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Spectral deferred correction is a flexible technique for constructing high-order,
stiffly-stable time integrators using a low order method as a base scheme. Here we
examine their use in conjunction with splitting methods to solve initial-boundary
value problems for partial differential equations. We exploit their close connection
with implicit Runge—Kutta methods to prove that up to the full accuracy of the
underlying quadrature rule is attainable. We also examine experimentally the
stability properties of the methods for various splittings of advection-diffusion
and reaction-diffusion equations.

1. Introduction

Dutt et al. [7] have introduced a method of spectral deferred correction which allows
one to automatically increase the accuracy of a low order time-stepping method.
Defect and/or deferred correction methods for initial value problems have been
known for some time [23; 9]. The main innovation in [7] is the use of spectral
integration on Gaussian quadrature nodes to construct the corrections. This avoids
instabilities and conditioning problems associated with repeated differentiations.
They show that if forward or backward Euler methods are used as the base scheme
(2-5), stable and stiffly-stable methods of very high order result. More recently,
Auzinger et al. [3; 2] have analyzed similar algorithms and suggested various
improvements.

Our interest here is in the use of SDC methods in conjunction with operator
and/or dimensional splitting to solve initial-boundary value problems for partial
differential equations. In a series of papers [21; 6; 19] Minion et al. have explored
the use splitting methods as the base scheme in an SDC approach. However,
their implementations have mainly been designed to achieve an order of accuracy
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approximately equal to the number of time levels stored. (For an exception see [17].)
In our approach we exploit the close connection of SDC methods with implicit
Runge-Kutta methods to prove that up to double this accuracy is attainable, though
only for the approximate solutions at the boundaries of each correction interval.
(See also [3].) Again this result is expected from the perspective of the Runge-
Kutta methods as the approximate solutions on the interior nodes correspond to the
Runge-Kutta stage variables. We believe this possibility for enhanced accuracy is
of importance for large, memory-bound applications; our experiments indicate that
the efficiency of the proposed higher-order methods is essentially the same as for
the methods proposed in the above-cited works.

We also examine the stability properties of the methods for various special cases.
We begin by constructing stability domains for the standard model of operator
splitting applied to advection-diffusion problems (e.g., [1]). We have considered all
of the typical quadratures (Gauss—Legendre, Gauss—Lobatto, and Gauss—Radau) and
a variety of starting methods (2—4). We also compare consistent and inconsistent
correction methods (2-5). Second, we consider what we call preconditoned splitting
methods for both linear and nonlinear problems. We have used such techniques
to develop fourth and higher order solvers for complex models of reacting gases
[12; 11; 24]. We note that Layton and Minion [20] have carried out an extensive
stability study for SDC applied to splitting methods. We will compare our results to
theirs, in essence assessing the effect of our additional corrections on the stability
domains.

Finally, we verify the properties of the methods in nonlinear settings through
experiments with simpler reaction-diffusion and advection-diffusion problems,
focusing on the requirements on the preconditioner to obtain good accuracy and
stability. (A similar study for lower order splitting methods is presented in [22].)
Given the difficulties in fully analyzing splitting methods for complex problems,
such studies seem necessary to validate any proposed methods.

2. Spectral deferred correction with splitting

We consider the initial-value problem:

d

== F(u.1). u(to) =uo. u.FeR* 2-1)
and recall the well-known fact that given 79 = Ty < 77 < --- (2-1) can be reformu-
lated as a sequence of integral equations:

t
u(t) =u(Ty) +/A F(u(z),t)dz, t€[T;,Tj41]. (2-2)

T;
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Our formulation of spectral deferred correction of some splitting method for ap-
proximating (2—1) has three essentially independent ingredients. First we introduce
two splittings of F":

F=F;+Fg, F=F;+Fg, (2-3)

and two associated time-stepping formulas; a pth order multistep method (e.g., an
IMEX method [1]) which we call the starting method:

k—1 k—1
3 vty =hn > B Fr(0(ta-j).ta-j)
j=-1 j=—1
k—1 _ ~
thn Y B Fp(0(tni).tamj). (2-4)
j=0

and the first order method,

V(tyy1) = v(tn) + hn Fr(v(tys1) s ths 1) + hn FE(0(th), tn), (2-5)

which we call the correction method. Second, we introduce, as in [7], a collocation
method for approximating (2-2). Setting AT = T+ — T we introduce m nodes:

Lk =Tj+c AT, 0<ci <cy<--<cpm =1 (2-6)

A solution of the polynomial collocation approximation defined by these nodes is a
set of vectors vj satisfying:

Tj+ckAT
vjk = v(Tj) + fT Vi (0)dt, (2-7)
' m
=v(T))+ AT ) Ska F(vja, Tj + caAT)), (2-8)
a=1

where v (¢) is the unique degree-(m—1) interpolant of the data
(Tj + cx AT, F(vjg, Tj + ¢ AT)), k=1,....m.

Here, following [7], we note that the matrix S whose entries are Sg,, is a well-
conditioned m x m spectral integration matrix.

The evolution of the approximate solution from 7} to 7Tj4; now proceeds as
follows:

i: Compute approximations, UJ(')k’ using m steps of (2—4) with the appropriate
reduced time steps,

hk = (Ck —Ck_l)AT, Cco = 0. (2—9)
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(Note: a multistep starting method may make use of data at points 7;_; .)

ii: Given our /th approximation, vl, . we define residuals, r/, , using the spectral
jk Jjk
integration matrix, S:

rhe=v(Tj) + AT Z Stk F (Vg ta) — Vi (2-10)
a=1
Tj+ci AT / /
J

Here W; (¢) is the unique degree-(m — 1) interpolant of the data
(Tj + cx AT FOh . Tj + ¢ AT)), k=1.....m

iii: With the residual in hand, (2-5) is used to update the approximation. The
idea here is to write v!t! = v/ 4§/ and note that the correction can be viewed
as an approximate solution to the perturbed equation:

/

dr!
E:F(vl—i-él,t)—F(vl)—l—I, §4(T;) = 0. 2-11)

The most straightforward approach, used by Dutt et al. [7] and Minion [21], is
to apply (2-5) directly to (2-11) to obtain the correction formula:

! o
8k —5 J— 1+ k=1
+hy (FI( ” +5,k lik) — FI(U e ljk)) (2-12)

+hk(FE( ke 1+5 J—10bik—1) — FE( i ke—10 L k= 1))
8k =0, (2-13)

I+1 _ 1 /
Vig = jk+8jk. (2-14)
iv: Stop the process after L steps and define the solution update by:

Tj+1
oI =T+ [ vF s (-15)

Obviously, the description above leaves room for a wide range of implementations,
some of which we will discuss below.

Concerning the starting and correction methods, we note that in many cases it
is possible to choose F7 and/or F 7 to be linear in v, in which case the methods
are called linearly implicit. Also we assume that p < m where m is the number of
nodes in the quadrature formula underlying the correction process. Although we
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will prove that the overall method typically attains an order ¢ > m, our analysis
indicates that there is no benefit to choosing p > m. Moreover, as multistep starting
methods may use stage values, we are limited by the stage order, which is m. We
emphasize that we could use the correction method as our starting method, and
indeed that is what has been done in the references mentioned herein. Also, as the
time steps will not be equally spaced, the coefficients in (2—4) will depend on # if a
truly multistep method is used. (See, though, [3; 2] for a method which allows an
equispaced temporal grid while maintaining the accuracy of the Gaussian quadrature
rules.) Lastly, it is possible to replace (2-5) and/or (2—4) with a multisplitting or
fractional step scheme as in [6], but for simplicity we will focus on the simpler
splittings for our analysis here.

Concerning the nodes, Dutt et al. [7] take them to be the Gauss—Legendre nodes.
Minion [21], on the other hand, suggests Gauss—Lobatto nodes, and we will also
consider right-handed Gauss—Radau nodes. In [20] uniform nodes are shown to be
feasible from the standpoint of stability, but their use would preclude the attainment
of the higher order accuracy which is a focus of the current work.

Lastly we note that alternative correction formulas are also possible. The correc-
tion method we have employed in [12; 11; 24; 25] follows [9]:

Wi =0k g 8 Fr (0 tja) + Stk FE(W gty 1) + 1) gy =1l (2-16)

where

By = v(T)). (2-17)
Then set:

I+1 _ 0 I =1

However, the theoretical results in this paper only apply in general to corrections
based on (2-12)-(2-14). To apply them to corrections based on (2-16) we must
make the starting method and the correction method coincide, which is the case in
[12; 11; 24; 25]. Under those conditions, and for linear problems, the two correction
methods are mathematically identical.

3. Order of accuracy

In [7; 21] the correction process is carried out until an error on the order of the
truncation error in the approximations to (2-2) is attained. This leads to methods
of order m. More general analyses of the convergence and accuracy of this process
appear in recent manuscripts by Hansen and Strain [15; 16], where both single step
and multistep correction formulas are considered. However, their approach does
not take account of the full order of accuracy of the underlying quadrature rules
which is our aim here. (We note that we could use SDC methods as analyzed in
[15; 16] as our starting methods.)
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In this work we focus on the classical Gauss-type quadrature methods which are
of orders between 2m — 2 and 2m. We prove here that if further corrections are
made the order of accuracy of the underlying quadrature rule is in fact attainable,
albeit only for the approximate solutions at the coarse grid points, 7. (See also
[3].) In practice, this allows the construction of higher order methods which are
more efficient from the perspective of the number of time levels which must be
stored. We also see that while the order of accuracy of the starting method affects
the number of corrections needed, the accuracy of the correction method does not.
This is in contrast with the results of [15; 16], which show that gains in accuracy
commensurate with the order of the correction method are possible until an order
m method is produced.

The accuracy result follows from the observation that if the residuals were zero,
that is if the related collocation approximations to (2-2) were constructed, then the
method would be equivalent to a standard implicit Runge—Kutta method (e.g., [13,
Chapter II]), which has the accuracy we claim. Thus we need only show that similar
conclusions follow from making these residuals sufficiently high order. We note
that one could more directly use the size of the residual as a basis for terminating
the correction process, as suggested in [17], but we do not consider that possibility
here.

To study the local truncation error we assume v(7;) = u(7}) and, for a multistep
starting scheme, v;_q x = u(tj_; x). Set:

t
Vi) = u(T)) + /T vl (s)ds. (3-1)

noting that v(7j 1) = VL(TjH). First we prove:

Lemma 3.1. Suppose F is smooth and that the polynomial quadrature rule based
on (2-6) has order q. Then there exists a constant, C, independent of AT, such
that for a sufficiently smooth solution, u, and a sufficiently smooth solution of the
SDC method, Vl,

[u(Tj41)— Vl(Tj+1)| < CAT m]?x |r}k| + O(ATITY),

Proof. Define the defect, d(¢), by:

dv!

dt)=——=F(V'@).0 =y;() = FV'().0). (3-2)

Note that by (2-10):
Vi) —vig =1l (3-3)

and by definition
Uit) = Fle 1), (3-4)
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Thus by the Lipschitz continuity of F:
|d 1)) < K|rl. (3-5)
Let the matrix ®(z, 7, V! (7)) be defined by:
® = Dypi(yw, (3-6)

where for ¢t > 7:

‘fl—’f =F(w,1), w(z)=V(). (3-7)
We note that standard results on the differentiability of solutions of ordinary dif-
ferential equations with respect to their initial data imply that the derivatives of &
with respect to T can be bounded in terms of the derivatives of V! which we have
assumed (and will subsequently prove) to be bounded independent of / and AT .
We then have the following nonlinear variation-of-constants formula, known as the

Alekseev—Grobner Lemma [13, Chapter I]:

Tjt1
Vit =T = [ eV e)@dn 6-8)
j
Now replace the integral by the quadrature rule associated with the nodes. We have:

VAT 1) —u(Tje1) = AT Y o (T tise. VVt500)) - d (t10)
k

Tj41
+ / " O(Tj41,7, Vi(0)d(r)de (3-9)
T

—AT Y o ®(Tjy1. ik V1)) - d (1)
k

Using (3-5) the first term is bounded by CAT max |r Jl «| while the difference of the

second and third is O(AT 97 1) by our assumption on the accuracy of the quadrature
rule and the smoothness of V. This completes the proof of Lemma 3.1. O

To complete our analysis, we need only prove that the residual is reduced by the
correction process and that the approximate degree-m polynomial solution, V!, has
derivatives bounded independent of the time step.

Lemma 3.2. For a sufficiently smooth solution, u, and smooth functions, F, Fr, Fg,
F, T, F E, a starting method of order p < m, and corrections based on (2—12)-(2—-14),
there exist constants, C; and M, ;, independent of AT sufficiently small such that
the residuals satisfy:

max Il < CATPHIHL (3-10)
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and, forl >m—p—2and 0 <r <m:

dr Vl
dtr

<

< M,,. (3-11)

max
te[T;,Tj 1]

Proof. Denote by 17(1) the exact degree m polynomial solution of the collocation
equations. We have by [13, Theorem 7.10]:
d'u d"V
dtr dt”
Also, the residual satisfies:

= O(AT™™1="), 0<r <m. (3-12)

tik - ~
ik = /T W) = V' ()ds + V (1) — vl

= AT Z Ska(F(}g. i) = F(V (tja). tja)) + V (tj5) — vl (3-13)

a=1

We proceed by induction on /. For / = 0 (3—10) follows directly from the consistency

0~f (2-4). Precisely, since p < m, u(tjr) — UJ(')k = O(ATPT1), (3-12) implies

V(tix)— v](.)k = O(ATPT1) with (3-10) following from the Lipschitz assumptions.
Denoting by R! the residual vector,

Ri=| : |erm, (3-14)
jm
we recast the correction process as a fixed point iteration:
R = (R, (3-15)
and analyze the Jacobian derivative DgC(0). From (3—13) and (2-14) we have:
Pt =l =+ AT Z Ska(F(vly + 85y tia) = FW}y. 170)).  (3-16)

a=1

Taking the difference of (3—16) for consecutive values of k& and using (2-12) we
arrive at the formula:

=l AT Z(Ska—sk 1) (F (Vg + 8. tja) = F(Vjq. tjar)

a=1

—hy (F,(v]’.k+5§k,zjk) Fi (. zjk)) (3-17)

_hk(FE(v]k 1+5]k 18 k— 1)— FE( i — 124 k— 1))
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where S, = 0. Set:

G = Dr](k/r;l'c“l’ Hypo = Dr](k/(s]’.k, (3-18)

where the derivatives are evaluated at R/ = 0. Note that Grir, Hypr € R¥¥ with
Gy, being the block entries of DgC(0). Noting that 8}1. = 0if R! =0 we have
from (2—-12):

Hypr = Hy—1 )0 + €k I — €101
+ hy (DuFI(V(ljk), tix) Hikr + DuFE(V (1 g—1), tj,k—l)Hk—l,k’), (3-19)

H()k/ = 0 (3_20)

(Here we are using ¢;; to denote the Kronecker § to avoid confusion with the
correction vector.) Combining (3—19) with (3-20) and solving in increasing k we
conclude that Hy ;. = O(1). Moreover,

Hyo =0, k <k (3-21)

(This fact proves to be a barrier to accelerating convergence; see the remark below.)
Differentiating (3—17) on the other hand we find:

m
Gk = Gr—1r + AT Y (Ska = Sk—1,0) Du F(V (tj) tjo) Hoe

a=1

— hy (DuFI(I;(tjk),ljk)Hkk’ + DuFE(V(Zj,k—l),lj,k—l)Hk—l,k/) . (3-22)

Gorr = 0. (3-23)

Solving (3-22) it is clear that Gy, = O(AT) which is sufficient to prove (3—10).
Finally we note that a direct consequence of the Lipschitz conditions and the
expression of V!and V in Lagrange form is that:

arvt o arv
dtr dtr

<CAT'™” max \FOV (1) t56) — FOV (1), )] (3-24)

Using (3—13) and (3-10) we find:

arvt arv

p T < CATPFIH2-T, (3-25)

By (3-12), (3—11) holds so long as p +/ + 2 > m. This completes the proof of
Lemma 3.2. U
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Remarks. The proof of Lemma 3.2 makes no use of the assumption that F'g+ Fy =
F and thus holds for inconsistent methods (2-5). We also see that the matrix on
the righthand side of (3—22) cannot in general be o(AT) since it is the difference
between nonzero full and block lower triangular matrices. Thus 3.2 is not directly
related to the accuracy of (2-5). However, the choice of (2-5) does effect the
stability of the overall method, though it may still be more efficient to use an
inconsistent formula in some cases. We note that these results differ from those
presented in [15; 16], where gains in accuracy commensurate with the order of the
correction method are proved. A difference is that we are proving higher order
convergence - in particular higher order than is attained at the interior quadrature
nodes. In [17] it is shown, for linear problems, that by using GMRES to accelerate
the correction process only half as many corrections are needed to attain the full
accuracy. In addition, they show that the use of GMRES improves the accuracy for
stiff problems.

. We note that if (2-16)-(2-18) are used, then the analogue of 8 is given by
§! = v° — §!. This correction satisfies:

ol ol [ [ 0 0
$ik =08 k1 TTjk — k1 HVjk — V) gy
—hk (F](v;)k — 8_jl~k, ljk) + FE(UJ('),k—l _Sjl,’k_l, Zj,k—l))- (3_26)

We see that unless v° satisfies (2-5), that is unless the correction method and the
starting method coincide, the correction does not approach zero with the residual.
Hence the method cannot be interpreted as an approximation to an implicit Runge—
Kutta method. However, if they do coincide Lemma 3.2 also holds. The proof
follows essentially line for line, so we omit it.

Lastly we remark that our proof, relying as it does on the Lipschitz continuity
of F, fails in the stiff limit, though we will show that the order of accuracy is
attained for some stiff problems. In [2] experimental studies are presented of the
convergence of deferred correction of the backward Euler method to the underlying
implicit Runge—Kutta method.

Combining Lemma 3.1 and Lemma 3.2 we have proven our main theorem.

Theorem 3.3. For a sufficiently smooth solution, u, Lipschitz continuous functions,
F, F;, Fg, Fr, Fg, a starting method of order p <m, andl > m — p — 2, there
exists a constant C independent of AT sufficiently small such that:

u(Tj41) = V! (Tj41)| < CAT™NPHHLAHD,

Note that we have assumed that after the desired corrections are made the solution
is updated by (2-15). Of course, if T is a node, then nothing needs to be done;
we simply take ijm as the value at 7j 4 1.
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If, on the other hand, 7)1 is not a node, we may typically replace (2-15) by
simple polynomial extrapolation using (7, v(7})) and all data on the quadrature
nodes, thus saving m evaluations of F. In particular, even if ¢; # 0, that is if 7 is
not a node, Theorem 3.3 is still valid. To see this, define the polynomial

t
b(t) = v(Tj)+/T vE@s)ds —rE @), (3-27)

where rL(¢) is the polynomial that interpolates (T7,0) and (k. rJ.’;{), for k =
1,2,...,m. Obviously, the degree of ¢(¢) is m. Suppose 7} is not a node. Then
since ¢ (tjx) = Uij’ ¢ (1) is exactly the polynomial that interpolates (7, v(7})) and
(tiks ijk),k =1,2,...,m. The update given by (2-15) is

V(Tj+1) = d(Tj+1) +r(Tj41) (3-28)

while the update given by extrapolation is ¢(71). So the difference between
these two updates is controlled by r (71 1). Therefore, they have the same order,
though the stability characteristics may be altered.

4. Efficiency and linear stability of sample methods

We now consider, experimentally, the accuracy, efficiency and linear stability of
some simple examples of the methods discussed above. For simplicity, following
[1], we consider a Dahlquist-type problem modeling operator splitting applied to a
spatially discretized advection-diffusion equation. Precisely we consider:

u' =(@+if)u, a,feR, a=<0, 4-1)

and take
Fp(u)= Fgu)=ipu or Fg =0, (4-2)
Fr(u) = Fr(u) = au. (4-3)

The range of methods tested includes:
(1) Gauss-Lobatto, Gauss—Legendre and right-handed Gauss—Radau quadrature
with m =3, ..., 10 nodes, encompassing method orders from 5 through 20;
(2) Multistep IMEX methods [1] of orders 1 through m — 1 as starting methods
(2-4);
(3) Consistent correction methods with Fg = ifu and inconsistent correction
methods with Fg = 0;

We note that the split multistep methods we use are based on backward differ-
entiation with Fg extrapolated to the new time level. Thus they are the natural
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generalizations of the SBDF methods of [1] to nonequispaced grids. Their order is
k and we take k = 1,...,m — 1. When k > 1 we are using values, ij_lﬁr, which
are only accurate to order 7. Also in that case we need to consider the eigenvalues
of the amplification matrix, 4, mapping between values used in subsequent starting
formulas. The stability properties of the SBDF methods themselves are not directly
at issue and have not been studied, though we expect they are unstable at high order.

As the number of methods considered is in the hundreds we will limit our
discussion to a few representative cases. Mainly we will display results obtained
using the Gauss—Legendre and Gauss—Radau nodes. In most instances the behavior
of the Gauss—Lobatto methods was essentially the same. An exception is the stability

regions, where all three will be compared.

4.1. Accuracy and efficiency. We first verify that the methods attain the design
order even if inconsistent corrections are used. Precisely we consider (4—1) with
a=—1/20, B =—2m, and solve up to 7" = 20. See Figure 1 for experiments with
Gauss—Legendre nodes and Figure 2 for experiments with Gauss—Radau nodes. In
each case we observe convergence at the correct rate, though the use of inconsistent
corrections clearly leads to less accurate results for a fixed time step. The accuracy
is insensitive to the order of the starting method, indicating higher efficiency with
the use of higher order starting methods.

From the point of view of computational effort, the efficiency of an ode solver is
typically measured by the number of function evaluations required to attain a given
accuracy. An emphasis of the current work is the possibility to achieve higher order
for fixed m than in earlier implementations of SDC, presumably with significant
savings in memory. However, these savings could conceivably be lost if the methods
proposed here turn out to be less efficient. Thus we wish to compare the efficiency
of different variations of SDC, including methods where m is chosen larger than
necessary to achieve the design order.

To facilitate comparisons with previously published results we consider here,
following [21], a nonstiff van der Pol equation for 0 <t < 4:

uy =uy, uhy=—uy+(1—ubuy, 4-4)

2
u1(0) =2, uy(0) = 3 (4-5)

As the equations are not stiff, we do not split them and simply use explicit starting
and correction methods.

We consider three comparisons. First we fix the starting method (first order) and
the number of corrections while varying m. Thus we are comparing methods of the
same order. The results, shown in Figure 3, show that efficiency measured in this
way is essentially independent of m1; it is apparently determined by the average step
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Figure 1. The top graph shows the accuracy of the split SDC
methods using the same starting method (3rd order SBDF) and
different numbers of Gauss—Legendre nodes m. The bottom graph
shows the accuracy of SDC methods with 6 Gauss—Legendre nodes,
but different starting methods (k indicates the kth-order SBDF start-
ing method, ¢,i indicates consistent and inconsistent corrections,
respectively). The dotted line shows the theoretical convergence
order 12.
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Figure 2. The top graph shows the accuracy of the split SDC
methods using the same starting method (3rd order SBDF) and
different numbers of Gauss—Radau nodes m. The bottom graph
shows the accuracy of split SDC methods with 6 Gauss—Radau
nodes, but different starting methods (k indicates the kth-order
SBDF starting method, c,i indicates consistent and inconsistent
corrections, respectively). The dotted line shows the theoretical
convergence order 11.
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Figure 3. Efficiency in terms of function evaluations for 6th order
Gauss—Legendre and 5th order Gauss—Radau methods with first
order starting methods and varying numbers of quadrature nodes,
m.

size and the number of corrections. Thus the gains in memory utilization resulting
from the exploitation of the full order of the quadrature rules are fully realized, at
least for this example.
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Figure 4. The efficiency of Legendre and Radau methods for vari-
ous orders. In all cases we use a first order starting method.

Second, in Figure 4 we compare efficiency for differing orders and quadratures,
in each case using the full order of the quadrature rule. As expected, the “optimal”
method order depends on the desired tolerance, with the higher order methods
favored as the tolerances decrease.
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Radau methods varying the order of the starting method.

Lastly we consider the effect of varying the order of the starting method, fixing
m = 6. The results, shown in Figure 5, demonstrate a substantial gain in efficiency
as the starting method order is increased from 1 to 2 with modest, but measurable,
gains when it is increased from 2 to 3. Beyond third order there seems to be no
advantage in further increases.
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4.2. Stability for (4-1). The analysis of the stability of splitting methods in general
is difficult. Even for linear, constant coefficient systems, the fact that the matrices
defining the split operators cannot be expected to commute limits the predictive
value of analyzing a split version of Dahlquist’s model problem. Nonetheless, at
least to establish some basis for the comparison of stability for our different splitting
procedures, we will follow [1] and plot experimentally determined stability domains
associated with (4-1). In the following sections we will consider a more general
stability problem motivated by what we call preconditioned splitting methods.

We note that a more interesting definition of stability domains for splitting
methods has been proposed by Frank et al. [8]. Their idea is to consider stability
for a scalar, split system under the assumption that the time step is chosen so that
the explicit method is stable. This allows a clean definition of a stability domain
for split methods and a generalization of many of the standard notions of 4 («) and
L (o) stability. Layton and Minion [20] have applied this definition to the SDC
of splitting methods and shown that quadrature rules excluding the left endpoint
such as the Gauss—Legendre and righthand Gauss—Radau rules lead to L(«)-stable
methods with o ~ /2. However, this analysis is not general as one might often
want to use methods in regimes where the explcit scheme by itself is unstable. The
simple case of (4—1) illustrates this; the stability domain of explicit Euler contains
no points on the imaginary axis except the origin. Thus with the splitting considered
here the consistent explicit correction method is always unstable, so the results of
[8; 20] do not apply. Nonetheless, as in [20] we find that the stability properties of
the Gauss—Lobatto methods are clearly inferior to those based on Gauss—Legendre
or Gauss—Radau quadrature.

Figures 6 and 7 show stability domains for various Legendre and Radau-based
methods. The overall results are quite similar. The stability domains are somewhat
larger if inconsistent rather than consistent corrections are used. The domains
increase in size with increasing m but decrease with increasing k. Obviously,
except for k large, they contain a very large region near the negative real axis.

Lastly in Figure 8 we compare the stability of 8th order methods with m = 5. We
clearly see that the stability domain obtained using Gauss—Radau nodes is slightly
larger than that obtained with Gauss—Legendre nodes, but both are much larger
than the stability domain obtained using Gauss—Lobatto nodes.

4.3. Relative accuracy. Lastly we make some relative accuracy comparisons fixing
m and the order of the methods in Figure 9. Note that we are thus not carrying
out the full number of corrections when Legendre or Radau nodes are used. We
find that under these restrictions the Legendre nodes yield the most accurate results,
followed by the Radau nodes.
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Figure 6. The top graph shows the stability of the SDC meth-
ods using same starting method (2nd order SBDF) and different
numbers of Gauss—Legendre nodes m. The bottom graph shows
the stability of SDC methods with 6 Gauss—Legendre nodes, but
different starting methods (k indicates the kth-order SBDF starting
method).
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Figure 7. The top graph shows the stability of the SDC meth-
ods using same starting method (2nd order SBDF) and different
numbers of Gauss—Radau nodes m. The bottom graph shows the
stability of SDC methods with 6 Gauss—Radau nodes, but different
starting methods (k indicates the kth-order SBDF starting method).
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5. Preconditioned splitting methods

Although the stability and accuracy of the SDC methods used in conjunction with
advection-diffusion splittings is reasonable, we believe it is worthwhile to pursue a
more general and flexible approach. Introduce a preconditioning matrix P and the
splitting:

Fy=—Pv, Fg=F+ Pv. (5-1)

Here, P will generally be dependent on ¢ and local values of v. It should satisfy
the requirements:

it P+ P*>0;
ii: I + hy P inexpensively invertible;
iii: the split methods have good stability and accuracy properties.

Of course the difficult property to satisfy is the third. For a simple model problem,
we will see that stability of the base method is ensured by choosing P sufficiently
large compared with the Jacobian of F, and then good accuracy follows from not
making it too large. (We suspect that generalizations of the stability analysis to
nonlinear problems satisfying appropriate one-sided Lipschitz conditions would be
straightforward.)

5.1. Linear stability for the scalar problem. We repeat the stability analysis for
Dahlquist’s equation (4—1) but now with the general preconditioner:

P=p+in, p,neR, n=0. (5-2)

Note that we are allowing an imaginary part in P, corresponding to the inclusion of
a linear advection term in the preconditioner. The amplification factor of the first
order splitting (2-5) is then given by:
. 2
o _|IhetptiB+m)[ _ Akt p)? +h2 B+’
1+h(n+in) (14 hpw)? + h?n?

For n = 0 we have A-stability if:

(5-3)

2, 82
>a+,3‘

T (5-4)

For a discretized advection-diffusion equation with Peclet number Pe we obtain:
.
P > C (_P_er + Pe) y (5—5)

where D)zC is an approximation to the Laplacian and the inequality is in the usual
sense of matrices. For large Peclet number such a choice is likely to have a negative
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impact on accuracy as the preconditioner is large. Of course one can give up on
A-stability. For example if i > |«|/2 we have:

2|er] -
hs gy =0, (5-6)
independent of the spatial mesh width Ax, which is acceptable if Pe is not too

large.
Much better results can be obtained if we choose 1 to be nonzero and of the
opposite sign of 8. Then we have A-stability if:
_lo| 8]

z Inlij, af <0. (5-7)

We will show nonlinear examples where a linear advection term is included in P.
Of course the sign condition can be difficult to satisfy where the advection term
nearly vanishes, but then the local Peclet number is not large. A-stability is not
generally preserved when the correction process is included, but we will see below
that the stability domains can be quite large.

We again note that we do not in general expect that our time step is chosen so
that the explicit method is stable. Thus the stability analyses of [8; 20] are not
directly applicable.

5.2. Linear stability domains of the preconditioned methods. In Figures 10, 11,
and 12 we plot linear stability domains of the consistently corrected methods
assuming:

w=d,a, n=d;p, (5-8)

with d; and d; chosen from {%, %}. Clearly, d; determines stability along the
imaginary axis and d, along the real axis.

As before, the stability characteristics of the Gauss—Legendre and Gauss—Radau
methods are quite similar, with the stability domains of the Gauss—Legendre methods
being generally a little larger. The Gauss—Lobatto methods, on the other hand, show
superior stability along the real axis for d, = %.

We also tested multistep starting methods and inconsistent corrections. Except
in the case of second order starting methods, the stability domains are significantly
reduced when consistent corrections are used. However, with inconsistent correc-
tions and d, = d; = % they are enlarged. We plot below (Figure 13) results using

an 11th order Radau scheme with the 3rd order starting method.

6. Nonlinear numerical experiments

Finally we consider the actual accuracy and stability of one of the methods discussed
above for a collection of nonlinear parabolic initial-boundary value problems in
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1 + 1 dimensions:
ur = F(u,ux,uxx), x € (xr,xR), (6-1)

supplemented by boundary conditions. In all cases we use the 7th order Radau
method with a multistep SBDF preconditioned starting method and consistent
corrections. Our spatial discretizations are 8th order; one-sided differencing at the
boundaries is stabilized by the addition of a single sub-cell point at x;, + 0.2Ax
and x g — 0.2A x with central differences used in the interior. See [10] for details.

Various preconditioners are considered, but in all cases the spatial differencing
used in the preconditioning is limited to a 3-point stencil to minimize bandwidth.
In the interior, then, we are preconditioning 8th order differences by multiples, y,;,
Ve, of 2nd order differencing. To better correlate the results with the simple linear
stability domains shown above we note that the symbols of the gth order central

j A~

difference approximations to d’_ 4 ;g satisfy:

dxJ’

A

d
max 8@ 2.66. (6-2)

0hl=7 dy 5 ()

dy 3 (w)
max ———~

= 1.68. (6-3)
loh|=7 d) >(w)

Thus, for example, a preconditioned approximation to the heat equation is positive
independent of time step only if the damping factor, y, is chosen to be larger than
1.68.

Of course the examples are primarily meant to illustrate a viable preconditioning
strategy and to provide some experience in the method’s performance under a
variety of conditions. With experience for a given system we would expect that
better preconditioners could be found leading to further improvements in efficiency.
Most of our examples would benefit from the use of an adaptive spatial mesh, but
here we simply employ sufficiently fine uniform discretizations. We also compare
our results with those obtained using a standard second order Strang splitting in
time (e.g [22]) and a time step chosen so that the number of evaluations of the
nonlinearities are comparable. For example, if we use a fourth order starting method
an entire SDC step entails sixteen substeps, so we choose the time step for the
Strang method to be 1/16 times that of the SDC method. However, recall that our
method is linearly implicit while the Strang splitting employs Newton iterations;
thus the SDC method is noticeably faster for the time steps compared. We note, of
course, that we could have used the Strang splitting as our starting method or even
as our correction method, but we have not yet implemented this.



SPECTRAL DEFERRED CORRECTION OF SPLITTING METHODS 197

Table 1. Error data for the Brusselator problem.

’ AT ‘ Ax ‘ Yd ‘ emax (1) ‘ q(u) ‘ emax (V) ‘ q(v) ‘
2E(=1) | 2E(=2) | 2 | 3.13(—4) 1.51(—4)
1E(-1) | LE(=2) | 2 | 2.10(=6) | 7.2 | 1.73(—6) | 6.4

6.1. Brusselator. We consider for (x,¢) € (0,1) x (0, 10):

Uy = 1+u2v—4u+2-10_3uxx, (64)
v =3u—utv+2-10 30y, (6-5)
u(x,0)=1+4sin20rx, v(x,0) =3, (6-6)

with Dirichlet boundary conditions. With this data the solution is known to oscillate;
see the graph of the fine grid solution in Figure 14 as well as [14; 22].

Here there is no convective term to be included in the preconditioner, but the
Jacobian of the reaction terms is included along with the scaled three point diffusion
approximation. That is with v = 2-1073:

2uiv; — 4+ vygdso u?
P =— ’ L ) 6-7
! ( 3—2u;v; —u? +vyadan 67

We employ a fourth order starting method with three correction steps.

The results, displayed in Table 1, are consistent with the design accuracy. Error
data is obtained by comparison with a solution computed using AT = 2.5E(—4)
and Ax = 1E(-3).

By way of comparison, with Ax = 2E(—2) and AT = 1.25(—2) the maximum
errors with Strang splitting were (1.70(—3), 9.60(—4)), about six times larger than
those reported above. Halving the grid and step sizes the Strang errors are reduced
by about a factor of four to (3.56(—4), 2.19(—4)), about two orders of magnitude
larger than were obtained with the SDC time stepping.

We also determined apparent time step stability limits. For y,; = 2 these were
weakly dependent on Ax, but we could always take rather large steps; AT = %
forszsl—O, AT:%forAx:I%WandAT:%forAx:ﬁ.Forydzl,on
the other hand, they clearly took the form AT < cAx2. With Ax = ﬁ it was

1

necessary to take AT = 157

6.2. Smoothed angiogenesis model. Here we consider a smoothed verison of a
tumor angiogenesis model presented in [18]:

pr = 1073 pxx —.75(pcx)x + 10%p(1 — p) K (c) — 4p, (6-8)
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Time evolution — Brusselator
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Figure 14. Fine grid solution of the Brusselator equation: v.

10pc
ctzcxx—c—lfc, (6-9)
where (x,7) € (0,1) x (0,.7) and:
K(c) =5-1073(100(c — .2) + In (cosh (100(c — .2)))), (6-10)
p(x,0) = ¢ 288(x—1)(x—1.083) c(x,0) =cosmx/2, (6-11)

and p(0,2) =c(1,t) =0, p(1,7) =¢(0,¢) = 1.

The evolution of p for a fine grid solution computed with AT = 5FE(—4),
Ax = 1E(-3) is shown in Figure 15. Comparison with the figures in [18] show
that the smoothing has had little effect on the solution.

As these equations involve both first and second order spatial derivatives both
y4 and y. must be chosen. Precisely we used a block diagonal preconditioner:

Piiy == (107 vada,2 = T5ve(dypc)idi 2 = 102(1 = 2p) K(c)) —4) , (6-12)
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Figure 15. Fine grid solution of the angiogenesis equation: p.

Piny =— (Vddz,z - (11-1(-)—2% - 1) - (6-13)

Due, we believe, to the presence of the additional second order term, acceptable
stability results led us to use a second order rather than a fourth order starting
method. We tested for stability with Ax =1E(=2) and Ax =1E(-3) fory; =1,2
and Y. = 1,2,3. As in the previous example, with y; = 1 it was necessary to
take AT o< Ax2. For y; = 2, on the other hand, it was possible to choose AT
independent of Ax. However, in contrast with the previous case, it was not possible
to take AT large. With y, =2 we found AT < 1 E(—2) while with y, =0, 1 we
could choose AT < 1.7E(—2). However, we did observe better accuracy for large
steps with y, = 0 than with y. = 1.

The accuracy of the computed solutions with large steps, Yy = 2, and y, = 0 is
displayed in Table 2. Obviously the results are consistent with the design accuracy.
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Table 2. Error data for the angiogenesis problem: p.

[ AT | Ax | emaxp | 4p | emaxe | 4 |
1.6E(—2) | 1E(~2) | 4.2(=3) 1.4(—4)
83E(—3) | SE(=3) | 1.5(=5) | 8.1 | 1.5(—6) | 6.6

As we now require more corrections, Strang splitting was carried out with 24
times as many steps as taken by the SDC solver - precisely 1008 and 2016 steps
compared with the 42 and 84 which produced the results in Table 2. For the coarser
grid, the results with Strang splitting were slightly more accurate than those obtained
with the proposed method. On the finer grid, however, the SDC results were about
an order of magnitude better.

6.3. Pulsating flame with stiff kinetics. Lastly, we consider a simplified thermo-
diffusive combustion model with a stiff, intermediate reaction (e.g., [4]):

1 1 Vv
Yt (Yxx+ Yx)__Yx_kl, (6_14)
QY X
1 1%
Wt Wxx _Wx __Wx'i‘kl_kz’ (6_15)
§£W X
1 Vv
O = ®xx+;®x_;®x +ky +V(k2_k1), (6-16)
1-0)©®—-1)
ki=A41Y Ei———=). 6-17
1 1 exp( 1 o+ 6(1—0) ( )
1-0)(B®-1)
ky= A, W? E,—2— 7). 6-18
2 2 6XP( 2 el —0) ( )
The parameters are taken to be:
3
V=117, E;=40, E,=2, Ly =2, §£W=§, (6-19)
1 2 6
O’IE, A1 =2x107, A, =2x10°. (6-20)

Note that if we assume the fast reaction is in balance with the slow reaction,
that is if we assume k; = k;,, we obtain a reduced model with one species at a
Lewis number, £y = 2, with a pulsating solution (e.g., [5]). Initial and Dirichlet
boundary conditions were obtained by interpolating a pulsating solution of the
reduced problem on the spatial domain 5 < x < 35. The initial W profile is then
obtained through the quasiequilibrium assumption and the full system is evolved
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Table 3. Observed maximum relative errors for ¢ < 20, m = 4 pre-
conditioned Radau methods applied to the pulsating flame problem.
The order is calculated by ¢ =log (en, /en, )/ log (N1/N;) where
N 1is the number of time steps and ey is the maximum absolute
error.

AT =3.2E(=3), Ax =12E(=2) | AT = 1.6E(=3), Ax = 6.0E(=3) q
Y [ W] ® Yy | w ] ® Y [w]e
[31(=4) [5.0(=3) | 1.0(-=4) [2.5(=5[32(-4 ] 79(-6) [3.6[4.0]3.7]

up to ¢ = 20. Plots of the computed profiles on the finest grids, AT = 4.16 E(—5),
Ax = 1.25E(-3), illustrating the flame oscillation are presented in Figure 16.

Note that around ¢ = 3.5 the quasisteady initial flame destabilizes and moves
towards the fuel source. An oscillation is set up between times 13 and 19.

The preconditioner in this case is as in the previous examples; second order
spatial derivatives are approximated by y;d> > and first order by y.d; ». We also
include the Jacobian of the reaction terms. As in the preceding case we found
it better to use a second order starting method. Choosing y; = 2 the time step
limits were independent of ¥, and Ax, with a minimum time step of approximately
AT = 3.8E(—3). Choosing y4 = 1, on the other hand, required AT oc Ax? as in
the previous examples.

We compare the accuracy of results obtained with AT = 3.2E(-3), Ax =
1.2E(—=2) and AT = 1.6 E(—3), Ax = 6 E(—3). Here we have taken y; =y, = 2.
The observed maximum errors, listed in Table 3, are consistent with 4th rather than
7th order convergence. This is the order of convergence expected for highly stiff
problems, being equal to the stage order of the associated Runge—Kutta method.
We note that, as might be expected for an oscillatory solution, the maximum errors
are out of phase and occur at very different times for the two resolutions. Recently,
Huang et al. [17] have shown how the order reduction phenomenon can be eliminated
through the use of GMRES-based convergence acceleration which would no doubt
improve our results in this case.

We have also solved this problem using Strang splitting and 24 times as many
steps. As in the previous example, the results are slightly more accurate for the
coarse resolution but less accurate for the fine resolution. We are confident that
an improved implementation of the SDC method as in [17] would prove to be
significantly more efficient than the traditional method.

7. Conclusion

In summary, we have shown that spectral deferred correction applied to a first order
splitting method can:
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iz Attain the full accuracy of the underlying quadrature rule;
ii: Have large stability domains.

We have also explored a general and flexible technique based on the concept
of splitting by preconditioning. We have demonstrated the effectiveness of a
particular instance of this strategy for reaction-advection-diffusion equations in one
space dimension where high order difference approximations were preconditioned
by lower order approximations with far narrower bandwidths. So long as the
preconditioner was large enough in comparison with the true Jacobian, time step
stability constraints independent of the spatial deiscretization were observed. This
is in line with our experience solving complex combustion models [12; 11; 24].
Moreover, despite the very simple choice for the preconditioner and the fact that no
convergence acceleration was employed, the methods were always as efficient and
in some instances far more efficient than the standard Strng splitting approach.

Of course the greatest potential payoffs in terms of efficiency are for problems
in multiple space dimensions. The fundamental issue is how simple (that is inex-
pensive) a preconditioner can be used without sacrificing too much accuracy or
stability. It is also of interest to combine the preconditioned time-stepping strategy
with the GMRES-based acceleration techniques described in [17]. We believe these
issues deserve further study.
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