact subsets of Cn, it holds that

lim j→∞ ∥gj h∥p,ϕ = 0.

Proof. If R is sufficiently large, there is a C > 0 such that

∥gj h∥
p
p,ϕ =

(∫
B(0,R)

+

∫
Cn\B(0,R)

)
|gj (ξ)h(ξ)e−ϕ(ξ)

|
p dv(ξ)

≤ ∥h∥
p
L∞ sup

|ξ |≤R
|gj (ξ)e−ϕ(ξ)

|
p
+ C∥gj∥

p
p,ϕ → 0

as j → ∞. □

Proof of Theorem 1.1(c). Suppose that f ∈ S. Then f ∈ Lq
loc for 0 < q ≤ 1, and we may decompose

f = f1 + f2 as in (3-12) with t = r/2. We claim that, for g ∈ 0,

∥H f1(g)∥
q
q,ϕ ≤ C

∫
Cn

|g(ξ)e−ϕ(ξ)
|
q
∥∂̄ f1∥

q
L∞(B(ξ,r),dv) dv(ξ), (4-15)

∥H f2(g)∥
q
q,ϕ ≤ C

∫
Cn

|g(ξ)e−ϕ(ξ)
|
q M1,r ( f2)(ξ)

q dv(ξ). (4-16)

To estimate ∥H f1(g)∥q,ϕ , we use the representation

H f1(g)= Aϕ(g∂̄ f1)− P(Aϕ(g∂̄ f1))

(see (2-14)), which suggests that we define a measure dµz as

dµz(ξ)= |∂̄ f1(ξ)|

{
1

|ξ − z|
+

1
|ξ − z|2n−1

}
e−m|ξ−z| dv(ξ).

Then there is a constant C such that, for w ∈ Cn,∫
B(w,r)

|∂̄ f1(ξ)|

{
1

|ξ − z|
+

1
|ξ − z|2n−1

}
e−m|ξ−z|2 dv(ξ)≤ C

∫
B(w,r)

dµz(ξ).

Also, it is easy to verify that

(̂µz)r (w)≤ C sup
η∈B(w,r)

|∂̄ f1(η)|e−m|w−z|,

where the constant C is independent of z, w ∈ Cn. Recall that

Aϕ(g∂̄ f1)(z)=

∫
Cn

e⟨2∂ϕ,z−ξ⟩
∑
j<n

g(ξ)∂̄ f1(ξ)∧
∂|ξ − z|2 ∧ (2∂̄∂ϕ(ξ)) j

∧ (∂̄∂|ξ − z|2)n−1− j

j ! |ξ − z|2n−2 j .

Therefore, using (2-13) and Lemma 4.1, we get

|Aϕ(g∂̄ f1)(z)e−ϕ(z)
|
q

≤ C
(∫

Cn
|g(ξ)e−ϕ(ξ)

| dµz(ξ)

)q

≤ C
∫

Cn
|g(ξ)e−ϕ(ξ)

|
q
∥∂̄ f1∥

q
L∞(B(ξ,r),dv)e

−qm|ξ−z| dv(ξ). (4-17)
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Fubini’s theorem yields

∥Aϕ(g∂̄ f1)∥
q
q,ϕ ≤ C

∫
Cn

dv(z)
∫

Cn
|g(ξ)e−ϕ(ξ)

|
q
∥∂̄ f1∥

q
L∞(B(ξ,r),dv)e

−qm|ξ−z| dv(ξ)

≤ C
∫

Cn
|g(ξ)e−ϕ(ξ)

|
q
∥∂̄ f1∥

q
L∞(B(ξ,r),dv) dv(ξ). (4-18)

To deal with P(Aϕ(g∂̄ f1)), we use Lemma 2.2 to obtain positive constants θ and C so that, for z ∈ Cn,
we have∫

Cn
|K (w, z)|e−m|ξ−z|e−ϕ(z) dv(z)≤ Ceϕ(w)

∫
Cn

e−m|ξ−z|e−θ |w−z| dv(z)

= Ceϕ(w)
(∫

{z:|z−ξ |≥|z−w|}

+

∫
{z:|z−ξ |<|z−w|}

)
e−m|w−z|e−θ |ξ−z| dv(z)

≤ Ceϕ(w)e−τ |ξ−w|,

where τ = min{θ,m}. Therefore, (4-17) and Fubini’s theorem yield

|P(Aϕ(g∂̄ f1))(w)| ≤ C
∫

Cn
|g(ξ)e−ϕ(ξ)

|∥∂̄ f1∥L∞(B(ξ,r/2),dv) dv(ξ)
∫

Cn
|K (w, z)|e−θ |ξ−z|e−ϕ(z) dv(z)

≤ Ceϕ(w)
∫

Cn
|g(ξ)e−ϕ(ξ)

|∥∂̄ f1∥L∞(B(ξ,r/2),dv)e−τ |ξ−w| dv(ξ).

Lemma 4.1 again gives

∥P(Aϕ(g∂̄ f1))(w)∥
q
q,ϕ ≤ C

∫
Cn

|g(ξ)e−ϕ(ξ)
|
q
∥∂̄ f1∥

q
L∞(B(ξ,r),dv) dv(ξ).

Combining this and (4-18), we get (4-15).
For (4-16), notice first that

∥ f2g∥
q
q,ϕ ≤ C

∫
Cn

|g(ξ)e−ϕ(ξ)
|
q Mq

q,r ( f2)(ξ) dv(ξ), (4-19)

and, by Lemma 4.1 with the measure M1,r/2( f2) dv, we have

|P( f2g)(z)|q ≤ C
(∫

Cn
|g(ξ)K (z, ξ)e−2ϕ(ξ)

|M1,r/2( f2)(ξ) dv(ξ)
)q

≤ C
∫

Cn
|g(ξ)K (z, ξ)e−2ϕ(ξ)

|
q M1,r ( f2)(ξ)

q dv(ξ). (4-20)

Integrating both sides of (4-20) against e−qϕ dv over Cn and using (2-5), we get

∥P( f2g)∥q
q,ϕ ≤ C

∫
Cn

|g(ξ)e−ϕ(ξ)
|
q M1,r ( f2)(ξ)

q dv(ξ). (4-21)

This and (4-19) imply (4-16).
Now we suppose that f ∈ L∞ and 0< p ≤q<1. For g ∈ H(Cn), similarly to the proof of (4-16), we have

∥H f (g)∥q,ϕ ≤ C
(∫

Cn
|g(ξ)e−ϕ(ξ)

|
q M1,r ( f )(ξ)q dv(ξ)

)1/q

≤ C∥ f ∥L∞∥g∥p,ϕ.

This implies boundedness of H f with the norm estimate (1-3).
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For the second assertion, suppose first that lim|z|→∞ Gq,r ( f )(z)=0 for some r>0 and write f = f1+ f2

as above. Since the unit ball B(F p(ϕ)) of F p(ϕ) is a normal family, to show that H f is compact from
F p(ϕ) to Lq(ϕ), it suffices to prove that, for k = 1, 2,

lim
j→∞

∥H fk (gj )∥q,ϕ = lim
j→∞

∥ fk gj − P( fk gj )∥q,ϕ = 0

for any bounded sequence {gj }
∞

j=1 in F p(ϕ) with the property that

lim
j→∞

sup
w∈E

|gj (w)| = 0

for E compact in Cn. From the assumption that limz→∞ Mq,r ( f2)(z)= 0, it follows that dµ= | f2|
q dv

is a vanishing (p, q)-Fock Carleson measure (see Theorem 2.7 of [Hu and Lv 2014] and Proposition 2.3).
Therefore, we get

∥ f2gj∥q,ϕ = ∥gj∥Lq (Cn,| f2|q dv) → 0 as j → ∞.

Notice also that ∥g∥q,ϕ ≤ C∥g∥p,ϕ for g ∈ Fq(ϕ) and p ≤ q . Further, by (4-16), we obtain

M1,r ( f2)(ξ)≤ ∥ f2∥
1−q
L∞ Mq,r ( f2)(ξ)

q ,

and applying Lemma 4.4 to h = Mq,r ( f2)
q2

, we get

∥H f2 gj∥
q
q,ϕ ≤ C

∫
Cn

|gj (ξ)e−ϕ(ξ)
|
q M1,r ( f2)(ξ)

q dv(ξ)

≤ C∥ f2∥
(1−q)q
L∞

∫
Cn

|gj (ξ)e−ϕ(ξ)
|
q Mq,r ( f2)(ξ)

q2
dv(ξ)→ 0

as j → ∞. So H f2 ∈ K(F p(ϕ), Lq(ϕ)). As for H f1 , it follows from Lemma 3.6 that

∥∂̄ f1∥L∞(B(ξ,r),dv) ≤ CGq,r ( f )(ξ)→ 0 when ξ → ∞.

Therefore, by (4-15),

∥H f1(gj )∥
q
q,ϕ ≤ C

∫
Cn

|gj (ξ)e−ϕ(ξ)
|
q
∥∂̄ f1∥

q
L∞(B(ξ,r),dv) dv(ξ)→ 0

as j → ∞, and hence we have H f1 ∈ K(F p(ϕ), Lq(ϕ)).
Conversely, suppose that H f is compact from F p(ϕ) to Lq(ϕ). Then, as in (4-4), we have

lim
z→∞

Gq,r ( f )(z)≤ C lim
z→∞

∥H f (kz)∥q,ϕ = 0 (4-22)

for r ∈ (0, r0] fixed. We claim that (4-22) is valid for any r > 0. To see this, we consider the Hankel
operator H f on the Fock space F p

α . From (4-22), using the sufficiency part, it follows that H f is compact
from F p

α to Lq(Cn, e−(qα/2)|z|2 dv). Notice that the equality (1-5) yields

inf
w∈B(z,r)

|K (w, z)| ≥ C > 0

for any r > 0 fixed, where the constant C is independent of z ∈ Cn. As in (4-2), we have

lim
z→∞

Gq,r ( f )(z)≤ C lim
z→∞

∥H f (kz)∥Lq (Cn,e−(qα/2)|z|2 dv) = 0.

Thus, f ∈ VDAq. □
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The following Corollary 4.5 is a direct consequence of the proof of Theorem 1.1(c) which we use to
complement and extend the classical result of Berger and Coburn in the next section.

Corollary 4.5. Suppose that 0<q< 1 and f ∈ L∞. Then the limit limz→∞ Gq,r ( f )(z)= 0 is independent
of r > 0.

5. Proof of Theorem 1.2

Proof of the case 0< p ≤ q <∞. For R > 0, let {ak}
∞

k=1 be the (R/2)-lattice{
R

2
√

n
(m1 + k1i,m2 + k2i, . . . ,mn + kni) ∈ Cn

: m j , kj ∈ Z, j = 1, 2, . . . , n
}
.

Choose ρ ∈ C∞(Cn) such that

0 ≤ ρ ≤ 1, ρ|B(0,1/2) ≡ 1, supp ρ ⊆ B
(
0, 3

4

)
.

Then ∥∇ρ∥L∞ <∞ and

0<
∞∑

k=1

ρ((z − ak)/R)≤ C

for z ∈ Cn. Define ψj,R ∈ C∞(Cn) by

ψj,R(z)=
ρ((z − aj )/R)∑

∞

k=1 ρ((z − ak)/R)
.

Then {ψj,R}
∞

j=1 is a partition of unity subordinate to {B(aj , R)}∞j=1 and

R∥∇ψj,R( · )∥L∞ ≤ C, (5-1)

where the constant C is independent of j and R.
Now we suppose that f ∈ L∞ and H f ∈K(F p(ϕ), Lq(ϕ)). Theorem 1.1 and Corollary 4.5 imply that

lim
z→∞

Gq,2R( f )(z)= 0 (5-2)

for R > 0 fixed. As in (3-2), pick h j,R ∈ H(B(aj , 2R)) so that

1
|B(aj , 2R)|

∫
B(aj ,2R)

| f − h j,R|
q dv = Gq,2R( f )(aj )

q . (5-3)

By (3-3),
sup

z∈B(aj ,R)
|h j,R(z)| ≤ C∥ f ∥L∞ .

Set

f1,R =

∞∑
j=1

ψj,R h j,R and f2,R = f − f1,R.

From estimates (2-9) and (3-3), it follows that there is a positive constant C such that

∥ f1,R∥L∞ + ∥ f2,R∥L∞ ≤ C∥ f ∥L∞ (5-4)
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for R > 0. Lemma 3.6 and (5-2) imply that

lim
z→∞

Mq,R( f̄2,R)(z)= lim
z→∞

Mq,R( f2,R)(z)= 0,

and so

H f̄2,R
∈ K(F p(ϕ), Lq(ϕ)). (5-5)

Recall that Pz,R is the standard Bergman projection from L2(B(z, R), dv) to A2(B(z, R), dv). Since
h j,R is bounded on B(aj , R), we have h j,R = Paj ,R(h j,R), that is,

h j,R(z)=
1
π

∫
B(aj ,R)

R2h j,R(ξ) dv(ξ)

(R2 − (ξ − aj ) · (z − aj ))n+1
, z ∈ B(aj , R).

Hence,

|∂̄h j,R(z)| ≤ C
∥h j,R∥L∞(B(z,R),dv)

R
for z ∈ B(aj , 3R/4). (5-6)

Notice that suppψj,R h j,R ⊆ B(aj , 3R/4), and the estimates (5-1) and (5-6) imply that

|∂̄ f̄1,R| ≤

∞∑
j=1

|(∂̄ψj,R)h̄ j,R| +

∞∑
j=1

ψj,R|∂̄(h̄ j,R)| ≤ C
∥ f ∥L∞

R
.

Therefore, using (4-6) (when q ≥ 1) and (4-15) (when q < 1), we have

∥H f̄1,R
∥

p
F p(ϕ)→Lq (ϕ) ≤ C∥∂̄ f̄1,R∥L∞ ≤ C

∥ f ∥L∞

R
.

The constants C above are all independent of f and R. Therefore,

∥H f̄ − H f̄2,R
∥F p(ϕ)→Lq (ϕ) = ∥H f̄1,R

∥F p(ϕ)→Lq (ϕ) ≤ C
∥ f ∥L∞

R
→ 0

as R → ∞. Finally, using (5-5) and the fact that K(F p(ϕ), Lq(ϕ)) is closed under the operator norm, we
see that H f̄ ∈ K(F p(ϕ), Lq(ϕ)), which completes the proof. □

To deal with the case 1 ≤q< p<∞, we use the Ahlfors–Beurling operator, which is a very well-known
Calderón–Zygmund operator on L p(C), 1< p <∞, defined as

T( f )(z)= p.v.− 1
π

∫
C

f (ξ)
(ξ − z)2

dv(ξ),

where p.v. means the Cauchy principal value. The Ahlfors–Beurling operator connects harmonic analysis
and complex analysis, and it is of fundamental importance in several areas of mathematics including PDE
and quasiconformal mappings. See [Ahlfors 2006; Astala et al. 2009] for further details and examples.

Lemma 5.1. Suppose 1 < s <∞. Then there is some constant C , depending only on s, such that, for
f ∈ C2(Cn)∩ L∞ and j = 1, 2, . . . , n, ∥∥∥∥ ∂ f

∂z j

∥∥∥∥
Ls

≤ C
∥∥∥∥ ∂ f
∂ z̄ j

∥∥∥∥
Ls
. (5-7)
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Proof. We consider the case n = 1 first. Let f ∈ C2(C)∩ L∞. If ∥∂ f/∂ z̄∥Ls = 0, then f ∈ H(C)∩ L∞,
which implies that the function f is constant and the estimate (5-7) follows. Next we suppose that
∥∂ f/∂ z̄∥Ls > 0. Take ψ(r) ∈ C∞(R) to be decreasing such that ψ(x) = 1 for x ≤ 0, ψ(x) = 0 for
x ≥ 1, and 0 ≤ −ψ ′(x)≤ 2 for x ∈ R. For R > 0 fixed, we set ψR(x)= ψ(x − R) for x ∈ R and define
fR(z) = f (z)ψR(|z|) for z ∈ C. Since f ∈ C2(C) ∩ L∞, it is obvious that fR(z) ∈ C2

c (C), the set of
C2 functions on R2 with compact support. From Theorem 2.1.1 of [Chen and Shaw 2001], it follows that

fR(z)=
1

2π i

∫
C

∂ fR/∂ z̄
ξ − z

dξ ∧ d ξ̄ .

Notice that ∂ fR/∂ z̄ = ψR(∂ f/∂ z̄)+ f (∂ψR/∂ z̄). By Lemma 2 on page 52 of [Ahlfors 2006], we get

∂ fR

∂z
(z)= T

(
∂ fR

∂ z̄

)
(z)= T

(
ψR
∂ f
∂ z̄

)
(z)+T

(
f
∂ψR

∂ z̄

)
(z). (5-8)

Now for r > 0 and |z|< r , when R is sufficiently large, it holds that∣∣∣∣T(
f
∂ψR

∂ z̄

)∣∣∣∣(z)≤
∥ f ∥L∞

π(R − r)2

∫
R≤|ξ |≤R+1

dv(ξ)≤
3R∥ f ∥L∞

(R − r)2
,

and hence ∥∥∥∥T(
f
∂ψR

∂ z̄

)∥∥∥∥
Ls(D(0,r),dv)

≤

∥∥∥∥∂ f
∂ z̄

∥∥∥∥
Ls
, (5-9)

where D(0, r) = {z ∈ C : |z| < r}. In addition, by the boundedness of T on Ls (see, for example, the
estimate (11) on page 53 in [Ahlfors 2006]), we get∥∥∥∥T(

ψR
∂ f
∂ z̄

)∥∥∥∥
Ls

≤ C
∥∥∥∥ψR

∂ f
∂ z̄

∥∥∥∥
Ls

≤ C
∥∥∥∥∂ f
∂ z̄

∥∥∥∥
Ls
. (5-10)

For R sufficiently large, from (5-8), (5-9) and (5-10) it follows that∥∥∥∥∂ f
∂z

∥∥∥∥
Ls(D(0,r),dv)

=

∥∥∥∥∂ fR

∂z

∥∥∥∥
Ls(D(0,r),dv)

≤ C
∥∥∥∥∂ f
∂ z̄

∥∥∥∥
Ls
.

Therefore, ∥∥∥∥∂ f
∂z

∥∥∥∥
Ls

≤ C
∥∥∥∥∂ f
∂ z̄

∥∥∥∥
Ls
. (5-11)

Now for n ≥ 2 and f ∈ L∞
∩ C2(Cn), by (5-11), we have∫

Cn

∣∣∣∣ ∂ f
∂z1

(ξ)

∣∣∣∣s

dv(ξ)=

∫
Cn−1

dv(ξ ′)

∫
C

∣∣∣∣ ∂ f
∂z1

(ξ1, ξ
′)

∣∣∣∣s

dv(ξ1)

≤ C
∫

Cn−1
dv(ξ ′)

∫
C

∣∣∣∣ ∂ f
∂ z̄1

(ξ1, ξ
′)

∣∣∣∣s

dv(ξ1).

This implies (5-7) for j = 1. Similarly, (5-7) holds for j = 2, . . . , n, and the proof is complete. □

Proof of the case 1 ≤ q < p <∞. Notice first that if H f ∈ K(F p(ϕ), Lq(ϕ), then by Theorem 1.1, we
have f ∈ IDAs,q with s = pq/(p − q) > 1. We use a decomposition f = f1 + f2 as in (3-17) with r = 1.
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Furthermore, by (5-4), we may assume that ∥ f1∥L∞ ≤ C∥ f ∥L∞ . Then, from Lemma 5.1 it follows that

∥∂̄ f̄1∥Ls ≤ C
n∑

j=1

∥∥∥∥ ∂ f̄
∂ z̄ j

∥∥∥∥
Ls

= C
n∑

j=1

∥∥∥∥ ∂ f
∂z j

∥∥∥∥
Ls

≤ C
n∑

j=1

∥∥∥∥ ∂ f
∂ z̄ j

∥∥∥∥
Ls

≤ C∥∂̄ f1∥Ls .

We also observe that ∥Mq,r ( f̄2)∥Ls = ∥Mq,r ( f2)∥Ls <∞. Now Theorem 3.8 implies that f̄ = f̄1 + f̄2 ∈

IDAs,q, and hence, by Theorem 1.1, we get H f̄ ∈ K(F p(ϕ), Lq(ϕ)). □

Remark 5.2. Notice that it follows from the preceding proof that

∥H f̄ ∥F p(ϕ)→Lq (ϕ) ≤ C∥H f ∥F p(ϕ)→Lq (ϕ).

6. Application to Berezin–Toeplitz quantization

As an application and further generalization of our results, we consider deformation quantization in the
sense of [Rieffel 1989; 1990] and focus on one of its essential ingredients in the noncompact setting
of Cn that involves the limit condition

lim
t→0

∥T (t)
f T (t)

g − T (t)
f g ∥F2

t (ϕ)→F2
t (ϕ)

= 0.

Recently this and related questions were studied in [Bauer and Coburn 2016; Bauer et al. 2018; Fulsche
2020], which also provide further physical background and references for this type of quantization.

Recall that ϕ ∈ C2(Cn) is real-valued and HessR ϕ ≃ E, where E is the 2n × 2n-unit matrix. For t > 0,
we set

dµt(z)=
1
tn exp

{
−2ϕ

(
z

√
t

)}
dv(z)

and denote by L2
t (ϕ) the space of all Lebesgue measurable functions f in Cn such that

∥ f ∥t =

{∫
Cn

| f |
2 dµt(z)

}1/2

.

Further, we let F2
t (ϕ)= L2

t (ϕ)∩ H(Cn). Then clearly F2
1 (ϕ)= F2(ϕ) and L2

1(ϕ)= L2(ϕ) in terms of the
spaces that were considered in the previous sections. Given f ∈ L∞, we use the orthogonal projection P (t)

from L2
t (ϕ) onto F2

t (ϕ) to define the Toeplitz operator T (t)
f and the Hankel operator H (t)

f , respectively, by

T (t)
f = P (t)M f and H (t)

f = (I − P (t))M f .

Let Ut be the dilation acting on measurable functions in Cn as

Ut : f 7→ f ( ·
√

t).

It is easy to verify that Ut is a unitary operator from L2
t (ϕ) to L2(ϕ) (as well as a unitary operator from

F2
t (ϕ) to F2(ϕ)). Further, we have Ut P (t)U−1

t = P (1), which implies that

Ut T
(t)
f U−1

t = T f ( ·
√

t), Ut H (t)
f U−1

t = H f ( ·
√

t). (6-1)

Therefore,
∥T (t)

f ∥F2
t (ϕ)→F2

t (ϕ)
= ∥T f ( ·

√
t)∥F2(ϕ)→F2(ϕ) (6-2)
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and
∥H (t)

f ∥F2
t (ϕ)→L2

t (ϕ)
= ∥H f ( ·

√
t)∥F2(ϕ)→L2(ϕ). (6-3)

Given f ∈ L2
loc, for z ∈ Cn and r > 0 set

M O2,r ( f )(z)=

{
1

|B(z, r)|

∫
B(z,r)

| f − fB(z,r)|
2 dv

}1/2

where fS = (1/|S|)
∫

S f dv for S ⊂ Cn measurable.
The following definitions of BMO and VMO are analogous to the classical definition introduced in [John

and Nirenberg 1961], but they differ from those widely used in the study of Bergman and Fock spaces.

Definition 6.1. We denote by BMO the set of all f ∈ L2
loc such that

∥ f ∥∗ = sup
z∈Cn, r>0

M O2,r ( f )(z) <∞

and by VMO the set of all f ∈ BMO such that

lim
r→0

sup
z∈Cn

M O2,r ( f )(z)= 0.

Definition 6.2. We define BDA∗ to be the family of all f ∈ L2
loc such that

∥ f ∥BDA∗
= sup

z∈Cn,r>0
G2,r ( f )(z) <∞

and VDA∗ to be the subspace of all f ∈ BDA∗ such that

lim
r→0

sup
z∈Cn

G2,r ( f )(z)= 0.

Given a family X of functions on Cn, we set X = { f̄ : f ∈ X}.

Proposition 6.3. It holds that

BMO = BDA∗ ∩ BDA∗ and VMO = VDA∗ ∩ VDA∗.

Furthermore, we have
∥ f ∥BMO∗

≃ ∥ f ∥BDA∗
+ ∥ f̄ ∥BDA∗

(6-4)

for f ∈ L2
loc.

Proof. From a careful inspection of the proof of Proposition 2.5 in [Hu and Wang 2018], it follows that
there is a constant C > 0 such that, for f ∈ L2

loc and z ∈ Cn, r > 0, there is a constant c(z) for which{
1

|B(z, r)|

∫
B(z,r)

| f − c(z)|2 dv
}1/2

≤ C{G2,r ( f )(z)+ G2,r ( f̄ )(z)}.

It is easy to verify that

M O2,r ( f )(z)≤

{
1

|B(z, r)|

∫
B(z,r)

| f − c(z)|2 dv
}1/2

,
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and hence
M O2,r ( f )(z)≤ C{G2,r ( f )(z)+ G2,r ( f̄ )(z)}.

On the other hand, by definition, we have

G2,r ( f )(z)≤ M O2,r ( f )(z).

Thus, we have C1 and C2, independent of f , r and z, such that

C1{G2,r ( f )(z)+ G2,r ( f̄ )(z)} ≤ M O2,r ( f )(z)

≤ C2{G2,r ( f )(z)+ G2,r ( f̄ )(z)}. (6-5)

Therefore, f ∈ BMO (or f ∈ VMO) if and only if f ∈ BDA∗ ∩ BDA∗ (or f ∈ VDA∗ ∩ VDA∗). The
estimate in (6-4) follows from (6-5). □

Theorem 6.4. Suppose f ∈ L∞. Then for all g ∈ L∞, it holds that

lim
t→0

∥T (t)
f T (t)

g − T (t)
f g ∥F2

t (ϕ)→F2
t (ϕ)

= 0 (6-6)

if and only if f ∈ VDA∗.

Proof. Given f ∈ L∞, it follows from (6-3) that

∥(H (t)
f̄
)∗∥L2

t (ϕ)→F2
t (ϕ)

= ∥H (t)
f̄

∥F2
t (ϕ)→L2

t (ϕ)
= ∥H f ( ·

√
t)∥F2(ϕ)→L2(ϕ).

This and Theorem 1.1 imply

1
C

∥G2,1( f ( ·
√

t))∥L∞ ≤ ∥(H (t)
f̄
)∗∥L2

t (ϕ)→F2
t (ϕ)

≤ C∥G2,1( f ( ·
√

t))∥L∞, (6-7)

where the constant C is independent of f and t .
Suppose f ∈ VDA∗. Then, by definition, we have

lim
r→0

sup
z∈Cn

G2,r ( f̄ )(z)= 0.

It is easy to verify that
G2,1( f ( ·

√
t))(z)= G2,

√
t( f )(z

√
t).

Now by (6-7), we get

lim
t→0

∥(H (t)
f̄
)∗∥L2

t (ϕ)→F2
t (ϕ)

≤ C lim
t→0

∥G2,
√

t( f̄ )∥L∞ = 0. (6-8)

In addition, for f, g ∈ L∞, it is easy to verify that

T (t)
f T (t)

g − T (t)
f g = −(H (t)

f̄
)∗H (t)

g . (6-9)

Therefore, for all g ∈ L∞,

lim
t→0

∥T (t)
f T (t)

g − T (t)
f g ∥F2

t (ϕ)→F2
t (ϕ)

≤ ∥g∥L∞ lim
t→0

∥(H (t)
f̄
)∗∥L2

t (ϕ)→F2
t (ϕ)

= 0,

which gives (6-6).
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Conversely, suppose that (6-6) holds for every g ∈ L∞. Let g = f̄ ∈ L∞. Then it follows from (6-9) that

lim
t→0

∥H (t)
f̄

∥
2
F2

t (ϕ)→L2
t (ϕ)

= lim
t→0

∥(H (t)
f̄
)∗H (t)

f̄
∥F2

t (ϕ)→F2
t (ϕ)

= lim
t→0

∥T (t)
f T (t)

f̄
− T (t)

| f |2
∥F2

t (ϕ)→F2
t (ϕ)

= 0.

This and (6-7) imply that f ∈ VDA∗. □

Combining Proposition 6.3 with Theorem 6.4, we obtain the following corollary, which is the main
result of [Bauer et al. 2018] when ϕ(z)=

1
8 |z|2.

Corollary 6.5. Suppose f ∈ L∞. Then for all g ∈ L∞, it holds that

lim
t→0

∥T (t)
f T (t)

g − T (t)
f g ∥ = 0 and lim

t→0
∥T (t)

g T (t)
f − T (t)

f g ∥ = 0 (6-10)

if and only if g ∈ VMO. Here ∥ · ∥ = ∥ · ∥F2
t (ϕ)→F2

t (ϕ)
.

7. Further remarks

For 1 ≤ p, q <∞, we have characterized those f ∈ S for which H f : F p(ϕ)→ Lq(ϕ) is bounded (or
compact). For small exponents 0< p < q < 1, we have proved that this characterization remains true for
compactness when f ∈ L∞. We also note that when p ≤ q and q ≥ 1, boundedness and compactness of
Hankel operators H f : F p(ϕ)→ L p(ϕ) depend on q (see Remark 3.2 and Theorem 1.1), while for p > q
we cannot say the same — we note that we have no statement analogous to Remark 3.2 for IDAs,q.

Moreover, for harmonic symbols f ∈ S and 0< p, q <∞, using the Hardy–Littlewood theorem on the
submean value (see Lemma 2.1 of [Hu et al. 2007], for example), we are able to characterize boundedness
of H f : F p(ϕ)→ Lq(ϕ) with the space IDAs,q. We will return to this topic in a future publication.

We also note that the space F∞(ϕ) does not appear in our results because 0 is not dense in it. Instead,
it may be possible to consider the space

f ∞(ϕ)= { f ∈ F∞(ϕ) : f e−ϕ
∈ C0(C

n)},

which can be viewed as the closure of 0 in F∞(ϕ), and extend our results to this setting.
Regarding weights, the Fock spaces studied in this paper are defined with weights ϕ ∈ C(Cn) satisfying

HessR ϕ ≃ E. As stated in Section 2A, these weights are contained in the class considered in [Schuster
and Varolin 2012]. Now, we note that for the weights ϕ in that work, i∂∂̄ϕ ≃ ω0, and from Hörmander’s
theorem on the canonical solution to the ∂̄-equation it follows that

∥H f g∥
2
2,ϕ ≤

∫
Cn

|g∂̄ f |
2
i∂∂̄e

−2ϕ dv ≤ C∥g|∂̄ f |∥
2
2,ϕ,

and hence we know that the conclusions of Theorem 1.1 remain true when q = 2 (see Theorem 4.3 of
[Hu and Virtanen 2022]). Upon these observations, we raise the following conjecture.

Conjecture 1. Suppose ϕ ∈ C2(Cn) satisfying i∂∂̄ϕ ≃ ω0. Then for f ∈ S and 0 < p, q < ∞, H f ∈

B(F p(ϕ), Lq(ϕ)) if and only if f ∈ IDAs,q, where s = pq/(p − q) if p > q and s = ∞ if p ≤ q .
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In the literature, there are a number of interesting results on the simultaneous boundedness (and
compactness) of Hankel operators H f and H f̄ . These types of characterizations often involve the function
spaces BMOq and IMOs,q in their conditions; see, e.g., [Hu and Wang 2018; Zhu 2012]. For 1 ≤ q <∞

and 1 ≤ s ≤ ∞, set IDAs,q
= { f̄ : f ∈ IDAs,q

}. Then Proposition 2.5 of [Hu and Wang 2018] shows
that IDAs,q

∩ IDAs,q
= IMOs,q and the results of Section 4 provide a description of the simultaneous

boundedness (or compactness) of H f and H f̄ as seen in the following theorem, where as before, we set
s = pq/(p − q) if p > q and s = ∞ if p ≤ q .

Theorem 7.1. Let ϕ ∈ C2(Cn) be real-valued, HessR ϕ ≃ E, and let f ∈ S. For 1 ≤ p, q <∞, Hankel
operators H f and H f̄ are simultaneously bounded from F p(ϕ) to Lq(ϕ)) if and only if f ∈ IMOs,q.

We state one more conjecture related to Theorem 1.2, in which we proved that for f ∈ L∞ and 0< p<∞,
H f is compact on F p(ϕ) if and only if H f̄ in compact on F p(ϕ). Recall that this phenomenon does not
occur for Hankel operators on the Bergman space or on the Hardy space. As predicted in [Zhu 2012],
and verified for Hankel operators on the weighted Fock spaces F p(α) with 1< p <∞ in [Hagger and
Virtanen 2021], a partial explanation for this difference is the lack of bounded holomorphic or harmonic
functions on the entire complex plane. From this point of view it is natural to suggest that a similar result
should remain true for Hankel operators mapping from F p(ϕ) to Lq(ϕ).

Conjecture 2. Suppose that ϕ ∈ C2(Cn) satisfies i∂∂̄ϕ ≃ ω0 and 0 < p, q < ∞. Then for f ∈ L∞,
H f ∈ K(F p(ϕ), Lq(ϕ)) if and only if H f̄ ∈ K(F p(ϕ), Lq(ϕ)).

Notice that IDAs,q
∩ L∞ is a Banach algebra under the norm ∥ · ∥IDAs,q + ∥ · ∥∞. We can also express

Conjecture 2 in algebraic terms; that is, we conjecture that IDAs,q
∩ L∞ on Cn is closed under the

conjugate operation f 7→ f̄ , where 1< s ≤ ∞ and 0< q <∞.

Related to our work on quantization and Theorem 6.4 in particular, we conclude this section with the
following problem: characterize those f ∈ L∞ for which it holds that

lim
t→0

∥T (t)
f T (t)

g − T (t)
f g ∥S2 = 0

for all g ∈ L∞, where ∥ · ∥S2 stands for the Hilbert–Schmidt norm. It would also be important to consider
this question for other Schatten classes Sp.
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