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The paper is devoted to a comprehensive study of smoothness of inertial manifolds (IMs) for abstract
semilinear parabolic problems. It is well known that in general we cannot expect more than C1,ε-regularity
for such manifolds (for some positive, but small ε). Nevertheless, as shown in the paper, under natural
assumptions, the obstacles to the existence of a Cn-smooth inertial manifold (where n ∈ N is any given
number) can be removed by increasing the dimension and by modifying properly the nonlinearity outside
of the global attractor (or even outside the C1,ε-smooth IM of a minimal dimension). The proof is strongly
based on the Whitney extension theorem.
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1. Introduction

It is believed that in many cases the long-time behaviour of infinite-dimensional dissipative dynamical
systems generated by evolutionary PDEs (at least in bounded domains) can be effectively described by
finitely many parameters (the so-called order parameters in the terminology of I. Prigogine) which obey
a system of ODEs. This system of ODEs (if it exists) is usually referred as an inertial form (IF) of the
considered PDE; see [Hale 1988; Robinson 2001; 2011; Temam 1988; Zelik 2014] and references therein
for more details. However, despite the fundamental significance of this reduction from both theoretical
and applied points of view and big interest during the last 50 years, the nature of such a reduction and its
rigorous justification remains a mystery.

Indeed, it is well understood now that the key question of the theory is how smooth the desired IF
can/should be. For instance, in the case of Hölder continuous IFs, there is a highly developed machinery
for constructing them based on the theory of global attractors and the Mañé projection theorem. We recall
that, by definition, a global attractor is a compact invariant set in the phase space of the dissipative system
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considered which attracts as time goes to infinity the images of bounded sets under the evolutionary
semigroup related to the considered problem. Thus, on the one hand, a global attractor (if it exists) contains
all of the nontrivial dynamics and, on the other hand, it is usually essentially “smaller” than the initial
phase space and this second property allows us to speak about the reduction of degrees of freedom in the
limit dynamics. In particular, one of the main results of the attractors theory tells us that, under relatively
weak assumptions on a dissipative PDE (in a bounded domain), the global attractor exists and has finite
Hausdorff and fractal dimensions. In turn, due to the Mañé projection theorem, this finite-dimensionality
guarantees that this attractor can be projected one-to-one to a generic finite-dimensional plane of the phase
space and that the inverse map is Hölder continuous. Finally, this scheme gives us an IF with Hölder
continuous vector field defined on some compact set of RN which is treated as a rigorous justification of
the above-mentioned finite-dimensional reduction. This approach works, for instance, for 2-dimensional
Navier–Stokes equations, reaction-diffusion systems, pattern formation equations, damped wave equations,
etc.; see [Babin and Vishik 1992; Ben-Artzi et al. 1993; Chepyzhov and Vishik 2002; Hale 1988; Henry
1981; Hunt and Kaloshin 1999; Miranville and Zelik 2008; Robinson 2011; Sell and You 2002; Temam
1988].

However, the above-described scheme has a very essential intrinsic drawback which prevents us from
treating it as a satisfactory solution of the finite-dimensional reduction problem. Namely, the vector
field in the IF thus constructed is Hölder continuous only and there is no way in general to get even its
Lipschitz continuity. As a result, we may lose the uniqueness of solutions for the obtained IF and have to
use the initial infinite-dimensional system at least in order to select the correct solution of the reduced IF.
Another drawback is that the Mañé projection theorem is not constructive, so it is not clear how to choose
this “generic” plane for projection in applications; in addition, the IF constructed in such a way is defined
only on a complicated compact set (the image of the attractor under the projection) and it is not clear how
to extend it on the whole RN preserving the dynamics (surprisingly, this is also a deep open problem; a
partial solution of it is given in [Robinson 1999]).

It is also worth noting that the restriction for IF to be only Hölder continuous is far from being
just a technical problem here. As relatively simple counterexamples show (see [Eden et al. 2013;
Kostianko and Zelik 2018; Mallet-Paret et al. 1993; Romanov 2000; Zelik 2014]) the fractal dimension
of the global attractor may be finite and not big, but the attractor cannot be embedded into any finite-
dimensional Lipschitz (or even log-Lipschitz) finite-dimensional submanifold of the phase space. Even
more importantly, the dynamics on this attractor does not look finite-dimensional at all (despite the
existence of a Hölder continuous (with the Hölder exponent arbitrarily close to 1) IF provided by the
Mañé projection theorem). For instance, it may contain limit cycles with superexponential rate of attraction,
decaying travelling waves in Fourier space and other phenomena which are impossible in the classical
dynamics generated by smooth ODEs. These examples suggest that, in contradiction to the widespread
paradigm, Hölder continuous IF is probably not an appropriate tool for distinguishing between finite and
infinite-dimensional limit behaviour and, as a result, fractal-dimension is not so good for estimating the
number of degrees of freedom for the reduced dynamics; see [Eden et al. 2013; Kostianko and Zelik
2018; Zelik 2014] for more details.
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An alternative, probably more transparent approach to the finite-dimensional reduction problem which
has been suggested in [Foias et al. 1988] is related to the concept of an inertial manifold (IM). By
definition, an IM is a finite-dimensional smooth (at least Lipschitz) invariant submanifold of the phase
space which is globally exponentially stable and possesses the so-called exponential tracking property
(that is, existence of asymptotic phase). Usually this manifold is C1,ε-smooth for some positive ε and is
normally hyperbolic, so the exponential tracking is an immediate corollary of normal hyperbolicity. Then
the corresponding IF is just a restriction of the initial PDE to IM and is also C1,ε-smooth. However, being
a sort of centre manifold, an IM requires a separation of the dependent variable to the “slow” and “fast”
components and this, in turn, leads to extra rather restrictive assumptions which are usually formulated
in terms of spectral gap conditions. Namely, let us consider the following abstract semilinear parabolic
equation in a real Hilbert space H :

∂t u + Au = F(u), u|t=0 = u0, (1-1)

where A : D(A)→ H is a self-adjoint positive operator such that A−1 is compact and F : H → H is a given
nonlinearity which is globally Lipschitz in H with Lipschitz constant L . Let also 0 < λ1 ≤ λ2 ≤ · · · be the
eigenvalues of A enumerated in the nondecreasing order and {en}

∞

n=1 be the corresponding eigenvectors.
Then, the sufficient condition for the existence of an N -dimensional IM reads

λN+1 − λN > 2L . (1-2)

If this condition is satisfied, the desired IM MN is actually a graph of a Lipschitz function MN :

HN → (HN )⊥, where HN = span{e1, . . . , eN } is a spectral subspace spanned by the first N eigenvectors,
and the corresponding IF has the form

d
dt

uN + AuN = PN F(uN + MN (uN )), uN ∈ HN ∼ RN , (1-3)

where PN is the orthoprojector to HN ; see [Chow et al. 1992; Constantin et al. 1989; Foias et al. 1988;
Koksch 1998; Miklavčič 1991; Romanov 1993; Rosa and Temam 1996; Zelik 2014] and also Section 2
below.

We see that, in contrast to the IF constructed via the Mañé projection theorem, the IF which corresponds
to the IM is explicit (uses the spectral projections) and is as smooth as the functions F and MN are. We
mention that although the spectral gap condition (1-2) is rather restrictive (e.g., in the case where A is a
Laplacian in a bounded domain, it is satisfied in 1-dimensional case only) and is known to be sharp in
the class of abstract semilinear parabolic equations (see [Eden et al. 2013; Miklavčič 1991; Romanov
1993; Zelik 2014] for more details), it can be relaxed for some concrete classes of PDEs. For instance,
for scalar 3-dimensional reaction-diffusion equations (using the so-called spatial averaging principle, see
[Mallet-Paret and Sell 1988]), for 1-dimensional reaction-diffusion-advection systems (using the proper
integral transforms, see [Kostianko and Zelik 2017; 2018]), for 3-dimensional Cahn–Hilliard equations
and various modifications of 3-dimensional Navier–Stokes equations (using various modifications of
spatial-averaging, see [Gal and Guo 2018; Kostianko 2018; Kostianko and Zelik 2015; Li and Sun
2020]), for the 3-dimensional complex Ginzburg–Landau equation (using the so-called spatiotemporal
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averaging, see [Kostianko 2020]), etc. Note also that the global Lipschitz continuity assumption for
the nonlinearity F is not an essential extra restriction since usually one proves the well-posedness and
dissipativity of the PDE under consideration before constructing the IM. Cutting off the nonlinearity
outside the absorbing ball does not affect the limit dynamics, but reduces the case of locally Lipschitz
continuous nonlinearity (satisfying the proper dissipativity restrictions) to the model case where the
nonlinearity is globally Lipschitz continuous. Of course, this cut-off procedure is not unique and, as we
will see below, choosing it correctly is extremely important in the theory of IMs.

The main aim of the present paper is to study the smoothness of the IFs for semilinear parabolic
equations (1-1) in the ideal situation where the nonlinearity F is smooth and the spectral gap condition (1-2)
is satisfied. As we have already mentioned, in this case we have a C1,ε-smooth IM MN for some ε > 0
and the associated IF (1-3) which is also C1,ε-smooth; see [Zelik 2014]. But, unfortunately, the exponent
ε > 0 here is usually very small (depending on the spectral gap) and in a more or less general situation,
we cannot expect even the C2-regularity of the IM. The spectral gap condition for C2-regular IM is

λN+1 − 2λN > 3L (1-4)

and such exponentially big spectral gaps are not available if A is a finite-order elliptic operator in a bounded
domain. The corresponding counterexamples were given in [Chow et al. 1992]; see also Example 3.11
below. Thus, the existing IM theory does not allow us, even in the ideal situation, to construct more regular
than C1,ε IFs (where ε > 0 is small). This looks to be an essential drawback for at least two reasons:

(1) The lack of regularity prevents us from using higher-order methods for numerical simulations of the
reduced IF (as a result, direct simulations for the initial smooth PDE using the standard methods may be
more effective than simulations based on the reduced nonsmooth ODEs).

(2) C1,ε-regularity is not enough to build up normal forms and/or study the bifurcations properly (for
instance, the simplest saddle-node bifurcation requires C2-smoothness, the Hopf bifurcation needs C3,
etc.; see [Katok and Hasselblatt 1995; Kielhöfer 2004] for more details) and, therefore, we need to return
back to the initial PDE to study these bifurcations.

Thus, the natural question,

“Is it possible to construct a smooth (Ck-smooth for any finite k) or to extend the existing
C1,ε-smooth IF to a more regular one?”

becomes crucial for the theory of inertial manifolds.
Here we give an affirmative answer to this question under the slightly stronger spectral gap assumption

lim sup
N→∞

(λN+1 − λN ) = ∞. (1-5)

In contrast to (1-4), this assumption does not require exponentially big spectral gaps (and is satisfied for
most of the examples where the IMs exist), but guarantees the existence of infinitely many spectral gaps
of size larger than 2L and, consequently, the existence of an infinite tower of the embedded IMs

MN1 ⊂ MN2 ⊂ · · · ⊂ MNn ⊂ · · · (1-6)
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and the corresponding IFs

d
dt

uNn + AuNn = PNn F(uNn + MNn (uNn )), uNn ∈ HNn . (1-7)

Let n ∈ N be given. We say that a Cn,ε-smooth submanifold M̃Nn of the phase space H (which is a graph
of Cn,ε-smooth M̃Nn : HNn → (HNn )

⊥) is a Cn,ε-smooth extension of the initial IM MN1 for some ε > 0 if

(1) MN1 ⊂ M̃Nn ,

(2) the manifold M̃Nn is C1
b -close to the IM MNn .

Then, the first condition guarantees that the Cn,ε-smooth system of ODEs

d
dt

uNn + AuNn = PNn F(uNn + M̃Nn (uNn )), uNn ∈ HNn , (1-8)

will possess the initial IM PNnMN1 as an invariant submanifold. The second condition together with
the robustness theorem for normally hyperbolic manifolds ensures that this manifold will be globally
exponentially stable and normally hyperbolic (in particular, it will possess an exponential tracking property
in HNn ). In this case we refer to the system (1-8) as a Cn,ε-smooth extension of the corresponding IF (1-3);
see Section 3 for more details. Thus, the extended IF is Cn-smooth on the one hand and, on the other
hand, its limit dynamics coincides with the dynamics of the IF which corresponds to the IM MN1 and,
in turn, coincides with the limit dynamics of the initial abstract parabolic problem (1-1). Note that the
manifold M̃Nn is not necessarily invariant under the solution semigroup S(t) generated by the initial
equation (1-1) and this allows us to overcome the standard obstacles to the smoothness of an invariant
manifold (e.g., such as resonances, see Examples 3.11 and 5.6 below).

The main result of the paper is the following theorem which suggests a solution of the smoothness
problem for IMs.

Theorem 1.1. Let the nonlinearity F ∈ C∞

b (H, H) and let the operator A satisfy the spectral gap
condition (1-5). Let also N1 ∈ N be the smallest number for which the spectral gap condition (1-2) is
satisfied and MN1 be the corresponding IM. Then, for every n ∈ N, one can find ε = εn > 0 for which there
exists a Cn,ε-smooth extension of the IM MN1 as well as the Cn,ε-smooth extension of the corresponding
IF in the sense described above.

The proof of this theorem is given in Section 4 and the Appendix. To construct the desired extension M̃Nn ,
we first define it on the manifold PNnMN1 only in a natural way M̃Nn (p) = (1 − PNn )MN1(PN1 p). Then,
we present an explicit construction of Taylor jets of order n for this function via an inductive procedure;
see Section 4. Finally, we check (in the Appendix) the compatibility conditions for the constructed Taylor
jets and get the desired extension by the Whitney extension theorem.

Our main result can be reformulated in the following way.

Corollary 1.2. Let the assumptions of Theorem 1.1 hold. Then, for every n ∈ N, there exists ε = εn > 0
and a Cn−1,ε-smooth “correction” F̃n(u) of the initial nonlinearity F such that:

(1) F̃n(u) = F(u) for all u ∈ MN1 and MN1 is an IM for the modified equation

∂t u + Au = F̃n(u), u|t=0 = u0, (1-9)
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as well. In particular, the dynamics of (1-9) on MN1 coincides with the initial dynamics (generated by
(1-1)) and MN1 possesses an exponential tracking property for solutions of (1-9).

(2) The extended manifold M̃Nn constructed in Theorem 1.1 is an IM (of smoothness Cn,ε) for the modified
equation (1-9); see Corollary 5.4 below.

In this interpretation, the modified nonlinearity F̃n can be considered as a “cut-off” version of the
initial function F and the main result claims that all obstacles for the existence of Cn-smooth IM can be
removed by increasing the dimension of the IM and using a properly chosen cut-off procedure.

To conclude, we note that the main aim of this paper is to verify the principal possibility to get smooth
extensions of an IM rather than to obtain the optimal bounds for the dimensions Nn of the constructed
extensions. For this reason, the obtained bounds look far from being optimal, but we believe that they can
be essentially improved; see Remark 5.7 for the discussion of this problem.

The paper is organized as follows. In Section 2 we recall the standard facts about smooth functions
in Banach spaces, their Taylor jets, direct and converse Taylor theorems and the Whitney extension
theorem, which is the main technical tool for what follows. In Section 3 we collect basic facts about the
construction of IMs for semilinear parabolic equations via the Perron method and discuss known facts
about the smoothness of these IMs. The main result (Theorem 1.1) is presented in Section 4. The proof
of it is also given there by modulo of compatibility conditions for Whitney extension theorem which are
verified in the Appendix. Finally, the applications of the proved theorem as well as a discussion of open
problems and related topics are given in Section 5.

2. Preliminaries, I: Taylor expansions and the Whitney extension theorem

In this section we briefly recall the standard results on Taylor expansions of smooth functions in Banach
spaces and the related Whitney extension theorem, as well as prepare some technical tools which will be
used later. We start with some basic facts from multilinear algebra; see, e.g., [Hájek and Johanis 2014] for
a more detailed exposition. Let X and Y be two normed spaces. For any n ∈ N, we denote by Ls(Xn, Y )

the space of multilinear continuous symmetric maps from Xn to Y endowed by the standard norm

∥M∥Ls(Xn,Y ) := sup
ξi ∈X, ξi ̸=0

{
∥M(ξ1, . . . , ξn)∥

∥ξ1∥ · · · ∥ξn∥

}
.

Every element M ∈ Ls(Xn, Y ) defines a homogeneous continuous polynomial PM of order n on X with
values in Y via

PM(ξ) := M({ξ}
n), where {ξ}

n
:= ξ, . . . , ξ︸ ︷︷ ︸

n-times

.

Vice versa, the multilinear symmetric map M = MP can be restored in a unique way if the corresponding
homogeneous polynomial is known via the polarization equality:

MP(ξ1, . . . , ξn) =
1

2nn!

∑
εi =±1,i=1,...,n

ε1 · · · εn P
(

a +

n∑
j=1

εjξj

)
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for all a, ξ1, . . . , ξn ∈ X ; see, e.g., [Hájek and Johanis 2014]. Thus, there is a one-to-one correspondence
between homogeneous polynomials and multilinear symmetric maps. Moreover, if we introduce the norm

∥P∥Pn(X,Y ) := sup
ξ ̸=0

{
∥P(ξ)∥

∥ξ∥n

}
on the space Pn(X, Y ) of n-homogeneous polynomials, this correspondence becomes an isometry. For
this reason, we will identify below multilinear forms and the corresponding homogeneous polynomials
where this does not lead to misunderstandings. We also mention here the generalization of the Newton
binomial formula; namely, for any P ∈ Pn(X, Y ) and ξ, η ∈ X , we have

P(ξ + η) =

n∑
j=0

C j
n P({ξ}

j , {η}
n− j ), C j

n :=
n!

j !(n − j)!
; (2-1)

see, e.g., [Hájek and Johanis 2014]. Finally, we denote by Pn(X, Y ) the space of all continuous polyno-
mials of order less than or equal to n on X with values in Y, i.e., P(ξ) ∈ Pn(X, Y ) if

P(ξ) =

n∑
j=0

1
j !

Pj (ξ), Pj (ξ) ∈ Pj (X, Y ).

The following standard result is crucial for our purposes.

Lemma 2.1. For every n ∈ N there exist real numbers ak j ∈ R, k, j ∈ {0, . . . , n}, such that for every
P =

∑n
k=0

1
k!

Pk , Pk ∈ Pk(X, Y ) and every k ∈ {0, . . . , n}, we have

Pk(ξ) =

n∑
j=0

ak j P
(

j
n
ξ

)
(2-2)

and, therefore,

∥Pk(ξ)∥ ≤ Kn,k max
j=0,...,n

∥∥∥∥P
(

j
n
ξ

)∥∥∥∥ (2-3)

for some constants Kn,k which are independent of P.

For the proof of this lemma, see [Hájek and Johanis 2014].

Corollary 2.2. Let P(ξ, δ) ∈ Pn(X, Y ) be a family of polynomials of ξ depending on a parameter δ ∈ B,
where B is a set in X containing zero. Assume that

∥P(ξ, δ)∥ ≤ C(∥ξ∥ +∥δ∥)n+α, ξ ∈ X, δ ∈ B, (2-4)

for some α ≥ 0. Then, for any k ∈ {0, . . . , n},

∥Pk( · , δ)∥Pk(X,Y ) ≤ Ck∥δ∥
n−k+α (2-5)

for some constants Ck depending on C , n and k.

Proof. Indeed, according to (2-3) and (2-4), we have

∥Pk(ξ, δ)∥ ≤ C ′(∥ξ∥ +∥δ∥)n+α.
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Assuming that δ ̸= 0 (there is nothing to prove otherwise), replacing ξ by ∥δ∥ξ and using that Pk is
homogeneous of order k, we get

∥Pk(ξ, δ)∥ ≤ C ′(1 + ∥ξ∥)n+α
∥δ∥n−k+α.

Using once more that Pk is homogeneous of order k in ξ , we finally arrive at

∥Pk(ξ, δ)∥ ≤ C ′
∥ξ∥

k(1 + ∥ξ/∥ξ∥∥
n+α)∥δ∥n−k+α

≤ C ′′
∥ξ∥

k
∥δ∥n−k+α,

which gives (2-5) and finishes the proof. □

Let now U ⊂ X be an open set and let F : U → Y be a map. As usual, for any u ∈ U, we denote by
F ′(u) ∈ L(X, Y ) the Fréchet derivative of F at u (if it exists). Analogously, for any n ∈ N, we denote by
F (n)(u) ∈ Ls(Xn, Y ) its n-th Fréchet derivative. The space of all functions F : U → Y such that F (n)(u)

exists and is continuous as a function from U to Ls(Xn, Y ) is denoted by Cn(U, Y ). For any α ∈ (0, 1],
we denote by Cn,α(U, Y ) the space of functions F ∈ Cn(U, Y ) such that F (n) is Hölder continuous with
exponent α on U. The action of F (n)(u) to vectors ξ1, . . . , ξn ∈ X is denoted by F (n)(u)[ξ1, . . . , ξn]. The
Taylor jet of length n + 1 of the function F at the point u and vector ξ ∈ X will be denoted by J n

ξ F(u):

J n
ξ F(u) := F(u) +

1
1!

F ′(u)ξ +
1
2!

F ′′(u)[ξ, ξ ] + · · · +
1
n!

F (n)(u)[{ξ}
n
]. (2-6)

Obviously, the function ξ → J n
ξ F(u) is in Pn(X, Y ) for every u ∈ U. We will also systematically use the

truncated Taylor jets

jn
ξ F(u) :=

1
1!

F ′(u)ξ +
1
2!

F ′′(u)[ξ, ξ ] + · · · +
1
n!

F (n)(u)[{ξ}
n
], (2-7)

which do not contain zero-order terms.

Theorem 2.3 (direct Taylor theorem). Let F ∈ Cn(U, Y ) and take u1, u2 ∈ U such that ut := tu1 +

(1 − t)u2 ∈ U for all t ∈ [0, 1]. Let also ξ := u2 − u1. Then

F(u2) = J n
ξ F(u1) +

1
n!

∫ 1

0
(1 − s)n−1(F (n)(u1 + sξ) − F (n)(u1)) ds[{ξ}

n
]. (2-8)

In particular, if F ∈ Cn,α(U, Y ), then

∥F(u2) − J n
ξ F(u1)∥ ≤ C∥ξ∥

n+α (2-9)

for some positive C.

For the proof of this classical result; see, e.g., [Hájek and Johanis 2014]. We also mention that in terms
of truncated jets formula (2-9) reads

F(u2) − F(u1) = jn
ξ F(u1) + O(∥ξ∥

n+α), ξ := u2 − u1. (2-10)

The above theorem can be inverted as follows.
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Theorem 2.4 (converse Taylor theorem). Let F be a function such that, for any u ∈ U, there exists a
polynomial ξ → P(ξ, u) ∈ Pn(X, Y ) such that, for all u1, u2 ∈ U,

∥F(u2) − P(ξ, u1)∥ ≤ C∥ξ∥
n+α, ξ := u2 − u1, (2-11)

for some C > 0 and α ∈ (0, 1]. Then, F ∈ Cn(U, Y ),

P(ξ, u) = J n
ξ F(u)

for all u ∈ U and F (n)(u) is locally Hölder continuous in U with exponent α. If , in addition, U is convex,
then F ∈ Cn(U, Y ) and

∥F (n)(u2) − F (n)(u1)∥ ≤ C ′
∥u2 − u1∥

α,

where C ′ depends only on n, α and the constant C from (2-11).

For the proof of this theorem, see [Hájek and Johanis 2014].
Keeping in mind the Whitney extension problem, we recall that an arbitrarily chosen set of polynomials

P(ξ, u), u ∈ U, does not define in general a Cn,α- smooth function, but some compatibility conditions
must be satisfied for that. Indeed, let u1 ∈ U and let δ, ξ ∈ X be such that u2 := u1 + δ ∈ U and
u3 := u1 + δ + ξ = u2 + ξ ∈ X . Then, from (2-9), we have

∥F(u3) − P(ξ + δ, u1)∥ ≤ C∥ξ + δ∥n+α,

∥F(u3) − P(ξ, u1 + δ)∥ ≤ C∥ξ∥
n+α.

Therefore,
∥P(ξ + δ, u1) − P(ξ, u1 + δ)∥ ≤ C1(∥ξ∥ +∥δ∥)n+α. (2-12)

These are the desired compatibility conditions. In other words, if we are given a set V ⊂ X and a family
of polynomials

{P(ξ, u) : u ∈ V } ⊂ Pn(X, Y )

and want to find a function F ∈Cn,α(X, Y ) such that J n
ξ F(u)= P(ξ, u) for all u ∈ V, then the compatibility

condition (2-12) must be satisfied for all u1, u1 + δ ∈ V and all ξ ∈ X .
Inequality (2-12) can be rewritten in a more standard form, which usually appears in the statement of

the Whitney extension theorem. Namely, using (2-1), we see that

P(ξ + δ, u1) =

n∑
l=0

1
l!

n∑
k=l

1
(k − l)!

Pk([{ξ}
l, {δ}k−l

], u1),

where P(ξ, u1) =
∑n

l=0(1/ l!)Pl([{ξ}
l
], u1), Pl( · , u1) ∈Pl(X, Y ). Applying now Corollary 2.2 to (2-12),

we get the desired alternative form of the compatibility conditions:∥∥∥∥Pl({ξ}
l, u1 + δ) −

n−l∑
k=0

1
k!

Pl+k([{ξ}
l, {δ}k

], u1)

∥∥∥∥ ≤ C∥ξ∥
l
∥δ∥n−l+α (2-13)

for l = {0, . . . , n}. The compatibility condition (2-13) has a natural interpretation: if Pk({ξ}, u1) =

F (k)(u1)[{ξ}
k
] as we expect, then (2-13) is nothing more than Taylor expansions of F (l)(u1+δ)[{ξ}

l
] at u1.
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The next theorem shows that the introduced compatibility conditions are sufficient for the existence of
F in the case when X is finite-dimensional.

Theorem 2.5 (Whitney extension theorem). Let dim X < ∞ and let V be an arbitrary subset of X.
Assume also that we are given a family of polynomials {P(ξ, u) : u ∈ V } ⊂ Pn(X, Y ) which satisfies the
compatibility condition (2-12) with some α ∈ (0, 1]. Then, there exists a function F ∈ Cn,α(X, Y ) such
that J n

ξ F(u) = P(ξ, u) for all u ∈ V.

For the proof of this theorem, see [Stein 1970; Fefferman 2005]. Note that the theorem fails if the
dimension of X is infinite, but there are no restrictions on the dimension of the space Y ; see [Wells 1973].

3. Preliminaries, II: Spectral gaps and the construction of an inertial manifold

In this section we briefly discuss the classical theory of inertial manifolds for semilinear parabolic
equations; see, e.g., [Zelik 2014] for a more detailed exposition.

Let H be an infinite-dimensional real Hilbert space. Let us consider an abstract parabolic equation in H :

∂t u + Au = F(u), u|t=0 = u0, (3-1)

where A : D(A) → H is a linear self-adjoint positive operator in H with compact inverse and F ∈

C∞

b (H, H) is a smooth bounded function on H such that all its derivatives are also bounded on H.
It is well known that under the above assumptions (3-1) is globally well-posed for any u0 ∈ H in the

class of solutions u ∈ C([0, T ], H) for all T > 0 and, therefore, generates a semigroup in H :

S(t) : H → H, t ≥ 0, S(t)u0 := u(t). (3-2)

Moreover, the solution operators S(t) are in C∞(H, H) for every fixed t ≥ 0; see [Henry 1981; Zelik
2014] for the details.

Let 0 < λ1 ≤ λ2 ≤ · · · be the eigenvalues of the operator A enumerated in the nondecreasing order and
let {en}

∞

n=1 be the corresponding orthonormal system of eigenvectors. Then, by the Parseval equality, for
every u ∈ H, we have

∥u∥
2
H =

∞∑
n=1

(u, en)
2, u =

∞∑
n=1

(u, en)en,

where ( · , · ) is an inner product in H. For a given N ∈ N, we denote by PN and QN the orthoprojectors
on the first N and the rest of eigenvectors of A respectively:

PN u :=

N∑
n=1

(u, en)en, QN u :=

∞∑
n=N+1

(u, en)en.

We are now ready to introduce the main object of study in this paper — an inertial manifold (IM).

Definition 3.1. A set M = MN is an inertial manifold of dimension N for problem (3-1) (with the base
HN := PN H ) if

(1) M is invariant with respect to the semigroup S(t): S(t)M = M.
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(2) M is a graph of a Lipschitz continuous function M : HN → QN H :

M = {p + M(p) : p ∈ HN }.

(3) M possesses an exponential tracking property, namely, for every trajectory u(t) of (3-1) there exists
a trace solution ū(t) ∈ M such that

∥u(t) − ū(t)∥ ≤ Ce−θ t , t ≥ 0, (3-3)

for some θ > λN and constant C = Cu which depends on u.

Note that, although only Lipschitz continuity is traditionally required in the definition, usually IMs
are C1,ε-smooth for some ε > 0 (see the discussion below) and are normally hyperbolic. Then the
exponential tracking property (that is, existence of an asymptotic phase), as well as robustness with
respect to perturbations, are the standard corollaries of this normal hyperbolicity; see [Bates et al. 1999;
Fenichel 1972; Katok and Hasselblatt 1995; Rosa and Temam 1996] for the details. We also mention that
these results can be obtained without formally referring to normal hyperbolicity; see, e.g., [Foias et al.
1988], as well as Theorem 3.2 and Corollary 4.4 below.

Note also the dynamics of (3-1) restricted to the IM M is governed by the system of ODEs

d
dt

uN + AuN = PN F(uN + M(uN )), uN := PN u ∈ RN , (3-4)

which is called an inertial form (IF) associated with (3-1). In the case where the spectral subspace HN is
used as a base for IM (like in Definition 3.1), the regularity of the corresponding vector field in the IF is
determined by the regularity of the IM only.

The following theorem is the key result in the theory of IMs.

Theorem 3.2. Let the function F in (3-1) be globally Lipschitz continuous with Lipschitz constant L and
let, for some N ∈ N, the spectral gap condition

λN+1 − λN > 2L (3-5)

be satisfied. Then (3-1) possesses an IM MN of dimension N.

Proof. Although this statement is classical, see, e.g., [Foias et al. 1988; Miklavčič 1991; Romanov 1993;
Zelik 2014], the elements of its proof will be crucially used in what follows, so we sketch them below.

To construct the IM, we will use the so-called Perron method; namely, we will prove that, for every
p ∈ HN , the problem

∂t u + Au = F(u), t ≤ 0, PN u|t=0 = p (3-6)

possesses a unique backward solution u(t) = V (p, t), t ≤ 0, belonging to an appropriately weighted
space, and then define the desired map M : HN → QN H via

M(p) := QN V (p, 0). (3-7)

To solve (3-6) we use the Banach contraction theorem treating the nonlinearity F as a perturbation. To
this end we need the following two lemmas.
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Lemma 3.3. Let θ ∈ (λN , λN+1) and let us consider the equation

∂tv + Av = h(t), t ∈ R, h ∈ L2
eθ t (R, H), (3-8)

where the space L2
eθ t (R, H) is defined via the weighted norm

∥h∥
2
L2

eθ t (R,H)
:=

∫
t∈R

e2θ t
∥h(t)∥2 dt < ∞. (3-9)

Then, problem (3-8) possesses a unique solution u ∈ L2
eθ t (R, H) and the solution operator T : L2

eθ t → L2
eθ t ,

T : h 7→ u satisfies

∥T ∥L(L2
eθ t ,L

2
eθ t )

=
1

min{θ − λN , λN+1 − θ}
. (3-10)

The proof of this identity is just a straightforward calculation based on decomposition of the solution
u(t) with respect to the base {en}

∞

n=1 and solving the corresponding ODEs; see [Zelik 2014].
The second lemma gives the analogue of this formula for the linear equation on a negative semiaxis.

Lemma 3.4. Let θ ∈ (λN , λN+1). Then, for any p ∈ HN and any h ∈ L2
eθ t (R−, H), the problem

∂tv + Av = h(t), t ≤ 0, PN v|t=0 = p (3-11)

possesses a unique solution v ∈ L2
eθ t (R−, H). This solution can be written in the form

v = T h +Hp,

where T is exactly the solution operator constructed in Lemma 3.3 applied to the extension of the
function h(t) by zero for t ≥ 0 and H : HN → L2

eθ t (R−, H) is a solution operator for the problem with
zero right-hand side:

H(p, t) :=

N∑
n=1

(p, en)e−λn t .

Indeed, this lemma is an easy corollary of Lemma 3.3; see [Zelik 2014].
We are now ready to prove the theorem. To this end, we fix the optimal value θ = (λN+1 + λN )/2 and

write (3-6) as a fixed-point problem
u = T ◦ F(u) +H(p) (3-12)

in the space L2
eθ t (R−, H). Since the norm of the operator T is equal to 2/(λN+1 − λN ) and the Lipschitz

constant of F is L , the spectral gap condition (3-5) guarantees that the right-hand side of (3-12) is a
contraction for every p ∈ HN . Thus, by the Banach contraction theorem, for every p ∈ HN , there exists a
unique solution u(t) = V (p, t) of problem (3-6) belonging to L2

eθ t (R−, H) and the map p 7→ V (p, · ) is
Lipschitz continuous. Due to the parabolic smoothing property, we know that

∥u(0)∥ ≤ C(1 + ∥u∥L2([−1,0],H)) and ∥u(0) − w(0)∥ ≤ C∥u∥L2([−1,0],H)

for any two backward solutions u, w of (3-1); see, e.g., [Zelik 2014]. In particular, these formulas show
that the solution V (p, t) is continuous in time (V (p, · ) ∈ Ceθ t (R−, H), where the weighted space of
continuous functions is defined analogously to (3-9)) and the map p 7→ V (p, · ) is Lipschitz continuous as
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a map from HN to Ceθ t (R−, H). Thus, formula (3-7), defines indeed a Lipschitz manifold of dimension N
over the base HN as graph of Lipschitz continuous function M : HN → QN H.

The invariance of this manifold follows by the construction, so we only need to verify the exponential
tracking property.

Let u(t) = S(t)u0 be an arbitrary solution of problem (3-1) and let φ(t) ∈ C∞(R) be a cut-off function
such that φ(t) ≡ 0 for t ≤ 0 and φ(t) ≡ 1 for t ≥ 1. Then the function φ(t)u(t) is defined for all t ∈ R.
We seek for the desired solution ū(t) ∈ M (by the construction of M such solutions are defined for all
t ∈ R) in the form

ū(t) = φ(t)u(t) + v(t). (3-13)

Inserting this anzatz to (3-1), we end up with the following equation for v(t):

∂tv + Av = F(φu + v) − φF(u) − φ′u. (3-14)

Let v ∈ L2
eθ t (R, H) be a solution of this equation. Then, since ū = v for t ≤ 0, we necessarily have ū ∈M

by the construction of the IM. On the other hand, for t ≥ 1, we have v = ū − u ∈ L2
eθ t ([1, ∞), H) and

using the parabolic smoothing again, we get the desired estimate (3-3). Thus, we only need to find such a
solution v(t). To this end, we invert the linear part of (3-14) to get the fixed-point equation

v = T (F(φu + v) − φF(u) − φ′u). (3-15)

It is straightforward to verify using Lemma 3.3 that the right-hand side of (3-15) is a contraction on the
space L2

eθ t (R, H) if the spectral gap condition holds; see [Zelik 2014]. Thus, the Banach contraction
theorem finishes the proof of exponential tracking. □

Remark 3.5. It is well known that the spectral gap condition (3-5) is sharp in the sense that if it is violated
for some N and L , one can find a nonlinearity F such that (3-1) does not possess an IM of dimension N
with base HN ; see [Romanov 1993].

More recent examples show that if the condition

sup
N∈N

{λN+1 − λN } < 2L

is violated for all N, one can construct a smooth nonlinearity F such that (3-1) does not possess any
Lipschitz or even log-Lipschitz finite-dimensional manifold (not necessarily invariant) which contains the
global attractor; see [Eden et al. 2013; Zelik 2014].

Remark 3.6. Theorem 3.2 guarantees the existence of an IM MN for every N such that the spectral gap
condition (3-5) is satisfied. Typically, this N is not unique, instead, we have a whole sequence {Nk}

∞

k=1
of N ’s satisfying the spectral gap condition. Therefore, according to the theorem, we will have a sequence
of IMs {MNk }

∞

k=1 of increasing dimensions: N1 < N2 < N3 < · · · . Moreover, from the explicit description
of an IM using backward solutions of (3-6), we see that

MN1 ⊂ MN2 ⊂ MN3 ⊂ · · · ; (3-16)

see [Foias et al. 1988] for more details. In this case it can be also proved that MNk−1 is a normally
hyperbolic submanifold of MNk .
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Let us now discuss the further regularity of the IM M. To this end, we need one more auxiliary
statement.

Proposition 3.7. Let the spectral gap condition (3-5) hold and let u(t) ∈ C(R−, H) be an arbitrary
function. Let also the exponent θ ∈ (λN , λN+1) satisfy

θ− := L + λN < θ < λN+1 − L := θ+. (3-17)

Then, for any h ∈ L2
eθ t (R−, H) and every p ∈ HN , the corresponding equation of variations

∂tv + Av − F ′(u(t))v = h(t), t ≤ 0, PN v|t=0 = p (3-18)

possesses a unique solution v ∈ L2
eθ t (R−, H) ∩ Ceθ t (R−, H) and the following estimate holds:

∥v∥Ceθ t (R−,H) ≤ C∥v∥L2
eθ t (R−,H) ≤ CL ,θ (∥h∥L2

eθ t (R−,H) + ∥p∥), (3-19)

where the constant CL ,θ is independent of u, h and p.

Indeed, (3-18) can be solved via the Banach contraction theorem treating the term F ′(u)v as a
perturbation analogously to the nonlinear case. Inequalities (3-17) guarantee that the map T F ′(u)v is a
contraction on L2

eθ t (R−, H), due to (3-10).

Corollary 3.8. Let the assumptions of Theorem 3.2 hold and let, in addition, the exponent ε ∈ (0, 1] be
such that

λN+1 − (1 + ε)λN > (2 + ε)L . (3-20)

Assume also that F ∈ C1,ε(H, H). Then the associated IM MN is C1,ε-smooth, for any p, ξ ∈ HN , the
derivative M ′(p)ξ can be found as the value of the QN projection of V ′(t) = V ′(p, t)ξ at t = 0, where
the function V ′ solves the equation of variations

∂t V ′
+ AV ′

− F ′(u(t))V ′
= 0, t ≤ 0, PN V ′

|t=0 = ξ, u(t) := V (p, t), (3-21)
and

∥M ′(p1) − M ′(p2)∥L(HN ,H) ≤ C∥p1 − p2∥
ε

for some constant C independent of p1, p2 ∈ HN .

Proof. Let p1, p2 ∈ HN and ui (t) := V (pi , t) be the corresponding trajectories belonging to the IM. Let
also v(t) := u1(t) − u2(t) and ξ := p1 − p2. Then v solves

∂tv + Av − Lu1,u2(t)v = 0, t ≤ 0, PN v|t=0 = ξ, (3-22)

where Lu1,u2(t) :=
∫ 1

0 F ′(su1(t) + (1 − s)u2(t)) ds. Since the norm of Lu1,u2(t) does not exceed L ,
Proposition 3.7 is applicable to (3-22) and, therefore, for every θ satisfying (3-17), we have the estimate

∥v∥Ceθ t (R−,H) ≤ C∥v∥L2
eθ t (R−,H) ≤ Cθ∥p1 − p2∥. (3-23)

Note also that the function V ′(p, t)ξ is well-defined for all p, ξ ∈ HN due to Proposition 3.7 and satisfies
the analogue of (3-23). Let w(t) := v(t) − V ′(p1, t)ξ , with ξ := p1 − p2. Then, this function solves

∂tw + Aw − F ′(u1)w = F(u1) − F(u2) − F ′(u1)v := hu1,u2(t), PN w|t=0 = 0. (3-24)
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Since F ∈ C1,ε(H, H), by the Taylor theorem, we have

∥hu1,u2(t)∥ ≤ C∥v(t)∥1+ε,

which, due to (3-23), gives

∥hu1,u2∥L2
e(1+ε)θ t (R−,H) ≤ C∥v∥L2

eθ t (R−,H)∥v∥
ε
Ceθ t (R−,H) ≤ C ′

∥ξ∥
1+ε.

Fixing now θ in such a way that θ > θ− and (1 + ε)θ < θ+ (this is possible to do due to assumption
(3-20)) and applying Proposition 3.7 to (3-24), we finally arrive at

∥M(p2) − M(p1) − M ′(p1)ξ∥ = ∥w(0)∥ ≤ C1∥w∥L2
e(1+ε)θ t (R−,H) ≤ C2∥ξ∥

1+ε

and the converse Taylor theorem finishes the proof of the corollary. □

The next corollary claims that the constructed manifold M actually lives in a more regular space
H 2

:= D(A).

Corollary 3.9. Let the assumptions of Corollary 3.8 hold. Then the manifold M is simultaneously a
C1,ε-smooth IM for (3-1) in the phase space H 2

= D(A).

Proof. This is an almost immediate corollary of the parabolic smoothing property. Indeed, let us first
check that M∈ H 2. To this end, it is enough to check that the backward solution (3-6) actually belongs to
Ceθ t (R−, H 2). First, using the L2(H 2)-maximal regularity for the solutions of a linear parabolic equation

∂tv + Av = h(t), t ≤ 0, (3-25)
namely, that

∥v∥Cα(−1,0;H) + ∥∂tv∥L2(−1,0;H) + ∥Av∥L2(−1,0;H) ≤ Cα(∥h∥L2(−2,0,H) + ∥v∥L2(−2,0,H)), (3-26)

where α ∈
(
0, 1

2

)
, we end up with the estimate

∥u∥Cα(−1,0;H) ≤ Cα(∥F(u)∥L2(−2,0;H)+∥u∥L2(−2,0;H))≤ Cα,θ (1+∥u∥L2
eθ t (R−,H))≤ C(1+∥p∥), (3-27)

where α ∈
(
0, 1

2

)
. Second, using the Cα(H)-maximal regularity for solutions of (3-25) and the obvious

estimate
∥F(u)∥Cα(−2,0;H) ≤ ∥F∥Cα(H,H)(1 + ∥u∥

α
Cα(−2,0;H)),

we arrive at

∥∂t u∥Cα(−1,0;H) + ∥Au∥Cα(−1,0;H) ≤ C(∥F(u)∥Cα(−2,0;H) + ∥u∥Cα(−2,0;H))

≤ C1(1 + ∥u∥Cα(−2,0;H)) ≤ C2(1 + ∥p∥) (3-28)

and the fact that M(p) belongs to H 2 is proved. The fact that M is C1,ε-smooth as a map from HN to
H 2 can be verified analogously and the corollary is proved. □

Remark 3.10. The analogue of Corollary 3.8 holds for higher derivatives as well. For instance, if we
want to have a Cn,ε-smooth IM, we need to require that

λN+1 − (n + ε)λN > (n + 1 + ε)L . (3-29)
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To verify this, we just need to define the higher-order Taylor jets for the IM M using second, third,
etc., equations of variations for (3-6) and use again Proposition 3.7. For instance, the second derivative
V ′′

= V ′′(p, t)[ξ, ξ ] solves

∂t V ′′
+AV ′′

−F ′(u(t))V ′′
= F ′′(u(t))[V ′(p, t)ξ,V ′(p, t)ξ ], PN V ′′

|t=0 =0, u(t) := V (p, t). (3-30)

According to Proposition 3.7, in order to be able to solve this equation, we need θ+ > 2θ− (since V ′
∈ L2

eθ t

with θ > θ− and the right-hand side F ′′(u)[V ′, V ′
] ∈ L2

e2θ t ), which gives (3-29) for n = 2.
We believe that sufficient condition (3-29) for the existence of a Cn,ε-smooth IM is sharp for any n

and ε, but we restrict ourselves by recalling below the classical counterexample of G. Sell to the existence
of C2-smooth IM which demonstrates the sharpness of (3-29) for n = 2; see [Chow et al. 1992].

Example 3.11. Let H := l2 (the space of square summable sequences with the standard inner product)
and let us consider the following particular case of (3-1):

d
dt

u1 + u1 = 0,
d
dt

un + 2n−1un = u2
n−1, n = 2, 3, . . . . (3-31)

Here λn = 2n−1 and we have a set of resonances 2λn = λn+1 which prevent the existence of any finite-
dimensional invariant local manifold of dimension greater than zero which is C2-smooth and contains
zero. Note that the nonlinearity here is locally smooth near zero and since we are interested in local
invariant manifolds near zero, the behaviour of it outside the small neighbourhood of zero is not important
(we may always cut-off it outside of the neighbourhood to get global Lipschitz continuity). Moreover,
since F ′(0) = 0, decreasing the size of the neighbourhood we may make the Lipschitz constant L as small
as we want. Thus, according to Corollary 3.8, for any N ∈ N, there exists a local invariant manifold MN

of dimension N with the base HN which is C1,ε-smooth for any ε < 1.
Let us check that a C2-smooth invariant local manifold does not exist. Indeed, let MN be such a

manifold of dimension N. Then, since the tangent plane TMN (0) to this manifold at zero is invariant
with respect to A (due to the fact that F ′(0) = 0), we must have

H ′

N := TMN (0) = span{en1, . . . , enN }

for some n1 < n2 < · · · < nN . Thus, the manifold MN can be presented locally near zero as a graph of
a C2-function M : H ′

N → (H ′

N )⊥ such that M(0) = M ′(0) = 0. In particular, expanding M in Taylor
series near zero, we have

unN +1 = (M(un1, . . . , unN ), enN +1) = cu2
nN

+ · · · .

Let us try to compute the constant c. Inserting this in the (nN +1)-th equation and using the invariance,
we get

∂t unN +1 + 2nN unN +1 = 2c∂t unN unN + 2nN cu2
nN

+ · · ·

= −2c2nN −1u2
nN

+ 2nN cu2
nN

+ · · · = 0 + · · · = u2
nN

, (3-32)

which gives 0 = 1. Thus, the manifold MN cannot be C2-smooth.

Remark 3.12. Note that in the case where A is an elliptic operator of order 2k in a bounded domain �

of Rd , we have λn ∼ Cn2k/d due to the Weyl asymptotic. Thus, one may expect in general only gaps of
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the size
λN+1 − λN ∼ C N 2k/d−1

∼ C ′λ
1−d/(2k)

N , (3-33)

which is much weaker than (3-29) with n > 1. Sometimes the exponent in the right-hand side of (3-33)
may be improved due to multiplicity of eigenvalues (e.g., for the Laplace–Beltrami operator on a sphere Sd,
we have λ

1/2
N instead of λ

1−d/(2k)

N in the right-hand side of (3-33) for infinitely many values of N, no matter
how big the dimension d is), but this exponent is always less than one in all more or less realistic examples.
Thus, the existence of Cn-smooth IMs with n > 1 looks unrealistic and could be obtained in general, but
only for bifurcation problems where, e.g., λ1, . . . , λN are close to zero, λN+1 is of order 1 and L is small.

In contrast to this, if the spectral gap condition (3-5) is satisfied for some N, i.e., λN+1 − λN > 2L ,
we always can find a small positive ε = εN such that λN+1 − (1+ ε)λN > (2+ ε)N and, therefore, (3-20)
will be also satisfied. Thus, if the nonlinearity F is smooth enough, we automatically get a C1,ε-smooth
IM for some small ε depending on N and L .

Remark 3.13. Let ū(t) be a trajectory of (3-1) belonging to the IM, i.e.,

QN ū(t) ≡ MN (PN ū(t))

and let ūN := PN ū(t). Then, we may write a linearization near the trajectory ū(t) in two natural ways.
First, we may just linearize (3-1) without using the fact that ū ∈ MN . This gives the equation

∂tv + Av − F ′(ū)v = h(t), (3-34)

which we have used above to get the existence of the IM, its smoothness and exponential tracking.
Alternatively, we may linearize the reduced ODEs (3-4):

∂tvN + AvN − F ′(ū)(vN + M ′

N (ū)vN ) = hN (t). (3-35)

Of course, these two equations are closely related. Namely, if vN (t) solves (3-35), then the function

v(t) := vN (t) + M ′

N (ū(t))vN (t) (3-36)

solves (3-34) with
h(t) := hN (t) + M ′

N (ū(t))hN (t). (3-37)

Vice versa, if h(t) satisfies (3-37) and the solution v(t) of (3-34) satisfies (3-36) for some t , then it satisfies
(3-36) for all t and vN (t) := PN v(t) solves (3-35).

This equivalence is a straightforward corollary of the invariance of the manifold MN and we leave its
rigorous proof to the reader.

4. Main result

In this section we develop an alternative approach for constructing Cn-smooth IFs which does not require
huge spectral gaps. The key idea is to require instead the existence of many spectral gaps and to use the
second spectral gap in order to solve (3-30) for the second derivative, the third gap to solve the appropriate
equation for the third derivative, etc. Of course, this will not allow us to construct a Cn-smooth IM (we
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know that it may not exist for n > 1, see Example 3.11). Instead, for every p ∈MN2 and the corresponding
trajectory u = V (p, t), we construct the corresponding Taylor jet J n

ξ V (p, t) of length n + 1 belonging
to the space Pn(HNn , H) for all t ≤ 0, where Nk is the dimension of the IM MNk built up on the k-th
spectral gap. These jets must be constructed in such a way that the compatibility conditions are satisfied.
Then, the Whitney embedding theorem will give us the desired smooth extension of the initial IM. To be
more precise, we give the following definition of such a smooth extension.

Definition 4.1. Let (3-1) possess at least two spectral gaps which correspond to the dimensions K1 and K2

and let ε > 0 be a small number. Denote the corresponding IMs by MK1 and MK2 respectively; the
corresponding C1,ε-functions generating these manifolds are denoted by MK1 and MK2 respectively. A
Cn,ε-smooth submanifold M̃K2 (not necessarily invariant) of dimension K2 is called a Cn-extension of
the IM MK1 if the following conditions hold:

(1) M̃K2 is a graph of a Cn,ε-smooth function M̃K2 : PK2 H → QK2 H.

(2) M̃K2 |PK2MK1
= QK2 MK1 and therefore MK1 ⊂ M̃K2 .

(3) M̃K2 is µ-close in the C1
b -norm to MK2 for a sufficiently small µ.

Remark 4.2. The Cn,ε dynamics on the extended IM M̃K2 is naturally defined via

∂t uK2 + AuK2 = PK2 F(uK2 + M̃K2(uK2)), uK2 ∈ HK2, (4-1)

and u(t) :=uK2(t)+M̃K2(uK2(t)). Obviously, the manifold M̃K2 is invariant with respect to the dynamical
system thus defined. Moreover, due to the second condition of Definition 4.1, the C1,ε-submanifold
PK2MK1 ⊂ HK2 is invariant with respect to (4-1) and the restriction of (4-1) coincides with the initial IF
(3-4) generated by the IM MK1 . Thus, system of ODEs (4-1) is indeed a smooth extension of the IF (3-4).

Finally, the third condition of Definition 4.1 guarantees that PK2MK1 is a normally hyperbolic stable
invariant manifold for (4-1) (since it is so for the IF generated by the function MK2). This means that
PK2MK1 also possesses an exponential tracking property. Thus, the limit dynamics generated by the
extended IF coincides with the one generated by the initial abstract parabolic equation (3-1).

We are now ready to state the main result of the paper.

Theorem 4.3. Let the nonlinearity F : H → H in (3-1) be smooth and all its derivatives be globally
bounded. Let also the following form of spectral gap conditions be satisfied:

lim sup
N→∞

(λN+1 − λN ) = ∞. (4-2)

Then, for any n ∈ N and any µ > 0, equation (3-1) possesses a Cn,ε-smooth extension M̃Nn of the initial
IM MN1 (where N1 is the first N which satisfies the spectral gap condition (3-5) and ε > 0 is small
enough) such that M̃Nn is µ-close to the IM MNn in the C1

b -norm.

Proof for n = 2. Let N1 be the first N for which the spectral gap condition (3-5) is satisfied with L :=

∥F ′
∥Cb(H,L(H,H)) and let the corresponding M1 be the C1,ε-smooth IM which exists due to Theorem 3.2

and Corollary 3.8. Recall that for any p ∈ H, we have a solution V (p, t) of problem (3-6) (where p is
replaced by PN1 p) and its Fréchet derivative V ′

ξ (t) := V ′(p, t)ξ in p satisfies the equation of variations
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(3-21), such that both functions V (p, · ) and V ′

ξ ( · ) and belong to the space L2
eθ1t (R−, H) for any θ1

satisfying (3-17), i.e., λN1 + L < θ1 < λN1 − L . Moreover, for any other p1 ∈ H, we have the estimate

∥V (p1, t) − V (p, t) − V ′

ξ (t)∥L2
eθ1(1+ε)t (R−,H) ≤ C∥PN1(p − p1)∥

1+ε, (4-3)

where ε > 0, ξ := p1 − p and C is independent of p and p1.
Let now N2 > N1 be the first N which satisfies

λN2+1 − λN2 − λN1 > 3L (4-4)

(such N exists due to condition (4-2)). Then, we have the corresponding C1,ε-smooth IM MN2 . Let us
denote by W (p, t), p ∈ H, the corresponding solution of (3-6) (where N is replaced by N2 and p is
replaced by PN2 p). This solution belongs to L2

eθ2t (R−, H) with θ2 satisfying (3-17) (with N replaced
by N2). Moreover, analogously to (4-3), we have

∥W (p1, t) − W (p, t) − W ′

ξ (t)∥L2
eθ2(1+ε)t (R−,H) ≤ C∥PN2(p − p1)∥

1+ε, (4-5)

where W ′

ξ (t) = W ′(p, t)ξ solves (3-21) with N replaced by N2. We also know that V (p, t) = W (p, t) if
p ∈ MN1 and, therefore, due to (4-3) and (4-5),

∥V ′(p, · )ξ − W ′(p, · )ξ∥L2
eθ2(1+ε)t (R−,H) ≤ C∥PN2ξ∥

1+ε, ξ = p1 − p, p, p1 ∈ MN1 . (4-6)

Let us define for every p ∈ MN1 and every ξ ∈ H the “second derivative” W ′′

ξ = W ′′(p, t)[ξ, ξ ] of the
trajectory u(t) = W (p, t) = V (p, t) as a solution of the problem

∂t W ′′

ξ +AW ′′

ξ −F ′(V (p, t))W ′′

ξ =2F ′′(V (p, t))[V ′

ξ ,W ′

ξ ]−F ′′(V (p, t))[V ′

ξ ,V ′

ξ ], PN2 W ′′

ξ |t=0 =0. (4-7)

Note that the right-hand side of this equation belongs to the weighted space L2
e(θ1+θ2)t (R−, H), where the

exponents θ1 and θ2 satisfy assumption (3-17) with N = N1 and N = N2 respectively, i.e.,

λN1 + L < θ1 < λN1 − L , λN2 + L < θ2 < λN2 − L .

Moreover, due to assumption (4-4), it is possible to fix θ1 and θ2 in such a way that the exponent θ1 + θ2

still satisfies (3-17) with N = N2. Thus, by Proposition 3.7, there exists a unique solution of (4-7)
belonging to the space L2

e(θ1+θ2)t (R−, H) and the function W ′′

ξ is well-defined and satisfies

∥W ′′

ξ ∥C
e(θ1+θ2)t (R−,H) ≤ C∥W ′′

ξ ∥L2
e(θ1+θ2)t (R−,H) ≤ C2

∥ξ∥
2,

where C is independent of p.
Let us define the desired quadratic polynomial ξ → J 2

ξ W (p, t), p ∈ MN1 , as

J 2
ξ W (p, t) := V (p, t) + W ′(p, t)ξ +

1
2 W ′′(p, t)[ξ, ξ ], ξ ∈ H. (4-8)

We need to verify the compatibility conditions for these “Taylor jets” on p ∈ MN1 . It is straightforward
to check using F ∈ C2,ε, V, W ∈ C1,ε and Proposition 3.7 that

∥W ′′(p1, · )[ξ, ξ ] − W ′′(p, · )[ξ, ξ ]∥L2
e(θ1+θ2+ε)t (R−,H) ≤ C∥ξ∥

2
∥p − p1∥

ε
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for p, p1 ∈ MN1 . This gives us the desired compatibility condition for the second derivative; see (2-13)
for n = l = 2.

Let us now verify the compatibility conditions for the first derivative (l = 1, n = 2 in (2-13)). To
this end, we need to expand the difference w(t) := W ′(p1, t)ξ − W ′(p, t)ξ , p, p1 ∈ MN1 , in terms of
δ = p − p1. By the definition of W ′, this function satisfies the equation

∂tw + Aw − F ′(V (p, t))w = (F ′(V (p1, t)) − F ′(V (p, t)))W ′(p1, t)ξ

= F ′′(V (p, t))[V ′(p, t)δ, W ′(p, t)ξ ] + h(t), PN2w|t=0 = 0, (4-9)

where the reminder h satisfies

∥h∥L2
e(θ1+θ2+ε)t (R−,H) ≤ C∥δ∥1+ε

∥ξ∥

for sufficiently small positive ε (this also follows from the fact that F is smooth and V, W ∈ C1,ε). Thus,
the remainder h in the right-hand side of (4-9) is of higher order in δ and, for this reason, is not essential,
so we need to study the bilinear form (with respect to δ, ξ ) in the right-hand side. Note that, in contrast
to the case where the IM is C2, this form is even not symmetric, so it should be corrected. Namely, we
write the identity

F ′′(V (p, t))[V ′(p, t)δ, W ′(p, t)ξ ]

=
{

F ′′(V (p, t))[V ′(p, t)δ, W ′(p, t)ξ ] + F ′′(V (p, t))[V ′(p, t)ξ, W ′(p, t)δ]
−F ′′(V (p, t))[V ′(p, t)δ, V ′(p, t)ξ ]

}
−F ′′(V (p, t))[V ′(p, t)ξ, W ′(p, t)δ − V ′(p, t)δ] (4-10)

and note that the first term in the right-hand side is nothing more than the symmetric bilinear form which
corresponds to the quadratic form

2F ′′(V (p, t))[V ′(p, t)ξ, W ′(p, t)ξ ] − F ′′(V (p, t))[V ′(p, t)ξ, V ′(p, t)ξ ]

used in (4-7) to define W ′′ and the second term is of order ∥δ∥1+ε
∥ξ∥ due to estimate (4-6) (where ξ

is replaced by δ) and the growth rate of this term does not exceed e−(θ1+θ2+ε)t as t → −∞. Thus, by
Proposition 3.7, we have

∥w − W ′′(p, · )[δ, ξ ]∥L2
e(θ1+θ2+ε)t (R−,H) ≤ C∥δ∥1+ε

∥ξ∥

and the compatibility condition for l = 1 is verified.
Finally, let us check the zero-order compatibility condition (l = 0, n = 2 in (2-13)). Let

R(t) := V (p1, t) − V (p, t) − W ′(p, t)δ −
1
2!

W ′′(p, t)[δ, δ].

Then, as elementary computations show, this function satisfies the equation

∂t R + AR − F ′(V (p, t))R

= {F(V (p1, t)) − F(V (p, t)) − F ′(V (p, t))(V (p1, t) − V (p, t))}

−
1
2!

(
2F ′′(V (p, t))[V ′(p, t)δ, W ′(p, t)δ]

− F ′′(V (p, t))[V ′(p, t)δ, V ′(p, t)δ]
)
, PN2 |t=0 R = 0. (4-11)
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Since F ∈ C2,ε and V ∈ C1,ε, the first term in the right-hand side equals

1
2!

F ′′(V (p, t))[V ′(p, t)δ, V ′(p, t)δ] (4-12)

up to the controllable in L2
e(θ1+θ2+ε)t (R−, H)-norm remainder of order ∥δ∥2+ε. The second term can be

simplified using (4-6) and also equals (4-12) up to higher-order terms. Thus, the right-hand side of (4-11)
vanishes up to terms of order ∥δ∥2+ε and Proposition 3.7 gives us that

∥R∥L2
e(θ1+θ2+ε)t (R−,H) ≤ C∥δ∥2+ε (4-13)

for some positive ε. This finishes the verification of the compatibility conditions.
We are now ready to use the Whitney extension theorem. To this end, we first recall that the IM MN2

is a graph of the C1,ε-function MN2 : PN2 H → QN2 H, which is defined via MN2(p) := QN2 W (p, 0),
p ∈ PN2 H = HN2 (all functions V , W, W ′, W ′′ defined above depend only on PN2-component of p ∈ H,
so without loss of generality we may assume that p, ξ, δ ∈ HN2 (we took them from H in order to
simplify the notation only). Thus, projecting the constructed Taylor jets to t = 0 and QN2 H, we get the
C1,ε-function MN2(p) restricted to the invariant set p ∈ PN2MN1 and a family of quadratic polynomials

J 2
ξ MN2(p) := QN2 J 2

ξ W (p, 0),

which satisfy the compatibility conditions on p ∈ PN2MN1 . Therefore, since HN2 is finite-dimensional,
the Whitney extension theorem gives the existence of a C2,ε-function M̂N2 : PN2 H → QN2 H such that

J 2
ξ M̂N2(p) = J 2

ξ MN2(p), p ∈ PN2MN1 .

Thus, the desired C2+ε-extension of the IM MN1 is “almost” constructed. It only remains to take care
of the closeness in the C1-norm. To this end, for any small ν > 0, we introduce a cut-off function
ρν ∈ C∞(HN2, R) such that ρ(p) ≡ 0 if p belongs to the ν-neighbourhood Oν of PN2MN1 and ρ(p) ≡ 1
if p /∈ O2ν . Moreover, since PN2MN1 is C1,ε-smooth, we may require also that

|∇pρ(p)| ≤ Cν−1, (4-14)

where the constant C is independent of ν. Finally, we define

M̃N2(p) := (1 − ρν(p))M̂N2(p) + ρν(p)(Sν2 MN2)(p), (4-15)

where Sµ is a standard mollifying operator,

(Sµ f )(p) :=

∫
RN2

βµ(p − q) f (q) dq,

and the kernel βµ(p) satisfies βµ(p) = (1/µN2)β1(p/µ) and β1(p) is a smooth, nonnegative function
with compact support satisfying

∫
RN2 β1(p) dp = 1.

We claim that M̃N2 is a desired extension. Indeed, M̃N2(p) ≡ M̂N2(p) in Oν and therefore M̃N2 and
MN2 coincide on PN2MN1 . Obviously, M̃N2 is C2,ε-smooth. To verify closeness, we note that

M̃N2(p) − MN2(p) = (1 − ρν(p))(M̂N2(p) − MN2(p)) + ρν(p)((Sν2 MN2)(p) − MN2(p)). (4-16)
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Using the fact that MN2 ∈ C1,ε together with the standard estimates for the mollifying operator, we get

∥(Sν2 MN2)(p) − MN2(p)∥ ≤ Cν2, ∥∇p(Sν2 MN2)(p) − ∇p MN2(p)∥ ≤ Cν2ε,

which together with (4-14) shows that the C1-norm of the second term in the right-hand side of (4-16)
is of order ν2ε. To estimate the first term, we use that both functions M̂N2(p) and MN2(p) are at least
C1,ε-smooth and

M̂N2(p) = MN2(p), ∇p M̂N2(p) = ∇p MN2(p), p ∈ PN2MN1 .

For this reason,

∥M̂N2(p) − MN2(p)∥ ≤ Cν1+ε, ∥∇p M̂N2(p) − ∇p MN2(p)∥ ≤ Cνε

for all p ∈ O2ν . Thus, using (4-14) again, we see that

∥M̃N2( · ) − MN2( · )∥C1
b (HN2 ,H) ≤ Cνε.

This finishes the proof of the theorem for the case n = 2. □

Proof for general n ∈ N. We will proceed by induction with respect to n. Assume that, for some
n ∈ N, we have already constructed the C1,ε-smooth inertial manifold MNn which is a graph of a
map MNn : PNn H → QNn H and this map is constructed via the solution V (p, t), t ≤ 0, p ∈ H, of the
backward problem (3-6), where N is replaced by Nn . Recall that this manifold is constructed using the
n-th spectral gap. Assume also that, for every p ∈ PNnMN1 , we have already constructed the n-th Taylor
jet J n

ξ V (p, t) such that the compatibility conditions up to order n are satisfied. In contrast to the proof
for the case n = 2, it is convenient for us to write these conditions in the form of (2-12):

∥J n
ξ V (p1, · ) − J n

ξ+δV (p, · )∥L2
e(θn+(n−1)θn−1+ε)t (R−,H) ≤ C(∥δ∥ +∥ξ∥)n+ε. (4-17)

Here ξ ∈ H is arbitrary, δ := p1 − p, ε > 0 and θ1 < θ2 · · · < θn are the exponents which satisfy condition
(3-17) for N = N1, . . . , Nn . In order to simplify the notation, we will write below

J n
ξ V (p1) − J n

ξ+δV (p) = Oθn+(n−1)θn−1+ε((∥δ∥ +∥ξ∥)n+ε) (4-18)

instead of (4-17) and likewise in similar situations. Rewriting (4-18) in terms of truncated jets with the
help of (2-10) (where ξ is replaced by δ), we have

jn
ξ V (p1) + jn

δ V (p) − jn
ξ+δV (p) = Onθn+ε((∥δ∥ +∥ξ∥)n+ε), (4-19)

where we have used that θn−1 < θn . We also need the induction assumption that (4-19) holds for every
m ≤ n, namely,

J m
ξ V (p1) − J m

ξ+δV (p) = Omθn+ε((∥δ∥ +∥ξ∥)m+ε). (4-20)

Let us now consider the (n+1)-th spectral gap at N = Nn+1 which is the first N satisfying

λNn+1 + L + n(λNn+1 − L) < λNn+1+1 − L . (4-21)
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Let MNn+1 be the corresponding IM which is generated by the backward solution W (p, t) of problem (3-6)
with N replaced by Nn+1. We need to define the (n+1)-th Taylor jet J n+1

ξ W (p, t) for the function W (p, t),

J n+1
ξ W (p, t) = W (p, t) +

n+1∑
k=1

1
k!

W (k)(p, t)[{ξ}
k
], (4-22)

ξ ∈ H and p ∈ PNn+1MN1 and to verify the compatibility conditions of order n + 1. Keeping in mind the
already-considered cases n = 1 and n = 2, we introduce the required jet (4-22) as a backward solution
of the equation

∂t J n+1
ξ W (p) + AJ n+1

ξ W (p) = F [n+1](p, ξ), PNn+1 J n+1
ξ (p)|t=0 = PNn+1(p + ξ), (4-23)

where

F [n+1](p, ξ, t) := F(W (p, t)) + F ′(W (p, t)) jn+1
ξ W (p, t)

+

n+1∑
k=2

1
k!

(
k F (k)(W (p, t))[{ jn

ξ V (p, t)}k−1, jn
ξ W (p, t)]

− (k − 1)F (k)(W (p, t))[{ jn
ξ V (p, t)}k

]
)
. (4-24)

The symbol “[n + 1]” means that we have dropped out all terms of order greater than n + 1 from the
right-hand side, so F [n+1] is a polynomial of order n + 1 in ξ ∈ H. Alternatively, the dropping out
procedure means that we use the substitution

{ jn
ξ V (p)}k

→

∑
n1+···+nk≤n+1

ni ∈N

Bn1,...,nk { jn1
ξ V (p), . . . , jnk

ξ V (p)}, (4-25)

where the numbers Bn1,...,nk ∈ R are chosen in such a way that polynomials in the left- and right-hand sides
of (4-25) coincide up to order {ξ}

n+1 inclusively and the term [{ jn
ξ V (p, t)}k−1, jn

ξ W (p, t)] is treated
analogously. The explicit expressions for these coefficients can be found using the formulas for the
higher-order chain rule (Faà di Bruno-type formulas; see, e.g., [Roman 1980; Hájek and Johanis 2014]),
but these expressions are lengthy and not essential for what follows, so we omit them.

Note also that the truncated jets jn
ξ V (p, t) are taken from the induction assumption. We seek the

solution of (4-23) belonging to L2
enθn+θn+1

(R−, H) for some θn+1 satisfying (3-17) with N replaced by Nn+1.
Expanding (4-24) in series with respect to ξ , we get the recurrent equations for finding the “derivatives”
W (k)

ξ (p, t) := W (k)(p, t)[{ξ}
k
]:

∂t W
(k)
ξ + AW (k)

ξ − F ′(W (p))W (k)
ξ = 8( j k−1

ξ W, j k−1
ξ V ), PNn+1 W (k)

ξ |t=0 = 0, (4-26)

for k ≥ 2, where 8 is polynomial of order k in ξ which does not contain W (l)
ξ , with l ≥ k. Thus, the

functions W (k)
ξ can be, indeed, found recursively. Moreover, the spectral gap assumption (4-21) guarantees

that we can find θn+1 satisfying (3-17) with N = Nn+1 such that θn+1 + nθn also satisfies this condition.
Therefore, Proposition 3.7 guarantees the existence and uniqueness of the homogeneous polynomials
W (k)

ξ (p) satisfying

∥W (k)
ξ (p)∥L2

e(θn+1+kθn )t (R−,H) ≤ C∥ξ∥
k (4-27)

for k = 1, . . . , n + 1.
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To complete the proof of the theorem, we only need to verify that the jet Jξ W (p, t) satisfies the
compatibility conditions of order n + 1. If this is verified, the rest of the proof coincides with the one
given above for the case n = 2. We postpone this verification till the next section. Thus, the theorem is
proved by modulo of compatibility conditions. □

Corollary 4.4. Let the assumptions of Theorem 4.3 hold with µ > 0 being small enough. Then the
invariant manifold PNnMN1 of the extended IF (4-1) possesses an exponential tracking property in HNn ;
i.e., for every solution uNn (t) of (4-1) there exists the corresponding solution ūNn belonging to this
manifold such that

∥uNn (t) − ūNn (t)∥ ≤ Ce−θ1t (4-28)

for some positive C and θ1.

Proof. As we have already mentioned, this is the standard corollary of the fact that MN1 is normally
hyperbolic and, therefore, persists under small C1-perturbations; see [Bates et al. 1999; Fenichel 1972;
Hirsch et al. 1977; Katok and Hasselblatt 1995]. Nevertheless, for the convenience of the reader, we now
sketch a direct proof that does not use the normal hyperbolicity explicitly.

We first construct an invariant manifold MN1 with the base HN1 in HNn for the extended IF. We do
this exactly as in the proof of Theorem 3.2 by solving the backward problem

∂t uNn + AuNn − PNn F(uNn + M̃Nn (uNn )) = 0, PN1uNn = p (4-29)

in the space L2
eθ t (R−, HNn ) with θ = (λN1 + λN1+1)/2. This equation is (Cµ)-closed to

∂t ūNn + AūNn − PNn F(ūNn + MNn (ūNn )) = 0, PN1 ūNn = p (4-30)

in the C1-norm (since M̃Nn is µ-closed to MNn due to Theorem 4.3). Thus, using Remark 3.13 and
the Banach contraction theorem, we can construct a unique solution uNn (t) of (4-29) in the (Cµ)-
neighbourhood of the corresponding solution ūNn of problem (4-30) and vice versa. This gives us the
existence of the manifold MN1 which is generated by all backward solutions of (4-30) belonging to the
space L2

eθ t (R−, HNn ). Since the solutions belonging to the invariant manifold PNnMN1 satisfy exactly
the same property, we conclude that MN1 = PNnMN1 .

It remains to verify that the manifold MN1 possesses an exponential tracking property. This can be
done as in the proof of Theorem 3.2 by considering the analogue of (3-14) for system (4-1) and using
again that M̃Nn is close to MNn in the C1-norm. This finishes the proof of the corollary. □

Corollary 4.5. Arguing as in Corollary 3.9, we check that the extended IM M̃Nn is also a Cn,ε-submanifold
of H 2

:= D(A).

5. Examples and concluding remarks

We now give several examples of our main theorem, as well as its reinterpretations, and state some
interesting problems for further study. We start with the application to the 1-dimensional reaction-
diffusion equation.
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Example 5.1. Let us consider the following reaction-diffusion system in a 1-dimensional domain � =

(−π, π):
∂t u = a∂2

x u − f (u), u|� = 0, u|t=0 = u0, (5-1)

where u is an unknown function, a > 0 is a given viscosity parameter, and f (u) is a given smooth function
satisfying f (0) = 0 and some dissipativity conditions, for instance,

f (u)u ≥ −C + α|u|
2, u ∈ R.

for some C and α > 0 (e.g., f (u) = u3
− u as in the case of real Ginzburg–Landau equation). Then, due

to the maximum principle, we have the following dissipative estimate for the solutions of (5-1):

∥u(t)∥L∞ ≤ ∥u0∥L∞e−αt
+ C∗, (5-2)

where the constant C∗ is independent of u0; see, e.g., [Babin and Vishik 1992; Chepyzhov and Vishik
2002; Temam 1988]. Thus, the associated solution semigroup S(t) acting in the phase space H := H 1

0 (�)

possesses an absorbing set in C(�), and cutting-off the nonlinearity outside of this ball, we may assume
without loss of generality that f ∈ C∞

0 (R).
After this transformation, (5-1) can be considered as an abstract parabolic equation (3-1) in the Sobolev

space H = H 1
0 (�). Since this space is an algebra with respect to pointwise multiplication (since we have

only one spatial variable), the corresponding nonlinearity F(u)(x) := f (u(x)) is C∞-smooth and all its
derivatives are globally bounded.

Finally, the linear operator A in this example is A = −a∂2
x endowed with the Dirichlet boundary

conditions. Obviously, this operator is self-adjoint, positive definite and its inverse is compact. Moreover,
its eigenvalues

λk = ak2, k ∈ N,

satisfy (4-2). Thus, our main Theorem 4.3 is applicable here and, therefore, problem (5-1) possesses
an IM MN1 of smoothness C1,ε for some ε > 0 and, for every n ∈ N, this IM can be extended to a
manifold M̃Nn of regularity Cn,εn , εn > 0, in the sense of Definition 4.1.

Remark 5.2. Our general theorem is applicable not only for a scalar reaction-diffusion equation (5-1), but
also for systems where the analogue of (5-2) is known, for instance, for the case of 1-dimensional complex
Ginzburg–Landau equation. However, one should be careful in the case where the diffusion matrix is not
self-adjoint and especially when it contains nontrivial Jordan cells. In this case, even Lipschitz IM may
not exist; see [Kostianko and Zelik 2022] for more details.

A bit unusual choice of the phase space H = H 1
0 (�) (instead of the natural one H = L2(�)) is related

to the fact that we need H to be an algebra in order to define Taylor jets for the nonlinearity F and to
verify that it is C∞. This, however, may be relaxed in applications since backward solutions of (3-4) and
(3-18) are usually smooth in space and time if the nonlinearity f is smooth, so the Taylor jets for V (p, t)
will be well-defined even if we consider L2(�) as a phase space and the theory works with minimal
changes. This observation may be useful if we want to remove the assumption f (0) = 0 in (5-1), but in
order to avoid technicalities, we prefer not to go further in this direction here.
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The restriction to the 1-dimensional case is motivated by the fact that the spectral gap condition (4-2)
is naturally satisfied by the Laplacian in 1-dimensional case only (it is an open problem already in the
2-dimensional case).

If we consider higher-order operators, say bi-Laplacian then the analogous result holds also in three
dimensions. The typical example here is given by the Swift–Hohenberg equation in a bounded domain
� ⊂ R3:

∂t u = −(1 + 1)2u + u − u2, u|∂� = 1u|∂� = 0,

where the spectral gap condition (4-2) is also satisfied; see [Zelik 2014]. We also note that although
our main theorem is stated and proved for the case where F maps H to H, it can be generalized in
a very straightforward way to the case where the operator F decreases smoothness and maps H to
H−s

:= D(A−s/2) for some s ∈ (0, 2). The spectral gap assumption (4-2) should be replaced by

lim sup
n→∞

{
λn+1 − λn

λ
s/2
n+1 + λ

s/2
n

}
= ∞.

After this extension, our theorem becomes applicable to equations which contain spatial derivatives in the
nonlinearity. A typical example of such applications is the 1-dimensional Kuramoto–Sivashinsky equation

∂t u + a∂2
x u + ∂4

x u + u∂x u = 0, � = (−π, π), a > 0,

endowed with Dirichlet or periodic boundary conditions; see [Zelik 2014] for more details.

Remark 5.3. As we mentioned in the Introduction, there is some significant recent progress in constructing
IMs for concrete classes of parabolic equations which do not satisfy the spectral gap conditions (such
as scalar reaction-diffusion equations in higher dimensions, 3-dimensional Cahn–Hilliard or complex
Ginzburg–Landau equations, various modifications of Navier–Stokes systems, 1-dimensional reaction-
diffusion-advection systems, etc.). The techniques developed in the present paper are not directly
applicable to such problems (in particular, our technique is strongly based on the Perron method of
constructing the IMs and it is not clear how to use the Perron method here since we do not have the
so-called absolute normal hyperbolicity in the most part of equations mentioned above; see [Kostianko
2018; Kostianko and Zelik 2015] for more details). However, we believe that the proper modification of
our method would allow us to cover these cases as well. We return to this problem elsewhere.

We now give an alternative (probably more transparent and more elegant) formulation of Theorem 4.3.
We recall that in Theorem 4.3, we have directly constructed a smooth extended IF (4-1) for the initial
equation (3-1). This extended IF captures all nontrivial dynamics of (3-1), but the associated smooth
extended IM Mn is not associated with the “true” IM of any system of the form (3-1). This drawback
can be easily corrected in a more or less standard way which leads to the following reformulation of our
main result.

Corollary 5.4. Let the assumptions of Theorem 4.3 be satisfied and let MN1 be the C1,ε1-smooth IM of
(3-1) which corresponds to the first spectral gap. Then, for every n ∈ N, n > 1, there exists a modified
nonlinearity F̃ : H → H which belongs to Cn−1,εn

b (H, H) for some εn > 0 such that:



SMOOTH EXTENSIONS FOR INERTIAL MANIFOLDS OF SEMILINEAR PARABOLIC EQUATIONS 525

(1) The initial IM MN1 is simultaneously an IM for the modified equation

∂t u + Au = F̃n(u). (5-3)

(2) Equation (5-3) possesses a Cn,εn -smooth IM M̃Nn of dimension Nn such that the initial IM M1 is a
normally hyperbolic globally stable submanifold of M̃Nn .

(3) The nonlinearity F̃n(u) depends on the variable uNn := PNn u only and the IF associated with the IM
M̃Nn is given by (4-1) where K2 is replaced by Nn .

Proof. Indeed, we take the manifold M̃Nn constructed in Theorem 4.3 and define the desired function F̃n as

PNn F̃n(u) := PNn F(uNn + M̃Nn (uNn )) (5-4)

and

QNn F̃n(u) := M̃ ′

Nn
(uNn )[−AM̃Nn (uNn ) + PNn F(uNn + M̃Nn (uNn ))] + AM̃Nn (uNn ). (5-5)

Then, due to the choice of PNn -component of F̃n(u), the equation for uNn is decoupled from the equation for
the QNn -component and coincides with the extended IF for (5-3) constructed in Theorem 4.3. On the other
hand, the QNn -component of F̃n is chosen in a form which guarantees that M̃Nn is an invariant manifold
for (5-3). Moreover, if u(t) solves (5-3) with such a nonlinearity and v(t) :=u(t)− PNn u(t)−M̃Nn (uNn (t)),
then this function satisfies

∂tv + Av = 0, PNnv(t) ≡ 0,

and, therefore,

∥v(t)∥H ≤ ∥v(0)∥H e−λNn+1 t .

Thus, M̃Nn is indeed an IM for problem (5-3) and we only need to check the regularity of the modified
function F̃n .

The PNn component (5-4) is clearly Cn,εn -smooth, but the situation with the QNn is a bit more delicate
due to the presence of terms AM̃Nn (uNn ) and M̃ ′

Nn
(uNn ). The first term is not dangerous since we know

that M̃Nn is Cn,εn -smooth as the map from HNn to H 2. The second term is worse and decreases the
smoothness of the F̃n till Cn−1,εn . Thus, the corollary is proved. □

Remark 5.5. The modified nonlinearity F̃n(u) can be interpreted as a “clever” cut-off of the initial
nonlinearity F(u) outside of the global attractor (even outside of the IM of minimal dimension). In this
sense we may say that all obstacles for the existence of Cn,ε-smooth IMs can be removed by appropriately
cutting off the nonlinearity outside of the global attractor, which does not affect the dynamics of the initial
problem. This demonstrates the importance of finding the proper cut off procedure in the theory of IMs.

Example 5.6. We now return to the model example of G. Sell introduced in Example 3.11 and show
how the problem of smoothness of an invariant manifold can be resolved. Since the nonlinearity for this
system is not globally Lipschitz continuous, the above-developed theory is formally not applicable and
we need to cut-off the nonlinearity first. We overcome this problem by considering only local manifolds
in a small neighbourhood of the origin.
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Indeed, it is not difficult to see that system (3-31) has an explicit particular solution

u1(t) = ±e−t , un+1(t) = Cne−2n t t2n
−1, n > 1,

where the coefficients Cn satisfy the recurrence relation

Cn+1 =
1

2n − 1
C2

n , C0 = 1.

This solution determines a 1-dimensional local invariant manifold

M1 = {p + M(p) : p ∈ H1 = R, |p| < β},

where M : R → H is defined by M = (0, M1(p), M2(p), . . . ) and

Mn+1(p) = Cn p2n
(

ln
1

|p|

)2n
−1

, n ∈ N,

which is a 1-dimensional IM for system (3-31) and β is a sufficiently small positive number. Indeed,
since Cn ≤ 2−α2n

for some positive α, this manifold is well-defined as a local submanifold of H = l2

(if β > 0 is small enough) and is C1,ε-smooth for any ε ∈ (0, 1). Moreover, we see that M2(p) is only
C1,ε-smooth and higher components are more regular; in particular, Mn(p) is C2n−1

−1,ε-smooth. This
shows us how to define the extended manifolds of an arbitrary finite smoothness. Namely, let us fix some
n ∈ N and consider the manifold

M̃n :={p+M̃n(p) : p ∈ Hn, |p1|<β}, M̃n(p) := ({0}
n, Mn+1(p1), Mn+2(p1), Mn+3(p1), . . . ). (5-6)

Clearly M̃n is C2n
−1,ε-smooth and M1 is a submanifold of M̃n . Moreover, if we define the modified

nonlinearity F̃n(u) as

F̃n(u) = (0, u2
1, u2

2, . . . , u2
n−1, Mn+1(u1), Mn+2(u1), . . . ), (5-7)

then it will be C2n
−1,ε-smooth and the extended manifold M̃n will be an IM for the corresponding

modified equation (5-3). Finally, the normal hyperbolicity of M1 in M̃n follows from the fact that any
solution on M1 decays to zero no faster than e−t due to the nonzero first component, if we look to the
transversal directions, the smallest decay rate is determined by the second component and this decay is at
least as t3e−2t. Since our model system is explicitly solvable, we leave verifying this normal hyperbolicity
to the reader. We also note that the extended IF in this case reads

d
dt

u1 + u1 = 0,
d
dt

uk + 2k−1uk = u2
k−1, k = 2, . . . , n,

which is nothing more than the Galerkin approximation system to (3-31).

Remark 5.7. We see that, in the toy example of (3-31), we can find the desired extension of the initial
IM explicitly without using the Whitney extension theorem (and even without assuming the global
boundedness of F and its derivatives). Moreover, the dependence of smoothness of the extended IM on its
dimension is very nice; namely, if we want to have a Cn-smooth IM, it is enough to take dim M̃ ∼ log2 n.
Of course, this is partially related to good exponentially growing spectral gaps, but the main reason is
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that we have an extra regularity property for the initial IM, namely, that the smoothness of projections
Qk M(p) grows with k. Unfortunately, this is not true in a more or less general case, which makes the
extension construction much more involved. In particular, we do not know how to gain more than one unit
of smoothness from one spectral gap and have to use n different spectral gaps to get n units of smoothness.
This, in turn, leads to extremely fast growth of the dimension of the manifold with respect to the regularity
(as not difficult to see, in Example 5.1, the dimension of M̃Nn grows as a double exponent with respect to n).

We believe that this problem is technical and the estimates for the dimension can be essentially improved.
Indeed, if we would be able to get n units of extra regularity using one extra (sufficiently large) gap the
above-mentioned growth of the dimension would become linear in n in Example 5.1. We expect that
this linear growth is optimal, and we are even able to construct the corresponding Taylor jets. But these
jets do not satisfy the compatibility conditions and we do not know how to correct them properly.

Appendix: Verifying the compatibility conditions

The aim of this appendix is to show that the jets J n+1
ξ W (p, t), p ∈ PNn+1 H, constructed via (4-23), satisfy

the compatibility conditions up to order n + 1 and, thus, to complete the proof of Theorem 4.3. We will
proceed by induction with respect to the order m ≤ n + 1.

Indeed, the first-order compatibility conditions are trivially satisfied since the functions W (p, t) are
C1,ε-smooth. Assume that the m-th order conditions are satisfied for some m ≤ n +1, and for all m1 ≤ m

J m1
ξ W (p1) − J m1

δ+ξ W (p) = Oθn+1+(m1−1)θn ((∥δ∥ +∥ξ∥)m1+ε) (A-1)

for all ξ ∈ H, p1, p ∈ PNn+1MN1 , ε > 0, δ := p1 − p and some constant C which is independent of p, p1.
Using the fact that V (p, t) = W (p, t) for all p ∈ PNn+1MN1 together with the analogue of (A-1) for the
already constructed jets J m

ξ V (p, t), we end up with

V (p1) = W (p1) = V (p) + jm1
δ V (p) + Om1θn+ε(∥δ∥

m1+ε)

= W (p) + jm1
δ W (p) + Oθn+1+(m1−1)θn+ε(∥δ∥

m1+ε) (A-2)

for all p1, p ∈ PNn+1MN1 , δ := p1 − p and, therefore v(t) := V (p1, t) − V (p, t) satisfies

v = jm1
δ V (p) + Om1θn+ε(∥δ∥

m1+ε) = jm1
δ W (p) + Oθn+1+(m1−1)θn+ε(∥δ∥

m1+ε),

jm1
δ V (p) − jm1

δ W (p) = Oθn+1+(m1−1)θn+ε(∥δ∥
m1+ε).

(A-3)

We now turn to the (m+1)-th jets and start with the following lemma which gives the compatibility
conditions in the particular case ξ = 0.

Lemma A.1. Let the above assumptions hold. Then

v = W (p1) − W (p) = jm+1
δ W (p) + Oθn+1+mθn+ε(∥δ∥

m+1+ε) (A-4)

for all p1, p ∈ PNn+1MN1 and δ := p1 − p. Moreover,

F(V (p1)) = F [m+1](p, δ)+ Oθn+1+mθn+ε(∥δ∥
m+1+ε) (A-5)

for some ε > 0.
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Proof. Let R := v − jm+1
δ W (p). Then, by the definition (4-23), this function solves

∂t R + AR = F(V (p1)) − F [m+1](p, δ), PNn+1 R|t=0 = 0. (A-6)

Let us study the term F [m+1](p, δ) at the right-hand side (which is defined by (4-24)). Using (A-3) and
the trick (4-25), we may replace jm

δ V (p) and jm
δ W (p) by v in all terms in (4-24) which contain the

second and higher derivatives of F (the error will be of order ∥δ∥m+1+ε). Actually, we cannot do this in
the term with the first derivative at the moment since this requires (A-3) for W of order m + 1, which we
are now verifying. This, gives

F [m+1](p, δ) = F(V (p)) + F ′(V (p)) jm+1
δ W (p)

+

m+1∑
k=2

1
k!

F (k)(V (p))[{v}
k
] + Oθn+1+mθn+ε(∥δ∥

m+1+ε). (A-7)

Indeed, let us consider the terms in (A-7) containing jm
δ W only (the terms without it are analogous, but

simpler). Using the analogue of (4-25),

[{ jm
δ V (p)}k−1, jm

δ W (p)] →

∑
n1+···+nk≤m+1

ni ∈N

B ′

n1,...,nk
{ jn1

δ V (p), . . . , jnk−1
δ V (p), jnk

δ W (p)}, (A-8)

the growth exponent of the remainder does not exceed

(n1 + · · · + nk−1)θn + θn+1 + (nk − 1)θn + ε ≤ θn+1 + mθn + ε,

where we have implicitly used our induction assumptions (A-3) and decreased the exponent ε if necessary.
Using now the Taylor theorem for F ∈ Cm+1,ε together with estimate (3-23) for v, we infer that

F(V (p1)) − F [m+1](p, δ) = F ′(V (p))R + Oθn+1+mθn+ε(∥δ∥
m+1+ε)

and, therefore, the function R solves

∂t R + AR − F ′(V (p))R = Oθn+1+mθn+ε(∥δ∥
m+1+ε), PNn+1 R|t=0 = 0. (A-9)

Since by the induction assumption θn < λNn+1 − L , assumption (4-21) guarantees the existence of θn+1

and ε > 0 such that θn+1 +mθn + ε satisfies (3-17) with N replaced by Nn+1. Thus, Proposition 3.7 gives
the estimate

∥R∥L2
e(θn+1+mθn+ε)t (R−,H) ≤ C∥δ∥m+1+ε

and (A-4) is proved. Estimate (A-5) is now a straightforward corollary of (A-7) and the Taylor theorem
(since we are now allowed to replace jm+1

δ W by v). Thus, the lemma is proved. □

We now turn to the general case ξ ̸= 0. To this end we need the following key lemma.

Lemma A.2. Let the above assumptions hold. Then, the following formula is satisfied:

F [m+1](p1, ξ)− F [m+1](p, ξ + δ) = F ′(V (p))
(

jm+1
δ W (p) + jm+1

ξ W (p1) − jm+1
ξ+δ W (p)

)
+ Oθn+1+mθn+ε((∥δ∥ +∥ξ∥)m+1+ε), (A-10)

where ξ ∈ H, p1, p ∈ PNn+1MN1 and δ = p1 − p.



SMOOTH EXTENSIONS FOR INERTIAL MANIFOLDS OF SEMILINEAR PARABOLIC EQUATIONS 529

Proof. Indeed, according to the definition (4-24) and formula (A-5), we have

F [m+1](p1, ξ) = F [m+1](p, δ)+ F ′(V (p1)) jm+1
ξ W (p1)

+

m+1∑
l=2

1
l!

(
l F (l)(V (p1))[ jm

ξ W (p1), { jm
ξ V (p1)}

l−1
] − (l − 1)F (l)(V (p1))[{ jm

ξ V (p1)}
l
]
)

+ Oθn+1+mθn+ε((∥ξ∥ +∥δ∥)m+1+ε). (A-11)

We recall that, according to our agreement and formula (4-25), the right-hand side does not contain the
terms of order larger than m + 1. Expanding now the derivatives F (l)(V (p1)) into Taylor series around
V (p) and using (A-3), we get

F [m+1](p1, ξ) = F [m+1](p, δ)+ F ′(V (p))( jm+1
ξ W (p1) − jm

ξ W (p1))

+

m+1∑
l=1

m+1∑
k=l

1
l!(k − l)!

(
l F (k)(V (p))[{ jm

δ V (p)}k−l, jm
ξ W (p1), { jm

ξ V (p1)}
l−1

]

−(l−1)F (k)(V (p))[{ jm
δ V (p)}k−l, { jm

ξ V (p1)}
l
]
)

+ Oθn+1+mθn+ε((∥ξ∥ +∥δ∥)m+1+ε). (A-12)

Finally, changing the order of summation, we arrive at

F [m+1](p1, ξ) = F [m+1](p, δ)+ F ′(V (p)) jm+1
ξ W (p1)

+

m+1∑
k=2

1
k!

k∑
l=1

C l
k
(
l F (k)(V (p))[{ jm

δ V (p)}k−l, jm
ξ W (p1), { jm

ξ V (p1)}
l−1

]

− (l − 1)F (k)(V (p))[{ jm
δ V (p)}k−l, { jm

ξ V (p1)}
l
]
)

+ Oθn+1+mθn+ε((∥ξ∥ +∥δ∥)m+1+ε). (A-13)

Let us now look to the term F [m+1](p, ξ + δ). According to (4-24), we have

F [m+1](p, ξ + δ)

= F(V (p)) + F ′(V (p)) jm+1
ξ+δ W (p)

+

m+1∑
k=2

1
k!

(
k F (k)(V (p))[ jm

ξ+δW (p), { jm
ξ+δV (p)}k−1

] − (k − 1)F (k)(V (p))[{ jm
ξ+δV (p)}k

]
)
. (A-14)

From the induction assumption, the compatibility assumptions (A-1) hold for jm1
ξ+δW and give

jm1
ξ+δW (p) = jm1

δ W (p) + jm1
ξ W (p1) + Oθn+1+(m1−1)θn+ε((∥δ∥ +∥ξ∥)m1+ε)

for all m1 ≤ m and the analogous identities hold also for jm1
ξ+δV :

jm1
ξ+δV (p) = jm1

δ V (p) + jm1
ξ V (p1) + Om1θn+ε((∥δ∥ +∥ξ∥)m1+ε).

Moreover, using (A-3), we may also get

jm1
ξ+δW (p) = jm1

δ V (p) + jm1
ξ W (p1) + Oθn+1+(m1−1)θn+ε((∥δ∥ +∥ξ∥)m1+ε)
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for all m1 ≤ m. Inserting these formulas to (A-14), we arrive at

F [m+1](p, ξ + δ) = F(V (p)) + F ′(V (p)) jm+1
ξ+δ W (p)

+

m+1∑
k=2

1
k!

(
k F (k)(V (p))[ jm

δ V (p) + jm
ξ W (p1), { jm

δ V (p) + jm
ξ V (p1)}

k−1
]

− (k − 1)F (k)(V (p))[{ jm
δ V (p) + jm

ξ V (p1)}
k
]
)

+ Oθn+1+mθn+ε((∥δ∥ +∥ξ∥)m+1+ε). (A-15)

Using the binomial formula (2-1), we arrive at

F [m+1](p, ξ + δ) = F(V (p)) + F ′(V (p)) jm+1
ξ+δ W (p)

+

m+1∑
k=2

1
k!

( k∑
l=1

kC l−1
k−1 F (k)(V (p))[ jm

ξ W (p1), { jm
δ V (p)}k−l, { jm

ξ V (p1)}
l−1

]

+

k−1∑
l=0

kC l
k−1 F (k)(V (p))[ jm

δ V (p), { jm
δ V (p)}k−l−1, { jm

ξ V (p1)}
l
]

−

k∑
l=0

(k − 1)C l
k F (k)(V (p))[{ jm

δ V (p)}k−l, { jm
ξ V (p1)}

l
]

)
+ Oθn+1+mθn+ε.((∥δ∥ +∥ξ∥)m+1+ε).

(A-16)
We need to compare (A-13) and (A-16). To this end, we first note that

lC l
k = kC l−1

k−1

and, therefore, the terms containing the jets of W in these two formulas coincide. Thus, we only need to
look at the terms without jets of W. In the case l = k, we have only one term in the right-hand side of
(A-16), which obviously coincides with the analogous term in (A-13). Let us now look at the terms with
l = 1, . . . , k − 1. Due to the obvious identity

−(l − 1)C l
k = kC l

k−1 − (k − 1)C l
k,

these terms again coincide. Thus, it remains to look at the extra terms which correspond to l = 0 in (A-16)
and which are absent in the sums of (A-13). Finally, using (A-3) and (A-5), we get the following identity
involving these extra terms:

F(V (p)) +

m+1∑
k=2

1
k!

F (k)(V (p))[{ jm
δ V (p)}k

]

= F [m+1](p, δ)− F ′(V (p)) jm+1
δ W (p) + Oθn+1+mθn+ε((∥δ∥ +∥ξ∥)m+1+ε). (A-17)

This gives the identity

F [m+1](p1, ξ)− F ′(V (p)) jm+1
ξ W (p1)

= F [m+1](p, ξ + δ) − F ′(V (p))( jm+1
ξ+δ W (p) − jm+1

δ W (p)) + Oθn+1+mθn+ε((∥δ∥ +∥ξ∥)m+1+ε) (A-18)

and finishes the proof of the lemma. □
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We are now ready to finish the check of the compatibility conditions. Note that, due to (A-4), we have

J m+1
ξ W (p1) − J m+1

ξ+δ W (p)

= jm+1
δ W (p) + jm+1

ξ W (p1) − jm+1
ξ+δ W (p) + Oθn+1+mθn+ε((∥δ∥ +∥ξ∥)m+1+ε). (A-19)

Let finally U (t) := J m+1
ξ W (p1)− J m+1

ξ+δ W (p). Then, according to definition (4-22), Lemma A.2 and the
fact that δ = p1 − p, this function solves the equation

∂tU + AU − F ′(V (p))U = Oθn+1+mθn+ε(∥δ∥ +∥ξ∥)m+1+ε), PNn+1U |t=0 = 0, (A-20)

and by Proposition 3.7, we arrive at

J m+1
ξ W (p1) − J m+1

ξ+δ W (p) = Oθn+1+mθn+ε((∥δ∥ +∥ξ∥)m+1+ε). (A-21)

Thus, the (m+1)-th order compatibility conditions for J m+1
ξ W (p) are verified. The induction with respect

to m gives us that J n+1
ξ W (p) also satisfies the compatibility conditions (of course, we cannot take m > n

since we need the compatibility conditions of order m for J m
ξ V (p) to proceed). This completes the proof

of our main Theorem 4.3.
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