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ON A SPATIALLY INHOMOGENEOUS NONLINEAR FOKKER–PLANCK
EQUATION: CAUCHY PROBLEM AND DIFFUSION ASYMPTOTICS

FRANCESCA ANCESCHI AND YUZHE ZHU

We investigate the Cauchy problem and the diffusion asymptotics for a spatially inhomogeneous kinetic
model associated to a nonlinear Fokker–Planck operator. We derive the global well-posedness result with
instantaneous smoothness effect, when the initial data lies below a Maxwellian. The proof relies on the
hypoelliptic analog of classical parabolic theory, as well as a positivity-spreading result based on the
Harnack inequality and barrier function methods. Moreover, the scaled equation leads to the fast diffusion
flow under the low field limit. The relative phi-entropy method enables us to see the connection between
the overdamped dynamics of the nonlinearly coupled kinetic model and the correlated fast diffusion. The
global-in-time quantitative diffusion asymptotics is then derived by combining entropic hypocoercivity,
relative phi-entropy, and barrier function methods.
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1. Introduction

We consider the kinetic Fokker–Planck operator LFP := ∇v · (∇v + v) and the spatially inhomogeneous
nonlinear drift-diffusion model{

(∂t + v · ∇x) f (t, x, v) = ρ
β

f (t, x) LFP f (t, x, v),

f (0, x, v) = fin(x, v),
(1-1)

for an unknown f (t, x, v) ≥ 0 with t ∈ R+, x ∈ Td or Rd, v ∈ Rd, where Td denotes the d-dimensional
torus with unit volume, the constant β ∈ [0, 1], and

ρ f (t, x) :=

∫
Rd

f (t, x, v) dv.
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Given a constant ϵ ∈ (0, 1), the equation under the low field scaling t 7→ ϵ2t , x 7→ ϵx reads{
(ϵ∂t + v · ∇x) fϵ(t, x, v) =

1
ϵ
ρ

β

fϵ (t, x) LFP fϵ(t, x, v),

fϵ(0, x, v) = fϵ,in(x, v).
(1-2)

Our aim is to show the global well-posedness and the trend to equilibrium with smoothness a priori
estimates for (1-1), and the quantitative asymptotic dynamics of (1-2) as ϵ tends to zero.

1A. Main results. Let us recall that a classical solution of an evolution equation is a nonnegative function
satisfying the equation pointwise everywhere and matching the initial data continuously. Unless otherwise
specified, any solution we consider below is intended in the classical sense. For k ∈ N, define Ck(�) to
be the set of functions having all derivatives of order less than or equal to k continuous in the domain �.
For α ∈ (0, 1), we note that Cα(�) is the classical Hölder space on � with exponent α. In addition, we
define the measure dm := dx dµ, where

µ(v) := (2π)−d/2e−|v|
2/2 and dµ := µ dv

denote the Gaussian function and the Gaussian measure, respectively. A function that takes the form
of Cµ(v) for some constant C > 0 is called a Maxwellian.

Theorem 1.1. Let the space domain �x be equal to Td or Rd and the constants 0 < λ < 3 be given.

(i) If fin ∈ C0(�x × Rd) satisfies 0 ≤ fin ≤ 3µ in �x × Rd, then there exists a solution f to the Cauchy
problem (1-1) such that 0 ≤ f ≤ 3µ in R+ × �x × Rd. Moreover, for any ν ∈ (0, 1), k ∈ N, and any
compact subset K ⊂ (0, T ]× �x , there is some constant CT,ν,k,K > 0 depending only on d , β, λ, 3, T ,
ν, k, K , and the initial data such that

∥µ−ν f ∥Ck(K×Rd ) ≤ CT,ν,k,K .

Additionally, if fin is Hölder continuous and ρ fin ≥ λ in �x , then the solution that lies below any
Maxwellian is unique.

(ii) For �x = Td, if the initial data satisfies λµ ≤ fin ≤ 3µ in Td
× Rd, then, for any k ∈ N, there exists

some constant c > 0 depending only on d , β, λ, 3 and some constant Ck > 0 depending additionally
on k such that, for any t ≥ 1, ∥∥∥∥ f − µ

∫
fin dx dv

√
µ

∥∥∥∥
Ck(Td×Rd )

≤ Cke−ct.

For �x = Rd, if the initial data satisfies λµ ≤ fin ≤ 3µ in Rd
× Rd and fin − M1µ ∈ L1(Rd

× Rd) for
some constant M1 > 0, then there is some constant C ′ > 0 depending only on d, β, λ, 3, M1 such that∥∥∥∥ f − M1µ

√
µ

∥∥∥∥
L2(Rd×Rd )

≤ C ′(1 + ∥ fin − M1µ∥L1(Rd×Rd ))t
−d/4.

Remark 1.2. If the general measurable initial data fin satisfies fin ≤ 3µ and an extra locally uniform
lower bound assumption (see (4-14) below for a precise description), the existence of solutions still holds
in some weak sense, as pointed out in Remark 4.9 below.
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In order to describe the diffusion asymptotics of (1-2), we introduce the (Bregman) distance character-
ized by the relative phi-entropy functional Hβ .

Definition 1.3. Let β ∈ [0, 1]. For any measurable functions h1 ≥ 0 and h2 > 0 defined in Td
× Rd, the

relative phi-entropy of h1 with respect to h2 is defined by

Hβ(h1 |h2) :=

∫
Td×Rd

(ϕβ(h1) − ϕβ(h2) − ϕ′

β(h2)(h1 − h2)) dm,

where ϕβ : R+ → R is defined by

ϕβ(z) :=
1

1 − β
(z2−β

− (2 − β)z + 1 − β)

for β ∈ [0, 1) and ϕ1(z) := z log z − z + 1.

Theorem 1.4. Let the constants α0 ∈ (0, 1) and 0 < λ < 3 be given, and consider a sequence of functions
{ fϵ,in}ϵ∈(0,1) ⊂ Cα0(Td

× Rd) satisfying 0 ≤ fϵ,in ≤ 3µ in Td
× Rd and ρ fϵ,in ≥ λ in Td. Let fϵ be the

solution to (1-2) associated with the initial data fϵ,in.

(i) If there exists some constant ϵ′
∈ (0, 1) and some function ρin ∈ Cα0(Td) valued in [λ, 3] such that

Hβ(µ−1 fϵ,in |ρin) ≤ ϵ′,

then there exist constants M, m > 0 depending only on d , β, λ, 3, α0, ∥ρin∥Cα0 (Td ), and ∥ fϵ,in∥Cα0 (Td×Rd )

such that, for any T > 0,

∥µ−1 fϵ − ρ∥L∞([0,T ];L2(Td×Rd , dm)) ≤ MeMT (ϵ + ϵ′)m,

where ρ(t, x) for (t, x) ∈ R+ × Td is the solution to the fast diffusion equation{
∂tρ(t, x) = ∇x · (ρ−β(t, x)∇xρ(t, x)),

ρ(0, x) = ρin(x).
(1-3)

(ii) If we additionally assume that fϵ,in ≥ λµ in Td
× Rd, then there exist some constants M ′, m′ > 0 with

the same dependence as M and m such that

∥µ−1 fϵ − ρ∥L∞(R+;L2(Td×Rd , dm)) ≤ M ′(ϵ + ϵ′)m′

.

1B. Strategy and background.

1B1. Cauchy problem of the nonlinear model. The well-posedness of the nonlinear model (1-1) was
first studied in [Imbert and Mouhot 2021] mixing Hölder and Sobolev spaces in the torus, and in [Liao
et al. 2018] under the regime of perturbation to the global equilibrium in the whole space. We develop
well-posedness with rough initial data by means of the combination of the hypoelliptic analog of the
parabolic theory with a positivity-spreading result; in particular, the technique we employ allows us to
drop the smallness and lower bound assumptions asserted in Theorem 1.1. In addition, the global behavior
of solutions to (1-1) is derived under the assumption of upper and lower bounds on the initial data only.
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When the drift-diffusion coefficient ρ
β

f in (1-1) is proportional to the local mass of the solution — that
is when β = 1 — (1-1) and (1-2) have the same quadratic homogeneity as the Landau equation, but simpler
global bounds and conservation laws. Due to the complex structure of the Landau equation, most of the
existing results for its classical solutions are about the global theory under the near Maxwellian equilibrium
regime [Guo 2002; Kim et al. 2020] and about the local well-posedness associated with low regularity
and nonperturbative initial data [Henderson et al. 2019; 2020a]. By contrast, the boundedness from above
and from below by Maxwellians of the initial data will be preserved along time for the solutions to (1-1)
and (1-2), and the lack of conservation of momentum and energy of (1-2) reduces its hydrodynamic limit
to the fast diffusion flow (1-3) rather than the Navier–Stokes dynamics of the scaling limit of the Landau
equation, which makes its Cauchy problem and global behavior more tractable in a very general setting.

To address the nonlinear Cauchy problem subject to only one requirement that the initial data lies
below a Maxwellian, we propose a method that involves several ingredients. First, in Section 3 we carry
out a preliminary study on the linear counterpart of (1-1) — that is the Cauchy problem associated to the
Kolmogorov operator

L1 := ∂t + v · ∇x − tr(A(t, x, v)D2
v · ) + B(t, x, v) · ∇v, (1-4)

where the coefficients including the entries of the positive definite d × d real symmetric matrix A and
the d-dimensional vector B are Hölder continuous (B is not necessarily bounded over v ∈ Rd). Even if
the well-posedness theory for the Cauchy problem associated to the linear operator (1-4) was already
well developed in some sense in the existing literature (see [Anceschi and Polidoro 2020; Manfredini
1997]), the Hölder spaces (see Definition 2.3) considered in those works are different from those studied
in [Imbert and Mouhot 2021; Imbert and Silvestre 2021] (see Definition 2.1), which are the ones we
study. Indeed, in contrast to [Imbert and Mouhot 2021], the (Schauder-type) a priori estimates proved in
the previous literature are weaker and not appropriate for bootstrap arguments proving higher regularity
for nonlinear problems (see Section 4C).

Secondly, the treatment of the existence issue for (1-1) in Hölder spaces is based on a fixed-point
argument, where the compactness is provided by hypoelliptic regularization results; see Section 4B. A
breakthrough on such a priori estimates for spatially inhomogeneous kinetic equations with a quasilinear
diffusive structure in velocity was obtained in [Golse et al. 2019] and [Henderson and Snelson 2020;
Imbert and Mouhot 2021], where the authors prove the kinetic (hypoelliptic) counterparts of the De Giorgi–
Nash–Moser theory and the Schauder theory for classical elliptic equations (see for instance [Gilbarg and
Trudinger 2001]), respectively. One may refer to [Mouhot 2018] for a summary. Armed with the Schauder
estimate developed in [Imbert and Mouhot 2021] in kinetic Hölder spaces and the bootstrap procedure
developed in [Imbert and Silvestre 2022] adapted to this case, we are then able to derive instantaneous
C∞ regularization for the solutions to (1-1) in Section 4C, provided that the solution is bounded from
above and bounded away from vacuum, which guarantees the ellipticity in the velocity variable for (1-1).

Thirdly, in order to remove the lower bound assumption on the initial data, in Section 4A we
establish a self-generating lower bound result showing that the positivity of solutions spreads ev-
erywhere instantaneously. Its proof is based on repeated applications of the spreading of positivity
forward in time (see Lemma 4.5) and the spreading for all velocities (see Lemma 4.6), as proposed in
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[Henderson et al. 2020b]. On the one hand, the barrier function argument will be used in the same spirit
as [Henderson et al. 2020b] to show Lemma 4.5. Indeed, a lower (resp. upper) barrier for a certain
equation is a subsolution (resp. supersolution) of the equation which bounds its solution from below (resp.
above) on the boundary; it then follows from the maximum principle that the barrier function performs as
a lower (resp. upper) bound of the solution. On the other hand, combining the local Harnack inequality
obtained in [Golse et al. 2019] with the construction of a Harnack chain yields Lemma 4.6. We remark
that the idea of the Harnack chain was first used in [Moser 1964], and an example of its application to
Kolmogorov equations can be found in [Anceschi et al. 2019]. Essentially, the spreading of positivity
can be seen as a lower bound estimate of the fundamental solution, which is thus related to the result in
[Henderson et al. 2019], where the authors applied a probabilistic method.

A subtle point of the lower bound result lies in the possibilities of the degeneracy of solutions as
t → 0+ or t → ∞, which leads to two delicate issues. First, with the same difficulty as mentioned in
[Henderson et al. 2020a], in order to prove the uniqueness of the Cauchy problem (1-1), the nondegeneracy
of diffusion up to the initial time is required so that the a priori estimates can be still applicable. We
remark that, generally speaking, deriving uniqueness of solutions to nonlinear equations in rough spaces
is always a classical difficulty, and the presence of a vacuum sometimes gives rise to nonuniqueness
phenomenon even for the limiting equation (1-3); see for instance [Daskalopoulos and Kenig 2007].
Under the additional assumptions of Hölder continuity and absence of vacuum on the initial data, we
achieve the uniqueness by using the scaling argument and Grönwall’s lemma, since the Hölder estimate
around the initial time implies that the integrand in the inequality of Grönwall’s type is improved to be
integrable with respect to the time variable; see the proof of Proposition 4.11 for more details. Second,
we are only able to show the convergence to equilibrium if the drift-diffusion coefficient ρ

β

f decays slower
than t−1 as t → ∞ in Proposition 5.1. Therefore, an additional lower Maxwellian bound on the initial
data is imposed in Theorem 1.1(ii) and Theorem 1.4(ii) to ensure the solutions will be away from the
vacuum uniformly along time. It would be expected that such additional lower bound assumption could
be removed, especially when β is small.

1B2. Long time behavior. The drift-diffusion operator LFP acts only on the velocity variable and ceases
to be dissipative on its unique steady state µ, which also ensures that the null space of LFP is spanned
by µ and the conservation law of mass is satisfied. Consequently, the convergence to equilibrium is
to be expected. With the help of the global smoothness a priori estimates, we are able to pass from
the exponential convergence to equilibrium in the L2-framework to the uniform convergence in C∞

in Section 5A, when the spatial domain is compact — that is the periodic box Td. Therein, the L2-
convergence is obtained by the L2-hypocoercivity under a macro-micro (fluid-kinetic) decomposition
scheme, which suggests the construction of some proper entropy (Lyapunov) functional that would
provide an equivalent L2-norm for solutions. The key ingredient is to control the macroscopic part by
means of the microscopic part in view of the decomposition. This hypocoercive theory was studied in
[Esposito et al. 2013; Dolbeault et al. 2015; Hérau 2018] via different approaches, while their ideas are
essentially the same. In [Esposito et al. 2013], the authors intended to develop the nonlinear energy
estimate in an L2-to-L∞ framework. In [Dolbeault et al. 2015] and [Hérau 2018], the authors studied
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the L2-hypocoercivity theory in an abstract setting and in the framework of pseudodifferential calculus,
respectively. In addition, if the spatial domain is Rd — meaning that it is not confined to a compact
region — then the convergence rate slows down to an algebraic decay, for which the hypocoercive theory
was captured in [Bouin et al. 2020]. We remark that the L2-framework allows us to avoid some difficulties
from the nonlinearity of the operator ρ

β

f LFP f , in contrast with H 1-entropic hypocoercivity methods
(see for instance [Villani 2009]).

1B3. Diffusion asymptotics. The diffusion approximation serves as a simplification of collisional kinetic
equations when the mean-free path is much smaller than the typical length of observation in a long time
scale. This approximation for linear Fokker–Planck models can be traced back to [Degond and Mas-Gallic
1987], where the authors applied the Hilbert expansion method. One is also able to achieve the diffusion
limit for (1-2) in some weak sense by applying a similar strategy to the one given in [El Ghani and
Masmoudi 2010]. However, weak convergence is sometimes not appropriate for application, as a precise
description of the convergence is not given. Still, the nonlinearity of the term ρ

β

fϵ LFP fϵ in (1-2) associated
with nonperturbative initial data reveals some difficulties when deriving a quantitative convergence.

In order to overcome this difficulty, in Section 5B we will rely on the phi-entropy of solutions relative
to their limit to see the finite-time asymptotics on the torus. The relative entropy method, which heavily
relies on the regularity of solutions to the target equation, has become an effective tool in the study of
hydrodynamic limits since [Bardos et al. 1993; Yau 1991] (see also [Saint-Raymond 2009]). The method
applied to the diffusion asymptotics of the kinetic Fokker–Planck equation of the type with linear diffusion
can be found in [Markou 2017]. The so-called phi-entropy (relative to the global equilibrium) was used to
study the convergence of certain kinds of Fokker–Planck equations; see for instance [Arnold et al. 2001;
Dolbeault and Li 2018]. Finally, combining the barrier function method with a careful treatment of the
regularity estimate of the target equation enables us to deal with the asymptotic dynamics for the cases
associated with general Hölder continuous initial data.

1C. Physical motivation. The spatially inhomogeneous Fokker–Planck equation (1-1) arises from model-
ing the evolution of some system of a large number of interacting particles from the statistical mechanical
point of view. These models appear for instance in the study of plasma physics and biological dynamics;
see [Chavanis 2008; Villani 2002]. Its solution can be interpreted as the probability density of the particles
lying at the position x at time t with velocity v. The scaled model (1-2) for small ϵ describes the evolution
of the particle density in the small mean-free path and long-time regime, where the nondimensional
parameter ϵ ∈ (0, 1) designates the ratio between the mean-free path (microscopic scale) and the typical
macroscopic length. The limiting equation (1-3) characterizes its macroscopic dynamics.

From the perspective of a stochastic process {(X t , Vt) : t ≥ 0} driven by a Brownian motion {Bt : t ≥ 0}{
dX t = Vt dt,

dVt = ρ
β

f (t, X t)Vt dt +

√
2ρ

β

f (t, X t) dBt ,

the dual equation describing the dynamics of {(X t , Vt) : t ≥ 0} is given by (1-1); see the review paper
[Chandrasekhar 1943]. Indeed, the nonlinear term ρ

β

f LFP f models the collisional interaction of the



ON A SPATIALLY INHOMOGENEOUS NONLINEAR KINETIC FOKKER–PLANCK EQUATION 385

particles, where the mobility of these particles is hampered by their aggregation. More precisely, the
nonlinear dependence on the drift-diffusion coefficient ρ

β

f translates the fact that the effect of friction in
the interaction is positively correlated to the local mass of particles occupying the position x at time t .
Moreover, the low field scaling t 7→ ϵ2t , x 7→ ϵx of (1-1) formally implies (1-2). As ϵ tends to zero, its
spatial diffusion phenomena are characterized by (1-3).

Regarding its physical interpretation, we point out that the factor multiplying the time derivative
in (1-2) takes into account the long time scale. The inverse of the factor multiplying ρ

β

fϵ LFP fϵ stands
for the scaled average distance traveled by particles between each collision, and it is usually referred to
as mean-free path. In the small mean-free path regime, it was noticed in [Chandrasekhar 1943] that the
spatial variation occurs significantly only under the long time scale that is consistent with the particle
motion. In such an overdamped process, also called a low field limit or diffusion limit, the statistics of
the particle motion translates into the macroscopic behavior of the particle system.

Finally, we recall that the associated phi-entropy introduced in Definition 1.3 is also known as Tsallis
entropy in the physics community, which generalizes the Boltzmann–Gibbs entropy (the phi-entropy with
β = 1) in nonextensive statistical mechanics [Tsallis 1988]. It gives some hints for the formulation of
the correlated diffusion, where the index β measures the degree of nonextensivity and nonlocality of the
system; see [Tsallis 2009].

1D. Organization of the paper. The article is organized as follows. In Section 2, we recall some basic
notions related to kinetic Hölder spaces that are adapted to the Fokker–Planck equations. Section 3 is
devoted to the study of the linear Fokker–Planck equation with Hölder continuous coefficients. The
well-posedness result Theorem 1.1(i) is proved in Section 4. The asymptotic behaviors, including
Theorem 1.1(ii) and Theorem 1.4, are proved in Section 5.

2. Preliminaries

This section is devoted to basic notation, including the invariant structure and the kinetic Hölder space for
the equations we are concerned with. Instead of the usual parabolic scaling and translations, the invariant
scaling and transformation associated with the Kolmogorov operator L1 (see (1-4)) is replaced by kinetic
scaling and Galilean transformations, respectively. It then turns out that the appropriate Hölder space as
well as its norm should be adapted to the new scaling and transformation.

2A. The geometry associated to Kolmogorov operators. Let z := (t, x, v) ∈ R × Rd
× Rd. We define the

kinetic scaling
Sr (t, x, v) := (r2t, r3x, rv) for r > 0

and the Galilean transformation

(t0, x0, v0) ◦ (t, x, v) := (t0 + t, x0 + x + tv0, v0 + v) for (t0, x0, v0) ∈ R × Rd
× Rd.

With respect to the product ◦ , we are able to define the inverse of z as z−1
:= (−t, −x + tv, −v). In view

of this structure of scaling and transformation, it is natural to define the cylinder centered at the origin of
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radius r > 0 as
Qr := (−r2, 0] × Br3(0) × Br (0).

More generally, the cylinder centered at z0 = (t0, x0, v0) with radius r is defined by

Qr (z0) := {z0 ◦ Sr (z) : z ∈ Q1} = {(t, x, v) : t0 − r2 < t ≤ t0, |x − x0 − (t − t0)v0| < r3, |v − v0| < r}.

Roughly speaking, for fixed z0 ∈ R1+2d, the Kolmogorov operator L1 is invariant under the kinetic scaling
and left-invariant under the Galilean transformation. It means that if f is a solution to the equation
L1 f = 0 in Qr (z0), then f (z0 ◦ Sr ( · )) solves an equation of the same ellipticity class in Q1.

In addition, the associated quasinorm ∥ · ∥ is defined by

∥z∥ := max{|t |1/2, |x |
1/3, |v|},

and we notice that ∥Sr (z)∥ = r∥z∥ and ∥z0 ◦ z∥ ≤ 3(∥z0∥ + ∥z∥). For further information on the non-
Euclidean geometry associated to Kolmogorov operators, one may refer to [Anceschi and Polidoro 2020;
Imbert and Silvestre 2021].

2B. Kinetic Hölder spaces and differential operators. The proper kinetic Hölder space and kinetic degree
of basic differential operators should be adapted to the above definitions such that they are homogeneous
under these transformations. Their definitions were introduced in [Imbert and Silvestre 2021] (see also
[Imbert and Mouhot 2021]), and we recall them below.

Given a monomial m(t, x, v) = tk0 xk1
1 · · · xkd

d v
kd+1
1 · · · v

k2d
d , we define its kinetic degree

degkin(m) = 2k0 + 3
d∑

j=1

k j +

2d∑
j=d+1

k j .

Any polynomial p ∈ R[t, x, v] can be uniquely written as a linear combination of monomials, and its
kinetic degree degkin(p) is defined by the maximal kinetic degree of the monomials appearing in p. This
definition is justified by the fact that p(Sr (z)) = rdegkin(p) p(z).

Definition 2.1. Let the constant α > 0 and the open subset � ⊂ R × Rd
× Rd be given. We say a

function f : � → R is Cα
l -continuous at a point z0 ∈ � if there exists a polynomial p0 ∈ R[t, x, v] with

degkin(p0) < α and a constant C > 0 such that, for any z ∈ � with z0 ◦ z ∈ �,

| f (z0 ◦ z) − p0(z)| ≤ C∥z∥α. (2-1)

If this property holds for any z0, z on each compact subset of �, then we say f ∈ Cα
l (�). If the constant C

in (2-1) is uniformly bounded for any z0, z ∈ �, we define the smallest value of C as the seminorm
[ f ]Cα

l (�) and the norm ∥ f ∥Cα
l (�) := [ f ]C0

l (�) + [ f ]Cα
l (�), where we additionally define C0

l (�) := C0(�),
the space of continuous functions on �, with the norm ∥ f ∥C0

l (�) := [ f ]C0
l (�) := ∥ f ∥C0(�) = ∥ f ∥L∞(�).

Remark 2.2. For α ∈ [0, 1), this Cα
l -continuity is equivalent to the standard definition of Cα-continuity

with respect to the distance ∥ · ∥. The subscript “l” of Cl stems from the definition of Hölder continuity
above, which is given in terms of a left-invariant distance with respect to the group structure of ◦ .
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We also mention another kind of Hölder space suitable for the study of Kolmogorov operators that was
first used in [Manfredini 1997].

Definition 2.3. Let α ∈ [0, 1) and � ⊂ R × Rd
× Rd be given. The space C2+α

kin (�) consists of functions
f ∈ C0

l (�) such that D2
v f , (∂t + v · ∇x) f ∈ Cα

l (�), and is equipped with the norm

∥ f ∥C2+α
kin (�) := ∥ f ∥C0

l (�) + ∥D2
v f ∥Cα

l (�) + ∥(∂t + v · ∇x) f ∥Cα
l (�).

The consistency between these two definitions is given by [Imbert and Silvestre 2021, Lemma 2.7]
(see also [Imbert and Mouhot 2021, Lemma 2.4]), a result that we state here.

Lemma 2.4. Let α ∈ (0, 1) and f ∈ C2+α
l (Q2). Then there exists some constant C > 0 depending only on

the dimension d such that

∥∇v f ∥Cα
l (Q1) ≤ C∥ f ∥C1+α

l (Q2)
and ∥D2

v f ∥Cα
l (Q1) + ∥(∂t + v · ∇x) f ∥Cα

l (Q1) ≤ C∥ f ∥C2+α
l (Q2)

.

Remark 2.5. For α > 2, one can easily check that the polynomial p0 in (2-1) has the form

p0(t, x, v) = f (z0) + (∂t + v0 · ∇x) f (z0)t + ∇v f (z0) · v +
1
2 D2

v f (z0)v · v + · · · .

In particular, if α ∈ (2, 3), the polynomial expansion is independent of the x-variable.

Remark 2.6. A subtle difference between C2
l and C2

kin comes from the fact that, for f ∈ C2
l , we have D2

v f
and (∂t + v · ∇x) f lying in L∞ rather than C0.

We will also employ the following notions of weighted Hölder norms in Section 3.

Definition 2.7. Let z = (t, x, v) ∈ � := (0, T ]× Rd
× Rd with T ∈ R+. For f ∈ Cα

l (�) with α > 0 and
σ ∈ R, we define

[ f ]
(σ )
0 := sup

z∈�

ισ [ f ]C0
l (Qι(z)), [ f ]

(σ )
α := sup

z∈�

ια+σ
[ f ]Cα

l (Qι(z)), ∥ f ∥
(σ )
α := [ f ]

(σ )
0 + [ f ]

(σ )
α ,

where ι := min{1, t1/2
} measures the distance between z and the (parabolic) boundary of �.

2C. Other notation. Throughout the article, BR denotes the Euclidean ball in Rd centered at the origin
with radius R > 0. We employ the Japanese bracket defined as ⟨ · ⟩ := (1 +| · |

2)1/2. By abuse of notation,
⟨ · ⟩ will also denote the velocity mean in Section 5.

Moreover, we assume 0 < λ < 3. We denote by C a universal constant — that is to say a constant
depending only on β, d, λ, 3, α, σ, α0 specified in context. Finally, we write X ≲ Y to mean that
X ≤ CY for some universal constant C > 0, and X ≲q Y to mean that X ≤ CqY for some Cq > 0
depending only on universal constants and the quantity q.

3. Kolmogorov–Fokker–Planck equation

This section is devoted to the study of the Cauchy problem associated to the operator (1-4),{
L1 f := (∂t + v · ∇x) f − tr(AD2

v f ) − B · ∇v f = s in (0, T ] × Rd
× Rd,

f (0, x, v) = fin(x, v) in Rd
× Rd,

(3-1)
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where the d ×d symmetric matrix A(t, x, v) and the d-dimensional vector B(t, x, v) satisfy the condition{
Aξ · ξ ≥ λ|ξ |

2 for any ξ ∈ Rd,

∥A∥Cα
l
+ ∥B∥Cα

l
≤ 3,

(3-2)

where α ∈ (0, 1) and the norm ∥ · ∥Cα
l (�) of matrix denotes the summation of the norm of each entry. The

boundedness condition at infinity means that the solution shall be bounded, which is intended for the
validity of maximum principle; see the proof of Lemma A.1 below.

The aim of this section is to solve the Cauchy problem (3-1) by virtue of the weighted Hölder norm
(Definition 2.7) and by means of the standard continuity method combined with Schauder-type estimates.
One may refer to [Gilbarg and Trudinger 2001, Subsection 6.5] for the corresponding treatment in classical
elliptic theory.

Throughout this section we work with the domain � := (0, T ]× Rd
× Rd, with T ∈ R+. We shed light

on the fact that all of the results below can be restricted to (0, T ] × Td
× Rd whenever required.

3A. Schauder estimates. In order to apply the continuity method, first of all one needs to prove a global
a priori estimate for solutions to (3-1) with respect to the weighted Hölder norm. In the kinetic setting, we
have at our disposal the interior Schauder estimates proved in [Imbert and Mouhot 2021, Theorem 3.9].

Proposition 3.1 (interior Schauder estimate). Let the constant α ∈ (0, 1) be given and the cylinder Q2r (z0)

be a subset of � with r ∈ (0, 1]. If f satisfies (1-4) with condition (3-2) in Q2r (z0) and s ∈ Cα
l (Q2r (z0)),

then we have

r2+α
[ f ]C2+α

l (Qr (z0))
≲ ∥ f ∥L∞(Q2r (z0)) + r2+α

[s]Cα
l (Q2r (z0)). (3-3)

In particular, the right-hand side controls r2
∥(∂t + v · ∇x) f ∥L∞(Qr (z0)) + r2

∥D2
v f ∥L∞(Qr (z0)).

First of all, we enhance this result to a global estimate for the Cauchy problem (3-1) under a vanishing
condition for the initial data.

Proposition 3.2 (global Schauder estimate). Let � = (0, T ] × Rd
× Rd and the constants α ∈ (0, 1) and

σ ∈ (0, 2) be universal, s ∈ Cα
l (�) such that ∥s∥(2−σ)

α < ∞, and f be a bounded solution to the Cauchy
problem (3-1) under condition (3-2) in �. If the initial data fin equals 0, then we have

∥ f ∥
(−σ)
2+α ≲ ∥s∥(2−σ)

α .

Proof. In view of Proposition 3.1, it suffices to deal with the estimates around the initial time. Without
loss of generality, we assume T ≤ 1.

Let z0 = (t0, x0, v0) ∈ � and 2r = t1/2
0 . Applying the interior Schauder estimate (3-3) yields

r2+α
[ f ]C2+α

l (Qr (z0))
≲ ∥ f ∥L∞(Q2r (z0)) + r2+α

[s]Cα
l (Q2r (z0)).

It then follows from the arbitrariness of z0 that, for any σ < 2 such that [ f ]
(−σ)
0 < ∞,

[ f ]
(−σ)
2+α ≲ [ f ]

(−σ)
0 + [s](2−σ)

α . (3-4)
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With σ ∈ (0, 2), observing that

L1

( 2
σ

[s](2−σ)
0 tσ/2

± f
)

= [s](2−σ)
0 tσ/2−1

± s ≥ 0 in �,

2
σ

[s](2−σ)
0 tσ/2

± f = 0 on {t = 0},

we apply the maximum principle (Lemma A.1) to the function (2/σ)[s](2−σ)
0 tσ/2

± f to deduce that
±t−σ/2 f ≤ (2/σ)[s](2−σ)

0 , which means

[ f ]
(−σ)
0 ≲ [s](2−σ)

0 .

Combining this estimate with (3-4), we get the desired result. □

3B. Cauchy problem for the linear equation. The goal of this subsection is to prove the well-posedness
of the Cauchy problem (3-1) with Hölder continuous coefficients.

Proposition 3.3. Let � = (0, T ] × Rd
× Rd and the constants α ∈ (0, 1) and σ ∈ (0, 2) be universal.

Assume that {
Aξ · ξ ≥ λ|ξ |

2 for any ξ ∈ Rd,

∥A∥Cα
l (�) + ∥⟨v⟩

−1 B∥Cα
l (�) ≤ 3.

(3-5)

Then, for any s ∈ Cα
l (�) such that ∥s∥(2−σ)

α < ∞ and fin ∈ C0(Rd
× Rd), there exists a unique bounded

solution f ∈ C2+α
l (�) to the Cauchy problem (3-1).

Remark 3.4. In contrast with (3-2), condition (3-5) is weaker, which allows the coefficients of B to
not necessarily be bounded globally. This fact will be applied to the Ornstein–Uhlenbeck operator
LOU = (∇v − v) · ∇v in Section 4B.

The simplest possible setting of (3-1) under condition (3-5) is recovered by choosing A = I and B = 0,
which turns out to be the classical Kolmogorov operator L0 := ∂t + v · ∇x −1v . This operator was first
studied in [Kolmogoroff 1934], where its fundamental solution was calculated explicitly as

0(t, x, v) =


( √

3
2π t2

)d

exp
(
−

3
∣∣x +

1
2 tv

∣∣2

t3 −
|v|

2

4t

)
for t > 0,

0 for t ≤ 0.

(3-6)

One can easily see that 0 is smooth outside of its pole (the origin). In fact, in this latter case the following
result holds.

Lemma 3.5. Let � = (0, T ] × Rd
× Rd and α ∈ (0, 1). For any s ∈ Cα

l (�) such that ∥s∥(2−σ)
α < ∞, the

function

f (t, x, v) =

∫
Rd×Rd

0((τ, ξ, η)−1
◦ (t, x, v))s(τ, ξ, η) dτ dξ dη (3-7)

is the unique bounded solution in C2+α
l (�) to (3-1) with L1 replaced by L0 and fin = 0.
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Remark 3.6. When the spatial domain is Td, one can apply Green’s function

G(t, x, v) :=

∑
n∈Zd

0(t, x + n, v),

which is well defined due to the decay of 0.

We are now in a position to apply the standard continuity method to derive Proposition 3.3.

Proof of Proposition 3.3. We split the proof into three steps. In the first step, we establish the case
for vanishing initial data under the stronger assumption (3-2). We point out that the assumption on the
coefficient B can be weakened in the second step. Finally, we deal with general continuous initial data.

Step 1. Assume fin = 0 and condition (3-2) holds. Let the constant σ ∈ (0, 2) be fixed and consider the
Banach space Y := (C2+α

l (�), ∥ · ∥
(−σ)
2+α ). In particular, every function lying in Y vanishes at t = 0.

For τ ∈ [0, 1], we define the operator Lτ := (1 − τ)L0 + τL1, which can be written in the form

Lτ = ∂t + v · ∇x − tr(Aτ D2
v · ) − τ B · ∇v,

where its coefficients Aτ := (1 − τ)I + τ A and τ B still satisfy condition (3-2) (with λ and 3 replaced by
min{1, λ} and max{1, 3}, respectively). For any w ∈ Y , we have

∥Lτw∥
(2−σ)
α ≲ (1 + ∥Aτ∥

(2)
α )∥w∥

(−σ)
2+α + ∥B∥

(2)
α ∥w∥

(−σ)
1+α ≲ ∥w∥

(−σ)
2+α . (3-8)

Let the set I be the collection of τ ∈ [0, 1] such that the Cauchy problem (3-9) is solvable for any
s ∈ Cα

l (�) with ∥s∥(2−σ)
α < ∞: there is a unique bounded solution f ∈ Y satisfying{

Lτ f = s in �,

f (0, x, v) = 0 in Rd
× Rd.

(3-9)

By Lemma 3.5, we see that 0 ∈ I; in particular, I is not empty.
It now suffices to show that 1 ∈ I. Pick τ0 ∈ I. Then the global Schauder estimate provided by

Proposition 3.2 implies that, for any s ∈ Cα
l (�) with ∥s∥(2−σ)

α < ∞, f = L −1
τ0

s satisfies

∥L −1
τ0

s∥(−σ)
2+α ≲ ∥s∥(2−σ)

α . (3-10)

For any w ∈ Y , since τ0 ∈ I and (3-8) holds, the following Cauchy problem is solvable for any s ∈ Cα
l (�)

with ∥s∥(2−σ)
α < ∞: {

Lτ0 f = s + (τ − τ0)(L0 − L1)w in �,

f (0, x, v) = 0 in Rd
× Rd.

Thus, we can define the mapping F : Y → Y by setting F(w) = f . Armed with (3-10) and (3-8), there
exists a universal constant C > 0 such that, for any u, w ∈ Y ,

∥F(u) − F(w)∥
(−σ)
2+α ≤ C |τ − τ0|∥(L0 − L1)(u − w)∥(2−σ)

α ≤ C |τ − τ0|∥u − w∥
(−σ)
2+α .

Hence F is a contraction mapping, provided that |τ − τ0| ≤ δ := (2C)−1. Then, F gives a unique fixed
point f ∈ Y , which is the unique bounded solution to the Cauchy problem (3-9) in Y . By dividing the
interval [0, 1] into subintervals of length less than δ, we conclude that 1 ∈ I.
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Step 2. If fin = 0 and condition (3-5) holds, we approximate the coefficient B by Bn := Bϱn , where
ϱn(v) := ϱ1(v/n) for v ∈ Rd, n ∈ N+, and ϱ1 ∈ C∞

c (B2) is valued in [0, 1] such that ϱ1 ≡ 1 in B1. Then,
for each n ∈ N+, the result obtained in the previous step provides a bounded solution fn to (3-1) with B
replaced by Bn . Indeed, applying the maximum principle (Lemma A.1) to the function ± f − et sup� |s|
implies sup� | fn| ≤ eT sup� |s|. Thanks to the interior Schauder estimate (Proposition 3.1), for any
compact subset K ⊂ �, we have that { fn}n≥N is precompact in C2

kin(K ), provided that N (depending
on K ) is large enough. Sending n → ∞ in the equation satisfied by fn yields that the limit function
f ∈ C2+α

l (�) is a bounded solution to (3-1), which satisfies sup� | f | ≤ eT sup� |s|.

Step 3. For general fin ∈ C0(Rd
× Rd), we approximate fin uniformly as ε → 0 by a sequence of smooth

functions { f ε
in} on Rd

× Rd. Thus, the function f − f ε
in is a solution to (3-1), with the source term equal

to s −L1 f ε
in, and associated with the vanishing initial data. The procedure presented in the previous steps

ensures a unique bounded solution f ε to (3-1) for each f ε
in.

The uniform convergence of { f ε
in} and the maximum principle (Lemma A.1) implies the uniform

convergence of { f ε
}. We may denote its limit by f ∈ C0(�), which satisfies f (0, x, v) = fin(x, v)

on Rd
× Rd. The interior Schauder estimate again implies that { f ε

} is precompact in C2
kin(K ) for any

compact subset K ⊂ �; then sending ε → 0 gives the solution f ∈ C2+α
l (�) to (3-1). Its uniqueness is

again given by the maximum principle. This concludes the proof. □

4. Well-posedness of the nonlinear model

This section is devoted to the proof of Theorem 1.1(i), including a self-generating lower bound given in
Section 4A, the existence and uniqueness given in Section 4B, and a smoothness a priori estimate given
in Section 4C.

First, we recast the Cauchy problem (1-1) in terms of g(t, x, v) := µ(v)−1/2 f (t, x, v), an unknown
function, with gin(x, v) := µ(v)−1/2 fin(x, v) as follows:{

(∂t + v · ∇x)g = R[g]U[g],

g(0, x, v) = gin(x, v),
(4-1)

where R[g] and U[g] on the right-hand side are defined by

R[g] :=

(∫
Rd

gµ1/2 dv

)β

and U[g] := µ−1/2
∇v(µ∇v(µ

−1/2g)) = 1vg +
( 1

2 d −
1
4 |v|

2)g.

The main advantage of this formulation is that it allows us to get rid of the first-order term in v, and the
zeroth-order term is bounded, since g is bounded from above by a Maxwellian.

For convenience, we are also concerned with the substitution h(t, x, v) := µ(v)−1 f (t, x, v) and the
Ornstein–Uhlenbeck operator LOU := (∇v − v) · ∇v. Equation (1-1) is then equivalent to

(∂t + v · ∇x)h(t, x, v) = Rh(t, x) LOU h(t, x, v), Rh(t, x) :=

(∫
Rd

h(t, x, v) dµ

)β

. (4-2)

In contrast with (1-1), the zeroth-order term disappears. Let us begin by exhibiting the global bounds of
solutions to (4-2) in (0, T ) × Td

× Rd, which is a variant of [Imbert and Mouhot 2021, Lemma 4.1].
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Lemma 4.1 (global bounds). Let a(t, x) ∈ L∞((0, T ) × Td) be nonnegative. Assume that, in the
sense of distributions, h(t, x, v) ∈ L∞((0, T ); H 1(Td

× Rd , dm)) satisfies (∂t + v · ∇x)h = a LOU h
in (0, T ) × Td

× Rd. If h(0, · , · ) ≤ 3 in Td
× Rd, then h ≤ 3 in (0, T ) × Td

× Rd ; if h(0, · , · ) ≥ λ

in Td
× Rd, then h ≥ λ in (0, T ) × Td

× Rd.

Proof. Integrating the equation (∂t + v · ∇x)(h − 3) = a LOU(h − 3) against (h − 3)+ yields

1
2

∫
Td×Rd

[(h(t, · , · ) − 3)2
+

− (h(0, · , · ) − 3)2
+
] dm = −

∫
[0,t]×Td×Rd

a|∇v(h − 3)+|
2 dt dm ≤ 0

for any t ∈ [0, T ]. This means that the upper bound is preserved along time. Similarly, the lower bound
can be obtained by integrating the equation (∂t + v · ∇x)(λ − h) = a LOU(λ − h) against (λ − h)+. □

In particular, the above result preserving global bounds holds for solutions to (4-2) and (5-1) in
(0, T )× Td

× Rd. We will also apply such result to the substitution g = µ1/2h appearing in Section 4B.
Unless otherwise specified, throughout this section we set the domain � := (0, T ]×Td

×Rd with T ∈ R+.
Nevertheless, as specified in Remark 4.4, Corollary 4.10, and Proposition 4.11 below, the results of this
section also hold if the spatial domain is Rd.

4A. Self-generating lower bound. Throughout this subsection, we assume that the bounded solution h
of (1-1) lies below the universal constant 3, which is guaranteed by Lemma 4.1 if the initial data lies
below 3. The aim of this subsection is to show the following positivity-spreading result. We remark that
this proposition only relies on the mixing structure of the classical parabolic-type maximum principle and
the transport operator, but not on the structure of the mass conservation.

Proposition 4.2 (lower bound). Let δ > 0, T ∈ (0, T ), and h be a bounded solution to (4-2) in � satisfying

h(0, x, v) ≥ δ1{|x−x0|<r,|v−v0|<r} (4-3)

for some (x0, v0) ∈ Td
× Rd. Then, there exist two positive continuous functions η1(t) and η2(t) on (0, T ]

depending only on universal constants, T , δ, r , and v0 such that, for any (t, x, v) ∈ �,

h(t, x, v) ≥ η1(t)e−η2(t)|v|
2
. (4-4)

Remark 4.3. In particular, the functions η1(t) and η2(t) are positive and bounded on any compact subset
of (0, T ], but η1 might degenerate to zero and η2 may go to infinity as t tends to zero or infinity.

Remark 4.4. If one is concerned with the problem in the whole space — that is � = (0, T ]× Rd
× Rd —

we can proceed along the same lines as the proof in Appendix B to see that (4-3) implies the lower bound

h(t, x, v) ≥ η1(t, x)−1e−η2(t,x)|v|
4
, (4-5)

where the functions η1(t, x) and η2(t, x) on (0, T ] × Rd are positive, continuous and only depend on
universal constants, T, δ, r , and v0. Compared with (4-4), η1(t, x) and η2(t, x) lose the uniformity
in x as Rd is not compact (see Step 3 of the proof of the proposition in Appendix B). In addition, the
exponential tail with respect to v cannot be improved to a Gaussian type, since there is no uniform-in-x
lower bound on the local mass

∫
h dµ such that Step 4 in Appendix B fails.
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We note that the proof of the proposition is composed mainly of two lemmas. On the one hand,
Lemma 4.5 extends the lower bounds forward a short time from a neighborhood of any given point in
Td

× Rd and at any given time. On the other hand, Lemma 4.6 is used to spread the lower bound for all
velocities. The spreading of the lower bound in space is given by selecting the proper velocity to transport
the positivity which is guaranteed by Lemma 4.5. By applying these lemmas repeatedly, as proposed in
[Henderson et al. 2020b], we are able to control the solution from below for any finite time. We postpone
the full proof of Proposition 4.2, obtained by combining these two lemmas, until Appendix B.

Lemma 4.5 (lower bound forward in time). Let δ, τ, r ∈ (0, 1] and h be a bounded solution to (4-2) in �

with
h(0, x, v) ≥ δ1{|x−x0|<r,|v−v0|<r/τ }

for some (x0, v0) ∈ Td
× Rd. Then there exists some universal constant c0 > 0 such that

h ≥
1
8δ1P , P :=

{
t ≤ min{T, τ, c0⟨τr−1

⟩
−2

⟨v0⟩
−2

}, |x − x0 − tv| < 1
2r, |v − v0| < 1

2rτ−1}.
Proof. Let us consider the barrier function

h(t, x, v) := −C0t +
1
2δ(1 − r−2

|x − x0 − tv|
2
− τ 2r−2

|v − v0|
2),

with the constant C0 >0 to be determined. The region Q :={t ≤min{T, τ }, |x−x0−tv|
2
+τ 2

|v−v0|
2 <r2

}

contains P. A direct computation yields

| LOU h| ≤ |1vh| + |v · ∇vh| ≲ δ⟨τr−1
⟩

2
⟨v0⟩

2 in Q.

By choosing C0 := (1/(8c0))δ⟨τr−1
⟩

2
⟨v0⟩

2 for some (small) universal constant c0 > 0, we have

(∂t + v · ∇x − Rh LOU)h ≤ −C0 + 3β
| LOU h| < 0 in Q. (4-6)

In addition, h(t, x, v) ≥
1
8δ in

{
t ≤ c0⟨τr−1

⟩
−2

⟨v0⟩
−2, |x − x0 − tv|

2
+ τ 2

|v − v0|
2 < 1

2r2
}

⊃ P.
Applying the classical maximum principle to h −h in Q after observing that h −h ≤ 0 on the parabolic

boundary {t = 0} ∩Q and {t ≤ min{T, τ }, |x − x0 − tv|
2
+ τ 2

|v − v0|
2
= r2

} yields the result. □

The spreading of lower bound to all velocities relies on the construction of a Harnack chain through
iterative application of the local Harnack inequality [Golse et al. 2019, Theorem 1.6]. Although some
coefficients of (4-2) are unbounded globally over v ∈ Rd, we remark that their local boundedness is
sufficient for us to achieve the result through a careful study on the rescaling during the construction of
the Harnack chain.

Lemma 4.6 (lower bound for all velocities). Let δ > 0, T, R ∈ (0, 1], T ∈ (0, T ), and h be a bounded
solution to (4-2) in � such that, for any t ∈ [0, T ],

h(t, x, v) ≥ δ1{|x−x0−tv0|<R,|v−v0|<R} (4-7)

for some (x0, v0) ∈ Td
× Rd. Then there exists some (large) constant C > 0 depending only on universal

constants, T , δ, R, and v0 such that, for any t ∈ [T , T ], we have

h(t, x, v) ≥ C−1e−C |v|
4
1{|x−x0−tv0|<R/2}. (4-8)
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Proof. For any z := (t, x, v) ∈
{
t ∈ [T , T ], |x − x0 − tv0| < 1

2 R, v ∈ Rd
}
, we will construct a finite

sequence of points to reach z from the region {t ≤ T, |x − x0 − tv0| < R, |v−v0| < R}, where the solution
is positive by assumption. In particular, x does not exit this region. The nonlocality of the coefficient Rh ,
with assumption (4-7), implies the nondegeneracy of the diffusion in velocity so that the positivity of the
solution h propagates over v ∈ Rd in a localized space region.

Step 1. Iterate the Harnack inequality. For i ∈ {1, 2, . . . , N + 1} with N ∈ N, we define zN+1 := z and
zi := (ti , xi , vi ) by the relation

zi = zi+1 ◦ Sr

(
−τ1, 0, −τ2

v − v0

|v − v0|

)
,

where the parameters N , r, τ1, τ2 > 0 will be determined next. Consider the function for z̃ := (t̃, x̃, ṽ)∈ Q1:

hi (z̃) := h(zi ◦ Sr (z̃)) = h(ti + r2 t̃, xi + r3 x̃ + r2 t̃vi , vi + r ṽ).

We observe that, if the following is true for any z̃ ∈ Q1:

ti+1 + r2 t̃ ∈ [0, T ], Nrτ2 ≤ |v − v0|, (4-9)

|xi+1 + r3 x̃ + r2 t̃vi+1 − x0 − (ti+1 + r2 t̃ )v0| < R, (4-10)

then, for 1 ≤ i ≤ N, the function hi+1(z̃) satisfies the equation

(∂t̃ + ṽ · ∇x̃)hi = Rh(zi ◦ Sr (z̃))(1ṽhi − r(vi + r ṽ) · ∇ṽhi ) in Q1,

where the coefficients satisfy

δβ Rdβ ≲ Rh ≲ 1 and |r(vi + r ṽ)| ≤ r(1 + |v0| + |v − v0|) ≤ 1,

provided that r ≤ (1+|v0|+|v−v0|)
−1. Applying the Harnack inequality [Golse et al. 2019, Theorem 1.6]

to hi implies that there exist constants c0, τ1 ∈ (0, 1) depending only on universal constants, δ, and R
such that, for any τ2 ∈ [0, 1 − τ1] and 1 ≤ i ≤ N, we have

h(zi+1) = hi+1(0, 0, 0) ≥ c0hi+1

(
−τ1, 0, −τ2

v − v0

|v − v0|

)
= c0h(zi ). (4-11)

Hence it remains to determine the chain {zi }1≤i≤N+1 such that conditions (4-9) and (4-10) hold and the
point z1 stays in the region {(t, x, v) : t ≤ T, |x − x0 − tv0| < R, |v − v0| < R}.

Step 2. Determine the Harnack chain (including N , r , and τ2) from a proper starting time t1. For M > 0,
we set

t1 := max
{ 1

2 T , t −
1
8 R(1 + |v0| + |v − v0|)

−1} and r :=
R
M

(1 + |v0| + |v − v0|)
−2.

Recalling that T, R ∈ (0, 1], by choosing

M ≥
2
T

+
τ1

1 − τ1

(
8 +

2
T

)
,

we have

r2
≤

1
2 T and τ2 :=

rτ1|v − v0|

t − t1
≤ 1 − τ1.
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To determine the parameter M > 0, we point out that there exists some constant C depending only on
universal constants, T , δ, R, and v0 such that M ≤ C and

N :=
t − t1
r2τ1

∈ N+.

Thus, Nrτ2 = |v − v0|. This setting then guarantees condition (4-9).
It also follows from the iteration relation that v1 = v0, and, for 1 ≤ i ≤ N + 1,

ti = t1 + (i − 1)r2τ1, vi = v0 + (i − 1)rτ2
v − v0

|v − v0|
, xi = x − r2τ1

N∑
j=i

v j+1. (4-12)

Step 3. Determine the starting point x1. For any 1 ≤ i ≤ N, we estimate the departure distance from the
expression (4-12)

|xi+1 − x1 − (ti+1 − t1)v0| =
1
2 i(i + 1)r3τ1τ2 ≤ N 2r3τ1τ2 = (t − t1)|v − v0| ≤

1
8 R.

Therefore, for any x ∈ BR/2(x0 + tv0), there exists some x1 ∈ B5R/8(x0 + t1v0) such that xN+1 = x . In
this setting, for any 1 ≤ i ≤ N, we also have

|xi+1 + r3 x̃ + r2 t̃vi+1 − x0 − (ti+1 + r2 t̃ )v0|

≤ |xi+1 − x1 − (ti+1 − t1)v0| + |x1 − x0 − t1v0| + r2
|r x̃ + t̃vi+1 − t̃v0|

≤
R
8

+
5R
8

+ r2(1 + |v − v0|) <
3R
4

+
R2

M2 < R.

Thus, condition (4-10) ensures the inequality (4-11) is satisfied for 1 ≤ i ≤ N, which yields

h(t, x, v) ≥ cN
0 h(t1, x1, v0) ≥ δe−N log 1/c0.

Recalling that c0 ∈ (0, 1) appears in (4-11) and N ≤ T C2(1 + |v0| + |v − v0|)
4/(τ1 R2), we obtain the

desired result (4-8). □

4B. Existence and uniqueness. Let us begin by summarizing some basic a priori estimates for solutions
to (4-1).

Lemma 4.7 (Hölder estimates). Let �x = Td or Rd, and let g be a solution to (4-1) in [0, T ]×�x × Rd

satisfying
R[g] ≥ λ in [0, T ] ×�x and 0 ≤ gin ≤ 3µ1/2 in �x × Rd.

(i) Let T ∈ (0, T ) and δ ∈
(
0, 1

2

)
. There exists some universal constant α ∈ (0, 1) such that, for any

Q2r (z0) ⊂ [T , T ] ×�x × Rd, we have

∥g∥C2+α
l (Qr (z0))

≲T ,δ µδ(v0). (4-13)

(ii) If gin ∈ Cα0(�x ×Rd) with (universal) α0 ∈ (0, 1), then, for any δ ∈
(
0, 1

2

)
, there exists some universal

constant α ∈ (0, 1) such that

∥g∥Cα
l ([0,T ]×�x×B1(v0)) ≲δ (1 + [gin]Cα0 (�x×Rd ))µ

δ(v0).
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We remark that, armed with Lemma 4.1, the assertions (i) and (ii) in the above lemma directly follow
from [Imbert and Mouhot 2021, Proposition 4.4] and [Zhu 2021, Corollary 4.6], respectively.

Proposition 4.8 (existence). For any gin ∈ C0(Td
×Rd) such that 0 ≤ gin ≤ 3µ1/2 in Td

×Rd, there exists
a (classical) solution g to the Cauchy problem (4-1) satisfying 0 ≤ g ≤ 3µ1/2 in �.

Remark 4.9. For any given nonnegative continuous function gin that is not identically zero, there is some
point (x0, v0) ∈ Td

× Rd and some constants δ, r > 0 such that

gin(x, v) ≥ δ1{|x−x0|<r,|v−v0|<r} in Td
× Rd. (4-14)

We will see that the upper bound gin ≤ 3µ1/2 and the lower bound (4-14) assumptions on the initial
data gin (which could be discontinuous) are sufficient to ensure the existence of a solution g ∈ C2

kin(�) in
the weak sense such that, for any φ ∈ C∞

c ([0, T ) × Td
× Rd),∫

Td×Rd
ginφ|t=0 =

∫
�

{
−g(∂t + v · ∇x)φ +R[g]∇vg · ∇vφ −R[g]

( 1
2 d −

1
4 |v|

2)gφ
}
. (4-15)

As solutions become regular instantaneously, the difference between the weak solution and the classical
one lies only in the continuity around the initial time.

Proof. Let us assume that gin satisfies (4-14) for some point (x0, v0) ∈ Td
× Rd and some constants

δ, r > 0. By Proposition 4.2, for any solution g to (4-1) and for any T ∈ (0, T ), there is some λ∗ > 0
depending only on universal constants, T , T, δ, r , and v0 such that

R[g](t, x) ≥ λ∗ in [T , T ] × Td. (4-16)

Step 1. We first approximate the initial data gin by gϵ
in := gin ∗ ϱε + εµ1/2, where ε ∈ (0, 1], ϱε(x, v) :=

ε−2dϱ1(x/ε, v/ε) with (x, v) ∈ Td
× Rd, and ϱ1 ∈ C∞

c (B1 × B1) is a nonnegative bump function such
that

∫
R2d ϱ1 = 1. Then

εµ1/2
≤ gε

in ≤ (1 + 3)µ1/2 in T d
× Rd.

Let us fix ε ∈ (0, 1]. In order to establish the existence of a solution to (4-1) associated with the initial
data gε

in, we find a fixed point of the mapping F : w 7→ g defined by solving the Cauchy problem{
(∂t + v · ∇x)g = R[w]U[g] in �,

g(0, · , · ) = gε
in in Td

× Rd (4-17)

on the closed convex subset K of the Banach space Cγ

l (�),

K := {w ∈ Cγ

l (�) : ∥w∥Cγ

l (�) ≤ N, εµ1/2
≤ w ≤ (1 + 3)µ1/2 in �},

where the constants γ ∈ (0, 1) and N > 0 are to be determined. We remark that (4-17) is equivalent to

(∂t + v · ∇x)(µ
−1/2g) = R[w] LOU(µ−1/2g).

By Lemma 4.1 and the fact that R[w] ≥ ε, we have εµ1/2
≤ g ≤ (1 +3)µ1/2 in �. In particular, for any

w ∈K, we have the following for the lower-order term:
∣∣R[w]

( 1
2 d −

1
4 |v|

2
)
g
∣∣≲ 1. Thus, the global Hölder

estimate [Zhu 2021, Corollary 4.6] implies that there exist some constants γ ∈ (0, 1) and N > 0 depending
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only on universal constants and ε such that ∥g∥C2γ

l (�) ≤ N , which also implies that the lower-order
term

∣∣R[w]
( 1

2 d −
1
4 |v|

2
)
g
∣∣ is bounded in C2γ

l (�). It then follows from Proposition 3.3 with the interior
Schauder estimate (Proposition 3.1) that the mapping F : K → K∩ C2γ

l (�)∩ C2+2γ

l (�) is well defined.
In addition, with the help of the Arzelà–Ascoli theorem, we know that F(K) is precompact in Cγ

l (�).
As far as the continuity of F is concerned, we take a sequence {wn} converging to w∞ in Cγ

l (�). Since
{F(wn)} is precompact in Cγ

l (�), there exists a converging subsequence whose limit is g∞ ∈ Cγ

l (�)

which satisfies g∞(0, · , · ) = gε
in in Td

× Rd. In view of the interior Schauder estimate (Proposition 3.1),
{F(wn)} is precompact in C2

kin(K ) for any compact subset K ⊂ � and g∞ ∈ C2
kin(�) ∩ C0(�). Sending

n → ∞ in (4-17) satisfied by (w, g) = (wn, F(wn)), we see that (4-17) also holds for the pair of limits
(w, g) = (w∞, g∞). Then, applying the maximum principle (Lemma A.1) to{

(∂t + v · ∇x)(µ
−1/2(g∞ − F(w∞))) = R[w∞] LOU(µ−1/2(g∞ − F(w∞))) in �,

(g∞ − F(w∞))(0, · , · ) = 0 in Td
× Rd,

we arrive at g∞ = F(w∞).
Then, for every ε ∈ (0, 1], we are allowed to apply the Schauder fixed-point theorem (see for instance

[Gilbarg and Trudinger 2001, Corollary 11.2]) to get gε
∈ C2

kin(�) ∩ C0(�) such that F(gε) = gε, which
is a (classical) solution to (4-1) associated with the initial data gε

in.

Step 2. Passage to the limit. Recalling the lower bound (4-16) on the coefficient and the higher-order
Hölder estimate given by Lemma 4.7(i), for any T ∈ (0, T ), we point out that {gε

} is uniformly bounded
in C2+α∗

l ([T , T ] × Td
× Rd) for some constant α∗ ∈ (0, 1) with the same dependence as λ∗. Hence gε

converges uniformly to g in C2
kin([T , T ] × Td

× Rd), up to a subsequence.
Write the equation satisfied by gε in the weak formulation: that is, for any φ ∈ C∞

c (�),∫
Td×Rd

[gε(T, x, v)φ(T, x, v)− gε
in(x, v)φ(0, x, v)]

=

∫
�

{
gε(∂t + v · ∇x)φ −R[gε

]∇vgε
· ∇vφ +R[gε

]
( 1

2 d −
1
4 |v|

2)gεφ
}
. (4-18)

Combining the energy estimate derived by choosing φ = gε above with the upper bound of gε provided
by Lemma 4.1, we have∫

�

|R[gε
]∇vgε

|
2 ≲

∫
�

R[gε
]|∇vgε

|
2
≤

1
2

∫
Td×Rd

|gε
in|

2
+

∫
�

R[gε
]
(1

2 d −
1
4 |v|

2)
|gε

|
2 ≲ 1.

Therefore, after passing to a subsequence, R[gε
]∇vgε converges weakly in L2(�). On account of its

local uniform convergence, we know that its weak limit is R[g]∇vg. In addition, since µ−1/2gε is
uniformly bounded, by their local uniform convergence, we can also derive that the sequences gε and
R[gε

]
( 1

2 d −
1
4 |v|

2
)
gε converge to g and R[g]

( 1
2 d −

1
4 |v|

2
)
g, respectively, weakly in L2(�), up to a

subsequence. Then, for any φ ∈ C∞
c ([0, T ) × Td

× Rd), sending ε → 0 in (4-18) gives (4-15).
Furthermore, if the initial data gin is continuous, then the barrier function method shows that the

continuity around the initial time depends only on the upper bound of the solution and the continuity
of gin; see the derivation of the estimate (5-30) of a general type in Section 5B. Indeed, by (5-30)
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(with ϵ = 1, R = |v1|, hϵ = µ−1/2g, and hϵ,in = µ−1/2gin), we see that, for any fixed δ ∈ (0, 1) and
(x1, v1) ∈ Td

× Rd and for any (t, x, v) ∈ [0, δ/(4(1 + |v1|))] × Bδ(x1, v1),

|g(t, x, v)− gin(x1, v1)| ≲ δ−2
⟨v1⟩

2µ1/2(v1)t + δ−2µ1/2(v1)(|x − x1 − tv|
2
+ |v − v1|

2)

+ µ1/2(v1) sup
Bδ(x1,v1)

|gin(x, v)− gin(x1, v1)|

≲ δ−2(t + |x − x1|
2
+ µ1/2(v1)|v − v1|

2)

+ sup
Bδ(x1,v1)

|gin(x, v)− gin(x1, v1)|. (4-19)

This implies the continuity of the solution g around t = 0 and finishes the proof. □

One may extend the above existence result to the case where the spacial domain Td is replaced by Rd.

Corollary 4.10. For any gin ∈ C0(Rd
×Rd) such that 0 ≤ gin ≤ 3µ1/2 in Rd

×Rd, there exists a solution g
to the Cauchy problem (4-1) satisfying 0 ≤ g ≤ 3µ1/2 in (0, T ]× Rd

× Rd. If additionally hin = µ−1/2gin

satisfies hin ≥ λ and hin − M1 ∈ L1(Rd
× Rd , dm) for some constant M1 > 0, then h = µ−1/2g satisfies

h ≥ λ in (0, T ] × Rd
× Rd and

∥h − M1∥L∞
t ([0,T ];L1(Rd×Rd , dm)) ≤ ∥hin − M1∥L1(Rd×Rd , dm). (4-20)

Proof. For R > 1, we set gR
in = gin1[−R+R−1,R−R−1]d for x ∈ [−R, R]

d with periodic extension to Rd.
In the light of Proposition 4.8, we take a solution gR to (4-1) associated with the initial data gR

in in
(0, T ]×[−R, R]

d
×Rd , where [−R, R]

d is considered as a periodic box. After extracting a subsequence,
we define the function g := limR→∞ gR in (0, T ]×Rd

×Rd pointwise; furthermore, since 0≤µ−1/2gR
≤3

in (0, T ]×[−R, R]
d
×Rd, we know that the limiting function satisfies 0 ≤µ−1/2g ≤3 in (0, T ]×Rd

×Rd.
Similarly, µ−1/2gin ≥ λ in Rd

× Rd implies that µ−1/2g ≥ λ in (0, T ] × Rd
× Rd.

Since the initial data is continuous unless it is identically zero, we assume that gin ≥ δ1{|x−x0|<r,|v−v0|<r}

for some point (x0, v0) ∈ Rd
× Rd and some constants δ, r > 0. Consider R > |x0| + r . Applying the

lower bound of the solution given by (4-5) yields that, for any compact subset K ⊂ (0, T ]× Rd
× Rd, the

coefficient R[gR
] is greater than or equal to λ∗, where the constant λ∗ > 0 only depends on universal

constants, δ, r, v0, and K . In view of the higher-order Hölder estimate given by Lemma 4.7(i), we know
that gR uniformly converges to g in C2

kin(K ), up to a subsequence. Additionally, due to the estimate
derived in (4-19), the limiting function g is a solution to (4-1) that matches the initial data gin continuously.

As for (4-20), we notice that the function (h R
− M1)± with h R

:= µ−1/2gR satisfies

(∂t + v · ∇x)(h R
− M1)± ≤ Rh R LOU(h R

− M1)± in (0, T ] × [−R, R]
d
× Rd.

Integrating the equation against the function
∫
[−R,R]d (h R

− M1)± dx yields∫
[−R,R]d×Rd

(h R(t, · , · ) − M1)± dm −

∫
[−R,R]d×Rd

(h R(0, · , · ) − M1)± dm ≤ 0.

Sending R → ∞, we acquire

∥(h − M1)±∥L∞
t ([0,T ];L1(Rd×Rd , dm)) ≤ ∥(hin − M1)±∥L1(Rd×Rd , dm),

which implies the estimate (4-20) as asserted. □
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The following proposition concerned with the uniqueness of the Cauchy problem (4-1) is derived from a
Grönwall-type argument. The standard scaling technique and the Hölder estimate up to the initial time given
by Lemma 4.7(ii) can improve the integrability with respect to t in the energy estimate so that Grönwall’s
inequality becomes admissible; see (4-25) for the precise expression. This kind of phenomena was also
noticed in [Henderson et al. 2020a] (see the remarks in §1.4.2). The global energy estimate of (4-1) is not
available when the spatial domain is unbounded, since there is no decay of the solution as |x | → ∞. To
work it out, we take advantage of the idea originated from the uniformly local space used in [Henderson et al.
2019; Kato 1975]. We note that such a technique is not necessary when working with the periodic box Td.

Proposition 4.11 (uniqueness). Let the domain �x be Td or Rd, the constant α0 ∈ (0, 1), and the functions
0 ≤ g1, g2 ≲ µ1/2 be two solutions to (4-1) in (0, T ] × �x × Rd associated with the same initial data
gin ∈ Cα0(�x × Rd) such that∫

Rd
ginµ

1/2 dv ≥ λ in �x and 0 ≤ gin ≲ µ1/2 in �x × Rd.

Then g1 = g2 in [0, T ] ×�x × Rd.

Proof. In view of the lower bound given by Lemma 4.5 and Proposition 4.2, we know that there is some
constant λ∗ ∈ (0, 1) depending only on universal constants, T , and the initial data such that∫

Rd
giµ

1/2 dv ≥ λ∗ in [0, T ] ×�x , i = 1, 2. (4-21)

Therefore, we may assume T = 3−1 with 3 > 1. Let us set the difference

g̃ := exp
(
−

1
8 |v|

2t
)
(g1 − g2).

We have to show that g̃ is identically zero.
In view of (4-1), a direct computation yields that the function g̃ satisfies

(∂t + v · ∇x)g̃ +
1
8 |v|

2g̃

= exp
(
−

1
8 |v|

2t
)
(R[g1] −R[g2])U[g1] +R[g2]

(
U[g̃] +

1
2 tv · ∇v g̃ +

(1
4 dt +

1
16 |v|

2t2)g̃
)
, (4-22)

with the initial condition g̃(0, x, v) = 0 in �x × Rd.
Let y ∈ Rd. We introduce a cut-off function φy(x) := φ(x − y), where φ ∈ C∞

c (Rd) is valued in [0, 1]

such that φ|B1 ≡ 1, φ|Bc
2
≡ 0, and |∇φ| ≲ 1 in Rd. For any t ∈ (0, T ], integrating (4-22) against φ2

y g̃
in �x × Rd and applying integration by parts yields

1
2

∫
�x×Rd

φ2
y g̃2(t) =

∫ t

0

∫
�x×Rd

{
(v · ∇φy)φy g̃2

−
1
8 |v|

2φ2
y g̃2

+ exp
(
−

1
8 |v|

2t
)
(R[g1] −R[g2])U[g1]φ

2g̃

−R[g2]
(
|∇v(µ

−1/2g̃)|2µφ2
y +

1
4 dtφ2

y g̃2
−

(1
4 dt +

1
16 |v|

2t2)φ2
y g̃2)}.

Since R[g2] ∈ [0, 3], for any t ∈ (0, T ], we have

1
2

∫
�x×Rd

φ2
y g̃2(t) ≤

∫ t

0

∫
�x×Rd

{
|v||∇φy|φy g̃2

−
1
16 |v|

2φ2
y g̃2

+ µ−1/4
|R[g1] −R[g2]||U[g1]|φ

2
y |g̃|

}
.
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Due to the elementary inequality |zβ
− 1| ≤ |z − 1| (with z ∈ R+) and the lower bound estimate in (4-21),

as well as the boundedness assumption on g1 and g2, we have

|R[g1] −R[g2]| ≤ R[g1]
(β−1)/β

|R[g̃]|
1/β

≤
1
λ∗

∫
Rd

|g̃(t, x, · )|µ1/2 ≲λ∗
1 in [0, 1] ×�x .

It then follows that, for any t ∈ (0, T ],

1
2

∫
�x×Rd

φ2
y g̃2(t) ≤

∫ t

0

∫
�x×Rd

(
|v||∇φy|φy g̃2

−
1

16 |v|
2φ2

y g̃2)
+

1
λ∗

∫ t

0
∥µ−3/8U[g1]∥L∞

x,v

∫
�x×Rd

v

φ2
y |g̃(t, x, v)|µ1/8

∫
Rd

ξ

|g̃(t, x, ξ)|µ1/2 dξ

≲λ∗

∫ t

0

∫
�x×Rd

|∇φy|
2g̃2

+

∫ t

0
∥µ−3/8U[g1]∥L∞

x,v

∫
�x×Rd

φ2
y g̃2, (4-23)

where we used the Cauchy–Schwarz inequality and Hölder’s inequality in the last line. Recalling that
φy(x) = φ(x − y) ∈ C∞

c (Rd) and |∇φ| ≲ 1 in Rd, we have

sup
y∈Rd

∫
�x×Rd

|∇φy|
2g̃2 ≲ sup

y∈Rd

∫
�x×Rd

φ2
y g̃2.

By the definition of U[g1] and the upper bound g1 ≲ µ1/2,

∥µ−3/8U[g1]∥L∞
x,v

≲ 1 + ∥µ−3/81vg1∥L∞
x,v

.

Hence, for any t ∈ (0, T ], taking supremum over y ∈ Rd in (4-23), we obtain

sup
y∈Rd

∫
�x×Rd

φ2
y g̃2(t) ≲λ∗

∫ t

0
(1 + ∥µ−3/81vg1∥L∞

x,v
) sup

y∈Rd

∫
�x×Rd

φ2
y g̃2. (4-24)

Now we have to consider the pointwise estimate on D2
vg1. Let z0 = (t0, x0, v0) ∈ (0, T ] × �x × Rd

and 2r = t1/2
0 . In view of (4-21), Lemma 4.7(ii) implies that there exists some constant α∗ ∈ (0, 1) with

the same dependence as λ∗ such that

∥g1∥Cα∗

l ([0,T ]×�x×B1(v0))
≲λ∗

1 + [gin]Cα0 (�x×Rd ).

Then, applying the interior Schauder estimate (Proposition 3.1) and the upper bound g1 ≲ µ1/2 yields

∥D2
vg1∥L∞(Qr (z0)) ≲λ∗

r−2
∥g1 − g1(z0)∥L∞(Q2r (z0)) + rα∗

[
R[g1]

( 1
2 d −

1
4 |v|

2)g1
]
Cα∗

l (Q2r (z0))

≲λ∗
r−2+α∗/4µ3/8(v0)[g1]

1/4
Cα∗

l (Q2r (z0))
+ µ3/8(v0)[g1]

1/4
Cα∗

l (Q2r (z0))

≲λ∗
t−1+α∗/8
0 µ3/8(v0)(1 + [gin]

1/4
Cα0 (�x×Rd )

).

By the arbitrariness of z0, we know that, for any s ∈ (0, T ],

∥µ−3/81vg1(s)∥L∞(�x×Rd ) ≲λ∗
(1 + [gin]

1/4
Cα0 (�x×Rd )

)s−1+α∗/8.
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Dragging this estimate into (4-24) yields that for any t ∈ (0, T ],

sup
y∈Rd

∫
�x×Rd

φ2
y g̃2(t) ≤ C∗

∫ t

0
ds(1 + s−1+α∗/8) sup

y∈Rd

∫
�x×Rd

φ2
y g̃2(s), (4-25)

where the constant C∗ > 0 depends only on universal constants and the initial data. The desired result is
then given by Grönwall’s inequality. □

4C. Global regularity. The instantaneous smoothness a priori estimate in Theorem 1.1(i) is made up of
the lower bound given by Proposition 4.2 and the following proposition.

Proposition 4.12. Let �x = Td or Rd, let T ∈ (0, T ), and let the function g be a solution to (4-1) in
(0, T ) × Td

× Rd such that

R[g] ≥ λ in [T /4, T ] ×�x and 0 ≤ g ≤ 3µ1/2 in [0, T ] ×�x × Rd. (4-26)

Then, for any ν ∈
(
0, 1

2

)
and k ∈ N, we have

∥µ−νg∥Ck([T ,T ]×�x×Rd ) ≤ CT ,ν,k

for some constant CT ,ν,k > 0 depending only on universal constants, T , ν, and k.

Generally speaking, if g is a solution to (4-1) in (0, T ]×�x ×Rd constructed by Proposition 4.8 (with
�x = Td) or Corollary 4.10 (with �x = Rd), then the uniform positivity assumption (4-26) should be
replaced by

R[g] ≥ λt,x in (0, T ] ×�x and 0 ≤ g ≤ 3µ1/2 in �x × Rd,

where λt,x > 0 may degenerate to zero as t → 0 or t + |x | → ∞; see Proposition 4.2 and Remark 4.4.
As an immediate consequence of the above proposition, for any ν ∈

(
0, 1

2

)
, k ∈ N, and for any compact

subset K ⊂ (0, T ] × �x , there exists some constant Cν,k,K > 0 depending only on universal constants,
ν, k, and K such that

∥µ−νg∥Ck(K×Rd ) ≤ Cν,k,K ,

which is exactly the assertion in Theorem 1.1(i).
In order to show the higher regularity, we will apply the bootstrap procedure developed in [Imbert

and Silvestre 2022] which was intended for the non-cut-off Boltzmann equation. The classical bootstrap
iteration proceeds by differentiating the equation, using a priori estimates to the new equation to improve
the regularity of solutions, and repeating the procedure. Nevertheless, since C2+α

l ̸⊂ C1
x for any α ∈ (0, 1)

by their definitions, the hypoelliptic structure of (4-1) does not gain enough regularity in the x-variable
which disables the x-differentiation at each iteration. Indeed, the Schauder-type estimate provided by
Lemma 4.7(i) only shows that the solution to (4-1) belongs to C(2+α)/3 with respect to the x-variable. In
order to overcome it, we have to apply estimates to increments of the solution to recover a full derivative.
From now on, for y ∈ Rd and w ∈ R × Rd

× Rd, we denote the spatial increment by

δyg(z) := g(w ◦ (0, y, 0)) − g(w).

Let us proceed with the proof of the regularity estimate.
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Proof of Proposition 4.12. We are going to show that, for any multi-index k := (kt , kx , kv) ∈ N×Nd
×Nd

and ν ∈
(
0, 1

2

)
, there exists some constant αk ∈ (0, 1) depending only on |k| such that, for any Qr (z0) ⊂[1

2 T , T
]
× �x × Rd,

∥∂
kt
t ∂kx

x ∂kv
v g∥C2+αk

l (Qr (z0))
≲T ,ν,k µν(v0). (4-27)

For simplicity, we will omit the domain in estimates below, since the estimates can be always localized
around the center z0.

Step 0. The case of k = (0, 0, 0) in (4-27) is a direct consequence of Lemma 4.7(i).

Step 1. We will establish that (4-27) holds for any differential operators of the type ∂
kx
x . It suffices to

show that, for any n ∈ N, kx ∈ Nd with |kx | = n, ν ∈
(
0, 1

2

)
, and y ∈ Br3/4,

∥δy∂
kx
x g∥C2+αn

l
≲T ,ν,n |y|µν(v0). (4-28)

Indeed, sending y → 0 in (4-28) will complete this step.
Based on an induction on |kx | = n, we suppose that (4-28) holds for any |kx | ≤ n − 1, which implies,

for any kx ∈ Nd with |kx | ≤ n,
∥∂kx

x g∥C2+αn
l

≲T ,ν,n µν(v0). (4-29)

We remark that the induction here begins with (4-29) for |kx | = 0, which holds due to the previous step.
Let q := δy∂

kx
x g with |kx | = n. Lemma C.2 and (4-29) gives

∥q∥Cαn
l

≲ ∥∂kx
x g∥C2+αn

l
∥(0, y, 0)∥2 ≲T ,ν,n |y|

2/3µν(v0). (4-30)

Therefore, we have to enhance the exponent 2
3 on the right-hand side to 1; as a sacrifice, the Hölder

exponent on the left-hand side will decrease.
Set τyg(w) := g(w ◦ (0, y, 0)) for y ∈ Rd and w ∈ R × Rd

× Rd. A direct computation shows that q
satisfies

(∂t + v · ∇x)q = R[g]U[q] +

∑
|i |≤n
i≤kx

δy D̂iR[g]U[τy Di g] +

∑
|i |≤n−1

i≤kx

D̂iR[g]U[δy Di g], (4-31)

where the multi-indices i ≤ kx mean each component of i is less than or equal to the corresponding
component of k, and D̂i denotes the differential operator satisfying ∂

kt
t Dkx

x = D̂i ◦ Di .
In view of (4-29), (4-30), and the induction hypothesis, each term in the summations on the right-hand

side of (4-31) is bounded in Cαn
l by Cn∥(0, y, 0)∥2µν′

(v0) for any ν ′
∈ (0, ν). Then, by the interior

Schauder estimate (Proposition 3.1),

∥q∥C2+αn
l

≲T ,ν′,n ∥(0, y, 0)∥2µν′

(v0). (4-32)

Combining Lemma C.1 with (4-30) and (4-32), we obtain (4-28).

Step 2. For the case kv = 0 in (4-27), we proceed with a bidimensional induction on (m, n) = (kt , |kx |)

such that, for any ν ∈
(
0, 1

2

)
,

∥∂
kt
t Dkx

x g∥C2+αm,n
l

≲T ,ν,m,n µν(v0). (4-33)
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Based on the previous step (m = 0), we have to show that (4-33) holds for kt = m ≥ 1 and |kx | = n under
the induction hypothesis that (4-33) holds for any kt ≤ m − 1 and |kx | ≤ n + 1.

With kt = m > 0 and |kx | = n, set q := ∂
kt
t Dkx

x g. Then,

(∂t + v · ∇x)q = R[g]U[q] +

∑
i≤(kt ,kx ,0)
i ̸=(kt ,kx ,0)

D̂iR[g]U[Di g], (4-34)

where we use the notation D̂i for the differential operator satisfying ∂
kt
t Dkx

x = D̂i ◦ Di .
By the induction hypothesis, each term in the remainder (the summation on the right-hand side of (4-34))

with i ̸= (0, 0, 0) can be controlled in Cαm,n
l . It now suffices to deal with the exceptional term ∂

kt
t Dkx

x R[g]

so that the whole remainder can be controlled in Cαm,n
l ; then (4-33) follows from the interior Schauder

estimate (Proposition 3.1). To this end, using Lemma 2.4 and the induction hypothesis with the pair
(m − 1, n) yields

∥(∂t + v · ∇x)∂
m−1
t Dkx

x g∥Cαm,n
l

≲T ,ν,m,n µν(v0). (4-35)

Due to the induction hypothesis with the pair (m − 1, n + 1), for any ν ′
∈ (0, ν),

µ−ν′

(v0)∥(v · ∇x)∂
m−1
t Dkx

x g∥C2+αm,n
l

≲ν,ν′ µ−ν(v0)∥∂
m−1
t ∇x Dkx

x g∥C2+αm,n
l

≲T ,ν,m,n 1. (4-36)

Then, (4-35) and (4-36) produce the bound on µ−ν′

(v0)∥q∥Cαm,n
l

.

Step 3. Similarly, to show (4-27) for any differential operator ∂
kt
t Dkx

x Dkv
v , we proceed with a bidimensional

induction on (m, n) = (kt + |kx |, kv) such that, for any ν ∈
(
0, 1

2

)
,

∥∂
kt
t Dkx

x Dkv
v g∥C2+αm,n

l
≲T ,ν,m,n µν(v0). (4-37)

The case n = 0 is treated in the previous step. By Lemma 2.4 and the induction hypothesis (4-37) with
kt + |kx | = m and |kv| = n − 1, n ≥ 1, we have

∥∂v∂
kt
t ∂kx

x ∂kv
v g∥Cαm,n

l
≲ ∥∂

kt
t ∂kx

x ∂kv
v g∥C1+αm,n

l
≲T ,ν,m,n µν(v0).

Computing the equation satisfied by ∂v∂
kt
t ∂

kx
x ∂n−1

v g and proceeding as in the previous step, we conclude
the proof. □

5. Diffusion asymptotics

This section is devoted to the study of the global-in-time quantitative diffusion asymptotics which
consists of the (uniform-in-ϵ) convergence towards the equilibrium over long times and of the finite-time
asymptotics, including the results of Theorem 1.1(ii) and Theorem 1.4.

We first introduce the required notation. For any scalar or vector-valued function 9 ∈ L1(Rd, dµ), we
denote its velocity mean by

⟨9⟩ :=

∫
Rd

9(v) dµ.
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For any pair of functions (scalars, vectors, or d ×d matrices) 91, 92 ∈ L2(Td
×Rd , dm), we denote their

L2 inner product with respect to the measure dm by

(91, 92) :=

∫
Td×Rd

91(x, v)92(x, v) dm,

where the multiplication between the pair in the integrand is replaced by the scalar contraction product
if 91 and 92 are a pair of vectors or matrices.

Recalling our notation for the Ornstein–Uhlenbeck operator LOU = (∇v − v) · ∇v, we apply the
substitutions fϵ = µhϵ and fϵ,in = µhϵ,in in (1-2) and obtain{

(ϵ∂t + v · ∇x)hϵ(t, x, v) =
1
ϵ
⟨hϵ⟩

β(t, x) LOU hϵ(t, x, v),

hϵ(0, x, v) = hϵ,in(x, v).
(5-1)

In this setting, by applying integration by parts, for any h1, h2 ∈ C∞
c (Td

× Rd), we get

(h1, LOU h2) = −(∇vh1, ∇vh2).

We will use this identity repeatedly in the computation below. Then, the operator LOU is self-adjoint
with respect to the inner product ( · , · ), and the bracket ⟨ · ⟩ is a projection on the null space of LOU.
Moreover, as the total mass is conserved, we define

M0 :=

∫
Td×Rd

hϵ dm =

∫
Td

⟨hϵ⟩ dx . (5-2)

Proceeding with the macro-micro (fluid-kinetic) decomposition, we define the orthogonal complement of
the projection ⟨ · ⟩ of hϵ as

h⊥

ϵ (t, x, v) := hϵ(t, x, v)− ⟨hϵ⟩(t, x).

In this framework, the local mass ⟨hϵ⟩ is the macroscopic (fluid) part and the complement h⊥
ϵ is the

microscopic (kinetic) part. In addition, taking the bracket ⟨ · ⟩ after multiplying the equation in (5-1)
with 1 and v leads to the macroscopic equations

ϵ∂t ⟨hϵ⟩ +∇x · ⟨vhϵ⟩ = 0, (5-3)

ϵ∂t ⟨vhϵ⟩ +∇x · ⟨v⊗2hϵ⟩ = −
1
ϵ
⟨hϵ⟩

β
⟨vhϵ⟩, (5-4)

where ⟨vhϵ⟩ and ⟨v⊗2hϵ⟩ represent the local momentum and the stress tensor, respectively.

5A. Long time behavior. Our aim is to establish the (uniform-in-ϵ) exponential decay towards the
equilibrium M0 for (5-1). In particular, when ϵ = 1, it sets up the exponential convergence in each order
derivative based on the smoothness a priori estimates given in Section 4C.

We note that the classical coercive method is not applicable in our case to obtain the convergence to
equilibrium due to the degeneracy of the ellipticity of the spatially inhomogeneous equation. Indeed, the
Poincaré inequality only produces a spectral gap on the orthogonal complement of the projection ⟨ · ⟩;
see (5-7). As mentioned in Section 1B, there are several ways to achieve the long-time asymptotics. We
mainly follow the argument in [Esposito et al. 2013] (see also [Kim et al. 2020]) in a simpler scenario.
It also allows us to see some similarity among [Dolbeault et al. 2015; Esposito et al. 2013; Hérau 2018].
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Proposition 5.1. Let the function λt : R+ → [0, 3] satisfy λ′
t ≤ 0 on R+. If hϵ is a solution to (5-1)

in R+ × Td
× Rd associated with the initial data 0 ≤ hϵ,in ≤ 3 and satisfying

⟨hϵ⟩
β(t, x) ≥ λt in R+ × Td and

∫
R+

(λt + λ′

t) dt = ∞, (5-5)

then the solution hϵ converges to the state M0 in L2(dm) as t → ∞. More precisely, there exists some
universal constant c > 0 such that, for any t > 0, we have

∥hϵ(t, · , · ) − M0∥
2
L2(dm)

≲ ∥hϵ,in − M0∥
2
L2(dm)

exp
(
−c

∫ t

0
(λs + λ′

s) ds
)

. (5-6)

Proof. Since the velocity mean of the microscopic part vanishes, ⟨h⊥
ϵ ⟩ = 0, using (5-1) and the Poincaré

inequality yields

1
2

d
dt

∥hϵ − M0∥
2
L2(dm)

=
1
ϵ2 (⟨hϵ⟩

β LOU hϵ, hϵ − M0) = −
1
ϵ2 (⟨hϵ⟩

β
∇vh⊥

ϵ , ∇vh⊥

ϵ )

≤ −
λt

ϵ2 ∥∇vh⊥

ϵ ∥
2
L2(dm)

≲ −
λt

ϵ2 ∥h⊥

ϵ ∥
2
L2(dm)

. (5-7)

Now we have to recover a new entropy that would give some bound on the projection ⟨hϵ⟩ − M0.
For every test function v · 9(t, x)µ, with a vector-valued function 9 ∈ H 1

t,x(R
+

× Td , Rd), we write
the weak formulation of (5-1) as

d
dt

(v · 9, hϵ) =
1
ϵ
(v⊗2

: ∇x9, hϵ) + (v · ∂t9, hϵ) +
1
ϵ2 (⟨hϵ⟩

β LOU v · 9, hϵ).

Taking the macro-micro decomposition into account, from the above expression we obtain

d
dt

(v · 9, h⊥

ϵ ) =
1
ϵ
(|v1|

2 tr(∇x9), ⟨hϵ⟩ − M0) +
1
ϵ
(v⊗2

: ∇x9, h⊥

ϵ )

+ (v · ∂t9, h⊥

ϵ ) −
1
ϵ2 (⟨hϵ⟩

βv · 9, h⊥

ϵ ). (5-8)

Let us now introduce an auxiliary function u(t, x): for any fixed t ∈ R+, defined u(t, x) as the solution
of the following elliptic equation under the compatibility condition (5-2):

−1x u = ⟨hϵ⟩ − M0 in Td, (5-9)

whose elliptic estimate states

∥∇x u∥L2
x
+ ∥∇

2
x u∥L2

x
≲ ∥⟨hϵ⟩ − M0∥L2

x
. (5-10)

In addition, observing that ⟨vhϵ⟩=⟨vh⊥
ϵ ⟩, from (5-3) we get

ϵ∂t ⟨hϵ⟩ +∇x · ⟨vh⊥

ϵ ⟩ = 0.

Combining this macroscopic relation with (5-9), we have∫
Td

|∇x(∂t u)|2 =

∫
Td

∂t u∂t ⟨hϵ⟩ = −
1
ϵ

∫
Td

∂t u∇x · ⟨vh⊥

ϵ ⟩ =
1
ϵ

∫
Td

∇x(∂t u) · ⟨vh⊥

ϵ ⟩.
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It then follows from Hölder’s inequality that

∥∇x(∂t u)∥L2
x
≤

1
ϵ
∥⟨vh⊥

ϵ ⟩∥L2
x
≲ 1

ϵ
∥h⊥

ϵ ∥L2(dm). (5-11)

Choosing 9 = ∇x u in (5-8) yields

−
1
ϵ
(|v1|

21x u, ⟨hϵ⟩− M0)+
d
dt

(v · ∇x u, h⊥

ϵ ) ≲

(
1
ϵ
∥∇

2
x u∥L2

x
+∥∇x(∂t u)∥L2

x
+

1
ϵ2 ∥∇x u∥L2

x

)
∥h⊥

ϵ ∥L2(dm).

Applying (5-9)–(5-11), we have

1
ϵ
∥⟨hϵ⟩ − M0∥

2
L2

x
+

d
dt

(v · ∇x u, h⊥

ϵ ) ≲
1
ϵ2 ∥⟨hϵ⟩ − M0∥L2

x
∥h⊥

ϵ ∥L2(dm) +
1
ϵ
∥h⊥

ϵ ∥
2
L2(dm)

.

By the Cauchy–Schwarz inequality, we arrive at

∥⟨hϵ⟩ − M0∥
2
L2

x
+ ϵ

d
dt

(v · ∇x u, h⊥

ϵ ) ≲
1
ϵ2 ∥h⊥

ϵ ∥
2
L2(dm)

. (5-12)

Then, (5-12) combined with (5-7) implies

d
dt

Eϵ(t) ≲ −
1 − δ

ϵ2 ∥h⊥

ϵ ∥
2
L2(dm)

− δλt∥⟨hϵ⟩ − M0∥
2
L2

x
+ δϵλ′

t(v · ∇x u, h⊥

ϵ )

≤ −δλt∥hϵ − M0∥
2
L2(dm)

− δλ′

t |(v · ∇x u, h⊥

ϵ )|,

where the constant δ ∈
(
0, 1

2

)
will be determined and the modified entropy Eϵ is defined by

Eϵ(t) := ∥hϵ − M0∥
2
L2(dm)

+ δϵλt(v · ∇x u, h⊥

ϵ ).

We note that (5-10) also implies

|(v · ∇x u, h⊥

ϵ )| ≲ ∥⟨hϵ⟩ − M0∥L2
x
∥h⊥

ϵ ∥L2(dm) ≤ ∥hϵ − M0∥
2
L2(dm)

. (5-13)

It means that the modified entropy Eϵ is equivalent (independent of ϵ) to the square of the L2(dm)-distance
between hϵ and M0, when the constant δ > 0 is sufficiently small.

Hence we have
d
dt

Eϵ(t) ≲ −(λt + λ′

t)Eϵ(t).

The conclusion (5-6) then follows from Grönwall’s inequality and the equivalence between Eϵ(t)
and ∥hϵ(t, · , · ) − M0∥

2
L2(dm)

. □

We pointed out that the elliptic estimate (5-10) for the Poisson equation (5-9) used in the above proof
resulting from a Poincaré-type inequality essentially relies on the compactness of the spatial domain.
It was shown in [Bouin et al. 2020] that the related elliptic estimate can be recovered by applying the
Nash inequality [1958] when the spatial domain is the whole space Rd, whose argument is under an
abstract setting. Inspired by the proof of Proposition 5.1 above, we are also able to make the construction
of [Bouin et al. 2020] precise to see that the argument still works for the nonlinear equation (5-1). We
remark that the following algebraic decay rate is optimal in the sense that it is the same as in the linear
case; see Appendix A of [Bouin et al. 2020].
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Proposition 5.2. Assume the initial data hϵ,in is valued in [λ, 3] and satisfies hϵ,in − M1 ∈ L1(R2d , dm)

for some universal constant M1 > 0. Let the function hϵ valued in [λ, 3] be a solution to (5-1) in R+×R2d

associated with hϵ |t=0 = hϵ,in. Then, for any t > 0,

∥hϵ − M1∥L2(R2d , dm) ≲ (1 + ∥hϵ,in − M1∥L1(R2d , dm))t
−d/4.

Proof. By the same derivation of (5-7) and (5-8) as in the proof of Proposition 5.1, we have the microscopic
coercivity

d
dt

∥hϵ − M1∥
2
L2(R2d , dm)

≲ −
1
ϵ2 ∥h⊥

ϵ ∥
2
L2(R2d , dm)

, (5-14)

and the identity from the macro-micro decomposition

−(|v1|
21xw, ⟨hϵ⟩ − M0)W + ϵ

d
dt

(v · ∇xw, h⊥

ϵ )W

= (v⊗2
: ∇

2
x w, h⊥

ϵ )W + ϵ(v · ∂t∇xw, h⊥

ϵ )W −
1
ϵ
(⟨hϵ⟩

βv · ∇xw, h⊥

ϵ )W , (5-15)

where ( · , · )W denotes the L2(R2d, dm) inner product, and the function w(t, x)∈ L∞
t ([0, T ]; L1

x ∩L2
x(R

d))

is chosen to be the solution of the following elliptic equation associated with the constant 2 := ⟨|v1|
2
⟩

and the macroscopic source ⟨hϵ⟩ − M1:

w − 21xw = ⟨hϵ⟩ − M1 in Rd. (5-16)

The elliptic estimate is derived by integrating (5-16) against −21xw, so that

2∥∇xw∥
2
L2

x (R
d )

+ 22
∥∇

2
x w∥

2
L2

x (R
d )

= (−21xw, ⟨hϵ⟩ − M1)W

= (⟨hϵ⟩ − M1 − w, ⟨hϵ⟩ − M1)W =: A. (5-17)

It also follows from the same derivation as (5-11) that

∥∇x(∂tw)∥L2
x (R

d ) ≲
1
ϵ
∥h⊥

ϵ ∥L2(R2d , dm).

Combining the above two estimates with (5-15), we obtain

A+ ϵ
d
dt

(v · ∇xw, h⊥

ϵ )W ≲ 1
ϵ
A1/2

∥h⊥

ϵ ∥L2(R2d , dm) + ∥h⊥

ϵ ∥
2
L2(R2d , dm)

,

which implies from the Cauchy–Schwarz inequality that

A+ ϵ
d
dt

(v · ∇xw, h⊥

ϵ )W ≲
1
ϵ2 ∥h⊥

ϵ ∥
2
L2(R2d , dm)

.

Denoting the modified entropy by

Eϵ(t) := ∥hϵ − M1∥
2
L2(R2d , dm)

+ δϵ(v · ∇xw, h⊥

ϵ )W

with a sufficiently small constant δ > 0 and using (5-14), we conclude that

d
dt

Eϵ(t) ≲ −A− ∥h⊥

ϵ ∥
2
L2(R2d , dm)

. (5-18)
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Recalling the similar estimate (5-13), we see that Eϵ is equivalent to the square of the L2(R2d , dm)-
distance between hϵ and M1. It thus suffices to recover ⟨hϵ⟩ − M1 by means of A. By (5-16) and the
convexity of | · |, we know that |w| is a subsolution in the sense that

|w| −21x |w| ≤ |⟨hϵ⟩ − M1| in Rd,

and hence ∥w∥L1
x (R

d ) ≤ ∥⟨hϵ⟩ − M1∥L1
x (R

d ). With the aid of Corollary 4.10,

∥w∥L1
x (R

d ) ≤ ∥h − M1∥L1(R2d , dm) ≤ ∥hϵ,in − M1∥L1(R2d , dm).

Applying (5-17) and the Nash inequality ∥w∥
d+2
L2

x (R
d )
≲ ∥w∥

2
L1

x (R
d )

∥∇xw∥
d
L2

x (R
d )

, we then acquire

∥⟨hϵ⟩ − M1∥
2
L2

x (R
d )
≲A+ ∥w∥

2
L2

x (R
d )
≲A+ ∥hϵ,in − M1∥

4/(d+2)

L1(R2d , dm)
∥∇xw∥

2d/(d+2)

L2
x (R

d )

≲ (A2/(d+2)
+ ∥hϵ,in − M1∥

4/(d+2)

L1(R2d , dm)
)Ad/(d+2).

Since ∥hϵ − M1∥
2
L2

x (R
d )

≤ (3 + M1)∥hϵ,in − M1∥L1(R2d , dm), in both cases

A+ ∥h⊥

ϵ ∥
2
L2(R2d , dm)

≶ ∥hϵ − M1∥
2
L2(R2d , dm)

,

we conclude that

∥hϵ − M1∥
2
L2(R2d , dm)

≲ (1 + ∥hϵ,in − M1∥
4/(d+2)

L1(R2d , dm)
)(A+ ∥h⊥

ϵ ∥
2
L2(R2d , dm)

)d/(d+2).

Combining this with (5-18) and the equivalence between Eϵ and ∥hϵ − M1∥
2
L2(R2d , dm)

, we have

d
dt

Eϵ(t) ≲ −(1 + ∥hϵ,in − M1∥
4/d
L1(R2d , dm)

)−1Eϵ(t)1+2/d,

Since Eϵ(0) ≲ ∥hϵ,in − M1∥L1(R2d , dm), we arrive at

Eϵ(t) ≲ [Eϵ(0)−2/d
+ (1 + ∥hϵ,in − M1∥

4/d
L1(R2d , dm)

)−1t]−d/2 ≲ (1 + ∥hϵ,in − M1∥
2
L1(R2d , dm)

)t−d/2. □

As far as the case ϵ = 1 is concerned, we conclude the result of convergence to equilibrium.

Proof of Theorem 1.1(ii). Consider g := µ1/2h. In view of Proposition 4.8 and Corollary 4.10 with the
assumption on initial data, we know that λ ≤ µ−1/2g ≤ 3 in R+ × �x × Rd for �x = Td or Rd. By
applying Proposition 5.1 to h = µ−1/2g with λt = λ and �x = Td, we have an universal constant c > 0
such that

∥g(t) − M0µ
1/2∥L2(Td×Rd ) ≲ e−2ct.

Combining this with the Sobolev embedding and the interpolation, we derive the following for any k ∈ N

with k ≥ d:

∥g(t) − M0µ
1/2

∥Ck(Td×Rd ) ≲k ∥g(t) − M0µ
1/2

∥H2k(Td×Rd )

≲k ∥g(t) − M0µ
1/2

∥
1/2
H4k(Td×Rd )

∥g(t) − M0µ
1/2

∥
1/2
L2(Td×Rd )

.

Since the H 4k-norm on the right-hand side is bounded due to the global regularity estimate given by
Proposition 4.12, we obtain the exponential convergence to equilibrium in each order derivative.
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The asserted result in the case �x = Rd is a direct consequence of Proposition 5.2. As a side remark,
one is also able to upgrade the long-time convergence to higher-order derivatives of solutions by means
of the global regularity estimate and interpolation as above; it yet gives the algebraic decay rate that is
not optimal. □

5B. Finite-time asymptotics. The study of macroscopic dynamics for the nonlinear kinetic model (5-1)
in this subsection relies on the regularity of the target equation (1-3). On account of this, let us begin
with mentioning some standard results for (1-3) without proof. If the initial data satisfies λ ≤ ρin ≤ 3,
then such bounds are preserved along times, λ ≤ ρ ≤ 3, in the same spirit as Lemma 4.1. Combining the
parabolic De Giorgi–Nash–Moser theory with Schauder theory, we know that the solution ρ is smooth for
any positive time. We state the a priori estimate precisely as follows, where its behavior near the initial
time is taken into account in view of the standard scaling technique.

Lemma 5.3. Let ρin ∈ Cα0(Td) be valued in [λ, 3] with α0 ∈ (0, 1), and let ρ be the solution to (1-3)
in R+ × Td. Then there is some universal constant α ∈ (0, 1) such that

∥ρ∥Cα(R+×Td ) ≲ 1 + ∥ρin∥Cα0 (Td ). (5-19)

Moreover, there exists some constant Cρ > 0 depending only on universal constants and ∥ρin∥Cα0 (Td ) such
that, for any t ∈ (0, 1] and x ∈ Td, we have

t (1−α)/2
|∇xρ(t, x)| + t (2−α)/2

|∂tρ(t, x)| + t (2−α)/2
|∇

2
x ρ(t, x)| + t (3−α)/2

|∂t∇xρ(t, x)| ≤ Cρ, (5-20)

and, for any t ≥ 1, we have

∥∇xρ(t, · )∥L∞(Td ) + ∥∂tρ(t, · )∥L∞(Td ) + ∥∇
2
x ρ(t, · )∥L∞(Td ) + ∥∂t∇xρ(t, · )∥L∞(Td ) ≲ 1. (5-21)

We measure the distance between solutions to the scaled nonlinear kinetic model (1-2) and solutions
to the fast diffusion equation (1-3) by the relative phi-entropy functional Hβ (see Definition 1.3). The
following lemma shows the effectiveness of the relative phi-entropy for measuring L2-distance by virtue
of the uniform convexity of ϕβ . It can be seen as a simple version of the Csiszár–Kullback inequality
on the relative entropy. We give its statement below with a proof taken from [Dolbeault and Li 2018,
Proposition 2.1] for the sake of completeness.

Lemma 5.4. Let h1 and h2 be two functions valued in [0, 3]. Then we have

Hβ(h1 |h2) ≥
(
1 −

1
2β

)
3−β

∥h1 − h2∥
2
L2(dm)

. (5-22)

If we additionally assume the lower bound h1, h2 ≥ λ, then

Hβ(h1 |h2) ≤
(
1 −

1
2β

)
λ−β

∥h1 − h2∥
2
L2(dm)

.

Proof. Since ϕβ(1) = ϕ′

β(1) = 0 and β ∈ [0, 1], for any z ∈ R+, there exists ξz ∈ R+ lying between 1
and z such that

ϕβ(z) =
1
2ϕ′′

β(ξz)(z − 1)2
=

1
2(2 − β)ξ−β

z (z − 1)2.
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Since min{z, 1} ≤ ξz ≤ max{z, 1}, we have∫
Td×Rd

max{h−β

1 , h−β

2 }|h1 − h2|
2 dm ≤

2
2 − β

Hβ(h1 |h2) ≤

∫
Td×Rd

min{h−β

1 , h−β

2 }|h1 − h2|
2 dm,

which implies the desired results by using the boundedness of h1 and h2. □

Let us consider the finite-time diffusion asymptotics.

Proposition 5.5. Let ρin ∈ Cα0(Td) be valued in [λ, 3] with α0 ∈ (0, 1), and let the sequence of functions
{hϵ,in}ϵ∈(0,1) ⊂ Cα0(Td

× Rd) satisfy

⟨hϵ,in⟩ ≥ λ in Td and 0 ≤ hϵ,in ≤ 3 in Td
× Rd.

Let hϵ be the solutions of (5-1) associated with this initial data. Then there exist some universal constants
α ∈ (0, 1) and C > 0, and some constant Cρ > 0 depending only on universal constants and ∥ρin∥Cα0 (Td )

such that, for any ϵ ∈ (0, 1) and for any t ∈ [T , 1] with T ∈ (0, 1), the following estimate holds:

Hβ(hϵ |ρ)(t) ≤ CρHβ(hϵ |ρ)(T ) + Cρϵ(t (α−1)/2
+ ϵt (α−2)/2), (5-23)

where ρ(t, x) is the solution to (1-3) associated with the initial data ρin, and, for any t ≥ 1, we have

Hβ(hϵ |ρ)(t) ≤ [Hβ(hϵ |ρ)(t)(1) + Cϵ(1 + t1/2)]eCt. (5-24)

Proof. For β ∈ [0, 1), the phi-entropy of hϵ relative to ρ reads

Hβ(hϵ |ρ) = Hβ(hϵ |1) −Hβ(ρ |1) −
2 − β

1 − β
(⟨hϵ⟩ − ρ, ρ1−β

− 1).

As far as the entropy Hβ(hϵ |1) is concerned, the entropy dissipation is derived by (5-1), integration by
parts, and using Hölder’s inequality ⟨∇vhϵ⟩

2
≤ ⟨hϵ⟩

β
⟨h−β

ϵ |∇vhϵ |
2
⟩:

d
dt

Hβ(hϵ |1) =
2 − β

1 − β
(h1−β, ht) = −

2 − β

ϵ2 (h−β
ϵ ∇vhϵ, ⟨hϵ⟩

β
∇vhϵ)

≤ −
2 − β

ϵ2 ∥⟨∇vhϵ⟩∥
2
L2

x
= −

2 − β

ϵ2 ∥⟨vhϵ⟩∥
2
L2

x
. (5-25)

In view of the limiting equation (1-3), we have

d
dt

Hβ(ρ |1) =
2 − β

1 − β
(ρ1−β, ∂tρ) = −(2 − β)(ρ−β

∇xρ, ρ−β
∇xρ). (5-26)

A direct computation with the macroscopic equation (5-3) and (1-3) leads to

d
dt

(⟨hϵ⟩ − ρ, ρ1−β
− 1)

= (ρ1−β, ∂t ⟨hϵ⟩) + ((1 − β)ρ−β
⟨hϵ⟩ − (2 − β)ρ1−β, ∂tρ)

=
1 − β

ϵ
(ρ−β

∇xρ, ⟨vhϵ⟩) − ((1 − β)∇x(ρ
−β

⟨hϵ⟩) − (2 − β)ρ−β
∇xρ, ρ−β

∇xρ). (5-27)
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The evolution of Hβ(hϵ |ρ) is then estimated by combining (5-25), (5-26), and (5-27):

1
2 − β

d
dt

Hβ(hϵ |ρ) ≤ −
1
ϵ2 ∥⟨vhϵ⟩∥

2
L2

x
−

1
ϵ
(⟨vhϵ⟩, ρ

−β
∇xρ) + (∇x(ρ

−β
⟨hϵ⟩ − ρ1−β), ρ−β

∇xρ)

= −∥ϵ−1
⟨vhϵ⟩ + ρ−β

∇xρ∥
2
L2

x
+ (ϵ−1

⟨vhϵ⟩, ρ
−β

∇xρ)

+ (∇x ⟨hϵ⟩ +β(1 − ρ−1
⟨hϵ⟩)∇xρ, ρ−2β

∇xρ)

We remark that the above inequality also holds for β = 1 by a similar computation. Abbreviate

Qϵ := ϵ−1
⟨vhϵ⟩ + ρ−β

∇xρ and Rϵ := −∇x · ⟨v ⊗ ∇vhϵ⟩ − ϵ∂t ⟨vhϵ⟩,

and write the macroscopic equation (5-4) in the form ∇x ⟨hϵ⟩ = −ϵ−1
⟨hϵ⟩

β
⟨vhϵ⟩ + Rϵ . We then have

1
2 − β

d
dt

Hβ(hϵ |ρ) ≤ −∥Qϵ∥
2
L2

x
+ ((1 − ρ−β

⟨hϵ⟩
β)Qϵ, ρ

−β
∇xρ) + (Rϵ, ρ

−2β
∇xρ)

+ (ρ−β
⟨hϵ⟩

β
− βρ−1

⟨hϵ⟩ − 1 + β, ρ−2β
|∇xρ|

2)

≤ 2∥ρ−1−β
|∇xρ|∥

2
L∞

t,x
∥⟨hϵ⟩ − ρ∥

2
L2

x
+ (Rϵ, ρ

−2β
∇xρ), (5-28)

where, for the second inequality, we used the Cauchy–Schwarz inequality

2((1 − ρ−β
⟨hϵ⟩

β)Qϵ, ρ
−β

∇xρ) ≤ ∥Qϵ∥
2
L2

x
+ (|1 − ρ−β

⟨hϵ⟩
β
|
2, |ρ−β

∇xρ|
2)

and the following two elementary inequalities with β ∈ [0, 1]:

|zβ
− 1| ≤ |z − 1| and |zβ

− βz − 1 + β| ≤ |z − 1|
2 for any z ∈ R+.

In view of Hölder’s inequality and inequality (5-22) given in Lemma 5.4, we know that

∥⟨hϵ⟩ − ρ∥
2
L2

x
≤ ∥hϵ − ρ∥

2
L2(dm)

≤ 23βHβ(hϵ |ρ).

Combining this with (5-28) and (5-20), we derive that, for any t ∈ (0, 1],

d
dt

Hβ(hϵ |ρ) ≤ Cρ tα−1Hβ(hϵ |ρ) + 2(Rϵ, ρ
−2β

∇xρ), (5-29)

where the constants α ∈ (0, 1) and Cρ > 0 are provided by Lemma 5.3.
We point out that, after integrating in time, the remainder term in (5-29) involving Rϵ is of order O(ϵ)

due to the control of the entropy production and the regularity of the limiting equation. Indeed,∫ t

0
(Rϵ, ρ

−2β
∇xρ) =

∫ t

0
(⟨v ⊗ ∇vhϵ⟩, ∇x(ρ

−2β
∇xρ)) + ϵ

∫ t

0
(⟨vhϵ⟩, ∂t(ρ

−2β
∇xρ))

− ϵ(⟨vhϵ⟩, ρ
−2β

∇xρ)(t) + ϵ(⟨vhϵ⟩, ρ
−2β

∇xρ)(0)

≲ (∥∇x(ρ
−2β

∇xρ)∥L∞
t,x + ϵ∥∂t(ρ

−2β
∇xρ)∥L∞

t,x )

∫ t

0
∥⟨vhϵ⟩∥L2

x

+ ϵ∥ρ−2β
∇xρ∥L∞

t,x ∥⟨vhϵ⟩∥L∞([0,T ];L2
x )
.
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It then follows from (5-20), (5-25), and the global upper bound of hϵ (Lemma 4.1) that, for any t ∈ (0, 1],∫ t

0
(Rϵ, ρ

−2β
∇xρ) ≤ Cρ(t (α−1)/2

+ ϵt (α−2)/2)

(∫ t

0
∥⟨vhϵ⟩∥

2
L2

x

)1/2

+ Cρϵt (α−1)/2

≤ Cρ(ϵt (α−1)/2
+ ϵ2t (α−2)/2) sup

s∈[0,t]

√
Hβ(hϵ |1)(s) + Cρϵt (α−1)/2

≤ Cρ(ϵt (α−1)/2
+ ϵ2t (α−2)/2) + Cρϵt (α−1)/2.

Combining this estimate with (5-29) as well as Grönwall’s inequality, we conclude (5-23). Additionally,
we arrive at (5-24) if we apply Lemma 5.3 with (5-21) instead of (5-20) in the above argument. □

We are now in a position to conclude the global-in-time diffusion asymptotics.

Proof of Theorem 1.4. We are going to combine Propositions 5.1 and 5.5 with a delicate analysis on the
relative entropy around the initial time to get Theorem 1.4. The analysis is based on the barrier function
method. Let us assume the constant α ∈ (0, 1) provided by Proposition 5.5.

Step 1. Pointwise estimate. Let us fix δ ∈ (0, 1) and (x1, v1) ∈ Td
× BR with R > 0 and consider the

function

h̄(t, x, v) := C1t + C2(|x − x1 − ϵ−1tv|
2
+ |v − v1|

2),

where the constants C1, C2 > 0 are to be determined. For any t ≤ ϵδ/(4(1 + R)), we have

h̄ ≥ C2(|x − x1|
2
+ |v − v1|

2
− 2ϵ−1t |x − x1||v|) ≥

1
2C2δ

2
= 3 on ∂ Bδ(x1, v1),

where we chose C2 := 2δ−23. For any (x, v) ∈ Bδ(x1, v1),

|⟨h⟩
β LOU h̄| ≲ |1v h̄| + |v · ∇v h̄| ≲ δ−2(1 + R2)(1 + ϵ−2t2).

Therefore, for any t ≤ ϵδ/(4(1 + R)) and (x, v) ∈ Bδ(x1, v1),

(∂t + ϵ−1v · ∇x − ϵ−2
⟨h⟩

β LOU)h̄ ≥ C1 − C0ϵ
−2δ−2(1 + R2)(1 + ϵ−2t2) ≥ 0,

where the constant C0 > 0 is universal and we chose C1 := 2C0ϵ
−2δ−2(1 + R2). Then, the maximum

principle implies that, for any t ≤ ϵδ/(4(1 + R)) and (x, v) ∈ Bδ(x1, v1),

|hϵ(t, x, v)− hϵ,in(x1, v1)| ≤ h̄(t, x, v)+ sup
Bδ(x1,v1)

|hϵ,in(x, v)− hϵ,in(x1, v1)|. (5-30)

In particular, for any t ≤ ϵδ/(4(1 + R)) and (x1, v1) ∈ Td
× BR ,

|hϵ(t, x1, v1) − hϵ,in(x1, v1)| ≲ ϵ−2δ−2(1 + R2)t + ∥hϵ,in∥Cα0 (Td×Rd )δ
α. (5-31)

As far as the solution ρ to the limiting equation (1-3) is concerned, using the Hölder estimate (5-19) in
Lemma 5.3, we derive that, for any t ∈ R+,

∥ρ(t) − ρin∥L∞(Td ) ≲ (1 + ∥ρin∥Cα0 (Td ))t
α. (5-32)
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Step 2. Estimate of the relative entropy around the initial time. Let us restrict our attention to the time
interval [0, T ] with T ∈ (0, 1) to be determined. Compute the relative entropy Hβ(hϵ |ρ) in terms of
initial data as

Hβ(hϵ |ρ) = Hβ(hϵ,in |ρin)+

∫
Td×Rd

[(ϕβ(hϵ)−ϕβ(hϵ,in))−(ϕβ(ρ)−ϕβ(ρin))] dm

−

∫
Td×Rd

[(ϕ′

β(ρ)−ϕ′

β(ρin))(hϵ,in −ρin)+ϕ′

β(ρ)(hϵ −hϵ,in)−ϕ′

β(ρ)(ρ−ρin)] dm. (5-33)

Consider a truncation in v for the integrals on the right-hand side. Since hϵ, hϵ,in, ρ, and ρin are all
bounded from above (Lemma 4.1), we have∫

Td×Bc
R

[|ϕβ(hϵ) − ϕβ(hϵ,in)| + |ϕβ(ρ) − ϕβ(ρin)|] dm ≲
∫

Bc
R

dµ ≲ R−4. (5-34)

Observe that for any a, b ∈ (0, 3], there exists ξ ∈ R+ lying between a and b such that

ϕβ(a2) − ϕβ(b2) = 2ξϕ′

β(ξ 2)(a − b).

Meanwhile, |ξϕ′

β(ξ 2)| ≲ 1 for any ξ ∈ (0, 3]. Thus,

|ϕβ(hϵ) − ϕβ(hϵ,in)| ≲ |hϵ − hϵ,in|
1/2 and |ϕβ(ρ) − ϕβ(ρin)| ≲ |ρ − ρin|

1/2.

Set R := ϵ−η/4, δ := ϵη/4, and T :=
1
8ϵ2+2η for some constant η ∈ (0, 1) to be determined. In this setting,

T ≤ ϵδ/(4⟨R⟩). It then follows from (5-31), (5-32), and (5-34) that, for any t ≤ T ,∫
Td×Rd

[|ϕβ(hϵ) − ϕβ(hϵ,in)| + |ϕβ(ρ) − ϕβ(ρin)|] dm

≲ R−4
+

∫
Td×BR

[|hϵ − hϵ,in|
1/2

+ |ρ − ρin|
1/2

] dm

≲ ϵη
+ ϵη/2

+ ∥hϵ,in∥
1/2
Cα0 (Td×Rd )

ϵαη/8
+ (1 + ∥ρin∥

1/2
Cα0 (Td )

)ϵα+αη. (5-35)

In addition,
∥hϵ − hϵ,in∥L1(Td×Bc

R , dm) ≲ R−4

and |ϕ′

β |≲ 1 on [λ, 3]. Therefore, combining (5-31) and (5-32) with inequality (5-22) given in Lemma 5.4
yields, for any t ≤ T ,∫

Td×Rd
[|(ϕ′

β(ρ) − ϕ′

β(ρin))(hϵ,in − ρin)| + |ϕ′

β(ρ)(hϵ − hϵ,in)| + |ϕ′

β(ρ)(ρ − ρin)|] dm

≲ ∥hϵ,in − ρin∥L2(Td×Rd , dm) + ∥hϵ − hϵ,in∥L1(Td×Rd , dm) + ∥ρ − ρin∥L1(Td )

≲H1/2
β (hϵ,in |ρin) + R−4

+ ∥hϵ − hϵ,in∥L1(Td×BR, dm) + ∥ρ − ρin∥L1(Td )

≲ ϵ′1/2
+ ϵη

+ ∥hϵ,in∥Cα0 (Td×Rd )ϵ
αη/4

+ (1 + ∥ρin∥Cα0 (Td ))ϵ
2α+2αη. (5-36)

Plugging (5-35) and (5-36) into expression (5-33), we derive, for any t ≤ T ,

Hβ(hϵ |ρ)(t) ≲ (1 + ∥hϵ,in∥Cα0 (Td×Rd ) + ∥ρin∥Cα0 (Td ))(ϵ + ϵ′)αη/8. (5-37)
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Step 3. Conclusion. Recall that we have chosen T =
1
8ϵ2+2η. In view of (5-37) and the estimate (5-23)

given in Proposition 5.5, one may optimize in η to get the result. For simplicity, we pick η := α/(4 − 2α)

so that T =
1
8ϵ(4−α)/(2−α) and ϵ(T (α−1)/2

+ ϵT (α−2)/2) ≲ ϵα/2. It turns out that, for any t ∈ [0, 1],

Hβ(hϵ |ρ)(t) ≤ CρHβ(hϵ |ρ)(T ) + Cρϵ(T (α−1)/2
+ ϵT (α−2)/2) ≤ C∗(ϵ + ϵ′)αη/8, (5-38)

where the constant Cρ > 0 is provided in Proposition 5.5 and the constant C∗ > 0 depends only on universal
constants, ∥ρin∥Cα0 (Td ), and ∥hϵ,in∥Cα0 (Td×Rd ). Then, using the estimate (5-24) given in Proposition 5.5
with (5-22), we arrive at point (i) of Theorem 1.4.

As for point (ii) of Theorem 1.4, applying (5-24) together with (5-22) and (5-38), for any t ∈ [1, T ],
we have

∥hϵ(t) − ρ(t)∥2
L2(dm)

≲ [Hβ(hϵ |ρ)(1) + ϵ(1 + T 1/2)]eCT

≲ [C∗(ϵ + ϵ′)αη/8
+ ϵ(1 + (−ι log(ϵ + ϵ′))1/2)](ϵ + ϵ′)−αη/16 ≲ C∗(ϵ + ϵ′)αη/16,

where we picked T :=−ι log(ϵ+ϵ′) with ι :=αη/(16C). Finally, using Proposition 5.1 with the additional
assumption that hϵ,in ≥ λ, we know from the long-time behavior that there is some universal constant c > 0
such that, for any t ≥ T ,

∥hϵ(t) − ρ(t)∥L2(dm) ≤ ∥hϵ(t) − M0∥L2(dm) + ∥ρ(t) − M0∥L2
x
≲ e−cT

= (ϵ + ϵ′)cι. □

Appendix A: Maximum principle

The following maximum principle (on a not necessarily bounded domain) is repeatedly applied throughout
the article. We state it in a more suitable fashion for the Fokker–Planck equations of our concern, whose
proof is in the same spirit as [Cameron et al. 2018, Lemma A.2].

Lemma A.1. Let the domain ω be a subset of Rd
× Rd and the parabolic cylinder ωT := (0, T ] × ω.

If f ∈ C2
kin(ωT ) ∩ C0(ωT ) is a bounded subsolution in the sense that

L1 f := (∂t + v · ∇x) f − tr(AD2
v f ) − B · ∇v f ≤ 0 in ωT , (A-1)

with the coefficients A(t, x, v), B(t, x, v) ∈ C0(ωT ) satisfying

λ|ξ |
2
≤ A(t, x, v)ξ · ξ ≤ 3|ξ |

2 and |B(t, x, v) · ξ | ≤ 3⟨v⟩|ξ | for any ξ ∈ Rd , (t, x, v) ∈ ωT ,

then supωT
f ≤ sup∂pωT

f , where the parabolic boundary ∂pωT is defined to be [0, T ] ×ω − (0, T ] ×ω.

Proof. If the domain ω is bounded, then the result is classical. For general (unbounded) ω, we consider
the auxiliary functions

φ1(t, v) := eC1t
⟨v⟩

2 and φ2(t, x) := eC2t
⟨x⟩

2

with C1, C2 > 0. Since f is bounded, for any ε1, ε2 > 0, there exists R(ε1), R(ε2) > 0 (independent of C1

and C2) such that f − ε1φ1 − ε2φ2 ≤ sup∂pωT
f in ωT ∩ {|x | ≥ R(ε2) or |v| ≥ R(ε1)}.

By choosing C1 = (d + 2)3, we have

L1φ1 = eC1t(C1⟨v⟩
2
− tr(A) − 2B · v) ≥ (C1 − (d + 2)3)⟨v⟩

2
= 0 in ωT .
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For any R1 ≥ R(ε1), there exists C2 > 0 depending only on R1 such that

L1φ2 = eC2t(C2⟨x⟩
2
+ v · x) ≥ (C2 − 1)⟨x⟩

2
− |v|

2
≥ 0 in ωT ∩ {|v| < R1}.

Therefore, for any R2 > R(ε2), we have that f − ε1φ1 − ε2φ2 is a subsolution to (3-1) in the bounded
domain (0, T ]×(ω∩(BR2 × BR1)) with the data smaller than sup∂pωT

f on the boundary portion contained
in {|x | = R2 or |v| = R1}. Then, applying the classical maximum principle yields

f − ε1φ1 − ε2φ2 ≤ sup
∂pωT

f in (0, T ] × (ω ∩ (BR2 × BR1)).

Sending R2 → 0, ε2 → 0, R1 → 0, and ε1 → 0 in order, we get the conclusion. □

Appendix B: Spreading of positivity

This appendix is devoted to the proof of Proposition 4.2. The argument follows the one presented in
[Henderson et al. 2020b], and it is based on the combination of Lemmas 4.5 and 4.6.

Proof of Proposition 4.2. The proof is split into four steps.

Step 1. Spreading positivity for all velocities for short times. Applying Lemma 4.5 (with τ = 1) yields
that there is some universal constant c0 > 0 such that, for any 0 ≤ t ≤ min{1, T, c0⟨r−1

⟩
−2

⟨v0⟩
−2

},

h(t, x, v) ≥
1
8δ1{|x−x0−tv|<r/2, |v−v0|<r/2} ≥

1
8δ1{|x−x0−tv0|<r/4, |v−v0|<r/4}.

Let r0 := min
{
1, 1

16r
}

and t :=
1
2 T . Then, Lemma 4.6 implies that there exists C0 > 0 depending only on

universal constants, T , δ, r , and v0 such that, for any 0 < t ≤ t ≤ T0 with

T0 := min
{
1, T, c0⟨r−1

⟩
−2

⟨v0⟩
−2, 1

4r0⟨v0⟩
−1}

and v ∈ Rd , we have

h(t, x, v) ≥ C−1
0 e−C0|v−v0|

4
1{|x−x0−tv0|<2r0} ≥ C−1

0 e−C0|v−v0|
4
1{|x−x0|<r0}. (B-1)

Step 2. Spreading positivity in space for short times. For any fixed t ∈ [t, T0] and x̄ ∈ Td, we set
v̄ := (x̄ − x0)/(t − t). In view of (B-1), by Lemma 4.5 (with τ = 2(t − t), v0 = v̄), we deduce that, if
t − t ≤ c0⟨2(t − t)r−1

0 ⟩
−2

⟨v̄⟩
−2 and in particular if

t ≤ t + t0 with t0 :=
c0r2

0

4 + r2
0
⟨x̄ − x0⟩

−2, (B-2)

then there exists δ0 > 0 with the same dependence as C0 such that, for any t ∈ [t, t],

h(t, x, v) ≥ δ01{|x−x0−(t−t)v|<r0/2, 2(t−t)|v−v̄|<r0/2} ≥ δ01{|x−x0−(t−t)v̄|<r0/4, |v−v̄|<r0/4}.

Then, Lemma 4.6 (with v0 = v̄) implies that, for any 0 < 2t ≤ t ≤ t + t0 and v ∈ Rd,

h(t, x, v) ≥ C−1
1 e−C1|v|

4
1{|x−x0−(t−t)v̄|<r0/8} (B-3)
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for some constant C1 > 0 depending only on universal constants, T , δ, r, v0, and |x̄ − x0|. In particular,
for any 0 < 2t ≤ t ≤ t + t0 and v ∈ Rd,

h(t, x̄, v) ≥ C−1
1 e−C1|v|

4
. (B-4)

Step 3. Spreading positivity for any finite time. We observe that the time interval above is restricted
(see (B-2)), but it can be removed by applying the lemmas again. Based on the previous step, it suffices
to deal with the case t > t0. By a similar proof to (B-3), we derive

h(t0, x, v) ≥ δ11{|x−x̄ |<r0/8, |v|<r0/8}

for some constant δ1 > 0 with the same dependence as C1. In view of this data, applying Lemma 4.5 to
h(t0 + · , · , · ) (with τ = 1, v0 = 0), we see that, for any t ∈ [t0, min{T0, t0 + T1}] with T1 := c0⟨8/r0⟩

−2,

h(t, x, v) ≥
1
8δ11{|x−x̄ |<r0/16, |v|<r0/16}.

It then follows from Lemma 4.6 that, for any t ∈ [t0 + t, min{T0, t0 + T1}] and v ∈ Rd,

h(t, x, v) ≥ C−1
2 e−C2|v|

4
1{|x−x̄ |<r0/32}

for some constant C2 > 0 with the same dependence as C1.
Combining this with (B-4) as well as recalling that T = 2t and the space domain Td is compact, we

know that there exists C3 > 0 depending only on universal constants, T , δ, r , and v0 such that, for any
(t, x, v) ∈ [T , min{T0, T1}] × Td

× Rd,

h(t, x, v) ≥ C−1
3 e−C3|v|

4
.

Since T0 and T1 depend only on universal constants, r , and v0, by applying the above arguments iteratively,
we obtain the result for any finite time.

Step 4. Improving the exponential tail. We remark that this step is not necessary for the applications of
the lower bound result, but it shows a more precise decay rate as |v| → ∞.

By the previous step, there is some c > 0 depending only on universal constants, T , T, δ, r , and v0

such that h ≥ c in [T , T ] × Td
× B1. Consider the barrier function

h(t, x, v) := ce−C0(t−T )−1
|v|

2
in [T , T ] × Td

× Bc
1,

where the constant C0 > 1 is to be determined. By recalling (4-2) and performing a direct computation,
we have

(∂t + v · ∇x)h − Rh LOU h =
C0Rhh
(t − T )2 (R−1

h + 2(d − |v|
2)(t − T ) − 4C0|v|

2)

≤
C0Rhh
(t − T )2 (c−β

+ 2dT − 4C0) in (T , T ] × Td
× Bc

1 .

In particular, by choosing C0 sufficiently large (with the same dependence as c), we have

(∂t + v · ∇x)(h − h) − Rh LOU(h − h) ≤ 0 in (T , T ] × Td
× Bc

1 .
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In addition, by its definition, h ≥ h on the boundary {t ∈ [T , T ], |v| = 1} ∪ {t = 2t, |v| ≥ 1}. The
maximum principle (Lemma A.1) then implies that h ≥ h in [T , T ]× Td

× Bc
1 . Therefore, we achieve

the Gaussian-type lower bound for any (t, x, v) ∈ [2T , T ] × Td
× Rd. □

Appendix C: Gaining regularity of spatial increment

This appendix is devoted to the proof of two technical lemmas for spatial increments involved in the
bootstrapping of higher regularity for solutions to (4-1) presented in Section 4C. For the convenience of
the reader, we report a brief proof following the lines of [Imbert and Silvestre 2022, Lemma 8.1] with
s = 1 and α1 = β = 2.

Lemma C.1. Let α ∈ (0, 1), and let a bounded continuous function g be defined in Q4. If there exists
some constant M > 0 such that, for any y ∈ B1,

[δyg]C0
l (Q2)

≤ M and [δyg]C2+α
l (Q2)

≤ M∥(0, y, 0)∥2,

then there exists some universal constant η ∈ (0, 1) such that, for any y ∈ B1,

∥δyg∥Cη
l (Q1)

≲ M∥(0, y, 0)∥3.

Proof. Keeping in mind the assumption and Remark 2.5, for fixed y ∈ B1, we consider the polynomial
expansion p0 of δyg at z0 ∈ Q2 with degkin(p0) = 2:

p0(z) = δyg(z0) + (∂t + v0 · ∇x)δyg(z0)t + ∇vδyg(z0) · v +
1
2 D2

vδyg(z0)v · v

for z := (t, x, v) ∈ R × Rd
× Rd. For any z such that z0 ◦ z ∈ Q4, we have

|δyg(z0 ◦ z) − p0(z)| ≤ M∥(0, y, 0)∥2
∥z∥2+α. (C-1)

In particular, p0(0, y, 0) = δyg(z0), so that, for any y ∈ B1,

|δ2yg(z0) − 2δyg(z0)| = |δyg(z0 ◦ (0, y, 0)) − δyg(z0)| = |δyg(z0 ◦ (0, y, 0)) − p0(0, y, 0)|

≤ M∥(0, y, 0)∥4+α.

It then follows that, for any z0 ∈ Q2 and for any k ∈ N such that z0 ◦ (0, 2k y, 0) ∈ Q4,

|δyg(z0) − 2−kδ2k yg(z0)| ≤

k∑
j=1

2− j
|δ2 j yg(z0) − 2δ2 j−1 yg(z0)|

≤ M∥(0, y, 0)∥4+α

k∑
j=1

2(1+α) j/3
≤ 2M∥(0, y, 0)∥4+α2(1+α)k/3. (C-2)

Picking k ∈ N such that ∥2k−1(0, y, 0)∥ ≤ 1 < ∥2k(0, y, 0)∥ and using the assumption yields

|δyg(z0)| ≤ 2−k
|δ2k yg(z0)| + 2M∥(0, y, 0)∥4+α2(1+α)k/3

≤ ∥δ2k yg∥C0
l (Q2)

∥(0, y, 0)∥3
+ 4M∥(0, y, 0)∥3

≤ 5M∥(0, y, 0)∥3. (C-3)
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It remains to show that there exists some constant η > 0 depending only on α such that

|δyg(z0 ◦ z) − δyg(z0)| ≲ M∥(0, y, 0)∥3
∥z∥η. (C-4)

By (C-1) and Lemma 2.4, we know that, for any z0 ∈ Q1 and z0 ◦ z ∈ Q4,

|δyg(z0 ◦ z) − δyg(z0)| ≤ (|(∂t + v0 · ∇x)δyg(z0)| + |D2
vδyg(z0)|)∥z∥2

+ |∇vδyg(z0)|∥z∥ + M∥(0, y, 0)∥2
∥z∥2+α

≲ ([δyg]C2+α
l (Q2)

∥z∥ + [δyg]
1/2
C2+α

l (Q2)
[δyg]

1/2
C0

l (Q2)
+ [δyg]C0

l (Q2)
)∥z∥

+ M∥(0, y, 0)∥2
∥z∥2+α.

If ∥z∥ ≤ ∥(0, y, 0)∥, then combining the above expression with the assumption and (C-3) implies (C-4)
with η =

1
2 . In particular, if k ∈ N such that ∥z∥ < ∥2k(0, y, 0)∥, then we have

2−k
|δ2k yg(z0 ◦ z) − δ2k ygz(z0)| ≲ 2−k M∥(0, 2k y, 0)∥3

∥z∥η
= M∥(0, y, 0)∥3

∥z∥η. (C-5)

Now, if ∥z∥ ≥ ∥(0, y, 0)∥, applying (C-2) at points z0 and z0 ◦ z, with k ∈ N such that ∥2k−1(0, y, 0)∥ ≤

∥z∥ < ∥2k(0, y, 0)∥, yields

|δyg(z0) − 2−kδ2k yg(z0)| ≤ 4M∥(0, y, 0)∥3
∥z∥1+α, (C-6)

|δyg(z0 ◦ z) − 2−kδ2k yg(z0 ◦ z)| ≤ 4M∥(0, y, 0)∥3
∥z∥1+α. (C-7)

Summing up (C-5), (C-6), and (C-7), we arrive at (C-4). □

Following the lines of the above proof and taking into account that ∥g∥C2+α
l (Q2)

≤ M , one is also able
to prove the following result.

Lemma C.2. If g ∈ C2+α
l (Q2) with α ∈ (0, 1), then, for any y ∈ B1, we have

∥δyg∥Cα
l (Q1) ≲ ∥g∥C2+α

l (Q2)
∥(0, y, 0)∥2.
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