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CLASSIFICATION OF CONVEX ANCIENT FREE-BOUNDARY
CURVE-SHORTENING FLOWS IN THE DISC

THEODORA BOURNI AND MAT LANGFORD

Using a combination of direct geometric methods and an analysis of the linearization of the flow about
the horizontal bisector, we prove that there exists a unique (modulo rotations about the origin) convex
ancient curve-shortening flow in the disc with free boundary on the circle. This appears to be the first
result of its kind in the free-boundary setting.

1. Introduction

Curve-shortening flow is the gradient flow of length for regular curves. It models the evolution of grain
boundaries [Mullins 1956; von Neumann 1952] and the shapes of worn stones [Firey 1974] in two
dimensions, and has been exploited in a multitude of further applications; see, for example, [Sapiro 2001].

The evolution of closed planar curves by curve-shortening was initiated by Mullins [1956] and was later
taken up by Gage [1984] and Gage and Hamilton [1986], who proved that closed convex curves remain
convex and shrink to “round” points in finite time. Soon after, Grayson showed that closed embedded
planar curves become convex in finite time under the flow, thereafter shrinking to round points according
to the Gage–Hamilton theorem. Different proofs of these results were discovered later by others [Andrews
2012; Andrews and Bryan 2011a; 2011b; Hamilton 1995b; Huisken 1998]. Ancient solutions to geometric
flows (that is, solutions defined on backwards-infinite time-intervals) are important from an analytical
standpoint as they model singularity formation [Hamilton 1995a]. They also arise in quantum field theory,
where they model the ultraviolet regime in certain Dirichlet sigma models [Bakas and Sourdis 2007].
They have generated a great deal of interest from a purely geometric standpoint due to their symmetry and
rigidity properties. For example, ancient solutions to curve-shortening flow of convex planar curves have
been classified through the work of Daskalopoulos, Hamilton and Sesum [Daskalopoulos et al. 2010] and
the authors in collaboration with Tinaglia [Bourni et al. 2020]. Bryan and Louie [2016] proved that the
shrinking parallel is the only convex ancient solution to curve-shortening flow on the two-sphere, and
Choi and Mantoulidis [2022] showed that it is the only embedded ancient solution on the two-sphere
with uniformly bounded length.

The natural Neumann boundary value problem for curve-shortening flow, called the free-boundary
problem, asks for a family of curves whose endpoints lie on (but are free to move on) a fixed barrier curve
which is met by the solution curve orthogonally. Study of the free-boundary problem was initiated by
Huisken [1989] and further developed by Stahl [1996a; 1996b]. In particular, Stahl proved that convex
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curves with free boundary on a smooth, convex, locally uniformly convex barrier remain convex and
shrink to a point on the barrier curve.

The analysis of ancient solutions to free-boundary curve-shortening flow remains in its infancy. Indeed,
to our knowledge, the only examples previously known seem to be those inherited from closed or complete
examples (one may restrict the shrinking circle, for example, to the upper halfplane). We provide here a
classification of convex1 ancient free-boundary curve-shortening flows in the disc.

Theorem 1.1. Modulo rotation about the origin and translation in time, there exists exactly one convex,
locally uniformly convex ancient solution to free-boundary curve-shortening flow in the unit disc D ⊂ R2.
It converges to the point (0, 1) as t → 0 and smoothly to the segment [−1, 1] × {0} as t → −∞. It is
invariant under reflection across the y-axis. As a graph over the x-axis, it satisfies

eλ2t y(x, t) → A cosh(λx) uniformly in x as t → −∞

for some A > 0, where λ is the solution to λ tanh λ = 1.

Theorem 1.1 is a consequence of Propositions 2.8, 3.4, and 3.5 proved below. Note that it is actually a
classification of all convex ancient solutions, since the strong maximum principle and the Hopf boundary
point lemma imply that any convex solution to the flow is either a stationary segment (and hence a bisector
of the disc by the free-boundary condition) or is locally uniformly convex at interior times.

A higher-dimensional counterpart of Theorem 1.1 will be treated in a forthcoming paper.
Another natural setting in which to seek ancient solutions is within the class of soliton solutions. Since

free-boundary curve-shortening flow in the disc is invariant under ambient rotations, one might expect to
find rotating solutions. In Section 4, we provide a short proof that none exist.

Theorem 1.2. There exist no proper rotating solutions to free-boundary curve-shortening flow in the disc.

2. Existence

Our first goal is the explicit construction of a nontrivial ancient free-boundary curve-shortening flow in
the disc. It will be clear from the construction that the solution is reflection-symmetric about the vertical
axis, emerges at time negative infinity from the horizontal bisector, and converges at time zero to the
point (0, 1). We shall also prove an estimate for the height of the constructed solution (which will be
needed to prove its uniqueness).

2A. Barriers. Given θ ∈
(
0, π

2

)
, denote by Cθ the circle centered on the y-axis which meets ∂ B2

orthogonally at (cos θ, sin θ). That is,

Cθ ≑ {(x, y) ∈ R2
: x2

+ (csc θ − y)2
= cot2 θ}. (1)

If we set
θ−(t) ≑ arcsin et and θ+(t) ≑ arcsin e2t ,

1A free-boundary curve in the open disc B2 is convex if it bounds a convex region in B2 and locally uniformly convex if it is
of class C2 and its curvature is positive.
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then Cθ±(t) is defined for t ∈ (−∞, 0) and flows from the x-axis to the point (0, 1). Moreover, since the
inward normal speed of Cθ−(t) is no greater than its curvature κ− and the inward normal speed of Cθ+(t)

is no less than its curvature κ+, the maximum principle and the Hopf boundary point lemma imply that:

Proposition 2.1. A solution to free-boundary curve-shortening flow in B2 which lies below (resp. above)
the circle Cθ0 at time t0 lies below Cθ+(t+0 +t−t0) (resp. above Cθ−(t−0 +t−t0)) for all t > t0, where 2t+

0 =

log sin θ0 (resp. t−

0 = log sin θ0).

Consider now the shifted scaled Angenent oval {Aλ
t }t∈(−∞,0), where

Aλ
t ≑

{
(x, y) ∈ R ×

(
0,

π

2λ

)
: sin(λy) = eλ2t cosh(λx)

}
.

This evolves by curve-shortening flow, passes through the point (cos θ, sin θ) ∈ ∂ B2 at a time t given by

t = λ−2 log
(

sin(λ sin θ)

cosh(λ cos θ)

)
and at that point, the normal satisfies

νλ(cos θ, sin θ) · (cos θ, sin θ) =
cos θ tanh(λ cos θ) − sin θ cot(λ sin θ)√

tanh2(λ cos θ) + cot2(λ sin θ)
.

Lemma 2.2. For each θ ∈
(
0, π

2

)
, there is a unique λ(θ) ∈ (0, π/(2 sin θ)) such that

νλ(θ)(cos θ, sin θ) · (cos θ, sin θ) = 0.

Given θ, θ0 ∈
(
0, π

2

)
with θ > θ0,

νλ(θ0)(cos θ, sin θ) · (cos θ, sin θ) < 0.

Proof. Define
f (λ, θ) ≑ cos θ tanh(λ cos θ) − sin θ cot(λ sin θ)).

Observe that
lim
λ↘0

f (λ, θ) = −∞, lim
λ↗π/(2 sin θ)

f (λ, θ) = cos θ tanh
(

π
2 cot θ

)
> 0

and
∂ f
∂λ

= cos2 θ(1 − tanh2(λ cos θ)) + sin2 θ(1 + cot2(λ sin θ)) > 0. (2)

The first claim follows.
Next observe that

∂ f
∂θ

= − sin θ tanh(λ cos θ)−λ cos θ sin θ sech2(λ cos θ)− cos θ cot(λ sin θ)+λ sin θ cos θ csc2(λ sin θ).

Given θ ∈
(
0, π

2

)
, we obtain, at the unique zero λ ∈ (0, π/(2 sin θ)) of f ( · , θ),

∂ f
∂θ

= − sin θ tan θ cot(λ sin θ) − λ cos θ sin θ(1 − tan2 θ cot2(λ sin θ))

− cos θ cot(λ sin θ) + λ sin θ cos θ csc2(λ sin θ)

= − sec θ cot(λ sin θ)(1 − λ sin θ cot(λ sin θ)).

Since Y cot Y < 1 for Y ∈
(
0, π

2

)
, this is less than zero. The second claim follows. □
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The maximum principle and the Hopf boundary point lemma now imply the following.

Proposition 2.3. Let {0t }t∈[α,ω) be a solution to free-boundary curve-shortening flow in B2. Suppose that
λ ≤ λ(θα), where θα denotes the smaller, in absolute value, of the two turning angles to 0α at its boundary.
If 0α lies above Aλ

s , then 0t lies above Aλ
s+t−α for all t ∈ (α, ω)∩ (−∞, α − s).

Proof. By the strong maximum principle, the two families of curves can never develop contact at an
interior point. Since the families are monotonic, they cannot develop boundary contact at a boundary
point (cos θ, sin θ) with |θ | ≤ θα. On the other hand, since λ ≤ λ(θα), (2) implies that

f (λ, θα) ≤ f (λα, θα) = 0,

and hence, by the argument of Lemma 2.2,

f (λ, θ) ≤ 0 for θ ≥ θα.

So the Hopf boundary point lemma implies that no boundary contact can develop for θ ≥ θα either. □

Remark 2.4. Since s cot s → 1 as s → 0, we have that f (λ, θ) is nonnegative at θ = 0 so long as λ ≥ λ0,
where λ0 tanh λ0 = 1.

2B. Old-but-not-ancient solutions. For each ρ >0, choose a curve 0ρ in B2 with the following properties:

• 0ρ meets ∂ B2 orthogonally at (cos ρ, sin ρ).

• 0ρ is reflection-symmetric about the y-axis.

• 0ρ
∩ B2 is the relative boundary of a convex region �ρ

⊂ B2.

• κ
ρ
s > 0 in B2

∩ {x > 0}.

For example, we could take 0ρ ≑ Aλρ

tρ ∩ B2, where λρ > λ0 and tρ are (uniquely) chosen so that

cos ρ tanh(λρ cos ρ) − sin ρ cot(λρ sin ρ)) = 0

and

−tρ = λ−2
ρ log

(
cosh(λρ cos ρ)

sin(λρ sin ρ)

)
.

Observe that the circle Cθρ
defined by

sin θρ =
2 sin ρ

1 + sin2 ρ

is tangent to the line y = sin ρ, and hence lies above 0ρ.
Work of Stahl [1996b; 1996a] now yields the following old-but-not-ancient solutions.

Lemma 2.5. For each ρ ∈
(
0, π

2

)
, there exists a smooth solution2

{0
ρ
t }t∈[αρ ,0) to curve-shortening flow

with 0
ρ
αρ

= 0ρ which satisfies the following properties:

• 0
ρ
t meets ∂ B2 orthogonally for each t ∈ (αρ, 0).

2Given by a one parameter family of immersions X : [−1, 1] × [αρ , 0) → B2 satisfying X ∈ C∞([−1, 1] × (αρ , 0)) ∩

C2+β,1+β/2([−1, 1] × [αρ , 0)) for some β ∈ (0, 1).
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• 0
ρ
t is convex and locally uniformly convex for each t ∈ (αρ, 0).

• 0
ρ
t is reflection-symmetric about the y-axis for each t ∈ (αρ, 0).

• 0
ρ
t → (0, 1) uniformly as t → 0.

• κ
ρ
s > 0 in B2

∩ {x > 0}.

• αρ < 1
2 log(2 sin ρ/(1 + sin2 ρ)) → −∞ as ρ → 0.

Proof. Existence of a maximal solution to curve-shortening flow out of 0ρ which meets ∂ B2 orthogonally
was proved by Stahl [Stahl 1996b, Theorem 2.1]. Stahl [1996a, Proposition 1.4] also proved that this
solution remains convex and locally uniformly convex and shrinks to a point on the boundary of B2 at
the final time (which is finite). We obtain {0

ρ
t }t∈[αρ ,0) by time-translating Stahl’s solution.

By uniqueness of solutions 0
ρ
t remains reflection-symmetric about the y-axis for t ∈ (αρ, 0), so the

final point is (0, 1).
The reflection symmetry also implies that κ

ρ
s = 0 at the point pt ≑ 0

ρ
t ∩ {x = 0} for all t ∈ [αρ, 0). By

[Stahl 1996a, Proposition 2.1], κ
ρ
s = κρ > 0 at the boundary point qt ≑ ∂0

ρ
t ∩ {x > 0} for all t ∈ (αρ, 0).

Applying Sturm’s theorem [Angenent 1988] to κ
ρ
s , we thus find that κ

ρ
s > 0 on 0

ρ
t ∩ B2

∩ {x > 0} for all
t ∈ (αρ, 0).

Since Cθρ
⊂ �ρ, the final property follows from Proposition 2.1. □

We now fix ρ > 0 and drop the super/subscript ρ. Set

κ(t) ≑ min
0t

κ = κ(pt) and κ̄(t) ≑ max
0t

κ = κ(qt),

and define y(t), ȳ(t) and θ̄ (t) by

pt = (0, y(t)), qt = (cos θ̄ (t), sin θ̄ (t)), and ȳ(t) = sin θ̄ (t).

Lemma 2.6. Each old-but-not-ancient solution satisfies

κ ≤ tan θ̄ ≤ κ̄, (3)

sin θ̄ ≤ et , (4)
sin θ̄

1 + cos θ̄
≤ y ≤ sin θ̄ . (5)

Proof. To prove the lower bound for κ̄ , it suffices to show that the circle Cθ̄ (t) (see (1)) lies locally below 0t

near qt . If this is not the case, then, locally around qt , 0t lies below Cθ̄ (t) and hence κ(qt) ≤ tan θ̄ (t). But
then we can translate Cθ̄ (t) downwards until it touches 0t from below in an interior point at which the
curvature must satisfy κ ≥ tan θ̄ (t). This contradicts the unique maximization of the curvature at qt .

The estimate (4) now follows by integrating the inequality

d
dt

sin θ̄ = cos θ̄ κ̄ ≥ sin θ̄

between any initial time t and the final time 0 (at which θ̄ =
π
2 since the solution contracts to the

point (0, 1)).
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The upper bound for y follows from convexity and the boundary condition ȳ = sin θ̄ . To prove the
lower bound, we will show that the circle Cθ̄ (t) lies nowhere above 0t . Suppose that this is not the case.
Then, since Cθ̄ (t) lies locally below 0t near qt , we can move Cθ̄ (t) downwards until it is tangent from
below to a point p′

t on 0t ∩ {x ≥ 0}, at which we must have κ ≥ tan θ̄ (t). But then, since κs ≥ 0 in
{x > 0}, we find that κ ≥ tan θ̄ (t) for all points between p′

t and qt . But this implies that this whole arc
(including p′

t ) lies above Cθ̄ (t), a contradiction. To prove the upper bound for κ , fix t and consider the
circle C centered on the y-axis through the points pt and qt . Its radius is r(t), where

r ≑
cos2 θ̄ + (sin θ̄ − y)2

2(sin θ̄ − y)
.

We claim that 0t lies locally below C near pt . Suppose that this is not the case. Then, by the symmetry
of 0t and C across the y-axis, 0t lies locally above C near pt . This implies two things: first, that

κ(pt) ≥ r−1,

and second, that, by moving C vertically upwards, we can find a point p′
t (the final point of contact)

which satisfies
κ(p′

t) ≤ r−1.

These two inequalities contradict the (unique) minimization of κ at pt . We conclude that

κ ≤
2(sin θ̄ − y)

cos2 θ̄ + (sin θ̄ − y)2
≤ tan θ̄

due to the lower bound for y. □

Remark 2.7. If we parametrize by turning angle θ ∈ [−θ̄ , θ̄ ], so that

τ = (cos θ, sin θ),

then the estimates (3) are also easily obtained from the monotonicity of κ and the formulas

x(θ) = x0 +

∫ θ

0

cos u
κ(u)

du and y(θ) = y0 +

∫ θ

0

sin u
κ(u)

du. (6)

2C. Taking the limit.

Proposition 2.8. There exists a convex, locally uniformly convex ancient curve-shortening flow in the disc
with free boundary on the circle.

Proof. For each ρ > 0, consider the old-but-not-ancient solution {0
ρ
t }t∈[αρ ,0), 0

ρ
t = ∂�

ρ
t , constructed in

Lemma 2.5. By (4), �
ρ
t contains Cω(t) ∩ B2, where ω(t) ∈

(
0, π

2

)
is uniquely defined by

1 − cos ω(t)
sin ω(t)

= et .

If we represent 0
ρ
t as a graph x 7→ yρ(x, t) over the x-axis, then convexity and the boundary condition

imply that |yρ
x | ≤ tan ω. Since ω(t) is independent of ρ, the (global-in-space, interior-in-time) Ecker–

Huisken-type estimates in [Stahl 1996b] imply uniform-in-ρ bounds for the curvature and its derivatives.
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So the limit
{0

ρ
t }t∈[αρ ,0) → {0t }t∈(−∞,0)

exists in C∞ (globally in space on compact subsets of time) and the limit {0t }t∈(−∞,0) satisfies curve-
shortening flow with free boundary in B2. On the other hand, since {0

ρ
t }t∈(αρ ,0) contracts to (0, 1) as t → 0,

(the contrapositive of) Proposition 2.1 implies that 0
ρ
t must intersect the closed region enclosed by Cθ+(t)

for all t < 0. It follows that 0t must intersect the closed region enclosed by Cθ+(t) for all t < 0. Since
each 0t is the limit of convex boundaries, each is convex. It follows that 0t converges to (0, 1) as t → 0
and, by [Stahl 1996b, Corollary 4.5], that 0t is locally uniformly convex for each t . □

2D. Asymptotics for the height. For the purposes of this section, we fix an ancient solution {0t }(−∞,0)

obtained as in Proposition 2.8 by taking a sublimit as λ ↘ λ0 of the specific old-but-not ancient solutions
{0λ

t }t∈[αλ,0) corresponding to 0λ
αλ

= Aλ
tλ ∩ B2, tλ being the time at which {Aλ

t }t∈(−∞,0) meets ∂ B2

orthogonally. The asymptotics we obtain for this solution will be used to prove its uniqueness.
We will need to prove that the limit limt→−∞ e−λ2

0t y(t) exists in (0, ∞). The following speed bound
will imply that it exists in [0, ∞).

Lemma 2.9. The ancient solution {0t }(−∞,0) satisfies

κ

cos θ
≥ λ0 tan(λ0 y). (7)

Proof. It suffices to prove that κ/cos θ ≥λ tan(λy) on each of the old-but-not-ancient solutions {0λ
t }t∈[αλ,0).

Note that equality holds on the initial timeslice 0λ
αλ

= Aλ
tλ .

Given any µ < λ, set u ≑ µ tan(µy) and v ≑ xs = cos θ = ⟨ν, e2⟩. Observe that

us = µ2 sec2(µy) sin θ, (∂t − 1)u = −2µ2 sec2(µy) sin2 θu,

vs = −κ sin θ and (∂t − 1)v = κ2v.

At an interior maximum of uv/κ we observe that

∇κ

κ
=

∇u
u

+
∇v

v
and hence

0 ≤ (∂t − 1)
uv

κ
=

uv

κ

(
(∂t − 1)u

u
− 2

〈
∇u
u

,
∇v

v

〉)
= 2µ2 sec2(µy) sin2 θ

(
1 −

uv

κ

)
. (8)

At a (without loss of generality right) boundary maximum of uv/κ , we have ys = y and κs = κ , and
hence (

uv

κ

)
s
=

uv

κ

(
us

u
+

vs

v
−

κs

κ

)
=

uv

κ

(
sec2(µy)µy

tan µy
− κ

y
v

− 1
)

=

(
µy

tan(µy)
− 1

)
uv

κ
+

(
uv

κ
− 1

)
tan(µy)µy

≤

(
uv

κ
− 1

)
tan(µy)µy. (9)
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We may now conclude that max0λ
t

uv/κ remains less than 1. Indeed, if uv/κ ever reaches 1, then there
must be a first time t0 > 0 and a point x0 ∈ 0t at which this occurs (note that uv/κ is continuous on 0t up
to the initial time). The point x0 cannot be an interior point, due to (8), and it cannot be a boundary point,
due to (9) and the Hopf boundary point lemma. We conclude that

κ

cos θ
≥ µ tan(µy)

on {0λ
t }t∈[αλ,0) for all µ < λ. Now take µ → λ. □

If we parametrize 0t as a graph x 7→ y(x, t) over the x-axis, then (7) yields

(sin(λ0 y))t = λ0 cos(λ0 y)κ
√

1 + |yx |
2
= λ0 cos(λ0 y)

κ

cos θ
≥ λ2

0 sin(λ0 y)

and hence
(e−λ2

0t sin(λ0 y(x, t)))t ≥ 0. (10)

In particular, the limit
A(x) ≑ lim

t→−∞
e−λ2

0t y(x, t)

exists in [0, ∞) for each x ∈ (−1, 1), as claimed.
We want next to prove that the above limit is positive. We will achieve this through a suitable upper

bound for the speed. Recall that

(∂t − 1)κs = 4κ2κs and (∂t − 1)⟨γ, ν⟩ = κ2
⟨γ, ν⟩ − 2κ, (11)

where γ denotes the position and s is an arc-length parameter. The good −2κ-term in the second equation
may be exploited to obtain the following crude speed bound.

Lemma 2.10. There exist T > −∞ and C < ∞ such that

κ̄ ≤ Cet for all t < T . (12)

Proof. We will prove the estimate for each old-but-not-ancient solution {0λ
t }t∈(αλ,0). We first prove a

crude gradient estimate of the form
|κs | ≤ 2κ (13)

for t sufficiently negative. It will suffice to prove that

|κs | − κ + ⟨γ, ν⟩ ≤ 0, (14)

where γ denotes the position. Indeed, since ⟨γ, ν⟩s = κ⟨γ, τ ⟩ has the same sign as the x-coordinate, we
may estimate, as in (7),

|⟨γ, ν⟩| ≤ |⟨γ, ν⟩|x=0 ≤ λ−2κ|x=0 = λ−2 min
0t

κ ≤ κ. (15)

For λ sufficiently close to λ0, we have κ|t=αλ
< 1

2 . Denote by T λ the first time at which κ reaches 1
2 .

Since κ is continuous up to the initial time αλ, we have T λ > αλ. We claim that (14) holds for t < T λ.
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Indeed, it is satisfied on the initial timeslice 0λ
αλ

= Aλ
tλ since

κ2
s − κ2

= λ2(cos2 θ sin2 θ − sin2 θ − a2
λ) = −λ2(sin4 θ + a2

λ) ≤ 0,

whereas ⟨γ, ν⟩ ≤ 0. We will show that

fε ≑ |κs | − κ + ⟨γ, ν⟩ − εet−αλ

remains negative up to time T λ. Suppose, to the contrary, that fε reaches zero at some time t < T λ at
some point p ∈ 0λ

t . Since |κs | − κ +⟨γ, ν⟩ vanishes at the boundary, p must be an interior point. Since
κs vanishes at the y-axis, and the curve is symmetric, we may assume that x(p) > 0. At such a point,
using the evolution equations (11), we have

0 ≤ (∂t − 1) fε = κ2(4κs − κ + ⟨γ, ν⟩) − 2κ − εet−αλ

= κ2(3[κ − ⟨γ, ν⟩] + 4εet−αλ) − 2κ − εet−αλ .

Recalling (15) and estimating κ ≤
1
2 yields

0 ≤ 6κ3
− 2κ + (4κ2

− 1)εet−αλ < 0,

which is absurd. So fε does indeed remain negative, and taking ε → 0 yields (13) for t < T λ.
Since Length(0λ

t ∩ {x ≥ 0}) ≤ 1, integrating (13) yields

κ̄ ≤ e2κ for t < T λ.

Recalling (3) and (4), this implies that

κ̄ ≤ e2 et
√

1 − e2t
for t < T λ.

Taking t = T λ we find that T λ
≥ T, where T is independent of λ, so we conclude that

κ̄ ≤ Cet for t < T,

where C and T do not depend on λ. □

We now bootstrap (12) to obtain the desired speed bound.

Lemma 2.11. There exist C < ∞ and T > −∞ such that
κ

y
≤ λ2

0 + Ce2t for t < T .

Proof. Consider the old-but-not-ancient solutions {0λ
t }t∈(−∞,0). By (12), we can find C <∞ and T >−∞

such that

(∂t − 1)
κ

y
= κ2 κ

y
+ 2

〈
∇

κ

y
,
∇ y
y

〉
≤ Ce2t κ

y
+ 2

〈
∇

κ

y
,
∇ y
y

〉
for t < T .

Since, at a boundary point, (
κ

y

)
s
=

κs

y
−

κ

y
ys

y
= 0,
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the Hopf boundary point lemma and the ODE comparison principle yield

max
0λ

t

κ

y
≤ C max

0λ
αλ

κ

y
for t ∈ (αλ, T ).

But now

(∂t − 1)
κ

y
≤ Ce2t max

0λ
αλ

κ

y
+ 2

〈
∇

κ

y
,
∇ y
y

〉
for t < T,

and hence, by ODE comparison,

max
0λ

t

κ

y
≤ max

0λ
αλ

κ

y
(1 + Ce2t) for t ∈ (αλ, T ).

Since, on the initial timeslice 0λ
αλ

= Aλ
tλ ,

κ

y
=

λ tan(λy)

y
cos θ,

the claim follows upon taking λ → λ0. □

It follows that
(log y(t) − λ2

0t)t ≤ Ce2t for t < T,

and hence, integrating from time t up to time T,

log y(t) − λ2
0t ≥ log y(T ) − λ2

0T − C for t < T .

So we indeed find that:

Lemma 2.12. The limit
A ≑ lim

t→−∞
e−λ2

0t y(t) (16)

exists in (0, ∞) on the particular ancient solution {0t }(−∞,0).

3. Uniqueness

Now let {0t }t∈(−∞,0), 0t = ∂rel�t , be any convex, locally uniformly convex ancient free-boundary curve-
shortening flow in the disc. By Stahl’s theorem [1996a], we may assume that 0t contracts to a point on
the boundary as t → 0.

3A. Backwards convergence. We first show that 0t converges to a bisector as t → −∞.

Lemma 3.1. Up to a rotation of the plane,

0t C∞−−→ [−1, 1] × {0} as t → −∞.

Proof. Set A(t) ≑ area(�t). Integrating the variational formula for area yields

A(t) =

∫ 0

t

∫
0t

dθ,
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where θ is the turning angle. Since convexity ensures that the total turning angle
∫
0t

dθ is increasing and
A(t) ≤ π for all t , we find that ∫

0t

dθ → 0 as t → −∞.

Monotonicity of the flow, the free-boundary condition and convexity now imply that the enclosed
regions �t satisfy

�t → B2
∩ {y ≥ 0} as t → −∞

in the Hausdorff topology.
If we now represent 0t graphically over the x-axis, then convexity and the boundary condition ensure

that the height and gradient are bounded by the height at the boundary. Stahl’s estimates [1996b] now
give bounds for κ and its derivatives up to the boundary depending only on the height at the boundary. We
then get smooth subsequential convergence along any sequence of times t j → −∞. The claim follows
since any sublimit is the horizontal segment. □

We henceforth assume, without loss of generality, that the backwards limit is the horizontal bisector.

3B. Reflection symmetry. We can now prove that the solution is reflection-symmetric using Alexandrov
reflection across lines through the origin; see [Chow and Gulliver 2001].

Lemma 3.2. 0t is reflection-symmetric about the y-axis for all t .

Proof. Given any ω ∈
(
0, π

2

)
, we define the halfspace

Hω = {(x, y) : (x, y) · (− sin ω, cos ω) > 0}

and denote by Rω the reflection about ∂ Hω. We first claim that, for every ω, there exists t = tω such that

(Rω · 0t) ∩ (0t ∩ Hω) = ∅ for all t < tω. (17)

Assume that the claim is not true. Then there exists ω ∈
(
0, π

2

)
, a sequence of times ti → −∞, and a

sequence of pairs of points pi , qi ∈0ti such that Rω(pi )= qi . This implies that the line passing through pi

and qi is parallel to the vector (sin ω, − cos ω), so the mean value theorem yields for each i a point ri

on 0ti where the normal is parallel to (cos ω, sin ω). This contradicts Lemma 3.1.
The strong maximum principle now implies that (17) holds for all t < 0 (note that Rω ·0t also intersects

∂ B2 orthogonally). In fact, (Rω · 0t) ∩ Hω lies above 0t ∩ Hω for all t < 0 and all ω ∈
(
0, π

2

)
and by

continuity the same holds for ω =
π
2 . Repeating the argument on the “other side” with the halfspaces

Hω = {(x, y) : (x, y) · (sin ω, − cos ω) > 0}, ω ∈
(

π
2 , π

)
,

implies the reflection symmetry. □

3C. Asymptotics for the height. We begin with a lemma.

Lemma 3.3. For all t < 0,
κs > 0 in {x > 0} ∩0t
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and hence
sin θ̄

1 + cos θ̄
≤ y. (18)

Proof. Choose T > −∞ so that κ < 2
7 for t < T and, given ε > 0, set

vε ≑ κs + ε(1 − ⟨γ, ν⟩).

We claim that vε ≥ 0 in {x ≥ 0}∩(−∞, T ). Suppose that this is not the case. Since at the spatial boundary
vε > ε, and vε → ε as t → −∞, there must exist a first time in (−∞, T ) and an interior point at which
vε = 0. But, at such a point,

0 ≥ (∂t − 1)vε = κ2(κs − ε⟨γ, ν⟩) + 3κ2κs + 2εκ

= −εκ2
− 3εκ2(1 − ⟨γ, ν⟩) + 2εκ

≥ ε(2 − 7κ)κ > 0,

which is absurd. Now take ε → 0 to obtain κs ≥ 0 in {x ≥ 0} ∩ 0t for t ∈ (−∞, T ]. Since κs = 0 at the
y-axis and κs = κ > 0 at the right boundary point, the strong maximum principle and the Hopf boundary
point lemma imply that κs > 0 in {x > 0}∩0t for t ∈ (−∞, T ]. But then Sturm’s theorem implies that κs

does not develop additional zeroes up to time 0.
Having established the first claim, the second follows as in Lemma 2.6. □

Proposition 3.4. If we define A ∈ (0, ∞) as in (16), then

eλ2
0t y(x, t) → A cosh(λ0x) uniformly as t → −∞.

Proof. Given τ < 0, consider the rescaled height function

yτ (x, t) ≑ e−λ2
0τ y(x, t + τ),

which is defined on the time-translated flow {0τ
t }t∈(−∞,−τ), where 0τ

t ≑ 0t+τ . Note that{
(∂t − 1τ )yτ

= 0 in {0τ
t }t∈(−∞,−τ),

⟨∇
τ yτ , N ⟩ = y on {∂0τ

t }t∈(−∞,−τ),
(19)

where ∇
τ and 1τ are the gradient and Laplacian on {0τ

t }t∈(−∞,−τ), respectively, and N is the outward
unit normal to ∂ B2.

Since {0t }t∈(−∞,0) reaches the origin at time zero, it must intersect the constructed solution for all
t < 0. In particular, the value of y on the former can at no time exceed the value of ȳ on the latter. But
then (16) and (18) yield

lim sup
t→−∞

e−λ2
0t ȳ < ∞. (20)

This implies a uniform bound for yτ on {0τ
t }t∈(−∞,T ] for any T ∈ R. So Alaoglu’s theorem yields

a sequence of times τ j → −∞ such that yτ j converges in the weak∗ topology as j → ∞ to some
y∞

∈ L2
loc([−1, 1]× (−∞, ∞)). Since convexity and the boundary condition imply a uniform bound for

∇
τ yτ on any time interval of the form (−∞, T ], we may also arrange that the convergence is uniform in

space at time zero, say.
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Weak∗ convergence ensures that y∞ satisfies the problem{
yt = yxx in [−1, 1] × (−∞, ∞),

yx(±1) = ±y(±1).
(21)

Indeed, a smooth function yτ satisfies the boundary value problem (19) (and analogously for (21)) if and
only if ∫

−τ

−∞

∫
0τ

t

yτ (∂t − 1τ )∗η = 0

for all smooth η which are compactly supported in time and satisfy

∇
τη · N = η on ∂0τ

t ,

where (∂t−1τ )∗≑−(∂t+1τ ) is the formal L2-adjoint of the heat operator. Since {0τ
t }t∈(−∞,−τ) converges

uniformly in the smooth topology to the stationary interval {[−1, 1] × {0}}t∈(−∞,∞) as τ → −∞, we
conclude that the limit y∞ must satisfy (21) in the L2 sense (and hence in the classical sense due to
the L2 theory for the heat equation). Indeed, by the definition of smooth convergence, we may (after
possibly applying a diffeomorphism) parametrize each flow {0

τ j
t }t∈(−∞,−τ j ) over I ≑ [−1, 1] by a family

of embeddings γ
j

t : I × (−∞, −τ j ) → B2 which converge in C∞

loc(I × (−∞, ∞)) as j → ∞ to the
stationary embedding (x, t) 7→ xe1. Given η ∈ C∞

0 (I ×(−∞, ∞)) satisfying ηζ (±1) = ±η, set η j ≑ ϕ jη,
where ϕ j

: [−1, 1] × (−∞, −τ j ) → R is defined by

ϕ
j
ζ + (1 − |γ

j
ζ |)ϕ j

= 0, ϕ j (0, t) = 1.

That is, ϕ j (ζ, t) = es j (ζ,t)−ζ , where s j (ζ, t) ≑
∫ ζ

0 |γ
j

ζ (ξ, t)| dξ . This ensures that ∇
τ j

η j
· N = η j at the

boundary, and hence

0 =

∫
∞

−∞

∫
I

yτ j (∂t − 1τ j )∗η j ds j dt.

Since ϕ j
→ 1 in C∞

loc(I × (−∞, ∞)), a short computation reveals that

0 =

∫
∞

−∞

∫
I

y∞(∂t − 1)∗η dζ dt.

Finally, we characterize the limit (uniqueness of which implies full convergence, completing the proof).
Separation of variables leads us to consider the problem{

−φxx = µφ in [−1, 1],

φx(±1) = ±φ(±1).

There is only one negative eigenspace, and its frequency turns out to be λ0, with the corresponding mode
given by

φ−1(x) ≑ cosh(λ0x).

Thus, recalling (20), we are able to conclude that

y∞(x, t) = Aeλ2
0t cosh(λ0x)
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for some A ≥ 0. In particular,

e−λ2
0τ j y(x, τ j ) = yτ j (x, 0) → A cosh(λ0x) uniformly as j → ∞.

Now, if A is not equal to the corresponding value on the constructed solution (note that the full limit
exists for the latter), then one of the two solutions must lie above the other at time τ j for j sufficiently
large. But this violates the avoidance principle. □

3D. Uniqueness. Uniqueness of the constructed ancient solution now follows directly from the avoidance
principle.

Proposition 3.5. Modulo time translation and rotation about the origin, there is only one convex, locally
uniformly convex ancient solution to free-boundary curve-shortening flow in the disc.

Proof. Denote by {0t }t∈(−∞,0) the constructed ancient solution and let {0′
t }t∈(−∞,0) be a second ancient

solution which, without loss of generality, contracts to the point (0, 1) at time 0. Given any τ > 0, consider
the time-translated solution {0τ

t }t∈(−∞,−τ) defined by 0τ
t = 0′

t+τ . By Proposition 3.4,

e−λ2
0t yτ (x, t) → Aeλ2

0τ cosh(λ0x) as t → −∞

uniformly in x . So 0τ
t lies above 0t for −t sufficiently large. The avoidance principle then ensures that 0τ

t

lies above 0t for all t ∈ (−∞, 0). Taking τ → 0, we find that 0′
t lies above 0t for all t < 0. Since the

two curves reach the point (0, 1) at time zero, they intersect for all t < 0 by the avoidance principle. The
strong maximum principle then implies that the two solutions coincide for all t . □

4. Supplement: nonexistence of rotators

Free-boundary curve-shortening flow in B2 is invariant under rotations about the origin, so it is natural to
seek solutions which move by rotation, that is, solutions γ : (−L/2, L/2)× (−∞, ∞) → B2 satisfying

γ ( · , t) = ei Btγ ( · , 0)

for some B > 0. Differentiating yields the rotator equation

κ = −B⟨γ, τ ⟩. (22)

It turns out, however, that there are no solutions to (22) in B2 satisfying the free-boundary condition.

Proof of Theorem 1.2. Following [Halldorsson 2012], we rewrite the rotator equation as the pair of
ordinary differential equations

x ′
= B + xy and y′

= −x2, (23)

where
x ≑ B⟨γ, τ ⟩ and y ≑ B⟨γ, ν⟩.

Arc-length parametrized solutions γ to the rotator equation (22) can be recovered from solutions to the
system (23) via

γ ≑ B−1(x + iy)eiθ , θ(s) ≑ −

∫ s

0
x(σ ) dσ,
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and this parametrization is unique up to an ambient rotation and a unit linear reparametrization, i.e.,
(θ, s) 7→ (±θ + θ0, ±s + s0).

Note that
|γ | = B−1

√
x2

+ y2.

So we seek solutions (x, y) : (−L/2, L/2) → B2 to (23) satisfying the free-boundary condition(
x
(
±

L
2

)
, y

(
±

L
2

))
= (±B, 0).

Let γ be such a solution. Since (23) can be uniquely solved with initial condition (x(s0), y(s0)) = (B, 0)

(which corresponds to γ (s0) ∈ ∂ B2 with ⟨γ, τ ⟩|s0 = 1), we find that γ must be invariant under rotation
by π about the origin. In particular, the points γ (−L/2) and γ (L/2) are diametrically opposite. It follows
that γ (0) is the origin. Indeed, for topological reasons, γ must cross the line orthogonally bisecting
the segment joining its endpoints an odd number of times (with multiplicity). But since the rotational
invariance pairs each crossing above the origin with one below, we are forced to include the origin in the
set of crossings. We conclude that

0 = y
( L

2

)
=

∫ L/2

0
y′

= −

∫ L/2

0
x2 ds,

which is impossible since x(L/2) = B > 0. □
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