
Communications in
Applied

Mathematics and
Computational

Science

mathematical sciences publishers

1

Volume 2 No. 1 2007

A LOCAL CORRECTIONS ALGORITHM FOR SOLVING
POISSON’S EQUATION IN THREE DIMENSIONS

PETER MCCORQUODALE, PHILLIP COLELLA,
GREGORY T. BALLS AND SCOTT B. BADEN

COMM. APP. MATH. AND COMP. SCI.
Vol. 2, No. 1, 2007

A LOCAL CORRECTIONS ALGORITHM FOR SOLVING
POISSON’S EQUATION IN THREE DIMENSIONS

PETER MCCORQUODALE, PHILLIP COLELLA,
GREGORY T. BALLS AND SCOTT B. BADEN

We present a second-order accurate algorithm for solving the free-space Poisson’s
equation on a locally-refined nested grid hierarchy in three dimensions. Our
approach is based on linear superposition of local convolutions of localized charge
distributions, with the nonlocal coupling represented on coarser grids. The repre-
sentation of the nonlocal coupling on the local solutions is based on Anderson’s
Method of Local Corrections and does not require iteration between different
resolutions. A distributed-memory parallel implementation of this method is
observed to have a computational cost per grid point less than three times that
of a standard FFT-based method on a uniform grid of the same resolution, and
scales well up to 1024 processors.

1. Introduction

We want to compute the solution to Poisson’s equation on R3 with a charge distri-
bution ρ with support on a compact set �. Specifically, we seek the solution φ to

1φ =
∂2φ

∂x2 +
∂2φ

∂y2 +
∂2φ

∂z2 = ρ(x, y, z) (1)

that has the far-field behavior

φ(x)= −
Q

4π |x|
+ o

(
1

|x|

)
, |x| → ∞; (2)

Q =

∫
�

ρ(x)dx. (3)

Using the maximum principle for harmonic functions, it is not difficult to show
that equations (1)–(2) have a unique solution. This solution can be written as a
convolution with the Green’s function G [16]:

φ(x)= (G ∗ ρ)(x)≡

∫
G(x − y)ρ(y) d y , G(z)= −

1
4π |z|

. (4)

Keywords: Poisson’s equation, local corrections, domain decomposition, adaptive mesh refinement.

57

58 P. MCCORQUODALE, P. COLELLA, G. T. BALLS AND S. B. BADEN

Solutions to (1) have a strong form of elliptic local regularity. If D ⊂ � is
contained in a ball of radius r , then the function

φD(x)=

∫
D

G(x − y)ρ(y)d y (5)

is real analytic at all points not contained in D, and its derivatives are rapidly
decaying functions of dist (x, D)/r . This suggests that an efficient method for
computing the potential φ would be to compute local convolutions of the form (5) on
a disjoint union of patches, and then compute the smooth global coupling among the
patches using a calculation with a much coarser (and less computationally expensive)
discretization. In fact, this is the underlying approach to all O(N)− O(N log N)
methods for potential theory, include the Fast Multipole Method (FMM) [12] and
the Method of Local Corrections (MLC) [2] for particles, and FFT-based methods
[13], multigrid [7] and domain decomposition [20] for gridded data.

In principle, the same strategy should also lead to efficient parallel methods. The
local convolutions are independent, and therefore can be performed in parallel on
separate processors, while the nonlocal coupling between patches is representable by
such a small number of degrees of freedom so as to have a negligible impact on the
computational cost. For the particle methods such as FMM and MLC, this is indeed
the case [3]. For algorithms for gridded data, particularly on structured and locally-
structured grids, the results are mixed. FFT-based methods are probably optimal
in terms of the number of floating point operations required, but are limited to
uniform grids and require some form of global communication of all the data (such
as transpose) or complex mappings of data onto processors. Multigrid iteration is
applicable to locally-structured multiresolution grids [4; 1] and effectively exploits
local regularity to reduce the number of floating point operations to a few hundred
per grid point. However, it has an unacceptably high communication cost, with
communication / synchronization steps required after each local relaxation step —
that is, every few tens of floating point operations per grid point. Furthermore, there
is so little computation being done between communication steps that the opportunity
to overlap computation with communication is limited. The domain decomposition
methods have typically led to iterative methods by constructing a dense linear system
for the degrees of freedom on the boundaries between subdomains using a Schur
complement. Such approaches reduce that communication load somewhat, but are
still iterative, and for Poisson’s equation are substantially more compute-intensive
than multigrid or FFT-based methods.

A natural strategy is to apply the ideas developed for particle methods to gridded
data. For FMM, this has been done in two dimensions [9; 8] by applying the fast
multipole method directly to volume potentials on the grid, with methods that have
a computational cost per grid point of less than three times that of an FFT on a

A LOCAL CORRECTIONS ALGORITHM FOR POISSON’S EQUATION IN 3D 59

uniform grid, and furthermore have the locality of the FMM approach with respect to
communication. However, the direct extension of that approach to three dimensions,
while feasible, will not have the same absolute floating-point performance of a
modest integer multiple of that of an FFT-based method, due to the substantially
larger cost per grid point of the FMM method for computing volume potentials in
3D relative to that of 2D. To deal with that problem, one can take the approach of
Greengard and Lee [11], in which local volume potentials on patches are computed
using fast transform methods, with the FMM at the boundaries of patches to resolve
the mismatch in the solutions at patch boundaries as well as the nonlocal coupling
between patches. Using FMM only on two-dimensional surfaces might reduce the
cost of that part of the calculation so as to make the overall floating-point cost,
relative to FFT, more like that of the 2D FMM-based algorithms. However, such an
approach has been carried out to date only in 2D.

The starting point for our approach is an extension of Anderson’s MLC algorithm
in two dimensions to gridded data in two dimensions [5; 6]. In this approach,
local convolutions are computed using the James–Lackner method [14; 17] of
representing infinite-domain boundary condition in terms of solutions to two Dirich-
let problems on nested domains, plus a boundary-to-boundary convolution. The
nonlocal coupling between patches is represented by solving a coarse grid problem
and interpolating a correction back to the fine grid patches in a manner similar
to full-approximation-storage multigrid. Unlike multigrid, though, the method
is noniterative. In the present work, we generalize the method to locally-refined
grids in three dimensions. A principal technical issue is the generalization to three
dimensions of the James–Lackner method for computing local convolutions. We
do this using a simplified FMM to compute the boundary-boundary convolutions,
combined with FFT methods to compute the volume potentials. Thus, the method
is similar in spirit to the approach of Greengard and Lee [11], but with different
technical details.

2. Preliminaries

We represent both the potential field, φ, and the charge, ρ, on a discrete, three-
dimensional Cartesian grid, with grid points spaced equally in all three directions
by the same mesh spacing h. A triple of integers i = (ix , iy, iz) indexes a point
in real space x i = (ix h, iyh, izh) . Typically, our computational domain will be
described in terms of unions of rectangular patches of the form �h

= [l, u], where
l and u are the integer triples corresponding to the lower and upper corners of the
region. Our grids are node-centered, with �h representing the region in physical
space [lh, uh]. Thus a union of rectangular patches representing a disjoint union
of regions in physical space may have nonempty intersections in index space. We

60 P. MCCORQUODALE, P. COLELLA, G. T. BALLS AND S. B. BADEN

define a coarsening operator C as

C(�h,C)= [bl/Cc, du/Ce] (6)

where the operators b·c and d·e round down and up to the nearest integer, respectively.
We also need the grow operation G, which extends or shrinks an index domain by a
uniform amount in each direction:

G(�h, p)= [l − (p, p, p), u + (p, p, p)]. (7)

When p < 0, G returns a shrunken domain. We denote by ∂�h the set of boundary
points of �h :

∂�h
=�h

− G(�h,−1). (8)

A field ψ is represented on this discrete grid by ψh such that

ψh
i ≈ ψ(x i). (9)

We can also define a sampling operator S that projects a discrete field on �h onto
C(�h,C):

S(ψh,C)i = ψh
C i , i ∈ C(�h,C).

We denote by χh a discrete characteristic function defined as follows. For an interval
[l, u] with l and u integers, the function χh

[l,u]
on the real line has the value 1 in

the interval (l, u), 0 outside [l, u], and 1
2 at l and u. Then for a box B = [l, u], the

function χh
B is defined on index space as the product of interval functions over all

dimensions: χh
B = χh

[lx ,ux]
χh

[ly ,uy]
χh

[lz,uz]
. We also define a characteristic function

χ for the corresponding region in R3,

χB(x)=

{
1, if x ∈ [lh, uh] ;
0, otherwise.

We use a discretization of the Laplacian operators with the stencil points contained
in a three-by-three block surrounding the evaluation point:

(1hφh)i =
1
h2

∑
j∈{−1,0,1}3

a‖ j‖φ
h
i+ j (10)

where ‖ j‖ is the number of nonzero components in j ∈ {−1, 0, 1}
3 and falls in

the range {0, 1, 2, 3}. We shall use the 19-point Mehrstellen operator, specified by
a0 = −4, a1 =

1
3 , a2 =

1
6 , a3 = 0. If φexact,h is the exact solution evaluated at grid

points, and the truncation error, τ h
j , is defined as

τ h
j = ρh

j − (1hφexact,h) j , (11)

A LOCAL CORRECTIONS ALGORITHM FOR POISSON’S EQUATION IN 3D 61

then we can use Taylor expansion, along with the fact that 12φ =1ρ, to determine
that

τ h
j = ρh

j − (1hφexact,h) j =
−h2

12
1ρ+ O(h4). (12)

Thus a solution to the system

1hφh
= ρh , (ρh) j = ρ(jh) (13)

is second-order accurate: φh
j = φ

exact,h
j + O(h2). The particular form of the trunca-

tion error in (12) leads to a strong localization of the O(h2) error: if jh is contained
in the complement of the closure of the support of ρ, then it is not difficult to show
that φh

j = φ
exact,h
j + O(h4) [6]. More classically, one can also precondition the

charge and solve

1hφ∗,h
= ρ∗,h

= ρh
+

h2

12
1̃hρh, (14)

where 1̃h is any second-order accurate discretization of the Laplacian, to obtain a
solution that is O(h4) everywhere. With infinite-domain boundary conditions, it is
also possible to make a Mehrstellen correction to the solution after solving (13):

φh
:= φh

+
h2

12
ρh . (15)

3. Convolutions on bounded domains

A basic component of our method of local corrections is a single-grid solver
for Poisson’s equation with infinite-domain boundary conditions. We follow the
approach used for the 2D problem by James [14] and Lackner [17].

Let � be the support of the right-hand side ρ in (1). Clearly, we can represent the
solution to (1)–(2) on � in terms of solutions of Poisson’s equation with Dirichlet
boundary conditions on a slightly larger domain, where the boundary conditions
are computed using the convolution operator (4). We can reduce the convolution to
a boundary-boundary convolution by solving an additional Dirichlet problem. Let
�1 and �2 contain � with �2 ⊃�1 ⊃�. Let φ1 be the solution to

1φ1
= ρ on �1 ; φ1

= 0 on ∂�1

and define a boundary charge distribution q

q ≡
∂φ1

∂n
on ∂�1

where n is the unit outward normal. Then the boundary potential φB induced by q

φB(x)=

∫
∂�1

G(x − y)q(y) d A y (16)

62 P. MCCORQUODALE, P. COLELLA, G. T. BALLS AND S. B. BADEN

is a solution to Laplace’s equation on R3
− ∂�1, and satisfies the jump relations

[φB] = 0, [
∂φB
∂n] = −q on ∂�1. Thus the function φ given by

φ =

{
φ1 +φB, on �1;

φB elsewhere

is a solution to (1)–(2). In particular, φ is a solution to the Dirichlet problem

1φ = ρ on �2 ; φ = φB on ∂�2

for any �2 ⊃ �1. Note that the calculation of the Dirichlet boundary conditions
requires only the convolution of the Green’s function with the boundary charge q .

We use the representation described above to compute an approximation of the
convolution (4). We assume that � is a cube, which we discretize to obtain the
discrete domain �h with mesh spacing h and containing (N + 1)3 points. We
also define discrete domains �h

1 = G(�h, s1) and �h
2 = G(�h, s1 + s2), for some

s1, s2 ≥ 0.

The 3D James–Lackner algorithm.

Step 1. Solve the homogeneous Dirichlet problem on �1:

1hφh
1 = ρ on G(�h

1,−1) ; φh
1 = 0 on ∂�h

1

and compute the discrete boundary charge qi = DB(φ
h
1)i , i ∈ ∂�h

1 . We use a
fourth-order one-sided difference approximation of the normal derivative for DB ,
e.g.,

DB(f)0, j,k =
−25 f0, j,k + 48 f1, j,k − 36 f2, j,k + 16 f3, j,k − 3 f4, j,k

12h
.

Step 2. Given the discrete charge distribution q on ∂�1, compute an approximation

to the convolution integral (16) to obtain gi ≈ φB(ih) for i ∈ ∂�h
2 .

Step 3. Solve the inhomogeneous Dirichlet problem on �2:

1hφh
= ρ on G(�h

2,−1) ; φh
= g on ∂�h

2 .

The solution of the Dirichlet problems in Steps 1 and 3 can be done in O(N 3 log N)
operations using a fast discrete sine transform to diagonalize1h . Step 2 is performed
using a fast multipole method that takes advantage of the fact that the charge is
defined on a union of planar surfaces:

∂�1 =�1(+, 0)∪�1(−, 0)∪�1(+, 1)∪�1(−, 1)∪�1(+, 2)∪�1(−, 2)

A LOCAL CORRECTIONS ALGORITHM FOR POISSON’S EQUATION IN 3D 63

where �1(+, d) and �1(−, d) are respectively the high and low faces of �1 in
which coordinate d ∈ {0, 1, 2} is fixed. Then the integral in (16) can be split up as

φB(x)=8+,0(x)+8−,0(x)+8+,1(x)+8−,1(x)+8+,2(x)+8−,2(x) (17)

where 8±,d is the contribution from face �1(±, d):

8±,d(x)=

∫
�1(±,d)

G(x − y)q(y) d A y, (18)

which is a planar integral. Step 2, then, can be broken down as follows.

2a. Split each face �h
1(±, d) into patches of dimensions r × r centered at points

on the face coarsened by r , where r is divisible by 4. Then calculate the
multipole moments up to order M of qh on each patch. For the patch on
the face �h

1(−, 2) that is centered at the point (i0, i1,−s1/r) in r-coarsened
coordinates, the (p0, p1) moment is

Ap0,p1,−,2
i0,i1

=

∑
−r/2≤ j0≤r/2

∑
−r/2≤ j1≤r/2

w j0w j1q(ri0+ j0,ri1+ j1,−s1)(j0h)p0(j1h)p1

(0 ≤ p0 + p1 ≤ M; p0, p1 ≥ 0) (19)

where the w j are the weights from Boole’s rule of integration, which is O(h6)

accurate:

w j =



14
45 if | j | =

r
2 ;

28
45 if r

2 + j ≡ 0 mod 4 and | j |< r
2 ;

64
45 if j is odd;
8
15 if r

2 + j ≡ 2 mod 4.

(20)

The moments for the other faces are computed analogously.

2b. On each face of ∂�h
2 coarsened by r in each dimension, plus a layer of coarse

points of width P , add up the evaluations 8±,d of multipole expansions due
to all patches of all faces of ∂�h

1 . As an example,

8−,2(Ex)=
∑

i0,i1

∑
p0,p1

Ap0,p1,−,2
i0,i1

× (21)

(−1)p0+p1

p0!p1!

∂ p0+p1 G
∂z p0

0 ∂z p1
1
(x0 − i0rh, x1 − i1rh, x2 + s1h)

using two-dimensional Taylor expansions of the Green’s function G around the
points (x0 − i0rh, x1 − i1rh, x2 + s1h). The indices i0, i1 in the sum are over
indices of coarse points on the face �h

1(−, 2), and p0, p1 ≥ 0; p0 + p1 ≤ M .

64 P. MCCORQUODALE, P. COLELLA, G. T. BALLS AND S. B. BADEN

� �
� �
� �

� �
� �
� �

P = 1

P = 1

Figure 1. In Step 2 of our implementation of the 3D James–
Lackner algorithm, multipole moments are calculated for each
patch on each face of ∂�h

1 , such as the patch shown cross-hatched
in red. The multipole expansions are then evaluated at the coarse
points on the faces of�h

2 augmented by an additional layer of width
P , indicated with blue circles for one face. These evaluations are
interpolated to all the fine points on the faces of ∂�h

2 , located at
intersections of the black lines, using two passes. The evaluation
points of the first pass are shown as small green diamonds.

2c. On each face of ∂�h
2 , interpolate from the coarse points to the remaining fine

points on the face, using a tensor product of Lagrange interpolating polynomials
as illustrated in Figure 1.

Choosing r ≈
√

N provides sufficient accuracy for the solution and allows the
integration step to be completed in O((M2

+ P)N 2) work. For O(h4) error, we set
M = 7 and P = 3, and these are independent of N . Hence Step 2 requires O(N 2)

work.
We also note constraints required on s2, the spacing between �h

1 and �h
2 . Con-

vergence requirements of the multipole method force us to choose s2 with care.
In order for the multipole expansions from a patch to converge, the distance from
the center of a patch on a face of �h

1 to the points on the faces of �h
2 , on which

the expansion is evaluated, should be at least twice the radius of the patch. Here
we define the radius of a patch as the maximum distance from the patch center
to any point on the patch. Recall that we chose our patches to be r × r fine grid
points. Thus our patches have a radius of rh/

√
2, and the distance requirement

becomes s2h ≥ 2rh/
√

2. We also need the number of cells along the length of �h
2

to be divisible by r . Combining these two requirements, we arrive at the following

A LOCAL CORRECTIONS ALGORITHM FOR POISSON’S EQUATION IN 3D 65

formula for s2:

s2 =
r
2

⌈
2
√

2 +
N + 2s1

r

⌉
−

N + 2s1

2
. (22)

For efficiency, both s1 and s2 should be as small as possible. If the distance of the
support of ρ to ∂�1 is nonzero, then we can set s1 = 0.

We now examine the computational costs in the single-grid solver, listing the
operation counts for each step:

1. FFT-based Poisson solver on �h
1 : O(N 3 log N).

Normal derivatives on faces of �h
1 : O(N 2).

2. Integration to boundary conditions on faces of �h
2 using FMM: O(N 2).

3. FFT-based Poisson solver on �h
2 : O(N 3 log N).

Thus the single-grid infinite-domain solver operation count is bounded by the fast
Poisson solves that use Dirichlet boundary conditions, and the overall computational
cost of an infinite-domain solution is O(N 3 log N).

4. Method of local corrections

The domain decomposition algorithm described here is the finite-difference ana-
logue [6] of Anderson’s Method of Local Corrections (MLC) [2], extended to
locally-refined nested grids in three dimensions. To simplify the presentation, we
describe the MLC algorithm on two levels. We use a fine-grid discretization �h

corresponding to a rectangular domain � that contains the support of the charge
ρ. Within �h we have a set of cubic patches �h

k of equal size that overlap only
at patch boundaries. These subdomains make up a region on which the charge
is finely resolved. For each patch, the charge ρh

k is defined on �h
k . Our method

entails solving local problems on each of the �h
k in parallel, as well as on a single

coarse global mesh �H . The spacing of the coarse mesh is H = Ch, where C is a
specified coarsening factor.

Because our meshes are node-centered, the points of �H map directly onto
corresponding points in �h , and no averaging is required to coarsen the mesh data.
Thus, we can coarsen the mesh by sampling the mesh without having to interpolate.
In particular, we coarsen a fine grid representation using the sample operator SH :
for each point xC , we can find the coarse grid value ψH (xC) (where ψH has grid
spacing H) by finding the fine grid point x at the corresponding position in ψh

(with grid spacing h = H/C):

ψH (xC)= (SH (ψh))(x/C)= ψh(x). (23)

66 P. MCCORQUODALE, P. COLELLA, G. T. BALLS AND S. B. BADEN

If ρ = ρ(x) is the continuous charge, we set the discrete coarse-level charge ρH

on �H and fine-level charge ρh
k on each �h

k to be

(ρH)i = ρ(i H) , i ∈�H
;

(ρh
k)i = (χh

�h
k
)i ρ(ih) , i ∈�h

k .

The algorithm has three computational steps interspersed by two communication
steps.

Method of Local Corrections.

1. INITIAL LOCAL SOLUTION. Using the 3D James–Lackner algorithm, calcu-
late a local infinite-domain solution on each local subdomain, �h

k , augmented
with an overlap region:

1hφ
h,init
k = ρh

k on G(�h
k , s + Cb) (24)

and construct a coarsened version of the solution, φH,init
k , by sampling:

φ
H,init
k = SH (φ

h,init
k) on G(�H

k , s/C + b). (25)

Here s is a correction radius, C is the coarsening factor, and b is the width of
a layer for polynomial interpolation to be used in step 3.

2. GLOBAL COARSE SOLUTION. Couple the individual local solutions by solving
another Poisson equation on a coarsened mesh covering the entire domain.
First construct coarsened local charge fields:

RH
k =

{
1Hφ

H,init
k on G(�H

k , s/C − 1);
0 elsewhere

(26)

and sum these charge fields to form a global coarse representation of the charge:

RH
=

∑
k

RH
k . (27)

Then solve

1HφH
= RH

+ (1 −

∑
k

χ�H
k
)ρH on G(�H , s/C + b) (28)

with infinite-domain boundary conditions, using the 3D James–Lackner algo-
rithm. For this solve, we take the base domain to be G(�H , 2d(s/C − 1)/2e)

because the length must be divisible by 4.

3. FINAL LOCAL SOLUTION. Solve

1hφh
k = ρh

k on �h
k (29)

A LOCAL CORRECTIONS ALGORITHM FOR POISSON’S EQUATION IN 3D 67

Figure 2. Setting boundary values for a final local solution in
step 3 of MLC. For the face shaded red in the top of the figure,
in a layout of eight cubes, the lower diagrams depict the regions
from which data are copied from faces of different neighboring
boxes. Solid lines indicate the boundaries of the boxes �h

k′ , dashed
lines the boundaries of the boxes G(�h

k′, s), and dotted lines the
boundaries of the boxes G(�h

k′, s + Cb). Fine-grid data are copied
to the red face from the nodes inside and on the edges of the regions
shaded dark blue. Coarse grid data are copied from nodes inside
and on the edges of the regions shaded both dark and light blue,
and then interpolated to nodes on the red face that are inside and
on the edges of the regions shaded dark blue.

with Dirichlet boundary conditions on ∂�h
k :

φh
k (x)=

∑
k′:x∈G(�h,init

k′ ,s)

φ
h,init
k′ (x)+ I(φH,corr) (30)

where I is the same interpolation operator used in step 2c. of the single-grid
infinite-domain Poisson solver (setting the layer width P to b), and

φH,corr
= φH (x)−

∑
k′:x∈G(�h

k′ ,s)

φ
H,init
k′ (x), (31)

which is the global coarse solution with the local contribution subtracted. Figure
2 depicts the regions from which data are taken to set boundary conditions on
a face.

Finally, we apply the Mehrstellen correction (15) to the solution.

68 P. MCCORQUODALE, P. COLELLA, G. T. BALLS AND S. B. BADEN

For O(h2) accuracy of the method, we set b = 2 and s = 2C .

4.1. Separating the monopole component. In order to minimize the cost of the
infinite-domain solution, we would like to set s1, the amount by which we grow
the domain in the initial Dirichlet solution for the James–Lackner algorithm, to be
zero. In the present application, the charge on each patch is nonzero all the way
out to the boundary, so that the conditions under which this would be valid do not
hold. In particular, for the fixed-size patches (relative to the mesh spacing) we are
using here, this leads to an O(1) relative error in the monopole component of the
field used to compute the boundary conditions for the second Dirichlet solution.
We eliminate this error by separating out the monopole component on each patch,
and treating it exactly.

Specifically, for a given patch B, we compute ρ̄, the mean of ρ over B, and
subtract ρ̄χh

B from the right-hand side of (1) before solving, then add ρ̄ξB to the
solution, where ξB ≡ G ∗χB is computed analytically and stored.

In the initial local solve, we replace (24) by

1hφ̃
h,init
k = ρh

k − ρ̄h
k χ

h
�h

k
on G(�h

k , s + Cb) (32)

and then sample the solution:

φ̃
H,init
k = SH (φ̃

h,init
k) on G(�H

k , s/C + b). (33)

The updated solutions are

φ
h,init
k = φ̃

h,init
k + ρ̄h

k ξ
h
�h

k
; (34)

φ
H,init
k = φ̃

H,init
k + ρ̄h

k ξ
H
�H

k
. (35)

In forming the right-hand side for the global coarse solve, we replace (26) by

RH
k =

{
1H φ̃

H,init
k + ρ̄h

k χ
H
�H

k
on G(�H

k , s/C − 1);

0 elsewhere.

In the final local Dirichlet solves, we replace (29) by

1hφ̃h
k = ρh

k − ρ̄h
k χ

h
�h

k
on �h

k (36)

and the Dirichlet boundary conditions (30) by

φ̃h
k (x)=

∑
k′:x∈G(�h,init

k′ ,s)

φ
h,init
k′ (x)+ I(φH,corr)+ ρ̄h

k ξ
h
�h

k
(x). (37)

Finally, we have the solution

φh
k = φ̃h

k +
¯ρh
k ξ

h
�h

k
. (38)

A LOCAL CORRECTIONS ALGORITHM FOR POISSON’S EQUATION IN 3D 69

4.2. Extending to more than two levels. In extending the MLC solver from two
levels to three, we assume a hierarchical nesting of patches, such that each fine-level
patch is contained in one and only one middle-level patch. We run the two-level
MLC solver separately within each middle-level patch, except that we perform the
global coarse solve (28) on the middle-level patches with a two-level MLC solver
using all the middle-level patches and the domain of the coarsest level.

The MLC solvers between the middle and fine levels require an expansion of
the middle-level patches, specifically by 2d(s/C − 1)/2e, taking s and C to be
respectively the correction radius and coarsening ratio between these two levels.
Then in the MLC solver between the middle and coarse levels, the finer-level patches
�h

k will overlap by this amount.
We may similarly extend to an arbitrary number of levels. In our implementation

of the MLC solver on three levels, in order to retain accuracy we set b = 2 and a
larger buffer size s = 4C (instead of s = 2C) relating the coarse and the middle
levels where C is the coarsening factor between middle and coarse levels. Between
the fine and middle levels, we retain buffer size s = 2C where C is the coarsening
factor between these levels.

5. Results

As an example, we use right-hand sides built from ρosc
m , a spherically symmetric

function with high-wavenumber component:

ρosc
m (r)=

{
((r − r2) sin(2mπr))2, if r < 1 ;
0, if r ≥ 1 .

The wavelength of ρosc
m is 1/(2m). If we set α = 4mπ , then the integral of ρosc

m
over space is ∫

ρosc
m dV = π

(2
105

+
48
α4 −

1440
α6

)
,

and the exact solution of
1φosc

m = ρosc
m

with infinite-domain boundary conditions is

φosc
m (r)=



r6/84 − r5/30 + r4/40+

60/α6
− 9/α4

− 1/120 + 120/(α6r)+
(−120/(α6r)− 9/α4

+ 300/α6
+ 36r/α4

+ r2/(2α2)

− 30r2/α4
− r3/α2

+ r4/(2α2)) cos(αr)+
(12/(α5r)− 360/(α7r)− 96/α5

+ 120r/α5

− 3r/α3
+ 8r2/α3

− 5r3/α3) sin(αr) if r < 1;

(−1/210 − 12/α4
+ 360/α6)/r if r ≥ 1.

70 P. MCCORQUODALE, P. COLELLA, G. T. BALLS AND S. B. BADEN

This solution is negative and has its minimum value at the origin:

φosc
m (0)= −

1
120

−
6
α4 .

We test with three different charge densities on the unit cube [0, 1]
3, with m set

to either 7, 15, or 30, and R = 0.05 in

ρ(x)=
1
R3

(
ρosc

m (|x − c1|/R)+ ρosc
m (|x − c2|/R)+ ρosc

m (|x − c3|/R)
)
, (39)

where c1 = (3
16 ,

7
16 ,

13
16), c2 = (7

16 ,
13
16 ,

3
16), and c3 = (13

16 ,
3
16 ,

7
16) . This is a su-

perposition of three disjoint spherical charge distributions. The wavelength is
λ= R/(2m)= 1/(40m). The solution, which is negative, attains its minimum value
at the sphere centers,

φexact(c1)=φ
exact(c2)=φ

exact(c3)=
(
−

1
120

−
6
α4

)
/R+

(
−

1
105

−
24
α4 +

720
α6

)
/D,

where D = |c1 − c2| = |c1 − c3| = |c2 − c3| is the distance between any two sphere
centers.

Our example uses three levels of boxes shown in Figure 3, with a coarsening
factor of 4 between adjacent levels. The boxes are as follows.

• Fine level: all boxes are cubes of length 32. If the whole domain is split into
512 = 83 subdomains of length 1

8 , then three of these subdomains contain the
support of the charge; these subdomains are then fully refined with fine-level
boxes.

• Middle level: all boxes are cubes of length 32 (becoming 36 after expansion,
as described in Section 4.2). Boxes at this level cover the three subdomains
with the support of the charge, plus an additional layer of boxes.

• Coarse level: these boxes cover the entire domain and are parallel slabs in one
direction. The number of slabs is the domain length in coarse cells divided by
4, or the number of processors, whichever is less.

5.1. Convergence results. In reporting our convergence results, we show the max
norms and L2 norms of solution error (difference between calculated solution and
exact solution) normalized by the max norm of the exact solution. We also show the
L2 norm of the error on the finest grids alone. (For all the cases discussed here, the
max norm on the finest grids is equal to the max norm on the whole domain.) We
also calculate a convergence rate, p, defined such that if ε f and εc are the norms of
the solution error with mesh spacings h f and hc, respectively, then

p = log2
ε f

εc

/
log2

h f

hc
. (40)

A LOCAL CORRECTIONS ALGORITHM FOR POISSON’S EQUATION IN 3D 71

Figure 3. Boxes in three-level solve used in example. All boxes
at the fine and middle levels have dimensions 32 × 32 × 32. The
coarse level is split into slabs across processors.

See Table 1 for convergence results with m set to 7, 15, and 30, in the example
with three-level MLC separating monopole solutions. The tables show the fine-
level mesh spacing h and norms of the normalized solution error εh , which is the
difference between calculated solution and exact solution, divided by ‖φexact

‖∞,
when the finest-level mesh spacing is h. While overall the solution error is O(h2),
there is considerable variation in the rates, depending on the norm used and the grid
resolution. This variation is not surprising, given the fact that there are multiple
parameter choices for the method that correspond to different asymptotic contribu-
tions to the error. The local James–Lackner computations have a contribution to
the error that is O(h2) coming from the choice of multipole parameters, while the
local truncation error for the Mehrstellen operator is O(h4), since we are applying
the Mehrstellen correction in the form of (15). Finally, the choice of b = 2 in the
boundary interpolation (30) for the final local solution step (29) corresponds to an
error that is formally O(h6), although in this case, the contribution to the solution
that is being interpolated is not sufficiently smooth to justify such an error estimate.

72 P. MCCORQUODALE, P. COLELLA, G. T. BALLS AND S. B. BADEN

In fact, the choice b = 2 was made empirically, with that choice leading to the
most uniform convergence behavior. Such empirical choices are a weakness in the
algorithm, and one that we intend to correct in future work.

Table 2 shows solution error on the three-level example with m = 7 when it is run
without separating the monopole solution. This does not converge in L2 norm, and
has very poor convergence in max norm, thus illustrating the need for separating
the monopole contribution to the solution.

Table 3 shows convergence results for the same examples (m set to 7, 15, and 30)
with boxes at only two levels of refinement instead of three. The boxes at the fine
level are the same as in the three-level arrangement, but the middle level is removed,
and there is a coarsening factor of 4 from the fine level to a coarse level covering
the full domain and split into parallel slabs. The mesh spacing at the coarser level in
the two-level arrangement is the same as that of the middle level in the three-level
arrangement. Comparing the two-level results in Table 3 and the three-level results
in Table 1, with finest-level mesh spacings of h = 1/2048 and h = 1/4096, we see
that the increased accuracy in the two-level calculation is worth approximately a
factor of two in mesh spacing, with the difference decreasing as the wavenumber
m increases. For the m = 30 cases, the three-level computation has essentially the
same error as the two-level computation at the same fine-grid resolution. As m
decreases to 15 and 7, the error of the two-level calculation becomes much smaller
than that of the three-level calculation. This is consistent with the observation
that there are two competing sources of error: that induced by the local truncation
error, which for a fixed h scales like m2; and that coming from the error in the
representation of far-field effects, which is only weakly dependent on m. Thus as
m decreases from m = 30, the contribution of the local truncation error rapidly
decreases, leaving only the contribution from the error in the representation of the
far-field effects. These are more accurately represented by a single-level calculation
than by a two-level calculation at the same resolution. Nonetheless, we shall see
below that, in these cases, the two-level and three-level calculations provide roughly
the same accuracy for a given computational cost.

We also ran the problem on different sizes of a single grid with the James–Lackner
solver of Section 2 and Mehrstellen preconditioning (14). The results on the left
side of Table 4 show solution error converging in max norm at a rate that is fourth
order in the mesh spacing, as long as the oscillating right-hand side is resolved
sufficiently. Nonetheless, the accuracy of the Mehrstellen method, by itself, is
insufficient to make up for the lack of resolution in the coarsest-level calculation,
so that the MLC method on the locally-refined grids substantially increases the
accuracy of the overall solution. This is demonstrated in Table 4 by listing, beside
the Mehrstellen result, the max norm error of the three-level MLC result whose
coarsest level has the same mesh spacing as that of the Mehrstellen result.

A LOCAL CORRECTIONS ALGORITHM FOR POISSON’S EQUATION IN 3D 73

m h ‖εh
all‖∞ p ‖εh

fine‖2 p ‖εh
all‖2 p λ/h

7 1/2048 2.132 E−5 1.632 E−7 1.738 E−7 7.31
7 1/4096 4.735 E−6 2.17 2.379 E−8 2.78 4.712 E−8 1.88 14.63
7 1/8192 1.130 E−6 2.07 5.720 E−9 2.06 8.419 E−9 2.48 29.26

15 1/2048 2.437 E−5 2.009 E−7 2.357 E−7 3.41
15 1/4096 4.906 E−6 2.31 2.642 E−8 2.93 3.061 E−8 2.95 6.83
15 1/8192 1.157 E−6 2.08 6.648 E−9 1.99 9.737 E−9 1.65 13.65

30 1/2048 5.022 E−5 3.798 E−7 3.848 E−7 1.71
30 1/4096 5.274 E−6 3.25 3.795 E−8 3.32 6.296 E−8 2.61 3.41
30 1/8192 1.542 E−6 1.77 7.593 E−9 2.32 1.270 E−8 2.31 6.83

Table 1. Norms and convergence rates of solution error with adap-
tive three-level MLC separating monopole solutions, for example
with m = 7, 15, and 30. The norms ‖εh

fine‖ are over the finest level,
and ‖εh

all‖ are over all three levels.

m h ‖εh
all‖∞ p ‖εh

fine‖2 p ‖εh
all‖2 p λ/h

7 1/2048 4.280 E−5 8.449 E−7 2.608 E−6 7.31
7 1/4096 2.794 E−5 0.62 7.009 E−7 0.27 2.500 E−6 0.06 14.63
7 1/8192 1.971 E−5 0.50 6.713 E−7 0.06 2.521 E−6 −0.01 29.26

Table 2. Norms and convergence rates of solution error with adap-
tive three-level MLC without separating monopole solutions, for
the example with m = 7. Compare with Table 1, which shows
results of MLC separating monopole solutions. The norms ‖εh

fine‖

are over the finest level, and ‖εh
all‖ are over all three levels.

5.2. Timing results. In this section we present computational results demonstrating
the low communication overhead of our implementation of the MLC algorithm on
up to 1024 processors.

We ran on NERSC’s Seaborg IBM SP system, located at the National Energy
Research Scientific Computing Center1. Seaborg contains POWER3 SMP High
Nodes interconnected with a “Colony” switch. Each node is an 16-way Symmetric
Multiprocessor (SMP) based on 375 MHz Power-3 processors2, sharing between
16 and 64 Gigabytes of memory, and running AIX version 5.1.

1 http://www.nersc.gov/nusers/resources/SP
2http://www-1.ibm.com/servers/eserver/pseries/hardware/whitepapers/nighthawk.html

74 P. MCCORQUODALE, P. COLELLA, G. T. BALLS AND S. B. BADEN

m h ‖εh
all‖∞ p ‖εh

fine‖2 p ‖εh
all‖2 p λ/h

7 1/2048 4.498 E−6 2.431 E−8 2.471 E−8 7.31
7 1/4096 9.698 E−7 2.21 7.664 E−9 1.67 3.373 E−8 −0.45 14.63

15 1/2048 7.845 E−6 7.889 E−8 1.232 E−7 3.41
15 1/4096 1.121 E−6 2.81 6.919 E−9 3.51 9.526 E−9 3.69 6.83

30 1/2048 3.681 E−5 3.380 E−7 3.381 E−7 1.71
30 1/4096 2.530 E−6 3.86 2.365 E−8 3.84 5.587 E−8 2.60 3.41

Table 3. Norms and convergence rates of solution error with adap-
tive two-level MLC, for examples with m = 7, 15, and 30. Compare
with Table 1, which shows results with three-level MLC. The norms
‖εh

fine‖ are over the finer level, and ‖εh
all‖ are over both levels.

one-grid Mehrstellen three-level MLC
m H ‖εH

‖∞ p λ/H h ‖εh
‖∞ p λ/h

7 1/256 3.529 E−2 0.91 1/4096 4.735 E−6 14.63
7 1/512 4.193 E−4 6.40 1.83 1/8192 1.130 E−6 2.07 29.26
7 1/1024 1.726 E−5 4.60 3.66

15 1/256 1.019 E−2 0.43 1/4096 4.906 E−6 6.83
15 1/512 3.288 E−3 1.63 0.85 1/8192 1.157 E−6 2.08 13.65
15 1/1024 1.446 E−4 4.51 1.71

30 1/256 4.556 E−2 0.21 1/4096 5.274 E−6 3.41
30 1/512 4.167 E−3 3.45 0.43 1/8192 1.542 E−6 1.77 6.83
30 1/1024 9.687 E−4 2.10 0.85

Table 4. Max norms and convergence rates of solution error with
Mehrstellen on a single grid (on left), for examples with m = 7, 15,
and 30. Also shown (on right) are the max norms of the solution
error for the three-level MLC, copied from Table 1, with the same
mesh spacing H at the coarse level.

The solver is written in a mixture of C++ and Fortran 77, and calls the FFTW
library [10] for the fast discrete sine transforms in the Dirichlet Poisson solves.
We used the IBM C++ and Fortran 77 compilers, mpCC and mpxlf. C++ code
was compiled with the IBM mpCC compiler, using options -O2 -qarch=pwr3
-qtune=pwr3. Fortran 77 was compiled with mpxlf with -O2 optimization. We
used the standard environment variable settings, and we collected timings in batch

A LOCAL CORRECTIONS ALGORITHM FOR POISSON’S EQUATION IN 3D 75

Size three-level example two-level example
N fine middle coarse fine coarse

2048 50 923 779 6 440 067 2 146 689 50 923 779 135 005 697
4096 405 017 091 21 567 171 16 974 593 405 017 091 1 076 890 625
8192 3 230 671 875 99 228 483 135 005 697

Table 5. Numbers of solution points at each level in the three-level
MLC example (with timing results in Table 6) and the two-level
MLC example (with timing results in Table 7).

mode using loadleveler. The timings reported are based on wall-clock times,
obtained with MPI_Wtime().

The times reported are for the runs with the shortest total times of m set to 7, 15,
or 30. Timers were placed around large function calls rather than inner loops to
reduce the effects of noise in the timing results. The bulk-synchronous nature of
the algorithm allows us to fully separate computation times from communication
times. Reported running times do not include one-time startup costs such as a
preprocessing phase for the serial James–Lackner solver that computes a matrix
for obtaining outer-grid boundary conditions from multipole coefficients due to
charges on the inner-grid boundary. This matrix depends only on the problem size
and accuracy parameters, and its computation is considered a fixed overhead to be
amortized over many calls to the solver.

In measuring the performance, we scaled the work with the number of processors.
The run parameters and timing results for the performance tests of the three-level
MLC are shown in Table 6. Processors are allocated to SMP nodes in such a way
that each node runs 16 processors.

Results for performance tests of the two-level MLC are shown in Table 7. Since
execution slows down when the memory capacity of a node is close to being reached,
in the two-level MLC runs, processors are allocated to SMP nodes in such a way
that each SMP node runs only eight processors — that is, half of the processors on
the node.

Results for performance tests of the parallelized single-grid solver are shown
in Table 8. In these examples, as with the two-level MLC runs, processors are
allocated to SMP nodes with eight processors per node.

We define grind time as the processor-time taken per fine-level solution point.
Ideally the grind time would remain constant over problem sizes and numbers of
processors. We see from Table 6 that for the three-level MLC, grind times are fairly
stable, at around 22 to 23 µs/point.

76 P. MCCORQUODALE, P. COLELLA, G. T. BALLS AND S. B. BADEN

Size Times for each stage (seconds) Total Grind
P N InitF InitM Crse BndM FinM BndF FinF (s) (µs/pt)

16 2048 44.99 12.52 3.51 0.33 0.66 2.64 4.89 69.57 21.86
128 4096 45.51 6.76 10.19 0.15 0.30 4.12 4.75 71.83 22.70

1024 8192 46.01 3.95 13.04 0.15 0.17 4.03 4.78 72.28 22.91

Table 6. Timing breakdowns for runs of an adaptive three-level
MLC solver, with P processors and domain length N . Boxes at
the fine and middle levels are all cubes of length 32. InitF: Initial
fine-level local solve. InitM: Initial middle-level local solve. Crse:
Coarse-level solve. BndM: Boundary communication to middle-
level final solve. FinM: Final middle-level solve. BndF: Boundary
communication to fine-level final solve. FinF: Final fine-level
solve.

Size Times for each stage (seconds) Total Grind
P N Init Crse Bnd Fin (s) (µs/pt)

64 2048 11.73 22.61 0.26 1.22 35.84 45.04
512 4096 13.25 47.46 0.50 1.21 62.44 78.93

Table 7. Timing breakdowns for runs of an adaptive two-level
MLC solver, with P processors and domain length N . Boxes at
the fine level are all cubes of length 32. Init: Initial fine-level local
solve. Crse: Coarse-level solve. Bnd: Boundary communication to
fine-level final solve. Fin: Final fine-level solve.

Size Times for each stage (seconds) Total Grind
P N points Homo Normal FMM Inhomo (s) (µs/pt)

4 256 16 974 593 10.53 0.08 2.23 57.34 70.20 16.54
32 512 135 005 697 13.39 0.87 4.51 22.93 41.72 9.89

256 1024 1 076 890 625 13.65 3.06 10.53 19.26 46.52 11.06

Table 8. Timing breakdowns for runs of infinite-domain solver
on one level, with P processors and domain length N , and given
number of points, which is (N + 1)3. Homo: Initial homogeneous
Dirichlet Poisson solve. Normal: Copying of Poisson solution and
evaluation of normal derivatives. FMM: Fast multipole method.
Inhomo: Final inhomogeneous Dirichlet Poisson solve.

A LOCAL CORRECTIONS ALGORITHM FOR POISSON’S EQUATION IN 3D 77

Size Communication in stages (seconds) Total % of
P N Boundary Coarse Residuals (s) runtime

16 2048 0.37 0.22 0.08 0.68 0.97 %
128 4096 1.56 0.58 0.14 2.28 3.17 %

1024 8192 1.40 1.77 0.68 3.85 5.32 %

Table 9. Communication time in the adaptive three-level MLC
solve, for the same runs as reported in Table 6. Boundary: Copying
of solutions within and between fine and middle levels (as illus-
trated in Figure 2). Coarse: Communication in the solve at the
coarsest level. Residuals: Copying of residuals at the fine and
middle levels.

Grind times vary by almost a factor of two in the two-level MLC examples in
Table 7. These results are not as consistent as with the three-level example, because
the coarse-level solution takes a majority of the run time: it is computed using a
conventional parallel FFT algorithm that does not scale as well as the local solves,
and has 2.65 times as many points as the local fine grids (Table 5). This lack of
scaling also had an impact on the memory requirements. The two-level calculations
required substantially more memory than the three-level calculations, so that we
were only able to use eight processors per node for these runs, rather than the full
16 processors per node used in the three-level runs. In reporting the number of
processors and computing the grind times in Table 7, we report the number of
processors actually used, whereas the system resources required corresponded to
double that number.

The lower parallel performance of the two-level calculations also affects the
tradeoffs between using the two-level and three-level algorithms from an accuracy
standpoint. For the m = 30 case, the accuracy of the two-level and three-level
calculations are almost the same, and the cost of the two-level calculation is far
greater: for example, the system resources required for the 4096-resolution two-
level calculation are the same as those used for the 8192-resolution three-level
calculation. As m decreases, the tradeoffs favor the two-level calculation more,
but the computational costs of obtaining a given level of accuracy using the two
different strategies remains within a factor of two.

In the runs of the three-level MLC, as shown in Table 6, over half the time
is spent in the initial fine-level solves. With the particular problem sizes, each
processor holds data for 96 fine-level boxes. The grind time for the initial fine-level
solves ranges from 14.1 to 14.6 µs/point, and for the final fine-level solves ranges
from 1.50 to 1.54 µs/point. Overall, we are able to scale a problem up from 16 to

78 P. MCCORQUODALE, P. COLELLA, G. T. BALLS AND S. B. BADEN

Size AMR Time Grind Communication time
P N iterations (s) (µs/pt) (s) % of runtime

16 2048 9 352.04 110.61 25.81 7.49%
128 4096 9 468.41 148.03 78.87 17.65%

Table 10. Times for multigrid Poisson solver with Dirichlet bound-
ary conditions. Compare with Table 6 for MLC on the same fine-
level and middle-level grids.

1024 processors with, at worst, a 4% increase in the grind time. The increase is due
primarily to the increased cost of the global FFT solution at the coarsest level. We
believe that the performance of our implementation of the global FFT solver can be
improved from that seen here.

We compare these results with timings for an adaptive node-centered multigrid
algorithm for solving Poisson’s equation with Dirichlet boundary conditions [18]
on the same platform. This algorithm is run on three levels of boxes, with the fine
and middle levels being the same as were used with MLC, but the coarse level
being fully refined into cubes of length 32, instead of parallel slabs. Although we
are solving a different problem here, we believe that these results are typical of
the cost of using the same algorithm to solving the infinite-domain problem along
the lines of the algorithm in [1]. Comparison of results of the multigrid timings in
Table 10 with the MLC timings in Table 6 shows that the multigrid algorithm takes
5 to 7 times longer than MLC, although a count of the number of floating-point
operations shows that it uses only 1.38 to 1.45 times as many such operations as
MLC. Considerably more time is spent in communication in this algorithm than
in MLC (comparing Table 10 with Table 9). On the example on 128 processors,
the time for communication, at 78.87 seconds, exceeds the total time for the MLC
solve on the same grids.

Finally, we can infer from these results a lower bound on the grind time required
for a Hockney algorithm to solve Poisson’s equation at the same resolution as that
on our finest grid. Judging from the time in the FinF column of Table 6, the time
per grid point of an FFT solver for a 323 grid is about 1.52 µs per grid point. Thus
the cost per mesh point per processor of performing an infinite-domain solution
on a uniform grid with linear dimension N using the James–Lackner algorithm is
at least 1.52 × 2 × 0.2 log2 N µs, where the factor of 2 comes from the minimum
cost of solving the two Dirichlet problems for the James–Lackner algorithm, and
0.2 = 1/ log2 32. This leads to grind times of 6.7 to 7.9µs for the range of mesh
resolutions given here. Thus, the grind times for the three-level MLC calculations
are approximately three times the lower bound we’ve estimated here.

A LOCAL CORRECTIONS ALGORITHM FOR POISSON’S EQUATION IN 3D 79

6. Conclusions and future work

We have described here an extension to Anderson’s Method of Local Corrections
for solving Poisson’s equation in free space on nested multiresolution grids in
three dimensions. This is a noniterative domain-decomposition method based on
computing local convolutions with the free-space Green’s function on overlapping
rectangular subdomains with a fixed number of grid points, combined with a
representation of the nonlocal coupling between subdomains by a coarse-grid
calculation in a manner that is structurally similar to a single iteration of an FAS
multigrid method. The extension to locally-refined grids and to more than two
levels is straightforward. A key technical step is an extension to three dimensions of
the James–Lackner method for computing local convolutions, based on using FFTs
for computing the volume potentials combined with a simplified version of the fast
multipole method for surface-surface convolutions. This is combined with an exact
treatment of the contribution to the local potential from the piecewise-constant
component of the charge in each rectangle.

We demonstrated second-order accuracy of the method for a nontrivial example.
We also found that the computational cost of the method is approximately three
times per grid point that of FFT calculation at the same resolution, and scales to
1024 processors at approximately 95% parallel efficiency, with less than 7% of the
run time in MPI communication calls. We have also compared the performance
of this method to that of a conventional AMR multigrid solver on the same grid
hierarchy, and found that, on 128 processors, the latter takes seven times as much
time overall to compute the result, and spends 16 times as much time in MPI
communication than the present method. We know of no other method for Poisson’s
equation in 3D that exhibits the same combination of performance and scalability
on multiresolution grid. We believe that the results presented here indicate the
possibility of scaling effectively to a PetaFlop computer (105 processors).

The results given here, while extremely promising, must be viewed as a first step
in developing a robust and automatic piece of software. There are free parameters
in the method, such as the dependence of the degree of overlap on the level of
refinement, that are ad-hoc, and need to be defined systematically. One of the
principal difficulties in this area is estimating and controlling the different sources
of error in the algorithm separately and with complete generality. One aspect
of solving that problem is for all components of the algorithm to have tunable
accuracy, as opposed the present situation, in which the fourth-order Mehrstellen
algorithm is a fixed target. Also, the current formulation of the algorithm does
not preserve the geometric locality of the charge distributions. For example, the
field induced on a patch on the middle level in a three-level calculation includes
contributions from the charge distribution on finer patches not covered by the middle

80 P. MCCORQUODALE, P. COLELLA, G. T. BALLS AND S. B. BADEN

patch. This feature makes it difficult to estimate the error as it propagates down
through refinement levels. We are currently working on a version of the algorithm
that will preserve locality under coarsening. As is the case with other adaptive
methods, the general question of criteria for determining the needed grid refinement,
as a function of space, time, and data, is not completely resolved. However, our
treatment of the coupling between refinement levels may simplify the problem,
relative to conventional finite difference methods [18]. Finally, there is still room
for further performance improvement. For example, the parallel FFT solver used
for the coarsest level is implemented using the Chombo communication primitives,
that were not designed for the global communications required in the transform
step. Since this calculation is a parallel bottleneck for the overall algorithm, any
improvements would significantly improve the overall scaling of the method.

There are a number of directions in which the method described here could
be extended. These include cell-centered solvers, solvers for the 3D Helmholtz
equations, and higher-order methods. The extension to other boundary conditions
on the domain boundary (Dirichlet, Neumann) is straightforward using method of
images ideas [9]; a more challenging question is the extension of this approach to
the case of Cartesian-grid representations of irregular boundaries [19; 15; 18].

Acknowledgments

Peter McCorquodale and Phillip Colella are supported by the Mathematical, In-
formation, and Computational Sciences Division of the Office of Science, U.S.
Department of Energy under contract number DE-AC03-76SF00098. Gregory
Balls and Scott Baden were supported by the National Partnership for Advanced
Computational Infrastructure (NPACI) under NSF contract ACI9619020. This
research used resources of the National Energy Research Scientific Computing
Center, which is supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC03-76SF00098.

References

[1] A. S. Almgren, T. Buttke, and P. Colella, A fast adaptive vortex method in 3 dimensions, J.
Comput. Phys. 113 (1994), no. 2, 177–200.

[2] C. R. Anderson, A method of local corrections for computing the velocity field due to a distribu-
tion of vortex blobs, J. Comput. Phys. 62 (1986), 111–123.

[3] S. B. Baden, Run-time partitioning of scientific continuum calculations running on multiproces-
sors, Ph.D. thesis, UC Berkeley Computer Science Division, April 1987.

[4] D. Bai and A. Brandt, Local mesh refinement multi-level techniques, SIAM Journal Sci. Stat.
Comput. 8 (1987), 109–134.

[5] G. T. Balls, A finite difference domain decomposition method using local corrections for the
solution of Poisson’s equation, Ph.D. thesis, University of California, Berkeley, 1999.

A LOCAL CORRECTIONS ALGORITHM FOR POISSON’S EQUATION IN 3D 81

[6] G. T. Balls and P. Colella, A finite difference domain decomposition method using local correc-
tions for the solution of Poisson’s equation, J. Comput. Phys. 180 (2002), no. 1, 25–53.

[7] A. Brandt, Multilevel adaptive methods for boundary-value problems, Math. Comp. 31 (1977),
no. 138, 333–390.

[8] H. Cheng, J. Huang, and T. J. Leiterman, A fast adaptive solver for the modified Helmholtz
equation in two dimensions, J. Comput. Phys. 211 (2006), no. 2, 616–637.

[9] F. Ethridge and L. Greengard, A new fast-multipole accelerated Poisson solver in two dimensions,
SIAM Journal Sci. Comput. 23 (2001), no. 3, 741–760.

[10] M. Frigo and S. G. Johnson, FFTW: An adaptive software architecture for the FFT, ICASSP
Conference Proceedings, vol. 3, ICASSP, 1998, pp. 1381–1384.

[11] L. Greengard and J.-Y. Lee, A direct adaptive Poisson solver of arbitrary order accuracy, J.
Comput. Phys. 125 (1996), no. 2, 415–424.

[12] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys. 73
(1987), 325–348.

[13] R. W. Hockney and J. W. Eastwood, Computer simulation using particles, McGraw-Hill, 1981.

[14] R. A. James, The solution of Poisson’s equation for isolated source distributions, J. Comput.
Phys. 25 (1977), no. 2, 71–93.

[15] H. Johansen and P. Colella, A Cartesian grid embedded boundary method for Poisson’s equation
on irregular domains, J. Comput. Phys. 147 (1998), no. 2, 60–85.

[16] O. D. Kellogg, Foundations of potential theory, Dover Publications, 1953.

[17] K. Lackner, Computation of ideal MHD equilibria, Computer Physics Communications 12
(1976), no. 1, 33–44.

[18] P. McCorquodale, P. Colella, D. Grote, and J.-L. Vay, A node-centered local refinement algorithm
for Poisson’s equation in complex geometries, J. Comput. Phys. 201 (2004), 34–60.

[19] G. H. Shortley and R. Weller, The numerical solution of Laplace’s equation, J. Appl. Phys. 9
(1938), 334–348.

[20] B. F. Smith, P. E. Bjørstad, and W. D. Gropp, Domain decomposition: parallel multilevel
methods for elliptic partial differential equations, Cambridge University Press, 2004.

Received October 30, 2006.

PETER MCCORQUODALE: PWMcCorquodale@lbl.gov
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50A-1148, Berkeley, CA 94720,
United States

PHILLIP COLELLA: PColella@lbl.gov
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50A-1148, Berkeley, CA 94720,
United States

GREGORY T. BALLS: gballs@ucsd.edu
Center for Scientific Computation in Imaging, University of California, San Diego,
9500 Gilman Drive # 0854, La Jolla, CA 92093-0854, United States

SCOTT B. BADEN: baden@cs.ucsd.edu
Department of Computer Science and Engineering, University of California, San Diego,
9500 Gilman Drive, La Jolla, CA 92093-0114, United States

