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EXPLICIT FORMULA OF RADIATION FIELDS OF FREE WAVES
WITH APPLICATIONS ON CHANNEL OF ENERGY

LIANG LI, RUIPENG SHEN AND LIJUAN WEI

We give a few explicit formulas regarding the radiation fields of linear free waves. We then apply these
formulas on the channel-of-energy theory. We characterize all the radial weakly nonradiative solutions in
all dimensions and give a few new exterior energy estimates.

1. Introduction

1A. Background and topics. The semilinear wave equation

∂2
t u − 1u = ±|u|

p−1u, (x, t) ∈ Rd
× R,

especially the energy critical case p = 1+4/(d −2), has been extensively studied by many mathematicians
in the past few decades. Please see, for example, [Kapitanski 1994; Lindblad and Sogge 1995] for local
existence and well-posedness, and [Ginibre, Soffer and Velo 1992; Grillakis 1990; 1992; Kenig and
Merle 2008; Nakanishi 1999a; 1999b; Shatah and Struwe 1993; 1994] for global existence, regularity,
scattering and blow-up. Since the semilinear wave equation can be viewed as a small perturbation of
the homogenous linear wave equation in many situations, especially when we consider the asymptotic
behaviors of solutions as spatial variables or time tends to infinity, it is important to first understand the
asymptotic behaviors of solutions to the homogenous linear wave equation, i.e., free waves. This work
is concerned with two important tools to understand the asymptotic behaviors of free waves: radiation
fields and the channel of energy. We first introduce some necessary notation. Throughout this work we
consider the homogenous linear wave equation with initial data in the energy space

∂2
t u − 1u = 0, (x, t) ∈ Rd

× R,

u|t=0 = u0 ∈ Ḣ 1(Rd),

ut |t=0 = u1 ∈ L2(Rd).

(1)

In this work we also use the notation SL(u0, u1) to represent the free wave u defined above. If it is
necessary to mention the velocity ut , we use the notation

SL(t)
(

u0

u1

)
=

(
u( · , t)
ut( · , t)

)
∈ Ḣ 1

× L2.
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It is well known that the linear wave propagation preserves the Ḣ 1
×L2 norm, i.e., the energy conservation

law holds (∇x,t u = (∇u, ut)):∫
Rd

|∇x,t u(x, t)|2 dx =

∫
Rd

(|∇u0|
2
+ |u1|

2) dx .

Now we make a brief review of radiation fields and the channel-of-energy method.

Radiation fields. The asymptotic behavior of free waves at the energy level can be characterized by the
following theorem.

Theorem 1.1 (radiation field). Assume that d ≥ 3 and let u be a solution to the free wave equation
∂2

t u − 1u = 0, with initial data (u0, u1) ∈ Ḣ 1
× L2(Rd). Then

lim
t→±∞

∫
Rd

(
|∇u(x, t)|2 − |ur (x, t)|2 +

|u(x, t)|2

|x |2

)
dx = 0

and there exist two functions G± ∈ L2(R × Sd−1) so that

lim
t→±∞

∫
∞

0

∫
Sd−1

|r (d−1)/2∂t u(rθ, t) − G±(r ∓ t, θ)|2 dθ dr = 0,

lim
t→±∞

∫
∞

0

∫
Sd−1

|r (d−1)/2∂r u(rθ, t) ± G±(r ∓ t, θ)|2 dθ dr = 0.

In addition, the maps (u0, u1) →
√

2G± are a bijective isometries from Ḣ 1
× L2(Rd) to L2(R × Sd−1).

This has been known for more than 50 years, at least in the 3-dimensional case. Please see [Friedlander
1962; 1980], for example. The version of the radiation field theorem given above and a proof for all
dimensions d ≥ 3 can be found in [Duyckaerts, Kenig and Merle 2019]. In addition, there is also a
2-dimensional version of the radiation field theorem. The statement in dimension 2 can be given in almost
the same way as in the higher-dimensional case, except that the limit

lim
t→±∞

∫
R2

|u(x, t)|2

|x |2
dx = 0

no longer holds. A proof by Radon transform for all dimensions d ≥ 2 can be found in [Katayama 2013],
where the statement of the theorem is slightly different. Throughout this work we call the function G±

radiation profiles and use the notation T± for the linear map (u0, u1) → G±.

Channel of energy. The second tool is the channel-of-energy method, which plays an important role in
the study of wave equations in the past decade. This method is first introduced in the 3-dimensional case
in [Duyckaerts, Kenig and Merle 2011] and then in the 5-dimensional case in [Kenig, Lawrie and Schlag
2014]. This method was used in the proof of the soliton resolution conjecture of the energy critical wave
equation with radial data in all odd dimensions d ≥ 3 in [Duyckaerts, Kenig and Merle 2013; 2023].
It can also be used to show the nonexistence of minimal blow-up solutions in a compactness-rigidity
argument in the energy super- or subcritical case. Please see, for example, [Duyckaerts, Kenig and Merle
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2014; Shen 2013]. Roughly speaking, the channel-of-energy method discusses the amount of energy
located in an exterior region as time tends to infinity:

lim
t→±∞

∫
|x |>|t |+R

|∇x,t u(x, t)|2 dx .

Here the constant R is nonnegative. Since the energy travels at a finite speed, the energy in the exterior
region {x : |x | > |t | + R} decays as |t | increases. Thus the limits above are always well-defined. We can
also give the exact value of the limit in terms of the radiation field:

lim
t→±∞

∫
|x |>|t |+R

|∇x,t u(x, t)|2 dx = 2
∫

∞

R

∫
Sd−1

|G±(s, θ)|2 dθ ds. (2)

We first introduce a few already known results. We start with the odd dimensions.

Proposition 1.2 [Duyckaerts, Kenig and Merle 2012]. Assume that d ≥ 3 is an odd integer. All solutions
to ∂2

t u − 1u = 0 satisfy∑
±

lim
t→±∞

∫
|x |>|t |

|∇x,t u(x, t)|2 dx =

∫
Rd

|∇x,t u(x, 0)|2 dx . (3)

As a result, we have:

Corollary 1.3. Assume that d ≥ 3 is odd. Then u ≡ 0 is the only free wave u satisfying

lim
t→±∞

∫
|x |>|t |

|∇x,t u(x, t)|2 dx = 0.

In contrast, if R > 0, the subspace of Ḣ 1
× L2(Rd) defined by

P(R) =

{
(u0, u1) ∈ Ḣ 1

× L2(Rd) : lim
t→±∞

∫
|x |>R+|t |

|∇t,x SL(u0, u1)(x, t)|2 dx = 0
}

(4)

does contain initial data (u0, u1) whose support is essentially bigger than {x : |x | ≤ R}. The free waves u
satisfying

lim
t→±∞

∫
|x |>R+|t |

|∇t,x u(x, t)|2 dx = 0

are usually called (R-weakly) nonradiative solutions. If the dimension is odd, these solutions are well-
understood in the radial case:

Theorem 1.4 [Kenig, Lawrie, Liu and Schlag 2015]. In any odd dimension d ≥ 1, every radial solution u
to (1) satisfies

max
±

lim
t→±∞

∫
r>|t |+R

|∇x,t u(r, t)|2rd−1 dr ≥
1
2∥5⊥

Prad(R)(u0, u1)∥Ḣ1×L2(r≥R:rd−1dr). (5)

Here
Prad(R)

.
= Span

{
(r2k1−d , 0), (0, r2k2−d) : k1, k2 ∈ N; 1 ≤ k1 ≤

d+2
4

, 1 ≤ k2 ≤
d
4

}
.

5⊥

Prad(R) is the orthogonal projection from Ḣ 1
× L2(r ≥ R : rd−1dr) onto the complement of the finite-

dimensional subspace Prad(R).
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Note the proof of Theorem 1.4 in [Kenig, Lawrie, Liu and Schlag 2015] uses the radial Fourier
transform.

The case of even dimensions is much more complicated and subtle. Côte, Kenig and Schlag [2014]
showed that in general the inequality∑

±

lim
t→±∞

∫
|x |>|t |

|∇x,t u(x, t)|2 dx ≥ C
∫

Rd
|∇x,t u(x, 0)|2 dx

does not hold for any positive constant C in even dimensions. But a similar inequality holds in the radial
case for either initial data (u0, 0) if d = 0 mod 4, or (0, u1) if d = 2 mod 4. More precisely we have

lim
t→±∞

∫
|x |>|t |

|∇x,t SL(u0, 0)(x, t)|2 dx ≥
1
2

∫
Rd

|∇u0(x)|2 dx, d = 4k, k ∈ N, (6)

lim
t→±∞

∫
|x |>|t |

|∇x,t SL(0, u1)(x, t)|2 dx ≥
1
2

∫
Rd

|u1(x)|2 dx, d = 4k + 2, k ∈ N. (7)

In addition, Duyckaerts, Kenig and Merle [2021] showed that the only nonradiative solution is still the
zero solution in even dimensions d ≥ 4; i.e., Corollary 1.3 still holds for even dimensions d ≥ 4, even in the
nonradial case. Much less is known about the exterior energy estimate in the region {x : |x | > R+|t |} with
R > 0. Duyckaerts, Kenig, Martel and Merle [2022] proves the exterior energy estimate in dimensions 4
and 6 if the initial data are radial:

lim
t→±∞

∫
|x |>|t |+R

|∇x,t SL(u0, 0)(x, t)|2 dx ≥
3
10

∥5⊥

R u0∥
2
Ḣ1({x∈R4:|x |>R})

,

lim
t→±∞

∫
|x |>|t |+R

|∇x,t SL(0, u1)(x, t)|2 dx ≥
3
10

∥π⊥

R u1∥
2
L2({x∈R6:|x |>R})

.

Here 5⊥

R is the orthogonal projection from Ḣ 1({x ∈ R4
: |x | > R}) onto the complement space of

Span{|x |
−2

}. While π⊥

R is the orthogonal projection from L2({x ∈ R6
: |x | > R}) onto the complement

space of Span{|x |
−4

}.

1B. Main idea. According to (2) we may obtain exterior energy estimates conveniently from the radiation
profiles G±. Please note that G− and G+ are not independent of each other. In fact the map T+ ◦ T−1

− :

G− → G+ is a bijective isometry. If we could find explicit expressions of the maps

T+ ◦ T−1
−

: G− → G+, T−1
−

: G− → (u0, u1), SL ◦ T−1
−

: G− → u,

then we would be able to:

(a) Understand how the asymptotic behavior in one time direction determines the behavior in the other
time direction. This is known in the odd-dimensional case, as shown (although not stated explicitly) in
the proof of Proposition 1.2 in [Duyckaerts, Kenig and Merle 2012]. In this work we will try to figure out
the even-dimensional case.

(b) Characterize (weakly) nonradiative solutions, especially in the radial case. We first determine all the
radiation profiles G− so that

G−(s, θ) = G+(s, θ) = 0, s > R ⇐⇒ lim
t→±∞

∫
|x |>|t |+R

|∇x,t u(x, t)|2 dx = 0;
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then we may obtain all the nonradiative solutions (as well as their initial data) by applying the formula
of T−1

− . In particular we prove that radial nonradiative solutions in even dimensions can be characterized
in the same way as in odd dimensions.

(c) Prove exterior energy estimates. We generalize the radial exterior energy estimates in 4 and 6 dimen-
sions to all even dimensions; we also prove a nonradial exterior energy estimate in odd dimensions. In
both applications (b) and (c) we follow the same roadmap:

exterior energy ↔ radiation profile ↔ initial data.

1C. Main results. Now we give the statement of our results. The details and proofs can be found in
subsequent sections.

Theorem 1.5. Let u be a finite-energy free wave with an even spatial dimension d ≥ 2 and G+, G−

be the radiation profiles associated with u. Then we may give an explicit formula of the operator
T+ ◦ T−1

− : G− → G+

G+(s, θ) = (−1)d/2(HG−)(−s, −θ).

Here H is the Hilbert transform in the first variable, i.e.,

(HG−)(−s, −θ) = p.v.
1
π

∫
∞

−∞

G−(τ, −θ)

(−s) − τ
dτ.

Remark 1.6. A similar but simpler argument shows that if d is odd, then T+ ◦ T−1
− : G− → G+ can be

explicitly given by
G+(s, θ) = (−1)(d−1)/2G−(−s, −θ).

This can also be verified by assuming that the initial data is smooth and compactly supported, and
considering the expression of G− and G+ in terms of (u0, u1) if d is odd. Please refer to [Duyckaerts,
Kenig and Merle 2012]. Since we have H2

= −1. We may write the odd and even dimensions in a
universal formula

G+(s, θ) = ((−H)d−1G−)(−s, −θ).

Remark 1.7. It has been proved in Section 3.2 of [Duyckaerts, Kenig and Merle 2021] (in the language
of Hankel and Laplace transforms) that the zero function is the only function f ∈ L2(R) satisfying

f (s) = 0, s > 0, (H f )(s) = 0, s < 0.

It immediately follows that:

Corollary 1.8. Assume d ≥ 2. Let � be a region in Sd−1. If a finite-energy solution u to the homogenous
linear wave equation satisfies

lim
t→±∞

∫
∞

|t |

∫
±�

|∇t,x u(rθ, t)|2rd−1 dθ dr = 0,

then we have

lim
t→±∞

∫
∞

0

∫
±�

|∇t,x u(rθ, t)|2rd−1 dθ dr = 0.

This is an angle-localized version of Corollary 1.3.
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Applications on channel of energy. By following the idea described above, we obtain the following
results about the channel of energy.

Proposition 1.9 (radial weakly nonradiative solutions). Let d ≥ 2 be an integer and R > 0 be a constant.
If the initial data (u0, u1) ∈ Ḣ 1

× L2 are radial, then the corresponding solution to the homogeneous
linear wave equation u is R-weakly nonradiative, i.e.,

lim
t→±∞

∫
|x |>|t |+R

|∇t,x u(x, t)|2 dx = 0,

if and only if the restriction of (u0, u1) in the region {x ∈ Rd
: |x | > R} is contained in

Prad(R) = Span
{
(r2k1−d , 0), (0, r2k2−d) : 1 ≤ k1 ≤

⌊d+1
4

⌋
, 1 ≤ k2 ≤

⌊d−1
4

⌋}
.

Here the notation ⌊q⌋ is the integer part of q. In particular, all radial R-weakly nonradiative solutions in
dimension 2 are supported in {(x, t) : |x | ≤ |t | + R}.

Remark 1.10. If d is odd, we have ⌊(d + 1)/4⌋ = ⌊(d + 2)/4⌋ and ⌊(d − 1)/4⌋ = ⌊d/4⌋; thus our result
here is the same as the already known result in odd dimension, as given in Theorem 1.4.

Proposition 1.11 (radial exterior estimates in even dimensions). Let d = 4k with k ∈ N and R > 0. If
initial data u0 ∈ Ḣ 1(Rd) are radial, then the corresponding solution u to the homogenous linear wave
equation with initial data (u0, 0) satisfies

lim
t→∞

∫
|x |>R+|t |

|∇u(x, t)|2 dx = lim
t→∞

∫
|x |>R+|t |

|ut(x, t)|2 dx ≥
1
4∥5⊥

Qk(R)u0∥
2
Ḣ1({x :|x |>R})

.

Here 5⊥

Qk(R) is the orthogonal projection from Ḣ 1({x ∈ Rd
: |x | > R}) onto the complement of the

k-dimensional linear space

Qk(R) = Span
{

1
|x |4k−2k1

: 1 ≤ k1 ≤ k
}
.

Similarly if the dimension d satisfies d = 4k + 2 ≥ 2, with k ∈ {0} ∪ N and the initial data u1 ∈ L2(Rd)

are radial, then the corresponding solution u to the homogenous linear wave equation with initial data
(0, u1) satisfies

lim
t→∞

∫
|x |>R+|t |

|∇u(x, t)|2 dx = lim
t→∞

∫
|x |>R+|t |

|ut(x, t)|2 dx ≥
1
4∥5⊥

Q′

k(R)
u1∥

2
L2({x :|x |>R})

.

Here 5⊥

Q′

k(R)
is the orthogonal projection from L2({x ∈ Rd

: |x | > R}) onto the complement of the
k-dimensional linear space

Q′

k(R) = Span
{

1
|x |4k+2−2k1

: 1 ≤ k1 ≤ k
}
.

Remark 1.12. Given u0 ∈ Ḣ 1(R4k) or u1 ∈ L2(R4k+2), the orthogonal projection of u0 or u1 onto the
finite-dimensional space Qk(R) or Q′

k(R) gradually vanishes as R → 0+. Therefore if we make R → 0+

in Proposition 1.11, we immediately obtain (6) and (7).
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Remark 1.13. At the same time as this work was done, Kenig et al. proved radial exterior estimates
similar to Proposition 1.11 for even dimensions d ≥ 8 by using the already-known result in dimension 4
and an induction argument.

Proposition 1.14 (nonradial exterior energy estimates). Let d ≥ 3 be an odd integer and R > 0 be a
constant. Then the following identity holds for all (u0, u1) ∈ Ḣ 1

× L2(Rd):∑
±

lim
t→±∞

∫
|x |>R+|t |

|∇t,x SL(t)(u0, u1)(x, t)|2 dx = ∥5⊥

P(R)(u0, u1)∥
2
Ḣ1×L2(Rd )

.

Here 5⊥

P(R) is the orthogonal projection from Ḣ 1
×L2(Rd) onto the complement of the closed linear space

P(R) =

{
(u0, u1) ∈ Ḣ 1

× L2(Rd) : lim
t→±∞

∫
|x |>R+|t |

|∇t,x SL(u0, u1)(x, t)|2 dx = 0
}
.

Structure of this work. This work is organized as follows. In Section 2 we deduce an explicit formula
of T−1

− in all dimensions. Then in Section 3 we prove the explicit formula of T+◦T−1
− given in Theorem 1.5.

The rest of the paper is devoted to the applications in the channel of energy. We characterize radial
weakly nonradiative solutions in Section 4, prove radial exterior energy estimate for all even dimensions
in Section 5 and finally give a short proof of nonradial exterior energy estimate in odd-dimensional space
in Section 6. The Appendix is concerned with Hilbert transform of a family of special functions, since
the Hilbert transform is involved in the even dimensions.

Notation. In this work we use the notation C(d) for a nonzero constant determined solely by the
dimension d . It may represent different constants in different places. This avoids the trouble of keeping
track of the constants when unnecessary.

2. From radiation profile to solution

Now we assume that G−(r, θ) is smooth and compactly supported and give an explicit formula of the
operator T−1

− . We consider the odd dimensions first.

2A. Odd dimensions.

Lemma 2.1. Assume that d ≥ 3 is odd. Let G− be a smooth function with supp G− ⊂ [−R, R] × Sd−1.
Then (u0, u1) = T−1

− G− satisfies

u0(x) =
1

(2π)(d−1)/2

∫
Sd−1

G(µ−1)
− (x · ω, ω) dω, (8)

u1(x) =
1

(2π)(d−1)/2

∫
Sd−1

G(µ)
− (x · ω, ω) dω. (9)

Here the notation G(k)
− represents the partial derivative

G(k)
− (s, θ) =

∂k G−(s, θ)

∂sk .
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Remark 2.2. This formula in 3-dimensional case was previously known. Please refer to [Friedlander
1973], for example.

Proof. Let (u0, u1) = T−1
− G− and u = SL(u0, u1). Given a large time t > 0, we choose approximated

data (v0,t , v1,t) ≈ (u( · , −t), ut( · , −t)) as

v1,t(rθ) = r−µG−(r − t, θ), r > 0, θ ∈ Sd−1, (10)

v0,t(rθ) = −χ
(r

t

) ∫
+∞

r
r ′−µG−(r ′

− t, θ) dr ′, r > 0, θ ∈ Sd−1. (11)

Here µ = (d − 1)/2 and χ : R → [0, 1] is a smooth center cut-off function satisfying

χ(s) =

{
1, s > 1

2 ,

0, s < 1
4 .

It is clear that the data (v0,t , v1,t) are smooth and compactly supported in {x : |x |< R+t}. A straightforward
calculation shows that ∫

∞

0

∫
Sd−1

|rµv1,t(rθ) − G−(r − t, θ)|2 dθ dr = 0,∫
∞

0

∫
Sd−1

|rµ∂rv0,t(rθ) − G−(r − t, θ)|2 dθ dr ≲ 1
t
,∫

Rd
(|∇v0,t(x)|2 − |∂rv0,t(x)|2) dx ≲ 1

t
.

Thus by the radiation field we have

lim
t→+∞

∥(v0,t , v1,t) − (u( · , −t), ut( · , −t))∥Ḣ1×L2(Rd ) = 0.

Since the linear propagation operator SL(t) preserves the Ḣ 1
× L2 norm, we have

lim
t→+∞

∥∥∥∥(
u0

u1

)
− SL(t)

(
v0,t

v1,t

)∥∥∥∥
Ḣ1×L2(Rd )

= 0. (12)

Next we use the explicit expression of the linear propagation operator (see, for instance, [Evans 1998])
and write v = SL(v0, v1) in terms of (v0, v1) when the initial data are sufficiently smooth:

v(x, t) = cd ·
∂

∂t

(1
t

∂

∂t

)µ−1
(

td−2
∫

Sd−1
v0(x + tω) dω

)
+ cd ·

(1
t

∂

∂t

)µ−1
(

td−2
∫

Sd−1
v1(x + tω) dω

)
= cd tµ

∫
Sd−1

[((w · ∇)µv0)(x + tω) + ((w · ∇)µ−1v1)(x + tω)] dω

+

∑
0≤k<µ

Ad,k tk
∫

Sd−1
((w · ∇)kv0)(x + tω) dω +

∑
0≤k<µ−1

Bd,k tk+1
∫

Sd−1
((w · ∇)kv1)(x + tω) dω.

Here cd = 1/(2(2π)(d−1)/2), Ad,k , Bd,k (and A′

d,k , B ′

d,k below) are all constants. We may differentiate
and obtain

vt(x, t) = cd tµ

∫
Sd−1

[((w · ∇)µ+1v0)(x + tω) + ((w · ∇)µv1)(x + tω)] dω

+

∑
1≤k≤µ

A′

d,k tk−1
∫

Sd−1
((w · ∇)kv0)(x + tω) dω +

∑
0≤k≤µ−1

B ′

d,k tk
∫

Sd−1
((w · ∇)kv1)(x + tω) dω.
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Now we plug in (v0, v1) = (v0,t , v1,t) with large time t . We observe that

|(ω · ∇)kv j,t(x + tw)| ≲ t−µ, j = 0, 1, k ≥ 0, (13)

and (r = |x + tω|, θ = (x + tω)/|x + tω|, k = µ − 1, µ)

((ω · ∇)k+1v0,t)(x + tω) = (ω · θ)k+1r−µG(k)
− (r − t, θ)+ O(t−µ−1),

((ω · ∇)kv1,t)(x + tω) = (ω · θ)kr−µG(k)
− (r − t, θ)+ O(t−µ−1).

Thus (
w0,t

w1,t

)
= SL(t)

(
v0,t

v1,t

)
satisfies

w0,t = cd

∫
Sd−1

(ω · θ)µ−1(1 + ω · θ)G(µ−1)
− (r − t, θ) dω + O

(1
t

)
,

w1,t = cd

∫
Sd−1

(ω · θ)µ(1 + ω · θ)G(µ)
− (r − t, θ) dω + O

(1
t

)
.

Please note that the implicit constants in (13), O(t−µ−1) and O(1/t) above, may depend on x but remain
uniformly bounded if x is contained in a compact subset of Rd. Next we observe the facts

θ(ω) = ω + O
(1

t

)
, r(ω) − t = x · ω + O

(1
t

)
,

and further simplify the formulas

w0,t = 2cd

∫
Sd−1

G(µ−1)
− (x · ω, ω) dω + O

(1
t

)
,

w1,t = 2cd

∫
Sd−1

G(µ)
− (x · ω, ω) dω + O

(1
t

)
.

Finally we make t → +∞, utilize (12) and obtain

u0 = 2cd

∫
Sd−1

G(µ−1)
− (x · ω, ω) dω,

u1 = 2cd

∫
Sd−1

G(µ)
− (x · ω, ω) dω.

We plug in the value of cd and finish the proof. □

Remark 2.3. An explicit formula of the free wave u = SL T−1
− G− can be given by

u(x, t) =
1

(2π)(d−1)/2

∫
Sd−1

G(µ−1)
− (x · ω + t, ω) dω.

This can be verified by a straightforward calculation. One may check

• The function u above is a smooth solution to the homogenous linear wave equation.

• The initial data of u are exactly those given in Lemma 2.1.
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We may differentiate and obtain

ut(x, t) =
1

(2π)(d−1)/2

∫
Sd−1

G(µ)
− (x · ω + t, ω) dω,

∇u(x, t) =
1

(2π)(d−1)/2

∫
Sd−1

G(µ)
− (x · ω + t, ω) ω dω.

2B. Even dimensions. The formula of T−1
− in even dimensions is a little more complicated.

Lemma 2.4. Assume that d ≥ 2 is even and G− ∈ C∞

0 (R × Sd−1). Then the operator T−1
− is given

explicitly by

u0(x) =

√
2

(2π)d/2 ·

∫
∞

0

∫
Sd−1

G(d/2−1)
− (x · ω − ρ, ω)

√
ρ

dω dρ,

u1(x) =

√
2

(2π)d/2 ·

∫
∞

0

∫
Sd−1

G(d/2)
− (x · ω − ρ, ω)

√
ρ

dω dρ.

Proof. Without loss of generality let us assume supp G− ⊂ [−R1, R1] × Sd−1. It is sufficient to show
that given any R2 > 0, the formula above holds for almost every x ∈ B(0, R2). Let us use the notation
(u0, u1) = T−1

− (G−) and u = SL(u0, u1). We consider the approximated data

v1,t(rθ) = r−µG−(r − t, θ),

v0,t(rθ) = −χ
(r

t

) ∫
+∞

r
r ′−µG−(r ′

− t, θ) dr ′, r > 0, θ ∈ Sd−1.

and (
w0,t

w1,t

)
= SL(t)

(
v0,t

v1,t

)
.

Here χ is the center cut-off function as given in the previous subsection. A basic calculation shows

lim
t→+∞

∥(v0,t , v1,t) − (u( · , −t), ut( · , −t))∥Ḣ1×L2(Rd ) = 0.

Thus

lim
t→+∞

∥(w0,t , w1,t) − (u0, u1)∥Ḣ1×L2(Rd ) = 0. (14)

Let us first recall the explicit formula of v = SL(v0, v1) in the even-dimensional case:

v(x, t) = cd ·
∂

∂t

(1
t

∂

∂t

)(d−2)/2
(

td−1
∫

Bd

v0(x + t y)√
1 − |y|2

dy
)

+ cd ·

(1
t

∂

∂t

)(d−2)/2
(

td−1
∫

Bd

v1(x + t y)√
1 − |y|2

dy
)

= cd · td/2
∫

Bd

((y · ∇)d/2v0)(x + t y) + ((y · ∇)d/2−1v1)(x + t y)√
1 − |y|2

dy

+

∑
0≤k<d/2

Ad,k tk
∫

Bd

(y · ∇)kv0(x + t y)√
1 − |y|2

dy +

∑
0≤k<d/2−1

Bd,k tk+1
∫

Bd

(y · ∇)kv1(x + t y)√
1 − |y|2

dy.
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Here Bd is the unit ball in Rd and cd = (2π)−d/2 is a constant. The notations Ad,k , Bd,k (and A′

d,k , B ′

d,k
below) represent constants. We differentiate and obtain

vt(x, t) = cd · td/2
∫

Bd

((y · ∇)d/2+1v0)(x + t y) + ((y · ∇)d/2v1)(x + t y)√
1 − |y|2

dy

+

∑
1≤k≤d/2

A′

d,k tk−1
∫

Bd

(y · ∇)kv0(x + t y)√
1 − |y|2

dy +

∑
0≤k≤d/2−1

B ′

d,k tk
∫

Bd

(y · ∇)kv1(x + t y)√
1 − |y|2

dy.

We plug in (v0, v1) = (v0,t , v1,t) and observe

|(y · ∇)kv0,t | ≤ t−(d−1)/2, |(y · ∇)kv1,t | ≤ t−(d−1)/2.

This gives the approximation

w0,t(x) = cd · td/2
∫

Bd

((y · ∇)d/2v0,t)(rθ) + ((y · ∇)d/2−1v1,t)(rθ)√
1 − |y|2

dy + O(t−1/2),

w1,t(x) = cd · td/2
∫

Bd

((y · ∇)d/2+1v0,t)(rθ) + ((y · ∇)d/2v1,t)(rθ)√
1 − |y|2

dy + O(t−1/2).

Here r = |x + t y| and θ = (x + t y)/|x + t y|. Furthermore, we observe (k = d/2, d/2 − 1)

((y · ∇)k+1v0,t)(rθ) = (y · θ)k+1r−(d−1)/2G(k)
− (r − t, θ)+ O(t−(d+1)/2),

((y · ∇)kv1,t)(rθ) = (y · θ)kr−(d−1)/2G(k)
− (r − t, θ)+ O(t−(d+1)/2),

and write

w0,t(x) = cd · td/2
∫

Bd

(y · θ)d/2−1(y · θ + 1)r−(d−1)/2G(d/2−1)
− (r − t, θ)√

1 − |y|2
dy + O(t−1/2),

w1,t(x) = cd · td/2
∫

Bd

(y · θ)d/2(y · θ + 1)r−(d−1)/2G(d/2)
− (r − t, θ)√

1 − |y|2
dy + O(t−1/2).

Next we observe that if |y| < 1−(R1 + R2)/t , then we have r ≤ t |y|+|x | < t − R1; thus G(k)
− (r − t, θ) = 0.

As a result, we may restrict the domain of the integral to

Bt =

{
y ∈ Bd

: |y| ≥ 1 −
R1 + R2

t

}
.

Because in the region we have

θ =
y

|y|
+ O

(1
t

)
, y · θ = 1 + O

(1
t

)
, r = t + O(1),

we can simplify the formulas

w0,t(x) = 2cd · t1/2
∫

Bt

G(d/2−1)
− (r − t, y/|y|)√

1 − |y|2
dy + O(t−1/2),

w1,t(x) = 2cd · t1/2
∫

Bt

G(d/2)
− (r − t, y/|y|)√

1 − |y|2
dy + O(t−1/2).
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Next we utilize the change of variables

y =

(
1 −

ρ

t

)
ω, (ρ, ω) ∈ (0, R1 + R2) × Sd−1,

and the approximations

r − t = x · ω − ρ + O
(1

t

)
,

√
1 − |y|

2
=

(
1 + O

(1
t

))√
2ρ

t
, dy =

(
1 + O

(1
t

))
t−1 dρ dω

to obtain

w0,t(x) =
√

2cd ·

∫ R1+R2

0

∫
Sd−1

G(d/2−1)
− (x · ω − ρ, ω)

√
ρ

dω dρ + O(t−1/2),

w1,t(x) =
√

2cd ·

∫ R1+R2

0

∫
Sd−1

G(d/2)
− (x · ω − ρ, ω)

√
ρ

dω dρ + O(t−1/2).

Finally we recall (14), let t → +∞ and conclude

u0(x) =
√

2cd ·

∫ R1+R2

0

∫
Sd−1

G(d/2−1)
− (x · ω − ρ, ω)

√
ρ

dω dρ,

u1(x) =
√

2cd ·

∫ R1+R2

0

∫
Sd−1

G(d/2)
− (x · ω − ρ, ω)

√
ρ

dω dρ. □

Remark 2.5. If d ≥4, the convergence (14) implies that (w0,t , w1,t) converges to (u0, u1) in L2d/(d−2)
×L2

by Sobolev embedding. We may combine this convergence with the local uniform convergence given
above to verify the identities above. This argument breaks down in dimension 2. We given another
argument below in dimension 2. Given any test function ϕ ∈ C∞

0 (R2), integration by parts gives an identity∫
w0,t(x)∇ϕ(x) dx = −

∫
∇w0,t(x)ϕ(x) dx .

We recall the local uniform convergence of w0,t given above and the L2 convergence of ∇w0,t → ∇u0

and then obtain∫ (
√

2c2 ·

∫
∞

0

∫
S1

G−(x · ω − ρ, ω)
√

ρ
dω dρ

)
∇ϕ(x) dx = −

∫
∇u0(x)ϕ(x) dx .

This finishes the proof. Finally we would like to mention that we have

lim
|x |→+∞

√
2c2 ·

∫
∞

0

∫
S1

G−(x · ω − ρ, ω)
√

ρ
dω dρ = 0.

Corollary 2.6. If G− ∈ C∞

0 (R × Sd−1), then u = SL T−1
− (G−) is given by

u(x, t) =

√
2

(2π)d/2

∫
∞

0

∫
Sd−1

G(d/2−1)
− (x · ω − ρ + t, ω)

√
ρ

dω dρ.

Thus

ut(x, t) =

√
2

(2π)d/2

∫
∞

0

∫
Sd−1

G(d/2)
− (x · ω − ρ + t, ω)

√
ρ

dω dρ.

Proof. A basic calculation shows that u(x, t) solves the free wave equation with initial data given in
Lemma 2.4. □
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2C. Universal formula. Now let us give a universal formula of T−1
− for all dimensions. We first define

two convolution operators (1/
√

πx is understood as zero if x < 0)

Q f =
1

√
πx

∗ f, Q′ f =
1

√
−πx

∗ f.

Their Fourier symbols are
1 − i(ξ/|ξ |)

2
√

π |ξ |
and

1 + i(ξ/|ξ |)

2
√

π |ξ |
,

respectively. Let us also use the notation D = d/dx and recall that its Fourier symbol is 2π iξ . A simple
calculation of symbols shows

Q2D = 1, Q′2D = −1, QQ′D = H. (15)

As a result, we may understand Q as D−1/2 and rewrite u = SL T−1
− G− in the form

u(x, t) =
1

(2π)(d−1)/2

∫
Sd−1

(QG(d/2−1)
− )(x · ω + t, ω) dω

=
1

(2π)µ

∫
Sd−1

Dµ−1G−(x · ω + t, ω) dω. (16)

Here µ = (d − 1)/2. This formula holds for both odd and even dimensions.

3. Between radiation profiles

In this section we give an explicit expression of the operator T+ ◦ T−1
− in the even-dimensional case,

without the radial assumption.

Theorem 3.1. Assume that d ≥ 2 is an even integer. The operator T+ ◦ T−1
− can be explicitly given by the

formula

G+(s, θ) = (T+T−1
−

G−)(s, θ) = (−1)d/2(HG−)(−s, −θ).

Here H is the Hilbert transform in the first variable, i.e.,

(HG−)(−s, −θ) = p.v.
1
π

∫
∞

−∞

G−(τ, −θ)

−τ − s
dτ.

Proof. Since T+ ◦ T−1
− is a bijective isometry from L2(R × Sd−1) to itself. We only need to prove

this formula for smooth and compactly supported data G−. Without loss of generality let us assume
supp G− ⊂ [−R1, R1] × Sd−1. Let us also fix a positive constant R2 > 0. If (s, θ) ∈ (−R2, R2) × Sd−1,
then we may apply Corollary 2.6 and obtain

(t + s)(d−1)/2∂t u((t + s)θ, t) =
√

2cd(t + s)(d−1)/2
∫

∞

0

∫
Sd−1

G(d/2)
− ((t + s)θ · ω − ρ + t, ω)

√
ρ

dω dρ.



736 LIANG LI, RUIPENG SHEN AND LIJUAN WEI

Let M ≫ R1 + R2 + 1 be a large constant. We may split the integral above into two parts:

J1 =
√

2cd(t + s)(d−1)/2
∫

∞

0

∫
θ ·ω<−1+M/t

G(d/2)
− ((t + s)θ · ω − ρ + t, ω)

√
ρ

dω dρ,

J2 =
√

2cd(t + s)(d−1)/2
∫

∞

0

∫
θ ·ω≥−1+M/t

G(d/2)
− ((t + s)θ · ω − ρ + t, ω)

√
ρ

dω dρ.

We may find an upper bound of J2. In this region we have

(t + s)θ · ω + t ≥ M − R2 =⇒ G−((t + s)θ · ω − ρ + t) = 0 if ρ <
M
2

.

Thus we may integrate by parts and obtain

J2 = C(d)(t + s)(d−1)/2
∫

∞

0

∫
θ ·ω≥−1+M/t

G−((t + s)θ · ω − ρ + t, ω)

ρ(d+1)/2 dω dρ.

Therefore when t is sufficiently large

|J2| ≲ t (d−1)/2
∫

θ ·ω≥−1+M/t

∫ (t+s)θ ·ω+t+R1

(t+s)θ ·ω+t−R1

|G−((t + s)θ · ω − ρ + t, ω)|

ρ(d+1)/2 dρ dω

≲ t (d−1)/2
∫

θ ·ω≥−1+M/t

∫ (t+s)θ ·ω+t+R1

(t+s)θ ·ω+t−R1

|G−((t + s)θ · ω − ρ + t, ω)|

|(t + s)θ · ω + t |(d+1)/2 dρ dω

≲ t (d−1)/2
∫

θ ·ω≥−1+M/t

1
|tθ · ω + t |(d+1)/2 dω ≲ 1

M
.

In the integral region of J1, we have the approximation ω = −θ + O(t−1/2). Thus we have

J1 =
√

2cd t (d−1)/2
∫

∞

0

∫
θ ·ω<−1+M/t

G(d/2)
− ((t + s)θ · ω − ρ + t, −θ)

√
ρ

dω dρ + O(t−1/2).

Next we utilize the change of variables (please refer to Figure 1 for a geometrical meaning)

ω =

(
−1 +

ρ ′

t

)
θ +

√(
ρ ′

t

)(
2 −

ρ ′

t

)
ϕ, ρ ′

∈ [0, M], ϕ ∈ Sd−2
= {ϕ ∈ Sd−1

: ϕ ⊥ θ},

dω =

[
1 + O

(1
t

)](2ρ ′

t

)d/2−1
dSd−2(ϕ) ·

dρ ′

√
2ρ ′t

=

[
1 + O

(1
t

)]
(2ρ ′)(d−3)/2t−(d−1)/2 dSd−2(ϕ) dρ ′

and obtain

J1 =
1

2πd/2

∫
∞

0

∫ M

0

∫
Sd−2

G(d/2)
− (ρ ′

− ρ − s, −θ)ρ ′(d−3)/2ρ−1/2 dϕ dρ ′ dρ + O(t−1/2).

We observe that the integrand is independent of ϕ and integrate by parts

J1 =
(−1)d/2−1

π

∫
∞

0

∫ M

0

G ′
−
(ρ ′

− ρ − s, −θ)
√

ρρ ′
dρ ′ dρ + O(t−1/2).
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ω

rϕ

(−1+ρ ′/t)θ

ϕ

Sd−2

Sd−1

θ

Figure 1. Change of variables, where r =
√

(ρ ′/t)(2 − ρ ′/t).

We next change the variables τ = ρ ′
− ρ, η = ρ ′

+ ρ, and write

J1 =
(−1)d/2−1

π

∫ M

−∞

∫ 2M−τ

|τ |

G ′
−
(τ − s, −θ)√
η2 − τ 2

dη dτ + O(t−1/2)

=
(−1)d/2−1

π

∫ M

−∞

G ′

−
(τ − s, −θ)

[
ln(2M − τ +

√
4M2 − 4Mτ) − ln |τ |

]
dτ + O(t−1/2)

=
(−1)d/2−1

π

∫ R1+R2

−R1−R2

G ′

−
(τ − s, −θ)

[
ln(2M − τ +

√
4M2 − 4Mτ) − ln |τ |

]
dτ + O(t−1/2).

The integrals above can be split into two parts:

I1 =

∫ R1+R2

−R1−R2

G ′

−
(τ − s, −θ)

[
ln(2M − τ +

√
4M2 − 4Mτ)

]
dτ

=

∫ R1+R2

−R1−R2

G ′

−
(τ − s, −θ)

[
ln(2M − τ +

√
4M2 − 4Mτ) − ln(4M)

]
dτ

=

∫ R1+R2

−R1−R2

G ′

−
(τ − s, −θ)O

( 1
M

)
dτ = O

( 1
M

)
and

I2 = − lim
ε→0+

∫
ε<|τ |<R1+R2

G ′

−
(τ − s, −θ) ln |τ | dτ

= lim
ε→0+

∫
ε<|τ |<R1+R2

G−(τ − s, −θ)

τ
dτ = −π(HG−)(−s, −θ).

In summary we have

J1 = (−1)d/2(HG−)(−s, −θ) + O
( 1

M

)
+ O(t−1/2).

Now we may combine J1 and J2

(t + s)(d−1)/2∂t u((t + s)θ, t) = (−1)d/2(HG−)(−s, −θ) + O
( 1

M

)
+ O(t−1/2).
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Because the implicit constants in O’s do not depend on s ∈ [−R2, R2] or θ ∈ Sd−1, we may let t → +∞

then M → +∞ to conclude

lim
t→+∞

∫ R2

−R2

∫
Sd−1

|(t + s)(d−1)/2∂t u((t + s)θ, t) − (−1)d/2(HG−)(−s, −θ)|2 dθ ds = 0. □

4. Radial weakly nonradiative solutions

In this section we prove Proposition 1.9. First of all, we briefly show that any initial data in Prad(R) leads to
an R-weakly nonradiative solution. By linearity we only need to consider the case (u0, u1) = (r2k1−d, 0)

or (u0, u1) = (0, r2k2−d). If (u0, u1) = (r2k1−d, 0), then a basic calculation shows that if we choose
C1, C2, . . . , Ck1−1 inductively, the solution

uk1(x, t) =
1

|x |d−2k1
+

C1t2

|x |d−2k1+2 + · · · +
Ck1−1t2k1−2

|x |d−2

solves the linear wave equation with initial data (|x |
2k1−d, 0) in the region Rd

\ {0}. By finite speed of
propagation, we have

SL(u0, u1)(x, t) = uk1(x, t), |x | > R + |t |.

A simple calculation shows that this is indeed a nonradiative solution. The case (u0, u1) = (0, r2k2−d)

can be dealt with in the same manner by considering the solution

uk2(x, t) =
t

|x |d−2k1
+

C1t3

|x |d−2k1+2 + · · · +
Ck2−1t2k1−1

|x |d−2 .

Thus it is sufficient to show initial data of any nonradiative solution are contained in the space Prad(R).
We first consider the odd dimensions.

4A. Odd dimensions. Assume that u = SL(u0, u1) is a radial R-weakly nonradiative solution. Let
G− = T−(u0, u1). By radial assumption G− is independent of the angle ω ∈ Sd−1. Let us first consider
smooth functions G−. We may calculate (r > R, e1 = (1, 0, . . . , 0) ∈ Rd )

u0(re1) = (2π)−µ

∫
Sd−1

G(µ−1)
− (rω1) dω =

σd−2

(2π)µ

∫ 1

−1
G(µ−1)

− (rω1)(1 − ω2
1)

µ−1 dω1.

Here ω1 is the first variable of Rd
⊃ Sd−1 and σd−2 is the area of the sphere Sd−2. We may integrate by

parts and rescale:

u0(re1) =
(−1)µ−1σd−2

(2π)µrµ−1

∫ 1

−1
G−(rω1)[∂

µ−1
ω1

(1 − ω2
1)

µ−1
] dω1

=

⌊(µ−1)/2⌋∑
k=0

Ad,k

rµ−1

∫ 1

−1
G−(rω1)ω

µ−1−2k
1 dω1 =

⌊(d−3)/4⌋∑
k=0

Ad,k

rd−2−2k

∫ R

−R
G−(s)s(d−3)/2−2k ds

=

⌊(d+1)/4⌋∑
k=1

Ad,k

rd−2k

∫ R

−R
G−(s)s(d+1)/2−2k ds.
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Here the Ad,k are nonzero constants. Similarly we have

u1(re1) = (2π)−µ

∫
Sd−1

G(µ)
− (rω1) dω =

σd−2

(2π)µ

∫ 1

−1
G(µ)

− (rω1)(1 − ω2
1)

µ−1 dω1

=
(−1)µσd−2

(2π)µrµ

∫ 1

−1
G−(rω1)[∂

µ
ω1

(1 − ω2
1)

µ−1
] dω1 =

⌊(µ−2)/2⌋∑
k=0

Bd,k

rµ

∫ 1

−1
G−(rω1)ω

µ−2−2k
1 dω1

=

⌊(d−1)/4⌋∑
k=1

Bd,k

rd−2k

∫ R

−R
G−(s)s(d−1)/2−2k ds.

Here the Bd,k are nonzero constants. Since smooth functions are dense in L2([−R, R]), we have:

Proposition 4.1. There exist constants {Ad,k}1≤k≤⌊(d+1)/4⌋, {Bd,k}1≤k≤⌊(d−1)/4⌋, so that for any G− ∈

L2(R) supported in [−R, R], the initial data (u0, u1) = T−1
− G− satisfy (r > R)

u0(r) =

⌊(d+1)/4⌋∑
k=1

(
Ad,k

∫ R

−R
G−(s)s(d+1)/2−2k ds

)
r−d+2k,

u1(r) =

⌊(d−1)/4⌋∑
k=1

(
Bd,k

∫ R

−R
G−(s)s(d−1)/2−2k ds

)
r−d+2k .

This clearly shows that if u = SL(u0, u1) is a radial R-weakly nonradiative solution, then (u0, u1) ∈

Prad(R).

4B. Even dimensions. The even dimensions involve the Hilbert transform, and thus are much more
difficult to handle. The general idea is the same. If the initial data (u0, u1) are radial, then G±(s) =

T±(u0, u1) is independent to the angle. We also have G+(s) = (−1)d/2HG−(−s). Thus SL(u0, u1) is
R-weakly nonradiative if and only if G− is contained in the space

Prad = {G− ∈ L2(R) : G−(s) = 0, s > R, (HG−)(s) = 0, s < −R}.

Now recall the operators Q, Q′ and D defined in Section 2C. We claim:

Lemma 4.2. Q′Prad = Ḣ 1/2
0 (−R, R). Here Ḣ 1/2

0 (−R, R) is the completion of C∞

0 (−R, R) equipped
with the Ḣ 1/2(R) norm.

Proof. In order to avoid technical difficulties, we use an approximation technique. Given any G− ∈ Prad,
we may utilize a local smoothing kernel to generate a sequence Gk , so that:

(a) Gk ∈ Prad(R + 1/k).

(b) Gk ∈ H n(R) for all n ≥ 0 and thus Gk ∈ C∞(R).

(c) Gk converges to G− in L2(R).

Let us consider the properties of the function gk = Q′Gk ∈ C∞(R). According to part (a), Gk(s) = 0 if
s > R + 1/k. We may use the convolution expression of Q′ to obtain that gk vanishes in the interval
(R + 1/k, +∞). Similarly gk = QHGk vanishes in the interval (−∞, −R − 1/k). We recall that
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Q′
: L2(R) → Ḣ 1/2(R) is an isometry up to a constant. Thus gk → g = Q′G− in Ḣ 1/2(R). This verifies

g ∈ Ḣ 1/2
0 (−R, R). We also need to show that given any g ∈ Ḣ 1/2

0 (−R, R), then Q′−1g ∈ Prad. It is
sufficient to consider g ∈ C∞

0 (−R, R) by smooth approximation. A simple calculation of Fourier symbols
shows that Q′−1

= −Q′D and HQ′−1
= QD. A combination of these identities with the convolution

expressions of Q and Q′ immediately verifies Q′−1g ∈ Prad. □

We also need to use the following explicit formula of T− for radial data.

Lemma 4.3. Assume G ∈ C∞(R) so that |G(s)| ≲ |s|−3/2 for |s| ≫ 1. Then the corresponding radial
free wave u = SL T−1

− G satisfies

u(r, t) = C(d) · r1−d/2
∫ 1

−1
QG(rω1 + t)Pd(w1)(1 − w2

1)
−1/2 dω1. (17)

Here Pd is an even or odd polynomial of degree d/2 − 1 defined by(
∂

∂w1

)d/2−1
(1 − w2

1)
(d−3)/2

= Pd(w1)(1 − w2
1)

−1/2.

Proof. If G ∈ C∞

0 (R), we use polar coordinates and integrate by parts:

u(r, t) = C(d)

∫
∞

0

∫
Sd−1

G(d/2−1)(rω1 − ρ + t)
√

ρ
dω dρ

= C(d)

∫
∞

0

∫ 1

−1

G(d/2−1)(rω1 − ρ + t)
√

ρ
(1 − w2

1)
(d−3)/2 dω1 dρ

= C(d) · r1−d/2
∫

∞

0

∫ 1

−1

G(rω1 − ρ + t)
√

ρ
Pd(w1)(1 − w2

1)
−1/2 dω1 dρ

= C(d) · r1−d/2
∫ 1

−1
QG(rω1 + t)Pd(w1)(1 − w2

1)
−1/2 dω1.

This verifies the formula if G ∈ C∞

0 (R). In order to deal with profile G without compact support, we use
standard smooth cut-off techniques. More precisely, we may choose Gk ∈ C∞

0 (R) so that Gk → G in
L2(R) and

|Gk(s) − G(s)| = 0, s < k, |Gk(s) − G(s)| ≲ |s|−3/2, s ≥ k.

Thus we have ∥QG −QGk∥L∞ ≲ 1/k. This means we have the uniform convergence for all (r, t) in any
compact subset of R+

× R:

uk(r, t) =
C(d)

rd/2−1

∫ 1

−1
QGk(rω1 + t)Pd(w1)(1 − w2

1)
−1/2 dω1

⇒
C(d)

rd/2−1

∫ 1

−1
QG(rω1 + t)Pd(w1)(1 − w2

1)
−1/2 dω1.

Combining this with the convergence uk → u in Ḣ 1 we finish the proof. □
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Remark 4.4. If d ≥ 4 and G ∈ L2(R), then formula (17) still holds. This follows standard smooth
approximation and/or cut-off techniques. Let Gk ∈ C∞

0 (R) so that Gk → G in L2(R). Thus QGk → QG
in Ḣ 1/2(R). Finally we observe the fact Pd(w1)(1 − w2

1)
−1/2

∈ Ḣ−1/2(R), obtain a locally uniform
convergence uk(r, t) → u(r, t) and conclude the proof.

Now we are ready to give an expression of u = SL T−1
− G− when G− ∈ Prad(R).

Lemma 4.5. Assume G− ∈ Prad(R). Then the following identity holds:

u(r, t) =
C(d)

rd/2

∫ R

−R
Q′G−(s)Wd

(
s − t

r

)
ds.

Here Wd(σ ) is the Hilbert transform (the function below is understood as zero if |w1| > 1)

Wd(σ )
.
= H

(
Pd(w1)

√

1 − w2
1

)
= H

[(
d

dw1

)d/2−1

(1 − w2
1)

(d−3)/2
]
.

Proof. By Lemma 4.2, we have Q′G− ∈ Ḣ 1/2
0 (−R, R). We claim that it is sufficient to consider the case

Q′G− ∈ C∞

0 (−R, R). In fact, we may choose Gk ∈ Prad(R) so that Q′Gk ∈ C∞

0 (−R, R) so that

Q′Gk → Q′G− in Ḣ 1/2(−R, R) =⇒ Gk → G− in L2(R).

Now we observe a few important facts: we have the embedding Ḣ 1/2
0 (−R, R) ↪→ L p(−R, R) for all

1 ≤ p < +∞ and
Pd(w1)

√

1 − w2
1

∈ L p(R) =⇒ Wd(σ ) ∈ L p(R), p ∈ (1, 2).

As a result, if the identity

uk(r, t) =
C(d)

rd/2

∫ R

−R
Q′Gk(s)Wd

(
s − t

r

)
ds, k ≥ 1,

holds, then we may make k → +∞ in the identity above and verify that a similar identity holds for u
and G−. In fact the left-hand side converges in the space Ḣ 1(Rd) for any given time t , while the
right-hand side converges uniformly for (r, t) in any compact subset of R+

× R. Now we assume
g = Q′G− ∈ C∞

0 (−R, R). Then G− = Q′−1g = −Q′Dg satisfies the assumption of Lemma 4.3. As a
result we have

u(r, t) = C(d) · r1−d/2
∫ 1

−1
QQ′Dg(rω1 + t)Pd(w1)(1 − w2

1)
−1/2 dω1

= C(d) · r1−d/2
∫ 1

−1
Hg(rω1 + t)Pd(w1)(1 − w2

1)
−1/2 dω1

=
C(d)

rd/2−1

∫
∞

−∞

g(rσ + t)Wd(σ ) dσ.

Here we use the facts QQ′D = H and∫
H f ·Hg dx =

∫
f · ḡ dx, H(Hg(rω1 + t))(σ ) = (H2g)(rσ + t) = −g(rσ + t).

Finally we apply change of variables s = rσ + t , recall the support of g and finish the proof. □
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Now let us consider the Hilbert transform Wd . The key observation is the following technical lemma.
This result has been known for many years; see [Solmon 1987], for instance. But we still give a brief
proof in the Appendix for the purpose of completeness.

Lemma 4.6. Assume that P(x) is a polynomial of degree κ . Let W be the Hilbert transform

W = H
(

P(x)
√

1 − x2

)
.

Then W (σ ) is equal to a polynomial of degree κ − 1 if σ ∈ (−1, 1). In particular, W2(σ ) = 0 for
σ ∈ (−1, 1); if d ≥ 4, then the function Wd(σ ) is equal to an even or odd polynomial of degree d/2−2 in
the interval (−1, 1).

Proof of Proposition 1.11. According to Lemma 4.5, we have already obtained

u(r, t) =
C(d)

rd/2

∫ R

−R
Q′G−(s)Wd

(
s − t

r

)
ds.

Here Q′G− ∈ Ḣ 1/2
0 (−R, R) ↪→ L p(−R, R) for all 1 < p < +∞. If we also have r > |t | + R, then∣∣∣∣s − t

r

∣∣∣∣ < 1 for all s ∈ (−R, R).

If d = 2, Lemma 4.6 immediately gives u(r, t) ≡ 0 if r > |R|+ t since we always have W2((s − t)/r) = 0.
In the higher-dimensional case d ≥ 4, Lemma 4.6 guarantees that

Wd(s) =

⌊d/4⌋∑
l=1

Alsd/2−2l, −1 < s < 1,

is a polynomial. We plug this in the expression of u and obtain

u(r, t) = C(d)

⌊d/4⌋∑
l=1

Al

rd−2l

∫ R

−R
Q′G−(s)(s − t)d/2−2l ds, r > R + |t |. (18)

This immediately gives (u0, u1) ∈ Prad(R).

5. Exterior energy estimates of even dimensions

In this section we prove Proposition 1.11. It suffices to consider the case d = 4k. The proof of d = 4k +2
is almost the same. Again we switch to the space of radiation profiles G− ∈ L2(R×Sd−1). We start with:

Lemma 5.1. The image of radial data in the form of (u0, 0) can be characterized by

{T−(u0, 0) : u0 ∈ Ḣ 1
rad(R

d)} = {G− ∈ L2(R) : HG−(−s) = −G−(s)}

=

{
G(s) −HG(−s)

2
: G ∈ L2(R)

}
.

Proof. First of all, if u0 ∈ Ḣ 1
rad(R

d), then the free wave u = SL(u0, u1) is radial and satisfies

u(x, t) = u(x, −t), ut(x, t) = −ut(x, −t).
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Therefore G−, G+ are radial, i.e., independent of ω and satisfy G+(s) = −G−(s). We may apply
Theorem 1.5 and obtain G+(s) = HG−(−s). As a result, G− satisfies the identity HG−(−s) = −G−(s).
Next, let us assume G− satisfies this identity. Then we have

G−(s) =
G−(s) −HG−(−s)

2
∈

{
G(s) −HG(−s)

2
: G ∈ L2(R)

}
.

Finally, if G−(s) = (G(s)−HG(−s))/2, we show there exists u0 ∈ Ḣ 1
rad(R

d), so that G− = T−(u0, 0).
In fact, we consider radial initial data (u0, u1) = T−1

− G and free wave u = SL(u0, u1). We may reverse
the time and obtain u(x, −t) = SL(u0, −u1)(x, t). Thus

T−(u0, −u1)(s) = −T+(u0, u1)(s) = −HG(−s).

Therefore we have

T−(2u0, 0)(s) = T−(u0, u1) + T−(u0, −u1) = G(s) −HG(−s) = 2G−(s),

which completes the proof. □

The key observation is the following:

Lemma 5.2. Given g ∈ L2(R+), there exists a function G with ∥G∥L2(R) ≤ 2∥g∥L2(R+) so that

G(s) −HG(−s) = 2g(s), s > 0,

∥∥∥∥G(s) −HG(−s)
2

∥∥∥∥
L2(R)

≤
√

2∥g∥L2(R+).

Proof. Let us first find a function G with ∥G∥L2(R) ≤ 2∥g∥L2 so that

G(s) −
G(s) +HG(−s)

2
= g(s), s > 0.

We define a linear bounded operator T from L2(R+) to itself. In the formula below we extend the domain
of G to R by assuming G(s) = 0 if s < 0 before we apply the Hilbert transform:

(T G)(s) =
G(s) +HG(−s)

2
=

G(s)
2

−
1

2π

∫
∞

0

G(τ )

s + τ
dτ, s > 0.

We may further rewrite it as

T G =
G
2

−
1

2π
L2G.

Here L is the Laplace transform

LG(s) =

∫
∞

0
G(τ )e−sτ dτ,

which is self-adjoint operator in L2(R+) with an operator norm
√

π . More details about the Laplace
transform can be found in [Lax 2002]. As a result, we have

∥T G∥
2
L2(R+)

=
1
4

〈
G −

1
π

L2G, G −
1
π

L2G
〉

=
1
4∥G∥

2
L2 +

1
4π2 ∥L2G∥

2
L2 −

1
4π

⟨G, L2G⟩ −
1

4π
⟨L2G, G⟩

≤
1
4∥G∥

2
L2 +

1
4π

∥LG∥
2
L2 −

1
2π

⟨LG, LG⟩ =
1
4∥G∥

2
L2 −

1
4π

∥LG∥
2
L2 .
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Thus the operator norm of T is less than or equal to 1
2 . This means that the function

G =

∞∑
j=0

T j g ∈ L2(R+)

satisfies the equation G − T G = g and ∥G∥L2(R+) ≤ 2∥g∥L2(R+). Finally we naturally extend the domain
of G to R by defining G(s) = 0 if s < 0. We have

G(s) −HG(−s)
2

=

{
g(s), s > 0,

−
1
2HG(−s), s < 0.

Therefore we may find an upper bound of the L2 norm∥∥∥∥G(s) −HG(−s)
2

∥∥∥∥2

L2(R)

≤ ∥g∥
2
L2(R+)

+
1
4∥HG∥

2
L2(R)

≤ 2∥g∥
2
L2(R+)

. □

Proof of Proposition 1.11. Let G− = T−(u0, 0) and g(s) be its cut-off version:

g(s) =

{
G−(s), s > R,

0, s < R.

Then radiation field implies that the free wave u = SL(u0, 0) satisfies

lim
t→−∞

∫
|x |>R+|t |

|∇u(x, t)|2 dx = lim
t→−∞

∫
|x |>R+|t |

|ut(x, t)|2 dx = σ4k−1∥g∥
2
L2(R+)

. (19)

Here again σ4k−1 is the area of the sphere S4k−1. According to Lemmas 5.1 and 5.2, there exists a function
ũ0 ∈ Ḣ 1

rad(R
4k), so that

T−(ũ0, 0)(s) = g(s), s > 0, ∥ũ0∥
2
Ḣ1(R4k)

≤ 4σ4k−1∥g∥
2
L2(R+)

.

Therefore T−(u0 − ũ0, 0) vanishes if s > R. A combination of this fact with the time symmetry gives

lim
t→±∞

∫
|x |>|t |+R

|∇t,x SL(u0 − ũ0, 0)(x, t)|2 dx = 0.

As a result, we may apply Proposition 1.9 and conclude u0 − ũ0 ∈ Qk(R). This means

∥5⊥

Qk(R)u0∥
2
Ḣ1({x :|x |>R})

≤ ∥ũ0∥
2
Ḣ1({x :|x |>R})

≤ 4σ4k−1∥g∥
2
L2(R+)

.

A combination of this inequality and identity (19) immediately verifies the conclusion of Proposition 1.11
in the negative time direction. The positive time direction follows the time symmetry.

6. Nonradial exterior energy estimates

In this section we give a short proof of Proposition 1.14. We start with:

Lemma 6.1. Let d ≥ 3 be an odd integer. Then∑
±

lim
t→±∞

∫
|x |>R+|t |

|∇t,x SL(u0, u1)(x, t)|2 dx = 2
∫

|s|>R

∫
Sd−1

|T−(u0, u1)(s, θ)|2 dθ ds. (20)
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In particular, we have (see (4) for the definition of P(R))

T−(P(R)) = P(R)
.
= {G− ∈ L2(R × Sd−1) : supp G− ⊂ [−R, R] × Sd−1

}.

Proof. Let u be the solution of linear wave equation with initial data (u0, u1). Then by radiation field
(Theorem 1.1) we have

lim
t→−∞

∫
|x |>|t |+R

|∇t,x u|
2 dx = 2

∫
∞

R

∫
Sd−1

|G−(s, θ)|2 dθ ds,

lim
t→−∞

∫
|x |<|t |−R

|∇t,x u|
2 dx = 2

∫
−R

−∞

∫
Sd−1

|G−(s, θ)|2 dθ ds.

In addition, we may apply the energy conservation law, Proposition 1.2 and obtain

lim
t→−∞

∫
|x |<|t |−R

|∇t,x u|
2 dx =

∫
Rd

(|∇u0|
2
+ |u1|

2) dx − lim
t→−∞

∫
|x |>|t |−R

|∇t,x u|
2 dx

= lim
t→+∞

∫
|x |>t+R

|∇t,x u|
2 dx .

Combining these identities we have∑
±

lim
t→±∞

∫
|x |>R+|t |

|∇t,x u(x, t)|2 dx = 2
∫

|s|>R

∫
Sd−1

|G−(s, θ)|2 dθ ds.

Finally (u0, u1) ∈ P(R) is equivalent to saying∫
|s|>R

∫
Sd−1

|G−(s, θ)|2 dθ ds = 0,

namely supp G− ⊂ [−R, R] × Sd−1. □

Now we are ready to prove Proposition 1.14. Since
√

2T− is a bijective isometry from Ḣ 1
× L2(Rd)

to L2(R × Sd−1), we have

5⊥

P(R)(u0, u1) = T−1
−

5⊥

T−(P(R))T−(u0, u1).

We next use the expression of P(R) = T−(P(R)):

∥5⊥

P(R)(u0, u1)∥
2
Ḣ1×L2 = 2∥5⊥

P(R)T−(u0, u1)∥
2
L2(R×Sd−1)

= 2
∫

|s|>R

∫
Sd−1

|T−(u0, u1)(s, θ)|2 dθ ds.

Combining this with (20) we finish the proof.

Appendix

In this section we give a brief proof of Lemma 4.6 for completeness. We first prove this lemma for two
special cases, P(x) = 1 and P(x) = 1 − x2. We start with P(x) = 1. A straightforward calculation gives
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πW (s) = p.v.

∫ 1

−1

(1 − x2)−1/2

s − x
dx

= p.v.

∫ 1

−1

(1 − s2)−1/2

s − x
dx +

∫ 1

−1

(1 − x2)−1/2
− (1 − s2)−1/2

s − x
dx

= (1 − s2)−1/2 ln
∣∣∣∣1 + s
1 − s

∣∣∣∣ + ∫ 1

−1

(1 − s2) − (1 − x2)

(s − x)
√

1 − x2
√

1 − s2(
√

1 − x2 +
√

1 − s2)
dx

= (1 − s2)−1/2 ln
∣∣∣∣1 + s
1 − s

∣∣∣∣ + −s
√

1 − s2

∫ 1

−1

1
√

1 − x2(
√

1 − x2 +
√

1 − s2)
dx .

Next we apply the change of variables x = 2z/(1 + z2). We have√
1 − x2 =

1 − z2

1 + z2 dx =
2(1 − z2)

(1 + z2)2 dz.

Thus∫ 1

−1

1
√

1−x2(
√

1−x2 +
√

1−s2)
dx =

∫ 1

−1

2 dz

1−z2 +
√

1−s2(1+z2)

=
2
s

∫ 1

0

(
1

(1+
√

1−s2)/s−z
+

1

(1+
√

1−s2)/s+z

)
dz

=
2
s

ln
∣∣∣∣(1+

√
1−s2

s
+1/

1+
√

1−s2

s
−1

)∣∣∣∣ =
1
s

ln
∣∣∣∣1+s
1−s

∣∣∣∣. (21)

This immediately gives W (s) = 0 for s ∈ (−1, 1). Next we consider the case P(x) = 1 − x2. In this case
we calculate the Hilbert transform of

√
1 − x2:

πW (s) = p.v.

∫ 1

−1

√
1 − x2

s − x
dx

= p.v.

∫ 1

−1

√
1 − s2

s − x
dx +

∫ 1

−1

√
1 − x2 −

√
1 − s2

s − x
dx

=

√
1 − s2 ln

∣∣∣∣1 + s
1 − s

∣∣∣∣ + ∫ 1

−1

(1 − x2) − (1 − s2)

(s − x)(
√

1 − x2 +
√

1 − s2)
dx

=

√
1 − s2 ln

∣∣∣∣1 + s
1 − s

∣∣∣∣ + s
∫ 1

−1

1
√

1 − x2 +
√

1 − s2
dx

=

√
1 − s2 ln

∣∣∣∣1 + s
1 − s

∣∣∣∣ + πs + s
∫ 1

−1

(
1

√
1 − x2 +

√
1 − s2

−
1

√
1 − x2

)
dx

=

√
1 − s2 ln

∣∣∣∣1 + s
1 − s

∣∣∣∣ + πs − s
√

1 − s2
∫ 1

−1

1
√

1 − x2(
√

1 − x2 +
√

1 − s2)
dx = πs.

Here we use the integral (21) again.

Induction. Now we are ready to prove Lemma 4.6 by induction. It is clear that we only need to show the
Hilbert transform of fκ(x) = xκ(1 − x2)−1/2 is a polynomial of degree κ − 1 in the interval (−1, 1). The
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cases of κ = 0, 2 have been done. Now let us consider the case of f1(x) = x(1 − x2)−1/2. We observe
that (s ∈ (−1, 1))

H f1 = H d
dx

(−
√

1 − x2) = −
d
ds

H(
√

1 − x2) = −1.

This proves the case κ = 1. Now let us assume that the cases κ = 0, 1, 2, . . . , n are done and consider the
case κ = n + 1. Here n ≥ 2. We have

xn+1(1 − x2)−1/2
= −xn−1(1 − x2)1/2

+ xn−1(1 − x2)−1/2.

The Hilbert transform of the second term in the right-hand side is known to be a polynomial of degree n−2.
Thus we only need to consider the first term. We have

d
ds

H(xn−1(1 − x2)1/2) = H d
dx

(xn−1(1 − x2)1/2)

= H{[−nxn
+ (n − 1)xn−2

](1 − x2)−1/2
}.

This is a polynomial of degree n −1 by induction hypothesis. A simple integration then finishes the proof
of the case κ = n + 1. Generally speaking, the derivative with respect to s as given above is in the weak
sense. But since the derivative is known to be a polynomial in (−1, 1), we can integrate as usual.
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