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FAMILIES OF FUNCTIONALS REPRESENTING SOBOLEV NORMS

HAIM BREZIS, ANDREAS SEEGER, JEAN VAN SCHAFTINGEN AND PO-LAM YUNG

We obtain new characterizations of the Sobolev spaces wlre (R™) and the bounded variation space BV([RN ).
The characterizations are in terms of the functionals v, (E; ,,,[u]), where

| (x) —u(y)l A}

E)L,y/p[u] = {(x,y) (S RN X RN X #y, m

and the measure v, is given by dv, (x, y) = |x — y|” "V dxdy. We provide characterizations which
involve the LP**-quasinorms sup, _, Av, (E;. ,/,[u])"/? and also exact formulas via corresponding limit
functionals, with the limit for A — 0o when y > 0 and the limit for A — 0" when y < 0. The results
unify and substantially extend previous work by Nguyen and by Brezis, Van Schaftingen and Yung. For
p > 1 the characterizations hold for all y # 0. For p = 1 the upper bounds for the L'-> quasinorms fail in
the range y € [—1, 0); moreover, in this case the limit functionals represent the L' norm of the gradient
for CZ°-functions but not for generic W'-!_functions. For this situation we provide new counterexamples
which are built on self-similar sets of dimension y + 1. For y = 0 the characterizations of Sobolev spaces
fail; however, we obtain a new formula for the Lipschitz norm via the expressions vo(E; o[u]).

1. Introduction

We are concerned with various ways in which we can recover the Sobolev seminorm ||Vul|» vy Via
positive nonconvex functionals involving differences u(x) — u(y).

We begin by mentioning two relevant results already in the literature. A theorem of H.-M. Nguyen
[2006] (see also [Brezis and Nguyen 2018; 2020]) states that, for 1 < p < oo and u in the inhomogeneous
Sobolev space Whr(RN),

i —p— k(p, N)
lim AP // |x —yl P Ndx dy — —”VM”'D , (1_1)
ANO lu(x)—u(y)|>xr p LP(RN)
with o
2 /2 -
k(p, N) 2=/ e w|” dw = ((p+ D/2)7 ’ (12)
st C((N+p)/2)

and e is any unit vector in RY. As shown in [Brezis and Nguyen 2018], (1-1) still holds for all € CC1 (RM)
when p = 1 but fails for general u € W!(R"). The limit formula (1-1) may be compared to a theorem
of [Brezis et al. 2021b], which states that, for all u € C2° (RV)and 1 < p < 00, one has

Ny = K2 )

Tim ALV ({(x, y) € RY X RY s [u(x) —u(y)] > Mx =y IVl gy (1-3)
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where £ denotes the Lebesgue measure on RY x R". Our first result, namely Theorem 1.1 below,
provides an extension of (1-1) and (1-3) that unifies the two statements. Before we state the theorem, we
introduce some notation that will be used throughout the paper.

First, for Lebesgue measurable subsets E of R2V = RN x RY and y € R, we define

v, (E) = fﬁx’y)eE Ix — y|” "N dx dy. (1-4)
x#y

In particular, when y = N, vy is just the Lebesgue measure on R?V. If u is a measurable function on RV
and b € R, we define, for (x, y) € RN x RV with x # y, a difference quotient

u(x) —u(y)

Qpu(x,y) = m, (1-5)
moreover, we define, for A > 0, the superlevel set of Q,u at height A by
E;plul = {(x,y) e RY x RV :x # y, |Qpu(x, )| > A}. (1-6)

We will denote by W7 (RV), p > 1, the homogeneous Sobolev space, i.e., the space of L} (RV) functions
for which the distributional gradient Vu belongs to L” (RV), with the seminorm | u/| Wi = IVullr@yy-
The inhomogeneous Sobolev space W7 is the subspace of W!-?-functions u for which u € L?, and we set
lullwip :=llullr + || VullLr. For p =1 we will also consider the space BV(RY) of functions of bounded
variations, i.e., locally integrable functions u for which the gradient Vu € M belongs to the space M
of R"-valued bounded Borel measures and we put |lullgy := |Vull r¢; furthermore, let BV := BVNLL
In the dual formulation, with C 61 denoting the space of C! functions with compact support,

lullgy = sup{ /R udiv(«p)‘ 19 e CHRN,RY), |¢lloo < 1}.

For general background material on Sobolev spaces, see [Brezis 2011; Stein 1970].
Theorem 1.1. Suppose N >1, 1 < p < o0, y € R\ {0}
() If y > 0, then, for allu € W"P(RN),

) k(p, N)
lim APv,(E;,plul) = —2

IVull? -7
A= +o0 vl

LP(RN)*

(b) If eithery <0, p>lory < —1, p=1then, forallu € W"P(RV),

. k(p, N)
p — P -
%l\r%k vy (Ej y/plul) = M VUl vy - (1-8)

(©) If p=1and —1 <y <0 then (1-8) remains true for all u € Cg (RN) but fails for generic u € W1 (RM).
However, we still have, for all u € Wl’l([RRN),
k(1, N)
¥

lim inf vy (£, ) = 1Vl 1 - (1-9)
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Formula (1-1) is the special case of (1-8) with y = —p, and formula (1-3) is the special case of (1-7)
with ¥ = N. Note that our result concerns functions in the homogeneous Sobolev space W'-?; we do not
require u to be in L7,

Remarks. (i) The reader will note the resemblance of (1-8) and (1-7) and may wonder why in (1-8), for
y < 0, one is concerned with the limit as A \( 0 and in (1-7), for y > 0, one takes the limit as A — oo.
In the proofs of these formulas one relates limits involving Av, (E;. ,/p [u])'/P to (the absolute value of)
limits of directional difference quotients 6~ (u(x 4 86) — u(x)) with increment § = A~”/?, and in order
to recover the directional derivative (8, Vu(x)) we need to let § — 0, which suggests that we need to
take A — oo or A \( 0 depending on the sign of y. For the calculations see the proofs of Lemmas 3.2
and 3.3 below.

(i1) The failure of (1-8) for p=1,y €[—1,0)and u € whi (RM) is generic in the sense of Baire category.
It may happen that lim;\ o Av, (E; , [u]) = 0o. This phenomenon was originally revealed when y = —1
by A. Ponce and is presented in [Nguyen 2006]; see also [Brezis and Nguyen 2018, Pathology 1]. For
stronger statements and more information, see Theorem 1.8. For y € (—1, 0) we provide new examples
based on self-similarity considerations. For discussion of failure in the case y = 0, see Theorem 1.5 below.
The special case of (1-9) for y = —1 was already established in [Brezis and Nguyen 2018, Proposition 1].

When p = 1 we can also consider what happens if one allows functions in BV(RY) in (1-7) and
(1-8). For y = N in particular Poliakovsky [2022] asked whether the limit formulas remain valid in this
generality (with | Vu||;1 replaced by ||[Vull o). We provide a negative answer:

Proposition 1.2. (i) The analogues of the limiting formulas (1-7) for y >0, p =1 and (1-8) for y <0,
p = 1, with ||Vul| p on the right-hand side, fail for suitable u € BV.
(i) Specifically, let Q@ C RN be a bounded convex domain with smooth boundary and let u be the

characteristic function of 2. The limits lim; __, oo Av), (Ej , [u]) for y >0 andlim,_.oy Av, (E; ,[u])
for y < —1 exist, but they are not equal to |)/|_1K(1, M) || Vul|| .

For a more detailed discussion we refer to Section 3F. See also Section 7B for a discussion about some
related open problems.

Motivated by [Brezis et al. 2021b], we will also be interested in what happens to the larger quantity
obtained by replacing the limits on the left-hand sides of (1-7) and (1-8) by sup, _ . This will be formulated
in terms of the Marcinkiewicz space L?**® (RN, v,) (a.k.a. weak-type L”) defined by the condition

p ._ N N .
[F]W(RZN’W) = ili[()))»pvy({(x, y) €RY x RY 1 [F(x, y)| > A}) < oo. (1-10)
As an immediate consequence of Theorem 1.1 we have, for N>1, 1 <p <oo, y #Oandallu € C° (RM),

[Qy/pu]ip,m(RZN’Uy) Z C(N7 p9 V)”vuuip([@zv), (1_11)

where C(N, p, y) is a positive constant depending only on &, p and y. Moreover, the same conclusion
holds for all u € W'7(RY) when p > 1, with any y # 0, and when p =1, with any y ¢ [—1,0]. We
shall show that the conditions in the last statement can in fact be relaxed; see the inequalities (1-14) and
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(1-16) below. In addition we have the important upper bounds for Q,/,u, extending the case y = N
already dealt with in [Brezis et al. 2021b] for u € CCOO(RN ). The result in [Brezis et al. 2021b] states that,
for every N > 1, there exists a constant C(N) such that

[Onypuly = CN)[IVul

LP‘OO(RZN,VN) =

Zp(RN) (1'12)

forallu € C>°(RY) and all 1 < p < oco. In light of Theorem 1.1, it is natural to ask whether one can replace
the limits on the left-hand sides of (1-7) and (1-8) by sup, . ( and still obtain a quantity that is comparable to
IVull i PRN)" As suggested by Theorem 1.1 the answer to our question is sensitive to the values of y and p.
Theorem 1.3. Suppose that N > 1, 1 < p < oo and y € R. Then the following hold.:
(1) The inequality
[Qy/pulLree@en v,y = C(N, p, YIIVullLrwy) (1-13)

holds for all u € C*(RN) if and only if y # 0. In this case (1-13) extends to all u € W7 (RV).
(ii) Suppose that u € LIIOC(IR{N) and Q,/pu € LP°(R2N vy). Then u € Wl’p(RN) and we have the

inequality
IVullprmvy < Cn.p.y [Qy/pu]Lﬁ«OO(RzN,vy)' (1-14)

There is a new phenomenon for p = 1, namely the upper bounds for Q, u only hold for the more
restrictive range y € (—oo, —1) U (0, 0o). Here it is also natural to replace W1 with BV.

Theorem 1.4. Suppose that N > 1 and y € R. Then the following hold:
(1) The inequality
[Qyulptcomen ) < C(N, YIIVull 1 gy (1-15)

holds for all u € CSO(RN) ifand only if y & [—1, 0]. In this case (1-15) extends to all u € W (RY),
and, if |Vull 1wy is replaced by ||Vull pm, to all u € BV(RM).

(i1) Suppose thatu € Llloc([RN) and Q,u € Lo (RN, vy). Thenu € BV(RY) and we have the inequality

IVullpm < Cn oy [Qyulpicomey y,)- (1-16)
Y

We note that the quantitative bounds (1-13) and (1-15) in Theorems 1.3 and 1.4 are crucial tools for
establishing the limiting relations for all WP functions in Theorem 1.1. Note that there is no restriction
on y in (1-14) and (1-16). The constants in the inequalities will be quantified further later in the paper. In
particular, C(N, p, y) in (1-13) remains bounded as p N\ 1 only in the range y € (0, o) U (—o0, —1)
(see Theorem 2.2 and Proposition 6.1).

Historical comments. Some special cases of the above quantitative estimates have been known. Estimate
(1-13) for y =—p and 1 < p < oo was discovered independently by H.-M. Nguyen [2006], and by A. Ponce
and J. Van Schaftingen (unpublished communication to H. Brezis and H.-M. Nguyen), both relying on the
Hardy-Littlewood maximal inequality. A. Poliakovsky [2022] recently proved generalizations of results
in [Brezis et al. 2021b] to Sobolev spaces on domains; moreover, he obtained Theorems 1.3 and 1.4 in
the special case y = N under the additional assumption that u € L?. Other far-reaching generalizations to
one-parameter families of operators were obtained by O. Dominguez and M. Milman [2022].
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The case y =0. We shall now return to the necessity of the assumption y ¢ [—1, 0] in parts of Theorems 1.1,
1.3 and 1.4. When y =0, the bounds for [Qy,/pu]roewen ) fail in a striking way. We begin by formulating
a result illustrating this failure, which also gives a characterization of the seminorm in the Lipschitz
space W1,

Theorem 1.5. Suppose N > 1, u is locally integrable on RN and Vu € L} _(RN). Then

loc
IVull Lo @yy = inf{A > 0 : vo(E; olul) < co}. (1-17)

Indeed in Proposition 5.1 we shall prove the stronger statement that vo(E; o[u]) =0 for A > | Vu|| o,
and vo(Ey o[u]) = oo for A < || Vu| . As an immediate consequence of Theorem 1.5 we get:

Corollary 1.6. Let u be locally integrable on RN. If Vu € L} (RN) and if vo(Ej olul) is finite for all

loc
A > 0, then u is almost everywhere equal to a constant function.

In view of other known results [Brezis 2002; Brezis et al. 2021a] on how to recognize constant functions,
a natural question arises whether the hypothesis on the local integrability of Vu in the corollary could be
relaxed; one can ask whether the constancy conclusion holds for all locally integrable functions satisfying
vo(Ey olu]) < oo for all 2 > 0. However, the following example shows that such an extension fails (for
details, see Lemma 5.2).

Example 1.7. Let Q C R" be a bounded Lipschitz domain and let u be the characteristic function of .
Then u € BV(RY)\ WHL(RY) and sup,_ o A vo(Ej o[u]) < oo.

More on counterexamples. We now make more explicit the exclusion of the parameters y € [—1, 0) in
part (c) of Theorem 1.1 and in (1-15). We shall show in Section 6B that for y € (—1, 0) these negative
results can be related to self-similar Cantor subsets of R, of dimension 1+ y.

Theorem 1.8. Suppose N > 1. Then the following hold:

(1) Let —1 <y < 0. There exists a C* function u € WELRY), rapidly decreasing as |x| — oo and such
that

%{grg)kvy(EA,y[u]) = 00. (1-18)
(ii) Let —1 <y <. There exists a compactly supported u € W (RN) for which (1-18) holds. The set

{u € W“(RN) :limsup Avy, (Ey , [u]) < oo}
ANO

is meager in WHL(RN), i.e., of first category in the sense of Baire.

(iii) Let =1 <y <0, N>20r —1 <y <0, N = 1. There exists a compactly supported u € W' (RN)
such that v, (Ej ,[u]) = 0o for all . > 0; moreover, the set

{u e W”(RN) vy (Ej y[u]) < oo for some A € (0, 00)}

is meager in WHH(RN).
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The case N =1 = —y plays a special role and is excluded in the strongest statement (iii) since for
all compactly supported u € WI’I(R) one has v_j(E; _1[u]) < oo for all A > 0 (see Lemma 6.5 below).
The proofs of existence of counterexamples are constructive and the Baire category statements will be
obtained as rather straightforward consequences of the constructions.

Outline of the paper. In Section 2 we provide the upper bounds for [Q,,,u] Lroo(R2N )5 1.€., the proof
of inequalities (1-13) and (1-15) in Theorems 1.3 and 1.4. We first derive these for a dense subclass,
relying on covering lemmas, and then extend in Sections 2C and 2D to general W'? and BV-functions.
In Section 3 we derive the limit formulas of Theorem 1.1; specifically in Section 3B we prove the sharp
lower bounds involving a liminf A”v, (E} ,/,[u]) for general functions in W' and in Section 3C we
obtain the sharp upper bounds for lim sup A”v,, (E;, ,/,[u]), under the assumption that u € C !is compactly
supported. Then in Section 3D we extend these limits to general W':? functions. In Section 3F we show
that the limit formulas for W'! do not extend to general BV functions and prove Proposition 1.2. In
Section 4 we prove the reverse inequalities (1-14) and (1-16) in Theorems 1.3 and 1.4. In Section 5 we
prove Theorem 1.5 on a characterization of the Lipschitz norm and also discuss Example 1.7. In Section 6
we provide various constructions of counterexamples and in particular prove Theorem 1.8. We discuss
some further perspectives and open problems in Section 7.

2. Bounding [Qy/pu]Lp.owz2v,y,) by the Sobolev norm
In this section we prove inequalities (1-13) and (1-15) in Theorems 1.3 and 1.4.

2A. The bound (1-13) via the Hardy-Littlewood maximal operator. Following [Brezis et al. 2021b], one
can prove the result of Theorem 1.3 for p > 1 by an elementary argument involving the Hardy—Littlewood
maximal function M|Vu| of |Vu|; however, the behavior of the constants as p N\ 1 will only be sharp in
the range —1 <y < 0.
Proposition 2.1. Let N > 1 and 1 < p < 00. There exists a constant Cy such that, for all y # 0 and all
ue WhrRY),

Cy( p

p
)4
SUp AP vy (s /plu]) = m(ﬁ) IV ull?, v, @1

Proof. We assume first that u € C! and that Vu is compactly supported. As in [Brezis et al. 2021b,
Remark 2.3], one uses the Lusin-Lipschitz inequality

lu(x) —u(y)l
lx — ¥l
and observes that (2-2) implies

= CIM(Vul)(x) + M(Vul)(y)] (2-2)

Espplul S {lx —y|"/? < 2CA7"M(IVul)(x)} U {|x — y|"/P < 2CA~'M(|Vul)(»)}.

Asa consequence

Uy(EA,y/p[”]) = 2// |h|y_N dhdx.
x JIh|Y <2CIATM(|Vul)(x)]?
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Direct computation of the inner integral (distinguishing the cases y > 0 and y < 0) yields

0 By pliad) S €177 [ MV @)

R
Inequality (2-1) follows then from the standard maximal inequality | M f ||§ <[cCN)PIIf ||£ for p > 1;
see [Stein 1970] (here p’ = p/(p — 1)). The extension to general W'-? functions will be taken up in

Section 2C. O

2B. The case y € R\[—1, 0]. We shall prove the following more precise versions of the estimates (1-13)
and (1-15) when y ¢ [—1, 0], with constants that stay bounded as p \ 1; indeed we cover all p € [1, c0).
We denote by oy_; the surface area of the sphere SV~!. In the proof of the following theorem we
will first establish the estimates for functions u € C'(R") whose gradient is compactly supported. The
extension to W7 and BV will be taken up in Sections 2C and 2D.

Theorem 2.2. There exists an absolute constant C > 0 such that, for every N > 1, every 1 < p < 00, and
every u € Whr(RN):

(1) If y > 0, then

Y
sup APvy, (Ey,/plul) < CoN_ls—nwni,,(RN). (2-3)
A>0 Y
(i) If y < —1, then
sup A”vy, (Ex y/plul) < Loyt (1 - )nwnp . (2-4)
2=0 v ly +1 LP®RY)

When p =1 the above assertions hold for all u € BV(RM) provided that |Vu|| gy is replaced by || Vu || a1

The proof of Theorem 2.2 relies on the following proposition, in which [x, y] C R" denotes the closed
line segment connecting two points x, y € RY.

Proposition 2.3. Let
E(f,y):= {(x, ) eRY xRV 1 x #y, / | flds > |x —yv“} (2-5)
[x,y]

for f € C.(RN). There exists an absolute constant C > 0 such that, for every N > 1 and every f € C.(RV):
(1) If y > 0, then
_ 5Y
[ ey avdy < con i Al 2-6)
E(f.y) 14
(i) If y < —1, then

_ Coy_1 1
// = y17 N dedy < (1+ )nfnu(m). 2-7)
E(fy) ly| ly +1]

Indeed, to deduce Theorem 2.2 from Proposition 2.3 one argues as in the proof of (1-12) in [Brezis
et al. 2021b]; for u € Cl([RRN) and 1 < p < o0, one has

p
lu(x) —u(y)|? < [/ |Vu|ds] 5/ |Vul|? ds |x—y|"’_1
[x,y] [x,y]
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forall x,y € RY, which implies
Ej y/plul S EQA"P|Vul?, y).

Hence for u € C'(RV) whose gradient is compactly supported, one establishes Theorem 2.2 by applying
Proposition 2.3 with f := A7”|Vu|P. The extension to u € W' will be taken up in Section 2C.

Proof of Proposition 2.3. As in the proof of [Brezis et al. 2021b, Proposition 2.2], using the method of
rotation, we only need to prove Proposition 2.3 for N = 1. Indeed,

// |x—y|7’_Ndxdy=l[ / // Ir —s|” ' drdsdx’ dw,
E(f.y) 2 JsvrJor J s, o)

where for every w € SV~! and every x’ € w, f,, . is a function of one real variable defined by

fw,x’(t) = f(x/"i_tw)-

The innermost double integral can be estimated by the case N = 1 of Proposition 2.3, and

/ / /|fw,x’(t)|dtdx/dw:UN—1||f||Ll(RN)-
sv-1Jot JR

Thus from now on, we assume N =1 and f € C.(R).

If y > 0, the desired estimate (2-6) is the content of [Brezis et al. 2021b, Proposition 2.1]. On the other
hand, suppose now y < —1. Without loss of generality, assume f > 0 on R. In addition, we may assume
that f is not identically zero, for otherwise there is nothing to prove.

Let

E((f,y):={(x,y) € E(f,y):y <x}

f/ =y dedy =2/f = yI" dx dy,
E(fy) E (f,y)

and it suffices to estimate the latter integral.

Then by symmetry,

In what follows we will need to always keep in mind that in view of our assumption y < —1 we have
—(y+1)=1y|—1>0. We will now use a simple stopping-time argument based on the fact that for all
¢ € R the continuous function

X
x> (x —c)~rFD / f(s)ds, x>=>c,
C

increases from 0 to oo on [c, 00).

Assume that supp f C [a, b]. We construct a finite sequence of intervals /i, ..., Ik, that are disjoint
up to endpoints, that cover supp f = [a, b], and that satisfy
|1i|—<V+1>/ f:% forl <i <K. (2-8)
I;
Indeed, we may take a; := a, and a» > a; to be the unique number for which

a

_ 1

(a2 —a1) WH)/ f=5
a
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and set I} := [a1, ax]. If ap < b, we may now repeat, and take I, := [ay, a3], where az > ay is the unique

number for which (a3 —az)~7+V [ f = 1. Note that the g;’s chosen as such satisfy

—(y+1 1 —1
(ai+1 —Cli) v+ = E”f”Ll(R)’

so that a; 11 —a; = Q|| fll 1)/ This shows that in finitely many steps, we would reach ag 41 > b
for some K > 1, with ax < b if 1 < K. Then we have our sequence of disjoint (up to endpoints) intervals

Iy, ..., I that cover [a, b] and satisfy (2-8). We also write Iy := (—00, a;] and Ix 41 := [ag+1, +00).
We now claim that I; x ; N E(f,y) = @ for every 0 <i < K + 1. This being trivially the case when
i €{0, K 4 1}, we consider the case i € {1, ..., K}: any x, y € [; satisfy
* 1
v =y~ / f‘ < |1i|—<V+1>f f=3<L
< . 3
y i
It follows thus that
K+1
Ei(f.y) = E+(f¥)N (@i, +00) x (=00, a)). (2-9)
i=1
Furthermore, fori € {2, ..., K},if y <a; <x and x —y < min{|[;|, |I;—1]|}, then

e =y~

X
[ s <minn oo ([ g [ )
y Ii—y I;
<0 [ ot [rededn
Ii— I; 22
(again we used y < —1 so that —(y +1) > 0 here), from which it follows that (x, y) € E (f, y). Combining

this with a similar argument for i € {1, K + 1}, we get that if (x, y) € EL(f, y) N (a;, +00) X (=00, a;),
then |x — y| > min{|/;|, |[;—|}, and thus

oo pmin{a;,x—min{|;|,|l;—1|}}
x =y dx dy s/ f = y7 " dydx
a;i —0o0

1 & )
- m/ (max{x —a;, min{ L], |11 |}})? dx
a;

1 1
=—|\1+ >min{|1'|, |l [y
|V|< ly +1] o

o) [,
vl ly +11/) Ji,_,un

(The computation of these integrals uses our assumption y + 1 < 0.) Summing the estimates, we get in

view of (2-9)
/ |x—y|y—1dxdy<i<1+ ! )/f
E((f.y) ~lyl ly +11/) Jr

We have thus completed the proof of (2-7) under the assumption y < —1 and N = 1. ]

/E+(f,y)ﬂ(a,- ,400) x (—00,4;)




952 HATM BREZIS, ANDREAS SEEGER, JEAN VAN SCHAFTINGEN AND PO-LAM YUNG

2C. Proof of Proposition 2.1 and Theorem 2.2 for general wlp Junctions. We use a limiting argument,
together with the following fact: if u € W?(RN), N > 1, and 1 < p < oo, then there exists a Lebesgue
measurable set X ¢ R2V, with £2V (X) = 0, so that, for every (x, h) € R2N \ X, we have

1
u(x+h)—ulx) = / (h, Vu(x +th))dt. (2-10)
0

Indeed, both sides are measurable functions of (x, 4) € R?Y, and if X is the set of all (x, h) where the
two sides are not equal, then X is a measurable subset of R?Y, and the assertion will follow from Fubini’s
theorem if, for every fixed & € RY, we have £V ({x e RV : (x, h) € X}) =0, i.e., (2-10) holds for £V

almost every x. This follows since for every ¢ € C>°(R"), one has
1
/ [u(x+h)—u(x)]¢(x)dx =/ u()[p(x—h)—¢(x)]dx = —/ M(X)/ (h, Vo (x—th))drdx
RN RN RN 0

1 1
:/ /(h,Vu(x)M)(x—th)dtdx:/ / (h, Vu(x—+th)) dt ¢ (x) dx.
RN Jo RN JO

Now given u € WP (RY), there exists a sequence u, € C®°(R") such that Vu, are compactly
supported, and
IV, — ”)”LP(RN) — 0. (2-11)

Indeedif N > 1and p>1,orif N =1 and p > 1, then this follows from the density of C fo([RN ) in
Wl’p([RiN ) as asserted in [Hajtasz and Katamajska 1995] (in this case one may choose u,, € CSO(RN ).
The density of C2°(RY) in WP fails when N = p = 1 (again see [Hajtasz and Katamajska 1995]); the
issue is that if Vu is supported in a convex set in RY, N > 2, then u is constant in the complement of the
set, but this fails for N = 1 since the complement of a bounded interval has two connected components.
On the other hand, in the anomalous case N = 1 and p = 1, one can choose an approximation of the
identity to get a sequence v, of CZ° functions on R such that ||v, — u/|| 1) — 0. One can then take
Uy (x):= f(f v, (1) dt, and (2-11) follows with u), = v, being compactly supported (even though u, may
not be compactly supported).
Let, for R > 1,

Kr={(x,y)eR*™:|x| <R, |y|<Rand R™' < |x —yl|}.

By monotone convergence it suffices to prove

”vu ”ZP(RN)

o (2-12)

Vy (Ek,y/p[u] NKg)<C

with C independent of R.

Under the assumptions of Proposition 2.1 and Theorem 2.2 on p and y, since u, € C°(RY), we
already know
” Vun ”ip(RN)

Vy(EA,y/p[un]) <C I
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Moreover, the sequence Q. u, converges to Q,/,u in L?(Kg) as n — o0o. Indeed, using (2-10) we
may write

1 Vx—y
Q. /pu(x, y) = /< ,w(<1—t>y+rx>>dz
v e — /7 Jo \Ix =yl

for £2V a.e. (x, y) € R?N, and similarly for u,, in place of u, which allows us to estimate

1/p
(//K |Qy/pun(x’y)_Qy/pM(X,y)|pdxdy>

i 1/p
< RY/P / </ / [V(u, —u)((1 —s)x +sy)|” dx dy) ds
0 [x|=R J|y|<R

< 2N/p(2R)N/.URV/P||V(un — un+1)||17 — 0.

By passing to a subsequence if necessary, we may assume that Q,,/,u, converges LN -ae. to Q,/pu on
Kg as n — oo. Thus

KRN Ejyplul S KgN (U N Ex,y/p[ue]),

neN £>n

which implies

Vy (KrN Ek,y/p[u]) = n11>nolo Vy (KR mp E)»,y/p[”@]) = lkrglol;}fvy (KrN Ek,y/p[un])
>n
IV unll v, —c IVully v,

< Climinf
n—00 AP AP

2D. Proof of Theorem 2.2 for BV-functions. We choose a sequence p, € C(RY), with p, =2"V p(2" -)
and fRN pdx =1, and set u, :=u*p,. Thenu, € WI’I(RN) and u, — u almost everywhere. This means
ifGr:={(x,h) eRY xRN :|x| <L, L' <|h| < L} then

nll)n;o Vy (E)L,y[un] NGL) = Vy (E)L,y[u] NGyL),

by dominated convergence. Also

IVinll 1 vy = sup / 1 (x) divé(x)dx'= sup / u(x) divi(p, % ¢)(x) dx| < | Vaul as;
peC® peC
lplloo=<1 lplloo=<1

here we used || o, * <]_b)||oo < ||<,zq5||C>o for the last inequality. Combining these two limiting identities with
Theorem 2.2 we get the desired inequalities with E; , [u] replaced by Ej; ,[u] N G,. By monotone
convergence we may finish the proof letting L — oo. (I

3. Proof of Theorem 1.1

We extend and refine arguments from [Brezis and Nguyen 2018; Brezis et al. 2021b], which are partially
inspired by techniques developed in [Bourgain et al. 2001].
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3A. A Lebesgue differentiation lemma. Our argument uses the following standard variant of the Lebesgue
differentiation theorem. For lack of a proper reference, a proof is provided for the convenience of the reader.

Lemma 3.1. Leru € Wh! (RN) and let {8,} be a sequence of positive numbers with lim,,_, » 8, = 0. Then

lim L T Gy

n—00 Sn

for almost every (x, h) € RV x RN,

Proof. If u € C' with compact support the limit relation clearly holds for all (x, #). We shall below
consider for each & € S¥~! the maximal function

t
My F(x) = sup%/ |F(x +7r0)|dr,
0

t>0

which is well-defined for all §, a measurable function on RY x SV¥—!  and satisfies a weak-type (1, 1)
inequality
LY ((x e RN - My F(x) > a}) <5a Y F|.

Letu € WHI(RN) and Ay = {h € RN : 2~M < |h| < 2M}. 1t suffices to prove the limit relation for
almost every (x, h) € RN x Ay From (2-10) we get that, for every n > 1,

u(x +8,h) —u(x) 1 /‘W'< ( h )>
= h,Vulx+r— | )dr
5n 8n|h| 0 |h|

for £2V almost every (x, h) € RV x Ay as a result, there exist representatives of u, Vu and a null set
N € RY x Ay such that the identity holds for all (x, k) € N/ C and all n > 1. It suffices to show that, for

every o > 0, ¢ > 0,
>a}>§8. (3-1)

Letv e Cg so that |[V(v—u)|; < ae/(lZEN(AM)). Let g = u —v. Since the asserted limiting relation
holds for v, we see that the expression on the left-hand side of (3-1) is dominated by
1 Sulh]
£2N<{(x,h)e[R{Nx.AM:|Vg(x)|+sup /
0

h
Vg(x—i—r—) dr > a})
n>0 8n|h| |h|

=< Z‘CN(-AM)O‘_IHVgH] +/ EN({X : 9ﬁh/|h|IVg|(x) > %}) dh

Au

1
Snlhl

EZN({(X, h) € RY x Ay : lim sup

n—oo

Sulh]
/ (h, Vu(x +rh))dr — (h, Vu(x))
0

<12cN Ay Velh <
since || Vgll1 < ae/(12LN (Ap)). O

3B. The lower bounds for liminfA?v,(E, ,/p[u]). We use Lemma 3.1 to establish lower bounds,
relying on an idea in [Brezis and Nguyen 2018], where the case y = —1 was considered.
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Lemma 3.2. Let 1 < p < oo andu € WhP(RN). Then:

(i) Fory >0,
. k(p, N)
liminf AP vy (E3 y /plul) = ] IVall} -
@i1) Fory <0,
. k(p, N)
» p
h?{‘lgf)" Vy (E)»,y/p[u]) = |]/| ”Vu”Lp(RN)'

Proof. We write, for A > 0 and § > 0,

APvy (Ey y plul) = AP // |h)” =N dh dx
lu(x+h)—u(x)|/|h| 1Y/ P>

_psY f/ 17N dh dx;
| (x4-8R)—1(x))/ (S| k])|” >AP57 ||

here we have changed variables replacing 2 by §h. Hence

W, Byl = [ [ 1<|h|y,oo>(

We now take a sequence {1,} of positive numbers, set §, = p /¥ and note that

u(x +68h) —u(x)
S|h|

p
)th"Ndhdx, with s =A7P/7.  (3-2)

lim §, =0

" {limn_,oo An=o00and y >0, (33)
n—oo

lim, ,oo A, =0 and y <O.
Also observe that

liminf1(|h|y,oo)(sn) > 1(‘h\fy,oo)(t) if lim s, =1.
n— 00 n— 00

Now assume that A, — 0o if ¥ > 0 and A, — 0% if y < 0 and stay with 8, = A, ", a sequence which
converges to 0 in both cases. Use Fatou’s lemma in (3-2) and combine it with Lemma 3.1 to get

. o w(x +8,h) —u(x)|” _
liminfA7v) (Ey, y/plul) = // lgggéfl(lhly,oo)( 8’;|h| |h|¥ =N dh dx
o u(x +8,h) —ux)|P _
2// 1(h1/,oo)<nli>nolo 5n|h| |h|” =N dh dx
n

=// | =N dhdx =: J,.
[]Y <[(h/|h],Vu(x))|?

We use polar coordinates & = r6 and write the last expression as

J, :// / r¥~1dr dé dx
RN xSN=1 Jry <|(6,Vu(x))|P

1 k(p,N)
= — 6,V Pdodx = Vul|? ,
M f/RNstl {60, Vu(x))| M IVully @y

with the calculation valid in both cases y > 0 and y < 0. U
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3C. Upper bounds for limsup A?v,, (E; ,/p[ul), for C cl functions. We assume that u € C! is com-
pactly supported and obtain the sharp upper bounds for limsup, _, ., APv, (E} ,/p[u]) when y > 0 and
limsup; o APv, (E; ,/plul) when y <O0.

Lemma 3.3. Supposeu € C cl (RY) and 1 < p < 0o. Then the following hold:

(1) If y > O then
k(p, N) p

limsup AP vy (Epy/plul) < ———IIVull}, gv,-
A—00 |V|

(i) If y <O then

. k(p,N)
limsup APv,, (Ey ,/plul) < b IVully

= J Ny
ANO ly| LP®RY)

(iii) The statement in part (i) continues to hold for u € C'(RN) whose gradient is compactly supported.

Remark 3.4. The subtlety in part (iii) above is only relevant in dimension N = 1, since if N > 2, then
any function in C'(R") with a compactly supported gradient is constant outside a compact set.

Proof of Lemma 3.3. We distinguish the cases y > 0 and y < 0.
The case y > 0. We assume that Vu is compactly supported. To prove part (iii) (and thus part (i)) assume

N 1/2
A2 L= H (Z |8iu|2) . (3-4)
i=1 L®(RN)
Then
@M EEyplul = Ax—y"P<L = |x-yl =l (3-5)
Furthermore, if (x, y) € Ej ,,,[u], then writing y = x 4+ ro with 7 > 0 and @ € S¥~!, we have
AP < |Vu(x) |+ p@r), with p(r) := sup sup |Vu(x +h) — Vu(x)|; (3-6)

xeRN |h|<r

since Vu is uniformly continuous on RY, we have p(r) N\ 0 as r N\, 0. This, together with the first

L ply
kr””sIVu(X)-lerp((—) ) (3-7)

implication of (3-5), shows

A

Let B be a ball centered at the origin containing supp(Vu), and let B be the expanded ball with radius
1 4+ rad(B). Then for x ¢ B, we have Q,/pu(x,y) =0 for every y with [x — y| < 1, and (3-5) shows
(x,y) ¢ Ey y/plu] for every y with [x — y[ > 1,50 Ej ,,/,[u] C B x RN, Define, for x € E, we SN

and A >0
_ LNV \\\?/"
R(x,w,)) = (A_1<|Vu(x)-a)|—|—,o((x> ))) )
R(x,w,))
xpvy(Ek,y/p[u])gxP/N/ / r’~tdr dwdx
B JSN-1 J0

LN\P/Y\\?
:y_lf/ (qu(x)-a)|+,0<<—> )) dw dx.
E sN-1 A

Then by (3-7),
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Letting A — oo we get
limsup APvy, (Ey y/plul) < y k(p, N)/ [Vu(x)|? dx
L—00 B
and hence the assertion.

The case y < 0. We first note that if (x, y) € E; ,,/p[u], then writing y = x + rw, we have again (3-6).
Now let € > 0, and let §(¢) > 0 be such that p(r) < e for0 <r <§(e). Let

| ) ply
m(x’w,g):mln{S(b‘), (W) }

Note that 7y (x, w, &) > 0 for A > 0. Also if (x, x +rw) € Ej ,/p[u] then r > r;(x, o, €); indeed, either
r(x, w, g) > §(e) already, or else r, (x, w, €) < §(¢), in which case (3-6) shows

A -ply
> — .
@8 = (IVu(x) ol +s>
Finally let B be any ball in RV containing the support of «, and let B be the double ball. Then
o
lim sup A”v,, (Ey,/p[u]l N (B x RY)) < lim sup )J’/ / / r’~tdr dwdx
A0 A0 B Jsn-1 rx(x )

:11msupk”// —[rk(x w, €)]” dwdx
N0 sv-1 [Y|

_hmsup—// max{Afs(e)”, (|Vu(x) - w|+¢&)?}dwdx
o Yl -

:L// (|Vu(x) -o| +¢&)? dwdx.
Iyl JB Jsn-1

Since ¢ > 0 was arbitrary we obtain

. 1
limsup AP v, (Ex ,/p[ul N (B x RY)) < —«(p, N)IVully, gy (3-8)
N0 ly|
Since u = 0 in RN \ B, if (x, y) € E;_,;,[u] N (R \ B) x RV) then y € B. Therefore
lim sup A”vy (Ex, /p[u] N ((RY \ B) x RY)) < hmsup/v’/ f lx —y[" "V dxdy =0.
ANO AN RM\B
This finishes the proof of part (ii). U

In dimension N = 1, when y < —1, one can also weaken the hypothesis z € C!(R) in Lemma 3.3 to
u € C'(R) and u’ is compactly supported:

Lemma 3.5. Suppose u € C'(R), u’ is compactly supported, and 1 < p < o0o. If y < —1 then

. k(p, N)
limsup APvy, (Ej ,/plul) < ||M/||ip(R)-
A0 ly|
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Proof. Let supp(u’) C B := (—8, B). By (3-8) we have

. 1
limsup vy (Ey.yplul 0 (~26.26) x B) < 1k (p. DI -
A0

Moreover, since u is constant on (8, o0) and constant on (—oo, —B), if (x, y) € Ej ,/p[u] and x < -2
then y > —B, and if (x, y) € E, ,/p[u] and x > 2 then y < B. Since y < —1,

oo prB —2B poo
v, (Eppyplu] N (R (=28, 2/3))><R)5/2ﬂ/_ (x—y)”dydx+/ (v —x)" " dy dx < co.

—o0 J—p
We conclude
limsup APvy, (E; ,/plul N (R\ (=28,28)) x R) =0. O
ANO
3D. Upper bounds for limsup APv,, (E ,,[ul), for general WP functions. Let N>1, 1 < p <00
and u € WHP(RY). In light of Lemma 3.2, to prove the limiting relations (1-7) and (1-8) in Theorem 1.1,
we need only show that

, k(p, N)
limsup A7v, (Ex plul) < IVal? v, (3-9)
A—00 |V|
if y > 0and
. k(p, N)
lim sup APv, (Es/plul) < 22 Vull?, (3-10)
ANO [yl

ify <0and p>1,0r y < —1and p = 1. Lemma 3.3(i)—(ii) asserts that these desired inequalities hold
for functions in C Ll (RN). When N >2 or p > 1, a general W'?(RV) function can be approximated in
wlr (R") by functions in Cc1 (R"); by [Hajtasz and Kalamajska 1995], there exists a sequence {u,} in
CSO(RN) such that lim,,, o0 ||V (4, — ) | Lp(gyy = 0. If further y > 0,0ry <Oand p>1,0ry < —1 and
p =1, then by parts (i) of Theorems 1.3 and 1.4 (proved in Section 2), we have

Sup APy (Exy pplit — 1) < €5, L 1Vt = 0112, v, (3-11)
A>0

It follows that, for every n and every § € (0, 1),

limsup APvy, (Ey ,/plul) < limsup APv, (Eq—s)r,y/plun]) +sup AP vy, (Esy y/plun — ul)
500 A>0

A—00 A
P P
k(p,N) p CNpy IV Wn =1, gy
<=’ |V 3-12
Sia—a iy * 5P G-12)

if y > 0, and a similar inequality holds with limsup, _, ., replaced by limsup, o if y <0, p > 1 or
y < —1, p=1. Letting first n — 0o and then § — 0, we get the desired conclusions (3-9) and (3-10)
under the corresponding conditions on y and p.

It remains to tackle the case N = p = 1, in which case we only need to prove (3-9) when y > 0 and
(3-10) when y < —1. Using (2-11), we approximate u by finding a sequence {u,} in C*(R) so that u/,
are compactly supported for each n, and lim, . o [|u;, — u’|| 1) = 0. Since the desired inequalities hold
for u, in place of u by Lemma 3.3(iii) and Lemma 3.5, and since part (i) of Theorem 1.4 applies to give
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(3-11) when y > 0 or y < —1, our earlier argument in (3-12) can be repeated to yield (3-9) when y > 0
and (3-10) when y < —1. This completes our proof of parts (a) and (b) of Theorem 1.1.

3E. Conclusion of the proof of Theorem 1.1. In Section 3D we proved parts (a) and (b) of Theorem 1.1.
The lower bound for the lim inf in part (c) has been established in Lemma 3.2(ii), and the limiting equality
forueC Ll (RV) when p =1 and —1 < y < 0 follows by combining that with the upper bound for the
lim sup in part (ii) of Lemma 3.3. The proof of the negative result in part (c) of the theorem (generic
failure for p =1, —1 < y < 0) will be given in Proposition 6.6 below. ]

3F. On limit formulas for BV(R)-functions: the proof of Proposition 1.2. When p = 1, Poliakovsky
[2022] asked whether (1-7) still holds for u € BV([R{N ) instead of whi (RV) if y = N. More generally,
one may wonder whether it is possible that, for all u € BV(R"), one has

. k(1, N)

lim Av, (E; ,[u]) = Vullpq when y > 0, (3-13)
A—00 |y|

. k(1, N)

11161+)Lvy(E,\,,,[u]) = ™ IVullae when y <O. (3-14)
A—

We show that this is not the case.

First, when —1 < y < 0, Theorem 1.8(i) (proved in Proposition 6.3 below) shows that even if
ue WI’I(RN), it may happen that lim, _, o+ Av, (E;. , [u]) = 00. So (3-14) cannot hold for all u € BV([R{N)
for such y.

The following lemma provides examples of failure of (3-13) and (3-14) when y € R\ [—1, 0], since
|y + 11 # ly| unless y = —3:

Lemma 3.6. Suppose N > 1 and u = 1q, where Q is any bounded convex domain in RN with smooth
boundary. Then u € BV(RN) and

. k(1, N)
lim Av, (E; ., [u]) = Vu orally > —1,
hil
o tim 2y (Exylul) = Y\ ulag foraity < -1
m V. u = u or a < —1.
par YR PRSI Y

Proof. First consider the case N = 1. If u = 1[0~ (so that ||u|| pm@) = 1), then, for every y € R\ {—1}
and A > 0, one has

2

vy (Epyplul) =20, ({(r, ) €R:x = 0,y <0, |x — y| "D = 2)) = = (19
ly +1] A
which follows from a change of variables s =x —y, t =x 4 y: when y > —1, one has
A Vo+D g AV +D ) 1
vy (Ej, [u])=/ dtsV‘lds=2/ sV ds = ———,
7 4 0 —s 0 Y+ 1A

while when y < —1, one has

o N o 2 1
vy (Ej [u]) =/ / drs”lds = 2/ 57 ds = -
a0 J g A=/ ly +1] A
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A similar calculation shows that if # = 1; is a characteristic function of a bounded open interval (so that
lu' | mry = 2), then

. _ / _ _
,\EII;O)‘VV(EA’V[M]) SRS lu' || mwy forally > —1, (3-16)
while
. _ ’ _1- -
All)r{)l+ Avy (Ey y[u]) = ] lu'[| mwy forall y <—1; (3-17)
we also have
sup Avy (Ej ,[u]) < ||u’||M(R) for all y € R\ {—1}. (3-18)
A>0 |V + 1|

Now consider the case N > 2. Let  be a bounded convex domain in R with smooth boundary and
u = 1g. Then u € BV(RN) with | Vu| r = £Y1(0Q). The method of rotation shows

l/ /kvy(Ex,y[uw,xf])dx/dw,
2 Jon-1 J 1

where u,, /(1) := u(x' +tw) for o € SN ! and x” € w*. Note that ||u;)7x, M) <2 forall o e S¥=! and
all x’ € w™, since Q is convex and every line only meets €2 at at most two points. Thus (3-16), (3-18)

)\'Vy (Eky[u]) =

and the dominated convergence theorem allow one to show that

1
ly + 1] ng l/L ), o | Mm@ dx"do  forall y > —1,
T Jo

and using (3-17) in place of (3-16) we obtain the same conclusion with lim; _, o, replaced by lim, g+ if

lim Av, (E; ,[u]) =
L—00

y < —1. It remains to observe that

Lo ] 1l do = et M) 1V, (3-19)
- w

This holds by Fubini’s theorem if u = 1g, is replaced by u, := u % p,, where p, is a suitable family of
mollifiers, because the left-hand side is then just

/ / /‘iug(x’+tw)‘dtdx/dw=/ / lw - Vue(x)| dx do,
sv-1Jpl JR dt SN-1JRN

which equals « (1, N)[|Vug | 1 (ry). One then just needs to let ¢ — 0 to obtain (3-19): in fact, a standard
argument shows that

lim [|Vuellprwyy = [IVull pgn)y-
e—0t

S0 it remains to prove that

limf //‘ius(x/+tw)‘dtdx’da)=/ f I, e dx’ deo. (3-20)
e—~>0t Jonv-1 J L JR dt SN-1J ot ’

But for every w € SV, and almost every x’ € w (as long as ¢ > x’ 4 tw parametrizes a line L,, .+ that
is either disjoint from €2, or intersects d<2 transversely at two different points), we have

lim /‘iug(x/—f—ta))’dt:||u;)x,||M(R). (3-21)
o di ’

e—>0F
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The validity of (3-21) is clear if L,, , does not intersect €2, while if L, , intersects 02 transversely at
two different points, then we can choose a coordinate system so that w = (0, ..., 0, 1), and assume that
for some open neighborhood U of x” in @', the intersection of U x L,, ,» with § takes the form

(O on) Y €U, ¢1(0) < yv < da(y)}

for some smooth functions ¢; and ¢, of y’ € U. Then, for ¢ > 0 sufficiently small,

/]diua(x’wa))\dr:/ f 1o(0)dype(x' — y' 1 — yy) dy|dt
r!dl R|JRN

a / /
= - 1 N<yn < NT—— —-y.,t— dy| dr
/R /RN DO <IN <b200 5 [0e(x" —y yn)1dy

=/R /};{Nl (X' =yt =1 (V) — pe (X' =y, t — o (y'))dy'| dr

_/(/R P =3 1 =410 ) +/N lpa(X’—y',t—¢z(y/))dy,) dt
—2/ /pa(x y', 1)drdy’
RN-1

= 2 = ”uw,x’”M(R)'

This proves (3-21), and then the dominated convergence theorem allows one to conclude the proof
of (3-20). O

Remark. The identity (3-19) for u = 1 can be derived from Crofton’s formula for rather general (not
necessarily convex) domains Q2. See [Federer 1969, Chapter 3.2.26], which showed that when 0€2 is
rectifiable, then its (N —1)-dimensional Hausdorff measure #V~1(9Q) is equal to JIN *1(352), where
#N~1(39) is given by [Federer 1969, Chapter 2.10.15] as
1 /
Bi(N, N —1) Jpcor v, N=1) JyeRV-1
here O*(N, N — 1) is the space of all orthogonal projections p from RY onto RV~ dp is the right-O(N)-
invariant measure on O*(N, N — 1) normalized so that fO*(N,Nfl) dp =1, N(plsq, y) is the number of

N(plsq,y)dydp;

points x € a2 so that px =y, and
'(N/2)
(N +1)/2)T'(1/2)
according to [Federer 1969, Chapter 3.2.13]. It follows that, for u = 1¢,

/N | /l ), Nl pcry dx” do = HN 1SN
SNl Jw

_ 2 NN — D0
_F(N/Z)'Bl( ,N—-1) (0€2)

27 (N=1)/2

T TN+ 1)/2)

Pi(N,N—1)=

/ N(plaq,y)dydp
peO*(N,N—1) JyeRN-1

IVullp =1, N[ Vull g,
as asserted in (3-19).
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4. From weak-type bounds on quotients to WP and BV

In this section we complete the proofs of Theorems 1.3 and 1.4 proving part (ii) of these theorems. We
use as a key tool the BBM formula discovered in [Bourgain et al. 2001] (see also [Davila 2002] for
additional information for the BV case), in a way that is reminiscent of the proof of [Nguyen 2006,
Theorem 2], and we apply duality for Lorentz spaces to control the double integral arising in the BBM
formula. The BBM formula stated in [Bourgain et al. 2001] is quite flexible, involving a bounded
smooth domain €2 and a sequence of nonnegative radial mollifiers p,(|x|), with fooo on(MrN"ldr =1
and lim,,_, f 800 pn(r)rN~1dr =0 for every 8 > 0; we will apply it in the case when 2 = B, the ball of
radius R centered at 0, and p,(r) = s,,p(2R)_S"Pr_N+S"p1[0,2RJ (r), where {s,} is a sequence of positive
numbers tending to 0. As a result, we conclude thatif R >0, 1 < p <00, u € L?(Bg) and

_ P
liminfsf/ Jux) N”(y)| dx dy < oo,
s—0t BrxBr lx —y| +p—sp

then for p =1 we have u € BV(BR) with || Vu|| pm¢B,) being bounded by « (1, N) times the above liminf,
and, for 1 < p < oo we have u € W7 (Byg) and IVullrrBg) being bounded by «(p, N)/p times the
above liminf. The assumption u € L?(Bg) can easily be relaxed to u € L' (Bg), via an observation of
Stein as explained in [Brezis 2002, proof of Theorem 2]: if u L'(Bg) and the above liminf is finite
for some 1 < p < oo, then, for any § > 0 and any ¢ € (0, §), we may consider u, := u * ¢.(x), where
¢ (x) = Np(e 'x)and ¢ € CZ2°(By) is nonnegative and has integral 1. Then u, is C* on the closure
of the ball Bg_s, so the above formulation of BBM applies, and ||Vu,| 1»B;_5) 1s uniformly bounded
independent of ¢ € (0, §); indeed Jensen’s inequality implies

// lue (x) —Me(Y)|p // lu(x) —u(y)|” drd
Br_sxXBpr_s |X - y|N+pfsp BrxBp |x - y|N+p P

for every ¢. This shows that a subsequence of {Vu,} converges weakly in L”(Bg_s) to the distributional

gradient Vi on Bgr_s, and a desired bound on ||Vu||1r(p,_s) follows for every § > 0.
Suppose now N > 1, 1 <p <oo, y €eR, ue L] (RV)and Q,/,u € LP-*(R*N,v,). Let

— p
A :=sup liminfs // lul) = uy)] dx dy. 4-1)
BRXBR

R>0 s—>0% |x_y|N+p P

Suppose A is finite. If p = 1, then the BBM formula above implies u € BV(Bg) for every R > 0,
with || Vu|| pm(sr) < k (1, N)A independent of R; as a result, u € BV([RN) with | Vu|| pmry < 6 (1, N)A.
Similarly, if 1 < p < oo, the above BBM formula (applicable for u € Ll (RM)) implies u € wtp (RM),
with ||Vl Lo vy < (e (1, NYA/p)V/P.

It remains to prove that A < co. By considering truncations of # we may assume additionally that

loc

u € L°°(R"); the reduction is based on the pointwise bound

u(x) if lu(x)| <n,

Qy/pun(x’y) = Qy/pu(x’y)v where u, (x) = {nu(x)/|u(x)| if 14 (0)| > 1.
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Using the definition of weak derivative we see by a limiting argument that the conclusion sup,, [|Vu, ||, <C
implies ||Vu|, < Cif p > 1and sup, |[Vu,|lsm < C implies [|[Vulp < C.

In order to establish our estimate for bounded functions we will use Lorentz duality in the following
form: if F, G are measurable functions on R?", then, for any 1 < g < oo, we have

/f F(x,y)G(x,y)dv, < q/[F]Lq,oo(RZNyvV)[G]Lq/,l(RZN’vV), 4-2)
RN xRN

where 1/g +1/q' =1,

[Flpom g o, 2= Sup Avy ({1F| > MV = suptVIF* (1),

t>0
= ' 1 ' dt
[G]Lq/-l(RZN,vy) :=f0 v, ({|G] > ApVe dn = ?A 11/ G*(t)T’

here F*(t) :=inf{s > 0 : v, ({|F| > A}) < s} is the nonincreasing rearrangement of F, and similarly
for G*(¢); see [Hunt 1966; Stein and Weiss 1971]. Indeed, (4-2) follows by noticing that

/f F(x,y)G(x,y)dvyff F*(z)G*(z)dtzf [V P17 6] 4L,
RN xRN 0 0 t

which is clearly < q/[F]Lq.oo(RZN’vy)[G]Lq/vl(RzN’v}/).
First we consider the case y > 0. For sufficiently small s > 0, define

_ s
I+y/p
sothat6 € (0,1) and p —sp = p(1 —6)(1+y/p) — v. Then, for every R > 0,
Jue (x) —u(y)l” _
/ f dxdy = f / (Qypux, YNPD (u(x) = u()|Lagxp, (x, 1)) dvy
BRXBR RN xRN

|x _ |N+p sp

1 _
< 5[(Qy/pu)p(1 9)]L1/<1*9)-°°([R2N,vy)[|u(x) - u(y)lpG]Ll/eJ(BRxBR,vy)
by (4-2). But
_ 1-6
[(Qy/p”)p(l 9)]L‘/“‘">-°°(R2N,vy) = [Qy/p”]igwo(ﬂim,vy)
and
[lu(x) — ”()’)|p9]L1/9v1(BR><BR,vV) < (2”M”LOO(RN))pe[1BR><BR]L1/9~1(IRN><IRN,V,,)

= Qllull zoo@yy)?? v, (Bg x Br)?,
from which it follows that

lu(x) —u(y)|” s 1-0
[ ey < S0, I Gl )", (B x B
RXDR

Furthermore, since y > 0, we have

vy, (Br x Bg) < |BRl| ———dh < c0.
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Recall @ =s/(1+y/p). Thus as s — 07, we have
. U (@) — u(y)I? y ,
lims drdv<(1+2 0.
ls—>01jrlps //BRXBR |x — y|N+p 5P = * p [Qy/pu]Lp’oo(RzN,Vy) <

Since this upper bound holds uniformly over all R > 0, this concludes the argument for the case y > 0.
Next we turn to the case y < (0. We then observe that, for 0 <s < 1 and every R > 0,

_ p
// (ORI

BrXxBp |x_y| tr—sp
_ / fR o (@ PO ) = ) = 51 P L)

2 _ _
< Z0Qyp)" PN parasoe e v,y [ G) = w1 x = 31 )PP 2 (g -
Again
1—s/2 p(1—s/2)
[(Qy/p”)p( s/ )]Ll/“—f/z)vf’o(RW,vy) = [Qy/p”]anw(RlN,vy)

and
[(uC) —ux = 31" 7PV s e, )

< @Al ooy P1x = V1P s By (493)
We will show that

Tim supl[x — P 2ot (g gy < 1= & (4-4)
s—0t p

when y < 0. We then see that
; lu(x) —u(y)l” y
limsup s dedv<2(1-% 41 ’
S—>O+p //I;RXBR |x _y|N+p sp Y= p [QV/P ]LP‘OO(RZN,VV)

which concludes the argument in this case since this bound is uniform in R > 0.
It remains to prove (4-4) when y < 0. Note that in this case p—y > 0, so |x — y|P~7)5/2 < (2R)(P~V)s/2
on Bg x Bg. Thus

QR)(P—7)s/2
[ = Y1272 o e,y = / v {(x,y) € B x Bg : [x — y| P72 > 3} /2 da.
0

If y <0, then

dh <on_ 1|BR|—k2V/(s(p V))

v, {(x,y) € Bg x Bg : |x — y| P72 = \} < |Bg|
v Y [h]> A2/ (=) |h|N—Y ¥4

where on_; is the surface area of SV 1. Hence in this case,

) 1 s/2 (2R)(P v)s/2
[|lx — y|P=r)s/ 122151 (Brx Brovy) = (UN—l |BR||V_|) / A=) dy
0

)/ 1 S/Z
= (1 — ;) (oN_1|BR|m) Q2R)"*/2,
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(Here we used y/(p —y) =—1/(1 —y/p) € (—1, 0) whenever y < 0.) This proves (4-4) when y < 0.
Next, suppose y = 0. Then

(2R)[)S/2
[ = Y1P7 2] oo BB,y = / vol(x, y) € Bg x Bg : |x — y[P*/? > 2}"/* dA
0

(2R)Ps/2 1 5/2
< / (|BR| —Ndh) da
0 s2/6n <jnj<2r 1Al
(2R)PS/2 ) QQR)P$/? 5/2
2/ (|BR|wN—1—10g<—>) da
0 ps A

! 2 1\\'/?
— (2R)’”/2/ |Brlowy—_1 — log| — da,
0 ps A

which shows (4-4) remains valid when ¥ = 0 by the dominated convergence theorem. (Il

S. Finiteness of vy(Ej o[u]) and the Lipschitz norm

In this section we prove Theorem 1.5, which we put in the following more precise form.

Proposition 5.1. Let u be locally integrable on RN and Vu € Llloc([RN ). Then
0 ifr>|Vilso,
vo(Ej.olul) = / >
00 if A <[IVulloo.

Proof. First assume Vu € L* and A > || V|| . Then for every 4 € R we have |u(x +h) —u(x)|/|h] < A
for almost every x € RN. This immediately implies vo(E; o[u]) = 0.

For the more substantial part assume A < || Vu||~, Where || Vu| s may be finite or infinite. We need to
show that vo(E; olu]) = co. We pick A, A2 such that

A< A <r<||Vulso-

Let Bg = {x € R" : |x| < R} and assume that R > 1 is so large that || Vu||r(p,) > A2. Let x € C®
such that x (x) =1 in a neighborhood of EQR and set u, = xu. Then Vu, = Vu as integrable functions
on Bjg. There is a measurable set Fy C By of positive measure such that |Vu(x)| > A, for all x € Fy.

Fix 0 < & < 1 — A1/A,. We now consider the set &, of all spherical balls § ¢ S¥~! with positive
radius and the property that (6, 6,) > 1 — ¢ for all 81, 8, € S. By pigeonholing there exists a spherical
ball S € G, and a Lebesgue measurable subset F' C Fy such that LN(F) > 0and Vu (x)/|Vu(x)| € S for
all x € F. For the remainder of the argument we fix this spherical ball S; we denote by o (S) its spherical
measure.

We first note that, for |2| < 1 and for almost every |x| < R,

u(x+h)—u(x) uo(x+h)—u.(x)

h 1
] ] _<m,/o Vuo(x+sh)ds>. (5-1)
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Secondly since the translation operator is continuous in the strong operator topology of L' we see that
there exists §p < 1 such that

LN(FY( — A
Vo - +w)—Vuo||L1(RN)<$ for |w| < &. (5-2)

In what follows we let § << 8 and set

h
S(8,80)={heRN:6§|h|§80, mes}.

Let

& = {(x,h) cxeF, heSe, ), |lu(x +h) —u(x)] - )\}

A
so that (x, h) € & implies (x, x + h) € E; olu]. We then have by (5-1)

h 1
<—,f Vuo(x+sh)ds> >A}>
|l Jo

> vp(&1) —vo(&2), (5-3)

vo(Ej olul) > vo(&) = Vo(i(x, h):xeF, heS(,d),

where

& = {(x, h):x eF, heSs,8), ‘<|Z—| Vuo(x)>‘ > xl},

1
& = {(x, h)y:xe F,heS(,68), / [Vio(x +sh) — Vuo(x)|ds > A —A}.
0
Indeed, if (x, h) ¢ & U &, then

Ki Vi (x)>‘ < '<i /lw (x+sh)ds>
N = Ny e

which is then < Aq, so (x, h) ¢ &, establishing & C & U &, and thus (5-3).
The set £; does not change if we replace u, by u in its definition. Since

1
+/ |Vuo(x +sh) — Vuo(x)|ds,
0

h h
<m, Vu(x)> >(1—-¢8)|Vulx)|>1—e)y>A; forxeF, m es,

we get

(5)>f d / dh vy (S)log(ao)
Y > X —_— = o — .
o F @60 |1V )

Moreover, using (5-2) and Chebyshev’s inequality we see that

vo(&2) </ fol [Vuo(- +sh) — Vuollpiwyy ds dh
~ Js6.60) Al —A |h|N

LN(FY( —M)/10 dh LN (F 8
5/ (F)(A —A)/ L ( )G(S)log(_())’
S(8.50) Al —A |h| 10 S
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and hence putting pieces together we obtain for § < 8¢

LN(F) 8o
vo(Ej olul) = vo(E1) —vo(&2) > > o(S)lo (8 )

Here § < 8y was arbitrary and by letting § — 0 we conclude that vo(E} o[u]) = oo. O
We now give a more precise version of Example 1.7.

Lemma 5.2. Let @ C RY be a bounded domain with Lipschitz boundary and let u = 1. Then u €
BV@®RY)\ WLL(RYN), with
log(2/A) ifr <1,
E <C
vo(Ej olu]) < Cq X {kl i 1

in particular we have sup, .o A vo(Ej o[u]) < oo.

Proof. Let
E(r,2) ={(x,y) € Exolul :r <|x —y| <2r}.

We begin with the observation that rA < 2 if vo(E(r, A)) > 0. Furthermore, if (x,y) € E(r, A) for
some y € R", then x belongs to the 2r-neighborhood of 32. The Lebesgue measure of such a neighborhood
is O(r) if r < rg, where rg is some positive constant depending on €2 (because the boundary of a bounded
Lipschitz domain can be covered by finitely many Lipschitz graphs, and the 2r-neighborhood of such
graphs can be approximated by a union of O (r) neighborhoods of suitable hyperplanes). Hence for r <rg
we have vo(E(r, L)) < Crifr <2/r and vo(E(r,A)) =0if r > 2/A. As aresult, if 2/1 < ry we get

vo(Epolul) < Y wo(E@/,2)) SA™
JET2I<2/A
and if 2/A > rg we get

vo(Exolul) < Y vo(EQ/, x))+2/f Y 4r <14 1ogn ). O

1y _ vIN
X
JEZ:2I <rg <|lx—yl<2/A | yl

6. When the upper bound (1-15) fails

In this section we make various constructions demonstrating the failure of (1-15) in the range —1 <y <0,
and give the proof of Theorem 1.8. We first establish:

Proposition 6.1. Suppose N > 1and —1 <y <.

(i) For every m > 0, there exists u € CZ° (RN) such that
vy (Eqy[u]) > m||[Vull L g@y)- (6-1)
(1) There exists C = C(N, y) > 0 and po = po(N, y) > 1 such that, forall 1 < p < po,

sup vy (Eyyyplul) = C—2— (6-2)
ueCX(RN) p—
VullLr <1
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6A. Proof of Proposition 6.1: the case y = —1. Here we may choose, for m > 1,
Um =21 % 1p, € C(RY), (6-3)

where 7,,(x) := 2"V y(2"x) for some nonnegative, radially decreasing 1 € C2°(By), with fRN n=1.
Then when 1 < p < oo and m < p’ = p/(p — 1) (which is no restriction on m if p = 1), we have
Vvl p 52’"/P/ S1,while Ey —yyp[vn] 2{x| <1-27", 1427 <|y| <2} (because for (x, y) in the latter
set, |y (X) — v, (v)| =2 and |x — y|171/P <2171/ which means | Q_/pvp (x, y)| >2/2!71/P =21/P > 1),

Hence
V-1(E1,—1/p[Vm]) 2/ f lx —y|7'" "V dx dy
[x|<1=2-m J142-m<|y|<2
= CNf (1+27" =)~ = @ = lx) ™' dx = clym.
x| <127
This proves both (i) and (ii) of Proposition 6.1 in the case y = —1. O

6B. The case —1 < y < 0: examples of Cantor-Lebesgue-type on the real line. We now discuss some
examples related to self-similar Cantor sets of dimension 8 = 1+ y. Recall the definition of v,, Q,, in
(1-4), (1-5) and observe the behavior under dilations:

v, (tE) ="y, (E). (6-4)
We have:

Lemma 6.2. Let —1 < y < 0. There exist constants ¢, > 0, C, > 0, and a sequence of functions
gm € C®(R), with g,,(x) =0 for x <0and g,,(x) =1 for x > 1, such that, forall 1 < p < oo,

”g;n”P < cyzmlyl/(l-‘r)/)(l—l/l?) (6-5)
and if
1
vl p—1
then .
m
v ({@ »el0 1210, pente > 7} 2 % . (6-6)
4 Cy
Proof. For —1 <y <0 let
p =204y (6-7)

sothat 0 < p < % We construct g, such that its derivative is supported on the m-th step of the construction
of symmetric Cantor sets of dimension 8 =14y =log2/log(1/p), with an equal variation on each of
its 2" components [Mattila 2015, Chapter 8.1].

Let go € C*(R) be such that 0 < gg < 1, go(x) =0 for x < p and go(x) =1 for x > 1 — p. Set, for

meN,
1 X 1 1—x
gmt1(x) = 58m\ ~ + 5 8m 1 - .
P P

Since p < 5, we have, for p € [1,00), g}, 117»@ =2 % (20) 77 plIg), ||} » g, and thus

lgn L@ = )P~ 