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PARALLEL OVERLAPPING DOMAIN DECOMPOSITION
METHODS FOR COUPLED INVERSE ELLIPTIC PROBLEMS

XIAO-CHUAN CAI, SI LIU AND JUN ZOU

We study an overlapping domain decomposition method for solving the coupled
nonlinear system of equations arising from the discretization of inverse elliptic
problems. Most algorithms for solving inverse problems take advantage of the fact
that the optimality system has a natural splitting into three components: the state
equation for the constraints, the adjoint equation for the Lagrange multipliers,
and the equation for the parameter to be identified. Such algorithms often involve
interiterations between the three separate solvers, and the intercomponent iteration
is sequential. Several fully coupled or so-called one-shot approaches exist, and the
main challenges in these approaches are that the system has stronger nonlinearity,
and the corresponding Jacobian system is more ill-conditioned, in addition to
being three times larger. Here we investigate a class of overlapping Newton–
Krylov–Schwarz algorithms for solving such coupled systems, obtained with a
pointwise ordering of the variables, and show numerically that, with a reasonably
large overlap, the algorithm is capable of finding the solution even with noise and
discontinuous coefficients. More importantly, we show that this approach is fully
parallel and scalable with respect to the size of the problems.

1. Introduction

As parallel computers become more powerful, researchers are paying more attention
to inverse problems which are more difficult and expensive to solve than forward
problems [1; 11; 15; 24]. A key step in designing a high performance parallel
algorithm is to formulate the problem with as few sequential calculations as possible.
Here we study a parallel domain decomposition method for solving the system of
nonlinear equations arising from the fully coupled finite difference discretization of
some inverse elliptic problems in two-dimensional space.
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Traditionally these problems are solved by using Uzawa-type algorithms which
split the system into two or three subsystems solved individually. Subiterations
are required between the subsystems. The subsystems are easier to solve than
the global coupled system, but the iterations between subsystems are sequential
in nature. There are several fully coupled approaches in which all variables are
solved at the same time. They are often referred to as the one-shot method or
the all-at-once method; see for example [3; 12; 16; 21]. In these approaches, the
resulting linear and nonlinear systems of equations are three times larger, have
stronger nonlinearity and are more ill-conditioned. Solving these fully coupled
systems is a major challenge for any iterative methods.

The focus of this paper is to investigate a parallel domain decomposition precondi-
tioning technique for the coupled systems. We show that with the powerful domain
decomposition based preconditioner the convergence of the iterative methods can
be obtained even for some difficult cases when the solution is discontinuous and
when the observation data has high level of noise.

We consider an inverse elliptic problem [14]: Find the coefficient function ρ(x)
in the system {

−∇ · (ρ∇u) = f, x ∈�,
u(x) = 0, x ∈ ∂�.

(1)

A widely used approach for solving the inverse problem is the output least-
squares Tikhonov regularization method, which formulates the ill-posed inverse
problem into different stabilized optimization problems, depending on the type of
data available [6; 8; 13; 14]. For example, when the measurement of u(x) is given,
denoted as z(x), the inverse problem can be transformed into the minimization
problem:

minimize J (ρ, u)=
1
2

∫
�

(u− z)2 dx +
β

2

∫
�

|∇ρ|2 dx, (2)

which is often referred to as the L2 least-squares problem.
When the measurement of ∇u(x) is given, denoted as ∇z(x), the inverse problem

can be transformed into the minimization problem:

minimize J (ρ, u)=
1
2

∫
�

ρ |∇u−∇z|2 dx +
β

2

∫
�

|∇ρ|2 dx, (3)

which is often referred to as the H 1 least-squares problem. Both minimization
problems (2) and (3) are subject to the constraint (1) satisfied by the pair (ρ, u), and
the β-term is called the regularization term, and the constant β is the regularization
parameter.
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Instead of solving the constraint optimization problems (2) and (3), we turn to
solving the saddle-point problems associated with the Lagrangian functional L:

L(ρ, u, λ)=
1
2

∫
�

(u− z)2 dx −
∫
�

(∇ · ρ∇u+ f )λ dx +
β

2

∫
�

|∇ρ|2 dx (4)

for the L2 case, or

L(ρ, u, λ)=
1
2

∫
�

ρ|∇u−∇z|2 dx−
∫
�

(∇ ·ρ∇u+ f )λ dx+
β

2

∫
�

|∇ρ|2 dx (5)

for the H 1 case [8]. Hence the solutions to both minimization problems can be
obtained by solving the corresponding optimality systems: Find (ρ, u, λ) such that

(∇ρL)p = 0,

(∇uL)w = 0,

(∇λL)µ= 0,

(6)

for any (p, w,µ). More explicitly, we can reduce (6) to
F (ρ) ≡−β1ρ+∇u · ∇λ= 0,
F (u) ≡−∇ · (ρ∇λ)+ (u− z)= 0,
F (λ) ≡−∇ · (ρ∇u)− f = 0,

(7)

in the L2 case. Similarly, in the H 1 case, we have
F (ρ) ≡−β1ρ+∇u · ∇λ+ 1/2|∇u−∇z|2 = 0,
F (u) ≡−∇ · (ρ∇λ)+∇ · (ρ∇z)+ f = 0,
F (λ) ≡−∇ · (ρ∇u)− f = 0.

(8)

Both systems (7) and (8) use the same boundary conditions
(∂ρ/∂n)= 0,
u = 0,
λ= 0,

(9)

on ∂�. The Dirichlet boundary conditions for u and λ are natural. The homogeneous
Neumann boundary condition on ρ is the side effect of the H 1 regularization in
(2) and (3). A derivation of the boundary condition ∂ρ/∂n = 0 is given in the
Appendix.

For solving the coupled systems, several techniques are available. For example,
in [6; 13; 14], an augmented Lagrangian method was used and the solution was
obtained by Uzawa-type algorithms, which decouples the problems into subproblems
associated with ρ, u and λ separately, and as a result, only smaller problems need
to be solved. The global convergence of these approaches was established in [7;
13]. In [2], a fully coupled discretization was used for some source term inverse
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problems, and the coupled system was first reduced by block eliminations and
then solved by a conjugate gradient (CG) method. Tremendous progress has been
made in using domain decomposition methods for optimization problems with
partial differential equations constraints [1; 2; 17; 18; 19]. The Newton–Krylov–
Schwarz methodology [18] studied here is a general purpose approach that is not
attached to any specific formulation of the inverse problem. We require a globally
convergent inexact Newton’s method with line search for the nonlinear systems;
a Krylov subspace method for the Jacobian systems; and, most importantly, an
additive Schwarz preconditioner, which works well with a scheme we use for the
orderings of the unknowns and the functions. Although we are still unable to
show theoretically that the linear and nonlinear iterative solvers are convergent, our
parallel numerical experiments have shown clearly that this approach works well
for some rather difficult test cases with jump coefficients and a high level of noise.

Section 2 addresses some basic properties of the linear and nonlinear systems
and a reordering scheme to avoid zero pivoting. We also describe a Newton–Krylov–
Schwarz algorithm for solving the fully coupled systems. We give numerical
experiments in Section 3, followed by concluding remarks in Section 4.

2. Scalable solvers

2.1. A reordered fully coupled system. We use the so-called fully coupled ordering,
by which we mean that all three variables defined at the same mesh point are always
together throughout the calculations. The unknowns are ordered mesh point by
mesh point, in contrast to physical variable by physical variable as required by most
existing sequential quadratic programming (SQP) methods. At each mesh point,
xi j , the unknowns are ordered in the order of ρi j , ui j , λi j , that is,

U = (ρ11, u11, λ11, ρ21, u21, λ21, . . . , ρnx ny, unx ny, λnx ny)
T . (10)

If we order the functions in exactly the same order,

F = (F (ρ)11 , F (u)11 , F (λ)11 , F (ρ)21 , F (u)21 , F (λ)21 , . . . , F (ρ)nx ny, F (u)nx ny, F (λ)nx ny)
T
= 0, (11)

then the Jacobian in the L2 case is a symmetric matrix of the form (12) with dense
3× 3 blocks of the form (13)

J =



× × ×
× × × ×
× × ×

× × × ×
× × × × ×
× × × ×

× × ×
× × × ×
× × ×


n×n(block)

, (12)
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where

×=

(
∗ ∗ ∗

∗ ∗ ∗

∗ ∗ 0

)
3×3

. (13)

However, the zero value on the diagonal of (13) causes a pivoting problem in our
LU factorization based solvers. To avoid the zero pivot situation, we reorder the
unknowns (switching the u variable with the λ variable):

U = (ρ11, λ11, u11, ρ21, λ21, u21, . . . , ρnx ny, λnx ny, unx ny)
T
= 0, (14)

but keep the ordering of the functions unchanged as in (11). This reordering of
function values does not change the block structure of the matrix, but the 3× 3
block now takes the form:

×=

(
∗ ∗ ∗

∗ ∗ ∗

∗ 0 ∗

)
3×3

, (15)

which is no longer symmetric. In this paper, our algorithms are not based on the
structure of (13), but on the structure of (15), which is based on the ordering scheme
(11)+ (14).

For the purpose of parallel processing, the mesh points are ordered subdomain
by subdomain. The ordering of the subdomains is not important since we use an
additive method whose performance has nothing to do with the subdomain ordering.

2.2. Newton–Krylov method. The Newton–Krylov–Schwarz (NKS) methods [4]
are a family of general-purpose parallel algorithms for solving systems of nonlinear
algebraic equations. NKS has three main components: (i) an inexact Newton
method for the nonlinear system; (ii) a Krylov subspace linear solver for the
Jacobian systems (restarted GMRES [20]); and (iii) a Schwarz type preconditioner
[22; 23]. We only study the regular additive Schwarz preconditioner in this paper,
even though in some cases, the restricted version of the additive Schwarz method
[5] maybe better.

We carry out the Newton iterations:

Uk+1 =Uk − λk J (Uk)
−1 F(Uk), k = 0, 1, . . . , (16)

where U0 is an initial approximation to the solution, J (Uk)= F ′(Uk) is the Jacobian
at Uk , and λk is the steplength determined by a linesearch procedure [9; 10]. The
inexactness of Newton’s method is reflected in the fact that we do not solve the
Jacobian systems exactly. The accuracy of the Jacobian solver is determined by
some ηk ∈ [0, 1) and the condition

‖F(Uk)+ J (Uk)sk‖ ≤ ηk‖F(Uk)‖. (17)
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The overall algorithm can be described as follows:

(1) Inexactly solve the linear system J (Uk)sk =−F(Uk) for sk using a precondi-
tioned GMRES(30).

(2) Perform a full Newton step with λ0 = 1 in the direction sk .

(3) If the full Newton step is unacceptable, we backtrack using the cubic back-
tracking procedure until a new λ is obtained that makes U+ =Uk + λksk an
acceptable step.

(4) Set Uk+1 =U+ and return to step 1 unless a stopping condition has been met.

In step 1 above we use a right-preconditioned restarted GMRES to solve the
linear system; that is, the vector sk is obtained by approximately solving the right
preconditioned Jacobian system

J (Uk)M−1
k s ′k =−F(Uk),

where M−1
k is a one-level additive Schwarz preconditioner and sk = M−1

k s ′k .

2.3. One-level additive Schwarz preconditioning. To formally define M−1
k , we

need to introduce a partition of�. We first partition the domain into nonoverlapping
subdomains�l , l= 1, . . . , N , where N is the same as the number of processors (np).
In order to obtain an overlapping decomposition of the domain, we extend each
subdomain�l to a larger region�′l, that is,�l⊂�

′

l .Only simple box decomposition
is considered in this paper — all the subdomains �l and �′l are rectangular and
made up of integral numbers of fine mesh cells. The size of �l is Hx × Hy and
the size of �′l is H ′x × H ′y , where the H ′s are chosen so that the overlap (ovlp) is
uniform in the number of fine grid cells all around the perimeter, that is,

ovlp= (H ′x − Hx)/2= (H ′y − Hy)/2

for interior subdomains. For boundary subdomains, we simply cut off the part that
is outside �.

On each extended subdomain �′l , we construct a subdomain preconditioner Bl

which is the discretization of the Frechet derivative taken at the current iteration,

J =



∂F (ρ)

∂ρ

∂F (ρ)

∂λ

∂F (ρ)

∂u

∂F (u)

∂ρ

∂F (u)

∂λ

∂F (u)

∂u

∂F (λ)

∂ρ

∂F (λ)

∂λ

∂F (λ)

∂u


. (18)
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In the L2 case, the Frechet derivative at the point (ρ, λ, u) takes the form

F ′L2 =

 −β1 ∇u · ∇ ∇λ · ∇

−(1λ+∇λ · ∇) −∇ · (ρ∇) I
−(1u+∇u · ∇) 0 −∇ · (ρ∇)

 . (19)

Similarly, in the H 1 case, we have

F ′H1 =

 −β1 ∇u ·∇ ∇λ·∇+(∇u−∇z)·∇
−(1λ+∇λ·∇)+(1z+∇z ·∇) −∇·(ρ∇) 0

−(1u+∇u ·∇) 0 −∇·(ρ∇)

 . (20)

Using the derivative and some boundary conditions, we can define the subdomain
problems. For example, in the L2 case, we have

−β1p+∇λ · ∇w+∇u · ∇µ= g1 in �′l,
−∇ · (p∇λ)+w−∇ · (ρ∇µ)= g2 in �′l,
−∇ · (p∇u)−∇ · (ρ∇w)= g3 in �′l,
p = w = µ= 0 on ∂�′l ∩�,
(∂p/∂n)= w = µ= 0 on ∂�′l ∩ ∂�.

(21)

The solution (p, w,µ) and the right side (g1, g2, g3) of the subdomain problem are
not important at all. We only need the operator form (21) to construct a local solver
Bl defined on the subdomain ∂�′l . Note that homogeneous Dirichlet boundary
conditions are used on the internal subdomain boundary, and the original boundary
conditions are used on the physical boundary, if present. A similar system is used
for the H 1 least-squares problem.

Alternatively we can obtain Bl by extracting its elements from the global Jacobian
matrix; that is, Bi, j

l = {Ji j }, where the node indexed by (i, j) belongs to the interior
of �′l . The entry Ji j is calculated with finite differences Ji j = (Fi (U j + ε) −

Fi (U j ))/ε, where 0 < ε� 1 is a constant. The additive Schwarz preconditioner
can be written as

M−1
k = I1 B−1

1 (I1)
T
+ · · ·+ IN B−1

N (IN )
T . (22)

Let n be the total number of mesh points, and n′l the total number of mesh points in
�′l , then Il is an 3n× 3n′l extension matrix that extends each vector defined on �′l
to a vector defined on the entire fine mesh by padding an 3n′l × 3n′l identity matrix
with zero rows.

3. Numerical experiments

In this paper, we assume the problem is defined on �= (0, lx)× (0, ly), which is
covered by a uniform mesh of size h. To discretize the equations we use the usual
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5-point central finite difference method for all variables. For the L2 formulation
(7), we define

F (ρ)i j = β
4ρi j − ρi−1 j − ρi+1 j − ρi j−1− ρi j+1

h2

+
ui+1 j − ui−1 j

2h
λi+1 j − λi−1 j

2h
+

ui j+1− ui j−1

2h
λi j+1− λi j−1

2h
,

F (u)i j =−
ρi+1/2 j (λi+1 j − λi j )− ρi−1/2 j (λi j − λi−1 j )

h2

−
ρi j+1/2(λi j+1− λi j )− ρi j−1/2(λi j − λi j−1)

h2 + (ui j − zi j ),

F (λ)i j =−
ρi+1/2 j (ui+1 j − ui j )− ρi−1/2 j (ui j − ui−1 j )

h2

−
ρi j+1/2(ui j+1− ui j )− ρi j−1/2(ui j − ui j−1)

h2 − fi j ,

where the half-point values of ρ are calculated using the average of the two neigh-
boring values. Similarly, we obtain the discretization of the H 1 formulation (8):

F (ρ)i j = β
4ρi j−ρi−1 j−ρi+1 j−ρi j−1−ρi j+1

h2

+
ui+1 j−ui−1 j

2h
λi+1 j−λi−1 j

2h
+

ui j+1−ui j−1

2h
λi j+1−λi j−1

2h

+
1
2

((ui+1 j−ui−1 j

2h
−∇x z|i j

)2
+

(ui j+1−ui j−1

2h
−∇yz|i j

)2
)
,

F (u)i j =−
ρi+1/2 j (λi+1 j−λi j )−ρi−1/2 j (λi j−λi−1 j )

h2

−
ρi j+1/2(λi j+1−λi j )−ρi j−1/2(λi j−λi j−1)

h2

+
ρi+1 j∇x z|i+1 j−ρi−1 j∇x z|i−1 j

2h
+
ρi j+1∇yz|i j+1−ρi j−1∇yz|i j−1

2h
+ fi j ,

F (λ)i j =−
ρi+1/2 j (ui+1 j−ui j )−ρi−1/2 j (ui j−ui−1 j )

h2

−
ρi j+1/2(ui j+1−ui j )−ρi j−1/2(ui j−ui j−1)

h2 − fi j .

To form an algebraic system of nonlinear equations from the finite difference
equations, we need to order the unknowns and the corresponding functions. The
ordering of the unknowns and the equations is not a big deal at all for accuracy
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concerns, but is critically important for the linear Jacobian solver and for the
preconditioning techniques. For example, if we order the unknowns variable by
variable — that is, first ρ values for all mesh points, and second u values for all
mesh points, and last λ values for all mesh points, then the Jacobian matrix takes
the following block form:

J =



∂F (ρ)

∂ρ

∂F (ρ)

∂u
∂F (ρ)

∂λ

∂F (u)

∂ρ

∂F (u)

∂u
∂F (u)

∂λ

∂F (λ)

∂ρ

∂F (λ)

∂u
∂F (λ)

∂λ


=



∂F (ρ)

∂ρ

∂F (ρ)

∂u
∂F (ρ)

∂λ

∂F (u)

∂ρ
I

∂F (u)

∂u

∂F (λ)

∂ρ

∂F (λ)

∂u
0


3n×3n

. (23)

Many interesting algorithms are designed based on the particular block structure of
(23), and many algorithms fail to work also because of the structure of (23).

We study the performance of the proposed algorithm using four test cases.
The first test case is from [14], and the purpose is to verify the accuracy of the
algorithm. To understand the scalability of the algorithm, we introduce three more
test problems.

To test the robustness of the algorithms, we add some noise to the observation
data as

zδ = z+ δ rand (x, y) (24)

or

∇zδ =∇z+ δ (rand (x, y), rand (x, y))T , (25)

depending on whether the formulation is L2 or H 1. Here rand (x, y) is a random
scalar function available in the C library, and δ is responsible for the magnitude
of the noise. Some results with different levels of noise (δ = 0%, 1% and 10%)
will be presented. Since u needs to satisfy the elliptic equation, we assume that
u has some continuity and differentiability, as does ∇u. Therefore, we smooth u
in L2 formulation or ∇u in H 1 formulation before we start the Newton iteration.
This is necessary especially when the noise level is high. In particular, when the
noise level is 10%, we replace the value of u or ∇u by the weighted average value
around it. And the weight function is defined as

1
16

1
8

1
16

↘ ↓ ↙
1
8 →

1
4 ←

1
8

↗ ↑ ↖
1

16
1
8

1
16

.
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We repeat this operation 3 times in all of our tests when δ = 10%. No smoothing is
applied when δ is smaller than 10%.

To measure the accuracy of the numerical solution, we assume that the exact
solution of the test cases are known, and erroru and errorρ are the normalized
discrete L2 norms of the errors defined by

erroru =

√∑
(ui j − uexact

i j )2
hx h y

lx ly
and errorρ =

√∑
(ρi j − ρ

exact
i j )2

hx h y

lx ly
,

where hx and h y are mesh sizes along x and y directions, and lx and ly are sizes of
the computational domain along the x and y directions, respectively.

In Newton’s method, we use the initial guess

U0 = (ρ
(0), u(0), λ(0))T = (1, z, 0)T .

For the L2 formulation, z is the observation value. For the H 1 formulation, z is not
directly available, but is obtained as a line integral of ∇x z or ∇yz along the x or y
direction from one of the boundary points. In our test, at the point (xi , y j ),

z(xi , y j )= z(x0, y j )+

i∑
l=1

(∇x z)|xl hx

if we take the integral along the x direction, or

z(xi , y j )= z(xi , y0)+

j∑
l=1

(∇yz)|yl h y

if we take the integral along the y direction.
In the test runs, we stop the Newton iteration if the following condition is satisfied

‖F(Uk)‖ ≤max
{
10−6
‖F(U0)‖, 10−10} . (26)

For the Jacobian solver, the GMRES iteration is stopped if

‖F(Uk)+ J (Uk)sk‖ ≤max
{
10−6
‖F(Uk)‖, 10−10} . (27)

All the subdomain problems are solved with LU factorization. We implement the
proposed algorithms using the Portable Extensible Toolkit for Scientific Compu-
tation (PETSc), developed at Argonne National Laboratory. Note that the timing
results are obtained on a cluster of Linux PCs. The timings are just for references
and should not be taken too seriously since the network of the PC cluster is slow
and is also shared by many users.

http://www.mcs.anl.gov/petsc/petsc-as
http://www.mcs.anl.gov/petsc/petsc-as
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3.1. Test cases. We next describe four test cases with the observation function

z(x, y)= sin(πx) sin(πy),

and several different ρ functions and on several different computational domains.
Test 1. In the first test we take � = (0, 1) × (0, 1), and the right side f is

constructed such that
ρ = 1+ 6x2 y(1− y)

is the elliptic coefficient to be identified. Note that this function does not satisfy
∂ρ/∂n = 0 on the north boundary (y = 1), the south boundary (y = 0) and the east
boundary (x = 1) of the domain.

Test 2. In the second test we take � = (0, 1)× (0, 1) and the right side f is
chosen so that the elliptic coefficient to be identified is

ρ = 1+ 100(xy(1− x)(1− y))2.

Note that this function satisfies ∂ρ/∂n = 0 on the entire boundary of the domain.
Test 3. In the third test we take a domain �= (0, lx)× (0, ly) and the right side

f is chosen so that the elliptic coefficient to be identified is

ρ = 1+ (−1)li+l j 6
[
(x − li )(y− l j )(1− (x − li ))(1− (y− l j ))

]2
when (x, y) ∈ [li , li + 1)× [l j , l j + 1), li and l j are integers less than lx and ly ,
respectively.

We mention that ρ is a smooth function. Several different values of lx and ly are
tested and the details are given where the test results are shown.

Test 4. In the fourth test we take a domain � = (0, lx)× (0, ly) and the right
side f is chosen so that the elliptic coefficient to be identified is

ρ =

{
1 for x − li ≤ 1/2,
2 for x − li > 1/2,

(28)

when li is even, x ∈ [li , li + 1) and

ρ =

{
2 for x − li ≤ 1/2,
1 for x − li > 1/2,

(29)

when li is odd, x ∈ [li , li + 1), and li is an integer less than lx . This is a piecewise
constant function defined on the computational domain and this function has several
jumps along the x-direction.

Our discretization scheme and the solution algorithms do not require any a priori
knowledge of the locations of the jumps. We mention that there are several tech-
niques that are designed specifically for problems with discontinuous coefficients
[6; 7; 14].
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3.2. Results and discussions of numerical experiments.

3.2.1. Test 1. In this test, we solve the Jacobian systems using a global Gaussian
elimination, therefore the domain decomposition preconditioned iterative solver
introduced in the previous section plays no role at all. As mentioned earlier, this
equation does not satisfy the boundary condition

∂ρ

∂n
= 0.

We see from Figure 1 that the numerical solution has some visible difference from
the exact solution. To satisfy the above boundary condition, the numerical solution
has some distortion on the north, south and east boundaries. This is more obvious
near the two corners. Nevertheless, the results match that of [14]. When the
noise level is high, the effect of ∂ρ/∂n = 0 is larger near the corners for the L2

formulation of the inverse problem. The H 1 formulation is less sensitive to this
boundary condition.

From Table 1, we see that our method converges well. It takes about 3–5 Newton
iterations to converge. For a given level of noise, the results are more accurate when
we choose a finer mesh. When the noise level is high, we need larger β values for
the Newton to converge. Comparing the solution plots in Figure 1, we see that the
H 1 formulation generally gives us better solutions than the L2 formulation, but
somehow it takes slightly more Newton iterations to converge than the L2 case.
This is also true for our other test problems.

3.2.2. Test 2. The exact and numerical solutions are shown in Figure 2. It can be
seen that the numerical solutions are quite accurate (Table 2) in the whole domain
since the equation satisfies the Neumann boundary condition ∂ρ/∂n = 0 on all its
boundary. This is different from Test 1 where the accuracy is low near the corners.
We tested three meshes 41×41, 81×81, and 161×161. When the Jacobian systems
are solved exactly with a global Gaussian elimination, the total number of Newton
iterations ranges from 3–6, and the iteration numbers are not sensitive to the level
of noise.

We next look into the performance of the Newton–Krylov–Schwarz algorithm,
in particular, we would like to know how the convergence depends on the mesh
size, the number of subdomains, and the overlapping size. First, we study the
processor-scalability. We solve the problem on a 321× 321 mesh using different
numbers of processors. We show the results, in terms of iteration numbers and the
computing time totals, in Table 3. The number of Newton iterations does not change
when we change the number of processors or the overlapping size. If we fix the
number of subdomains or the number of processors, as we increase the overlapping
size, the number of GMRES iterations decreases. The computing time decreases
to a point and then begins to increase. This suggests that an optimal overlapping
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Figure 1. Test 1. Top: surface plot of the exact solution ρ. Bottom
six pictures are numerical solutions with δ = 0%, δ = 1% and
δ = 10%. Left: L2 formulation; right: H 1 formulation.
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Figure 2. Test 2. Top: surface plot of exact solution ρ. Bottom six
pictures are numerical solutions with δ= 0%, δ= 1% and δ= 10%.
Left: L2 formulation; right: H 1 formulation.
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erroru errorρ Newton

L2 formulation, 41× 41 mesh

β = 10−6, δ = 0 0.000535 0.042644 3
β = 10−5, δ = 1% 0.002032 0.073478 4
β = 10−4, δ = 10% 0.009951 0.143455 4

L2 formulation, 81× 81 mesh

β = 10−6, δ = 0 0.000455 0.034766 3
β = 10−5, δ = 1% 0.001759 0.062192 4
β = 10−4, δ = 10% 0.007615 0.119419 4

L2 formulation, 161× 161 mesh

β = 10−6, δ = 0 0.000424 0.031326 3
β = 10−5, δ = 1% 0.001683 0.058537 4
β = 10−4, δ = 10% 0.006975 0.113078 4

H 1 formulation, 41× 41 mesh

β = 10−5, δ = 0 0.000277 0.020434 5
β = 10−5, δ = 1% 0.000302 0.020677 5
β = 10−4, δ = 10% 0.006932 0.036644 5

H 1 formulation, 81× 81 mesh

β = 10−5, δ = 0 0.000083 0.010343 4
β = 10−5, δ = 1% 0.000103 0.010697 4
β = 10−4, δ = 10% 0.001959 0.021829 4

H 1 formulation, 161× 161 mesh

β = 10−6, δ = 0 0.000018 0.003760 5
β = 10−5, δ = 1% 0.000039 0.007377 4
β = 10−4, δ = 10% 0.000496 0.017599 5

Table 1. Test 1. Errors and number of Newton iterations for three
meshes with three levels of noise in L2 and H 1 formulations.

size exists if the goal is to minimize the total computing time when the number of
processors is not changed. On the fixed mesh, and with a fixed overlapping size, the
number of GMRES iterations increases as we use more processors. This is expected
since this is a single-level algorithm. Second, we check the h-scalability of our
algorithm. Here, we increase the mesh size for the test problem and the number of
processors at the same ratio in order for each processor to have a fixed number of
mesh points. Table 4 shows the results with different overlapping sizes for np= 4,
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erroru errorρ Newton

L2 formulation, 41× 41 mesh

β = 10−6, δ = 0 0.000078 0.003163 3
β = 10−5, δ = 1% 0.000765 0.010723 3
β = 10−4, δ = 10% 0.008222 0.038667 3

L2 formulation, 81× 81 mesh

β = 10−6, δ = 0 0.000073 0.003177 3
β = 10−5, δ = 1% 0.000532 0.010070 3
β = 10−4, δ = 10% 0.003849 0.029056 3

L2 formulation, 161× 161 mesh

β = 10−6, δ = 0 0.000072 0.003203 3
β = 10−5, δ = 1% 0.000504 0.009908 3
β = 10−5, δ = 10% 0.002064 0.026190 4

H 1 formulation, 41× 41 mesh

β = 10−5, δ = 0 0.000385 0.001559 5
β = 10−5, δ = 1% 0.000377 0.005097 6
β = 10−4, δ = 10% 0.006927 0.020951 4

H 1 formulation, 81× 81 mesh

β = 10−5, δ = 0 0.000089 0.000386 4
β = 10−5, δ = 1% 0.000108 0.003493 4
β = 10−4, δ = 10% 0.001907 0.009897 4

H 1 formulation, 161× 161 mesh

β = 10−6, δ = 0 0.000022 0.000098 4
β = 10−5, δ = 1% 0.000029 0.002355 4
β = 10−4, δ = 10% 0.000460 0.006295 4

Table 2. Test 2. Errors and number of Newton iterations for three
meshes with three levels of noise in L2 and H 1 formulations.

16 and 64. Both the number of Newton iterations and the number of GMRES
iterations are almost constants. The computing time is close to be quadrupled when
the size of the problem is quadrupled with np fixed.

3.2.3. Test 3. For forward elliptic problems, one can always obtain a large test
problem (with a large number of degree of freedoms) by refining the mesh, but for
inverse elliptic problems, sometimes it does not make sense to use a very fine mesh
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np Newton ovlp= 1 ovlp= 2 ovlp= 4 ovlp= 8 ovlp= 16

L2 formulation, β = 10−6, δ = 0%

4 3 45(134.68) 33(124.00) 19(111.96) 13(111.61) 8(118.08)
16 3 66(28.17) 46(24.35) 34(23.18) 22(24.73) 14(32.06)
64 3 128(8.73) 92(7.36) 63(6.64) 42(7.20) 25(9.17)

L2 formulation, β = 10−5, δ = 1%

4 3 43(131.74) 26(115.07) 19(111.84) 14(111.91) 9(118.45)
16 3 61(26.86) 45(23.89) 31(22.37) 23(24.55) 15(32.46)
64 3 134(8.99) 94(7.44) 62(6.59) 45(7.41) 25(9.74)

L2 formulation, β = 10−5, δ = 10%

4 4 49(184.48) 36(168.30) 23(154.74) 16(152.48) 10(159.11)
16 4 72(39.41) 54(34.92) 40(32.98) 25(34.12) 19(44.94)
64 4 179(15.21) 118(11.82) 79(10.30) 54(10.99) 35(14.75)

H 1 formulation, β = 10−5, δ = 0%

4 5 52(233.36) 34(202.76) 21(184.87) 14(182.29) 12(194.77)
16 4 96(47.03) 63(37.67) 41(32.62) 26(33.54) 17(43.48)
64 4 171(14.44) 110(11.07) 71(9.50) 46(9.81) 25(12.77)

H 1 formulation, β = 10−5, δ = 1%

4 5 48(227.45) 33(200.85) 20(184.23) 14(182.46) 10(194.16)
16 4 75(39.69) 55(34.75) 30(28.65) 22(31.67) 15(42.30)
64 4 142(11.60) 89(9.45) 53(7.79) 40(9.14) 23(12.28)

H 1 formulation, β = 10−4, δ = 10%

4 4 61(199.28) 43(176.87) 26(156.70) 18(151.73) 12(159.66)
16 4 89(44.54) 60(36.26) 45(34.41) 26(33.77) 18(43.76)
64 4 141(12.23) 104(10.58) 66(9.01) 46(9.82) 26(12.94)

Table 3. Test 2. Processor scalability in L2 and H 1 formulations
on a 321× 321 mesh, with total number of Newton iterations, aver-
age number of GMRES iterations per Newton, and total computing
time in seconds shown in ( ), with different overlapping sizes.

since the accuracy is determined by the mesh size and the level of noise. When the
level of noise is fixed, one may not always obtain a better solution even if a finer
mesh is used. To test the scalability of the proposed algorithm and software, we
construct larger test problems by increasing the computational domain.
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In this test case the solution has multiple peaks, and the exact and numerical
solutions are shown in Figure 3. We observe that the errors are kept at the same
level when we change the size of the computational domain for different numbers
of processors. The H 1 results are a little better than the L2 results. According to
the results shown in Table 5 we see that the number of Newton iterations is almost a
constant for different numbers of processors, but the number of GMRES iterations
slightly increases, which is expected for a single-level method. In some cases when
the computational domain is very large and the noise level is high, Newton fails to
converge unless we use a larger β.

3.2.4. Test 4. This problem is also defined on a large domain as in Test 3. The
difference is that ρ is a discontinuous function with several jumps in the x-direction
as shown in Figure 4. The surface plots of the computational results of ρ in L2 and
H 1 formulation are shown in Figure 4. The results obtained with the L2 formulation
are continuous and quite smooth even if the actual solutions should have jumps. The
H 1 formulation leads to piecewise continuous solutions and keeps the discontinuity
much better than the L2 formulation. As for the scalability of the algorithm, Table
6 shows that the performance is very similar to that of Test 3.

4. Concluding remarks

A parallel one-level Newton–Krylov–Schwarz method was investigated for solving
the nonlinear system of algebraic equations arising from the fully coupled finite
difference discretization of inverse elliptic problems in both the L2 and H 1 for-
mulations. We tested the algorithms for problems with smooth solutions and for
problems with discontinuous solutions. Acceptable solutions were obtained even
when the level of noise is quite large. The mesh and processor scalabilities of the
algorithm were studied for meshes up to 641× 641 in two dimensions and with
up to 64 processors. The iterative method was optimally scalable with respect to
the mesh size. The number of iterations increases as the number of processors
increases, which was expected for the one-level method. The algorithmic and
software framework is applicable to a wide range of inverse problems, and our
future research includes the extension of the algorithms to three dimensions, the
study of other regularization techniques and their impact on the linear and nonlinear
solvers, and the development of multilevel versions of the algorithm which will be
needed for parallel computers with a large number of processors.

Appendix

In this section, we prove that if we choose the regularization term

N (ρ)=
1
2

∫
�

|∇ρ|2 dx,
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Figure 3. Test 3 on computational domain (0, 4)× (0, 4). Top:
surface plot of the exact solution ρ. Bottom six pictures are nu-
merical solutions with δ = 0%, δ = 1% and δ = 10%. Left: L2

formulation; right: H 1 formulation.
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np Newton GMRES Newton GMRES Newton GMRES

81× 81 mesh 161× 161 mesh 321× 321 mesh

L2 formulation, β = 10−6, δ = 0%

4 3 7(2.84) 3 6(18.97) 3 6(142.96)
16 3 14(0.69) 3 14(4.51) 3 14(32.06)
64 3 38(0.32) 3 40(1.16) 3 42(7.21)

L2 formulation, β = 10−5, δ = 1%

4 3 7(2.85) 3 7(19.19) 3 6(143.01)
16 3 18(0.75) 3 17(4.73) 3 15(32.48)
64 3 47(0.38) 3 45(1.24) 3 45(7.41)

L2 formulation, β = 10−4, δ = 10%

4 3 9(2.99) 3 8(19.72) 3 8(146.54)
16 3 24(0.86) 3 23(5.34) 3 22(35.48)
64 3 75(0.54) 3 72(1.69) 3 66(9.38)

H 1 formulation, β = 10−5, δ = 0%

4 4 7(3.61) 4 7(24.77) 4 7(234.55)
16 4 17(0.94) 4 19(4.80) 4 17(43.50)
64 4 44(0.47) 4 47(1.23) 4 46(9.79)

H 1 formulation, β = 10−5, δ = 1%

4 4 8(3.66) 4 7(24.55) 5 7(234.02)
16 4 16(0.93) 4 15(5.89) 4 15(42.30)
64 4 44(0.47) 4 41(1.49) 4 40(9.15)

H 1 formulation, β = 10−4, δ = 10%

4 4 8(3.70) 4 8(25.23) 4 8(190.87)
16 4 17(0.95) 4 17(6.16) 4 18(43.77)
64 4 41(0.45) 4 48(1.66) 4 46(9.82)

Table 4. Test 2. Mesh size scalability in L2 and H 1 formulations,
with total number of Newton iterations, average number of GMRES
iterations per Newton, and total computing time in seconds, shown
in ( ), for different meshes and numbers of processors; ovlp= 1/5
diameter of the subdomain.
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np domain mesh erroru errorρ Newton GMRES

L2 formulation, β = 10−6, δ = 0%
1 (0, 1)× (0, 1) 81× 81 0.000004 0.000177 2 1
4 (0, 2)× (0, 2) 161× 161 0.000004 0.000190 2 15
16 (0, 4)× (0, 4) 321× 321 0.000004 0.000195 2 31
64 (0, 8)× (0, 8) 641× 641 0.000005 0.000220 2 130

L2 formulation, β = 10−5, δ = 1%

1 (0, 1)× (0, 1) 81× 81 0.000359 0.004668 3 1
4 (0, 2)× (0, 2) 161× 161 0.000383 0.004655 3 14
16 (0, 4)× (0, 4) 321× 321 0.000381 0.004637 3 30
64 (0, 8)× (0, 8) 641× 641 0.000378 0.004637 3 61

L2 formulation, β = 10−4, δ = 10%

1 (0, 1)× (0, 1) 81× 81 0.003209 0.015846 3 1
4 (0, 2)× (0, 2) 161× 161 0.002886 0.017710 3 12
16 (0, 4)× (0, 4) 321× 321 0.002876 0.014799 3 24
64 (0, 8)× (0, 8) 641× 641 0.002844 0.014890 3 43

H 1 formulation, β = 10−5, δ = 0%

1 (0, 1)× (0, 1) 81× 81 0.000066 0.000263 4 1
4 (0, 2)× (0, 2) 161× 161 0.000064 0.000260 5 30
16 (0, 4)× (0, 4) 321× 321 0.000065 0.000263 5 58
64 (0, 8)× (0, 8) 641× 641 0.000071 0.000278 5 123

H 1 formulation, β = 10−4, δ = 1%

1 (0, 1)× (0, 1) 81× 81 0.000085 0.001706 4 1
4 (0, 2)× (0, 2) 161× 161 0.000067 0.001624 4 18
16 (0, 4)× (0, 4) 321× 321 0.000078 0.001569 4 42
64 (0, 8)× (0, 8) 641× 641 0.000091 0.001550 4 76

H 1 formulation, β = 10−3, δ = 10%

1 (0, 1)× (0, 1) 81× 81 0.001894 0.006133 3 1
4 (0, 2)× (0, 2) 161× 161 0.001752 0.005660 4 14
16 (0, 4)× (0, 4) 321× 321 0.001907 0.005773 4 26
64 (0, 8)× (0, 8) 641× 641 0.001933 0.004450 4 41∗

Table 5. Test 3 with ovlp= 16. ∗Bottom line: β = 10−2.
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np domain mesh erroru errorρ Newton GMRES

L2 formulation, β = 10−6, δ = 0%

1 (0, 1)× (0, 1) 81× 81 0.000879 0.142454 3 1
4 (0, 2)× (0, 2) 161× 161 0.000879 0.142054 3 7
16 (0, 4)× (0, 4) 321× 321 0.000863 0.142271 3 21
64 (0, 8)× (0, 8) 641× 641 0.000861 0.142213 3 64

L2 formulation, β = 10−5, δ = 1%

1 (0, 1)× (0, 1) 81× 81 0.002342 0.175353 4 1
4 (0, 2)× (0, 2) 161× 161 0.002313 0.174540 4 7
16 (0, 4)× (0, 4) 321× 321 0.002280 0.174360 4 17
64 (0, 8)× (0, 8) 641× 641 0.002265 0.174064 4 50

L2 formulation, β = 10−4, δ = 10%

1 (0, 1)× (0, 1) 81× 81 0.006600 0.220451 4 1
4 (0, 2)× (0, 2) 161× 161 0.006522 0.219846 4 8
16 (0, 4)× (0, 4) 321× 321 0.006148 0.217108 4 19
64 (0, 8)× (0, 8) 641× 641 0.005972 0.215940 4 42

H 1 formulation, β = 10−5, δ = 0%

1 (0, 1)× (0, 1) 81× 81 0.000093 0.078365 4 1
4 (0, 2)× (0, 2) 161× 161 0.000093 0.078148 6 29
16 (0, 4)× (0, 4) 321× 321 0.000093 0.078040 6 56
64 (0, 8)× (0, 8) 641× 641 0.000093 0.077985 6 95

H 1 formulation, β = 10−4, δ = 1%

1 (0, 1)× (0, 1) 81× 81 0.000301 0.106186 4 1
4 (0, 2)× (0, 2) 161× 161 0.000298 0.105925 4 29
16 (0, 4)× (0, 4) 321× 321 0.000299 0.105777 4 38
64 (0, 8)× (0, 8) 641× 641 0.000301 0.105717 4 64

H 1 formulation, β = 10−3, δ = 10%

1 (0, 1)× (0, 1) 81× 81 0.002268 0.143252 4 1
4 (0, 2)× (0, 2) 161× 161 0.002167 0.142860 4 15
16 (0, 4)× (0, 4) 321× 321 0.002293 0.142457 4 28
64 (0, 8)× (0, 8) 641× 641 0.002334 0.142601 5 55

Table 6. Test 4 with ovlp= 16.



PARALLEL OVERLAPPING DOMAIN DECOMPOSITION METHODS 23

0

1

2

3

4

0

1

2

3

4
1

1.2

1.4

1.6

1.8

2

0

1

2

3

4

0

1

2

3

4
1

1.2

1.4

1.6

1.8

2

0

1

2

3

4

0

1

2

3

4
1

1.2

1.4

1.6

1.8

2

0

1

2

3

4

0

1

2

3

4
1

1.2

1.4

1.6

1.8

2

0

1

2

3

4

0

1

2

3

4
1

1.2

1.4

1.6

1.8

2

0

1

2

3

4

0

1

2

3

4
1

1.2

1.4

1.6

1.8

2

0

1

2

3

4

0

1

2

3

4
1

1.2

1.4

1.6

1.8

2

Figure 4. Test 4 on computational domain (0, 4)× (0, 4). Top:
surface plot of the exact solution ρ. Bottom six pictures are nu-
merical solutions with δ = 0%, δ = 1% and δ = 10%. Left: L2

formulation; right: H 1 formulation.
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as in (4) and (5), then ρ automatically satisfies the zero Neumann boundary condition

∂ρ

∂n
= 0.

To see this, we take the derivative of L in (4) with respect to ρ at any direction
p ∈ H 1(�) to obtain

(∇ρL)p = β
∫
�

∇ρ · ∇ p dx +
∫
�

p∇u · ∇λ dx = 0 . (A.1)

Applying the integration by parts to the first term in (A.1),∫
�

∇ρ · ∇ p dx =−
∫
�

1ρ p dx +
∫
∂�

∂ρ

∂n
p ds ,

we obtain ∫
�

(−β1ρ+∇u · ∇λ) p dx +β
∫
∂�

∂ρ

∂n
p ds = 0

for any p. This implies that, if β 6= 0,

∂ρ

∂n
= 0

on ∂�. The same result can be obtained for the H 1 formulation (4).
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COMMENTS ON HIGH-ORDER INTEGRATORS EMBEDDED
WITHIN INTEGRAL DEFERRED CORRECTION METHODS

ANDREW CHRISTLIEB, BENJAMIN ONG AND JING-MEI QIU

A class of novel deferred correction methods, integral deferred correction (IDC)
methods, is studied. This class of methods is an extension of ideas introduced
by Dutt, Greengard and Rokhlin on spectral deferred correction (SDC) methods
for solving ordinary differential equations (ODEs). The novel nature of this
class of defect correction methods is that the correction of the defect is carried
out using an accurate integral form of the residual instead of the more familiar
differential form. As a family of methods, these schemes are capable of matching
the efficiency of popular high-order RK methods.

The smoothness of the error vector associated with an IDC method is an
important indicator of the order of convergence that can be expected from a
scheme (Christlieb, Ong, and Qiu; Hansen and Strain; Skeel). It is demonstrated
that embedding an r -th order integrator in the correction loop of an IDC method
does not always result in an r-th order increase in accuracy. Examples include
IDC methods constructed using non-self-starting multistep integrators, and IDC
methods constructed using a nonuniform distribution of quadrature nodes.

Additionally, the integral deferred correction concept is reposed as a framework
to generate high-order Runge–Kutta (RK) methods; specifically, we explain how
the prediction and correction loops can be incorporated as stages of a high-order
RK method. This alternate point of view allows us to utilize standard methods
for quantifying the performance (efficiency, accuracy and stability) of integral
deferred correction schemes. It is found that IDC schemes constructed using
uniformly distributed nodes and high-order integrators are competitive in terms of
efficiency with IDC schemes constructed using Gauss–Lobatto nodes and forward
Euler integrators. With respect to regions of absolute stability, however, IDC
methods constructed with uniformly distributed nodes and high-order integrators
are far superior. It is observed that as the order of the embedded integrator
increases, the stability region of the IDC method increases.
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1. Introduction

In this paper, we construct and analyze a class of novel correction methods, integral
deferred correction methods (IDC), which are constructed using high-order single-
step and multistep integrators in the prediction and correction loops. IDC methods
were first introduced in [4], and further developed and analyzed in [2; 5; 11; 18; 15].
Essentially, a deferred correction procedure is applied to an integral formulation of
the error equation. This error equation is then solved by choosing a distribution
of quadrature nodes and an integrator; these choices are crucial in determining
the accuracy and stability of the scheme. For example, the selection of quadrature
nodes is discussed in [15] and the selection of integrators for the prediction and
correction loops are discussed in [16; 14; 18]. The authors in [11; 12] use Gaussian
quadrature nodes and Krylov subspace methods to accelerate the convergence of
the scheme. In [2], the advantages of using high-order RK integrators in SDC
framework are shown analytically and numerically.

To study the properties of IDC schemes, the error arising from these schemes has
to be analyzed. This error has two separate components: the first component is the
error between the collocation solution on a given set of quadrature nodes and the
exact solution [5; 11; 12]; this component limits the maximum achievable accuracy
of IDC methods. The second component is the error that arises from using deferred
correction iterations to approximate the collocation solution [2; 8; 9; 21]. In Section
3 of this paper, we focus on the second component of the abovementioned error. We
will show that IDC methods constructed with p-th order multistage RK integrators
(IDC-RK) and a uniform distribution of quadrature nodes give a p-th order increase
in accuracy after each correction loop (under mild assumptions), whereas IDC-RK
methods constructed with a nonuniform distribution of quadrature nodes do not give
a p-th order increase (p≥ 2) after each correction loop. When multistep methods —
for example, Adams–Bashforth (AB) methods — are used within an IDC method,
the smoothness of the rescaled error vector prevents a high-order accuracy increase
after each correction loop, regardless of the distribution of quadrature nodes.

In Section 4, we address a commonly perceived drawback of IDC methods:
the additional computational overhead needed to implement these schemes. By
formulating IDC-RK methods into an RK method, the local truncation error arising
from IDC-RK schemes can be estimated. We show that a smaller truncation
error offsets the computational overhead, making IDC methods constructed using
uniformly distributed nodes and high-order integrators, as well as IDC methods
constructed using Gaussian–Lobatto nodes and forward Euler integrators, competi-
tive (in terms of efficiency) with known RK methods for eighth- and higher-order
schemes. Additionally, the formulation of IDC-RK methods as an RK method
gives a systematic way to generate arbitrary-order RK methods without solving
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complicated order conditions; an added bonus is that the entries of the RK Butcher
tableau [6] can be computed exactly using a symbolic manipulator. Accuracy
plots are generated in Section 4.3, validating the error estimates while stability
plots in Section 4.4 show that IDC methods offer a much larger stability region
compared with known RK methods. In fact, as the order of the embedded integrator
is increased, the stability region of an IDC method also increases. These superior
stability regions are one of the promising features of IDC-RK methods.

This paper is organized into three main sections. In Section 2, a brief review
of IDC methods is given. In Section 3, properties of IDC methods constructed
using general high-order integrators and various distributions of quadrature nodes
are given, along with some examples. IDC methods are then reformulated into
high-order RK methods in Section 4, and a detailed comparison between IDC
methods and RK methods is given. Section 5 contains the conclusion and closing
remarks.

2. Review of IDC methods

This section is a review of IDC methods from [4]. Our discussion of these methods
is based on notation introduced below. We consider an IVP consisting of a system
of ODEs and initial conditions,{

y′(t)= f (t, y), t ∈ [0, T ],
y(0)= y0.

(2-1)

The time domain, [0, T ], is discretized into intervals,

0= t1 < t2 < · · ·< tn < · · ·< tN = T,

and each interval, In = [tn, tn+1], is further discretized into subintervals,

tn = tn,0 = tn,1 < · · ·< tn,m < · · ·< tn,M = tn+1. (2-2)

We refer to tn,m as quadrature nodes, whose index m runs from 0 to M .
An IDC method on each time interval [tn, tn+1], described below, is iterated

completely to define the starting value for the next interval, [tn+1, tn+2]. We drop
the subscript n, so that tn,m =: tm in (2-2), with the understanding that the IDC
method is described for that one time interval.

• (prediction step) Use an r0-th order numerical method to obtain a numerical
solution, Eη[0] = (η[0]0 , η

[0]
1 , . . . , η

[0]
m , . . . , η

[0]
M ), which is an r0-th order approxi-

mation to Ey= (y0, y1, . . . , ym, . . . , yM), where ym= y(tm) is the exact solution
at tm .
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• (correction loop) Use the error function to improve the accuracy of the scheme
at each iteration.
For k = 1, . . . , kl (kl is number of correction steps)

(1) Denote the error function from the (k−1)-st loop as

e(k−1)(t)= y(t)− η(k−1)(t), (2-3)

where y(t) is the exact solution and η(k−1)(t) is an M-th degree polyno-
mial interpolating Eη[k−1]. Note that the error function, e(k−1)(t), is not a
polynomial in general.

(2) Compute the residual function, ε(k−1)(t)= (η(k−1))′(t)− f (t, η(k−1)(t)).
In the literature, the residual function is often called the pointwise, or
differential defect.

(3) Compute the numerical error vector, Eδ[k]= (δ[k]0 , . . . , δ[k]m , . . . , δ[k]M ), using
an rk-th order numerical method to discretize the integral form of the error
equation,(

e(k−1)
+

∫ t

0
ε(k−1)(τ ) dτ

)′
(t)= f (t, η(k−1)(t)+ e(k−1)(t))− f (t, η(k−1)(t))

.
= F(t, e(k−1)(t)), (2-4)

where F(t, e(t)) = f (t, η(t)+ e(t))− f (t, η(t)), Eδ[k] is an rk-th order
approximation to

Ee[k−1]
= (e[k−1]

0 , . . . , e[k−1]
m , . . . , e[k−1]

M ),

and e[k−1]
m = e(k−1)(tm) is the value of the exact error function at tm .

(4) Update the numerical solution Eη[k] = Eη[k−1]
+ Eδ[k].

Notationally, superscripts with a round bracket, for example (k), denote a function,
while superscripts with a square bracket, [k], denote a vector at the k-th correction
step. English letters are reserved for functions or vectors in the exact solution space,
for example an exact solution y(t) and an exact error function e(t), while Greek
letters denote functions or vectors in the numerical solution space, for example a
numerical solution η(t) and a numerical error function δ(t).

A forward Euler discretization of the error (2-4) gives

δ[k]m+1 = δ
[k]
m +hm( f (tm, η[k−1]

m +δ[k]m )− f (tm, η[k−1]
m ))−

∫ tm+1

tm
ε(k−1)(t) dt, (2-5)

where hm = tm+1− tm . Expanding the integral in (2-5),∫ tm+1

tm
ε(k−1)(t) dt =

[
η(k−1)(tm+1)−η

(k−1)(tm)
]
−

∫ tm+1

tm
f (t, η(k−1)(t)) dt, (2-6)
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and substituting (2-6) into (2-5) results in

η[k]m+1 = η
[k]
m + hm

[
f (tm, η[k−1]

m + δ[k]m )− f (tm, η[k−1]
m )

]
+

∫ tm+1

tm
f (t, η[k−1](t)) dt.

(2-7)
The integral in (2-7) can be evaluated using a Lagrange interpolant constructed
from the function values,

∫ tm+1
tm

L(Et, Ef )(τ ) dτ , where

L(Et, Ef )(τ )=
M∑

m=0

αm(τ ) fm,

with αm(τ )=
∏
n 6=m

τ − tn
tm − tn

and fm = f (tm, η[k−1](tm)). (2-8)

Hence, (2-7) can also be written as

η[k]m+1 = η
[k]
m + hm

[
f (tm, η[k−1]

m + δ[k]m )− f (tm, η[k−1]
m )

]
+

M∑
j=0

Smj f (t j , η
[k−1]
j ),

where

Smj =

∫ tm+1

tm
α j (τ ) dτ

are the elements of the so-called integration matrix.
IDC methods constructed using s-stage RK integrators (IDC-RKs) are more

involved. We provide the following details for discretizing the error (2-4) for
uniformly distributed quadrature nodes; generalization to nonuniformly distributed
quadrature nodes is straightforward. Denoting by h the interval size for the uniformly
distributed nodes and implementing an s-stage RK integrator to discretize (2-4)
gives

k1 = F(tm, δ[k−1]
m ), (2-9a)

k2 = F
(

tm + c2h, δ[k−1]
m + ha2,1k1−

∫ tm+c2h

tm
ε(k−1)(τ ) dτ

)
, (2-9b)

k3 = F
(

tm + c3h, δ[k−1]
m + h(a3,1k1+ a3,2k2)−

∫ tm+c3h

tm
ε(k−1)(τ ) dτ

)
,

...

ks = F
(

tm + csh, δ[k−1]
m + h

s−1∑
l=1

as,lkl −

∫ tm+cs h

tm
ε(k−1)(τ ) dτ

)
, (2-9c)

δ[k−1]
m+1 = δ

[k−1]
m + h

s∑
l=1

blkl −

∫ tm+h

tm
ε(k−1)(τ ) dτ, (2-9d)
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where A, Eb, Ec are conventional Butcher table entries [7] for an s-stage RK integrator:

Ec A

EbT
.

Each RK stage, for example (2-9b),

k2 = f
(

tm + c2h, η(k−1)(tm + c2h)+ δ[k−1]
m + ha2,1k1−

∫ tm+c2h

tm
ε(k−1)(τ ) dτ

)
− f

(
tm + c2h, η(k−1)(tm + c2h)

)
, (2-10)

involves the integral of the residual function,∫ tm+c2h

tm
ε(k−1)(τ ) dτ

=
[
η(k−1)(tm + c2h)− η(k−1)(tm)

]
−

∫ tm+c2h

tm
f (t, η(k−1)(t)) dt, (2-11)

where the integral in (2-11)∫ tm+c2h

tm
f (t, η(k−1)(t)) dt =

M∑
j=0

Sm·s+2, j f (t j , η
[k−1]
j ),

can be evaluated using the integration matrix, Sm·s+2, j =
∫ tm+c2h

tm
α j (t) dt . For

future reference, the general expression for the entries of this expanded integration
matrix is

Sm·s+l, j =

{ ∫ tm+cl h
tm

α j (t) dt, l = 2, . . . , s, m = 0, . . . ,M − 1, j = 0, . . . ,M,∫ tm+1
tm

α j (t) dt, l = 1, m = 0, . . . ,M − 1, j = 0, . . . ,M.
(2-12)

We choose this expanded definition of the integration matrix so that IDC methods
constructed with single step integrators can be formulated as a high-order RK
method in Section 4.1. Using this definition of the integration matrix, (2-10) can be
expressed as

k2 = f
(

tm,+c2h, η[k]m + ha2,1k1−

M∑
j=0

Sm·s+2, j f (t j , η
[k−1]
j )

)
− f

(
tm + c2h, η(k−1)(tm + c2h)

)
. (2-13)

The term f
(
tm + c2h, η(k−1)(tm + c2h)

)
in (2-13) can be computed by evaluating

the Lagrangian interpolant at the intermediate stage, L(Et, Ef )(tm+c2h). This can also
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be written as

L(Et, Ef )(tm + c2h)=
M∑

j=0

Lm·s+2, j f (t j , η
[k−1]
j ),

where the entries of the interpolation matrix are given by

Lm·s+l, j = α j (tm + clh), l = 1, . . . , s, m = 0, . . . ,M − 1. (2-14)

The remaining stages and their combinations are evaluated in a similar fashion.
In Section 4.1, we systematically formulate IDC methods constructed using RK
integrators as high-order RK methods.

We omit details for constructing IDC methods using multistep integrators (such
as IDC-AB) because such schemes are not self-starting. We show in Section 3
that the obvious approach of using a high-order RK integrator to compute the first
few steps results in an error vector which lacks sufficient smoothness; this lack of
smoothness results in a poorer than desired accuracy increase after each correction
loop.

3. IDC methods constructed using high-order integrators

In this section, we discuss the accuracy of IDC methods constructed using high-
order integrators and various distributions of quadrature nodes. Specifically, IDC
methods constructed using multistage RK methods are discussed in Section 3.2 for
uniformly spaced quadrature nodes, and Section 3.3 for a nonuniform distribution.
IDC methods constructed using high-order multistep methods are given in Section
3.4. The smoothness of the rescaled error vector measured in a discrete Sobolev
norm is a crucial tool for both discussions; we review this concept in Section 3.1.

3.1. Mathematical preliminaries. Several analytical and numerical preliminaries
are needed to analyze IDC methods. The smoothness of discrete data sets will be
established, analog to the smoothness of functions; this idea of smoothness is used
to analyze the error vectors. Let f (t) be a function for t ∈ [0, T ], and denote the
corresponding discrete data set,

(Et, Ef )= {(t0, f0), . . . , (tM , fM)} , (3-1)

where

0= t0 < t1 < t2 < . . . < tM = H. (3-2)

Definition 3.1 (Smoothness of a function). A function f (t), t ∈ [0, T ], possesses S
degrees of smoothness if ‖ds f ‖∞ := ‖∂

s f/∂t s‖∞ is bounded for s = 0, 1, 2, . . . , S,
where ‖ f ‖∞ :=maxt∈[0,T ] | f (t)|.
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Definition 3.2 (s-th degree spectral differentiation). Consider the discrete data set,
(Et, Ef ), defined in (3-1), and let L(Et, Ef )(τ ) be the Lagrange interpolant described in
(2-8). An s-th degree spectral differentiation is a linear mapping that maps Ef into

−→

d̂s f , where (d̂s f )m = (∂s/∂τ s)L(Et, Ef )(τ )|τ=tm .

This linear mapping can be represented by
−→

d̂s f = D̂s · Ef ,

where D̂s ∈R(M+1)×(M+1) and (D̂s)mn = (∂
s/∂τ s)cn(τ )|τ=tm , m, n = 0, . . . ,M .

Remark 3.3. Given a distribution of quadrature nodes on [0, 1], the spectral differ-
entiation matrices, D̂[0,1]s , s = 1, . . . ,M , have constant entries. If this distribution
of quadrature nodes is rescaled from [0, 1] to [0, H ], then the corresponding differ-
entiation matrices are

D̂1 =
1
H

D̂[0,1]1 and D̂s =

(
1
H

)s

D̂[0,1]s .

Definition 3.4. The (Ŝ,∞) Sobolev norm of a discrete data set (Et, Ef ) is defined as

∥∥ Ef ∥∥Ŝ,∞ :=
∥∥ Ef ∥∥

∞
+

S∑
s=1

∥∥−→d̂s f
∥∥
∞
=
∥∥ Ef ∥∥

∞
+

S∑
s=1

∥∥D̂s · Ef
∥∥
∞
.

Definition 3.5 (Smoothness of a discrete date set). A discrete data set, (3-1), pos-
sesses S ≤ M degrees of smoothness if ‖ Ef ‖Ŝ,∞ is bounded as H → 0.

Remark 3.6. We emphasize that smoothness is a property of discrete data sets in
the limit as H → 0. We also impose S ≤ M , because

−−→

d̂S f ≡ E0,

for S > M . See [2] for a detailed discussion.

Example 3.7 (A discrete data set with only one degree of smoothness). Consider
the discrete data set

(Et, Ef )=
{
(0, 0),

(H
4
,

H
4

)
,
(H

2
,

H
2

)
,
(3H

4
,

H
4

)
, (H, 0)

}
.

The first derivative
−→

d̂1 f =
(
−

4
3
,

10
3
, 0,−

10
3
,

4
3

)
,

is bounded independent of H , while the second derivative
−→

d̂2 f =
( 272

3H
,−

16
3H

,−
112
3H

,−
16
3H

,
272
3H

)
,
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is unbounded as H → 0. Therefore, (Et, Ef ) has one and only one degree of smooth-
ness in the discrete sense.

3.2. IDC methods constructed using RK integrators and uniformly spaced quad-
rature nodes. Integral deferred correction methods constructed using high-order
RK integrators (IDC-RK) and uniformly spaced quadrature nodes boast superior
accuracy and stability regions [2]. We restate the following theorem and lemmas
from [2], which prove (under mild conditions) the accuracy of these IDC-RK
methods. An example is provided to illustrate the main components of the theorem.

Theorem 3.8. Let y(t), the solution to the IVP (2-1), have at least S≥M+2 degrees
of smoothness in the continuous sense. Then, the local error for an IDC method
constructed using (M + 1) uniformly distributed nodes, (tm = mh,m = 0, . . . ,M),
an (r0)-th order RK method in the prediction step and (r1, r2, . . . , rkl )-th order RK
methods, is O(h(skl+1)), where skl =

∑kl
j=0 r j ≤ M + 1.

The proof of Theorem 3.8 follows from the two lemmas below. Lemma 3.9
addresses the case k = 0, and Lemma 3.10 addresses the inductive argument. We
emphasize that both lemmas not only bound the error vectors, but also guarantee
sufficient smoothness in the prediction and correction steps.

Lemma 3.9. (prediction step) Let Eη[0] = (η[0]0 , . . . , η
[0]
m , . . . , η

[0]
M ) be the numerical

solution obtained after the prediction step. Then, the error vector Ee[0] = Ey − Eη[0]

satisfies

‖Ee[0]‖∞ ∼ O(hr0+1),

and the rescaled error vector Ẽe[0]= 1
hr0 Ee
[0] has min(S−r0,M) degrees of smoothness

in the discrete sense.

Proof. We provide the following outline for a proof when a forward Euler integrator
is used in the prediction step. Details for the more general case of using an RK
integrator is provided in [2].

We drop the superscript [0] as there is no ambiguity. Since ηm+1 = ηm +

h f (tm, ηm), the error at tm+1, em+1 = ym+1− ηm+1 satisfies

em+1 = em + h( f (tm, ym)− f (tm, ηm))+

S−1∑
i=2

hi

i !
y(i)(tm)+O(hS),

where we have performed a Taylor expansion of ym+1 about t = tm . Let um =

f (tm, ym)− f (tm, ηm), and

rm =
h2

2!
y(2)(tm)+ · · ·+

hS−1

(S− 1)!
y(S−1)(tm).



36 ANDREW CHRISTLIEB, BENJAMIN ONG AND JING-MEI QIU

Notice that

um = em fy(tm, ym)+ · · ·+
(−1)S−1(em)

S−2

(S− 2)!
fyS−2(tm, ym)+O((em)

S−1),

where we have performed a Taylor expansion of f (t, ηm) about y= ym . We are now
ready to bound ‖Ee[0]‖∞ by induction. By definition, e0= 0, so certainly, e0∼ O(h2).
Assume that em ∼ O(h2). Since um ∼ O(em)∼ O(h2), we have

em+1 = em + hum + rm +O(hS)∼ O(h2),

which completes the inductive proof that ‖Ee‖∞ ∼ O(h2). Note that the inductive
proof was with respect to m, the index of the grid points.

To prove the smoothness of the rescaled error vector, we will again use an
inductive approach, but this time with respect to s, the degree of smoothness. First,
note that a discrete differentiation of the rescaled error vector gives

(d1ẽ)m =
ẽm+1− ẽm

h
= ũm +

rm

h2 +O(hS−2), (3-3)

where

ũm =
um

h
=

S−2∑
i=1

(−1)i+1 hi−1

i !
fyi (tm, ym)(ẽm)

i
+O(h2S−3).

We are now ready to prove that Ẽe has M degrees of smoothness by induction.
Since ‖Ẽe‖∞ ∼ O(h), Ẽe has at least zero degrees of smoothness in the discrete sense.
Assume that Ẽe has s ≤ M − 1 degrees of smoothness. We will show that

−→
d1ẽ has s

degrees of smoothness, from which we can conclude that Ẽe has (s+ 1) degrees of
smoothness.

Since fyi has (S− i − 1) degrees of smoothness in the continuous sense,

−→
fyi = [ fyi (t0, y0), . . . , fyi (tM , yM)]

has (S− i − 1) degrees of smoothness in the discrete sense. Consequently, hi−1−→fyi

has (S−2) degrees of smoothness, which implies that Ẽu has min (S− 2, s) degrees
of smoothness. Similarly, Er/h2 has (S− 2) degrees of smoothness in the discrete
sense. Hence

−→
d1ẽ has s degrees of smoothness H⇒ Ẽe has (s + 1) degrees of

smoothness. Since this argument holds for S ≥ M + 2, we can conclude that Ẽe has
M degrees of smoothness. �

Lemma 3.10 (Correction step). Suppose after the (k − 1)-st correction loop the
error vector satisfies Ee[k−1]

∼ O(hsk−1+1) and the rescaled error vector

Ẽe[k−1]
=

1
hsk−1
Ee[k−1]
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has M + 1− sk−1 degrees of smoothness in the discrete sense. Then, after the k-th
(k < kl) correction loop the updated error vector satisfies

‖Ee[k]‖∞ ∼ O(hsk+1),

and the rescaled error vector
Ẽe[k] =

1
hsk
Ee[k]

has M + 1− sk degrees of smoothness in the discrete sense.

The proof is similar in spirit to the proof of Lemma 3.9 and is omitted for brevity.

Example 3.11. Consider the IVP

y′(t)= y(t); y(0)= 1. (3-4)

We solve IVP (3-4) with an IDC method constructed using six uniformly spaced
quadrature nodes and the second-order trapezoidal RK method in the prediction
and correction loops. Let H be the interval size and h = H

5 be the subinterval size.
Computing the Taylor expansion of the numerical solution about t = 0 with O(h7)

truncation error, the rescaled error vectors are

Ẽe[0] =
{

0,
h

750
+

h2

15,000
+

h3

375,000
+

h4

11,250,000
,

h
375
+

h2

1,500
+

4h3

46,875
+

4h4

703,125
,

h
250
+

9h2

5,000
+

51h3

125,000
+

71h4

1,250,000
,

2h
375
+

13h2

3,750
+

53h3

46,875
+

166h4

703,125
,

h
150
+

17h2

3000
+

181h3

75,000
+

301h4

450,000

}
+O(h5),

Ẽe[1] =
{

0,
h

225,000
−

h2

4,500,000
,

h
112,500

+
7h2

2,250,000
,

h
75,000

+
h2

100,000
,

h
56,250

+
23h2

1,125,000
,

h
45,000

+
86111h2

250,000

}
+O(h3),

Ẽe[2] = O(h).

As postulated by the lemmas, the rescaled error vector Ẽe[0] has five degrees of
smoothness, Ẽe[1] has three degrees of smoothness, and Ẽe[3] has one degree of
smoothness. Table 1 gives the error and order of the implemented IDC method after
the prediction step and each correction loop. As expected, second-order convergence
is observed after the prediction loop, fourth-order convergence is observed after one
correction loop, and sixth-order convergence is observed after the second correction
loop.
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1 loop of RK2 2 loops of RK2 3 loops of RK2

steps error order error order error order

5 7.03E-4 – 1.06E-7 – 5.91E-11 –
10 1.79E-4 1.98 6.36E-9 4.07 9.55E-13 5.95
15 7.97E-5 1.99 1.24E-9 4.04 8.26E-14 6.04
20 4.50E-5 1.99 3.88E-10 4.03 1.20E-14 6.71
25 2.88E-5 1.99 1.59E-10 4.02 4.44E-16 14.77

Table 1. Example 3.11: IDC6-RK2, the sixth-order IDC method
constructed using six uniformly distributed quadrature nodes and
the trapezoidal RK2, is used to solve IVP (3-4). The error at
T = 1 is measured after the prediction loop (1 loop of RK2), first
correction loop (2 loops of RK2) and second correction loop (3
loops of RK2). The corresponding order of convergence is calcu-
lated.

3.3. IDC Methods constructed using RK integrators and nonuniform distribu-
tions of quadrature nodes. One might consider constructing an IDC method using
a nonuniform distribution of quadrature nodes, such as Gaussian–Lobatto [1] (or
Gaussian–Radau or Gaussian) nodes, because their collocation solution can achieve
2M ((2M + 1) or (2M + 2)) orders of accuracy with M + 1 nodes. Consequently,
one would expect that the computational effort for an IDC scheme constructed with
Gaussian–Lobatto points should be a fraction of that for an equivalent scheme using
a uniform distribution of nodes.

However, when high-order integrators are applied to the error equation, the
lack of smoothness of the rescaled error vector associated with such IDC methods
destroys the high-order accuracy increase. Consequently, there is little advantage
to constructing IDC-RK integrators using a nonuniform distribution of quadrature
nodes. However, when considering IDC method with low-order integrators, such as
forward/backward Euler, nonuniform quadrature points, such as Gaussian points,
might be advantageous because of the reduced sensitivity to interpolation error,
and a better conditioned interpolation/integration matrix. This is best illustrated by
the following examples. In Example 3.12, we consider IDC methods constructed
using the trapezoidal RK2 method and quadrature nodes with linearly increasing
interval sizes. In Example 3.13, we consider an IDC method constructed using
Gaussian–Lobatto quadrature nodes and the trapezoidal RK2 method.

Example 3.12 (Linearly increasing interval sizes). We solve IVP (3-4) numerically
with an IDC method constructed using six quadrature nodes distributed smoothly,
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though nonuniformly, with each interval satisfying

tm − tm−1 = mh, h =
2H

(M + 1)M
, m = 1, . . . ,M, (3-5)

where H is the interval size. The trapezoidal RK2 integrator is applied in the
prediction and correction loops. Computing the Taylor expansion of the numerical
solution about t = 0 with O(h7) truncation error, the rescaled error vector after the
prediction step satisfies

Ẽe[0] =
{

0,
h

20,250
+

h2

1, 215,000
+

h3

91,125,000
+

h4

8,201,250,000
,

h
2,250

+
19h2

405,000
+

h3

375,000
+

h4

11,250,000
,

2h
1,125

+
19h2

40,500
+

161h3

2,531,250
+

67h4

12,656,250
,

2h
405
+

1469h2

607,500
+

547h3

911,250
+

31h4

328,050
,

h
90
+

3521h2

405,000
+

463h3

135,000
+

707h4

810,000

}
+O(h5).

It can be checked by Definition 3.5 that Ẽe[0] has one and only one degree of
smoothness. Since Ẽe[0] has only one degree of smoothness in the discrete sense,
only one order increase in accuracy is guaranteed after the first correction loop,
even when a high-order RK method is applied. By computing the rescaled error
vector after subsequent correction loops, one can show that only one order increase
in accuracy per loop can be guaranteed until the maximum order is achieved.

This is illustrated in Table 2, which gives the error and order of the IDC method
using the quadrature nodes distributed according to (3-5). Second-order accuracy is

RK2 pred. 1 corr. loop 2 corr. loops 3 corr. loops

steps error order error order error order error order

5 1.16E-3 – 2.16E-6 – 2.84E-9 – 2.3 E-10 –
10 2.96E-4 1.97 3.03E-7 2.83 2.77E-10 3.36 4.02E-12 5.86
15 1.32E-4 1.98 9.29E-8 2.91 6.12E-11 3.73 3.75E-13 5.85
20 7.47E-5 1.99 3.99E-8 2.94 2.04E-11 3.82 7.01E-14 5.83
25 4.79E-5 1.99 2.06E-8 2.95 8.58E-12 3.87 1.82E-14 6.05

Table 2. Example 3.12: The error at T = 1 and the order of the im-
plemented IDC-RK2 method are tabulated after the prediction loop,
first correction loop, second correction loop, etc. The quadrature
nodes are distributed as described in (3-5).
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observed after the RK2 prediction loop. Then, only third- and fourth-order accuracy
are observed after the first and second RK2 correction loop as per the discussion
above. Sixth-order accuracy is observed after the third RK2 correction loop.

Example 3.13. (Gaussian–Lobatto quadrature nodes) IVP (3-4) is solved numeri-
cally with an IDC method constructed using six Gaussian–Lobatto quadrature nodes
given by

t0 = 0, t3 =
(

1+
√

1
21(7− 2

√
7)
)H

2
,

t1 =
(

1−
√

1
21(7+ 2

√
7)
)H

2
, t4 =

(
1+

√
1
21(7+ 2

√
7)
)H

2
,

t2 =
(

1−
√

1
21(7− 2

√
7)
)H

2
, t5 = H,

(3-6)

where H is the interval size. RK2 is applied in the prediction and correction loops.
Computing the Taylor expansion of the numerical solution about t = 0 with O(h7)

truncation error, the rescaled error vector after the prediction step satisfies

Ẽe[0] = {0, 0.00027018h+ 0.00000793h2
+ 0.00000019h3,

0.00257165h+ 0.00048115h2
+ 0.00004858h3

+ 0.00000289h4,

0.00643924h+ 0.00287267h2
+ 0.00065172h3

+ 0.00008973h4

0.00874071h+ 0.00603452h2
+ 0.00209675h3

+ 0.00046357h4,

0.00901089h+ 0.00730769h2
+ 0.00297836h3

+ 0.00078573h4
}+O(h5).

It can be checked by Definition 3.5 that Ẽe[0] has one and only one degree of
smoothness. Since Ẽe[0] has only one degree of smoothness in the discrete sense, one
order increase in accuracy is guaranteed after the first correction loop. Computing
the rescaled error vectors after subsequent correction loops, one can show that the
smoothness constraint guarantees only one order accuracy increase per loop until
the maximum order is increased.

In Table 3, we show the error and rate of convergence of up to nine loops of RK2,
to demonstrate that the maximum 2M order can be achieved when using Gauss–
Lobatto points. The expected second/fourth/sixth-order convergence is observed
after one/three/five loops of RK2 steps, respectively. However, fourth/sixth-order
accuracy is observed after two/four RK2 loops. This discrepancy can be explained
by carefully studying the error vector after the first and third RK2 correction loops.

Ee[1] = {0,−0.00000716h4
+O(h5),−0.00004306h4

+O(h5),

−0.00004306h4
+O(h5),−0.00000716h4

+O(h5), 0.00004950h5
+O(h6)}.
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RK-2 prediction 1 RK-2 corr. loop 2 RK-2 corr. loop

steps error order error order error order

5 8.28E-3 – 2.13E-5 – 1.23E-6 –
10 2.19E-3 1.92 1.43E-6 3.90 8.51E-8 3.85
15 9.92E-4 1.95 2.89E-7 3.94 1.73E-8 3.93
20 5.63E-4 1.98 9.25E-8 3.96 5.55E-9 3.95
25 3.63E-4 1.97 3.82E-8 3.97 2.29E-9 3.97

3 RK-2 corr. loops 4 RK-2 corr. loops

steps error order error order

5 1.42E-8 – 2.25E-9 –
10 2.49E-10 5.84 3.86E-11 5.87
15 2.27E-11 5.91 3.48E-12 5.93
20 4.11E-12 5.94 6.27E-13 5.96
25 1.09E-12 5.95 1.64E-13 6.01

6 loops of RK-2 7 loops of RK-2 8 loops of RK-2

steps error order error order error order

3 8.89E-7 – 4.27E-8 – 1.59E-9 –
6 5.20E-9 7.41 3.70E-11 10.17 4.61E-12 8.43
9 2.29E-10 7.71 2.14E-13 12.70 1.03E-13 9.38

12 2.42E-11 7.81 9.59E-14 2.79 8.88E-15 8.52

Table 3. Example 3.13: The error and order of an IDC method
used for solving IVP (3-4) using Gaussian–Lobatto quadrature
nodes are tabulated. The error is computed at T = 1 after the
RK-2 prediction loop, first RK-2 correction loop, second RK-2
correction loop, etc. Note that constructing an IDC method with
six Gaussian–Lobatto points allows for up to tenth-order accuracy.
Coarse steps are taken for the IDC method constructed with five
correction loops or more because of machine precision limitations.

O(h5) is observed in the last element of Ee[1], corresponding to the results in the
second column of Table 3; third-order, not fourth, is actually consistently achieved
at the interior nodes after the first correction loop. After the second correction loop,
fourth-order convergence is consistently achieved everywhere. Similarly, the error
vector after the third correction loop,

Ee[3] = {0,−0.000000004h6
+O(h7), 0.00000003h6

+O(h7),

0.00000003h6
+O(h7),−0.000000004h6

+O(h7),−0.00000002h7
+O(h8)},
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is not consistently sixth-order at the interior nodes either.

3.4. IDC methods constructed using high-order multistep methods. A general
linear p-step multistep method for solving IVP (2-1) is of the form

yn+p + ap−1 yn+p−1+ ap−2 yn+p−2+ · · ·+ a0 yn

= h(bp f (tn+p, yn+p)+ bp−1 f (tn+p−1, yn+p−1)+ · · ·+ b0 f (tn, yn)).

Examples of popular multistep methods include the explicit Adams–Bashforth
methods (AB), implicit Adams–Moulton methods (AM), and backward differential
formulas (BDF). For example,

yn+1 = yn + h
(3

2 f (tn, yn)−
1
2 f (tn−1, yn−1)

)
, (AB)

yn+1 = yn + h
(1

2 f (tn, yn)+
1
2 f (tn+1, yn+1)

)
, (AM)

yn+1 =
4
3 yn −

1
3 yn−1+

2
3 h f (tn+1, yn+1). (BDF)

Most multistep methods are not self-starting; typically, a high-order integrator, such
as an RK integrator, is used to compute the first few steps. In the next example, we
show that using an RK-2 integrator as a starter ruins the desired accuracy increase
which is possible with a high-order multistep method. Similar comments are also
made in [14], in which a variable starting technique is suggested in conjunction
with the multistep methods. Although this technique showed some promise in
test examples (see [14, Figure 2]), we did not observe high-order increase in the
correction loops of our numerical experiments.

Example 3.14. Consider an IDC method that is constructed using six uniformly
distributed quadrature nodes and three loops of a second-order AB method in the
prediction and correction steps (an RK-2 method is used to start the multistep
method as necessary). We use this method to solve IVP (3-4). Let H denote the
interval size for a single step of the IDC method, and h = H

5 the subinterval size.
The numerical results are in Table 4 show the inconsistent accuracy increase after
the first correction loop. Computing the Taylor expansion of the numerical solution
about t = 0 with O(h7) truncation error, the rescaled error vector satisfies

Ẽe[0] =
{

0,
h

750
+

h2

15,000
+

h3

375,000
+

h4

11,250,000
,

7h
1500

+
2h2

1,875
+

4h3

46,875
+

4h4

703,125
,

h
125
+

9h2

2,500
+

81h3

125,000
+

81h4

1,250,000
,

17h
1500
+

14h2

1,875
+

1643h3

750,000
+

256h4

703,125
,

11h
750
+

19h2

1500
+

191h3

37,500
+

5521h4

4,500,000

}
+O(h5).
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AB-2 pred. 1 AB-2 corr. loop 2 AB-2 corr. loop

steps error order error order error order

5 1.55E-3 – 4.41E-6 – 7.74E-9 –
10 3.93E-4 1.98 4.56E-7 3.27 1.80E-10 5.43
15 1.76E-4 1.99 1.26E-7 3.18 1.88E-11 5.57
20 9.90E-5 1.99 5.10E-8 3.14 3.50E-12 5.84
25 6.34E-5 1.99 2.55E-8 3.11 8.61E-13 6.28

Table 4. Error and order of convergence for an IDC method con-
structed using a 2-step multistep method (AB) and uniformly dis-
tributed quadrature nodes. The error and rate of convergence are
computed at T = 1.

By Definition 3.5, Ẽe[0] has only one degree of smoothness since the leading term in
−−−→

d̂2e[0],

by Definition 3.2, is O( 1
h ). Since Ẽe[0] has no more than one degree of smoothness

in the discrete sense, this limits the increase in convergence rate for IDC methods,
although a high-order method is applied in the correction steps.

4. Comparisons between IDC and RK methods

IDC methods constructed using single-step integrators can be formulated into
arbitrary high-order RK methods. This is of particular interest because RK methods
are traditionally constructed by satisfying order conditions [6]; the number of order
conditions to be satisfied grows exponentially as the order increases, making it
difficult, if not impossible, to solve for the nodes, weights, and stage weights
exactly. Here, we address how IDC methods constructed with RK integrators and
uniformly distributed nodes can be formulated as a high-order RK method whose
nodes, weights, and stage weights are known exactly. In Section 4.1, we describe
the Butcher tableau structure for IDC-FE methods formulated as a high-order RK
method. Then, we bound the local truncation error arising from IDC methods
formulated as a high-order RK method; this bound on the local truncation error can
be used to give an estimate for the global error, in essence, proving the convergence
of IDC methods. The efficiency of IDC methods is then compared with known RK
methods in Section 4.2. In general, known RK methods are more efficient than IDC
methods for low-order schemes. For high-order schemes, comparable efficiency
is observed numerically; the accuracy regions in Section 4.3 agree qualitatively
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with the efficiency comparisons. In Section 4.4, we show that IDC methods offer a
much larger stability region compared with known RK methods. Additionally, as
the order of the embedded integrator is increased, the stability region of an IDC
method also increases.

4.1. Constructing RK methods using an IDC-FE scheme. The following two
points of view are equivalent: RK methods can be constructed using IDC ideas, or
an IDC method can be reformulated as an RK method. The node points c j , weights
bk and stage weights a jk are often conveniently expressed in a Butcher tableau
format using matrix A, and vectors b and c.

Ec A

EbT
.

Here, we illustrate the Butcher tableau structure of IDC methods constructed using
forward Euler time integrators. The algorithm is easily generalized for generating
IDC-RK Butcher tableaus. In this section, we adopt a Matlab-style notation in our
algorithms, where A( j, :) denotes the j-th row of matrix A, and A(:, j) denotes
the j-th column of matrix A.

Proposition 4.1. An IDC method constructed using (M + 1) quadrature nodes
and (kl + 1) prediction/correction iterations of an s-stage RK method, can be
reformulated as an ((kl + 1) · s ·M)-stage RK method.

For example, an IDC method constructed with four quadrature nodes, (M = 3),
a forward Euler prediction (s = 1), and three correction loops (kl = 3), can be
reformulated as a 12-stage RK method. Let’s examine the structure of this ((kl +

1) · s ·M)-stage RK method. Suppose (M + 1) quadrature nodes, notated as before
in (3-2),

0= t0 < t1 < t2 < . . . < tM = H,

have subinterval sizes

hm = tm − tm−1, m = 1, . . . ,M.

Then the prediction step of the IDC method constructed using forward Euler updates
can be formulated as an RK method with the following Butcher array format:

t0
t1 h1

t2 h1 h2
...

...
. . .

tM−1 h1 h2 . . . hM−1

h1 h2 . . . hM−1 hM
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We label components of the above Butcher tableau conventionally:

Ec1 A1

EbT
1

The first correction loop can now be included (2-7). The updated Butcher tableau
takes the form

Ec1 A1 Z
Ec2 P1 A2

EdT
1
EbT

2

,

where Z is a M ×M matrix of zeros,

Ec2 =
[
tM , t1, t2, . . . , tM−1

]T
,

P1 =



h1 h2 h3 . . . hM

S̃10 S̃11 S̃12 . . . S̃1,M−1

S̃20 (S̃21− h2) S̃22 . . . S̃2,M−1

S̃30 (S̃31− h2) (S̃32− h3) . . . S̃3,M−1
...

...
...

. . .
...

S̃M−1,0 (S̃M−1,1− h2) (S̃M−1,2− h3) . . . S̃M−1,M−1


,

where the terms

S̃i j =

{
Si j i = 1, j = 0, . . . ,M,
Si j + Si−1, j i = 2, . . . ,M, j = 0, . . . ,M,

are the sums of the integration matrix defined in (2-12),

A2 =



0 0 0 0 . . . 0
S̃1M 0 0 0 . . . 0
S̃2M h2 0 0 . . . 0
S̃3M h2 h3 0 . . . 0
...

...
...
. . .

. . . 0
S̃M−1,M h2 h3 . . . hM−1 0


,

and

Ed1 =
[
S̃M0, (S̃M1− h2), (S̃M2− h3), . . . , (S̃M,M−1− hM)

]T
,

Eb2 =
[
S̃M M , h2, h3, . . . , hM

]T
.

Subsequent correction steps can be added into a Butcher tableau format in a similar
fashion. This results in a distinct block structure, since at the k-th correction loop,
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(a) RK8 [20] (b) IDC8-FE

(c) IDC8-RK2 (d) IDC8-RK4

Figure 1. The sparsity structure of an RK8 [20] Butcher tableau
and various IDC8 Butcher tableaus. The block structure for the IDC
weights are evident; for example, IDC8-RK2 shows the prediction
loop, and the subsequent three correction loops.

only the initial value f (t, y0), the previous approximations f (t, η[k−1]), and the
current iterates f (t, η[k]) are used.

This block structure is more easily seen in Figure 1, where uniformly spaced
quadrature nodes are used to construct various IDC schemes. For future reference,
we adopt the following notation to denote our IDC schemes: IDCn-RKp denotes an
n-th order IDC scheme constructed using p-th order RK integrators. To construct
an n-th order IDC scheme, either (n+ 1) uniformly distributed quadrature nodes,
or (dn

2e+ 1) Gauss–Lobatto nodes are used. The only time we distinguish between
using uniformly distributed and Gauss–Lobatto nodes is when forward Euler inte-
grators are used to construct the IDC scheme; in all other cases, we use uniform
nodes to achieve the order of accuracy desired. In Figure 1, IDC8-FE denotes an
eighth-order IDC scheme constructed using forward Euler updates, IDC8-RK2
denotes an eighth-order IDC scheme constructed using a trapezoidal RK2 scheme
for the prediction and correction steps, and IDC8-RK4 denotes an eighth-order
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IDC scheme constructed using an RK4 predicition and correction loop. Several
observations can be made presently. The number of stages for the IDC methods are
consistent with Proposition 4.1. Specifically, IDC8-FE has M = 7, s = 2, kl = 7,
resulting in 56 overall stages. IDC8-RK2 has M = 7, s = 2, kl = 3, and IDC8-RK4
has M = 7, s = 4, kl = 1, both resulting in 56 overall stages. The sparsity structure
of the Butcher tableau which arises from the prediction and correction steps is also
evident. For example, IDC8-RK2 shows the prediction step and three subsequent
correction steps.

It is important to note that the stage weights, ai j , can be computed exactly using
a symbolic manipulator such as Maple or Mathematica. This contrasts with most
other optimization schemes for generating RK methods, where the coefficients have
to be approximated numerically. For eighth- or lower-order schemes, computing
the stage weights to double precision is sufficient. From numerical experiments, it
seems that ninth-order IDC schemes (or higher) require quad precision or better.

4.2. Efficiency comparison. In order to compare how various p-th order RK meth-
ods stack up against each other, a quantitative measure is the so-called efficiency:
how much computational effort is required to obtain a certain error tolerance. To
make this measurement, we need to review the computational effort of IDC/RK
methods, as well as bound the local truncation error (LTE).

In solving IVP (2-1), the evaluation of f (t, y) is usually the most computationally
expensive component. Hence, we will use the number of function evaluations, n f e,
(or equivalently, the number of stages of an RK method), as a measure of the com-
putational effort. Recall that an IDC method constructed using (M + 1) quadrature
nodes, kl correction loops, and an s-stage RK integrator requires ((M−1)·(kl+1)·s)
function evaluations (stages). For a p-th order IDC method, this corresponds to at
least p (p−1) function evaluations when p uniformly spaced quadrature nodes are
used, and at least ( p

2 − 1) p function evaluations when p
2 Gaussian nodes are used.

Compared to classically known p-th order RK methods which involve sp stages,
IDC methods require significantly more function evaluations per iteration. This is
offset, however, by the smaller LTE that arises from IDC methods.

The LTE which arises from solving y′ = f (t, y) can be computed by taking the
appropriate Taylor expansions of the scheme. For a p-th order method [10] the
LTE can be expressed as

LTE=
∞∑

i=p+1

hi
( λi∑

j=1

αi j Di j

)
.

Here, h is the interval size, Di j are the elementary differentials (sums of products
of partial derivatives of f (t, y)), αi j are the truncation error coefficients, and λi

denotes the number of elementary differentials of order O(hi ). Consequently, a very
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Method # Stages LTE Efficiency

RK4 (classical) 4 1.0417E-2 1
IDC4-FE (unif) 12 7.716 E-4 1.78

IDC4-FE (gauss) 8 3.906 E-3 1.64
IDC4-RK2 (unif) 12 5.144 E-4 1.64

SDC4-RK2 (gauss) 8 2.6042E-3 1.52

RK6 [20] 9 8.4369E-7 1
RK6 [17] 7 1.455 E-2 3.13

IDC6-FE (unif) 30 1.0000E-6 3.42
IDC6-FE (gauss) 18 5.5014E-5 3.63
IDC6-RK2 (unif) 30 8.8889E-7 3.36
IDC6-RK3 (unif) 30 4.4444E-7 3.04

RK8 [20] 13 3.8872E-6 1
RK8 [3] 11 2.1957E-5 1.03

IDC8-FE (unif) 56 6.776 E-10 1.65
IDC8-FE (gauss) 32 1.181 E-7 1.67
IDC8-RK2 (unif) 56 5.0193E-10 1.59
IDC8-RK4 (unif) 56 3.0689E-11 1.17

Table 5. A comparison of classical RK methods and IDC methods.
The second column lists the effective number of stages, the third
column lists a bound on the LTE coefficients, and the last column
is the computed efficiency between the respective orders. Eighth-
order IDC methods are almost as efficient as an RK8 method. The
LTE for twelfth-order methods is not presented due to machine
precision restrictions. Also, since three Gauss–Lobatto nodes are
in fact uniformly spaced, x = {0, 0.5, 1}, we are able to generate
a fourth-order IDC scheme using three Gauss–Lobatto nodes and
RK2 integrators for the prediction and correction loops. Note than
an efficiency close to 1 is optimal.

crude bound for the LTE, if h is sufficiently small, is

LTE≤ h p+1
· λp+1 · ‖αp+1, j‖∞ · ‖Dp+1, j‖∞.

We note that this local error estimate gives a bound on the global error [6], proving
the convergence of IDC-RK methods.

Now, consider the LTE for two p-th order RK methods,

(LTE)1 = c1h p+1
· (λp+1‖Dp+1, j‖∞),

(LTE)2 = c2h p+1
· (λp+1‖Dp+1, j‖∞).
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If both LTEs are bounded by the same tolerance ε, then the largest step size that
will satisfy this tolerance for both methods is

h1 =

( ε

βc1

)1/(p+1)
, h2 =

( ε

βc2

)1/(p+1)
,

respectively, where β = (λp+1‖Dp+1, j‖∞). If method one is computed in s1 stages
and method two is computed in s2 stages, then the total amount of work done by
each methods is si/hi , since 1/hi is the number of iterations required, and si is the
cost per iteration. A measure of efficiency is then given by the ratio of the amount
of work done:

efficiency=
s2/h2

s1/h1
=

s2

s1

(c2

c1

)1/(p+1)
. (4-1)

Using (4-1), the efficiencies for various IDC methods are computed and compared
to classically known RK methods. In Table 5, we list the number of stages for each
method, a bound on the LTE (using a code provided in [10]), and the computed
efficiency. An efficiency close to 1 is optimal while an efficiency of 1.5 means
it takes 50% more work to achieve the same error tolerance. We compute the
LTEs for eighth- and lower-order schemes to avoid machine precision issues. (As
mentioned in the previous section, the accuracy increase is lost when the nodes are
nonuniformly spaced; thus, IDC schemes constructed using Gaussian nodes and
high-order integrators are in general less efficient than IDC schemes constructed us-
ing uniformly spaced nodes and high-order integrators. Consequently, the efficiency
analysis for other IDC schemes using Gaussian nodes is not presented.)

Two observations are in order: first, that the efficiency of IDC schemes improves
as the order of the embedded integrator is increased; and second, that IDC8 schemes
are comparable, in terms of efficiency, to RK8 schemes. Although we are unable to
accurately compute the LTE for higher than eighth-order schemes, we show that
twelfth-order IDC schemes are comparable in terms of efficiency to known RK-12
schemes by generating their accuracy regions, defined in Section 4.3.

4.3. Accuracy region. A more visual way to compare these IDC methods is to
plot the accuracy region for each method. Specifically, the following IVP,

y′(t)= λy(t), y(0)= 1, (4-2)

is solved for various λ’s in the complex plane. A contour plot of the resulting error
at T = 1 is called the accuracy region. Figures 2–5 show the accuracy regions
for classical RK and IDC methods. Consistent with the efficiency analysis, the
IDC4 and IDC6 schemes perform poorly in contrast with classical RK methods.
IDC8-RK4 has a comparable accuracy region with RK8. The accuracy regions
for IDC12 methods are plotted, even though the efficiency is not computed in
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the previous section. It appears that IDC12-RK3 and IDC12-RK4 might be more
efficient than classically known RK12 schemes. One should also note that the
accuracy regions for IDC methods increase in area as the order of the embedded
integrator is increased.

4.4. Stability region. Another way to quantitatively compare RK and IDC methods
is to perform a linear stability analysis of the methods, and identify restrictions on
the possible time steps. The linear stability region, S, is the subset of the complex
plane, C, satisfying

S = {λ : Am(λ)≤ 1},

where Am(λ), the amplification factor for a numerical method, can be interpreted
as the numerical solution of IVP (4-2)

y′(t)= λy(t), y(0)= 1,

after a time step of size one. To quantify the size of these linear stability regions,
we measure the linear stability radius, the real interval {z : Re(z) ∈ S}, and the
maximum imaginary value, sup | Im(z)|, z ∈ S.

(a) RK4 (b) IDC4-FE (unif)

(c) IDC4-FE (gauss) (d) IDC4-RK2

Figure 2. Accuracy plots for various fourth-order RK and IDC
methods. Each plot was generated after 48 function evaluations.
The RK4 method is vastly superior to the IDC methods.
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(a) RK6 (b) IDC6-FE (unif)

(c) IDC6-FE (gauss) (d) IDC6-RK2

(e) IDC6-RK3

Figure 3. Accuracy plots for various sixth-order RK and IDC
methods are generated using ≈ 60 function evaluations. The RK6
method has a larger accuracy region. Also, observe that the accu-
racy regions for the IDC methods increase with the order of the
embedded integrator.

Definition 4.2. The linear stability radius is defined to be the radius of the largest
disc that can fit inside the stability region,

ρ = sup {r : D(r) ∈ S} ,

where D(r) is the disc D(r)= {z ∈ C : |z+ r | ≤ r}.

This measure of the stability region is argued to be a good compromise between
stretching the stability region in the real and in the imaginary directions [13; 19].
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(a) RK8 (b) IDC8-FE (unif)

(c) IDC8-FE (gauss) (d) IDC8-RK2

(e) IDC8-RK4

Figure 4. The accuracy plots for various eighth-order RK and IDC
methods are generated after ≈ 56 function evaluations. Notice that
accuracy regions for IDC methods get larger as the order of the low-
order integrator is increased. The accuracy region for IDC8-RK4
is comparable to the accuracy region for RK8, which is consistent
with the efficiency analysis.

We plot the stability regions for various IDC and RK methods in Figure 6. In
all cases, p-th order IDC methods offer a larger stability region in contrast with
classically derived p-th order RK methods. Additionally, the stability regions of
IDC methods increase with the order of the integrator used to construct the scheme;
for example, IDC8-RK4 has a larger stability region than IDC8-RK2. Quantitative
comparison of the stability regions are given in Table 6.
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(a) RK12 (b) IDC12-FE (unif)

(c) IDC12-FE (gauss) (d) IDC12-RK2

(e) IDC12-RK3 (f) IDC12-RK4

Figure 5. The accuracy plots for various twelfth-order RK and
IDC methods are generated after ≈ 132 function evaluations. The
accuracy region for IDC12-RK3 and IDC12-RK4 appear larger
than the classically known RK12 scheme.

5. Conclusion

In this paper, we studied a class of novel correction methods, IDC methods, con-
structed using high-order integrators within the prediction and correction loops.
It was also shown that the accuracy of an IDC method is closely related to the
smoothness of its error vector. Unlike IDC methods constructed with uniform
quadrature points, the order of accuracy for IDC methods constructed with a general
nonuniform distribution of quadrature nodes does not increase by r orders if an
r -th order RK correction step is applied; for multistep methods, the accuracy of
an IDC method depends heavily on the starting method. Finally, IDC methods are
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Fourth-order methods Sixth-order methods

Eighth-order methods Twelfth-order methods

Figure 6. Stability regions for fourth-, sixth-, eighth- and twelfth-
order IDC methods. The stability regions of IDC methods are larger
than that of the RK method. Additionally, the stability region of
the IDC methods increase with the order of the integrator used to
construct the scheme.

viewed as a means for generating high-order RK methods. The efficiency, stability,
and accuracy of IDC methods are compared with RK methods. As a family of
methods, these IDC schemes are capable of matching the efficiency of optimized
high-order RK methods. Additionally, superior regions of absolute stability are
observed for IDC methods constructed using high order integrators.

Present studies and analyses are being conducted on IDC methods constructed
using diagonally implicit Runge–Kutta integrators and IDC methods constructed
using additive Runge–Kutta integrators.
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A HIGHER-ORDER UPWIND METHOD FOR
VISCOELASTIC FLOW

ANDREW NONAKA, DAVID TREBOTICH, GREGORY MILLER,
DANIEL GRAVES AND PHILLIP COLELLA

We present a conservative finite difference method designed to capture elastic
wave propagation in viscoelastic fluids in two dimensions. We model the incom-
pressible Navier–Stokes equations with an extra viscoelastic stress described by
the Oldroyd-B constitutive equations. The equations are cast into a hybrid conser-
vation form which is amenable to the use of a second-order Godunov method for
the hyperbolic part of the equations, including a new exact Riemann solver. A
numerical stress splitting technique provides a well-posed discretization for the
entire range of Newtonian and elastic fluids. Incompressibility is enforced through
a projection method and a partitioning of variables that suppresses compressive
waves. Irregular geometry is treated with an embedded boundary/volume-of-fluid
approach. The method is stable for time steps governed by the advective Courant–
Friedrichs–Lewy (CFL) condition. We present second-order convergence results
in L1 for a range of Oldroyd-B fluids.

1. Introduction

The governing equations for viscoelastic flow of an Oldroyd-B fluid are the incom-
pressible Navier–Stokes equations plus an extra viscoelastic stress described by the
Oldroyd-B constitutive equations:

∂u
∂t
+ (u · ∇)u−

1
ρ
∇ · τ =−

1
ρ
∇ p+

µs

ρ
1u, (1)

∇ · u = 0, (2)

∂τ

∂t
+ (u · ∇)τ − (∇u)τ − τ (∇u)T =

µp

λ
2D−

1
λ
τ , (3)

where u is the fluid velocity, τ is the polymeric stress tensor, p is the isotropic
pressure, and D= [∇u+ (∇u)T ]/2 is the rate-of-strain tensor. The parameters that
describe the fluid are the density, ρ, relaxation time, λ, and the solvent and polymeric
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contributions to the total viscosity, µ=µs+µp. The dimensionless parameters that
characterize these types of flows are the Reynolds number, Re= ρU L/µ, and the
Weissenberg number, We= λU/L , where U and L are the characteristic velocity
and length.

Though the Reynolds number and the Weissenberg number independently char-
acterize viscoelastic flows, it is the elastic Mach number, Ma=

√
Re ·We, that is

the critical parameter in determining well-posedness of the system. In particular,
the system of equations exhibits a change in type from parabolic to hyperbolic when
the elastic Mach number becomes supercritical (Ma> 1), admitting propagation
of discontinuities. This mathematical behavior was alluded to in the experimental
results of Ultman and Denn [33] and formally noted in [7; 18]. Joseph suggested
that a method suitable for transonic flows may be needed to capture the transition to
supercritical flows in viscoelasticity [17]. The analysis described in [30] capitalized
on this concept in the design of a numerical algorithm that resolves unsteady elastic
wave behavior in viscoelastic fluids.

In this paper, we extend the previous numerical algorithm [30] by leveraging the
conservative hyperbolic formulation described therein to design a suitable higher
resolution upstream method for the hyperbolics. In the original algorithm the
Oldroyd-B equation is recast into a well-posed hyperbolic form with source terms
using a stress-splitting technique; a Lax–Wendroff method is used to discretize
the quasilinear form of the hyperbolic part in the context of a predictor-corrector
projection method. (Projection methods are an approach to enforcing the constraint
in incompressible flows [3; 2] and have proven to be successful in treating unsteady
viscoelastic flows [19; 30].) Our new method uses a second-order Godunov method
[5; 6], instead of Lax–Wendroff as in [30], to discretize the hyperbolic part of the
equations, resulting in two immediate advantages. First, the maximum time step is
increased by a factor of four to allow an advective CFL number restriction of 0<
CFL< 1. Second, we can apply second-order conservative finite volume techniques
which have been developed for hyperbolic conservation laws [6], elliptic equations
[16], and parabolic equations [22] in an embedded boundary (EB) framework for
irregular geometry. Our results are consistent with the modified equation analysis
in these methods, and we obtain second-order solution error convergence in L1 for
a range of Oldroyd-B fluids.

2. Hyperbolic analysis

Through the introduction of the inverse deformation tensor, g, which links material
(Lagrangian) coordinates, X , and spatial (Eulerian) coordinates, x, as in

gαβ =
∂Xα
∂xβ

, (4)
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the advective part of the PDE for viscoelastic stress (3) may be put in conservation
form. The quantity M is conserved:

M ≡ g
(
τ + ρa2 I

)
gT , (5)

∂M
∂t
+∇ · (u⊗M)= g

[
−

1
λ
τ +

(
µp

λ
− ρa2

)
2D
]

gT , (6)

∂ ged

∂t
+

∂

∂xd
gu =

[
u× (∇ × gT )

]T ed . (7)

The PDE for g and its right hand side are described in detail in [23]. Here a is an
arbitrary constant with dimensions of velocity. As developed in [30], this fictitious
wave speed may be treated as a parameter that affects the partitioning of hyperbolic
and elliptic terms. Through proper choice of that parameter, the CFL limiting time
step of the hyperbolic partition can be improved by several orders of magnitude in
the Newtonian limit (λ→ 0). Here, for purposes of analysis, a need only satisfy
mind(ρa2

+ τdd) > 0.
All together, the coupled PDEs (1)-(3) may be written in the form

∂U
∂t
+
∂Fα
∂xα
= Sh(U)+ Si (U,∇U,1U), (8)

where the left hand side is a system of conservation laws, and the right hand side
contains proper hyperbolic source terms, Sh , and improper (elliptic) source terms,
Si . U is the vector of conserved quantities:

U =
(
u, M, ge0, . . . , geD−1

)T
, (9)

Fd =

(
ud u− 1

ρ
τ ed , ud M, guδ0d , . . . , guδD−1,d

)T
, (10)

Sh =

(
−

1
ρ
∇ p, −1

λ
gτ gT , 0, . . . , 0

)T
, (11)

Si =

(
νs1u, 2

(µp

λ
−ρa2

)
g DgT ,[

u× (∇×gT )
]T e0, . . . ,

[
u× (∇×gT )

]T eD−1

)T

, (12)

where D = 2 is the dimensionality of the problem and ν = µ/ρ.
We analyze the hyperbolic subsystem in primitive variables, W . The linearization

of (8) in primitive variables gives matrices whose eigenvalues are wave speeds, and
whose eigenvectors determine the characteristics. If, in the 1D analysis of these
linearized equations for direction d, primitive variable ud is included, then wave
speeds and characteristics describing compressive wave motion are observed. Yet,
omission of ud and its corresponding stress τdd is also inaccurate [9] since variation
in these quantities is permitted by the multidimensional equations. The approach
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to this dilemma, after [9; 8] is to block partition the primitive equations, treating
dependence on gradients of the variables ud and τdd as source terms from the point
of view of the remaining variables. We will refer to the variable partition (ud , τdd)

as inactive (subscript I ), and the remaining variable partition as active (subscript
A). For d = 0,

W T
0 =

(
W T

A,0

∣∣ W T
I,0
)
= (u1, τ10, τ11, g00, g10, g01, g11 | u0, τ00). (13)

The primitive variable τ01 is omitted because τ is symmetric. In these variables,
the linearized homogeneous advection equation in direction d = 0 is

∂W0

∂t
+ A0

∂W0

∂x0
= 0, (14)

A0 =

[
AAA,0 AAI,0

AI A,0 AI I,0

]

=



u0 −1/ρ 0 0 0 0 0 0 0
−ρc2

0 u0 0 0 0 0 0 −τ10 0
−2τ10 0 u0 0 0 0 0 0 0

g01 0 0 u0 0 0 0 g00 0
g11 0 0 0 u0 0 0 g10 0
0 0 0 0 0 u0 0 0 0
0 0 0 0 0 0 u0 0 0
0 0 0 0 0 0 0 u0 −1/ρ
0 0 0 0 0 0 0 −2ρc2

0 u0


, (15)

with cd =
√

a2+ τdd/ρ. The diagonal matrix of eigenvalues of partition AAA,0 is

30 = diag (u0− c0, u0, u0, u0, u0, u0, u0+ c0)
T . (16)

The corresponding right eigenvectors are given by the columns of

R0 =



−c0 0 0 0 0 0 c0

−ρc2
0 0 0 0 0 0 −ρc2

0
−2τ10 1 0 0 0 0 −2τ10

g01 0 1 0 0 0 g01

g11 0 0 1 0 0 g11

0 0 0 0 1 0 0
0 0 0 0 0 1 0


. (17)

2.0.1. An exact Riemann solver. For the incompressible Euler equations, Bell et
al. [2] construct edge-centered time-centered predictor states using Taylor series
with upwind derivatives. For those equations, their approach is identical to using a
higher-order Godunov predictor because upwinding solves exactly the associated
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Riemann problem. In the present system of equations, the wave structure is more
complex, but there are no genuinely nonlinear waves, that is,(

∇WA3kk
)
· Rek = 0, (18)

for each of the 7 waves k associated with block AAA of (15). This condition is
guaranteed by the fact that the complete solution for the inactive variables is taken
to be the average of the input left and right states [8], and therefore the eigenvalues
are constant with respect to each component of WA.

By analysis of the generalized Riemann invariants,

∂(WA)0

eT
0 Rek

=
∂(WA)1

eT
1 Rek

= · · ·
∂(WA)6

eT
6 Rek

, (19)

for each wave k, it may be concluded (assuming for convenience d = 0) that

(i) u1 and τ10 are constant across the 5 contact (speed u0) waves;

(ii) g01 and g11 are constant across the fast u0± c0 waves;

(iii) the generalized Riemann invariants for the ± fast waves include the identities

∂u1

±c0
=
∂τ10

−ρc2
0
=
∂g00

g01
=
∂g10

g11
, (20)

where the denominators of each term are constant across the wave. Thus,
across each fast wave the change in u1 is proportional to c0, etc.;

(iv) across the fast waves, the generalized Riemann invariants contain also

∂τ11

−2τ10
. (21)

So, given the change of τ10 across the given wave, the change in τ11 is deter-
mined.

Let the constant states in the Riemann fan be labeled WL , WL∗ , WR∗ , and WR in
sequence, and let 9L (9R) measure the strength of the left (right) fast waves. From
observation (iii) one has(

u1

τ10

)
L∗
=

(
u1

τ10

)
L
−9L

(
c0

ρc2
0

)
,(

u1

τ10

)
R∗
=

(
u1

τ10

)
R
+9R

(
c0

−ρc2
0

)
,

(22)

and from observation (i) one has (u1, τ10)L∗ = (u1, τ10)R∗ , which couples the fast
waves enabling their strength to be simply determined from(

c0 c0

ρc2
0 −ρc2

0

)(
9L

9R

)
=

(
u1

τ10

)
L
−

(
u1

τ10

)
R
. (23)
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With τ10 determined across the wave fan, observation (iv) determines τ11:∫ (τ11)L∗

(τ11)L

dτ11 =
2
ρc2

0

∫ (τ10)L∗

(τ10)L

τ10dτ10, (24)

(τ11)L∗ = (τ11)L +
1
ρc2

0

[
(τ10)

2
L∗ − (τ10)

2
L
]
. (25)

The same equation holds across the right fast wave. The determination of other
variables is then trivial by application of observation (iii). For example, from (20),

(g00)R∗ − (g00)R

(g01)R∗
=
(u1)R∗ − (u1)R

c0
. (26)

The active variable solution to our Riemann problem is given by the constant
state (L , L∗, R∗, or R) containing the zero wave speed characteristic.

3. Predictor-corrector formulation

We discretize time in steps 1t , with tn+1
= tn
+1tn . Space is discretized in square

cells of length h, and x = h i is the lower left corner of cell i . Variables Un
i are

cell-centered.
For each time step n, the artificial wave speed a is a global constant determined

by the heuristic model:

a2
=min

{
χ(λ)a2

∞
+ [1−χ(λ)] a2

0,
νp

λ

}
, (27)

a2
∞
=
νp

λ
, (28)

a2
0 =

2
ρ

min
i,d
|(τdd)i |, (29)

χ(λ)=
λ

tadv

[
1− e−λ/(2tadv)

](
1− e−tadv/λ

)
, (30)

tadv =
h

maxi |u|
, (31)

with limiting values a2
= a2
∞

as λ→∞, and a2
= a2

0 as λ→ 0. Note that the
conserved quantity M depends on a, so a reevaluation of a necessitates a rescaling
of M throughout the domain.

The predictor step of the method uses well-established higher-order Godunov
approaches [5; 6] to estimate time-centered edge-centered solution values. These
predictor states are made discrete divergence-free (∇·un+ 1

2 =0) on a marker-and-cell
(MAC) stencil [15].
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Fluxes Fn+ 1
2

i±e/2 = F
(
Un+ 1

2
i±e/2

)
computed from these predictor states enter a conser-

vative update:

Ũn+1
i = Un

i −
1t
h

D−1∑
d=0

[(
Fd
)n+ 1

2
i+ed/2

−
(
Fd
)n+ 1

2
i−ed/2

]
. (32)

The corrector computes Un+1 by adding to Ũn+1 implicit and explicit source term
contributions, and by use of an approximate cell-centered projection to make un+1

discrete divergence-free.

3.1. Predictor. The predictor in our predictor-corrector method consists of the
calculation of time-centered edge-centered states, Wn+1/2

i+ed/2, which are discrete
divergence-free. The predictor state is computed in four steps.

First, the one-dimensional primitive equations are used to estimate time-centered
edge-centered states. For the active partition, characteristic tracing and slope limiting
occur as in higher-order Godunov methods. For the inactive partition, Taylor series
in space and time with centered differences are used. This first step uses strictly
one-dimensional equations with no transverse coupling.

Second, the edge states so obtained are double-valued, and we resolve these with
the Riemann solver described above in Section 2.0.1.

Third, the transverse coupling omitted in the first step is incorporated using cell-
centered gradients of the edge-centered states computed by the Riemann solution.
The transverse flux correction is described in [5; 28], but we include the transverse
terms in terms of primitive variable differences rather than conservative fluxes. The
corrected states so-obtained are again double-valued, and another Riemann problem
gives a single final result.

Fourth, time-centered edge-centered velocity data is made discrete divergence-
free, i.e.,

u := u−∇
[
1−1(∇ · u)

]
. (33)

With u edge-centered, ∇·u is cell-centered. This projection is exact, in the sense that
1h= (∇·)h∇h , with the discrete Laplacian reducing to the standard 5-point stencil in
two dimensions away from boundaries. Then, 1−1(∇ ·u) is also cell-centered. The
discrete gradient operator uses centered divided differences to give edge-centered
corrections. The normal and tangential velocity components are updated at each
face even though only the normal velocity contributes to the divergence.

The details of the first step is now given. With the active–inactive partitioning
introduced in (13), upwind characteristic tracing for the active primitive variables
takes the form
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(
W̃A,d

)n+ 1
2

i+ed/2,L
=
(
WA,d

)n
i − RdP+

(
1t
2
3d −

h
2

I
)

R−1
d

(
∂WA,d

∂xd

)n

i

−
1t
2h

AAI,d

(
∂WI,d

∂xd

)n

i
,

(
W̃A,d

)n+ 1
2

i+ed/2,R
=
(
WA,d

)n
i+ed
− RdP−

(
1t
2
3d +

h
2

I
)

R−1
d

(
∂WA,d

∂xd

)n

i+ed

−
1t
2h

AAI,d

(
∂WI,d

∂xd

)n

i+ed

,

(34)

where P±(D)= diag(Di i if 3i i ≷ 0, 0 otherwise) is a projection that sets to zero
those terms of the diagonal argument matrix corresponding with eigenvalues whose
sign is negative/positive, respectively. The subscript L (R) indicates that the result is
traced to the left (right) side of the edge i + ed/2. Where the stencils support it, the
derivatives ∂WA/∂x use van Leer limited [34] fourth-order accurate derivatives [4].
The derivatives ∂WI /∂x use second-order centered divided differences. The tilde
denotes that source terms have not yet been accounted for. The inactive variables
are extrapolated in time using(
W̃I,d

)n+ 1
2

i+ed/2,L
=
(
W̃I,d

)n
i −

(
1t
2

AI I,d −
h
2

I
)(

∂WI,d

∂xd

)n

i

−
1t
2

AI A,d

(
∂WA,d

∂xd

)n

i
,

(
W̃I,d

)n+ 1
2

i+ed/2,R
=
(
W̃I,d

)n
i+1−

(
1t
2

AI I,d +
h
2

I
)(

∂WI,d

∂xd

)n

i+ed

−
1t
2

AI A,d

(
∂WA,d

∂xd

)n

i+ed

.

(35)

The velocity source is computed explicitly via

un+ 1
2

i+ed/2,L = ũn+ 1
2

i+ed/2,L +
1t
2

(
−

1
ρ
∇ p

n− 1
2

i + νs(1h un)i

)
, (36)

where 1h the discrete 5-point Laplacian in regular domains. The time-centered
pressure is taken from the previous time step. The calculation of ∇ pn+ 1

2 occurs as
the last step of the corrector, (43).

The source term for viscoelastic stress is computed implicitly to properly recover
the Newtonian limit (τ → 2µp D as λ→ 0):

τ
n+ 1

2
i+ed/2,L = τ̃

n+ 1
2

i+ed/2,L +
1t
2

[
−

1
λ
τ

n+ 1
2

i+ed/2,L +

(µp

λ
− ρa2

)
2Dn

i

]
. (37)

The rate of strain tensor, D, is calculated with centered differences.
The source terms for g are omitted for the following reason. The material
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reference frame X can be defined, at the start of each time step, to be equal to x,
i.e., g = I identically at the start of each time step. With this choice, the source
terms for g are zero if evaluated at tn . Resetting g to I necessitates renormalizing
M from time step to time step.

3.2. Corrector. The corrector generates time n+1 cell-centered states that are
discrete divergence-free. The basic idea is to generate cell-centered time tn+1

estimates, Ũn+1, using the flux differencing quadrature (32). To these estimates
source terms are added, as described below, to obtain Un+1.

The corrector step for the velocity field is more complicated. We would like to
use the following update equation (the superscript ∗ indicates that the velocity field
is not yet divergence-free):

un+1,∗
− un

1t
=

[
−∇ ·

(
u⊗ u−

1
ρ
τ

)n+ 1
2
]
+

(
−

1
ρ
∇ pn− 1

2 + νs1u
)
. (38)

However, as in [30], we would like for the velocity update equation to properly
capture the Newtonian and elastic limits. We modify the predictor step by not
including the source terms for τ in the edge state prediction to instead obtain τ̃ at
edges. However, extra care must be taken since the transverse correction term is
still computed with edge states that have been constructed with the τ sources.

Combining an equation of the form (37) with (38), we arrive at our new update
equation for velocity:

un+1,∗
− un

1t

=

[
νs+

1t (νp−λa2)

2λ+1t

]
1u+

[
−∇·

(
u⊗u−

2λ
2λ+1t

τ̃

ρ

)n+ 1
2

−
1
ρ
∇ pn− 1

2

]
. (39)

These equations are expressible as D scalar discrete Helmholtz equations. This
discretization is chosen in order to capture the Newtonian and elastic limits, that is,
in the Newtonian limit (λ→ 0) we recover

un+1,∗
− un

1t
= [νs + νp]1u+

[
−∇ · (u⊗ u)n+

1
2 −

1
ρ
∇ pn− 1

2

]
, (40)

and in the elastic limit (λ→∞), where a2 is given by (28), we recover

un+1,∗
− un

1t
= νs1u+

[
−∇ ·

(
u⊗ u−

τ̃

ρ

)n+ 1
2

−
1
ρ
∇ pn− 1

2

]
. (41)

The Helmholtz equations (39) are solved using the Runge–Kutta technique of
[32], which yields an l0 stable solution in regular and irregular domains. That
method specifies the time centering of the Laplacian term.
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The last step of the velocity corrector removes the divergence of u∗ and calculates
the pressure whose gradient will affect the subsequent time step using a pressure-
projection formulation [31]. First, a potential φ is calculated on cell centers with
the discrete Laplacian:

1φ =

[
∇ ·Avg

(
un+1,∗

+
1t
ρ
∇ pn− 1

2

)]
, (42)

where Avg is an operator that computes face-centered values by averaging neigh-
boring cell-centered values. Pressure is proportional to φ, and

∇ pn+ 1
2 =

ρ

1t
∇φ. (43)

With this gradient, the discrete-divergence-free velocity is

un+1
= un+1,∗

+
1t
ρ

(
∇ pn− 1

2 −∇ pn+ 1
2
)
. (44)

This projection is approximate, in the sense that 1h 6= (∇·)h∇h . As noted by Lai
[20], the approximate projection does not remove certain nonphysical oscillatory
modes. These are damped by application of a filter

u := u+ ζ∇(∇ · u), (45)

using a divergence stencil other than the centered divided difference used in (42).
We use ζ = h2/5 in two dimensions which is stable while always damping monopole
modes in the experience of [8; 30].

The corrector step for g and M simply follows the flux differencing quadrature
(32) followed by a source term update. The source term for g is computed as in
[23] using edge — and time — centered values from the predictor. The viscoelastic
stress source term is discretized using Crank–Nicholson:

Mn+1
= M̃n+1

+
1t
2

(
g
[(µp

λ
− ρa2

)
2D−

1
λ
τ
]

gT
)n

+
1t
2

(
g
[(µp

λ
− ρa2

)
2D−

1
λ
τ
]

gT
)n+1

,

rearranged in the form

Mn+1
=

2λ
2λ+1t

M̃n+1
−

1t
2λ+1t

Mn

+
1t

2λ+1t

(
g [(µp − ρa2λ) 2D+ ρa2 I] gT )n

+
1t

2λ+1t

(
g [(µp − ρa2λ) 2D+ ρa2 I] gT )n+1

, (46)

which is evaluated pointwise.
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4. Irregular domains

We use a Cartesian grid embedded boundary method to discretize the fluid equations
in the presence of irregular boundaries [6]. In this approach, the irregular domain
is discretized as a collection of control volumes formed by the intersection of the
problem domain with the square Cartesian grid cells as in a “cookie cutter”. The
various operators — the discrete divergence ∇·, discrete gradient ∇, and discrete
Laplacian 1— are approximated using finite volume differences on the irregular
control volumes. Cells are classified as regular if they do not intersect embedded
boundaries, irregular if they intersect boundaries, or covered if they have zero fluid
volume fraction. Faces are classified in an analogous way. In problems containing
irregular domains, the finite volume treatment of the regular cells follows the
description of Section 3.

Throughout, time tn data (U) will be centered at cell centers, even if that point
lies outside the fluid domain. Time tn+ 1

2 data (fluxes F) are centered at the centroid
of faces,

x̂i±ed/2 =
1

αi±ed/2hD−1

∫
Ai±ed /2

x d A, (47)

where αi±ed/2 is the area fraction of a cell edge i±ed/2 not covered by the embedded
boundary, or

αi±ed/2 =
Ai±ed/2

hD−1 , (48)

with Ai±ed the area of cell i on side ±d in contact with the fluid. Other geometric
quantities used are the volume fraction, defined as

κi =
Vi

hD , (49)

the area fraction of the domain boundary intersected with cell i , AEB
i , and its

associated area fraction, defined as

αEB
i =

AEB
i

hD−1 , (50)

and the outward-directed vector normal to the embedded boundary interface in cell
i , given by

ni =
1

αEB
i hD−1

∫
AEB

i

n d A. (51)
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In irregular cells, the quadrature (32) is not appropriate [6]. A stable but noncon-
servative update is

Ũn+1
i = Un

i −1t
[
κi (∇ · F)Ci + (1− κi )(∇ · F)NC

i
]n+ 1

2 , (52)

with conservative and nonconservative flux differences given by

(∇ · F)NC
i =

1
h

D−1∑
d=0

[
(Fd)i+ed/2− (Fd)i−ed/2

]
, (53)

(∇ · F)Ci =
1
Vi

∫
Vi

(∇ · F) dV

≈
1
κi h

[
D−1∑
d=0

∑
±

[
±αi±ed/2 Fd(x̂i±ed/2)

]
+αEB

i (ni · FEB
i )

]
, (54)

respectively.
Conservation violation is expressed locally by the generalized mass deficit δm,

δmi =1t (1− κi )κi
[
(∇ · F)NC

− (∇ · F)C
]

i , (55)

which is redistributed in a volume-weighted manner according to

Ũn+1
i := Ũn+1

i +

3D∑
j=neighbor(i)

δm j

w j
, (56)

wi =

3D∑
j=neighbor(i)

κ j . (57)

The calculation of fluxes on covered faces, and stencils used to re-center fluxes
to centroids, are described in [6; 22; 29]. Additional details are given in [24]. Here
we describe differences between the regular and irregular domain calculations that
are specific to the present algorithm.

We compute the Poisson equation in divergence form, 1φ ≈ ∇h
· (∇hφ) = f ,

with discrete divergence given by the conservative form (54). This means that
κ1hφ is directly accessible, and division by κ can be unstable. For the Laplacian
appearing in the velocity source term (36) we use κ1hφ in place of 1hφ, which
formally introduces an O(1t) discretization error. However, the results obtained by
this approximation are stable and appear to not affect the global error.

In irregular cells the discretization of the divergence term in (39) is computed as
follows. Define a velocity flux to be

Fu = u⊗ u−
2λ

2λ+1t
τ̃

ρ
. (58)
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Then, compute the divergence of Fu using (52) and redistribute according to (56).
Covered face values needed in the nonconservative divergence are obtained by

extrapolation from face-centered time-centered values, as described in [6]. Unlike
[6], we take this extrapolated edge state to represent the unique face value, so no
further Riemann problem is solved.

5. Boundary conditions

In the hyperbolic treatment, boundary conditions enter in two ways:

(1) on embedded boundaries, e.g., the computation of FE B in (54); and

(2) where the Cartesian cells abut the problem domain.

The conservative flux divergence (54) includes the flux derived from data centered
at the centroid of the embedded boundary. Such states are derived from cell-centered
data using Taylor series, without upwind projection. If x̂EB

i is the centroid relative
to the cell center,

Wn+ 1
2 ,EB

i =Wn
i + x̂EB

i ·
(
∇Wn)

i +
1t
2

(
∂Wi

∂t

)n

=Wn
i +

∑
d

[(
x̂EB

i
)

d I −
1t
2

Ad

](
∂Wn

∂xd

)
i
+
1t
2

Sn
i . (59)

This extrapolation is implemented without partitioning of W or A. The source
terms are implemented as with the predictor Section 3.1. The discrete gradient ∇W
uses central differences where possible, or one-sided differences where necessary.

This one-sided boundary value may be incompatible with physical boundary
conditions. The approach to boundary conditions uses the ideas of Ghidaglia and
Pascal [10]. Let WP be an extrapolated edge state, as calculated by (59), and let
WS be the final value used to construct the edge flux. In appropriately rotated
coordinates, we are interested in the eigenstructure of the matrix AAA(WS). For
each characteristic pointing into the domain, one degree of freedom at the boundary
must be specified. For each characteristic pointing out of the domain, a characteristic
condition must be met. Specifically, if characteristic k points out of the domain, a
sufficient characteristic condition is

lk · (WP −WS)= 0. (60)

For solid wall boundaries, including the embedded boundaries, this construction
is straightforward. We derive AAA on the boundary using active variables taken
from WP , and selecting inactive variables on physical grounds. In the present
application, the embedded boundaries are stationary surfaces subject to no-flow
conditions. Accordingly, the inactive variable un is uniquely determined, un = 0
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(here subscript n denotes the interface normal direction; subscript t will denote the
tangential direction). There is no a priori reason for τnn to be affected by boundary
conditions, thus we take τnn in state WS equal to its extrapolated value in WP .
With these choices, exactly one characteristic of AAA enters the domain, leaving
one degree of freedom to be specified. We use the no-slip boundary condition to
zero the tangential velocity component. For the characteristic that points out of the
domain, the the characteristic condition lun−c · (WP −WS)= 0 (if the wall normal
is positive) or lun+c · (WP −WS) = 0 (if the wall normal is negative) uniquely
determines the shear stress τnt component of WS . Thus, for solid wall boundaries,
WS =WP , except for variables u which are taken to be zero on physical grounds
and the shear stress which is determined by the characteristic condition.

For inflow and outflow boundaries this procedure is more involved. Let n point
out of the domain, so for inflow we have un < 0. Inflow conditions are either
supersonic, un + c < 0, or not, with un and c given by inactive variables taken
from the specified inflow condition. When supersonic, all characteristics flow into
the domain, and the state WS is given exclusively by imposed conditions. If not
supersonic, only the characteristic un + c flows out of the domain, so only one
constraint on WS comes from WP . In this case we determine the shear stress τnt

component of WS by solving lun+c · (WP −WS)= 0, with all other components of
WS being prescribed by the inflow condition.

On outflow, we take the inactive variables from WP , and un > 0. If supersonic,
un − c > 0, no characteristics flow into the fluid domain, and we take WS =WP .
If subsonic, one degree of freedom of WS is specified by external conditions. In
that case, we choose ut = 0 and determine the remaining values of WS from
lk · (WS −WP)= 0, for all k 6= un − c.

Boundary conditions are also required for the Helmholtz velocity correctors,
(39), and the divergence-cleaning projections (33) and (42) . The implicit velocity
equations (39) use homogeneous Dirichlet conditions on solid wall boundaries,
inhomogeneous Dirichlet conditions on inflow boundaries (using prescribed far-field
values), and homogeneous Neumann conditions on outflow. The discrete Lapla-
cian operator encountered in divergence-cleaning projections uses homogeneous
Dirichlet on outflow, and homogeneous Neumann on inflow and solid walls.

6. Results

Results are presented for three fluids: a Maxwell (highly elastic) fluid, characterized
by having no solvent viscosity, a nonzero polymeric viscosity, and a nonzero
relaxation time; a Newtonian fluid, characterized by having a nonzero solvent
viscosity, no polymeric viscosity, and relaxation time of zero; and a hybrid fluid
[30] — a Maxwell fluid with an added solvent viscosity. Two geometries are used
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Figure 1. Time-dependent un profiles of a Maxwell fluid with a
vortex initial condition in a rectangle. The domain has 256× 256
cells with 24 time step increments using 1t = 1.6× 10−3. The
range is from −0.5 (red) to 0.5 (blue).

that are nonconforming with Cartesian grids; a rotated rectangular geometry, and a
circular domain.

For the rectangular geometry, the computational domain has l = w = 2.0. The
rectangular box has dimensions l = 1.7, and w = 1.0, and has been rotated 45◦ to
maximize the amount of fluid in the computational domain. The coarse domain has
128×128 cells. We have chosen an initial vortex velocity profile that is sufficiently
smooth at the vortex edge, given by the function

uθ (r)= 2.56[(r/0.45)(1− r/0.45)]4 H(0.45− r),

where r is the distance to the center of the box and H is the Heaviside step function.
This gives a maximum initial speed of |u| = 1.0 at r = 0.225 (see Figure 1, top
left).

For all images corresponding to the angled box geometry, we have rotated
the output so the variables are seen with respect to the normal (lengthwise) and
transverse (widthwise) directions. The initial pressure is set to zero. We define
the characteristic speed, U , as the maximum initial velocity and the characteristic
length, L , as the width of the box.
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Figure 2. Profiles for a Maxwell fluid in a rectangle at t = 0.4224
(last image in Figure 1). Clockwise from top left: ut , −0.5 (red)
to 0.5 (blue); normal stress τnn , −0.21 (red) to 0.31 (blue); normal
stress τt t , −0.21 (red) to 0.28 (blue); shear stress τtn , −0.46 (red)
to 0.33 (blue); hydrostatic pressure p, 0 (red) to 0.656 (blue).

Figure 3. Time-dependent u0 profiles of a Maxwell fluid with a
vortex initial condition in a disk. The domain has 128× 128 cells
with 24 time step increments using 1t = 1.6× 10−3. The range is
from −0.50 (red) to 0.50 (blue).

For the circular geometry, the computational domain has l = w = 1.0 and the
circle has radius r = 0.45 to maximize the amount of fluid in the computational
domain. The coarse domain has 64 × 64 cells. The initial velocity profile is
uθ (r)= 2.56[(r/0.4)(1−r/0.4)]4 H(0.4−r), which gives a maximum initial speed
of |u| = 1.0 at r = 0.2 (see Figure 3, top left). The initial pressure is set to zero.
We define the characteristic speed, U , as the maximum initial velocity and the
characteristic length, L , as the diameter of the circle.
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norm Variable Coarse Error Fine Error Order

L1 u0 9.90e-04 2.69e-04 1.88
u1 9.62e-04 2.63e-04 1.87
τ00 1.24e-03 3.06e-04 2.02
τ10 1.38e-03 3.40e-04 2.02
τ11 1.37e-03 3.39e-04 2.01
p 1.04e-03 2.68e-04 1.96

L2 u0 1.65e-03 4.34e-04 1.93
u1 1.66e-03 4.23e-04 1.97
τ00 1.89e-03 4.78e-04 1.98
τ10 3.06e-03 6.93e-04 2.14
τ11 3.27e-03 8.36e-04 1.97
p 2.52e-03 4.78e-04 2.40

L∞ u0 4.08e-02 6.32e-03 2.69
u1 4.15e-02 6.98e-03 2.57
τ00 5.11e-02 1.09e-02 2.23
τ10 8.36e-02 2.77e-02 1.59
τ11 1.45e-01 3.73e-02 1.95
p 7.76e-02 1.15e-02 2.75

Table 1. Solution error convergence rates for a Maxwell fluid
with a vortex initial condition in a rectangle. Data correspond to
Figures 1 and 2.

6.1. Maxwell fluid. For the Maxwell fluid, the rheological parameters are µs =

0, µp = 1.0, λ = 1.0, and ρ = 1.0. This gives the dimensionless parameters
Re= 1.0,We= 1.0, and Ma= 1.0 for the rectangular box geometry. The coarse
time step for each geometry is 3.2 × 10−3, corresponding to CFL ≈ 0.5. The
time-dependent normal velocity is shown in Figure 1. The elastic wave propagation
and reflection off the walls is clearly visible. The transverse velocity, stress, and
pressure corresponding to the final image of normal velocity are shown in Figure 2.
The solution error convergence after 400 fine time steps is given in Table 1. We use
the same rheological parameters for the circular geometry, leading to dimensionless
parameters Re= 0.9,We= 0.9, and Ma= 1.0. The time-dependent u0 profiles are
shown in Figure 3. Again, the elastic wave propagation and reflection off the walls
is easily visible. The u1 component of velocity, stress, and pressure corresponding
to the final image of u0 are shown in Figure 4. The solution error convergence after
400 fine time steps is given in Table 2.

For Maxwell fluids, we have observed that additional cell-centered filtering steps
(45) are required to prevent the buildup of divergent modes near cells with small
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Figure 4. Profiles for a Maxwell fluid in a disk at t = 0.2688 (last
image in Figure 3). Clockwise from top left: u1, −0.50 (red) to
0.50 (blue); normal stress τ00, −0.38 (red) to 0.67 (blue); normal
stress τ11, −0.38 (red) to 0.67 (blue); shear stress τ10, −0.53 (red)
to 0.53 (blue); hydrostatic pressure p, 0 (red) to 0.55 (blue).

Figure 5. Time-dependent un profiles of a Newtonian fluid with a
vortex initial condition in a rectangle. The domain has 256× 256
cells with 2 time step increments using 1t = 3.75× 10−3. The
range is from −0.25 (red) to 0.25 (blue).

volume fractions. In the other flow regimes, the nonzero solvent viscosity in the
diffusion equation solver smooths the velocity and helps eliminate the divergent
modes and additional filtering steps are not required. The approach taken here
to stabilize the method is to perform 1 filter iteration per time step at the coarse
resolution, 2 iterations at the medium resolution, and 4 iterations at the fine resolu-
tion. The additional filter steps are not required for the other flow regimes, but are
included for consistency.

6.2. Newtonian fluid. For the Newtonian fluid, the rheological parameters are
µs = 1.0, µp = 0.0, λ = 1.0 × 10−11, and ρ = 1.0 leading to dimensionless
parameters Re= 1.0 and We= 0.0 for the rectangular box geometry. Since µp = 0,
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norm Variable Coarse Error Fine Error Order

L1 u0 2.00e-03 5.70e-04 1.81
u1 2.05e-03 6.14e-04 1.74
τ00 2.01e-03 6.87e-04 1.55
τ10 1.62e-03 6.87e-04 1.39
τ11 2.03e-03 6.88e-04 1.56
p 1.49e-03 5.62e-04 1.40

L2 u0 3.06e-03 1.01e-03 1.59
u1 3.15e-03 1.08e-03 1.55
τ00 3.09e-03 1.02e-03 1.60
τ10 2.33e-03 8.78e-04 1.41
τ11 3.00e-03 1.00e-03 1.58
p 2.19e-03 8.60e-04 1.35

L∞ u0 3.11e-02 1.66e-02 0.91
u1 3.31e-02 1.64e-02 1.01
τ00 4.07e-02 2.24e-02 0.86
τ10 4.15e-02 1.94e-02 1.09
τ11 3.68e-02 2.31e-02 0.67
p 3.04e-02 2.16e-02 0.49

Table 2. Solution error convergence rates for a Maxwell fluid with
a vortex initial condition in a disk. Data correspond to Figures 3
and 4.

the polymeric stress remains zero at all times. The coarse time step for each
geometry is 7.5× 10−3, corresponding to CFL≈ 0.5. The time-dependent normal
velocity is shown in Figure 5, in which the vortex spreads out to fill the box and
decays over time. The transverse velocity and pressure corresponding to the final
image of normal velocity are shown in Figure 6. The solution error convergence
after 40 fine time steps is given in Table 3. Only a small number of time steps are
used because after 40 the fluid velocity has already decayed to less than two percent
of its initial value.

We use the same rheological parameters for the circular geometry, leading to
dimensionless parameters Re = 0.9 and We = 0. The time-dependent normal
velocity is shown in Figure 7. As with the rectangular box case, the vortex spreads
out to fill the circle and decays over time. The transverse velocity and pressure
corresponding to the final image of normal velocity are shown in Figure 8. The
solution error convergence after 20 fine time steps is given in Table 4.

6.3. Hybrid fluid. For the hybrid fluid, the rheological parameters are µs = 0.1,
µp= 0.9, λ= 1.0, and ρ= 1.0 leading to dimensionless parameters Re= 1.0,We=
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1.0, and Ma= 1.05 for the rectangular box geometry. The initial stress is set to zero.
The coarse time step is 3.2× 10−3 for each geometry, corresponding to CFL≈ 0.5.
The time-dependent normal velocity is shown in Figure 9. As is the case with the
Newtonian fluid, the vortex spreads out and decays over time, with a different shape
than the Newtonian case. The transverse velocity, stress, and pressure corresponding

Figure 6. Profiles for a Newtonian fluid in a rectangle at t =
2.25× 10−2 (last image in Figure 5). Left: ut , −0.15 (red) to 0.15
(blue); right: hydrostatic pressure p, 0 (red) to 1.96 (blue).

Figure 7. Time-dependent u0 velocity profiles of a Newtonian
fluid with a vortex initial condition in a disk. The domain has
128×128 cells with 2 time step increments using1t = 3.75×10−3.
The range is from −0.25 (red) to 0.25 (blue).

Figure 8. Profiles for a Newtonian fluid in a disk at t=2.25×10−2

(last image in Figure 7). Left: u1, −0.15 (red) to 0.15 (blue); right:
hydrostatic pressure p, 0 (red) to 0.032 (blue).
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norm Variable Coarse Error Fine Error Order

L1 u0 1.68e-04 3.53e-05 2.25
u1 1.68e-04 3.54e-05 2.25
p 3.15e-03 1.16e-03 1.44

L2 u0 2.26e-04 4.63e-05 2.28
u1 2.26e-04 4.64e-05 2.28
p 6.63e-03 2.00e-03 1.72

L∞ u0 2.36e-03 5.46e-04 2.11
u1 2.36e-03 5.46e-04 2.11
p 4.12e-02 1.59e-02 1.37

Table 3. Solution error convergence rates for a Newtonian fluid
with a vortex initial condition in a rectangle. Data correspond to
Figures 5 and 6.

norm Variable Coarse Error Fine Error Order

L1 u0 4.06e-04 9.44e-05 2.10
u1 4.06e-04 9.44e-05 2.10
p 5.12e-03 1.58e-04 5.02

L2 u0 4.88e-04 1.16e-04 2.07
u1 4.88e-04 1.16e-04 2.07
p 1.04e-02 2.48e-04 5.40

L∞ u0 1.06e-03 5.51e-04 0.95
u1 1.06e-03 5.51e-04 0.95
p 7.77e-02 1.13e-03 6.11

Table 4. Solution error convergence rates for a Newtonian fluid
with a vortex initial condition in a disk. Data correspond to Figures
7 and 8.

to the final image of normal velocity are shown in Figure 10. The solution error
convergence after 200 fine time steps is given in Table 5.

We use the same rheological parameters for the circular geometry, leading to
dimensionless parameters Re= 0.9,We= 0.9, and Ma= 1.05. The time-dependent
u0 component of velocity is shown in Figure 11. As with the rectangular box case,
the vortex spreads out to fill the circle and decays over time. The transverse velocity,
stress, and pressure corresponding to the final image of u0 are shown in Figure 12.
The solution error convergence after 200 fine time steps is given in Table 6.
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Figure 9. Time-dependent un profiles of a hybrid fluid with a
vortex initial condition in a rectangle. The domain has 256× 256
cells with 30 time step increments using 1t = 1.6× 10−3. The
range is from −0.25 (red) to 0.25 (blue).

Figure 10. Profiles for a hybrid fluid in a rectangle at t = 0.144
(last image in Figure 9). Clockwise from top left: ut , −0.15 (red)
to 0.15 (blue); normal stress τnn ,−0.25 (red) to 0.37 (blue); normal
stress τt t , −0.25 (red) to 0.37 (blue); shear stress τtn , −0.30 (red)
to 0.29 (blue); hydrostatic pressure p, 0 (red) to 0.55 (blue).

Figure 11. Time-dependent u0 profiles of a hybrid fluid with a
vortex initial condition in a disk. The domain has 128× 128 cells
with 20 time step increments using 1t = 1.6× 10−3. The range is
from −0.25 (red) to 0.25 (blue).
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norm Variable Coarse Error Fine Error Order

L1 u0 8.74e-05 2.62e-05 1.74
u1 8.99e-05 2.93e-05 1.62
τ00 1.31e-04 3.78e-05 1.80
τ10 1.74e-04 5.81e-05 1.58
τ11 1.33e-04 3.96e-05 1.75
p 2.49e-04 7.95e-05 1.64

L2 u0 1.98e-04 7.53e-05 1.39
u1 2.02e-04 7.75e-05 1.39
τ00 2.47e-04 1.00e-04 1.30
τ10 3.00e-04 1.28e-04 1.22
τ11 2.90e-04 1.40e-04 1.05
p 3.82e-04 1.28e-04 1.58

L∞ u0 6.75e-03 3.26e-03 1.05
u1 6.82e-03 3.29e-03 1.05
τ00 2.67e-03 3.45e-03 -0.37
τ10 8.52e-03 4.40e-03 0.95
τ11 4.72e-03 6.15e-03 -0.38
p 6.58e-03 3.16e-03 1.06

Table 5. Solution error convergence rates for a hybrid fluid with a
vortex initial condition in a rectangle. Data correspond to Figures 9
and 10.

Figure 12. Profiles for a hybrid fluid in a disk at t = 0.096 (last
image in Figure 11). Clockwise from top left: u1, −0.15 (red) to
0.15 (blue); normal stress τ00, −0.25 (red) to 0.35 (blue); normal
stress τ11, −0.25 (red) to 0.35 (blue); shear stress τ10, −0.30 (red)
to 0.30 (blue); hydrostatic pressure p, 0 (red) to 0.040 (blue).
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norm Variable Coarse Error Fine Error Order

L1 u0 1.21e-04 3.05e-05 1.99
u1 1.27e-04 3.40e-05 1.91
τ00 2.66e-04 6.62e-05 2.01
τ10 3.95e-04 1.25e-04 1.66
τ11 2.54e-04 6.39e-05 1.99
p 3.94e-04 1.40e-04 1.50

L2 u0 2.23e-04 6.86e-05 1.70
u1 2.27e-04 7.12e-05 1.67
τ00 3.53e-04 9.91e-05 1.83
τ10 4.94e-04 1.62e-04 1.60
τ11 3.44e-04 9.73e-05 1.82
p 4.82e-04 1.72e-04 1.49

L∞ u0 2.31e-03 1.15e-03 1.00
u1 2.30e-03 1.15e-03 1.00
τ00 4.47e-03 2.13e-03 1.07
τ10 3.78e-03 1.64e-03 1.21
τ11 4.75e-03 2.28e-03 1.06
p 2.19e-03 1.90e-03 0.20

Table 6. Solution error convergence rates for a hybrid fluid with a
vortex initial condition in a disk. Data correspond to Figures 11 and 12.

7. Conclusions

For each of the test problems, we demonstrate second-order convergence of the
solution error in L1 and first-order in L∞ for velocity and stress with an advective
CFL time step constraint of CFL≈ 0.5, as expected. This is an improvement over
[30], in which less than second-order convergence was obtained with a smaller time
step, and the algorithm did not support arbitrary smooth geometries. The algorithm
also exhibits at least first-order convergence in L1 for pressure, as expected. In
some cases, such as the Maxwell fluid in the rectangular geometry, the convergence
rates in L∞ exceed first-order. This is due to the fact that given the position and
shape of the expanded vortex, the largest magnitude errors occur in the interior of
the domain, where the algorithm is second-order.

A feature calling for further study is the apparent need for additional projection
filters (45) to smooth out the divergence in the velocity field of Maxwell fluids in
irregular cells. Approaches include different filtering stencils, or different covered
face state extrapolation algorithms.

The first obvious extension to this work is a three-dimensional discretization of
the equations. The upwind method [6] and discretizations for Poisson’s equation and
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the heat equation [29] in a three-dimensional embedded boundary framework have
already been developed, so the extension is straightforward. The methods in this
paper have been developed under the assumption that the geometry is sufficiently
smooth. Additional studies are required to determine the robustness of the algorithm
in the presence of discontinuous geometries, such as abrupt contractions. This will
enable comparisons to standard benchmark problems [1; 26; 27; 30], such as
the flow of elastic liquids in hard-cornered planar and axisymmetric contractions.
Additional studies are also required to examine the robustness of this algorithm
under higher values of We and Ma, and for a variety of operating conditions for
experimental comparison [12; 13; 14]. In addition, adaptive numerical algorithms
for the incompressible Navier–Stokes equations, in which the grid is locally refined
in regions of interest, are being developed [21]. Adaptive techniques have already
been used with success for hyperbolic conservation laws [6], so these two methods
can be combined to develop a new adaptive projection method for incompressible
viscoelasticity. Finally, another possible extension is the discretization of more
advanced constitutive models, such as the PTT [25], White–Metzner [35] and
Giesekus [11] models. The methods in this paper provide a framework for including
the additional terms present in these models.
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A NUMERICAL METHOD FOR
CELLULAR ELECTROPHYSIOLOGY

BASED ON THE ELECTRODIFFUSION EQUATIONS
WITH INTERNAL BOUNDARY CONDITIONS AT MEMBRANES

YOICHIRO MORI AND CHARLES S. PESKIN

We present a numerical method for solving the system of equations of a model
of cellular electrical activity that takes into account both geometrical effects and
ionic concentration dynamics. A challenge in constructing a numerical scheme
for this model is that its equations are stiff: There is a time scale associated with
“diffusion” of the membrane potential that is much faster than the time scale
associated with the physical diffusion of ions. We use an implicit discretization
in time and a finite volume discretization in space. We present convergence
studies of the numerical method for cylindrical and two-dimensional geometries
for several cases of physiological interest.

1. Introduction

Cellular electrical activity is central to cellular physiology [1], and it has been an
area in which mathematical modeling has seen great success [16; 18]. Most models
of cellular electrical activity are based on the cable model, in which an ohmic
current continuity relation results in a one-dimensional reaction diffusion system
[16; 18].

In the derivation of the cable model, one assumes that the ionic concentrations
do not change appreciably over the time of interest, and that a one-dimensional
picture of cell geometry is adequate for purposes of describing cellular electrical
activity. In [25; 27], we presented a three-dimensional model of cellular electrical
activity that takes into account both ionic concentration and geometrical effects
on electrophysiology. The resulting system of partial differential equations has the
virtue of being more general in its physiological applicability, but has the difficulty
of being far more complicated to study either analytically or numerically.

In this paper, we develop an efficient numerical method to solve this system of
equations in two spatial dimensions. In Section 2, we give a short presentation of
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the model equations and in Section 3 we discuss the time and space scales that are
relevant to the behavior of the model. We shall see that the model equations have
two time scales of interest, the ionic diffusion time scale and the membrane potential
time scale. The membrane potential time scale is associated with the “diffusion” of
the membrane potential, which is closely related to the spread of the membrane
potential in the cable model. In Section 4, we discuss spatial discretization. We use
a finite volume scheme and develop a numerical scheme for cylindrical geometry
and a related scheme for arbitrary two-dimensional geometry. In Section 5, we
discuss time discretization. We use an operator splitting approach. Each time step
is split into two substeps, one in which the gating variables are updated and the
other in which the electrostatic potential and the ionic concentrations are updated.
For the latter substep, a the electrostatic potential and ionic concentrations are
treated implicitly to deal with the disparity of time scales mentioned above. We
then discuss the iterative numerical solution of the nonlinear algebraic equations
which result from the discretization. We conclude with convergence studies using
several examples of biophysical relevance: the Hodgkin–Huxley axon, ephaptic
transmission between cardiac cells, and three model geometries at length scales
typically found in the central nervous system.

2. Model equations

We consider biological tissue to be a three-dimensional space partitioned into the
intracellular and extracellular spaces by membranes. In these regions, we track the
ionic concentrations as well as the electrostatic potential. Let the biological tissue
of interest be divided into membrane bound subregions �(k), indexed by k. We
denote the membrane separating the regions �(k) and �(l) by 0(kl) (Figure 1).

In any of the subregions �(k), both the extracellular and intracellular, the equa-
tions satisfied by the ionic concentrations ci and the electrostatic potential φ are

∂ci

∂t
=−∇ · fi , (ion conservation) (1)

fi =−Di

(
∇ci +

qzi ci

kB T
∇φ

)
, (drift-diffusion flux) (2)

0= ρ0+

N∑
i=1

qzi ci , (electroneutrality condition). (3)

Here, fi denotes the flux of the i-th species of ion. This quantity is expressed as a
sum of a diffusion term and a drift term. Di is the diffusion coefficient of the i-th
ion, qzi is the amount of charge on the i-th ion, where q is the proton charge. Thus
q Di/(kB T ) is the mobility of the ion species (Einstein relation), where kB is the
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φ, ci
intracellular space (�(k))

φ, ci
extracellular space (�(l))

membrane (0(kl))

n(kl)

qzi fi · n(kl)

membrane (lipid bilayer)
capacitance Cm

transmembrane current j (kl)
i

Figure 1. The variables φ, ci are defined in the regions �(k) and
�(l), which we have identified as intracellular and extracellular
regions in the above. The membrane acts primarily as a capacitor,
but possesses ionic channels through which transmembrane current
can flow.

Boltzmann constant and T the absolute temperature. The fixed background charge
density (if any) is given by ρ0.

The electrostatic potential φ is determined implicitly by the electroneutrality
condition (3). We can obtain an equation that is satisfied by φ by taking the
derivative of (3) with respect to time t :

N∑
i=1

qzi
∂ci

∂t
=

N∑
i=1

qzi∇ · fi =∇ · (a∇φ+∇b)= 0, (4)

where

a(x, t)=
N∑

i=1

(qzi )
2 Di

kB T
ci (x, t), b(x, t)=

N∑
i=1

qzi Di ci (x, t). (5)

Thus, φ satisfies an elliptic constraint such that electroneutrality is satisfied at each
instant of time.

We now turn to the boundary conditions, satisfied at both the intracellular and
extracellular sides of the cell membrane. Biological membranes consist largely of a
lipid bilayer. In this cell membrane are embedded ionic channels and transporters
through which certain ionic species may pass.

Across the cell membrane, a jump in electrostatic potential (membrane potential)
is maintained, and the cell membrane acts as a capacitor. There is, therefore, a thin
layer (space charge layer) on both sides of the membrane where electric charge
accumulates. The thickness of this layer is on the order of the Debye length which
measures approximately 1 nm in physiological systems. In (3), we have taken the
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electroneutrality condition to hold inside and outside the cell, and this implies that
we must treat the effect of having Debye layers in the form of boundary conditions.

The strength of the ionic current through an open ionic channel is determined by
the membrane potential and ionic concentrations on either side of the membrane.
Ionic channels may open or close, and the dynamics of this gating is also determined
in large part by the membrane potential and ionic concentrations [10].

The boundary conditions satisfied on the �(k) face of the membrane 0(kl) are

∂σ
(k)
i

∂t
(xm, t)+ j (kl)

i (xm, t)= qzi f (k)i · n
(kl)(xm). (6)

All variables are defined on the boundary, and a spatial location on the boundary is
denoted by xm . The term j (kl)

i denotes the transmembrane current per unit area from
region �(k) into �(l). We note by definition that j (kl)

i =− j (lk)i . The variable σ (k)i
denotes the contribution of the i-th species of ion to surface charge per unit area.
The above boundary condition states that the current that flows onto the membrane
either goes across the membrane through ionic channels, or contributes to change
in surface charge.

In order to make (6) into a useful boundary condition, we must be able to write
j (kl)
i and σ (k)i in terms of ci and φ. The surface charge density σ (k)i is expressed as

σ
(k)
i = λ

(k)
i (xm, t)σ (k)(xm, t), σ (k) = Cmφ

(kl), (7)

∂λ
(k)
i

∂t
=
λ̃
(k)
i − λ

(k)
i

τ
, λ̃

(k)
i (xm, t)=

z2
i c(k)i∑N

i ′=1 z2
i ′c
(k)
i ′
. (8)

Here, c(k)i and φ(k) denote limiting values of ci and φ as one approaches the
membrane from the �(k) side of the membrane 0(kl) and φ(kl)

= φ(k)−φ(l) is the
membrane potential. τ is a relaxation time constant which we shall discuss shortly.
σ (k) is the total charge on the �(k) side of the membrane surface and is the product
of Cm, the capacitance of the membrane and the membrane potential φ(kl). Since
φ(kl)
=−φ(lk), (7) implies that σ (k) =−σ (l) at each point of the membrane. Thus,

like a capacitor, each patch of membrane is electrically neutral, since the charge
stored on one side of the membrane balances the charge stored on the other side.

Note that λ(k)i is the fractional contribution of the i-th species of ion to the surface
charge density on face k of the membrane (7). The quantity λ(k)i relaxes to λ̃(k)i with
time constant τ = r2

d/D0 = 1 ns, the diffusive time scale within the Debye layer (rd

is the aforementioned Debye length and D0 is a representative diffusive constant
for ions). This relaxation time is introduced to avoid an instability that occurs if
we formally take the limit τ → 0 and set λ(k)i = λ̃

(k)
i ; see the Appendix for further

discussion and [25; 24] for details. The choice τ = 1 ns is large enough to avoid
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this instability and yet small enough that λ(k)i remains close to λ̃(k)i at all times in
any practical application.

The derivation of specific formula for λ̃(k)i given in (8) requires a closer look at
the ionic composition of the space charge layer. A derivation by physical reasoning
in [27] and by matched asymptotic analysis in [25] and [24]. A quick derivation
is given in the Appendix for convenience of the reader. The expression for λ̃(k)i
states that the fractional contribution of each species ion to the surface charge on
one face of the membrane is given by the concentration of that ion species in the
bulk solution near that face of the membrane weighted by the square of the charge
carried by that species of ion. This result is closely related to the concept of ionic
strength in electrochemistry [5], which is defined as 1

2 z2
i ci . Note the implication

that ions of either sign can contribute, for example, to a positive space charge layer.
Such a layer involves an increased concentration of positive ions and a reduced
concentration of negative ions in comparison to the concentrations of these ions in
the electroneutral bulk solution outside of the space charge layer.

The interpretation of λ(k)i as the fractional contribution of the i-th ion species to
the surface charge on face k of the membrane requires that

∑
i λ

(k)
i = 1 be satisfied

identically, at all membrane locations for all time. To verify this condition, sum
both parts of (8) from i = 1, . . . , N . The second part gives

∑
i λ̃

(k)
i = 1, and the

first part therefore shows that
∑

i λ
(k)
i relaxes to 1, and indeed is identically equal

to 1 if it is equal to 1 initially. We assume in the sequel that the initial values of λk
i

have this property.
We now discuss ji , the transmembrane currents. Biophysically, these are currents

that flow through ion channels, transporters, or pumps that are located within the
cell membrane [1; 10; 15]. We use the formalism of Hodgkin and Huxley for ion
channel currents [11; 16; 18], generalized to allow for nonlinear instantaneous
current-voltage relations and ion concentration effects.

j (kl)
i (xm, t)= J (kl)

i (xm, s(kl), φ(kl), c(k), c(l)). (9)

The transmembrane current density J (kl)
i is a function characteristic of the channels

(possibly of more than one type) that carry the i-th species of ion across the
membrane separating �(k) from �(l). The explicit dependence of J (kl)

i on x reflects
the possible inhomogeneity of the membrane: the density of channels may vary
from one location to another. The other arguments of J (kl)

i are as follows.
First, there is a vector of gating variables s(kl)(xm, t)= (s(kl)

1 , . . . , s(kl)
G ) where

G is the total number of gating variables in all of the channel types that arise in our
system. (Only some of these influence the channels that conduct ions of species i .)
The individual components s(kl)

g of s(kl) are dimensionless variables as introduced by
Hodgkin and Huxley [11] that take values in the interval [0, 1] and satisfy ordinary
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differential equations of the form,

∂s(kl)
g

∂t
= α(kl)

g (φ(kl))(1− s(kl)
g )−β(kl)

g (φ(kl))s(kl)
g (10)

for g = 1, . . . ,G where α(kl)
g and β(kl)

g are positive, empirically defined functions
of the transmembrane potential. In general, the gating variables obey a more
complicated ordinary differential equation:

∂s(kl)
g

∂t
= f (kl)

g (s(kl), φ(kl), c(k), c(l)). (11)

We note the conditions j (kl)
i = − j (lk)i and φ(kl)

= −φ(lk) impose the following
constraints on the form of the functions α(kl)

g , β
(kl)
g and f (kl)

g :

α(kl)
g (φ(kl))= α(lk)g (φ(lk)), β(kl)

g (φ(kl))= β(lk)g (φ(lk)), (12)

f (kl)
g (s(kl), φ(kl), c(k), c(l))= f (lk)g (s(lk), φ(lk), c(l), c(k)). (13)

The next argument of J (kl)
i is again the transmembrane potential φ(kl). Holding

the other arguments fixed in J (kl)
i , and letting only φ(kl) vary, we get the instanta-

neous current-voltage relationship for current carried by the i-th ion from �(k) to
�(l) at point x at time t .

The last two arguments of J (kl)
i are the vectors of ion concentrations on the two

sides of the membrane: c(k) = (c(k)1 , . . . , c(k)N ) and similarly for c(l). By including
the whole vector of ion concentrations, we allow for the possibility that the current
carried by the i-th species of ion is influenced by the concentrations of other ionic
species on the two sides of the membrane. This, for example, is the case with
calcium gated potassium channels (KCa channels) whose potassium conductance is
controlled by the intracellular calcium concentration [10].

Equations (1)–(3) with the boundary condition (6) is the model we consider in
this paper. We shall call this model the electroneutral model.

3. Cable model and multiple timescales

The above electroneutral model provides a more detailed description of cellular
electrophysiology than the more familiar one-dimensional cable model (see (20),
below). In this section, we sketch the derivation of the cable model from the
electroneutral model. We do so in part to confirm that the electroneutral model
contains the cable model as a limiting case, but also to bring out the different
time scales that will complicate the numerical solution of the equations of the
electroneutral model. For a more complete exposition of the derivation sketched
here, see [25].
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First, recall from (4) that φ satisfies an elliptic equation. The boundary conditions
for this equation can be obtained by the sum over i in (6):

Cm
∂φ(kl)

∂t
+ I (kl)(xm, t)=−(a∇φ+∇b) · n, (14)

where we have used
∑N

i=1 σi =Cmφ
(kl) (7) and I (kl)

≡
∑N

i=1 j (kl)
i . The coefficients

a and b were given in (5). Thus, the electrostatic potential satisfies an elliptic
problem with an evolutionary boundary condition satisfied at the membrane.

Suppose now that the ionic concentrations inside and outside the cell do not
change appreciably in the time of biophysical interest, and that the ionic concen-
trations gradients are negligible. Then, we have only to track the evolution of the
electrostatic potential and the coefficient a and b of (4) is constant within each of
the domains separated by the membrane. Thus, (4) and (14) can now be written as

1φ = 0 in �(k), �(l), (15)

Cm
∂φ(kl)

∂t
+ I (kl)

=−a(k)
∂φ

∂n(kl) =−a(l)
∂φ

∂n(kl) on 0(kl). (16)

where a(k) and a(l) are now constants defined within each domain. The gradient of
b disappears from the equations because we have assumed that we do not have a
concentration gradient. We see that the evolution of the electrostatic potential is
completely specified by what happens at the boundary. We note that Equations (15)
and (16) have been used to model cellular electrophysiology and is also the basis
for the bidomain model used in tissue level electrophysiology [8; 3; 28; 16].

Consider a simple situation in which we have just two regions, one intracellular
and the other extracellular. We take the intracellular region to be a bounded simply
connected set whereas the extracellular space its complement in R3. For simplicity,
suppose that aint

= aext. Consider the following boundary value problem for φ.

1φ = 0 in �ext, �int, (17)

φm ≡ φ
int
−φext

= f,
∂φint

∂n
=
∂φext

∂n
on 0. (18)

where f is some function given on the membrane 0 and n is the unit normal
pointing from the intracellular to extracellular side of the cell. We require that φ
decays to 0 at infinity. The above boundary value problem defines a map from
φm = f to ∂φint/∂n= ∂φext/∂n. This is similar to the usual Dirichlet-to-Neumann
map on a single domain, except that we are here solving a Laplace problem on
both sides of the membrane interface, and the input we are given is the jump in
the electrostatic potential. We denote this map as L. Using this map, and the
simplification a = aint

= aext, we can write (15) and (16) as
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Cm
∂φm

∂t
+ I =−aLφm. (19)

We now clearly see that the evolution of φ is confined to the boundary. It is
straightforward to show that L can be extended to a nonnegative self-adjoint operator
on square integrable functions on 0. This tells us that φm evolves according to an
evolutionary equation similar to a reaction-diffusion equation, where the Laplacian
is replaced with −1 times L. Thus, there is a “diffusive” process that takes place
on the two dimensional membrane surface. We shall call this membrane potential
diffusion.

We would like to compare the speeds of the two dissipative processes at play:
ionic diffusion and membrane potential diffusion. The “diffusion” coefficient a/Cm

in front of the operator −L in (19) has dimensions of length/time. Therefore, it
cannot be compared directly with the ionic diffusion coefficient Di which has
dimensions length2/time. However, if there is a natural characteristic length scale
L associated with the geometry of the system, the combination Dφ ≡ aL/Cm may
be used as a value to be compared with Di .

Suppose the cell is cylindrical in shape. Assuming that the membrane potential
varies slowly on the length scale defined by the radius of the cylinder, (19) can be
further reduced to the following one-dimensional reaction diffusion equation.

Cm
∂φm

∂t
+ I =

a R
2
∂2φm

∂z2 , (20)

where R is the radius of the cylinder and z is the axial coordinate. This is nothing
other than the cable model. A quick derivation of this is given in the Appendix.
The factor R/2 comes from the ratio of the cylindrical cross-sectional area to the
circumference: πR2/(2πR). In (20), L = R/2 emerges as the natural characteristic
length scale, and Dφ = a R/(2Cm). Let us examine the ratio between Dφ and Di .

Dφ =
a R

2Cm
=

N∑
i=1

L(qzi )
2ci

CmkB T
Di =

N∑
i=1

Lqci

Cm(kB T/q)
1
2

z2
i Di , (21)

where we used (5) in the second equality. Given that z2
i is an order 1 quantity,

Dφ

Di
≈

Lqc0

Cm(kB T/q)
= 104

∼ 106, (22)

where c0 is the typical ionic concentration. The above is a ratio of the absolute
amount of charge in the electrolyte solution to the membrane surface charge, which
turns out to be 104 to 106 in physiological systems. This illustrates the presence of
two disparate time scales in the problem.

That membrane potential diffusion is fast and dissipative has important implica-
tions for time stepping, to be discussed in Section 5.
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4. Spatial discretization

4.1. Finite volume method. We shall use a finite volume discretization in space
[21]. Take any finite volume �fv contained in �(k) and suppose the boundary
of this region is comprised of two components, the 0el component that faces the
electrolyte solution, and the 0m component that faces the membrane. It may be the
case that either 0el or 0m is empty. For each ionic species, we have the following
conservation relation in integral form:∫
�fv

∂ci

∂t
dV =

∫
0el∪0m

fi · nd A

=−

∫
0el

Di
(
∇ci +

qzi ci

kB T
∇φ

)
· nd A

+

∫
0m

1
qzi

(
Cm

∂(λ
(k)
i φ(kl))

∂t
+ j (kl)

i

)
d A. (23)

The electroneutrality condition is equivalent to saying that

ρ0+

N∑
i=1

qzi ci = 0 at t = 0,
N∑

i=1

qzi
∂ci

∂t
= 0, for t > 0. (24)

As long as the electroneutrality condition is satisfied at t = 0, we have only to con-
sider the time derivative of the electroneutrality condition for time t > 0. Therefore,
we can obtain the electroneutrality condition expressed in integral form by taking
(23), multiplying by qzi and summing in i .

0=−
∫
0el

( N∑
i=1

qzi Di

(
∇ci +

qzi ci

kB T
∇φ
)
· n
)

d A

+

∫
0m

(
Cm

∂φ(kl)

∂t
+

N∑
i=1

j (kl)
i

)
d A. (25)

Note that (23) and (25) are equivalent to the differential equations since the finite
volume �fv is arbitrary.

In the finite volume discretization, we partition the spatial region into a finite
number of finite volumes (FVs), and apply (23) and (25) on each FV. We then
approximate the volume and surface integrals that appear in the integral conservation
relations.

For simplicity, consider a two-dimensional situation. Discretize space into
polygonal finite volumes. For each FV we designate a representative location xc

where we define the value of the physical variables. Equation (1) for ion conservation
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can be discretized using a finite volume approach in the following fashion.

∂ci

∂t

∣∣∣∣
x=xc

≈
1
V

∫
finite volume

∂ci

∂t
dV =−

1
V

∫
faces of FV

f · nd A

≈−
1
V

∑
q

eq Fq , (26)

where V is the volume (in two dimensions the area) of the FV, ` labels the faces
(polygonal sides), and e` is the area (in two dimensions the length) of the face `.
F` is an approximation to the true flux f · n evaluated on face `. The discrete
evolution equation is thus

∂ci

∂t
=−

1
V

∑
`

e`F`. (27)

Label the FVs by p and write the flux density approximation from FV p to p′ as
F (p,p

′). As long as F (p,p
′)
=−F (p

′,p), we have discrete conservation of ci . Thus, it
is straightforward with the finite volume method construct a conservative numerical
scheme. In our case, however, there is the unusual complication that we have to
account not only for ions in the interiors of the FVs but also for the ions in the space
charge layers. Because of this, it will not always be the case that F (p,p

′)
=−F (p

′,p),
but our scheme will be conservative anyway, as explained below.

As we shall see, the discretization of the electroneutrality condition will be
obtained by multiplying (27) by qzi and summing in i . This can be seen as a
discretization of the integral charge conservation relation (25).

4.2. Cylindrical geometry. We have developed finite volume schemes adapted to
two types of simulations, one for arbitrary two-dimensional membrane geome-
try, and the other for cylindrical geometry. We first discuss the finite volume
discretization for cylindrical geometry.

Take a cylindrical coordinate system with the axial coordinate z and the radial
coordinate r . We seek solutions that are axisymmetric. We discretize in r and z. We
have a series of FVs whose shape is a torus with a rectangular cross-section. Each
FV will generically have four faces at which it touches other FVs. FVs are indexed
by p and the associated quantities of the FV p are labeled with the subscript or
superscript p. Consider an FV p. Let the width of this FV in the r direction be hr

p
and that in the z direction be hz

p. We let hr
p < K h and hz

p < K h for some constant
K uniformly for all p and take h→ 0. To each FV we apply the divergence theorem
and its approximation, as we did in (26) and (27).

For cylindrical geometry, we require that the membrane conform to the FV
boundaries. That is to say, the membrane patches can be described by z = const
or r = const. FV faces that coincide with the membrane will be referred to as
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membrane faces. Non-membrane faces will be referred to as ordinary faces. To
each ordered pair of FVs p and p′ we associate two quantities e(p,p

′) and γ (p,p
′).

If FVs p and p′ are adjacent to each other through an ordinary face, we let e(p,p
′)

be the area of this membrane face. Otherwise we set e(p,p
′)
= 0. Likewise, if FVs

p and p′ are adjacent through a membrane face, we set γ (p,p
′) to be its area and

0 otherwise. By definition, e(p,p
′)
= e(p

′,p) and likewise for γ (p,p
′). If e(p,p

′)
6= 0

or γ (p,p
′)
6= 0, we let F (p,p

′) and G(p,p′) denote the flux density from FV p to FV
p′ respectively. Otherwise, we set F (p,p

′)
= 0 or G(p,p′)

= 0. The specific forms
of F (p,p

′) and G(p,p′) will be discussed shortly. If γ (p,p
′)
6= 0 , we must define

membrane associated quantities that correspond to this ordered pair. They include
the gating variables s(p,p

′)
g and the membrane charge fraction λ(p,p

′)
i . The former

satisfy s(p,p
′)

g = s(p
′,p)

g and their associated evolution equations satisfy symmetry
conditions that correspond to (12) and (13). We let λ(p,p

′)
i denote the membrane

charge fraction of the membrane patch (p, p′) found on the membrane surface
facing FV p. There is no symmetry relation between λ(p,p

′)
i and λ(p

′,p)
i since they

are different physical entities. FVs with one or more membrane faces will be called
membrane FVs, whereas FVs without membrane faces will be called ordinary FVs.

Consider FV p whose coordinates are given by z p0 < z < z p1 and rp0 < r < rp1.
The discrete evolution equation for ionic concentrations cp

i in FV p are

∂cp
i

∂t
=−

1
Vp

∑
p′ 6=p

(e(p,p
′)F (p,p

′)
i + γ (p,p

′)G(p,p′)
i ), (28)

where Vp is the volume of the FV p. We think of cp
i and φ p, the physical variables

associated with the FV p, as being defined at the center of the axial cross-section
of FV p. That is to say, the representative point xc in (26) is taken to be at
r = (rp0+ rp1)/2, and z = (z p0+ z p1)/2. For an ordinary FV, the second sum in
(28) is 0.

All we need now in (28) are the approximate flux density expressions F (p,p
′)

i
and G(p,p′)

i . For discretization of the flux density in the axial direction, we take

F (p,p
′)

i = Di

(
cp

i − cp′
i

(hz
p′ + hz

p)/2
+

qzi

kB T

hz
p′c

p
i + hz

pcp′
i

hz
p′ + hz

p

φ p
−φ p′

(hz
p′ + hz

p)/2

)
. (29)

Note that this expression changes sign if p and p′ are exchanged, making this a
conservative discretization. We take care in constructing our mesh that the mesh
width in the z direction changes smoothly as a function of the z coordinate of the
representative point of the FV. For fluxes in the radial direction, we discretize in
exactly the same fashion.
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We now turn to the approximation to the membrane fluxes G(p,p′)
i .

qzi G
(p,p′)
i = Cm

∂(λ
(p,p′)
i φ

(p,p′)
m )

∂t
+ j (p,p

′)
i (sm, φ(p,p

′)
m , cp, cp′), (30)

φ(p,p’)
m = φ p

−φ p′ . (31)

We evaluate the membrane quantities c (vector of ionic concentrations (c1, . . . , cN ))
and φm using values at the representative points xc of FVs p and p′. The function
j (p,p

′)
i satisfies symmetry conditions equivalent to (13) so that j (p,p

′)
i =− j (p

′,p)
i .

Note that in general G(p,p′)
i 6= −G(p′,p)

i , because of the presence of the surface
charge

σ
(p,p′)
i ≡ λ

(p,p′)
i Cmφ

(p,p′)
m .

Our discretization is conservative nevertheless in the following sense. The quantity

Vpcp
i +

1
qzi

∑
p′ 6=p

γ (p,p
′)σ

(p,p′)
i (32)

will be conserved thanks to the symmetry conditions satisfied by F (p,p
′)

i and j (p,p
′)

i .
Expression (32) is the total ionic content in the FV p, taking into account the
amount of ion that resides within the space charge layer.

We finally note that the discretization of the electroneutrality condition for each
FV can be obtained by multiplying the discrete evolution equation (28) by qzi and
summing them over i (under the assumption that the initial configuration satisfies
the electroneutrality condition):

0=
N∑

i=1

qzi

∑
p′ 6=p

(e(p,p
′)F (p,p

′)
i + γ (p,p

′)G(p,p′)
i ). (33)

This is precisely the discretization of (25).
By expanding these flux approximations in Taylor series and substituting into

(26), one can easily obtain the local truncation error for each FV. The local truncation
error for ordinary FVs is O(h) and is O(1) for membrane FVs. We shall nonetheless
observe approximate second order convergence in space in the cylindrical geometry
case, as we shall see in Section 7.

As for boundary conditions at the outer rim of the computational domain, we
shall make use a no-flux boundary condition.

4.3. Arbitrary two-dimensional membrane geometry. We have developed code
that handles two-dimensional arbitrary membrane geometry. The ideas are the same
as for the cylindrical case. We shall use an embedded boundary method, where
a uniform Cartesian grid is used over most of the computational domain, except
where the grid is cut by the membrane [13; 7; 23].
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Figure 2. Grid for two-dimensional simulation. The shaded FVs
are the ordinary FVs whereas the nonshaded FVs are the membrane
FVs. To each membrane patch, there are two membrane FVs. In
the above figure, there are 36 meshes, 16 ordinary FVs, and 40
membrane FVs.

Henceforth, we shall use the word mesh to denote the uniform Cartesian grid
laid on the computational domain, and also to denote the square patches that result
from this grid (Figure 2). We shall take the mesh sides to have length h. An FV
is the same thing as a mesh if the membrane does not cut through this mesh. If
the membrane does cut through the mesh, we approximate this membrane cut by
a straight line, and the resulting two polygons will be our FVs that correspond to
this mesh. We shall call an uncut Cartesian mesh an ordinary FV. An FV that is cut
out of a Cartesian mesh by the membrane will be called a membrane FV. We shall
label our FVs and their associated quantities with subscript or superscript p.

When a membrane cuts through a mesh, two FVs will be generated. These two
FVs share a common membrane patch. These are the membrane faces, whereas
other faces of the FV are the ordinary faces. Each face is flanked by two FVs p and
p′, and the faces are labeled by the ordered pair (p, p′). As in the cylindrical case,
we associate with each membrane patch (p, p′) its attendant physical quantities.

In the case of an ordinary FV, we shall take the representative point xc, with
which the values of the physical variables are associated, to be the center of the FV.
For a membrane FV, we shall take xc to be the center of the Cartesian mesh from
which the FV was cut. Thus, there will be cases in which xc geometrically lies
outside the FV. Conceptually, this involves the smooth extrapolation of a function
defined on one side of the membrane to the other side of the membrane. For each
membrane FV, there is another membrane FV that shares the same membrane
patch which was therefore cut out of the same mesh. These two membrane FVs
have representative points xc that coincide geometrically but are computationally
distinguished.
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h

cp
i , φ

p

F (p,p′)
ixc

voxel p′ (extracellular)

voxel p (intracellular)

ordinary faces

cp′

i , φ
p′

membrane face (p, p′) with area γ (p,p
′)

associated quantities: φ(p,p
′)

m = φ p
−φ p′ , s(p,p

′)
g , λ(p,p

′)
i , λ(p

′,p)
i

Figure 3. A membrane FV and its associated quantities.

The structure of the discretization exactly parallels that for the cylindrical case.
The evolution equation for the concentration discretized in space will be the same
as (28). We now briefly discuss approximation of the flux terms F (p,p

′)
i and G(p,p′)

i .
For F (p,p

′)
i , regardless of whether e(p,p

′)
= h or otherwise, we shall use

F (p,p
′)

i = Di

(cp
i − cp′

i

h
+

qzi (c
p
i + cp′

i )

2kB T
φ p
−φ p′

h

)
. (34)

For the membrane flux, we use the same expression as (30).
As in the cylindrical case, one can determine the local truncation error of the above

scheme. For ordinary FVs, the truncation error is O(h2) whereas for membrane
FVs, the error is O(1). Nonetheless, we shall see in Section 8 that we generally
observe obtain linear to supralinear convergence in space.

To handle arbitrary membrane geometry, we must generate the necessary geome-
try data at the membrane where the mesh is cut. We have written a custom mesh
generator to perform this task. It takes the characteristic function of a region as
input to generate the necessary data. The mesh generator approximates a cut by
the membrane as a straight line, and cannot handle nongeneric cases of degenerate
geometry. When the volume of a membrane FV is less than 10−5 times the volume
of an ordinary mesh, this FV is ignored.

5. Temporal discretization

For our algorithm overall, we adopt an operator splitting approach. We split each
time evolution step into the gating substep in which we update the gating variables
sg defined on the membrane followed by the potential/concentration substep in
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which we update the electrostatic potential and ionic concentrations. This splitting
allows us to significantly reduce computational cost and makes the code modular
by making it easy to supply the PDE system with different gating variable kinetics,
which varies widely depending on the biophysical system of interest. Since the
splitting error is first order, the time-stepping error should be first order overall so
long as we use a first order method for the gating part and the potential/concentration
part of the time stepping.

In the gating substep, we treat the gating variables implicitly while we treat the
electrostatic potential and concentrations implicitly. In the potential/concentration
substep, we treat the electrostatic potential and concentrations implicitly while
treating the gating variables explicitly. We now discuss this latter substep in greater
detail.

Recall from the discussion of Section 3 that the system of equations has two
diffusive time scales. For parameter ranges of biophysical interest, the dissipative
nature of membrane potential “diffusion” in particular makes it prohibitively expen-
sive to use an explicit time-stepping scheme, rather than the ionic diffusion, as we
shall see below. We saw in Section 3 that the evolution of the electrostatic potential
is governed by (19) under the approximation of constant concentration:

∂φm

∂t
+

I (φm)

Cm
=−

a
Cm

Lφm, (35)

where we have explicitly noted the dependence of I on φm. The behavior of L can
be gleaned by looking at how L acts in the special case when �int and �ext are the
upper and lower half spaces of R3 respectively. By employing Fourier analysis, we
can see that the component with wave number k on the membrane is multiplied in
amplitude by a factor proportional to |k|. This can also be inferred by looking at
the “diffusion” coefficient a/Cm, which has dimensions length/time. Note that this
is different from the diffusion operator where the amplitude is multiplied by |k|2.
This implies that as the mesh width on the membrane is made smaller, one should
refine the time step proportionally to the mesh width if we are to use an explicit
scheme.

For physiologically relevant systems, the “diffusion” constant in (35), a/Cm,
is approximately equal to 105 µm/ms. We may thus infer that a mesh width on
the order of 1µm will necessitate a time step on the order of 10 ns if an explicit
scheme is used. On the other hand, Di is on the order of 1µm2/ms. Thus, the
time step restriction imposed by ionic diffusion is much less stringent, on the order
of submilliseconds. The time step restriction thus arises chiefly from membrane
potential diffusion, and a time step on the order of nanoseconds is unacceptable
given that biophysical phenomena of interest occur on the millisecond time scale
[1; 18; 10]. For example, a single synaptic transmission event in the central nervous
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system, a process we believe our modeling methodology to be useful for, typically
has a duration on the order of 1–10 ms [18; 15].

We note that in [29], the authors introduce a one-dimensional model of cellular
electrophysiology incorporating ionic diffusion, where they use time steps as small
as 1 ns to simulate their system. This small time step requirement is related to the
time step restriction that would apply to an explicit scheme in our case, too, as
discussed above. In [18], the author argues that this has been a major impediment in
incorporating electrodiffusion of ions in modeling studies of cellular or subcellular
electrophysiology.

This difficulty is overcome by treating φ and ci implicitly in the potential/concen-
tration step. The membrane potential φm becomes an unknown to be determined.
Note that φm is the jump in φ across the cell membrane. We here have an elliptic
interface problem in which we must solve for the unknown jumps across interfaces.
In the context of time-dependent PDEs, similar problems arise in implicit discretiza-
tions of fluid structure interaction problems where one must solve for the unknown
jump in the derivative of the velocity field across the immersed elastic interface.
(see for example [22; 20]).

We label our time step by n, where n is an integer. We let the time step duration
be 1t . Suppose we know values of sg, ci , φ and λi at time (n−1)1t . In the gating
substep, we advance sg to find values at time n for every membrane patch.

s(p,p
′),n

g − s(p,p
′),n−1

g

1t
= fg(s(p,p

′),n, φ(p,p
′),n−1

m , cp,n−1, cp′,n−1). (36)

Note that the evolution of the gating variables sg does not involve any spatial
coupling, and thus, can be solved independently for every membrane patch.

In the potential/concentration substep, we advance ci , φ and λi . Whether we are
considering cylindrical geometry or arbitrary two-dimensional membrane geometry,
the semidiscretized evolution equation for ci is (28). To discretize (28) in time, we
use a backward Euler type discretization to march from time (n−1)1t to time n1t ,
where ci , φ and λi are treated implicitly, whereas the gating variables sg are given
quantities:

cp,n
i − cp,n−1

i

1t
=−

1
Vp

∑
p′ 6=p

(e(p,p
′)F (p,p

′),n
i (cn

i , φ
n)+ γ (p,p

′)G(p,p′),n
i ),

qzi G
(p,p′),n
i = Cm

(λ(p,p′),ni φ
(p,p′),n
m − λ

(p,p′),n−1
i φ

(p,p′),n−1
m

1t

)
+ j (p,p

′),n
i (s(p,p

′),n, φ(p,p
′),n

m , cp,n−1, cp′,n−1). (37)

Note that φ is treated implicitly, so that the membrane potential φm is an unknown
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to be solved for at each time step. Of the arguments of j (p,p
′),n

i , we evaluate c at
time (n−1)1t , whereas φm and s are evaluated at n1t . The evolution of λi is given
by

λ
(p,p′),n
i − λ

(p,p′),n−1
i

1t
=
λ̃
(p,p′),n
i − λ

(p,p′),n
i

r2
d/D0

, (38)

where λ̃(p,p
′),n

i is evaluated using cp,n
i . By summing (37) over i and recalling that∑

i λ̃i = 1, we conclude that
∑

i λ
p,n
i relaxes geometrically to 1 as n increases. In

particular, if this sum is equal to 1 initially it remains equal to 1 at every time step.
Assuming that this is the case, we may multiply the above by qzi and sum in i to
get an equation in φ p,n .

−
ρ

p
0 +

∑N
i=1 qzi c

p,n−1
i

1t
=−

1
Vp

∑
p′ 6=p

e(p,p
′)

N∑
i=1

qzi F (p,p
′),n

i

−
1

Vp

∑
p′ 6=p

γ (p,p
′)

(
Cm

(φ(p,p′),nm −φ
(p,p′),n−1
m

1t

)
+

N∑
i=1

j (p,p
′),n

i

)
. (39)

This can be viewed as the full discretization of (33). A subtle point is that we have
only made use of the electroneutrality condition ρ p

0 +
∑

i qzi c
p
i = 0 at time n1t

and not at time (n−1)1t ; thus we retain the term −(ρ p
0 +

∑
i qzi c

p,n−1
i )/1t on the

left hand side of (39). If electroneutrality were strictly satisfied at each time step,
this term would be equal to 0. Since we cannot solve the above system of equations
exactly in a numerical computation, electroneutrality is never strictly satisfied. The
term −

(
ρ

p
0 +

∑
i qzi c

p,n−1
i

)
/1t acts to correct deviations from electroneutrality

that may have been present at time (n−1)1t .

6. Solution of nonlinear equations

We now solve the above discretized nonlinear algebraic equations for ci , φ and λi .
At each time step, we first solve for φ and λi fixing ci , and subsequently solve for
ci fixing φ and λi . This procedure is iterated to convergence.

We chose to use the above simpler procedure in favor of a Newton iteration for the
following reasons. There two major nonlinearities in the equations: the drift term
in the drift-diffusion equation and the ion channel current terms in the membrane
boundary conditions. The drift term couples the concentration term ci with the
gradient of the electrostatic potential. Suppose there are Nfv FVs and N (= 3, 4 in
computational runs presented in Section 7 but potentially much larger) ionic species
of interest. A Newton iteration will require solution of a nonsymmetric linear
system with Nfv×(N+1) unknowns at each iterative step. In the simpler procedure
to be explained below, all linear systems are positive symmetric (semi)definite with
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Nfv unknowns. The complicated dependence of ion channel current terms on ci

and φ add further algebraic complications in generating the Jacobian matrix needed
at each iteration. A possible future direction is to use the simpler solution iterative
procedure adopted here as a preconditioner in a Jacobian-free Newton–Krylov
framework [17].

Let cp,n,m
i , φ p,n,m, λ

(p,p′),n,m
i denote the m-th iterate of the solution procedure,

where m = 0, 1, 2, . . . . We set our initial iterate for each variable to be equal to the
value of that variable at time step n− 1:

cp,n,0
i = cp,n−1

i , φ p,n,0
= φ p,n−1, λ

(p,p′),n,0
i = λ

(p,p′),n−1
i . (40)

We first solve for φ p,n,m . We take (39) and fix the ionic concentrations to their
values at the previous iteration step ci = cn,m−1

i so that the only unknown is φn,m .

−
ρ

p
0 +

∑N
i=1 qzi c

p,n−1
i

1t
=

−
1

Vp

∑
p′ 6=p

e(p,p
′)

N∑
i=1

qzi F (p,p
′)

i (cn,m−1
i , φn,m)

−
1

Vp

∑
p′ 6=p

γ (p,p
′)Cm

(φ(p,p′),n,mm −φ
(p,p′),n−1
m

1t

)
−

1
Vp

∑
p′ 6=p

γ (p,p
′)
∑

i

j (p,p
′),n,m

i (sn,m, φ(p,p
′),n,m

m , cn−1). (41)

By evaluating ci at cn,m−1
i in the flux term F (p,p

′)
i , we avoid dealing with the

nonlinearity that arises from the drift term. The only possibility for a nonlinearity in
the above is in the transmembrane current term. In many applications, ji is assumed
linear in φm. If not, we linearize as follows:

We first recall the functional form of transmembrane current terms. The general
functional form of ion channel currents is written as

ji =
∑
α

ji,α, ji,α = gi,α(x, s, φm, c(k), c(l))Ii,α(φm, c(k)i , c(l)i ), (42)

where α labels the types of ion channels present, and ji,α the transmembrane current
through ion channels of this type. gi,α is the density of the such open ion channels
per unit area of membrane, and Ii,α is the instantaneous current voltage relationship
of a single open channel. We choose a suitable linearization of the instantaneous
current voltage relation with respect to φ(p,p

′)
m around φ(p,p

′),n,m−1
m :
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IL
i,α(φ

(p,p′),n,m
m , cp

i , cp′
i )= DIi,α (φ

p,n,m−1
m , cp

i , cp′
i )(φ

(p,p′),n,m
m −φ(p,p

′),n,m−1
m )

+Ii,α(φ
(p,p′),n,m−1
m , cp′

i , cp′
i ). (43)

The term DIi,α will typically be the derivative of Ii,α with respect to φm. Instead of
ji itself, we shall therefore use the following linearization in its place in (41).

j L ,p,n,m
i =

∑
α

j L ,p,n,m
i,α ,

j L ,n,p,m
i,α = gi,α(s(p,p

′),n, φ(p,p
′),n−1

m , cn−1)IL
i,α(φ

(p,p′),n,m
m , cn−1

i ).

(44)

Note that s(p,p
′),n is already a known quantity; we do not have to solve for it.

The result is a linear equation in φ, which can now be solved.
Solving for λ(p,p

′),n,m
i is simple:

λ
(p,p′),n,r
i − λ

(p,p′),n−1
i

1t
=
λ̃
(p,p′),n,m−1
i − λ

(p,p′),n,m
i

r2
d/D0

, (45)

where λ̃(p,p
′),n,m−1

i is evaluated using cp,n,m−1
i .

Given φ p,n,m and λ(p,p
′),n,m

i , we solve for cp,n,m
i as follows:

cp,n,m
i − cp,n−1

i

1t
=−

1
Vp

∑
p′ 6=p

(e(p,p
′)F (p,p

′),n,m
i + γ (p,p

′)G(p,p′),n,m
i ), (46)

where the flux density expressions are given by

F (p,p
′),n,m

i = Di

(cp,n,m
i − cp′,n,m

i

h

)
+ Di

qzi

kB T

(cp,n,m−1
i + cp′,n,m−1

i

2

)(φ p,n,m−1
−φ p′,n,m−1

h

)
,

qzi G
(p,p′),n,m
i = Cm

(λ(p,p′),n,mi φ
(p,p′),n,m
m − λ

(p,p′),n−1
i φ

(p,p′),n−1
m

1t

)
+ j (p,p

′),n,m
i ,

(47)

where the flux expression (47) is to be suitably modified when dealing with nonuni-
form meshes; see (29). In the above (47), the diffusive flux is treated implicitly,
whereas drift flux is left explicit. The rationale for this difference in treatment of
the two flux terms is that the diffusive flux involves derivatives of ci but the drift
flux does not.

With the above expression for F (p,p
′),n,m

i , (46) is a linear equation in ci . In fact,
this is just a familiar discretization of the diffusion equation with a source term and
flux boundary conditions.
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We now iterate this procedure in m a suitable number of times, and set the final
iterate to be the values at time n. Note that one iteration is enough to obtain a first
order scheme in time. We also point out that the scheme is conservative in exact
arithmetic: we have ion conservation regardless of how may iterations we perform.

We iterate so that electroneutrality is better satisfied at time n. Multiplying (46)
with qzi and summing in i does not reproduce (41) because the concentrations in the
flux approximation Fq

i are evaluated using different values in the two expressions.
Therefore, the solution to (46) only satisfies electroneutrality in the limit m→∞.

Our termination criterion for the above iteration is to check whether the elec-
troneutrality condition is satisfied to within a certain tolerance after the r -th iteration.
We use the following criterion:∑

p Vp|ρ0+
∑

i qzi c
p,n,m
i |∑

p Vp
< εtolqc0. (48)

In all computations, we take εtol = 1× 10−5 and c0 = 100 mmol/l, the typical ionic
concentration. We set this final iterate to be the value of ci , φ at the next time step,
except for the adjustment we discuss below.

When we use no-flux boundary conditions at the outer rim of the computational
domain, we perform the following adjustment at the end of each computational
step, in order to correct for the nonconservation of ions that is purely the result of
round-off error. We fix the concentrations so that the global amount of each ionic
species is conserved as strictly as possible by setting

cp,n
i =

(Qinit
i −3

n,m
i

Qn,m
i

)
cp,n,m

i , (49)

where

Qn,m
i =

∑
p

Vpcp,n,m
i , 3n,m

i =
1

qzi

∑
(p,p′),p 6=p′

γ (p,p
′)λ

(p,p′),n,m
i Cmφ

(p,p′),n,m
m .

The summation in the definition of 3n,m
i is over all ordered pairs (p, p′). The index

m denotes the final iterate, that is, the result before this adjustment is made. The
term Qinit

i is the total amount of the i-th ion at the initial time:

Qinit
i =

∑
p

Vpcp,0
i +

1
qzi

∑
(p,p′),p 6=p′

γ (p,p
′)λ

(p,p′),0
i Cmφ

(p,p′),0
m . (50)

The first sum represents the ions in the bulk solution, whereas the second term is
the contribution from the membrane surface charge.

Why do we need to perform this fix when we know that the scheme is in fact
conservative? The unfortunate reality, however, is that the scheme is conservative
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only in exact arithmetic. With floating point arithmetic, errors tend to accumulate
and, with time, ion conservation is violated. Computational experiments indicate
that this error is negligible as far as the values of ci are concerned. This has
to be corrected nonetheless because this small violation leads to global charge
accumulation, which in turn leads to nonconvergence of Krylov iterations for φ
when no-flux boundary conditions are used (for no-flux boundary conditions, we
perform Krylov iterations in the subspace spanned by all grid functions that integrate
to 0 over the spatial domain, and global charge accumulation leads to nonexistence
of solutions, as can be seen by considering the Fredholm alternative). The scheme
presented above has an inherent mechanism to eliminate local charge accumulation
(39), but cannot eliminate global charge accumulation. The above adjustment is on
the order of round-off error at each time step.

We note that this fix is only necessary for the no-flux boundary condition. When
Dirichlet or mixed boundary conditions are imposed at the outer rim of the compu-
tational domain, global accumulation in charge in the computational domain will
eventually dissipate through communication with the outer bath.

The solution to the nonlinear algebraic equations requires the solution of a linear
system at each iteration. We note that solving for the electrostatic potential as well
as the concentrations involve solving a positive definite symmetric system. We thus
either use a direct solver(Cholesky decomposition) or the conjugate gradient method
[36]. The code for cylindrical geometry has been implemented using Matlab, where
we use a direct solver. The code for general two-dimensional geometry has been
written in C++, where we use PETSc for the linear algebra routines [2]. PETSc
is a package that provides sparse linear solvers and is designed to be suitable for
parallel algorithms. Although we do not yet use parallel machines, having coded in
PETSc should facilitate this transition in the future.

7. Convergence study: cylindrical geometry

We test the convergence for the cylindrical case for two kinds of situations, the
standard Hodgkin–Huxley axon [11; 16; 18], and for a cardiac model of ephaptic
coupling.

7.1. Hodgkin–Huxley axon. The neuronal axon is the standard biological system
to which the cable model is applied. We take this system as our first test case.

For ionic channel parameters, we shall use those of the standard Hodgkin–
Huxley model. There are several parameters that are required for computation
with the electroneutral model but not with the cable model. They are the diffusion
coefficients for each ionic species and the initial concentration of the ions. We
consider three ionic species Na+, Cl−, and K+. The initial concentrations and the
diffusion coefficients we use are listed in Table 1. The membrane charge ratios λi
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T Absolute temperature 273.15+37 K

DNa+ Diffusion coefficient of Na+ 1.33µm2/ms [18]

DK+ Diffusion coefficient of K+ 1.96µm2/ms [18]

DCl− Diffusion coefficient of Cl− 2.03µm2/ms [18]

cint
Na+
∣∣
t=0 Initial intracellular concentration of Na+ 10 mmol/l

cext
Na+
∣∣
t=0 Initial extracellular concentration of Na+ 145 mmol/l

cint
K+
∣∣
t=0 Initial intracellular concentration of K+ 140 mmol/l

cext
K+
∣∣
t=0 Initial extracellular concentration of K+ 5 mmol/l

cint
Cl−
∣∣
t=0 Initial intracellular concentration of Cl− 150 mmol/l

cext
Cl−
∣∣
t=0 Initial extracellular concentration of Cl− 150 mmol/l

φm|t=0 Initial transmembrane potential, φint
−φext

−70 mV

Table 1. Parameter values used in the Hodgkin–Huxley simula-
tions of the axon.

are initialized so that λi
∣∣
t=0 = λ̃i

∣∣
t=0. The immobile charge density was taken so

that electroneutrality is satisfied at each spatial point at t = 0. The Hodgkin–Huxley
model has one free parameter, the value of the equilibrium potential [16], which we
take to be−70 mV. The initial value of the gating variables are set to the equilibrium
values at −70 mV.

We take the axon to be a cylinder of radius lµm and axial length lAµm. Take
the z axis along the axis of the cylinder, with the axonal ends at z = ±lA/2, and
the radial axis r from the center of the cylinder. The cylindrical axon is bathed in
an extracellular medium located between the cell membrane at r = l and r = 2l,
where we impose no-flux boundary conditions. We also impose no-flux boundary
conditions at z =±lA/2. The total simulation time be Te. We choose the diameter
2l and the axial length lA to be

2l = 0.1, 1, 10µm, lA = 4
√

2l × 103 µm, Te = 4 ms. (51)

We note that the axonal length is much greater than the radial length. This length of
the axon lA was chosen so that we can see a wave of propagating action potential.
This choice also roughly corresponds to the action propagation speed seen in
unmyelinated neuronal axons on the order of 10 mm/ms at an axonal diameter
of 1–10µm. We use the above dependence of lA on l since, according to cable
theory, the electrotonic length (the typical length scale for the spread of membrane
potential) scales with the square root of the axonal diameter.
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At time t = 0, we initiate an action potential by transiently increasing the Cl−

conductance, for which we specify the following spatial distribution and time
dependence:

GCl− =

5
(

1+ cos 12π z
lA

)(
1− cos 2π t

Ts

)
if − lA

12
< z < lA

12
, t < Ts = 1 ms,

0 otherwise.

We thus give a brief change in the membrane chloride conductance at the center of
the axon. An action potential is initiated here and spreads towards the two ends of
the axon. A snapshot from a sample run where the diameter 2l = 1µm is shown in
Figures 4 and 5.

In the case of the cylindrical axon, the computational runs exhibit little radial
variation in the electrostatic potential, and one may argue against the use of this
computationally intensive model in place of much simpler models such as the
cable model. In Section 7.2, we shall see a case in which a radial variation in the
electrostatic potential is seen. Even in the case of a cylindrical axon, however, we

Figure 4. Electrostatic potential φ at t = 1, 2, 3, 4 ms, 2l = 1µm.
Since the solutions we seek are radially symmetric, the radial
cross-section (r between 0µm and 1µm) is plotted in the graph.
The jump discontinuity at r = 0.5µm signifies the jump in the
electrostatic potential. The mesh size is Nz × Nr = 128 × 32.
Potential is measured in mV and length in µm.
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Figure 5. Cumulative change in ionic concentrations from t = 0
at t = 2 ms, 2l = 1µm. The cumulative concentration changes
in Na+, K+, and Cl− are shown. As with the previous figure, the
radial cross section is plotted. The mesh size is Nz×Nr = 128×32.
Concentration is measured in mmol/l and length in µm.

believe that this model can be useful in the following respects. First, it allows us to
track ionic concentration, whose evolution cannot be determined without solving for
the electrostatic potential which ensures that electroneutrality be satisfied pointwise
in space. The constraint of electroneutrality may give rise not only to quantitative
but also qualitatively different behavior compared to simple diffusion [32]. Second,
this model can be used as a validation tool to judge when the cable model is a good
approximation [18; 33]. We hope to make a more detailed comparison between the
cable model and our model in a future publication.

Convergence in space. We take a uniform grid of Nz × Nr over the simulation
domain. We set

Nz = 64× 2n−1, Nr = 16× 2n−1, 1t = 0.02 ms, NT =
Te

1t
= 200, (52)
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where n = 1, . . . , 4. Note that here and throughout the paper the time step remains
fixed in our spatial convergence studies. The possibility of proceeding in this way
without encountering numerical instability is conceptually related to the uncondi-
tional stability of our implicit computational scheme. During spatial grid refinement,
the bounds on spatial difference operators grow because of the appearance of the
mesh width in the denominators of the difference operators. This reflects the
unbounded nature of the corresponding differential operators. In an explicit scheme,
the growth of the operator norms needs to be compensated by refinement of the
time step, but we do not have to do that here.

To measure the convergence rate, we define the discrete p-norm as

‖u‖L p =

(2Nr∑
k=1

|Vk ||uk |
p
)1/p

, 1≤ p <∞, ‖u‖L∞ =max
k
|uk |. (53)

The convergence rate is measured by comparing the interpolation of the numerical
solution at a finer level to the numerical solution at a coarser level. Let ci computed
with an Nr × Nr mesh be written as cNr

i . We define a measure of error es
p[ci ; Nr ]

as follows.
es

p[ci ; Nr ] =
∥∥cNr

i −I2Nr→Nr c2Nr
i

∥∥
L p . (54)

Here, I2Nr→Nr is an interpolation operator from the finer to the coarser grid.
For the electrostatic potential φ, we need to take into account the arbitrariness of

φ, up to addition of a constant. Thus, we measure the error in φ as

es
p[φ; Nr ] = min

cφ∈R

∥∥φNr −I2Nr→Nrφ2Nr − cφ
∥∥

L p . (55)

As an empirical measure of convergence rate in space, we use

r s
p[ψ; Nr ] = log2

( es
p[ψ; Nr ]

es
p[ψ; 2Nr ]

)
, (56)

where ψ can be either ci or φ.
Table 2 lists the rate of convergence for both ci and φ at the three diameters with

three norms, L1, L2 and L∞, at time t = 4 ms. Convergence rates at other time
points were similar.

We see second order convergence for most parameter regions considered. The
second order convergence observed here is, however, lost in the case of general
two-dimensional geometry (Section 8). This favorable property is thus tied to the
fact that the membrane geometry conforms to the underlying Cartesian grid. The
deterioration in convergence rate when the axonal diameter is equal to 10µm seems
attributable to the fact that the concentration gradients near the membrane are not
fully resolved when Nr = 32. Since the mesh has been scaled with the axon size,
the largest axon also has the coarsest mesh, in absolute terms. This affects the
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diameter norm r s
p[c1, 32] r s

p[c2, 32] r s
p[c3, 32] r s

p[φ, 32]

0.1
L1 1.97 1.97 1.93 1.96
L2 1.97 1.97 1.94 1.98
L∞ 1.97 1.97 1.78 1.90

1
L1 1.97 1.97 1.93 1.96
L2 1.97 1.97 1.95 1.97
L∞ 1.97 1.97 1.88 1.82

10
L1 1.97 1.97 1.92 1.97
L2 1.96 1.97 1.84 1.98
L∞ 1.44 1.80 1.41 1.82

Table 2. Convergence rate in space (r s
p) for different axonal diam-

eters. Values computed at t = 4 ms, and Nr = 32.

quality of the computed solution because the radial concentration profiles do not
scale with the size of the axon.

Convergence in time. Convergence in time is measured similarly to the spatial case.
We vary the time step so that

1t = 0.04× 21−n, NT ≡
Te

1t
= 100× 2n−1, (57)

where n= 1, . . . , 4. We take Nr = 32 as our spatial grid to assess time convergence.
The convergence rate and error is computed analogously to the spatial case.

et
p[ci ; Nr ] =

∥∥cNT
i −I2NT→NT c2NT

i

∥∥
L p . (58)

Here, I2NT→NT is an interpolation operator from the finer to the coarser time step.
For the electrostatic potential φ, we let

et
p[φ; NT ] = min

cφ∈R

∥∥φNT −I2NT→NT φ2NT − cφ
∥∥

L p . (59)

As an empirical measure of convergence rate in time, we use

r t
p[ψ; NT ] = log2

et
p[ψ; NT ]

et
p[ψ; 2NT ]

. (60)

where ψ can be either ci or φ.
Table 3 lists the rate of convergence for both ci and φ at the three diameters

with three norms, L1, L2 and L∞ at t = 4 ms. We see approximate first order
convergence in time over all parameter ranges considered, although the convergence
rate is slightly sublinear overall. The source of this sublinear convergence rate is
unclear.
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diameter norm r t
p[c1, 200] r t

p[c2, 200] r t
p[c3, 200] r t

p[φ, 200]

0.1
L1 0.93 0.93 0.93 0.92
L2 0.94 0.94 0.90 0.89
L∞ 0.96 0.96 0.90 0.83

1
L1 0.93 0.93 0.93 0.92
L2 0.94 0.94 0.89 0.89
L∞ 0.95 0.96 0.75 0.81

10
L1 0.93 0.93 0.91 0.92
L2 0.93 0.94 0.86 0.89
L∞ 0.77 0.95 0.75 0.82

Table 3. Convergence rate in time (r t
p) for different axonal diame-

ters. Values computed at t = 4 ms, and NT = 200.

Convergence in space and time. We next refine in both space and time to demon-
strate that the approximation approaches the solution to the PDE system. Given
that we observe second order convergence in space and first order convergence in
time, we should be able to observe second order convergence overall if we make
the time step proportional to the square of the mesh width. We let

Nz = 4× Nr , Nr = 32×2n−1, 1t = 0.02×41−n, NT ≡
Te

1t
= 200×4n−1,

for n = 1, . . . , 3. The spatiotemporal convergence rate r st
p is measured similarly to

the empirical spatial and temporal rates r s
p and r t

p defined in (56) and (60). Table 4
exhibits approximate second order convergence overall.

diameter norm r st
p [c1, 32] r st

p [c2, 32] r st
p [c3, 32] r st

p [φ, 32]

0.1
L1 1.94 1.94 1.93 1.93
L2 1.93 1.95 1.89 1.90
L∞ 1.95 1.95 1.80 1.86

1
L1 1.94 1.94 1.93 1.93
L2 1.94 1.95 1.89 1.90
L∞ 1.95 1.96 1.82 1.86

10
L1 1.94 1.94 1.90 1.93
L2 1.93 1.94 1.82 1.90
L∞ 1.57 1.87 1.50 1.86

Table 4. Convergence rate in space and time (r st
p ) for different

values of axonal diameters. Values computed at t = 4 ms, and
Nr = 32, NT = 200.
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7.2. Cardiac geometry. We next consider a test geometry based on cardiac micro-
scopic anatomy [35; 19; 26]. The motivation for this test case is the following.
Cardiac tissue is composed of muscle cells which are linked to one another through
gap junctions, pore forming proteins similar to ion channels that straddle two
adjacent cell membranes. These low resistance passage ways of electric current
have conventionally been regarded as essential for successful cell-to-cell propagation
of the cardiac electric signal, which in turn coordinates the synchronization of the
heart beat [31]. Recent experimental as well as theoretical studies suggest, however,
that gap junctions are not absolutely essential for propagation of the electric signal.
Indeed, knock-out mice that do not express the principal gap junction isoforms
in cardiac cells do produce a functional heart beat [37; 9]. One hypothesis that
attempts to explain this anomalous conduction is the ephaptic hypothesis, in which
two adjacent cardiac cells interact with one another through the very narrow cleft
(the intercalating disc) between them [19]. The presence of the narrow cleft raises
the possibility of steep voltage gradients and large ionic concentration changes, and
is thus an ideal system in which our model could make interesting physiological
predictions. This program has been partially carried out in [26], to which we refer
the reader for further physiological discussion.

As a testbed, we consider 2 cells of equal length separated by a narrow intercel-
lular space of width lg. In fact, we consider two “half” cells, each of length lA/2 as
we shall see shortly. The radius of the cell is l and the whole system is bathed in an
extracellular medium contained within a cylinder of radius 2l (Figure 6).

Similarly to the axonal case, we take z to be the axial direction and r to be the
radial coordinate. We take the origin to be in the middle of the gap. Formally, the
intracellular region can be written as(

−
lA+lg

2
< z<−

lg

2
or

lg

2
< z<

lA+lg

2

)
and r < l. (61)

2l

lA/2

lg

z

r

l

extracellular space intracellular space

Figure 6. Schematic of the geometry used for the cardiac model.
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T Absolute temperature 273.15+37 K

Dus
Na+ Unscaled diffusion coefficient of Na+ 1.33µm2/ms

Dus
K+ Unscaled diffusion coefficient of K+ 1.96µm2/ms

Dus
Ca2+ Unscaled diffusion coefficient of Ca2+ 0.3 µm2/ms

Dus
Cl− Unscaled diffusion coefficient of Cl− 2.03µm2/ms

cint
Na+
∣∣
t=0 Initial intracellular concentration of Na+ 10 mmol/l

cext
Na+
∣∣
t=0 Initial extracellular concentration of Na+ 145 mmol/l

cint
K+
∣∣
t=0 Initial intracellular concentration of K+ 140 mmol/l

cext
K+
∣∣
t=0 Initial extracellular concentration of K+ 5 mmol/l

cint
Cl−
∣∣
t=0 Initial intracellular concentration of Cl− 10 mmol/l

cext
Cl−
∣∣
t=0 Initial extracellular concentration of Cl− see text

cint
Ca2+

∣∣
t=0 Initial intracellular concentration of Ca2+ 0.4 µmol/l

cext
Ca2+

∣∣
t=0 Initial extracellular concentration of Ca2+ 2 mmol/l

φm|t=0 Initial transmembrane potential, φint
−φext

−90 mV

Table 5. Parameter values used in cardiac simulation.

The intracellular region is open-ended at z =± 1
2(lA+ lg). This is what we mean

by “half cell”. We impose no-flux boundary conditions at z =± 1
2(lA+ lg) and at

r = 2l.
The values for lg, lA and l are

lg = 20 nm, lA = 100µm, l = 11µm. (62)

We note that lg is about 4 orders of magnitude smaller than lA, and thus we use a
nonuniform mesh, the details of which we shall describe shortly.

We consider 4 ion types in the calculation, Na+, K+, Ca2+ and Cl−. The initial
condition for all ionic species except Cl− in the extracellular space are listed in
Table 5. In the intracellular medium, we set the fixed negative charge density ρ0 so
that electroneutrality is satisfied everywhere. In the gap we introduce a nonuniform
fixed negative charge density. This represents the charged groups on extracellular
macromolecules that may be present within the gap. We initialize the fixed charge
density ρ0 in the extracellular space to be

ρ0 =

{
−
(
54+ 50

(
1− (r/ l)2

))
mmol/l if r < l and − lg/2< z < lg/2,

−54 mmol/l if r ≥ l.
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Set the extracellular Cl− concentration so that the electroneutrality condition is
satisfied everywhere:

cext
Cl−
∣∣
t=0 =

{
100− 50

(
1− (r/ l)2

)
mmol/l if r < l and − lg/2< z < lg/2,

100 mmol/l if r ≥ l.

The diffusion coefficients are adjusted in the following way. If we ignore ionic
diffusion, electric current is solely driven by the gradient of the electrostatic potential.
In this case, the ohmic cytoplasmic conductance is given by a(x, t) defined in (5).
If one computes the cytoplasmic or extracellular conductance using (5) according
to values of Di in an aqueous solution, the values used in Table 1, we obtain an
overestimate which deviates from the experimentally observed value by a factor of
2–5 [19]. We thus scale the diffusion coefficient in aqueous solution by a uniform
factor α so that the cytoplasmic or extracellular conductance calculated above is
approximately within the experimental range. More concretely, we let

gobserved
= α

N∑
i=1

(qzi )2 ci |t=0

kB T
Dus

i , (63)

where gobserved is the cytoplasmic conductance, which we take to be equal to
the extracellular conductance, Dus

i is the unscaled diffusion coefficient, and over-
line denotes averaging over the computational domain. Following [19], we let
1/gobserved

= 150� cm.
For the ion channel composition for the membrane, we use the model of Bernus

et al. [4], in which the authors model the electrical activity of human ventricular
myocytes. The only change we make concerns the localization of the Na+ channels.
We concentrate their distribution so that 99% of the total Na+ conductance sits
at the membranes facing the gap. Evidence for such localization of Na+ channel
expression has been presented in [19]. This may allow an action potential to propa-
gate across the gap without the two intracellular spaces being directly connected by
gap junctions forming a cytoplasmic bridge.

All instantaneous current voltage relations for ionic channels in the model of
Bernus et al. are linear in the transmembrane voltage. We do not have to linearize
the current voltage relationship to obtain a linear system. The ionic pump currents
are nonlinear in the transmembrane voltage, but will be treated explicitly. This does
not result in numerical instabilities because ionic pump currents are typically small
in magnitude.

We simulate this system for time Te = 4 ms. We add a transient excitation to the
system by way of an increase in Na+ conductance distributed along the lateral cell
membrane of the cell on the left according to
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Gadd
Na+ =


5
4

(
1+ cos π(z+L z)

lA/2

)(
1− cos 2π t

τe

)
if z <−

lg

2
, t < τe,

0 otherwise,

where L z = (lA+ lg)/2 and τe = 1 ms. Thus, we stimulate the system at one end
of the cell located in z < 0, and see whether the action potential propagates into
the next cell. Snapshots from this simulation are shown in Figures 7 and 8. We
note a radial gradient in the electrostatic potential in the thin gap spaces, an effect
that cannot be modeled with a simple use of the cable model. Note in these figures
that the action potential propagates across a thin gap between two cells even if
there are no gap junctions (low resistance connections) that connect the two cells.
The feasibility of such ephaptic transmission (a term borrowed from neuroscience
[12]), in the context of cardiac action potential propagation has been a subject of
much debate [19; 35]. We have used this model to explore the biophysics of this
mechanism in [26].

Figure 7. The evolution of the electrostatic potential in the car-
diac simulation with variable mesh width. The radial cross sec-
tion (r from 0µm to 20µm) is shown. Snapshots shown at
t = 0.6, 1.2, 1.8, 2.4 ms. The mesh size is Nz × Nr = 48 × 32
in this computation. Potentials are in mV and lengths in µm.
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Figure 8. The cumulative change in ionic concentrations from the
initial value, in the cardiac simulation with variable mesh width.
The plot of the cumulative concentration changes of Na+, K+ and
Cl− at t = 2 ms shown. As with the previous figure, the radial
cross section is plotted. The mesh size is Nz×Nr = 48×32 in this
computation. Concentrations are in mmol/l and lengths in µm.

Convergence in space. As we remarked above, the gap width lg is four orders of
magnitude smaller than the cell length lA. We therefore use a nonuniform mesh,
both in the axial and radial directions.

In the axial direction, we lay a mesh whose width is of order lg/2n when−lg/2<
z < lg/2 and of order lA/n away from the gap where z ∼ ±(lA/2), where n is
the number of steps in each direction into which the lengths of our system are
divided. For meshes in between, we interpolate the two widths with an approximate
geometric sequence. In the radial direction, we lay a mesh of width of order lg near
r = l and of order l where r = l±l. Again, we interpolate between the extremes with
an approximate geometric sequence. We give details of this construction below.

We first define a function f on 0≤ z ≤ (lA+ lg)/2:

f (z)=


2z/lg if 0≤ z ≤ lg/2,

(2/(lgb)) log
(
1+ b(z− lg/2)

)
+ 1 if lg/2≤ z ≤ zβ,

((nz − 1)/ lA)(z− lA/2)+ nz if zβ ≤ z ≤ lA/2,

(64)



A NUMERICAL METHOD FOR CELLULAR ELECTROPHYSIOLOGY 117

where nz is an integer parameter that we specify, and b and zβ are determined so
that f is continuously differentiable at z = zβ . We define the FV boundaries zk

using f (z) as follows:

zk = f −1
( nz

Nz/2
k
)
, k = 0, . . . , Nz/2, (65)

where Nz/2 is a multiple of nz . This construction adjusts the FV width depending
on whether the location is far away from the intercellular gap. For z < 0, we take
the FV boundaries to be the reflection of the zk above with respect to z = 0.

In the radial direction, we shall take the following mesh. We first define the
following function g analogous to f above. For r > l let

g(r)=
{
(2/(lgb)) log(1+ b(r − l)) if l ≤ r ≤ rβ,

(nr/2l)(r − l)+ nr if rβ ≤ r ≤ 2l,
(66)

where nr is an integer parameter that we specify, and b and rβ are determined so
that g is continuously differentiable at r = rβ . We define the FV boundaries rk

using g(r) as follows:

rk = g−1
( nr

Nr/2
k
)
, k = 0, . . . , Nr/2, (67)

where Nr/2 is a multiple of nr . For r < l, we take the points 2l − rk as the FV
boundaries. This construction again has the benefit of concentrating the meshes
toward the membranes and near the gaps.

The coarsest level starts with 2 meshes −lg/2 < z < lg/2 and 5 meshes each
for z <−lg/2 and z > lg/2, a total of Nz = 12 meshes in the axial direction. This
corresponds to nz = 6 in (64). In the radial direction, the coarsest level is Nr = 8
meshes, which corresponds to nr = 4 in (66). We take

Nr = 32× 2n−1, Nz = 48× 2n−1, 1t = 0.02 ms, NT =
Te

1t
= 200, (68)

where n = 1, . . . , 4.
Spatial convergence is assessed in exactly the same way as in the axonal case.

Table 6 lists the rate of convergence for both ci and φ at the three diameters with
three norms, L1, L2 and L∞ at t = 4 ms. Convergence rates at other time points
were similar. We see approximate second order convergence overall, similarly to
the neuronal axon calculation of Section 7.1.

Convergence in time. We vary the time step so that

1t = 0.02× 21−n, NT ≡
Te

1t
= 200× 2n−1, (69)

where n = 1, . . . , 4. As the spatial mesh, we use Nr = 64, Nz = 96.
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norm r s
p[c1, 64] r s

p[c2, 64] r s
p[c3, 64] r s

p[c4, 64] r s
p[φ, 64]

L1 1.90 1.91 1.94 1.94 2.00
L2 1.95 1.87 1.89 1.97 2.00
L∞ 1.88 1.89 2.10 1.83 2.00

Table 6. Convergence rate in space (r s
p) in the cardiac simulation.

Values computed at t = 4 ms, and Nr = 64.

norm r t
p[c1, 400] r t

p[c2, 400] r t
p[c3, 400] r s

p[c4, 400] r s
p[φ, 400]

L1 1.01 1.02 1.03 1.02 1.06
L2 1.02 1.02 1.03 1.02 1.07
L∞ 1.06 1.04 1.08 1.06 1.07

Table 7. Convergence rate in time (r t
p) in the cardiac simulation.

Values computed at t = 4 ms, and NT = 400.

Table 7 lists the rate of convergence for both ci and φ with three norms, L1, L2

and L∞ at t = 4 ms. We see first order convergence for all variables, similarly to
the corresponding results in Section 7.1.

Convergence in space and time. We vary the time step and spatial mesh so that

Nz = 96×2n−1, Nr = 64×2n−1, 1t = 0.02×41−n, NT ≡
Te

1t
= 200×4n−1,

where n = 1, . . . , 3. The observed convergence rate in Table 8 is the expected order
of two overall similarly to corresponding results in Section 7.1.

norm r st
p [c1, 64] r st

p [c2, 64] r st
p [c3, 64] r st

p [c4, 64] r st
p [φ, 64]

L1 2.05 2.07 2.09 2.05 2.16
L2 2.06 2.08 2.09 2.05 2.20
L∞ 2.16 2.11 2.22 2.16 2.20

Table 8. Convergence rate in space and time (r st
p ) in cardiac simu-

lation. Values computed at t = 4 ms, and Nz = 64, NT = 200.

8. General two-dimensional geometry

In this section we consider three examples of general two-dimensional geometry.
All three cases involve one or more cells in a two-dimensional square computational
domain. Let the computational domain be of size l. Take the origin of the domain
to be at the center of the computational domain, and take the x and y axes parallel
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Figure 9. Shapes of cells used in computational experiments.

to the sides of the square computational domain. We consider the following three
cases as regions of the intracellular domain.( 2x

l

)2
+

( 2y
l

)2
<

105
256

, l = 1µm,

exp
(
−

(2x
l

)2
− 10y

)
+ exp

(
−

(2y
l

)2
− 10x

)
>

1
2
, l = 1µm,

sin2 4πx
l

sin2 4πy
l
>

1
30
, l = 2µm.

The first represents a circular cell, the second a star-shaped cell and the third
represents four intracellular domains in a 2× 2 square array (Figure 9).

We use parameter values that are as close as possible to physiological parameters
in the context of a two-dimensional geometry. The value of l is chosen so that it is a
typical scale for microstructures in the central nervous system[18; 15; 30]. For the
ionic channel model, we use the Hodgkin–Huxley kinetics. Given the geometries
are two-dimensional, we cannot claim that our geometries correspond closely to
those of specific physiological systems. However, even our two dimensional studies
may be of physiological interest as the cross-sectional profile of systems with large
longitudinal extent. For example, adjacent axons that run parallel may influence the
electrical activity of one another. Such coupling has been implicated in neuropathic
pain [12] and has been suggested to play a role in the corpus callosum and optic
and auditory nerves [33]. The square array example above may be seen as a cross
section of four axons running parallel.

At the outer boundary of the computational domain, we impose either no-flux or
Dirichlet boundary conditions. In the case of Dirichlet boundary conditions, we
set the ci to be equal to their initial values, and we set φ equal to 0. If we can
demonstrate that the scheme performs well under no-flux and Dirichlet boundary
conditions, it would then seem likely that the scheme will perform well for mixed
boundary conditions.
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T Absolute temperature 273.15+37 K

DNa+ Diffusion coefficient of Na+ 0.266µm2/ms

DK+ Diffusion coefficient of K+ 0.392µm2/ms

DCl− Diffusion coefficient of Cl− 0.406µm2/ms

cint
Na+
∣∣
t=0 Initial intracellular concentration of Na+ 10 mmol/l

cext
Na+
∣∣
t=0 Initial extracellular concentration of Na+ 145 mmol/l

cint
K+
∣∣
t=0 Initial intracellular concentration of K+ 140 mmol/l

cext
K+
∣∣
t=0 Initial extracellular concentration of K+ 5 mmol/l

cint
Cl−
∣∣
t=0 Initial intracellular concentration of Cl− 20 mmol/l

cext
Cl−
∣∣
t=0 Initial extracellular concentration of Cl− 150 mmol/l

φm|t=0 Initial transmembrane potential, φint
−φext

−70 mV

GNa Maximal Na+ channel conductance 600 mS/cm2

GK Maximal K+ channel conductance 180 mS/cm2

GL Leak conductance (carried by K+ ions) 1.5 mS/cm2

Table 9. Parameter values used in the simulation for general two-
dimensional geometries.

In order to observe appreciable changes in ionic concentrations over the time
range of the computational study, we scaled the maximal conductances by a factor
of 5 and decreased the diffusion coefficient by a factor of 5 with respect to the values
of Table 1. The ionic makeup of the simulation is therefore Na+, K+ and Cl−, where
the concentrations and the diffusion coefficients used are summarized in Table 9. As
before, the immobile charge density is initialized so that electroneutrality is strictly
satisfied at t = 0. We initialize λi with λ̃i evaluated using the initial concentrations
and membrane potential.

We add the following the membrane conductances for 0≤ t ≤ τe to initiate an
action potential for each of the three geometries.

Gadd
Cl− = Gadd

Na+ = Gadd
K+ =

200
(2y

l

)2(
1− cos 2π t

τe

)
if y < 0, t < τe = 1 ms,

0 otherwise.

We run the simulation for a total of Te = 2 ms. Snapshots from the simulation are
given in Figures 10–12, where a no-flux boundary condition is used at the boundary
of the computational domain.
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Figure 10. Circular geometry: cumulative change in ionic con-
centrations and electrostatic potential φ computed under no-flux
boundary conditions at the outer boundary of the computational
domain. Snapshot at t = 0.6 ms. Mesh size: 128× 128.

8.1. Convergence in space. We lay a uniform mesh of Nx × Nx over the compu-
tational domain, where the membrane cuts through the uniform mesh as described
in the above. We vary Nx in multiples of 2. We take

Nx = 32× 2n−1, 1t = 0.02 ms, NT = Te/1t = 100, (70)

where n = 1, . . . , 5. Convergence is measured similarly to the cylindrical cases
discussed above.

We tabulate the convergence rates in Table 10. We see that it is linear to supralin-
ear. For φ, the rate of convergence is not smooth as the mesh is refined (see Figure
13 on page 125). Given that we observe smooth second order convergence in the
case of cylindrical geometry, we infer that this behavior arises because the Cartesian
cells are randomly cut by the membrane as the mesh is refined. A direction for future
study would be to improve the discretization of the equations near the membrane
or adopt a better discretization of the geometry to improve the convergence profile.
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Figure 11. Star geometry: cumulative change in ionic concentra-
tions and electrostatic potential φ computed under no-flux boundary
conditions at the outer boundary of the computational domain.
Snapshot at t = 0.6 ms. Mesh size: 128× 128.

Geometry
and norm

No Flux Dirichlet
c1 c2 c3 φ c1 c2 c3 φ

Circle
L1 1.52 1.54 1.51 1.50 1.07 1.04 1.15 2.24
L2 1.49 1.52 1.51 1.50 1.02 1.01 1.14 2.25
L∞ 0.92 1.02 1.48 1.50 0.94 1.02 1.23 2.21

Star
L1 0.83 1.23 1.73 2.76 1.24 1.18 1.14 1.87
L2 1.27 1.38 1.79 2.77 1.05 1.04 1.05 1.87
L∞ 1.16 1.12 1.51 2.47 1.14 1.12 0.97 1.86

Square
Array

L1 2.01 2.02 1.54 1.79 1.13 1.11 1.22 1.11
L2 1.71 1.84 1.58 1.82 1.05 1.05 1.07 1.10
L∞ 0.80 0.78 0.76 1.61 0.96 1.01 1.01 1.10

Table 10. Convergence rate in space (r s
p). Computed at t = 2 ms,

and Nx = 128.
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Figure 12. Square array geometry: cumulative change in ionic
concentrations and electrostatic potential φ computed under no-
flux boundary conditions at the outer boundary of the computational
domain. Snapshot at t = 0.6 ms. Mesh size: 128× 128.

Geometry
and norm

No Flux Dirichlet
c1 c2 c3 φ c1 c2 c3 φ

Circle
L1 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00
L2 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00
L∞ 1.00 1.01 0.69 1.00 1.00 1.01 1.00 1.00

Star
L1 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00
L2 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00
L∞ 1.00 0.91 0.86 1.00 1.00 0.91 0.86 0.99

Square
Array

L1 0.99 0.99 0.98 1.00 0.99 0.99 0.98 0.99
L2 0.99 0.99 0.98 1.00 0.99 0.99 0.97 0.99
L∞ 0.99 0.99 1.08 1.00 0.99 0.82 0.95 0.99

Table 11. Convergence rates in time (r t
p). Computed at t = 2 ms,

and NT = 200.
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8.2. Convergence in time. For convergence in time, we let

1t = 0.04× 21−nms, NT =
Te

1t
= 50× 2n−1, (71)

where n = 1, . . . , 5. For the spatial grid, we take Nx = 64. We give a table of the
convergence rates in Table 11. We see first order convergence in all cases.

8.3. Convergence in space and time. We test convergence in space and time. As
was demonstrated above, convergence in space is linear to supralinear. We thus
refine the time step proportionally to the spatial step in order to study spatiotemporal
convergence. We expect to see first order convergence in this case. We let

1t = 0.04× 21−nms, NT =
Te

1t
= 50× 2n−1, Nx = 64× 2n−1, (72)

where n = 1, . . . , 4. We give a table of the convergence rates in Table 12. We
observe approximate first order convergence in all cases as expected.

Geometry
and norm

No Flux Dirichlet
c1 c2 c3 φ c1 c2 c3 φ

Circle
L1 1.01 1.01 1.01 1.01 1.00 1.00 1.02 1.00
L2 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.00
L∞ 1.00 1.01 1.01 1.01 1.00 1.01 1.01 1.00

Star
L1 0.99 1.00 0.92 1.00 0.99 0.99 0.93 0.99
L2 0.99 0.99 0.92 1.00 0.99 0.99 0.92 0.99
L∞ 0.98 0.99 0.93 1.00 0.98 0.99 0.93 0.99

Square
Array

L1 0.98 0.99 0.94 0.99 0.97 0.98 0.94 0.99
L2 0.98 0.99 0.94 1.00 0.97 0.98 0.94 0.99
L∞ 0.99 1.01 0.94 0.99 0.96 0.97 0.96 0.99

Table 12. Convergence rates in space and time r st
p . Computed at

t = 2 ms, and N x = 128, NT = 100.

9. Conclusion

We have presented a numerical method for an electrodiffusion model of cellular
electrical activity, which we call the electroneutral model. The ionic concentrations
ci obey the drift diffusion equations and the electrostatic potential φ evolves so as
to ensure electroneutrality. The boundary conditions at the membrane are expressed
in terms of the capacitive current term Cm((∂φm)/(∂t)) as well as the ionic channel
current term ji . We have a system of partial differential equations satisfied in both
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Figure 13. L∞ error in space for ci (mmol/l) and φ(mV). Er-
ror measured at 2 ms. ncirc, dcirc: circular geometry with no-
flux/Dirichlet boundary conditions; nstar; dstar: star geometry;
nsqry, dsqry: square array geometry; ref: reference line indicating
first order convergence.

the intracellular and extracellular regions supplemented with nonlinear evolutionary
interface conditions at the membrane.

We use a finite volume method in space, a natural discretization since all equa-
tions can be written in conservation form. We develop code for both cylindrical
and general two dimensional membrane geometries. In the latter case, we use
an embedded boundary method, in which the membrane cuts through a regular
Cartesian mesh.

The model possesses two diffusive time scales, one that originates from the
“diffusion” of the membrane potential and the other from the physical diffusion
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of ions. The membrane potential “diffusion” is fast compared to the time scale
of biophysical phenomena of interest. We thus develop an implicit scheme to
overcome this severe time step restriction that an explicit scheme would face as a
result of this disparity of time scales. This means in particular that we must solve an
elliptic interface problem where the jump in φ is not known a priori. The resulting
nonlinear algebraic equations in ci and φ are solved using an iterative scheme. We
fix ci and solve for φ, and fix φ to solve for ci . This reduces each linear algebra
task to the solution of a symmetric positive definite system. We use either a direct
solver or a conjugate gradient iteration to solve these linear systems.

We examined the convergence properties of our scheme in both the cylindrical
case and also in the case of the scheme for general two-dimensional geometry. In the
cylindrical case, we applied the method to the Hodgkin–Huxley axon and to a model
of cardiac action potential propagation. We observe close to second order accuracy
in space and first order accuracy in time. For general two dimensional geometries,
we test convergence with three geometries in which realistic biophysical parameters
are used. We see first order accuracy in time. In space, the convergence rate is
linear to supralinear, although in some cases, the convergence profile seems to be
somewhat erratic. Improving both the order and the profile of spatial convergence
is a direction for future research. We would also like to improve the accuracy of our
time stepping scheme. We have employed an operator-splitting framework in which
the gating variables defined on the membrane and the electrostatic potential/ionic
concentrations defined in the bulk are marched alternately, each of which are
discretized using a backward Euler type scheme. Merely replacing the backward
Euler scheme with a second order L-stable method will not yield a second order
scheme, since the splitting errors incurred will still be first order in time. One future
direction would be to adapt splitting methods developed, for example, in [6] to
develop higher order time marching schemes.

We anticipate many applications for the numerical scheme introduced in this
paper. These include any situation in electrophysiology in which detailed membrane
geometry and/or local changes in ionic concentrations are important. One such
application was already used as a test problem in this paper. It concerns the
transmission of the cardiac action potential across the narrow gap that separates the
ends of adjacent myocytes. This gap is normally spanned by specialized channels
known as gap junctions [1], but we study here the transmission that can occur
even in the absence of these direct connections between neighboring cells [35]. A
detailed study of this issue using the present model can be found in [26].

Potential applications in neuroscience include specialized synapses where ge-
ometrical relationships, localized extracellular currents, and ionic concentration
changes in restricted spaces are thought to play a role [18; 34]. An example of this
would be the ribbon synapse of the retina, in which horizontal cells mediate the



A NUMERICAL METHOD FOR CELLULAR ELECTROPHYSIOLOGY 127

interaction between photoreceptors and bipolar cells in ways that are only partly
understood [14]. Yet another potential arena of application concerns intracellular
electrophysiology, that is, the role of electrodiffusion of ions in the function of such
intracellular organelles as the sarcoplasmic reticulum or the mitochondrion.

Most of the applications discussed above will probably require for their full real-
ization a three-dimensional generalization of the code for general two-dimensional
geometry that we have developed for the purpose of testing the basic methodology
in the present paper. Local mesh refinement will most likely be needed to accom-
modate the different spatial scales that will interact in any particular application.
The principles on which our two-dimensional method are based extend readily to
the three-dimensional case even with local mesh refinement. There are, however,
significant implementation difficulties that must be overcome, most notably in the
representation of the complicated three-dimensional membrane geometry and its
interaction with a locally refined mesh. Parallel implementation and efficient solvers
will also be needed in the three-dimensional case. This substantial research effort
will be rewarded by the ability to make detailed simulations of electrically active
cells at a level that takes into account their intricate and beautiful microscopic
anatomy.

Appendix

A.1. Derivation of λ̃(k)i . We give a derivation of the expression for λ̃(k)i in (8).
What is presented here is an adaptation of a calculation contained in [27]. For a
derivation using matched asymptotics we refer to [25] and [24].

We take a closer look at what is happening in the space charge layer, the thin
layers of electric charge accumulation that form on both sides of the membrane. We
now derive the ionic composition of the space charge layer when it is in equilibrium
with the bulk solution in the immediate vicinity of the space charge layer.

Our starting point is the following Poisson–Nernst–Planck system satisfied in
both the intracellular and extracellular regions.

∂ci

∂t
=−∇ · fi , (73)

fi =−Di

(
∇ci +

qzi ci

kB T
∇φ

)
, (74)

−ε1φ = ρ0+

N∑
i=1

qzi ci . (75)

All quantities except for the dielectric constant ε have been introduced in (1)–(3).
Instead of the electroneutrality condition (3), we have the Poisson equation (75).
Taking c0 and L0 to be the representative ionic concentration and spatial scales
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respectively, the Poisson equation can be nondimensionalized as

−
( rd

L0

)2
1̃φ̃ = ρ̃0+

N∑
i=1

zi c̃i , (76)

where ·̃ denote the respective nondimensionalized quantities and operators. In (76)
rd is the Debye length given by

rd =

√
εkB T
q2c0

. (77)

Given that rd ≈ 1 nm and L0 is on the order or µm to cm in biophysical systems,
(rd/L0)

2 is a very small quantity. We may thus safely disregard the left hand side
of (76) provided we are sufficiently far away from the membrane. This amounts to
taking the right hand side of (75) to be equal to 0. This leads to the electroneutrality
condition (3). However close to the membrane we have a boundary layer of thickness
O(rd), within which the ionic concentrations deviate from electroneutrality. In this
space charge layer, we must deal with the Poisson–Nernst–Planck system (73), (74)
and (75).

We make some assumptions in our analysis of the space charge layer. We
suppose that the quantities within the space charge layer experience fast spatial
variation in the direction normal to the membrane but slow spatial variation in the
direction parallel to the membrane. Under this “boundary layer” assumption, all
quantities may be treated as functions only of the distance from the membrane.
This also implies that the ionic fluxes must be equal to 0 to leading order within the
space charge layer. It is possible to formalize this argument within the traditional
framework of matched asymptotics as presented in [25] and [24]. We also make
the assumption that the deviation of the electrostatic potential and hence the ionic
concentration from its bulk values is small. This assumption is justified because the
membrane capacitance is “small” in biophysical systems. For a further elaboration
of this point we refer the reader to [27].

Let x denote the distance coordinate normal to the membrane surface. Then,
according to the assumptions just stated, (73)–(75) become

0=−Di

(∂ci

∂x
+

qzi ci

kB T
∂φ

∂x

)
, (78)

−
∂2φ

∂x2 =
1
ε

(
ρ0+

N∑
i=1

qzi ci

)
, (79)

which hold on 0 < x < ∞ with ci (∞) and φ(∞) given. Here, x = 0 is the
intracellular or extracellular face of the membrane, and x =∞ corresponds to the
bulk solution where ci and φ values in the space charge layer are to be matched
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with the bulk values. For now we shall assume that ci (∞) and φ(∞) are constant
in time. Assuming that the background fixed charge density ρ0 varies on the scale
of the cellular size L0, its variation within the thickness of the space charge layer
is negligible, of order O(rd/L0). Thus, we will treat ρ0 as being constant within
the space charge layer. It is important to note that these values at x =∞ satisfy
electroneutrality, that is,

ρ0+

N∑
i=1

qzi ci (∞)= 0. (80)

Equation (78) can be integrated easily to obtain,

ci (x)= ci (∞) exp
(
−

qzi

kB T
(φ(x)−φ(∞))

)
. (81)

We substitute this into (79) to find,

−
∂2φ

∂x2 =
1
ε

(
ρ0+

N∑
i=1

qzi ci (∞) exp
(
−

qzi

kB T
(φ(x)−φ(∞))

))
. (82)

We now assume, as we stated earlier, that the deviation of the electrostatic potential
within the space charge layer from the bulk value is small.∣∣∣ qzi

kB T
(φ(x)−φ(∞))

∣∣∣� 1. (83)

Then, taking into account the electroneutrality condition at x =∞ (80), we obtain

ci (x)= ci (∞)
(

1−
qzi

kB T
(φ(x)−φ(∞))

)
(84)

and
∂2

∂x2 (φ(x)−φ(∞))= γ
2(φ(x)−φ(∞)),

where

γ 2
=

N∑
i=1

(qzi )
2ci (∞)

εkB T
. (85)

Letting γ be the positive square root of γ 2 (1/γ is nothing other than the Debye
length), we find the unique bounded solution

φ(x)−φ(∞)= (φ(0)−φ(∞)) exp(−γ x), (86)

and hence according to (84),

ci (x)− ci (∞)=−ci (∞)
qzi

kB T
(φ(0)−φ(∞)) exp(−γ x). (87)
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R

ηR

1z

r
z

Figure 14. Derivation of the cable model. A portion of a cylindri-
cal cell is shown. As explained in the main text, the divergence
theorem is applied to the intracellular and extracellular slabs of
thickness 1z, shown above.

Using this equation, we may compute σi as

σi =

∫
∞

0
qzi (ci (x)− ci (∞))dx =−ci (∞)

(qzi )
2

kB T γ
(φ(0)−φ(∞)). (88)

Using the above and noting that
∑N

i=1 σi = σ , we immediately obtain

σi =
z2

i ci (∞)∑N
i ′=1 z2

i ′ci ′(∞)
σ. (89)

The coefficient in front of σ corresponds to the expression for λ̃i in (8).
If the bulk concentrations are not changing in time, the fractional contribution

σi/σ = λi of (8) will be equal to λ̃i . If the bulk concentration changes slowly
with time, we expect the ionic concentration profile within the space charge layer
to closely follow the corresponding equilibrium profile calculated above, on the
diffusive time scale within the space charge layer. We thus let λi relax to λ̃i with
the time constant τ = r2

d/D0, where D0 is the representative magnitude of ionic
diffusion coefficient.

A.2. Derivation of the cable model. We give a short derivation of the cable model
from (15) and (16). Our derivation here can be formalized using thin domain
asymptotics. See [25] and [24] for details.

Suppose the cell is cylindrical in shape (Figure 14). Let z be the axial coordinate
and r be the radial coordinate. The membrane is located at r = R. The intracellular
space corresponds to r < R and the extracellular space to R < r < ηR where
η > 1 is some constant. Now, consider the cross sectional slab between z = z0 and
z = z0+1z. Let us compute the integral of 1φ over the region z0 < z < z0+1z,
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r < R. We get∫
z0<z<z0+1z,r<R

1φdV

=

∫
z=z0+1z,r<R

∂φ

∂z
d A−

∫
z=z0,r<R

∂φ

∂z
d A+

∫
z0<z<z0+1z,r=R

∂φ

∂r
d A, (90)

where we used the divergence theorem. The symbols dV and d A denote volume
and surface integration respectively. Now, note by (17) that 1φ = 0. Therefore, the
left hand side of (90) is 0, and we have∫

z=z0+1z,r<R

∂φ

∂z
d A−

∫
z=z0,r<R

∂φ

∂z
d A =−

∫
z0<z<z0+1z,r=R

∂φ

∂r
d A. (91)

Dividing by 1z and taking the limit as 1z goes to 0, we obtain the following
relationship.

∂

∂z

∫
z=z0

∂φ

∂z
d A =−

∫
z=z0,r=R

∂φ

∂r
d`, (92)

where d` denotes a line integral. Now, we make the assumption that the cylindrical
diameter is small so that the electrostatic potential φ varies very little over the
diameter of the cylinder. We thus take the approximation that φ = φint(z) does
not depend on the radial direction in r < R. Under this approximation, the above
becomes

aintπR2 ∂
2φint

∂z2 =

∫
r=R

(
Cm

∂φm

∂t
+ I

)
d`, (93)

where we used (18). Note that the above is valid for any value of z0, and thus, we
have omitted reference to z0. φm is the membrane potential, the difference in φ
across the membrane. aint is the value of a (which appears in (16) as a(k) and a(l))
in the intracellular space.

A similar calculation, applied to the extracellular region z0 < z < z0 + 1z,
R < r < Rext, yields

aextπ((ηR)2− R2)
∂2φext

∂z2 =−

∫
r=R

(
Cm

∂φm

∂t
+ I

)
d`, (94)

where we have assumed that φ in the extracellular region is again, a function only of
z and does not depend on the radial direction r . Note that the membrane potential
φm can now be expressed as φm = φ

int
−φext, and is thus a function only of z, and

does not depend on the angular coordinate. Rearranging (93) and (94), we may
write an equation solely in terms of φm :

Cm
∂φm

∂t
+ Ī =

aeff R
2

∂2φm

∂z2 , aeff
= ((aint)−1

+ (aext(η2
− 1))−1)−1. (95)
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This is nothing other than (20). If we let a = aint
= aext and consider the case in

which η is very large, we may replace aeff by a, as used in (19).
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A HIGHER-ORDER GODUNOV METHOD FOR RADIATION
HYDRODYNAMICS: RADIATION SUBSYSTEM

MICHAEL DAVID SEKORA AND JAMES M. STONE

A higher-order Godunov method for the radiation subsystem of radiation hydro-
dynamics is presented. A key ingredient of the method is the direct coupling of
stiff source term effects to the hyperbolic structure of the system of conservation
laws; it is composed of a predictor step that is based on Duhamel’s principle and
a corrector step that is based on Picard iteration. The method is second-order
accurate in both time and space, unsplit, asymptotically preserving, and uniformly
well behaved from the photon free streaming (hyperbolic) limit through the weak
equilibrium diffusion (parabolic) limit and to the strong equilibrium diffusion
(hyperbolic) limit. Numerical tests demonstrate second-order convergence across
various parameter regimes.

1. Introduction

Radiation hydrodynamics is a fluid description of matter (plasma) that absorbs
and emits electromagnetic radiation and in so doing modifies dynamical behavior.
The coupling between matter and radiation is significant in many phenomena
related to astrophysics and plasma physics, where radiation comprises a major
fraction of the internal energy and momentum and provides the dominant transport
mechanism. Radiation hydrodynamics governs the physics of radiation-driven
outflows, supernovae, accretion disks, and inertial confinement fusion [Castor
2004; Mihalas and Mihalas 1984]. Such physics is described mathematically by
a nonlinear system of conservation laws that is obtained by taking moments of
the Boltzmann and photon transport equations. A key difficulty is choosing the
frame of reference in which to take the moments of the photon transport equation.
In the comoving and mixed frame approaches, one captures the matter/radiation
coupling by adding relativistic source terms correct to O(u/c) to the right side of
the conservation laws, where u is the material flow speed and c is the speed of
light. These source terms are stiff because of the variation in time/length scales
associated with such problems [Mihalas and Klein 1982]. This stiffness causes
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numerical difficulties and makes conventional methods such as operator splitting
and method of lines break down [LeVeque 1992; 2002].

Previous research in numerically solving radiation hydrodynamical problems
was carried out by Caster [1972], Pomraning [1973], Mihalas and Klein [1982],
and Mihalas and Mihalas [1984]. There are a variety of algorithms for radiation hy-
drodynamics. One of the simplest approaches was developed by Stone et al. [1992]
and implemented in the ZEUS code, which was based on operator splitting and
Crank–Nicholson finite differencing. Since then, higher-order Godunov methods
have emerged as a valuable technique for solving hyperbolic conservation laws
(for example, hydrodynamics), particularly when shock capturing and adaptive
mesh refinement is important [Stone et al. 2008]. However, developing upwind
differencing methods for radiation hydrodynamics is a difficult mathematical and
computational task. In many cases, Godunov methods for radiation hydrodynamics
either:

(i) neglect the heterogeneity of weak/strong coupling and solve the system of
equations in an extreme limit [Dai and Woodward 1998; 2000];

(ii) are based on a manufactured limit and solve a new system of equations that
attempts to model the full system [Jin and Levermore 1996; Buet and Despres
2006]; or

(iii) use a variation on flux limited diffusion [Levermore and Pomraning 1981;
Gonzalez et al. 2007].

All of these approaches fail to treat the full generality of the problem. For exam-
ple, Balsara [1999] proposed a Riemann solver for the full system of equations.
However, as pointed out by Lowrie and Morel [2001], Balsara’s method failed
to maintain coupling between radiation and matter. Moreover, Lowrie and Morel
were critical of the likelihood of developing a Godunov method for full radiation
hydrodynamics.

In radiation hydrodynamics, there are three important dynamical scales and each
scale is associated with either the material flow (speed of sound), radiation flow
(speed of light), or source terms. When the matter-radiation coupling is strong, the
source terms define the fastest scale. However, when the matter-radiation coupling
is weak, the source terms define the slowest scale. Given such variation, one aims
for a scheme that treats the stiff source terms implicitly. Following [Miniati and
Colella 2007], this paper presents a method that is a higher-order modified Godunov
scheme that directly couples stiff source term effects to the hyperbolic structure of
the system of conservation laws; it is composed of a predictor step that is based
on Duhamel’s principle and a corrector step that is based on Picard iteration. The
method is explicit on the fastest hyperbolic scale (radiation flow) but is unsplit and
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fully couples matter and radiation with no approximation made to the full system
of equations for radiation hydrodynamics.

A challenge for the modified Godunov method is its use of explicit time differ-
encing when there is a large range in the time scales associated with the problem,
c/a∞ � 1, where a∞ is the reference material sound speed. One could have
built a fully implicit method that advanced time according to the material flow
scale, but a fully implicit approach was not pursued because such methods often
have difficulties associated with conditioning, are expensive because of matrix
manipulation and inversion, and are usually built into central difference schemes
rather than higher-order Godunov methods. An explicit method may even out
perform an implicit method if one considers applications that have flows where
c/a∞ . 10. A modified Godunov method that is explicit on the fastest hyperbolic
scale (radiation flow) as well as a hybrid method that incorporates a backward Euler
upwinding scheme for the radiation components and the modified Godunov scheme
for the material components are under construction for full radiation hydrodynamics.
A goal of future research is to directly compare these two methods in various limits
for different values of c/a∞.

2. Radiation hydrodynamics

The full system of equations for radiation hydrodynamics in the Eulerian frame that
is correct to O(1/C) is

∂ρ

∂t
+∇·(m)= 0, (1)

∂m
∂t
+∇·

(m ⊗ m
ρ

)
+∇ p =−P

[
−σt

(
Fr−

uEr+u·Pr

C

)
+σa

u
C
(T 4
−Er )

]
, (2)

∂E
∂t
+∇·

(
(E+p)

m
ρ

)
=−PC

[
σa(T 4

−Er )+(σa−σs)
u
C
·

(
Fr−

uEr+u·Pr

C

)]
, (3)

∂Er

∂t
+C∇·Fr = C

[
σa(T 4

−Er )+(σa−σs)
u
C
·

(
Fr−

uEr+u·Pr

C

)]
, (4)

∂Fr

∂t
+C∇·Pr = C

[
−σt

(
Fr−

uEr+u·Pr

C

)
+σa

u
C
(T 4
−Er )

]
, (5)

Pr = fEr (closure relation). (6)

For the material quantities, ρ is density, m is momentum, p is pressure, E is
total energy density, and T is temperature. For the radiative quantities, Er is energy
density, Fr is flux, Pr is pressure, and f is the variable tensor Eddington factor.
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In the source terms, σa is the absorption cross section, σs is the scattering cross
section, and σt = σa + σs is the total cross section.

Following [Lowrie et al. 1999; Lowrie and Morel 2001], the system of equations
above has been nondimensionalized with respect to the material flow scale so that
one can compare hydrodynamical and radiative effects as well as identify terms
that are O(u/c). This scaling gives two important parameters:

C= c/a∞, P=
ar T 4
∞

ρ∞a2
∞

.

C measures relativistic effects, while P measures how radiation affects material
dynamics and is proportional to the equilibrium radiation pressure over material
pressure. ar = (8π5k4)/(15c3h3) is a radiation constant, T∞ is the reference material
temperature, and ρ∞ is the reference material density.

For this system of equations, one has assumed that scattering is isotropic and
coherent in the comoving frame, emission is defined by local thermodynamic
equilibrium (LTE), and that spectral averages for the cross-sections can be employed
(gray approximation). The coupling source terms are given by the modified Mihalas–
Klein description [Lowrie et al. 1999; Lowrie and Morel 2001], which is more
general and more accurate than the original Mihalas–Klein [1982] source terms
because it maintains an important O(1/C2) term that ensures the correct equilibrium
state and relaxation rate to equilibrium.

Before investigating full radiation hydrodynamics, it is useful to examine the
radiation subsystem, which is a simpler system that minimizes complexity while
maintaining the rich hyperbolic-parabolic behavior associated with the stiff source
term conservation laws. This simpler system allows one to develop a reliable and
robust numerical method. Consider Equations (4) and (5) for radiation hydrodynam-
ics in one spatial dimension not affected by transverse flow. If one only considers
radiative effects and holds the material flow stationary such that u→ 0, then the
conservative variables, fluxes, and source terms for the radiation subsystem are
given by

∂Er

∂t
+C

∂Fr

∂x
= Cσa(T 4

− Er ),
∂Fr

∂t
+C f

∂Er

∂x
=−Cσt Fr . (7)

Motivated by the asymptotic analysis of Lowrie et al. [1999] for full radiation
hydrodynamics, one investigates the limiting behavior for this simpler system of
equations. For nonrelativistic flows 1/C= O(ε), where ε� 1. Assume that there
is a moderate amount of radiation in the flow such that P = O(1). Furthermore,
assume that scattering effects are small such that σs/σt = O(ε). Lastly, assume
that the optical depth can be represented as L= `mat/λt = `mat σt , where λt is the
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total mean free path of the photos and `mat = O(1) is the material flow length scale
[Lowrie et al. 1999].

Free streaming limit: σa, σt ∼ O(ε). In this regime, the right side of (7) is neg-
ligible, so that the system is strictly hyperbolic; f → 1 and the Jacobian of the
quasilinear conservation law has eigenvalues ±C:

∂Er

∂t
+C

∂Fr

∂x
= 0,

∂Fr

∂t
+C

∂Er

∂x
= 0, (8)

Weak equilibrium diffusion limit: σa, σt ∼ O(1). One obtains this limit by plug-
ging in σa, σt ∼ O(1), matching terms of like order, and combining the result-
ing equations. From the definition of the equilibrium state, Er = T 4 and Fr =

−(1/σt)∂Pr/∂x . Therefore, the system is parabolic and resembles a diffusion
equation, where f → 1/3:

∂Er

∂t
=

C

3σt

∂2 Er

∂x2 , Fr =−
1

3σt

∂Er

∂x
. (9)

Strong equilibrium diffusion limit: σa, σt ∼ O(1/ε). One obtains this limit by
plugging in σa, σt ∼ O(1/ε) and following the steps outlined for the weak equilib-
rium diffusion limit. One can consider the system to be hyperbolic, where f → 1/3
and the Jacobian of the quasilinear conservation law has eigenvalues ±ε:

∂Er

∂t
= 0, Fr = 0. (10)

Lowrie et al. [1999] investigated an additional limit for full radiation hydro-
dynamics, the isothermal regime. This limit has some dynamical properties in
common with the weak equilibrium diffusion limit, but its defining characteristic is
that the material temperature T (x, t) is constant. When considering the radiation
subsystem, there is little difference between the weak equilibrium diffusion and
isothermal limits because the material quantities, including the material temperature
T , do not evolve. T enters the radiation subsystem as a parameter rather than a
dynamical quantity.

3. Higher-order Godunov method

In one spatial dimension, systems of conservation laws with source terms have the
form

∂U
∂t
+
∂F(U )
∂x

= S(U ), (11)
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where U : R×R→ Rn is an n-dimensional vector of conserved quantities. For the
radiation subsystem,

U =
(

Er

Fr

)
, F(U )=

(
CFr

C f Er

)
, S(U )=

(
CSE

CSF

)
=

(
Cσa(T 4

− Er )

−Cσt Fr

)
.

The quasilinear form of this system of conservation laws is

∂U
∂t
+ A

∂U
∂x
= S(U ), A =

∂F
∂U
=

(
0 C

C f 0

)
. (12)

A has eigenvalues λ = ± f 1/2C and it also has right eigenvectors R (stored as
columns) and left eigenvectors L (stored as rows):

R =
(

1 1
− f 1/2 f 1/2

)
, L =

(
1
2 −

1
2 f −1/2

1
2

1
2 f −1/2

)
. (13)

Godunov’s method obtains solutions to systems of conservation laws by using
characteristic information within the framework of a conservative method:

U n+1
i =U n

i −
1t
1x

(Fi+1/2− Fi−1/2)+1t S(U n
i ). (14)

Numerical fluxes Fi±1/2 are obtained by solving the Riemann problem at the cell
interfaces with left/right states to get U n±1/2

i−1/2 and computing

Fi±1/2 = F
(
U n+1/2

i±1/2

)
,

where i represents the location of a cell center, i ± 1/2 represents the location cell
faces to the right and left of i , and superscripts represent the time discretization.
An HLLE (Harten–Lax–van Leer–Einfeldt) solver, used in this work, or any other
approximate Riemann solver may be employed because the Jacobian ∂F/∂U for
the radiation subsystem is a constant valued matrix and by definition a Roe matrix
[LeVeque 1992; 2002; Roe 1981]. This property also implies that one does not
need to transform the system into primitive variables (∇U W ). The power of the
method presented in this paper is that the spatial reconstruction, eigenanalysis, and
cell-centered updating directly plug into conventional Godunov machinery.

3.1. Predictor step. One computes the flux divergence (∇ · F)n+1/2 by using the
quasilinear form of the system of conservation laws and the evolution along La-
grangian trajectories:

DU
Dt
+ AL ∂U

∂x
= S(U ), AL

= A− uI,
DU
Dt
=
∂U
∂t
+

(
u
∂

∂x

)
U. (15)

From the quasilinear form, one derives a system that includes (at least locally in
time and state space) the effects of the stiff source terms on the hyperbolic structure.
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Following [Miniati and Colella 2007; Trebotich et al. 2005], one applies Duhamel’s
principle to the system of conservation laws, thus giving

DU eff

Dt
= IṠn

(η)
(
−AL ∂U

∂x
+ Sn

)
, (16)

where IṠn
is a propagation operator that projects the dynamics of the stiff source

terms onto the hyperbolic structure and Ṡn = ∇U S|Un . The subscript n designates
time t = tn . Since one is considering a first-order accurate predictor step in a
second-order accurate predictor-corrector method, one chooses η =1t/2 and the
effective conservation law is

DU
Dt
+IṠn

(1t/2)AL ∂U
∂x
= IṠn

(1t/2)Sn

which implies
∂U
∂t
+ Aeff

∂U
∂x
= IṠn

(1t/2)Sn, (17)

where Aeff = IṠn
(1t/2)AL

+ uI . In order to compute IṠn
, one first computes Ṡn .

Since C, σa , and σt are constant and one assumes that ∂T/∂Er , ∂T/∂Fr = 0:

Ṡn =

(
−Cσa 0

0 −Cσt

)
. (18)

IṠn
is derived from Duhamel’s principle and is given by

IṠn
(1t/2)=

1
1t/2

∫ 1t/2

0
eτ Ṡn dτ =

(
α 0
0 β

)
, (19)

with

α =
1− e−Cσa1t/2

Cσa1t/2
, β =

1− e−Cσt1t/2

Cσt1t/2
. (20)

Before applying IṠn
to AL , it is important to understand that moving-mesh

methods can be accommodated in nonrelativistic descriptions of radiation hydro-
dynamics whenever an Eulerian frame treatment is employed. These methods do
not require transformation to the comoving frame [Lowrie and Morel 2001]. Since
the nondimensionalization is associated with the hydrodynamic scale, one can use
umesh = u from Lagrangean hydrodynamic methods.

The effects of the stiff source terms on the hyperbolic structure are accounted
for by transforming to a moving-mesh (Lagrangean) frame AL = A− uI , applying
the propagation operator IṠn

to AL , and transforming back to an Eulerian frame
Aeff=IṠn

AL+uI [Miniati and Colella 2007]. However, because only the radiation
subsystem of radiation hydrodynamics is considered umesh = u→ 0. Therefore, the
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effective Jacobian is given by

Aeff =

(
0 αC

β f C 0

)
, (21)

which has eigenvalues λeff =±(αβ)
1/2 f 1/2C with the limits

σa, σt → 0⇒ α, β→ 1⇒ λeff→± f 1/2C (free streaming),

σa, σt →∞⇒ α, β→ 0⇒ λeff→±ε (strong equilibrium diffusion).
(22)

Aeff has right eigenvectors Reff (stored as columns) and left eigenvectors Leff (stored
as rows):

Reff =

(
1 1

−(β f/α)1/2 (β f/α)1/2

)
, Leff =

(
1
2 −

1
2(α/β f )1/2

1
2

1
2(α/β f )1/2

)
. (23)

3.2. Corrector step. The time discretization for the source term is a single-step,
second-order accurate scheme based on the ideas from [Dutt et al. 2000; Minion
2003; Miniati and Colella 2007]. Given the system of conservation laws, one aims
for a scheme that has an explicit approach for the conservative flux divergence term
∇ ·F and an implicit approach for the stiff source term S(U ). Therefore, one solves
a following collection of ordinary differential equations at each grid point:

dU
dt
= S(U )− (∇ · F)n+1/2, (24)

where the time-centered flux divergence term is taken to be a constant source which
is obtained from the predictor step. Assuming time t = tn , the initial guess for the
solution at the next time step is

Û =U n
+1t (I −1t∇U S(U )|U n )−1(S(U n)− (∇ · F)n+1/2), (25)

where

(I −1t∇U S(U ))=
(

1+1tCσa 0
0 1+1tCσt

)
, (26)

(I −1t∇U S(U ))−1
=

(
(1+1tCσa)

−1 0
0 (1+1tCσt)

−1

)
. (27)

The error ε is defined as the difference between the initial guess and the solution
obtained from the Picard iteration equation, where the initial guess was used as a
starting value:

ε(1t)=U n
+
1t
2

(
S(Û )+ S(U n)

)
−1t (∇ · F)n+1/2

− Û . (28)
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Following [Miniati and Colella 2007], the correction to the initial guess is given by

δ(1t)= (I −1t∇U S(U )|Û )
−1ε(1t). (29)

Therefore, the solution at time t = tn +1t is

U n+1
= Û + δ(1t). (30)

3.3. Stability and algorithmic issues. The higher-order Godunov method satisfies
important conditions that are required for numerical stability [Miniati and Colella
2007]. First, λeff =±(αβ)

1/2 f 1/2C indicates that the subcharacteristic condition
for the characteristic speeds at equilibrium is always satisfied, such that: λ− <
λ−eff < λ

0 < λ+eff < λ
+. This condition is necessary for the stability of the system

and guarantees that the numerical solution tends to the solution of the equilibrium
equation as the relaxation time tends to zero. Second, since the structure of the
equations remains consistent with respect to classic Godunov methods, one expects
the CFL (Courant–Friedrichs–Lewy) condition to apply: max(|λ∗|)(1t/1x)≤ 1,
for ∗ = −, 0,+.

Depending upon how one carries out the spatial reconstruction to solve the
Riemann problem in Godunov’s method, the solution is either first-order accurate
in space (piecewise constant reconstruction) or second-order accurate in space
(piecewise linear reconstruction). Piecewise linear reconstruction was employed in
this paper, where left/right states (with respect to the cell center) are modified to
account for the stiff source term effects [Miniati and Colella 2007; Colella 1990]:

U n
i,± =U n

i +
1t
2

IṠn

(1t
2

)
S(U n

i )+
1
2

(
±I −

1t
1x

An
eff

)
P±(1Ui ),

P±(1Ui )=
∑
±λk>0

(Lk
eff ·1Ui ) · Rk

eff.
(31)

Left/right one-sided slopes as well as cell center slopes are defined for each
cell centered quantity Ui . A van Leer limiter is applied to these slopes to ensure
monotonicity, thus giving the local slope 1Ui .

4. Numerical tests

Four numerical tests spanning a range of mathematical and physical behavior were
carried out to gauge the temporal and spatial accuracy of the higher-order Godunov
method. The numerical solution is compared with the analytic solution where
possible. Otherwise, a self-similar comparison is made. Using piecewise constant
reconstruction for the left/right states, one can show that the Godunov method
reduces to a consistent discretization in each of the limiting cases.
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The optical depth τ is a useful quantity for classifying the limiting behavior of a
system that is driven by radiation hydrodynamics:

τ =

∫ xmax

xmin

σt dx = σt(xmax− xmin), (32)

Optically thin/thick regimes are characterized by

τ < O(1) (optically thin),
τ > O(1) (optically thick).

In optically thin regimes (free streaming limit), radiation and hydrodynamics
decouple such that the resulting dynamics resembles an advection process. In
optically thick regimes (weak/strong equilibrium diffusion limit), radiation and hy-
drodynamics are strongly coupled and the resulting dynamics resembles a diffusion
process.

We use the following definitions for the norms and convergence rates throughout
this paper. Given the numerical solution qr at resolution r and the analytic solution
u, the error at a given point i is: εr

i = qr
i −u. Likewise, given the numerical solution

qr at resolution r and the numerical solution qr+1 at the next finer resolution r + 1
(properly spatially averaged onto the coarser grid), the error resulting from this
self-similar comparison at a given point i is: εr

i = qr
i − qr+1

i . The 1-norm and
max-norm of the error are

L1 =
∑

i

|εr
i |1xr , Lmax =max

i
|εr

i |. (33)

The convergence rate is measured using Richardson extrapolation:

Rn =
ln(Ln(ε

r )/Ln(ε
r+1))

ln(1xr/1xr+1)
. (34)

4.1. Exponential growth/decay to thermal equilibrium. The first numerical test
examines the temporal accuracy of how variables are updated in the corrector step.
Given the radiation subsystem and the initial conditions

E0
r = constant across space, F0

r = 0, T = constant across space,

We have Fr → 0 for all time. Therefore, the radiation subsystem reduces to the
ordinary differential equation

d Er

dt
= Cσa(T 4

− Er ), (35)

which has the analytic solution

Er = T 4
+ (E0

r − T 4)exp(−Cσat). (36)
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For E0
r < T 4 and F0

r = 0, one expects exponential growth in Er until thermal
equilibrium (ER=T 4) is reached. For E0

r >T 4 and F0
r =0, one expects exponential

decay in Er until thermal equilibrium is reached. This numerical test allows one to
examine the order of accuracy of the stiff ODE integrator.

Parameters:

C= 105, σa = 1, σt = 2, f = 1,

Ncell = [32, 64, 128, 256],

xmin = 0, xmax = 1, 1x =
xmin− xmax

Ncell
, CFL= 0.5, 1t =

CFL1x
f 1/2C

,

IC for growth: E0
r = 1, F0

r = 0, T = 10,

IC for decay: E0
r = 104, F0

r = 0, T = 1.

From Figure 1, one sees that the numerical solution corresponds with the analytic
solution. In Table 1 on the next page, the errors and convergence rates are see to
be identical for growth and decay. This symmetry illustrates the robustness of the
Godunov method. Furthermore, one finds that the method is well behaved and
obtains the correct solution with second-order accuracy for stiff values of the e
folding time (1t σaC ≥ 1), although with a significantly larger amplitude in the
norm of the error. This result credits the flexibility of the temporal integrator in the
corrector step.

In a similar test, the initial conditions for the radiation energy and flux are zero
and the temperature is defined by some spatially varying profile (a Gaussian pulse).
As time increases, the radiation energy grows into T (x)4. Unless the opacity is
sufficiently high, the radiation energy approaches but does not equal T (x)4. This

0 1 2 3 4 5
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0.6
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t / σ
a
 C

E
r / 

T4

Figure 1. Exponential growth/decay to thermal equilibrium;
Ncell = 256.
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Ncell L1(E
g
r ) Rate L∞(E

g
r ) Rate L1(Ed

r ) Rate L∞(Ed
r ) Rate

32 1.4E-1 – 1.4E-1 – 1.4E-1 – 1.4E-1 –
64 3.7E-2 2.0 3.7E-2 2.0 3.7E-2 2.0 3.7E-2 2.0

128 9.3E-3 2.0 9.3E-3 2.0 9.3E-3 2.0 9.3E-3 2.0
256 2.3E-3 2.0 2.3E-3 2.0 2.3E-3 2.0 2.3E-3 2.0

Table 1. Errors and convergence rates for exponential growth and
decay in Er to thermal equilibrium. Errors were obtained through
analytic comparison. t = 10−5

= 1/σaC.

result shows that the solution has reached thermal equilibrium and any spatially
varying temperature will diffuse.

4.2. Free streaming limit. In the free streaming limit, τ � O(1) and the radiation
subsystem reduces to (8). If one takes an additional temporal and spatial partial
derivative of the radiation subsystem in the free streaming limit and subtracts the
resulting equations, then one finds two decoupled wave equations that have the
analytic solutions

Er (x, t)= E0(x − f 1/2Ct), Fr (x, t)= F0(x − f 1/2Ct). (37)

Parameters:
C= 105, σa = 10−6, σt = 10−6, f = 1, T = 1,

Ncell = [32, 64, 128, 256],

xmin = 0, xmax = 1, 1x =
xmin− xmax

Ncell
, CFL= 0.5, 1t =

CFL1x
f 1/2C

,

IC for Gaussian pulse: E0
r , F0

r = exp(−(ν(x −µ))2), ν = 20, µ= 0.3,

IC for square pulse: E0
r , F0

r =

{
1 if 0.2< x < 0.4,
0 otherwise.

Since the Gaussian pulse results from smooth initial data, one expects R1 = 2.0.
However, the square wave results from discontinuous initial data and one expects
R1 ' 0.67. This is true for all second-order spatially accurate numerical methods
when applied to an advection-type problem (ut + aux = 0) [LeVeque 1992]. See
Figure 2 for the shape of the pulses in the free streaming limit, and Table 2 for the
corresponding errors and convergence rates.

4.3. Weak equilibrium diffusion limit. In the weak equilibrium diffusion limit,
τ > O(1) and the radiation subsystem reduces to (9). The optical depth suggests
the range of total opacities for which diffusion is observed: if τ = σt `diff > 1,
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Figure 2. Gaussian pulse (left) and square pulse (right) in free
streaming limit; t = 4× 10−6

= 0.4(xmax− xmin)/C.

Gaussian pulse

Ncell L1(Er ) Rate L∞(Er ) Rate L1(Fr ) Rate L∞(Fr ) Rate

32 3.8E-2 – 3.9E-1 – 3.8E-2 – 3.9E-1 –
64 1.3E-2 1.5 1.8E-1 1.1 1.3E-2 1.5 1.8E-1 1.1

128 3.6E-3 1.9 8.0E-2 1.2 3.6E-3 1.9 8.0E-2 1.2
256 8.6E-4 2.1 3.1E-2 1.4 8.6E-4 2.1 3.1E-2 1.4

square pulse

Ncell L1(Er ) Rate L1(Fr ) Rate

32 6.0E-2 – 6.0E-2 –
64 4.2E-2 0.5 4.2E-2 0.5

128 2.6E-2 0.7 2.6E-2 0.7
256 1.5E-2 0.8 1.5E-2 0.8

Table 2. Errors (obtained through analytic comparison) and con-
vergence rates for Gaussian and square pulses in free streaming
limit; t = 4× 10−6

= 0.4(xmax− xmin)/C.

then one expects diffusive behavior for σt > 1/`diff. Additionally, Equation (9)
sets the time scale tdiff and length scale `diff for diffusion, where tdiff ∼ `

2
diff/D and

D = f C/σt for the radiation subsystem. Given a diffusion problem for a Gaussian
pulse defined over the entire real line (ut−Duxx = 0), the analytic solution is given
by the method of Green’s functions:

u(x, t)=
∫
∞

−∞

f (x̄)G(x, t; x̄, 0)dx̄ =
1

(4Dtν2+ 1)1/2
exp

(
−(ν(x−µ))2

4Dtν2+ 1

)
. (38)
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Parameters:
C= 105, σa = 40, σt = 40, f = 1/3, T 4

= Er ,

Ncell = [320, 640, 1280, 2560],

xmin =−5, xmax = 5, 1x =
xmin− xmax

Ncell
, CFL = 0.5, 1t =

CFL1x
f 1/2C

,

IC for Gaussian pulse:


E0

r = exp
(
−(ν(x −µ))2

)
, ν = 20, µ= 0.3,

F0
r =−

f
σt

∂E0
r

∂x
=

2 f ν2(x−µ)
σt

E0
r

One’s intuition about diffusive processes is based on an infinite domain. So to
minimize boundary effects in the numerical calculation, the computational domain
and number of grid cells were expanded by a factor of 10. In Figure 3, one
observes the diffusive behavior expected for this parameter regime. Additionally, the
numerical solution compares well with the analytic solution for a diffusion process
defined over the entire real line (38). However, diffusive behavior is only a first-order
approximation to more complicated hyperbolic-parabolic dynamics taking place in
radiation hydrodynamics as well as the radiation subsystem. Therefore, one needs
to compare the numerical solution self-similarly. In Table 3, one sees convergence
results for two different time steps: a hyperbolic time step 1th =CFL 1x/( f 1/2C),
and parabolic one, 1tp = CFL (1x)2/(2D). This difference in the convergence
rate results from the temporal accuracy in the numerical solution. In the weak
equilibrium diffusion limit, the Godunov method reduces to a forward-time/centered-
space discretization of the diffusion equation. Such a discretization requires a
parabolic time step 1t ∼ (1x)2 in order to see second-order convergence because
the truncation error of the forward-time/centered-space discretization of the diffusion
equation is O(1t, (1x)2).
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Figure 3. Er (left) and Fr (right) in weak equilibrium diffusion
limit; t = [0.25, 1, 4, 16, 64]× 10−6.
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Hyperbolic time step: 1th = CFL 1x/( f 1/2C)

Ncell L1(Er ) Rate L∞(Er ) Rate L1(Fr ) Rate L∞(Fr ) Rate

320 8.9E-3 – 4.5E-2 – 1.1E-3 – 3.7E-3 –
640 6.6E-3 0.4 3.4E-2 0.4 8.3E-4 0.4 3.1E-3 0.2

1280 3.4E-3 1.0 1.6E-2 1.1 4.1E-4 1.0 1.4E-3 1.2
2560 1.6E-3 1.1 7.1E-3 1.1 1.9E-4 1.1 6.0E-4 1.2

Parabolic time step: 1tp = CFL (1x)2/(2D)

Ncell L1(Er ) Rate L∞(Er ) Rate L1(Fr ) Rate L∞(Fr ) Rate

320 1.7E-2 – 8.3E-2 – 2.0E-3 – 7.9E-3 –
640 5.0E-3 1.7 2.5E-2 1.7 6.0E-4 1.7 2.0E-3 2.0

1280 1.1E-3 2.2 5.1E-3 2.3 1.3E-4 2.3 3.6E-4 2.4
2560 2.5E-4 2.1 1.2E-3 2.1 2.8E-5 2.2 7.4E-5 2.3

Table 3. Errors (obtained through analytic comparison) and con-
vergence rates for Er and Fr in the weak equilibrium diffusion
limit, when time is advanced according to each indicated scheme;
t = 4× 10−6.

4.4. Strong equilibrium diffusion limit. In the strong equilibrium diffusion limit,
τ � O(1). From (10), we have Fr → 0 for all time and space while Er = E0

r .

Parameters:

C= 105, σa = 106, σt = 106, f = 1/3, T 4
= Er ,

Ncell = [320, 640, 1280, 2560],

xmin =−5, xmax = 5, 1x =
xmin− xmax

Ncell
, CFL= 0.5, 1t =

CFL1x
f 1/2C

,

IC for Gaussian Pulse:


E0

r = exp
(
−(ν(x −µ))2

)
, ν = 20, µ= 0.3,

F0
r =−

f
σt

∂E0
r

∂x
=

2 f ν2(x−µ)
σt

E0
r

In this test, the numerical solution is held fixed at the initial distribution because
σa, σt are so large. However, if one fixed `diff and scaled time according to

tdiff ≈ `
2

diff/D = ` 2
diffσt/ f C,

then one would observe behavior similar to Figure 3. This test illustrates the
robustness of the Godunov method to handle very stiff source terms. (See Table 4
for errors and convergence rates.)
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Ncell L1(Er ) Rate L∞(Er ) Rate

320 2.2E-3 – 1.8E-2 –
640 5.3E-4 2.1 5.6E-3 1.6

1280 1.3E-4 2.0 1.5E-3 1.9
2560 3.3E-5 2.0 3.8E-4 2.0

Table 4. Errors and convergence rates for Er in the strong equi-
librium diffusion limit. Errors were obtained through self-similar
comparison. t = 4× 10−6.

5. Conclusions and future work

This paper presents a Godunov method for the radiation subsystem of radiation
hydrodynamics that is second-order accurate in both time and space, unsplit, asymp-
totically preserving, and uniformly well behaved. Moreover, the method employs
familiar algorithmic machinery without a significant increase in computational cost.
This work is the starting point for developing a Godunov method for full radiation
hydrodynamics. The ideas in this paper should easily extend to the full system in one
and multiple dimensions using the MUSCL (monotone upstream-centered schemes
for conservation laws) or CTU (corner transport upwind) approaches of [Colella
1990]. A modified Godunov method that is explicit on the fastest hyperbolic scale
(radiation flow) as well as a hybrid method that incorporates a backward Euler
upwinding scheme for the radiation components and the modified Godunov scheme
for the material components are under construction for full radiation hydrodynamics.
A goal of future research is to directly compare these two methods in various limits
for different values of c/a∞. Nevertheless, one expects the modified Godunov
method that is explicit on the fastest hyperbolic scale to exhibit second-order
accuracy for all conservative variables and the hybrid method to exhibit first-
order accuracy in the radiation variables and second-order accuracy in the material
variables. Work is also being conducted on applying short characteristic and Monte
Carlo methods to solve the photon transport equation and obtain the variable tensor
Eddington factors. In the present work, these factors were taken to be constant in
their respective limits.
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SHEAR FLOW LAMINARIZATION AND ACCELERATION
BY SUSPENDED HEAVY PARTICLES:

A MATHEMATICAL MODEL
AND GEOPHYSICAL APPLICATIONS

GRIGORY ISAAKOVICH BARENBLATT

A modified model of turbulent shear flow of a suspension of small heavy particles
in a fluid is presented. The modification is based on the assumption that in the
flow there are two sorts of particles. For the particles of the first sort the velocity
of free fall a1 is larger than the characteristic velocity fluctuation, for the particles
of the second sort the velocity of free fall a2 is less than the characteristic velocity
of fluctuation.

Introduction

The energy of turbulent vortices (energy of turbulence) in a horizontal or slightly
inclined shear flow is reduced by suspended heavy particles, and this reduction leads
to flow acceleration. The basic model of this seemingly paradoxical phenomenon
was suggested by A.N. Kolmogorov (see [13]), and developed quantitatively by the
present author ([1; 2], see also the book of Monin and Yaglom [15], pp. 412–416).
Later this model, properly modified, was applied to several natural flow phenomena,
in particular to dust storms, both terrestrial and Martian [10], and lower quasi-
homogeneous layers of the ocean [8; 9]. It is important to mention that in the basic
model and its applications it was always assumed that the particles are identical.

Meanwhile, Sir James Lighthill (see his published paper [14]) proposed the
“sandwich model” of tropical hurricanes. A detailed analysis of the observations
(especially of the expedition on the Russian vessel “Priliv”) led Lighthill to the
fundamental assumption that a specific feature of hurricanes is the availability of
an intermediate layer between the sea and air; Lighthill called it “ocean spray”. In
this layer, air is filled by suspended water droplets, formed during the process of
the breaking of surface water waves. Lighthill specially emphasized “the need to
fill the gaps in knowledge about ocean spray at extreme wind speeds”.

MSC2000: 76F10.
Keywords: turbulence, turbulent shear flows, laminarization of turbulent flows, dust storms, tropical

hurricanes, firestorms.
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Following the direct suggestion of M.J. Lighthill, the original basic model
was applied by A.J. Chorin, V.M. Prostokishin and the present author [7] to the
flow in ocean spray. The main result obtained in this paper is that indeed the
droplets accelerate the wind, and, if they are large, “ocean spray” plays the role
of a lubrication layer for the wind: that is the reason for the wind acceleration.
However, the calculated increase of wind velocity happened to be less than was
expected.

In the present paper a modified model is proposed for ocean spray. The key point
of the modification is that it is assumed that in ocean spray there are droplets of
different sizes: small and large ones. The most important result, obtained using
this assumption, is that ocean spray is acting not only as a lubrication layer for the
wind, but also as a source of smaller droplets which are suspended by the wind and
which suppress the turbulence in the core of the air flow. Suppression of turbulence
by small droplets in the core of the wind is, according to the modified model, the
basic cause of extreme wind speeds.

The same modified model can be suggested for dust storms and for large fires, in
particular, forest and grass fires. In particular it allows us to understand the nature
of the firestorms observed in great fires (e.g., Chicago 1871, Dresden, 1945, and
Hiroshima, 1945). These topics are considered in the present paper.

1. Kolmogorov’s example

A.N. Kolmogorov, whose ideas shaped the modern theory of turbulence, posed at
the beginning of his course on turbulence at Moscow State University in 1954 the
following question: what would the velocity be at the surface of the river Volga
(in Russia, its parameters are close to those of the Mississippi River), if, by a
miracle, the river, having preserved its geometry, became laminar. It was clear for
the listeners that the velocity at the surface will increase, but to what extent?

Naturally, Kolmogorov modelled the river by a weakly inclined (the slope i is
small, i � 1), spatially homogeneous open channel (Figure 1a). In this simple case
of a laminar flow in a channel the basic Navier-Stokes equations are reduced to a
single equation, and the easily obtainable solution to this equation has the form

u =
ρgi H 2

2η

(2z
H
−

z2

H 2

)
. (1-1)

Here u is the velocity component along the bottom, η the dynamic viscosity of
water, ρ its density, z is the coordinate perpendicular to the bottom, and reckoned
from it, and g is the acceleration of gravity, so the the velocity usurf at the surface
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z = H is equal to

usurf =
ρgi H 2

2η
. (1-2)

Now, substitute into (1.2) realistic values of the parameters: η/ρ = 10−2 cm2/s,
H = 20 m = 2 · 103 cm, i = 10−4, g = 103 cm/s2. We obtain a value usurf =
2 · 107cm/s = 200km/s ∼= 400, 000 miles per hour! The reason for this obviously
absurd result is that the flow in the river is not laminar, it is “stuffed” with vortices
(Figure 1b). These vortices make the flow field random; they transfer the momentum
across the flow immensely faster than the thermal oscillations of the water molecules
in the laminar flow (which is the mechanism of the molecular fluid viscosity). This
basic idea was introduced by the French applied mathematician J. Boussinesq,
who in fact was the first to study turbulent flows mathematically. Boussinesq
introduced the basic concept of the “eddy viscosity” (viscosité tourbillonaire) ηturb:
the effective viscosity of the turbulent flow, created by vortices which remains
one of the basic concepts in turbulence studies. We emphasize that contrary to
the molecular viscosity η, the eddy viscosity ηturb is no longer a fluid property,
it is a flow property, different at different places. In the present case the value of
ηturb needed in (1.2) to obtain a realistic value of the velocity at the river surface
is ∼ 200, 000η!

However, the Kolmogorov example is especially significant, even fundamental
due to the following reason. It demonstrates clearly the huge reserves of energy
available in natural fluid flows.

These reserves can be revealed if somehow even a partial flow laminarization is
achieved. And this happens in reality: such partial laminarization is achieved in dust
storms (the laminarizing factor is the suspended dust particles), tropical hurricanes
(the laminarizing factor is the water droplets formed on the oceanic surface when

Figure 1. Kolmogorov’s example (a) Laminar flow in a channel,
(b) Turbulent flow in a river
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water waves are breaking), firestorms (the laminarizing factor is unburnt debris and
soot particles), and other natural flows.

2. Turbulent shear flows. The Kolmogorov-Prandtl model

Turbulent flows are random, and turbulence studies operate with the averages of flow
field properties. In theoretical studies the “ensemble”, or “probability” averages are
used (the averages over the whole ensemble of possible turbulent flow realizations
under given external conditions (e.g., pressure drop at the ends of a pipe).

Shear flow is a steady flow, homogeneous in the direction of average velocity.
All properties of the shear flow field vary only in the direction z perpendicular to
the direction of the mean velocity.

Studies of turbulent shear flows are of special importance for theoretical and
experimental investigations. They allow us, due to substantial simplifications,
to advance deeper without accepting doubtful assumptions. Indeed, in general
turbulent flows are non-local, both in time and space: The properties of a flow
field at a certain point and at a certain moment depend on the flow properties in a
certain neighborhood around the point, and at a certain time interval. This is not
the case for shear flows: The average flow field at a point can be assumed to be
a local property, depending only upon the flow characteristics at this point. Also,
an important advantage of shear flows from a practical viewpoint is that ensemble
(probability) averages can be replaced (the “ergodicity” property) by averaging over
time intervals (due to steadiness) or longitudinal space intervals (due to the spacial
homogeneity along the flow direction).

By averaging the Navier-Stokes equations and integrating we obtain only one
equation for shear flows due to steadiness and the homogeneity of the mean flow:

d
dz
(−ρu′w′)= 0, −ρu′w′ = Const= τ. (2-1)

Here the velocity components u, v, w correspond to the axis x , y, z; bars denote the
mean values and primes denotethe fluctuations. In Equation (2.1) the contribution
of the molecular viscosity was neglected in comparison with the contribution of
the eddy viscosity: we consider the turbulence as a “developed” one. The term
neglected is important in the close vicinity of the wall which we exclude from
consideration. The term −ρu′w′ represents the turbulent flux of momentum, the
“Reynolds stress”.

Of fundamental importance for future consideration is the equation of turbulent
energy balance. For shear flow the equation obtained in this way assumes the form

(−ρu′w′)
du
dz
− ρε = 0. (2-2)
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The first term is the rate of inflow of turbulent energy per unit volume from the
energy of mean motion, and

ε =
ν

2
(∂αu′β + ∂βu′α)(∂αu′β + ∂βu′α) (2-3)

(summation by Greek indexes from 1 to 3 is assumed) is the rate of turbulent energy
dissipation into heat per unit mass.

In Equation (2.2) the term neglected is responsible for the contribution of turbulent
diffusion of turbulent energy. This assumption is plausible in the main core of shear
flow, but not close to the boundaries (see e.g. Monin and Yaglom, 1971).

In the Kolmogorov[12]-Prandtl[16] semi-empirical theory for shear flow, the
coefficient of turbulent momentum exchange, k = (−ρu′w′)/ρ(du/dz), is the
kinematic eddy viscosity. This introduction for shear flow is not a new hypothesis.
Equations (2.1) and (2.2) take the form

k
du
dz
= u∗2, k

(du
dz

)2
− ε = 0. (2-4)

Here the quantity u∗ = (τ/ρ)1/2 is an important governing parameter of shear flow:
“dynamic” or “friction” velocity.

The basic hypothesis underlying the Kolmogorov-Prandtl theory can be presented
in the following way: at large Reynolds numbers the local structure of the set of
vortices around any point is statistically identical for all shear flows at a given
Reynolds number; only the time and space scales are different. Therefore, leaving
aside the Reynolds number dependence, all dimensionless flow properties should
be identical. This means that all kinematic flow properties at a certain point
including the momentum exchange coefficient k and the dissipation rate ε could
be determined by the local values of two kinematic properties having different
dimensions. Properties such as the turbulent energy of the unit mass

b =
u′2+ v′2+w′2

2
(2-5)

and the external length scale (mean length scale of vortices) `, can be selected (b, `
version). Also in wide use is the (b, ε) version, where as basic quantities b and
ε—the dissipation rate—are selected. We will use the (b, `) version, in fact both
versions are logically equivalent.

Dimensional analysis leads to the following relations:

k = `
√

b, ε = γ 4b3/2/`. (2-6)

The coefficient in the first Equation (2.6) can be selected equal to one because
the length scale is determined with accuracy up to a constant factor. The constant γ
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is a Reynolds number-dependent quantity; at large Reynolds numbers this quantity
is close to 0.5 (see the book of Monin and Yaglom [15]).

Thus, Equations (2.4) assume the form

`
√

b
du
dz
= u∗2, `

√
b
(du

dz

)2
− γ 4 b

`

3/2
= 0. (2-7)

It is important that from Equations (2.7) without any assumptions concerning
the length scale `, the relation for turbulent energy can be obtained:

b =
u2
∗

γ 2 . (2-8)

Relation (2.8) shows that the dynamic, or friction velocity u∗, determines the
order of magnitude of the velocity fluctuations.

Thus, if the length scale is known, the mean velocity u can be easily obtained
from the first equation of the system. The situation of determining the length scale
is, however, non-trivial. Using dimensional analysis a relation is obtained

`= z8
(

Re,
u∗z
ν

)
. (2-9)

We remind the reader that shear flow at large Reynolds numbers is considered,
and also that the value u∗z/ν is large outside the close vicinity of the boundary
z = 0, which, as was mentioned before, is excluded from consideration. Therefore,
traditionally “complete” similarity (see, e.g., [4]) in both parameters Re and u∗z/ν
is assumed. This means that function8 can be replaced by its limit8(∞,∞)= κγ ,
which is assumed to be finite. The new constant κ is known as the von Kármán
constant. The relation ` = κγ z and relation (2.8) are substituted into the first
Equation of (2.7), and the resulting relation is integrated, so the equation traditionally
obtained is

u
u∗
=

1
κ

ln
(u∗z
ν

)
+ B, (2-10)

known as the universal (Reynolds number-independent) von Kármán-Prandtl loga-
rithmic law. It is also tacitly assumed that the constant B is finite and Reynolds
number-independent. The values κ = 0.4, B = 5.1 are usually accepted, although
large deviations from these values have been reported in processing the experimental
data.

However, as it was shown in a cycle of works by A.J. Chorin, V.M. Prostokishin
and the present author (see [5; 6] and monograph [4] as well as the references
presented there) this is not the case. There is “incomplete similarity” (see e.g. [4])
in parameter u∗z/ν and no similarity in parameter Re. In fact, at large Reynolds
numbers and large u∗z/ν the mean velocity is represented by a family of Reynolds
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number-dependent power laws:

u
u∗
=

( 1
√

3
ln Re+

5
2

)(u∗z
ν

)3/2 ln Re
. (2-11)

Furthermore, in the basic working interval of u∗z/ν, the family of velocity
distribution curves (2.11) can be represented in the form of a Reynolds number-
dependent logarithmic law:

u
u∗
=

1
κ(Re)

ln
(u∗z
ν

)
+ B(Re), (2-12)

where

κ(Re)=
e−3/2

√
3/2+ 15/(4 ln Re)

, B(Re)=−
e3/2 ln Re

2
√

3
−

5
4

e3/2. (2-13)

We mention several important properties of (2.12), (2.13). Firstly, at Re→∞ the
quantity κ(Re) tends to a limit κ∞ = 2

√
3e3/2

' 0.2776. However, this tendency to
the limit is very slow, so approximating the limiting value of κ∞ with accuracy, for
example, 10% κ requires huge values of Re, Re∼ 1020. For realistic lower values
of Re, κ(Re) are significantly less than κ∞, so the slope of the straight line u/u∗
vs ln(u∗z/ν) is steeper than the slope of the straight line representing the usually
accepted universal logarithmic law. At the same time the additive constant B(Re)
at Re→∞ tends not to a finite limit but to minus infinity. All that means is that at
large but realistic Re the universal (Reynolds number-independent) law for velocity
distribution is not valid, although the velocity distributions in the ln(u∗z/ν), u/u∗
plane are represented by a family of Reynolds number-dependent straight lines
(logarithmic laws) in the significant interval of the values of u∗z/ν. These properties
of velocity distributions obtained an instructive confirmation in the experiments by
Zagarola [18], performed in pipe flows. Summing up we obtain an expression for
the length scale `, using formulae (2.7), (2.8) and (2.12):

`= κ(Re)γ z. (2-14)

From (2.14) and the first Equation of (2.7) it follows

du
dz
=

u∗
κ(Re)z

. (2-15)

By integration we return to the relation (2.12), the constant of integration cannot be
assumed to be a universal one.
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3. Shear flow laminarization by suspended heavy particles. Mono-disperse
particles size distribution

Consider a horizontal or slightly inclined shear flow in a gravity field loaded by small
suspended heavy particles. We assume that both volume and mass concentrations of
particles are small. Nevertheless as we will see, the dynamic effect of particles can
be large: dust storms, firestorms, and tropical hurricanes give instructive examples.
The reason for such large influence of heavy particles is that due to large gravitational
force the vortices in turbulent flow have to spend a substantial part of their energy
on suspending the particles, and this energy is not returned to the flow when the
particles fall down but is dissipated into heat via viscosity. Namely, that is the
main cause of a substantial laminarization and acceleration of natural flows. An
instructive example: The Martian atmosphere is very subtle; the thickness of the
sand layer in absence of a wind is a certain fraction of a millimeter only, but this
tiny amount of sand was enough in the year 1972 to create a dust storm that quickly
destroyed American and Soviet landing vehicles.

The suspended particles are assumed to be smaller than the internal turbulence
length scale (the Kolmogorov scale) below which turbulent vortices begin to be
affected by viscosity. Therefore the time of viscous relaxation of the velocity of
particles can be considered as negligibly small. This means that it can be assumed
that the horizontal components of the instantaneous velocity of particles coincide
with those of fluid whereas the vertical component of the instantaneous velocity
of particles is equal to that of fluid minus a constant quantity: the velocity of the
free fall of a particle in an infinite fluid a (the concentration of particles, we remind
you, is assumed to be small).

The density of the fluid-particles mixture is equal to ρ f (1−s)+ρps=ρ f (1+σ s),
σ = (ρp−ρ f )/ρ f , where ρp is the density of particles, ρ f -the density of fluid, and
s is the volume concentration of the particles. In agreement with natural observation
it can be assumed also that σ s� 1, so the density of the mixture can be taken equal
to the density of the fluid everywhere that the difference of fluid density and density
of mixture is not multiplied by the gravity acceleration. Therefore the transverse
component of the momentum balance equation

−u′w′ = u∗2 (3-1)

can be taken identical to the corresponding equation for pure fluid.
The balance of particles leads to a simple equation: the turbulent flux of particles

is equal to the amount of falling particles per unit time and unit area:

−s ′w′− as = 0 (3-2)

(we denote by s the average concentration of particles and by s ′ its fluctuation).
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The difference of the energy balance equation for pure fluid and fluid-particles
mixture is the key point. Indeed, the inflow rate of turbulent energy from the mean
flow is balanced for the mixture not only by the rate of viscous dissipation into heat,
but, in addition by the work of suspension of particles by turbulent vortices which,
we repeat, is not returned to the mean flow when the particles fall down. This
work (per unit time, unit area and unit mass) is equal to the mean turbulent flux of
particles s ′w′ times extra-weight (weight minus to Archimedean force (ρp − ρ f )g
per unit volume of particles), divided by the fluid density ρ f . We obtain for this
specific work the expression σgs ′w′, so that the equation of balance of turbulent
energy for the fluid-particles mixture takes the form:

u′w′
du
dz
+ ε+ σgs ′w′ = 0. (3-3)

We emphasize that the last term of (3.3) is the only term where the concentration
enters, and it is significant because it contains a large factor — gravity acceleration
g.1 Equation (3.3) can be rewritten in the form, emphasizing its difference from
the corresponding equation for pure fluid (2.2):

u′w′(1−Ko)
du
dz
+ ε = 0, (3-4)

where the dimensionless parameter

Ko=−(σgs ′w′)/(u′w′(du/dz)), (3-5)

named the Kolmogorov parameter (number) represents the relative part of the
turbulent energy influx from the mean flow, spent for the work of suspension of
particles by turbulent vortices.

Our further consideration follows the lines of the Kolmogorov-Prandtl analysis
of turbulent shear flow.

By analogy with the coefficient of the turbulent momentum exchange k we
introduce the coefficient of the particle exchange ks :

ks =−s ′w′/(ds/dz). (3-6)

As is the case of eddy viscosity k the introduction of ks , for shear flow, is not a new
hypothesis. Assuming, following the Kolmogorov-Prandtl shear flow model, the
similarity hypothesis we obtain:

ks = αs`
√

b. (3-7)

1As far as is known to the author, the expression for the work of suspension of particles was first
obtained by M.A. Velikanov[18]. However, Velikanov deliberately included this work in the equation
of the energy balance of the mean flow, not the turbulent energy balance, which cannot be considered
as quite correct.
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The quantity αs , which can be called the turbulent Prandtl number for the fluid-
particles mixture is a Reynolds number-dependent quantity. Generalizing the
considerations of the length scale in the previous section we assume

`= κ(Re)γ z8`(Re,Ko), (3-8)

where the function 8`(Re,Ko) is equal to one for Ko= 0 (pure fluid) and is less
than one for Ko> 0,

Using similarity relations (2.6): k = `
√

b, ks = αs`
√

b, ε = γ 4b3/2/`, we come
to a closed system of equations of our model

`
√

b du
dz = u∗2,

αs`
√

b ds
dz + as = 0,

b2
=

u∗4

γ 4 (1−Ko),

`= κ(Re)γ z8`(Re,Ko).

(3-9)

The Kolmogorov number can be presented in the following form:

Ko=− σgs ′w′

u′w′(du/dz)
=−

σgαs(ds/dz)
(du/dz)2

=−
σgas

u∗2(du/dz)
(3-10)

=
σgas · `

√
b

u∗4
=

σga2s2

u∗4αs(ds/dz)
=

ω2

d R/d Z ,

where

R =
1
s
, Z =

αsσgκ2

u∗2
z, ω =

a
καsu∗

. (3-11)

The system (3.9) can be reduced to a single equation of first order

1
ω2

d R
d Z

8`

( ω2

(d R/d Z)

)(
1−

ω2

(d R/d Z)

)1/4
=

R
ωZ

. (3-12)

We recognize that both κ and 8` depend on Reynolds number Re, however we
omit this argument in the following formulae.

We emphasize that parameter ω = a/καsu∗ plays a basic role in our model. Its
physical meaning is transparent: with accuracy up to a constant of the order one it
is the ratio of the particle free fall velocity to the characteristic value of the velocity
fluctuation.
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Figure 2. Functions u(w) and w(u) (see the text).

We introduce the function w(u)

w = u8`
(1

u

)(
1−

1
u

)1/4
, (3-13)

and the function u(w), the inverse to it. They are presented in Figure 2. Both
functions at w, u→∞ have an asymptote u = w, represented by the bisectrix of
the first quadratures in the u, w plane.

Equation (3.12) can be rewritten in the form

d R
d Z
= ω2u

( R
ωZ

)
. (3-14)

Equation (3.14) is a homogeneous one, and it can be integrated by quadratures.
Introducing a new variable P = R/ωZ , so that d R/d Z = ωP +ωZ(d P/d Z), and
we obtain

Z
d P
d Z
= ωu(P)− P, (3-15)

or, after integration,

ln Z +Const= ln
z
z0
=

P∫
P0

d P
ωu(P)− P

. (3-16)

Here z0, P0 are constants.
The structure of the integral curves of Equation (3.15) in the P ln Z plane is

substantially different in ω < 1 and ω > 1. In the case ω < 1 there exits one and
only one root P = P∗ of equation ωu(P)− P = 0; this is clear from elementary
geometric considerations. There are two classes of integral curves separated by
the straight line P = P∗. All integral curves approach the asymptotics P = P∗ at
ln(z/z0)→∞. Returning to the plane s, z, we obtain a picture of integral curves,
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represented in Figure 3. At z→∞ all distributions of the concentration of particles
tend asymptotically to the curve s = 1/P∗ωZ . The curves of class 1, lying under
the separatrix s = 1/P∗ωZ , approach the bottom z = 0 asymptotically. The curves
of class 2 go to s =∞ at a certain finite value of z. The integral curves of each
class can be obtained one from another by shifting along the ln Z axis. Therefore,
the initial height z = z0, where the concentration s = s0 can be prescribed, can be
crossed by the integral curves of both classes.

It follows from the previous investigation that at large z the distributions of
the concentration of particles, if ω is less than one independently of the boundary
condition at a certain level z= z0, are described by the curve s=1/P∗ωZ . Physically
this means that if the velocity fluctuations are sufficiently large, and exceed the
free fall velocity a, turbulent flow “takes” as much of the particles as it can, i.e.,
as much as is allowed by the prescribed shear stress τ = ρu∗2. Therefore this
asymptotic regime is called “the regime of limiting saturation”. The regime of
limiting saturation corresponds to a constant value of the Kolmogorov number
Ko= Ko∗, which can be obtained from the following equation:

8`(Ko∗)(1−Ko∗)1/4 = ω. (3-17)

Figure 3. The field of concentration distributions for the case
ω < 1. The regime of limiting saturation (Curve L) for which
s ∼ Const/z attracts all curves, corresponding to the regimes with
various boundary conditions at z = z0. It should be emphasized
that these curves have physical meaning only at s� 1.
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Furthermore, using Equation (3.17) we obtain from system (3.9)

du
dz
=

u∗
κ(Re)ωz

. (3-18)

This means that the velocity gradient at the core of the flow, where the regime of
limiting saturation is achieved is (1/ω) times larger than the velocity gradient in
pure fluid flow, given by Equation (2.16). The case when ω is much less than one
(very small particles) is of special interest. In this case the Kolmogorov number
(in the regime of limiting saturation) is close to one, so nearly the whole inflow
of turbulent energy from the mean motion is spent for the suspension of particles.
Turbulent energy is strongly reduced. The distribution of concentration in this case
takes the form

s =
1
ω2 Z
=
αsu∗4

a2σgz
. (3-19)

For the case ω > 1, when the velocity fluctuations are smaller than free fall
velocity of particles the situation is different. The denominator of the integrand in
(3.16) is positive everywhere. The concentration distributions go to infinity at a
certain z, like the curves of the second class in the case ω < 1. Clearly, when s is
no longer sufficiently small, these curves make no physical sense. It is important
that there is a strong difference between the cases ω > 1 and ω < 1 in the behavior
of integral curves, i.e., concentration distributions at large z. It is easy to show that
as z→∞ the distributions behave as s ∼ Const/zω, and the Kolmogorov number
goes to zero as Const/zω−1. This means that at large heights the velocity gradient
du/dz becomes undisturbed by particles, and is given by relation (2.15). The work
of suspension of particles is negligible, and there is no flow acceleration in the core
of the flow. The particles create a “lubrication layer”, so that the velocities increase
at any height but only due to “lubrication”.

4. Geophysical applications. The modified model

An instructive application of the theoretical construction presented in the previous
section is the mathematical modelling of the tropical hurricane. The basis for
further consideration will be the “sandwich” model of the hurricane proposed by
Sir James Lighthill (see his posthumously published paper [14]). According to this
model between the air and the sea there exists an intermediate layer (see Figure
4). Lighthill called it “ocean spray”—which consists of suspended water droplets
formed in the process of the breaking of water waves and air. Lighthill proposed
to consider ocean spray as a “third fluid”, and strongly emphasized “the need to
fill the gap in knowledge about ocean spray at extreme wind speeds”. Lighthill
himself concentrated on the thermodynamic side of the modelling. In paper [7] a
model, complementary to the Lighthill one was proposed. We emphasize that the
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possibility of constructing such a model was anticipated by Sir James Lighthill, who
discussed it with the authors. However, further analysis showed that a substantially
modified model was needed, and it is presented below.

We concentrate here, as in paper [7] mentioned above, on a single effect: flow
acceleration in ocean spray by water droplets. We leave aside the effect of the
Coriolis force, as well as the cooling effect due to evaporation of droplets and
other thermal effects. These effects can be incorporated into the model as was
done previously when modelling other atmospheric and oceanic phenomena, see
for example [8; 9].

The essence of the modification of the model is as follows. In paper [7] it was
naturally assumed as the first step that all the water droplets in ocean spray are
identical, and the construction described in the previous section was applied. It was
assumed that the water droplets are large, so that the basic parameter ω is larger
than one.

The effect of flow acceleration was obtained, but it was less than expected, in
spite of the large values of the parameter ω and large concentrations that were
assumed in the numerical calculations.

We will demonstrate below that taking into account the availability in ocean
spray both of large and small droplets changes the situation. It is difficult to take
into consideration the whole spectrum of droplet sizes, in particular, because it is
unknown, and it is changing due to various factors, basically unknown. However, it
happens to be enough to assume that in ocean spray there are droplets of two sizes,
corresponding to the values of parameter ω = ω1 > 1 and ω = ω2 < 1. Under such
a simplified assumption much larger wind accelerations are obtained. The general

Figure 4. The Lighthill “sandwich model” of a tropical hurricane
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consideration of a more realistic case of the continuous spectrum of particle sizes
will also be presented below.

As considered previously, we assume that ocean spray occupies the region z≥ z0,
where z0 is the thickness of the layer where the droplets are produced, and the
vertical coordinate z is reckoned from the average sea surface. As before we neglect
the coalescence of the droplets and the variation of their size due to evaporation.
Thus, we assume that two sorts of particles are available in the flow in ocean
spray; due to smallness of the concentrations s1 and s2 of both kinds of droplets the
interference of droplets can be neglected.

The basic system of equations of the modified model is taken in the form
suggested by previous analysis, presented in Section 3:

`
√

b
du
dz
= u∗2, (4-1)

- the momentum balance equation

αs`
√

b
ds1

dz
+ a1s1 = 0, (4-2)

αs`
√

b
ds2

dz
+ a2s2 = 0, (4-3)

- the equations of conservation of both sorts of droplets,

b2
=

u4
∗

γ 4 (1−Ko); (4-4)

- the equation of turbulent energy balance.
Here the Kolmogorov number Ko=Ko1+Ko2, Ko1 is the Kolmogorov number,

corresponding to larger droplets:

Ko1 =−
αsσg(ds1/dz)
(du/dz)2

, (4-5)

whereas Ko2 is the Kolmogorov number, corresponding to smaller droplets:

Ko2 =−
αsσg(ds2/dz)
(du/dz)2

. (4-6)

Thus, a separate balance of droplets of both sizes and their contributions to the
work of suspension are considered.

For the length scale the following relation is proposed

`= κγ z8`(Ko), (4-7)
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naturally generalizing relation (3.8) for the monodisperse mixture; the Reynolds
number dependence of the parameters αs, κ, γ and the function 8`(Ko) are also
assumed.

Although system (4.1)–(4.7) seems to be more complicated than the system
for the monodisperse mixture, it can also be reduced to a Cauchy problem for an
ordinary differential equation of first order due to existence of a first integral. This
reduction allows us to perform an asymptotic analysis.

Indeed, we obtain from Equations (4.2), (4.3)

ds1

ds2
=
ω1
ω2

s1
s2
,

ω1 =
a1

καsu∗ , (4-8)

ω2 =
a2

καsu∗ ,

and, by integration
s2

s20
=

( s1

s10

)ω2/ω1
, (4-9)

where s10 and s20 are the concentrations of both kinds of droplets at z = z0. Also,
we obtain, similarly to what was done previously,

Ko1 =
σga1s1

u∗2(du/dz)
,

(4-10)

Ko2 =
σga2s2

u∗2(du/dz)
.

As previously, it is convenient to pass to dimensionless variables

U =
κu
u∗
, Z =

αsκ
2σg

u∗2
z, S1 =

s1

s0
, S2 =

s2

s0
. (4-11)

We assumed here for simplicity s10 = s20 = s0, and we reduced the system to the
form

8`(Ko)(1−Ko)1/4 Z dU
d Z = 1

8`(Ko)(1−Ko)1/4 Z d S1
d Z +ω1S1 = 0 (4-12)

8`(Ko)(1−Ko)1/4 Z d S2
d Z +ω2S2 = 0.

The boundary conditions we take are of the form

S1 = S2 = 1, U = 0 at Z = Z0 =
αsκ

2σg
u2
∗

z0. (4-13)
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Let’s estimate the orders of magnitude of all quantities that enter the problem:
z0 = 102

−103 cm– is the range of the amplitudes of the waves; αsκ
2 is of the order

of one, σg ∼ 106 cm/s2, u∗ is of the order of 102 cm/s, therefore Z0 is in the range
104
− 106. Furthermore, s0 should be in the range of 10−6

− 10−4, so the values of
the parameter A = s0 Z0 can be assumed to be in the range 10−1

− 10.
Introducing the variable ζ = ln(Z/Z0)= ln(z/z0)we come to the ultimate system

of equations and initial conditions

(1−Ko)1/48`(Ko)
dU
dζ
= 1 (4-14)

(1−Ko)1/48`(Ko)
d S1

dζ
+ω1S1 = 0 (4-15)

(1−Ko)1/48`(Ko)
d S2

dζ
+ω2S2 = 0 (4-16)

Ko=
Aeζ (ω1S1+ω2S2)

dU/dζ
(4-17)

with the boundary conditions S1 = S2 = 1, U = 0 at ζ = 0. The first integral (4.9)
takes the form

S2 = Sω2/ω1
1 . (4-18)

From system (4.13), (4.14), (4.16), (4.17) a relation for Ko can be obtained:

Ko= Aeζω1
2(1+ θR1−θ

1 )/(d R1/dζ ), (4-19)

where

R1 = 1/S1,

(4-20)

θ = ω2/ω1.

After division by S2
1 Equation (4.14) can be reduced to the form:

(1−Ko)1/48`(Ko)
d R1

dζ
−ω1 R1 = 0. (4-21)

Finally, dividing by Aeζω1
2(1+ θR1−θ

1 ) we obtain

d R1
dζ

1
Aω2

1eζ (1+θR1−θ
1 )

(
1− Aeζω2

1(1+θR1−θ
1 )

d R1/dζ

)1/4

8`

(
Aeζω2

1(1+θR1−θ
1 )

d R1/dζ

)
=

R1

Aeζω1(1+θR1−θ
1 )

. (4-22)
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Using the function u(w) introduced by the relation (3.13), we present Equation
(4.21) in the form:

d R1

dζ
= Aω2

1eζ (1+ θR1−θ
1 )u

(
R1

Aeζω1(1+ θR1−θ
1 )

)
. (4-23)

This is an ordinary differential equation of first order, which is to be solved under
the initial condition

R1 = 1 at ζ = 0. (4-24)

Under the assumption that θ = ω2/ω1 is small, the solution to Equation (4.22)
can be investigated asymptotically. Indeed, θR1 is much less than one, i.e., s1� θs0

in a certain interval 0 ≤ ζ ≤ ζ∗. In this interval the term θR1−θ
1 in (4.22) can be

neglected in comparison with 1, and Equation (4.22) takes the form

d R1

dζ
= Aω2

1eζu
(

R1

Aeζω1

)
. (4-25)

This equation coincides with Equation (3.12) for ω=ω1 (monodisperse flow of large
particles). Furthermore, the function u(w) is larger than one, i.e., R1 is growing
faster than Aω2

1eζ at all ζ . Therefore there exist a number ζ∗∗ where θR1 becomes
much larger than one, and Equation (4.22) takes the form

d R1

dζ
= Aω2

1eζ θR1−θ
1 u

(
Rθ1

Aeζω1θ

)
, (4-26)

which can be transformed easily using the integral (4.17) to the form

d R2

dζ
= Aω2

2eζu
(

R2

Aeζω2

)
, (4-27)

i.e., to Equation (3.12) for ω = ω2 (monodisperse flow of small particles).
In the interval 0 ≤ ζ < ζ∗, according to the investigation of the monodisperse

flows, the Kolmogorov number is decreasing; in the interval ζ∗∗ < ζ it is increasing,
reaching the value Ko∗ satisfying the equation

8`(Ko∗)(1−Ko∗)1/4 = ω2. (4-28)

Somewhere in between ζ∗ and ζ∗∗ a minimum of the Kolmogorov number is
reached. Therefore the flow is separated in two regions: the lower region, where
the Kolmogorov number is decreasing and reaching a minimum, and the upper
region where the Kolmogorov number is growing from the minimum to the final
value Ko∗. It is natural to consider the lower region as a “lubrication layer” and
the upper region as a “suspension layer”. The graphs presented in Figures 5,6,
constructed by Dr. C.H. Rycroft on the basis of numerical computations, illustrate
a typical structure of the flow in ocean spray if the availability of droplets of two
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Figure 5. The distribution of the total Kolmogorov number Ko and
the Kolmogorov number corresponding to large and small particles
Ko1,Ko2 for various values of parameter A = Z0s0

sizes, large ones (ω1 > 1) and small ones (ω2 < 1), is taken into account. In the
numerical computations, function 8`(Ko) was taken equal to one, and the values
of ω of order one were taken in both cases: ω1 =

√
10, ω2 = 1/

√
10. However,

the ratio θ = ω2/ω1 = 1/10 is a small parameter, allowing an asymptotic analysis.
Computations support the results of the asymptotic analysis.
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Figure 6 is especially instructive: it demonstrates the strong increase of wind
speed in ocean spray in comparison with pure air flow (S1 = S2 = 0) and also with
the flow of fluid-particle mixtures where only large particles are available, S2 = 0.

The analysis presented above can be extended to the case of a continuous spectrum
of particle sizes: �1 ≥ ω ≥ �2, where �1 > 1, �2 < 1. Equations (4.13), (4.14)
remain valid if ω1 is a certain reference parameter of value 1< ω1 <�1), whereas
Equation (4.15) is replaced by the equation of conservation of particles for arbitrary
ω in the interval �1 ≥ ω ≥�2

(1−Ko)1/48`(Ko)
d S
dζ
+ωS = 0. (4-29)

The first integral takes the form S= Sω/ω1
1 . Here it is assumed that the concentration

at the boundary z = z0 of particles in the range between ω and ω+ dω is s0(ω)dω.
The expression for the Kolmogorov number is given by the following relation:

Ko=
eζ
∫ ω1
ω2

A(ω)Sω/ω1
1 dω

dU/dζ
, (4-30)

where A(ω)= s0(ω)Z0. The previous case of the two-point spectrum corresponds
to

s0(ω)= s01δ(ω−ω1)+ s02δ(ω−ω2), (4-31)

where δ(ω) is the Dirac delta function. There is no principal distinction in the
results obtained for the case of the continuous spectrum or the two-point spectrum.

5. Conclusion and discussion

The modified model of turbulent shear flow of a suspension of small heavy particles
in a fluid is presented. The modification is based on the assumption that in the flow
there are two sorts of particles. For the particles of the first sort the velocity of
free fall a1 is larger than the characteristic velocity fluctuation, for the particles of
the second sort the velocity of free fall a2 is less than the characteristic velocity of
fluctuation. Considering a2/a1 as a small parameter allowed an effective asymptotic
analysis of the model equations that were obtained. The investigation was simplified
by the existence of a first integral found for the system. The numerical computations
are in agreement with the asymptotic analysis.

The main result is that a two-layered flow structure is obtained. In the lower
layer, which we called the lubrication layer, the Kolmogorov number—the ratio of
the work spent on the suspension of particles to the turbulent energy influx from the
mean flow—is decreasing. In the upper layer, which we called the suspension layer,
the Kolmogorov number is increasing after reaching a minimum, until it reaches
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Figure 6. The distributions of dimensionless velocity U and in-
verse concentrations 1/Si for various values of parameter A= Z0s0

the ultimate value at large heights. The basic flow acceleration occurs in the upper
layer, where the velocity gradient is small.

Numerical investigation showed that significant laminarization of the flow can
be obtained by the addition of heavy particles. What is specifically significant is
that the large particles could be of moderate size for reaching high flow speed.
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The modified model is applied to the flow in the oceanic spray of a tropical
hurricane. It seems that it gives a more realistic structure of the flow than the
previously used mono-disperse model.

The modified model can also be applied to dust storms and to big forest and
grass fires as well as to other fires when the debris (larger particles) and particles
of soot (small particles) are caught by the wind. If the process of combustion is
an intensive one so that a sufficiently large amount of small (e.g., soot) particles
is produced in the combustion zone, a suspension layer can be formed, and the
transition to firestorms—large wind accelerations by intensive fire—can happen,
as apparently was the case in the large Chicago fire, 1871. Such firestorms due to
intense fires created by large scale bombing (Dresden, February 1945; Hiroshima,
August 1945) were also observed.
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GLOBAL PATHS OF TIME-PERIODIC SOLUTIONS OF THE
BENJAMIN–ONO EQUATION CONNECTING

PAIRS OF TRAVELING WAVES

DAVID M. AMBROSE AND JON WILKENING

We classify all bifurcations from traveling waves to nontrivial time-periodic
solutions of the Benjamin–Ono equation that are predicted by linearization. We
use a spectrally accurate numerical continuation method to study several paths of
nontrivial solutions beyond the realm of linear theory. These paths are found to
either reconnect with a different traveling wave or to blow up. In the latter case, as
the bifurcation parameter approaches a critical value, the amplitude of the initial
condition grows without bound and the period approaches zero. We then prove
a theorem that gives the mapping from one bifurcation to its counterpart on the
other side of the path and exhibits exact formulas for the time-periodic solutions
on this path. The Fourier coefficients of these solutions are power sums of a
finite number of particle positions whose elementary symmetric functions execute
simple orbits (circles or epicycles) in the unit disk of the complex plane. We
also find examples of interior bifurcations from these paths of already nontrivial
solutions, but we do not attempt to analyze their analytic structure.

1. Introduction

The Benjamin–Ono equation is a nonlocal, nonlinear dispersive equation intended
to describe the propagation of internal waves in a deep, stratified fluid [6; 15; 30].
In spite of nonlocality, it is an integrable Hamiltonian system with meromorphic
particle solutions [12; 13], N-soliton solutions [24], and N-phase multiperiodic
solutions [32; 16; 26]. A bilinear formalism [32] and a Bäcklund transformation
[28; 7; 25] have been found to generate special solutions of the equation, and, in
the non-periodic setting of rapidly decaying initial conditions, an inverse scattering
transform has been developed [18; 20] that exploits an interesting Lax pair structure
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in which the solution plays the role of a compatibility condition in a Riemann–
Hilbert problem.

It is common practice in numerical analysis to test a numerical method using a
problem for which exact solutions can be found. Our initial interest in Benjamin–
Ono was to serve as such a test problem. Although many of the tools mentioned
above can be used to study time-periodic solutions, they do not generalize to
problems such as the vortex sheet with surface tension [4; 3] or the true water wave
[31; 19], which are not known to be integrable. Our goal in this paper is to develop
tools that will generalize to these harder problems and use them to study bifurcation
and global reconnection in the space of time-periodic solutions of B–O. Specifically,
we employ a variant of the numerical continuation method we introduced in [2] for
this purpose, which yields solutions that are accurate enough that we are able to
recognize their analytic form.

Because we approached the problem from a completely different viewpoint,
our description of these exact solutions is very different from previously known
representations of multiperiodic solutions. Rather than solve a system of nonlinear
algebraic equations at each x to find u(x, t) as was done in [26], we represent
u(x, t) in terms of its Fourier coefficients ck(t), which turn out to be power sums
ck = 2[βk

1 + · · ·+β
k
N ] of a collection of N particles β j (t) evolving in the unit disk

of the complex plane as the zeros of a polynomial z 7→ P(z, t) whose coefficients
execute simple orbits (circles or epicycles in C). The connection between the new
representation and previous representations will be explored elsewhere [36].

Many of our findings on the structure of bifurcations and reconnections in the
manifold of time-periodic solutions of the Benjamin–Ono equation are likely to hold
for other systems as well. One interesting pitfall we have identified by applying our
method to an integrable problem is that degenerate bifurcations can exist that are not
predicted by counting linearly independent, periodic solutions of the linearization
about traveling waves. Although it is possible that such degeneracy is a consequence
of the symmetries that make this problem integrable, it is also possible that other
problems such as the water wave will also possess degenerate bifurcations that are
invisible to a linearized analysis. We have also found that one cannot achieve a
complete understanding of these manifolds of time-periodic solutions by holding,
for example, the mean constant and varying only one parameter. In some of the
simulations where we hold the mean fixed, the solution (that is, the L2 norm of the
initial condition) blows up as the parameter approaches a critical value rather than
reconnecting with another traveling wave. However, if the mean is simultaneously
varied, it is always possible to reconnect. Thus, although numerical continuation
with more than one parameter is difficult, it will likely be necessary to explore
multidimensional parameter spaces to achieve a thorough understanding of time-
periodic solutions of other problems.
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On the numerical side, we believe our use of certain Fourier modes of the initial
conditions as bifurcation parameters will prove useful in many other problems
beyond Benjamin–Ono. We also wish to advocate the use of variational calculus
and optimal control for the purpose of finding time-periodic solutions (or solving
other two-point boundary value problems). For ODE, a competing method known as
orthogonal collocation (for example, as implemented in AUTO [17]) has proved to
be a very powerful technique for solving boundary value problems. This approach
becomes quite expensive when the dimension of the system increases, and is
therefore less competitive for PDE than it is for ODE. For PDE, many authors
do not attempt to find exact periodic solutions, and instead point out that typical
solutions of certain equations do tend to pass near their initial states at a later time
[11]. If true periodic solutions are sought, a more common approach has been to
either iterate on a Poincaré map and use stability of the orbit to find time-periodic
solutions [10], or use a shooting method [33; 35] to find a fixed point of the Poincaré
map.

In a shooting method, we define a functional F(u0, T ) = [u( · , T )− u0] that
maps initial conditions and a supposed period to the deviation from periodicity. The
equation F = 0 is then solved by Newton’s method, where the Jacobian J = DF is
either computed using finite differences [34] or by solving the variational equation
repeatedly to compute each column of J . We have found that it is much more
efficient (by a factor of the number of columns of J ) to instead minimize the scalar
functional G = 1

2‖F‖
2 via a quasi-Newton method in which the gradient DG is

computed by solving an adjoint PDE.
Bristeau et. al. [8] developed a similar approach for linear (but two- or three-

dimensional) scattering problems. Three-dimensional problems are intractable by
the standard shooting approach as J could easily have 105 columns. However, the
gradient of G can be computed by solving a single adjoint PDE. The success of the
method then boils down to a question of the number of iterations required for the
minimization algorithm to converge. For linear problems, Bristeau et. al. have had
success using conjugate gradients to minimize G. We find that BFGS [9] works
very well for nonlinear problems like the Benjamin–Ono equation and the vortex
sheet with surface tension [3].

To find nontrivial time-periodic solutions in the present work, we use a symmetric
variant of the algorithm described in [2]. Although the original method works well,
we use the symmetric variant for the simulations in this paper because evolving to
T/2 requires half the time-steps and yields more accurate answers (as there is less
time for numerical round-off error to corrupt the calculation). Moreover, the number
of degrees of freedom in the search space of initial conditions is also cut in half
and the condition number of the problem improves when we eliminate phase shift
degrees of freedom via symmetry rather than including them in the penalty function
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described in Section 3.1. Although we do not make use of it, there is a procedure
known as the Meyer–Marsden–Weinstein reduction [27; 23] that allows one to
reduce the dimension of a symplectic manifold on which a group acts symplectically.
This allows one to eliminate actions of the group (for example, translations) from
the phase space. Equilibria and periodic solutions of the reduced Hamiltonian
system correspond to (families of) relative equilibria and relative periodic solutions
[39] of the original system.

This paper is organized as follows. In Section 2, we discuss stationary, traveling
and particle solutions of B-O, linearize about traveling waves, and classify all
bifurcations predicted by linear theory from traveling waves to nontrivial time-
periodic solutions. Some of the more technical material from this section is given
in Appendix A. In Section 3, we present a collection of numerical experiments
using our continuation method to follow several paths of nontrivial solutions beyond
the realm of linear theory in order to formulate a theorem that gives the global
mapping from one traveling wave bifurcation to its counterpart on the other side
of the path. In Section 4, we study the behavior of the Fourier modes of the time-
periodic solutions found in Section 3 and state a theorem about the exact form of
these solutions, which is proved in Appendix B. Finally, in Section 5, we discuss
interior bifurcations from these paths of already nontrivial solutions to still more
complicated solutions. Although the existence of such a hierarchy of solutions was
already known [32], bifurcation between various levels of the hierarchy has not
previously been discussed.

2. Bifurcation from traveling waves

In this section, we study the linearization of the Benjamin–Ono equation about sta-
tionary solutions and traveling waves by solving an infinite dimensional eigenvalue
problem in closed form. Each eigenvector corresponds to a time-periodic solution
of the linearized equation. The traveling case is reduced to the stationary case by
requiring that the period of the perturbation (with a suitable spatial phase shift)
coincide with the period of the traveling wave. The main goal of this section is to
devise a classification scheme of the bifurcations from traveling waves so that in
later sections we can describe which (local) bifurcations are connected together by
a global path of nontrivial time-periodic solutions.

2.1. Stationary, traveling and particle solutions. We consider the Benjamin–Ono
equation on the periodic interval R

/
2πZ, namely,

ut = Huxx − uux . (1)

Here H is the Hilbert transform, which has the symbol Ĥ(k) = −i sgn(k). The
Benjamin–Ono equation possesses solutions [12; 2] of the form
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u(x, t)= α0+

N∑
l=1

φ(x;βl(t)), (2)

where α0 is the mean, β1(t), . . . , βN (t) are the trajectories of N particles evolving
in the unit disk 1 of the complex plane and governed by the ODE

β̇l =

N∑
m=1
m 6=l

−2iβ2
l

βl −βm
+

N∑
m=1

2iβ2
l

βl − β̄
−1
m
+ i(2N − 1−α0)βl (1≤ l ≤ N ), (3)

and φ(x;β) is the function with Fourier representation

φ̂(k;β)=


0, k = 0
2βk, k > 0
2β̄ |k|, k < 0

 , β ∈1= {z : |z|< 1}. (4)

The function φ(x;β) has a peak centered at x = arg(β̄) with amplitude growing to
infinity as |β| approaches 1. The N-hump traveling waves (with a spatial period of
2π/N ) are a special case of the particle solutions given by (2) and (3):

utrav(x, t;α0, N , β)= α0+

N∑
l=1

φ(x;βl(t)), βl(t)= N
√
βe−ict ,

c = α0− Nα(β).

(5)

Each βl is assigned a distinct N -th root of β and α(β) is the mean of the one-hump
stationary solution, namely,

α(β)=
1− 3|β|2

1− |β|2
, |β|2 =

1−α(β)
3−α(β)

. (6)

The solution (5) moves to the right when c > 0. Indeed, it may also be written

utrav(x, t;α0, N , β)= ustat(x − ct; N , β)+ c, (7)

where ustat is the N-hump stationary solution

ustat(x; N , β)= Nα(β)+
∑

{γ : γ N=β}

φ(x; γ ) = Nα(β)+ Nφ(N x;β). (8)

The Fourier representation of ustat is

ûstat(k; N , β)=


Nα(β), k = 0,

2Nβk/N , k ∈ NZ, k > 0,

2N β̄ |k|/N , k ∈ NZ, k < 0,

0, otherwise.

(9)
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Amick and Toland have shown [5] that all traveling waves of the Benjamin–Ono
equation have the form (7); see also [36].

2.2. Linearization about stationary solutions. Let u(x)= ustat(x; N , β) be an N-
hump stationary solution. In [2], we solved the linearization of (1) about u, namely,

vt = Hvxx − (uv)x = i B Av, A = H∂x − u, B =
1
i
∂x , (10)

by substituting the expression v(x, t) = Re{Cz(x)eiωt
} into (10) and solving the

eigenvalue problem

B Az = ωz (11)

in closed form. Specifically, we showed that the eigenvalues ωN ,n are given by

ωN ,n=


−ωN ,−n, n < 0
0, n = 0
(n)(N − n), 1≤ n ≤ N − 1
(n+ 1− N )

(
n+ 1+ N (1−α(β))

)
, n ≥ N


0 30

0

500
N=20, β=1/2

n

ω
N

,n
(12)

The zero eigenvalue ωN ,0 = 0 has geometric multiplicity two and algebraic multi-
plicity three. The eigenfunctions in the kernel of B A are

z(1,0)N ,0 (x)=−
∂

∂x
ustat(x; N , β), z(2)N ,0(x)=

∂

∂|β|
ustat(x; N , β), (13)

which correspond to changing the phase or amplitude of β in the underlying
stationary solution. There is also a Jordan chain [37] of length two associated with
z(1,0)N ,0 (x), namely,

z(1,1)N ,0 (x)= 1,
(
i B Az(1,1)N ,0 = z(1,0)N ,0

)
, (14)

which corresponds to the fact that adding a constant to a stationary solution causes it
to travel. The fact that all the eigenvalues iωN ,n in the linearization (10) are purely
imaginary is a consequence of the Hamiltonian structure [13] of the Benjamin–Ono
equation. For non-Hamiltonian systems, one does not generally expect to find time-
periodic perturbations of traveling waves (as periodic solutions of the linearized
problem may not even exist).

The eigenfunctions zN ,n(x) corresponding to positive eigenvalues ωN ,n (with
n ≥ 1) have the Fourier representation
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ẑN ,n(k)
∣∣∣
k=n+ j N

=


(

1+ N (| j |−1)
N−n

)
β̄ | j |−1, j < 0

C
(

1+ N j
n

)
β j+1, j ≥ 0

(
1≤ n ≤ N − 1, C = −nN

(N−n)
[
n+(N−n)|β|2

]),

ẑN ,n(k)
∣∣∣
k=n+1−N+ j N

=



0, j < 0

−β̄
(1−|β|2)2

[
1−

(
1− N

n+1

)
|β|2

]
, j = 0

(
1+ N ( j−1)

n+1

)
β j−1, j > 0


(n ≥ N ),

(15)

with all other Fourier coefficients equal to zero. The eigenfunctions corresponding
to negative eigenvalues ωN ,n (with n ≤ −1) satisfy zN ,n(x) = zN ,−n(x), so the
Fourier coefficients appear in reverse order, conjugated. For 1 ≤ n ≤ N − 1, any
linear combination of zN ,n(x) and zN ,N−n(x) is also an eigenfunction; however,
the choices here seem most natural as they simultaneously diagonalize the shift
operator (discussed below) and yield directions along which nontrivial solutions
exist beyond the linearization. Said differently, we have listed the first N−1 positive
eigenvalues ωN ,n in an unusual order (rather than enumerating them monotonically
and coalescing multiple eigenvalues) because this is the order that leads to the
simplest description of the global paths of nontrivial solutions connecting these
traveling waves.

2.3. Classification of bifurcations from traveling waves. Time-periodic solutions
of the Benjamin–Ono equation with period T have initial conditions that satisfy
F(u0, T )= 0, where F : H 1

×R→ H 1 is given by

F(u0, T )= u( · , T )− u0, ut = Huxx − uux , u( · , 0)= u0. (16)

First, we linearize F about an N-hump stationary solution u0(x)= ustat(x; N , β).
The Fréchet derivative DF = (D1 F, D2 F) : H 1

× R → H 1 yields directional
derivatives

D1 F(u0, T )v0 =
∂

∂ε

∣∣∣
ε=0

F(u0+ εv0, T )= v( · , T )− v0 =
[
ei B AT

− I
]
v0,

D2 F(u0, T )τ =
∂

∂ε

∣∣∣
ε=0

F(u0, T + ετ)= 0.
(17)

Note that v0∈ker D1 F(u, T ) if and only if the solution v(x, t) of the linearized prob-
lem is periodic with period T . As a result, a basis for the kernel N= ker DF(u0, T )
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consists of (0; 1) together with all pairs (v0; 0) of the form

v0(x)= Re{zN ,n(x)} or v0(x)= Im{zN ,n(x)}, (18)

where n ranges over all integers such that

ωN ,nT ∈ 2πZ, (19)

with N and β (in the formula (12) for ωN ,n) held fixed. The corresponding periodic
solutions of the linearized problem are

v(x, t)= Re{zN ,n(x)eiωN ,n t
} or v(x, t)= Im{zN ,n(x)eiωN ,n t

}. (20)

Negative values of n have already been accounted for in (18) and (20) using
zN ,−n(x) = zN ,n(x), and the n = 0 case always yields two vectors in the kernel,
namely, those in (13). These directions do not cause bifurcations as they lead to
other stationary solutions.

Next we wish to linearize F about an arbitrary traveling wave. Suppose u(x)=
ustat(x; N , β) is an N-hump stationary solution and U (x, t) = u(x − ct)+ c is a
traveling wave. Then the solutions v and V of the linearizations about u and U ,
respectively, satisfy V (x, t)= v(x − ct, t). Note also that

F(U0, T )= 0 if and only if cT =
2πν

N
for some ν ∈ Z, (21)

where U0(x)=U (x, 0)= u(x)+c. Note that ν is the number of times the traveling
wave turns over itself in one period. Assuming (21) holds, we set θ = 2πν/N and
compute

[D1 F(U0, T )v0](x)= v(x − cT, T )− v0(x)= [(Sθei B AT
− I )v0](x),

[D2 F(U0, T )τ ](x)=Ut(x, T )τ =−cux(x − cT )τ =−cux(x)τ,
(22)

where v solves (10) and the shift operator Sθ is defined via

Sθ z(x)= z(x − θ), Ŝθ,kl = e−ikθδkl . (23)

One element of N= ker DF(U0, T ) arises from (14), which gives

ei B At 1= 1− tux ⇒ D1 F(U0, T )(−c/T )+ D2 F(U0, T )1= 0,

and implies (−c/T ; 1) ∈ N. This just means that we can change the period T
by a small amount τ by adding the constant −(c/T )τ to U0 (this also follows
from the condition (21) that cT = θ = const). If we wish to change the period
without changing the mean, we need to simultaneously adjust |β| in the underlying
stationary solution u(x)= ustat(x; N , β). The other elements of N are of the form
(v0; 0) with

v0(x)= Re{zN ,n(x)} or v0(x)= Im{zN ,n(x)}. (24)
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The admissible values of n here are found using (22) together with

Sθei B AT zN ,n = ei(ωN ,n T−θkN ,n)zN ,n, θ =
2πν

N
, (25)

where kN ,n is the stride offset of the non-zero Fourier coefficients of zN ,n , i.e.,

ẑN ,n(k) 6= 0 ⇒ k− kN ,n ∈ NZ. (26)

Thus, instead of (19), n ranges over all integers such that

ωN ,nT ∈ 2π
(νkN ,n

N
+Z

)
, kN ,n =


−kN ,−n, n < 0,

0, n = 0,

n, 1≤ n ≤ N − 1,

mod(n+ 1, N ), n ≥ N .

(27)

As before, negative values of n need not be considered once we take real and
imaginary parts in (24), and the n = 0 case always gives the two vectors (z(1,0)N ,0 ; 0)
and (z(2)N ,0; 0) in N, which lead to other traveling waves rather than bifurcations to
nontrivial solutions.

Our numerical experiments have led us to the following conjecture, which we
prove as part of Theorem 3 in Section 4:

Conjecture 1. For every β ∈1 and (N , ν, n,m) ∈ Z4 satisfying

N ≥ 1, ν ∈ Z, n ≥ 1, m ≥ 1, m ∈ νkN ,n + NZ, (28)

there is a four parameter sheet of nontrivial time-periodic solutions bifurcating from
the N-hump traveling wave with speed index ν, (cT = 2πν/N ), bifurcation index
n, and oscillation index m, (ωN ,nT = 2πm/N ). The phase and amplitude of the
traveling wave are determined by β.

The main content of this conjecture is that we do not have to consider linear
combinations of the zN ,n with different values of n to find periodic solutions of
the nonlinear problem — this basis is already “diagonal” with respect to these
bifurcations. This is true in spite of a small divisor problem preventing DF(U0, T )
from being Fredholm. The decision to number the first N − 1 eigenvalues ωN ,n

nonmonotonically in (12) and to simultaneously diagonalize the shift operator Sθ
when choosing eigenvectors zN ,n in (15) was essential to make this work. Formulas
relating the period, T , the mean, α0, and the decay parameter, |β|, for each of these
bifurcations are given in Appendix A along with a list of bifurcation rules governing
“legal” values of the mean.

A canonical way to generate one of these bifurcations is to take β real and perturb
the initial condition in the direction v0(x)= Re{zN ,n(x)}. This leads to nontrivial
solutions with even symmetry at t = 0. Perturbation in the Im{zN ,n(x)} direction
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yields the same set of nontrivial solutions, but with a spatial and temporal phase
shift:

Im{zN ,n(x − ct)eiωt
} = Re

{
zN ,n

((
x −

cπ
2ω

)
− c

(
t −

π

2ω

))
eiω(t−(π/2ω))

}
, (29)

where ω = ωN ,n . The manifold of nontrivial solutions is four dimensional with
two essential parameters (for example, the mean α0 and a parameter governing
the distance from the traveling wave) and two inessential parameters (the spatial
and temporal phase). In our numerical studies, we use the real part of a Fourier
coefficient ck of the initial condition (with k such that ẑN ,n(k) 6= 0) for the second
essential bifurcation parameter. When we discuss exact solutions in Section 4, a
different parameter will be used.

We remark that this enumeration of bifurcations accounts for all time-periodic
solutions of the linearization about traveling waves; therefore, the heuristic that each
bifurcation of the nonlinear problem gives rise to a linearly independent vector in
the kernel N of the linearized problem suggests that we have found all bifurcations
from traveling waves. Interestingly, this turns out not to be the case; the interior
bifurcations we discuss in Section 5 can occur at the endpoints of the path, allowing
for degenerate bifurcations directly from traveling waves to higher levels in the
infinite hierarchy of time-periodic solutions. Only the transition from the first level
of the hierarchy to the second is “visible” to a linearized analysis about traveling
waves. The other transitions become linearly dependent on these in the limit as the
traveling wave is approached; they will be analyzed in [36].

3. Numerical experiments

In this section we present a collection of numerical experiments in which we start
with a given bifurcation (N , ν, n,m, β) and use a symmetric variant of the method
we described in [2] for finding periodic solutions of nonlinear PDE to continue these
solutions until another traveling wave is found, or until the solution blows up as
the bifurcation parameter approaches a critical value. We determine the bifurcation
indices (N ′, ν ′, n′,m′) at the other end of the path of nontrivial solutions by fitting
the data to the formulas of the previous section. By trial and error, we are then able
to guess a formula relating (N ′, ν ′, n′,m′) to (N , ν, n,m) that we use in Section 4
to construct exact solutions.

3.1. Numerical method. As mentioned in Section 2.3, a natural choice of spa-
tial and temporal phase can be achieved by choosing the parameter β of the
traveling wave to be real and perturbing the initial condition in the direction
v0(x) = Re{zN ,n(x)}. For reasons of efficiency and accuracy (explained in the
introduction), we now restrict our search for time-periodic solutions of (1) to
functions u(x, t) that possess even spatial symmetry at t = 0. If we succeed in
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finding solutions with this symmetry, then they — together with their phase-shifted
counterparts analogous to (29) — span the nullspace N = ker DF(U0, T ) in the
limit that the perturbation goes to zero. Thus, we do not expect symmetry breaking
bifurcations from traveling waves that cannot be phase shifted to have even symmetry
at t = 0.

The Benjamin–Ono equation has the property that if u(x, t) is a solution of
(1), then so is U (x, t) = u(−x,−t). As a result, if u is a solution such that
u(x, T/2) = U (x,−T/2), then u(x, T ) = U (x, 0), i.e., u is time-periodic if the
initial condition has even symmetry. Thus, we seek initial conditions u0 with even
symmetry and a period T to minimize the functional

G tot(u0, T )= G(u0, T )+Gpenalty(u0, T ), (30)

where

G(u0, T )=
1
2

∫ 2π

0
[u(x, T/2)− u(2π − x, T/2)]2 dx, (31)

and Gpenalty(u0, T ) is a non-negative penalty function to impose the mean and set
the bifurcation parameter. To compute the gradient of G with respect to variation
of the initial conditions, we use

d
dε

∣∣∣∣
ε=0

G(u0+ εv0, T )=
∫ 2π

0

δG
δu0

(x)v0(x) dx, (32)

where the variational derivative

δG
δu0

(x)= 2w(x, T/2), w0(x)= u(x, T/2)− u(2π − x, T/2) (33)

is found by solving the following adjoint equation from s = 0 to s = T/2:

ws(x, s)=−Hwxx(x, s)+ u(x, T/2− s)wx(x, s), w( · , 0)= w0. (34)

Since v0 is assumed symmetric in this formulation, (33) is equivalent to

δG
δu0

(x)= w(x, T/2)+w(2π − x, T/2). (35)

The Benjamin–Ono and adjoint equations are solved using a pseudo-spectral collo-
cation method employing a fourth order semi-implicit additive Runge–Kutta method
[14; 21; 38] to advance the solution in time. The BFGS method [9; 29] is then
used to minimize G tot (varying the period and the Fourier coefficients of the initial
conditions). We use the penalty function

Gpenalty(u0, T )= 1/2([a0(0)−α0]
2
+ [aK (0)− ρ]2) (36)
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to specify the mean α0 and the real part ρ of the K-th Fourier coefficient of the
initial condition

u0(x)=
M/2∑

k=−M/2+1

ck(0)eikx , ck(t)= ak(t)+ ibk(t). (37)

The parameters α0 and ρ serve as the bifurcation parameters while the phases are
determined by requiring that the solution have even symmetry at t = 0. We generally
choose K to be the first k ≥ 1 such that ẑN ,n(k) 6= 0.

Our continuation method consists of three stages. First, we choose a traveling
wave and a set of bifurcation indices to begin the path of nontrivial solutions. We
also choose a direction in which to vary the bifurcation parameter ρ and the mean α0.
In most of our numerical experiments, we hold α0 fixed; however, in the example of
Figure 6 below, we vary ρ and α0 simultaneously. The traveling wave serves as the
zeroth point on the path. The initial guess for the first point on the path is obtained
by perturbing the initial condition of the traveling wave in the direction Re{zN ,n(x)}.
We use the period T given in (A.1) in Appendix A as a starting guess. We then use
the minimization algorithm to descend from the starting guess predicted by linear
theory to an actual time-periodic solution. The second stage of the continuation
algorithm consists of varying ρ (and possibly α0), using linear extrapolation for
the starting guess (for u0 and T ) of the next solution, and then minimizing G tot to
find an actual time-periodic solution with these values of ρ and α0. If the initial
value of G tot from the extrapolation step is too large, we discard the step and try
again with a smaller change in ρ and α0. The final stage of the algorithm consists
of identifying the reconnection on the other side of the path. We do this by blindly
overshooting the target values of ρ and α0 (which we do not know in advance).
Invariably, the algorithm will lock onto a family of traveling waves once we reach
the end of the path of nontrivial solutions. We look at the Fourier coefficients of
the last nontrivial solution before the traveling waves are reached and match them
with the formulas for ẑN ′,n′(k) to determine the correct bifurcation indices on this
side of the path. (A prime indicates indices for the bifurcation at the other end of
the path.) We then recompute the last several solutions on the path of nontrivial
solutions with appropriate values of ρ and α0 to arrive exactly at the traveling wave
on the last iteration. We sometimes change K in (36) to compute this reconnection
to avoid ẑN ′,n′(K )= 0.

The running time of our algorithm (on a 2.4 GHz desktop machine) varies from
a few hours to compute one of the paths labeled a–l in (38)–(41) below, to a few
days to compute a path in which the solution blows up, such as the one shown in
Figure 5 (page 196). We always refine the mesh and timestep enough so that the
solutions are essentially exact (with G tot ≤ 10−26 in the easy cases and 10−20 in
the hard cases).
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3.2. Global paths of nontrivial solutions. We now investigate the global behavior
of nontrivial solutions that bifurcate from arbitrary stationary or traveling waves. We
find that these nontrivial solutions act as rungs in a ladder, connecting stationary and
traveling solutions with different speeds and wavelengths by creating or annihilating
oscillatory humps that grow or shrink in amplitude until they become part of the
stationary or traveling wave on the other side of the rung. In some cases, rather than
reconnecting with another traveling wave, the solution blows up (the L2 norm of the
initial condition grows without bound) as the bifurcation parameter ρ approaches
a critical value. However, even in these cases a reconnection with another traveling
wave does occur if, in addition to ρ, we vary the mean, α0, appropriately.

Recall from Section 2.3 that we can enumerate all such bifurcations by specifying
a complex parameter β in the unit disk 1 along with four integers (N , ν, n,m)
satisfying (28), and in most cases we can solve for |β| in terms of the mean, α0,
using (A.4) in Appendix A. In [2], we presented a detailed study of the solutions on
the path connecting a one-hump stationary solution to a two-hump traveling wave
moving left. We denote this path by

a : (1, 0, 1, 1) ←→ (2,−1, 1, 1), (38)

where the label a refers to the bifurcation diagram in Figure 1.
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Figure 1. Paths of nontrivial solutions listed in (38)–(41). The
second Fourier mode of the eigenvector zN ,n(x) in the linearization
is nonzero for the pitchfork bifurcations and is zero for the one-
sided, oblique-angle bifurcations. The point labeled P corresponds
to the solution in Figure 3 below.
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We have also computed the next several bifurcations (n = 2, 3, 4) from the
one-hump stationary solution and found that they connect up with a traveling wave
with N ′ = n+ 1 humps moving left with speed index ν ′ =−1, where we denote
the bifurcation on the other side of the path by (N ′, ν ′, n′,m′). By comparing the
Fourier coefficients of the last few nontrivial solutions on these paths to those of the
linearization about the N ′-hump traveling wave, we determined that the bifurcation
and oscillation indices satisfy n′ = n and m′ = 1, respectively. Studying these
reconnections revealed that the correct way to number the eigenvalues ωN ′,n′ was to
split the double eigenvalues with n′ < N ′ apart as we did in (12) by simultaneously
diagonalizing the shift operator and ordering the ωN ′,n′ via the stride offset of the
corresponding eigenvectors (rather than monotonically). Using this ordering, the
nontrivial solutions connect up with the N ′-hump traveling wave along the zN ′,n′

direction (without involving zN ′,N ′−n′). These results are summarized as

b : (1, 0, 2, 1) ←→ (3,−1, 2, 1),

c : (1, 0, 3, 1) ←→ (4,−1, 3, 1),

d : (1, 0, 4, 1) ←→ (5,−1, 4, 1).

(39)

The labels a, b, c, d in (38) and (39) correspond to the paths labeled 7d, 8d, 5c,
a, etc. in the bifurcation diagram. When an integer p precedes a label, it means
that the period T that is plotted is p times larger than the fundamental period of the
solution represented. Thus, curve 7d is the image of curve d (not shown) under the
linear transformation (T, a2) 7→ (7T, a2). In our labeling scheme, we just need to
multiply ν, m, ν ′, m′ by p to obtain the new path, for example,

7d : (1, 0, 4, 7) ←→ (5,−7, 4, 7). (40)

In this diagram, we plot a2(0) versus T with the spatial and temporal phases chosen
so the solution is even at t = 0. For example, on path d , as we decrease ρ = a2(0)
from 0.371087 to 0, the solution transitions from the one-hump stationary solution
to the five-hump left-traveling wave as shown in Figure 2.

It is interesting that the paths labeled a and 3b in Figure 1 meet the one-hump
stationary solutions in a pitchfork, while the other paths (such as 5c and 8d) meet at
an oblique angle from one side only. This is because the second Fourier mode of the
eigenvector z1,n(x) in the linearization about the stationary solution is zero in these
latter cases, so the change in a2(0) from that of the stationary solution (namely,
0.371087) is a higher-order effect, (as is the change in T ). This explains the oblique
angle. We now explain why these bifurcations occur from one side only. When we
go beyond the linearization as we have here, we find that c2(t)= a2(t)+ib2(t) has a
nearly circular (epitrochoidal) orbit in case a, a circular orbit in case b, and remains
constant in time in cases c and d (see Section 4). If one branch of the pitchfork
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Figure 2. Periodic solution on path d connecting the one-hump
stationary solution to the five-hump left-traveling wave (α0 =

0.544375). The second Fourier mode of z1,4(x) is zero, which
explains why a2(0)= 0.366113 for this solution is only 1.35% of
the way between the stationary solution a2(0)= 0.371087 and the
five-hump traveling wave a2(0)= 0.

corresponds to a2(0), the other is a2(T/2) since the function u( · , T/2) also has
even symmetry. But in cases c and d, a2(0) is equal to a2(T/2) even though the
functions u( · , 0) and u( · , T/2) are different. These cases also become pitchforks
when a different Fourier coefficient aK (0) is used as the bifurcation parameter.

Next we compute the first several bifurcations from the two-hump traveling
waves with mean α0 = 0.544375 and speed index ν =−1. We set N = 2, ν =−1,
n ∈ {1, 2, 3, 4} and choose the first several legal m values, i.e., values of m that
satisfy the bifurcation rules of Table 1 on page 210. For example, the curves
labeled i , j , k and l in Figure 1 correspond to the bifurcations (2,−1, 4,m) with
m = 11, 13, 15, 17; smaller values (and even values) of m are not allowed. In
addition to the path a in (38) above, we obtain the paths

e : (2,−1,2,3) ↔ (3,−3,1,3), i : (2,−1,4,11)↔ (5,−8,3,11),

f : (2,−1,3,6) ↔ (4,−5,2,6), j : (2,−1,4,13)↔ (5,−9,3,13),

g : (2,−1,3,8) ↔ (4,−6,2,8), k : (2,−1,4,15)↔ (5,−10,3,15),

h : (2,−1,3,10)↔ (4,−7,2,10), l : (2,−1,4,17)↔ (5,−11,3,17).

(41)

The paths f , g and h meet the curve representing the two-hump traveling waves
in a pitchfork bifurcation while the others meet obliquely from one side. This,
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again, is an anomaly of having chosen the second Fourier mode for the bifurcation
parameter. The dotted line near the path e is the curve obtained when e is reflected
across the T -axis. Solutions on this dotted line correspond to solutions on path
e shifted by π/2 in space, which changes the sign of ρ = a2(0) but also breaks
the even symmetry of the solution at t = 0. The paths labeled i , j , k and l are
exactly symmetric when reflected about the T -axis because c2(t) has a circular
orbit centered at zero in these cases. It is interesting that so many of the paths in
this bifurcation diagram terminate when T = π (or a simple rational multiple of
π ). This is due to the fact that T in (A.1) in Appendix A is independent of α when
n < N .

The solutions u(x, t) corresponding to points along the paths b, c and d are
qualitatively similar to each other. As shown in Figure 2, these solutions look like
N ′-hump waves traveling over a stationary one-hump carrier signal. At one end of
the path the high frequency wave may be viewed as a perturbation of the one-hump
stationary solution, while at the other end of the path it is more appropriate to
regard the stationary solution as the perturbation, causing the traveling wave to
bulge upward as it passes near x = π and downward near x = 0 and x = 2π . In all
these cases, the solution repeats itself when one of the high frequency waves has
moved left one slot to assume the shape of its left neighbor at t = 0.

By contrast, the solutions that bifurcate from the two-hump traveling waves, that
is, those on the paths listed in (41), have the property that when a wave has moved
left one slot to the location that its neighbor occupied at t = 0, it has acquired a
different shape and must keep progressing a number of slots before it finally lines
up with one of the initial waves. This is illustrated in Figure 3 for the solution
labeled P in Figure 1 on the path

e : (2,−1, 2, 3) ←→ (3,−3, 1, 3). (42)

This solution is qualitatively similar to the linearized solution (3,−3, 1, 3). There
are N ′ = 3 humps oscillating with the same amplitude but with different phases as
they travel left. They do not line up with the initial condition again until they have
traveled three slots (ν ′ = −3) and progressed through one cycle (m′/N ′ = 3/3),
which leads to a braided effect when the time history of the solution is plotted on
one graph. All the solutions on path e are irreducible in the sense that there is
no smaller time T in which they are periodic (unlike the cases labeled 3b, 5c, 7d,
etc. in Figure 1, which are reducible to b, c and d , respectively). Note that although
ν ′ = −3 and m′ = 3 are both divisible by 3, we cannot reduce (3,−3, 1, 3) to
(3,−1, 1, 1) as the latter indices violate the bifurcation rules of Table 1 (page 210).
We also mention that at the beginning of the path, near (2,−1, 2, 3), the braiding
effect is not present; instead, the solution can be described as two humps bouncing
out of phase as they travel left. In one period, they each travel left one slot (ν =−1)
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Figure 3. Time-periodic solution (labeled P in Figure 1) on path e
connecting two- and three-hump traveling waves. The amplitude
of each hump oscillates as it travels left. The dotted curves in the
top panel represent the traveling waves at each end of the path at
t = 0.

and bounce 1.5 times (m/N = 3/2) to assume the shape of the other hump at t = 0.
The transition from this behavior to the braided behavior occurs at the point on path
e that a third hump becomes recognizable in the wave profile. The solutions on the
paths f , g, h, i , j , k and l are similar to those on path e, but the braiding patterns
are more complicated near the right end-points of these paths.

All the traveling waves we have described until now move left. To see what
happens to a right-moving wave, we computed the first bifurcation from the simplest
such case and obtained the path

(1, 1, 1, 2) ←→ (2, 0, 1, 2). (43)

Thus, the one-hump right-traveling wave is connected to the two-hump stationary
solution. Solutions near the left end of this path consist of a large-amplitude,
right-moving soliton traveling over a small-amplitude, left-moving soliton. As we
progress along the path, the amplitude of the left-moving soliton increases until the
solitons cease to fully merge at t = T/4 and t = 3T/4. Instead, a dimple forms in the
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Figure 4. Periodic solutions with mean α0 = 0.544375 between
the one-hump right-traveling wave (dotted curve, top panel) and the
two-hump stationary solution (dotted curve, bottom panel). Top:
a large, right-traveling soliton temporarily merges with a small,
left traveling soliton at t = 1

4 T and t = 3
4 T . Bottom: two solitons

traveling in opposite directions bounce off each other at 1
4 T and

3
4 T and change direction.

wave profile at these times and the solitons begin to bounce off each other, trading
amplitude so the right-moving wave is larger than the left-moving wave. This type
of behavior has also been observed by Leveque [22] for the KdV equation for
solitons of nearly equal amplitude. Both types of behavior (merging and bouncing
off one another) are illustrated in Figure 4. As we proceed further along this path,
the solitons settle into a synchronized dancing motion without changing their shape
or deviating far from their initial positions. Eventually the “dancing amplitude”
becomes small and the nontrivial solution turns into a stationary two-hump solution.

In order to guess a general formula for the relationship between two traveling
waves that are connected by a path of nontrivial solutions, we generated two
additional paths, namely,

(2, 0, 2, 2) ←→ (3,−1, 1, 2),

(3, 0, 3, 3) ←→ (4,−1, 1, 3).
(44)
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After studying all the paths listed in (38)–(44), we propose the following conjec-
ture, which we prove as part of Theorem 3 in Section 4:

Conjecture 2. The four-parameter sheet of nontrivial solutions with bifurcation
parameters (N , ν, n,m) coincides with the sheet with parameters (N ′, ν ′, n′,m′) if
and only if

if n < N : N ′= N − n, ν ′ =
(N − n)ν+m

N
, n′ = N − 1, m′ = m, (45)

if n ≥ N : N ′ = n+ 1, ν ′ =
(n+ 1)ν−m

N
, n′ = n+ 1− N , m′ = m. (46)

By symmetry, we may interchange the primed and unprimed indices in either
formula; thus, N ′> N ⇔ n< N ⇔ n′≥ N ′. In most of our numerical calculations,
N ′ turned out to be larger than N . In the exact formulas of Section 4, we find it
more convenient to adopt the convention that N ′ < N since, in that case, all the
solutions on the path connecting these traveling waves turn out to be N -particle
solutions as described in Section 2.1.

Equations (45) and (46) are consistent with the bifurcation rules of Appendix A
in that

n < N , m ∈ nν+ NZ ⇒ ν ′ ∈ Z, m′ ∈ (n′+ 1)ν ′+ N ′Z, (47)

n ≥ N , m ∈ (n+ 1)ν+ NZ ⇒ ν ′ ∈ Z, m′ ∈ n′ν ′+ N ′Z. (48)

However, if the mean is held constant, they do not necessarily respect the require-
ments on α0 listed in Table 1 (page 210). For example, if α0 ≤ 3, then (2, 1, 1, 1) is
a valid bifurcation, but the reconnection (1, 1, 1, 1) predicted by (45) is legal only
if α0 = 3. Interestingly, when we use our numerical method to follow the path of
nontrivial solutions that bifurcates from (2, 1, 1, 1) with the mean α0 = 1.2 held
constant, it does not connect up with another traveling wave. Instead, as illustrated
in Figure 5, as we vary the bifurcation parameter, the two humps (of the solutions
labeled A,B,C) grow in amplitude and merge together until they become a single
soliton traveling very rapidly on top of a small amplitude stationary hump. As the
bifurcation parameter ρ=a1(0) approaches a critical value, the period T approaches
zero and the solution blows up in L2(0, 2π) with the Fourier coefficients of any
time-slice decaying more and more slowly.

As another example, the bifurcation (3, 1, 1, 1) is valid when α0 ≤ 5 but the
reconnection (2, 1, 2, 1) is only valid if α0 = 5. If we hold α0 < 5 constant, the
solution blows up as we vary ρ = a2(0) from 0 to a critical value. However, if
we simultaneously vary the mean so that it approaches 5, we do indeed reach a
traveling wave with bifurcation indices (2, 1, 2, 1). To check this numerically,
we started at (3, 1, 1, 1) with α0 = 4.8 (which has α = 14

15 , |β| = 1/
√

31) and
computed 40 solutions varying ρ from 0 to 0.1 and setting α0 = 4.8+ 2ρ. The
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Figure 5. Left: path of nontrivial solutions with mean α0 = 1.2
that bifurcates with indices (2, 1, 1, 1) from the two-hump traveling
wave. These solutions do not reconnect with another traveling wave,
but instead blow up as T → 0. The solution Q is shown at right,
where a large, right-moving soliton travels rapidly over a small,
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points labeled A, B, C at left.

bifurcation at the other end turned out to be (2, 1, 2, 1) with α0= 5, β= 1
4ρ= 0.025,

α= (1−3β2)/(1−β2), T =π/(5−2α), as predicted by Conjecture 2. The solutions
on this path have the interesting property that the envelope of the solution pinches
off into a football shape at one point in the transition from the three-hump traveling
wave to the two-hump traveling wave. Using a bracketing technique, we were able
to find a solution such that the value of u(0, t) remained constant in time to 8 digits
of accuracy. The result is shown in Figure 6.

In summary, it appears that the family of bifurcations with indices (N , ν, n,m)
is always connected to the family with indices (N ′, ν ′, n′,m′) given by (45) and
(46) by a sheet of nontrivial solutions, but we often have to vary both the mean and
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a Fourier coefficient of the initial condition to achieve a reconnection. Thus, the
manifold of nontrivial solutions is genuinely two-dimensional (or four dimensional
if phase shifts are included). Some of its important properties cannot be seen if we
hold the mean α0 constant.

4. Exact solutions

In this section we use data fitting techniques to determine the analytic form of
the numerical solutions of Section 3. We then state a theorem that confirms our
numerical predictions and explains why some paths of solutions reconnect with
traveling waves when the mean is held fixed while others lead to blow-up. The
theorem is proved in Appendix B.

4.1. Fourier coefficients and lattice sums. One striking feature of the time-perio-
dic solutions we have found numerically is that the trajectories of the Fourier
modes ck(t) are often circular or nearly circular. Other Fourier modes have more
complicated trajectories resembling cartioids, flowers and many other familiar
“spirograph” patterns (see Figure 7). This led us to experiment with data fitting to
try to guess the analytic form of these solutions. The first thing we noticed was that
the trajectories of the spatial Fourier coefficients are band-limited in time, with the
width of the band growing linearly with the wave number:

u(x, t)=
∞∑

k=−∞

ck(t)eikx , ck(t)=
∞∑

j=−∞

ck j e
−i j 2π

T t , ck j = 0 if | j |> r |k|. (49)
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Figure 7. Left: trajectories c2(t) for five solutions on path g in
(41). The evolution of c2(t) on paths f and h in (41) are similar,
but with three- and five-fold symmetry rather than four. Right:
trajectories c8(t) for three solutions on path i in (41).
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Figure 8. Each pair (aligned vertically) corresponds to a path of
nontrivial solutions connecting two traveling waves. Solid dots
represent the nonzero entries ck j in (49) of the exact solutions
along this path; open circles represent a traveling wave; and open
squares represent the nonzero entries dk j in the linearization about
the traveling wave.

Here r is a fixed positive integer (depending on which path of nontrivial solutions
u belongs to) and the ck j are real numbers when a suitable choice of spatial and
temporal phase is made. Since u is real, these coefficients satisfy c−k,− j = ck j .

Each path of nontrivial time-periodic solutions has a lattice pattern of nonzero
Fourier coefficients ck j associated with it. In Figure 8, we show the lattice of
integers (k, j) such that ck j 6= 0 for solutions on the paths

(1, 0, 1, 1) ←→ (2,−1, 1, 1),

(1, 1, 1, 2) ←→ (2, 0, 1, 2),

(2,−1, 2, 3) ←→ (3,−3, 1, 3),

(2,−1, 4, 11) ←→ (5,−8, 3, 11).
(50)

All solutions on a given path have the same lattice pattern (of solid dots), but
different paths have different patterns. One may show that if u(x, t) is of the form
(49) and

k
2

∑
l,p

clpck−l, j−p =

(
k|k| +

2π
T

j
)

ck j , (k > 0, j ∈ Z), (51)

then u(x, t) satisfies the Benjamin–Ono equation, uux = Huxx − ut . The traveling
waves at each end of the path have fewer nonzero entries, namely,
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c̃k j =


Nα+ 2πν

N T
, k = j = 0,

2Nβ |k|/N , k ∈ NZ \ {0}, j = νk
N

0, otherwise.


(
α =

1−3β2

1−β2

)
. (52)

Here a tilde is used to indicate a solution about which we linearize. Substitution
of ck j = c̃k j + εdk j into (51) and matching terms of order ε leads to an eigenvalue
problem with solution

dk j =


ẑN ,n(k), k ∈ kN ,n + NZ, j = (kν−m)/N ,

ẑN ,n(−k), k ∈ −kN ,n + NZ, j = (kν+m)/N ,

0, otherwise,

(53)

with ẑN ,n(k) as in (15). The nonzero coefficients dk j in this linearization are
represented by open squares in Figure 8. Recall from (15) that if n ≥ N and
k ≤ n− N then ẑN ,n(k)= 0, but if n < N , the nonzero entries of ẑN ,n(k) continue
in both directions (with k approaching +∞ or −∞). This is why the rows of open
squares terminate in the graphs in the top row of Figure 8 rather than continuing
past the origin as in the graphs in the bottom row.

4.2. Elementary symmetric functions. It is interesting that the lattice patterns that
arise for the exact solutions (beyond the linearization) contain only positive integer
combinations of the lattice points of the linearization and of the traveling wave
(treating the left and right half-planes separately). Somehow the double convolution
in (51) leads to exact cancellation at all other lattice sites! This suggests that the
ck j have a highly regular structure that generalizes the simple power law decay rate
of the Fourier coefficients ûstat(k; N , β) of the N-hump stationary solution.

The first step to understand this is to grasp that there is a close connection between
the trajectories of the Fourier coefficients and the trajectories of the elementary
symmetric functions of the particles β1, . . . , βN in (2). Specifically, because the
Fourier coefficients of φ(x;β) in (4) are of the form 2βk for k ≥ 1, we have

βk
1 (t)+· · ·+β

k
N (t)= (1/2)ck(t),

(
k≥1, ck(t)=

1
2π

∫ 2π

0
u(x, t)e−ikx dx

)
. (54)

Next we define the elementary symmetric functions σ j via

σ0 = 1, σ j =
∑

l1<···<l j

βl1 · · ·βl j , ( j = 1, . . . , N ), (55)

so that

P(z) :=
N∏

l=1

(z−βl)=

N∑
j=0

(−1) jσ j zN− j . (56)
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It is well known [38] that the companion matrix 6 of P has the Jordan canonical
form

6=


0 1

. . .
. . .

0 · · · 0 1
±σN · · · −σ2 σ1

, V−16V =

J1
. . .

Jm

, Jr=

βl(r) 1 0

0
. . . 1

0 0 βl(r)

,
where l : {1, . . . ,m}→{1, . . . , N } is an enumeration of the distinct roots of P(z)=0
and the size of the Jordan block Jr is equal to the multiplicity of βl(r). As a result,
the trace of powers of 6 will give the power sums of the βl , and hence the Fourier
coefficients:

ck = 2 tr(6k), (k ≥ 1). (57)

Thus, if the elementary symmetric functions are finite sums of circular orbits, then
the Fourier coefficients will be as well, and we expect higher Fourier modes to
involve more terms, in accordance with our findings above.

Before presenting our main result, we note that once the mapping (45) from
(N, ν, n,m) to (N ′, ν ′, n′,m′) is known, we can choose N , ν, N ′ and ν ′ indepen-
dently, subject to the conditions

N ′ < N , ν ′ >
N ′

N
ν. (58)

The first condition is merely a labeling convention while the second is an actual
restriction on which traveling waves are connected together by a path of nontrivial
solutions. The formulas of Conjecture 2 then imply that

m = m′ = Nν ′− N ′ν > 0, n = N − N ′, n′ = N − 1. (59)

After extensive experimentation with data fitting on the numerical simulations
described in Section 3, we arrived at the form (61) below for the polynomial P . We
then substituted the ansatz (60) into (1) to obtain algebraic relationships between
A, B, C , α0, ω, N , N ′, ν and ν ′, namely, (B.9)–(B.11) in Appendix B. We solved
these using Mathematica to obtain formulas for A, B and ω in terms of C , α0, N ,
N ′, ν and ν ′. We had to break the analysis into three cases depending on whether
ν is less than, equal to, or greater than ν ′. By comparing our exact solutions with
previously known representations of multiperiodic solutions [26], we found that
all three cases could be unified by replacing C and α0 by two new parameters, ρ
and ρ ′, related to C and α0 by (62) below. We give a direct proof of the following
theorem in Appendix B.

Theorem 3. Let N , N ′, ν and ν ′ be integers with N > N ′ > 0 and Nν ′− N ′ν > 0.
There is a four-parameter family of time-periodic solutions connecting the traveling



TIME-PERIODIC SOLUTIONS OF THE BENJAMIN–ONO EQUATION 201

wave bifurcations (N ′, ν ′, N−1,m) and (N , ν, N−N ′,m), where m = Nν ′−N ′ν.
These solutions are of the form

u(x, t)= α0+

N∑
l=1

φ(x;βl(t)), φ̂(k;β)=


2β̄ |k|, k < 0,

0, k = 0,

2βk, k > 0,

(60)

where β1(t), . . . , βN (t) are the roots of the polynomial

P(z)= zN
+ Ae−iν′ωt zN−N ′

+ Be−i(ν−ν′)ωt zN ′
+Ce−iνωt , (61)

with

A = eiν′ωt0e−i N ′x0

√
N − N ′+ ρ+ ρ ′

N + ρ+ ρ ′

√
(N + ρ ′)ρ ′

N ′(N − N ′)+ (N + ρ ′)ρ ′
,

B = ei(ν−ν′)ωt0e−i(N−N ′)x0

√
(N + ρ ′)ρ ′

N ′(N − N ′)+ (N + ρ ′)ρ ′

√
ρ

N − N ′+ ρ
,

C = eiνωt0e−i N x0

√
ρ

N − N ′+ ρ

√
N − N ′+ ρ+ ρ ′

N + ρ+ ρ ′
,

α0 =
N 2ν ′− (N ′)2ν

m
− 2ρ−

2N ′(ν ′− ν)
m

ρ ′,

ω =
2π
T
=

N ′(N − N ′)(N + 2ρ ′)
m

.

(62)

The four parameters are ρ ≥ 0, ρ ′ ≥ 0, x0 ∈ R and t0 ∈ R. The N - and N ′-hump
traveling waves occur when ρ ′ = 0 and ρ = 0, respectively. When both are zero,
we obtain the constant solution u(x, t)≡ (N 2ν ′− (N ′)2ν)/m.

Remark 4. The parameters x0 and t0 are spatial and temporal phase shifts. A
straightforward calculation shows that if u has parameters ρ, ρ ′, x0 and t0 in
Theorem 3 while ũ has parameters ρ, ρ ′, 0 and 0, then u(x, t)= ũ(x − x0, t − t0).

There are two features of this theorem that are new. First, it had not previously
been observed that the dynamics of the Fourier modes of multiperiodic solutions
was so simple. And second, in our representation, it is clear that these solutions
reduce to traveling waves in the limit as ρ or ρ ′ approaches zero. By contrast, other
representations become indeterminate in the equivalent limit, and are missing a key
degree of freedom (the mean) to allow bifurcation between levels of the hierarchy
of multiperiodic solutions.

4.3. Three types of reconnection. We now wish to explain why following a path
of nontrivial solutions with the mean α0 held fixed sometimes leads to reconnection
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with a different traveling wave and sometimes leads to blow-up of the initial
condition. By Theorem 3, α0 depends on the parameters ρ and ρ ′ via

α0 = α
∗

0 − 2ρ−
2N ′(ν ′− ν)

m
ρ ′, α∗0 :=

N 2ν ′− (N ′)2ν
m

. (63)

If we hold α0 fixed, then ρ and ρ ′ must satisfy

2ρ+
2N ′(ν ′− ν)

m
ρ ′ = (α∗0 −α0). (64)

This is a line in the ρ-ρ ′-plane whose intersection with the first quadrant gives the
set of legal parameters for a time-periodic solution to exist. We assume the mean is
chosen so that this intersection is nonempty. If the ρ- or ρ ′-intercept of this line is
positive, the corresponding traveling wave bifurcation exists. There are three cases
to consider.

Case 1. (ν < ν ′) Both intercepts will be positive as long as α0 < α∗0 . Thus, a
reconnection occurs regardless of which side of the path we start on.

Case 2. (ν = ν ′) The line (64) is vertical in this case, so ρ = (α∗0 −α0)/2 remains
constant as we vary ρ ′ from 0 to∞. As ρ ′→∞, we see from (62) that T → 0,
A→ 1, and B and C both approach

√
ρ/(N − N ′+ ρ). In this limit, N ′ of the

roots βl lie on the unit circle at t = 0, indicating that the norm of the initial condition
blows up as ρ ′→∞.

Case 3. (ν > ν ′) The line (64) has positive slope in this case. If α0 < α∗0 , a
bifurcation from the N ′-hump traveling wave exists. If α0 > α

∗

0 , a bifurcation from
the N-hump traveling wave exists. And if α0 = α

∗

0 , a bifurcation directly from the
constant solution u= α∗0 to a nontrivial time periodic solution exists. In any of these
cases, another traveling wave is not reached as we increase ρ and ρ ′ to∞. Instead,
T → 0 and A, B and C all approach 1. As a result, all the roots βl approach the
unit circle, indicating that the norm of the initial condition blows up as ρ, ρ ′→∞.

Example 5. Consider the three-particle solutions on the path e : (2,−1, 2, 3)↔
(3,−3, 1, 3) in Figures 1 and 3. Since −3= ν < ν ′ =−1, we do not need to vary
the mean in order to reconnect with a traveling wave on the other side of the path.
Suppose α0 < α

∗

0 = 1 is held fixed. Then the parameters ρ and ρ ′ in Theorem 3
satisfy

ρ =
1
2

(
1−α0−

8
3
ρ ′
)
, 0≤ ρ ′ ≤

3(1−α0)

8
. (65)

The solutions u(x, t) on this path are of the form (60) with particles βl(t) evolving
as the roots of the polynomial

P(z)= z3
+ Aeiωt z+ Be2iωt z2

+Ce3iωt , (66)
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where

A =

√
(9− 3α0− 2ρ ′)(3+ ρ ′)ρ ′

(21− 3α0− 2ρ ′)(2+ ρ ′)(1+ ρ ′)
,

B =

√
(3− 3α0− 8ρ ′)(3+ ρ ′)ρ ′

(9− 3α0− 8ρ ′)(2+ ρ ′)(1+ ρ ′)
,

C =

√
(9− 3α0− 2ρ ′)(3− 3α0− 8ρ ′)
(21− 3α0− 2ρ ′)(9− 3α0− 8ρ ′)

,

ω =
2π
T
=

2(3+ 2ρ ′)
3

.

(67)

The transition from the two- to three-hump traveling wave occurs as we decrease
the bifurcation parameter ρ ′ from 3(1−α0)/8 to 0. This causes C to increase from
0 to
√
(1−α0)/(7−α0) and A to decrease from

√
(3− 3α0)/(19− 3α0) to 0. B

is zero at both ends of the path.
The trajectories β1(t), β2(t) and β3(t) for α0 = 0.544375 and four choices of

ρ ′ are shown in Figure 9. For this value of the mean, ρ ′ varies from 0.17086 to 0.
Note that the bifurcation from the two-hump traveling wave causes a new particle
to nucleate at the origin. As ρ ′ decreases, the new particle’s trajectory grows in
amplitude until it joins up with the orbits of the outer particles. There is a critical
value of ρ ′ at which the particles collide and the solution of the ODE (3) ceases
to exist for all time; nevertheless, the representation of u in terms of P in (B.1) in
Appendix B remains well-behaved and does satisfy (1) for all time. Thus, a change
in topology of the orbits does not manifest itself as a singularity in the solution of the
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Figure 9. Trajectories βl(t) for four solutions on the path
(2,−1, 2, 3) ↔ (3,−3, 1, 3) with mean α0 = 0.544375. The
markers give the position of the βl at t = 0. The value of ρ ′

in (65) is, from left to right: 0.1707, 0.1642, 0.1634 and 0.1369. In
Figure 3, ρ ′ = 0.0862.
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PDE. As ρ ′ decreases further, the three orbits become nearly circular and eventually
coalesce into a single circular orbit (with ν =−3) at the three-hump traveling wave.
The “braided” effect of the solution shown in Figure 3 is recognizable for ρ ′ ≤ 0.15
or so for this value of the mean.

5. Interior bifurcations

We conclude this work by mentioning that our numerical method for following paths
of nontrivial solutions from one traveling wave to another occasionally wanders off
course, following an interior bifurcation rather than reaching the traveling wave on
the other side of the original path. These interior bifurcations lead to new paths of
nontrivial solutions that are more complicated than those on the original path. For
example, on the path

(1, 1, 1, 2) ←→ (2, 0, 1, 2), (68)

Theorem 3 tells us that the exact solution is a two-particle solution with elementary
symmetric functions of the form

σ1(t)=−(Ae−iωt
+ Beiωt), σ2(t)= C. (69)

We freeze α0 < α
∗

0 = 2, set ρ = 1
2(2−α0− ρ

′), and determine that

A = e−i(x0−ωt0)

√
(4−α0+ ρ ′)(2+ ρ ′)ρ ′

(6−α0+ ρ ′)(1+ ρ ′)2
,

B = e−i(x0+ωt0)

√
(2−α0− ρ ′)(2+ ρ ′)ρ ′

(4−α0− ρ ′)(1+ ρ ′)2
,

C = e−i(2x0)

√
(4−α0+ ρ ′)(2−α0− ρ ′)

(6−α0+ ρ ′)(4−α0− ρ ′)
,

ω =
2π
T
= 1+ ρ ′.

(70)

In Figure 10, we show the bifurcation diagram for the transition from the one-hump
right-traveling wave (labeled P) to the two-hump stationary solution (labeled Q).
This diagram was computed numerically before we had any idea that exact solutions
for this problem exist; therefore, we used the real part of the first Fourier mode at
t = 0 for the bifurcation parameter rather than ρ ′. We can obtain the same curves
analytically as follows. The upper curve from P to Q (containing A1–A5) can
be plotted parametrically by setting x0 = π/2 and t0 = π/2ω in (70), varying ρ ′

from 2− α0 to 0, holding α0 = 0.544375 fixed, and plotting −2(A+ B) versus
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Figure 10. Left: bifurcation diagram showing several interior bi-
furcations on the path (1, 1, 1, 2)→ (2, 0, 1, 2). Right: trajectories
of the elementary symmetric functions σ1(t), which have elliptical,
clockwise orbits, and σ2(t), which remain stationary in time, for
the solutions labeled A1–A5 in the bifurcation diagram.

T = 2π/(1+ ρ ′). The lower curve from P to Q is obtained in the same fashion if
we instead set x0 = t0 = 0.

As illustrated in Figure 10, solutions such as A1–A5 on the upper path have
σ1(t) executing elliptical, clockwise orbits that start out circular at the one-hump
traveling wave but become more eccentric and collapse to a point as we progress
toward the two-hump stationary solution Q. Meanwhile, σ2(t) remains constant in
time, nucleating from the origin at the one-hump traveling wave and terminating
with σ2 ≡−

√
(2−α0)/(6−α0) at the two-hump stationary solution. On the lower

path, the major axis of the orbit of σ1 is horizontal rather than vertical and σ2 moves
right rather than left as we move from P to Q.

When computing these paths from P to Q, we encountered two interior bi-
furcations. In the bifurcation labeled B6 in Figure 10, an additional elementary
symmetric function nucleates at the origin and the trajectories of σ1 and σ2 become
more complicated. Through data fitting, we find that

σ1(t)=−(Ae−iωt
+ Beiωt

+C1e3iωt), (71)

σ2(t)= C +C2e2iωt
+C3e4iωt , (72)

σ3(t)=−C4e3iωt , (73)

where the new coefficients C j are all real parameters. We have not attempted to
derive algebraic relationships among these parameters to obtain exact solutions.
These trajectories are shown in Figure 11 for the solutions labeled B1–B13 in the
bifurcation diagram. The additional term in (71) causes the elliptical orbit of σ1(t)
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Figure 11. Left: trajectories of σ1(t) for solutions labeled B1–B13
in Figure 10. Center: trajectories of σ2(t) and σ3(t). Since B6 is
on the original path from P to Q, σ2(t) is constant and σ3(t) ≡ 0
for this solution. Right: the interior bifurcation causes additional
lattice coefficients ck j to become nonzero; grey circles represent
the new terms.

to deform by bulging out in the vertical and horizontal directions while pulling
in along the diagonal directions (or vice versa, depending on which direction we
follow the bifurcation). Meanwhile, σ2(t) ceases to be constant and σ3(t) ceases
to be zero. To avoid clutter, we plotted the trajectories σ2(t) and σ3(t) for B1–B6
separately from B6–B13, illustrating the effect of following the bifurcation in one
direction or the other. The additional terms in (71)–(73) cause the lattice pattern of
nonzero entries ck j =

1
T

∫ T
0 ck(t)ei jωt dt to become more complicated, where we

recall that in this case,

ck(t)=
1

2π

∫ 2π

0
u(x, t)e−ikx dx = 2 tr

[(
0 1 0
0 0 1

σ3(t) −σ2(t) σ1(t)

)k ]
.

The solid dots in Figure 11 represent the nonzero entries of solutions on the original
path from P to Q while grey circles show the additional terms that are nonzero after
the bifurcation at B6. Although this bifurcation causes some of the unoccupied
lattice sites to be filled in, the new lattice pattern is rather similar to the original
pattern and maintains its checkerboard structure. Also, this bifurcation leads to
symmetric perturbations of the Fourier mode trajectories, and is also present (in a
phase shifted form) along the lower path from P to Q.

In the bifurcation labeled C0 in Figure 10, the fill-in pattern of the lattice repre-
sentation is much more complicated, and in fact the checkerboard structure of the
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nonzero coefficients ck j is destroyed; see Figure 12. But actually, the elementary
symmetric functions behave similarly to the previous case: By fitting our numerical
data, we find that

σ1(t)=−(Ae−iωt
+ Beiωt

+C1e4iωt), (74)

σ2(t)= C +C2e3iωt
+C3e5iωt , (75)

σ3(t)=−C4e4iωt , (76)

so each of the new terms executes one additional loop per cycle of the periodic
solution in comparison to the corresponding term in (71)–(73). This extra loop
causes a star-shaped perturbation of the σ1 ellipse instead of the rectangular and
diamond shaped perturbations seen previously in Figure 11. As a result, this
bifurcation is not present on the upper path from P to Q because the symmetry of
the perturbation does not respect the 90 degree rotation of the orbit σ1(t) associated
with the π

2 -spatial and T
4 -temporal phase shifts that relate solutions on the upper

and lower paths from P to Q.
To follow the bifurcation at C0 in the other direction, we can use the same

numerical values for A, B, C , C1, C2, C3, C4 in (74)–(76) after changing the signs
of the latter four parameters. This causes the trajectories of σ1 in Figure 12 to be
rotated 180◦ with a corresponding T/2 phase-shift in time so that the initial position
σ1(0) remains on the left side of the figure. Meanwhile, the trajectory of σ2(t)
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Figure 12. Left: this interior bifurcation causes more lattice coef-
ficients to become nonzero than the interior bifurcation of Figure
11. Right: trajectories of σ1(t), σ2(t), and σ3(t) for the solutions
labeled C0-C9 in Figure 10. The long axis of the ellipse C0 is
horizontal because we start from the bottom branch connecting P
to Q in Figure 10.
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Figure 13. The trajectories of the Fourier modes become very
complicated after the interior bifurcation occurs. Here we show the
16th (left) and 26th (right) Fourier modes ck(t) = ak(t)+ ibk(t)
over one period. It was clearly essential to use a high order (in fact,
spectrally accurate) numerical method to resolve these dynamics
when computing time-periodic solutions.

experiences a T/2 phase-shift in time with no change in the location of the orbit,
and σ3(t) starts on the opposite side of its circular trajectory about the origin.

In Figure 13, we show the orbits of the 16th and 26th Fourier modes for the
solution labeled C9 in the bifurcation diagram of Figure 10. As the index of
the Fourier mode increases, these trajectories become increasingly complicated
(involving more nonzero terms ck j in the lattice representation), but also decay
exponentially so that the amplitude of the orbit is eventually smaller than can be
resolved using floating point arithmetic. We emphasize that these trajectories were
resolved to full machine precision by our general purpose numerical method for
finding periodic solutions of nonlinear PDE (without any knowledge of the solitonic
structure of the solutions). Everything we learned about the form of the exact
solutions came about from studying these numerical solutions, which was possible
only because our numerical results are correct to 10-15 digits of accuracy.

Appendix A. Bifurcation formulas and rules

In this section we collect formulas relating the period, mean and decay parameter
at a bifurcation. We also identify bifurcation rules governing the legal values of α0

for a given set of bifurcation indices.
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In computing the nullspace N= ker DF(U0, T ) in Section 2.3, we considered
N , ν, β, T (and hence α0) to be given and searched for compatible indices n and
m. The decay parameter |β|, the mean α0, and the period T cannot be specified
independently; any two of them determines the third. We now derive formulas for
the period and mean in terms of (N , ν, n,m) and β. To simplify the formulas, we
work with α = (1− 3|β|2)/(1− |β|2) instead of β. Note that as we increase |β|
from 0 to 1, α decreases from 1 to −∞. For the period, we have

T =
2πm

NωN ,n
=


2πm

Nn(N − n)
n < N ,

2πm
N (n+ 1− N )(n+ 1+ N (1−α))

n ≥ N ,
(A.1)

so the period is independent of β when n < N , and otherwise decreases to zero as
|β| varies from 0 to 1. For the mean, α0, we note that

cT =
2πν

N
, c = α0− Nα ⇒ α0 = Nα+

2πν
N T

. (A.2)

Hence, using (2π/N T )= (ωN ,n/m), we obtain

α0=


N +

n(N − n)
m

ν− (1−α)N , n < N ,

N +
(n+ 1− N )(n+ 1)

m
ν−

(
1−

n+ 1− N
m

ν
)

N (1−α), n ≥ N .
(A.3)

Thus, as |β| varies from 0 to 1, the mean α0 decreases to−∞ if n<N , and otherwise
either decreases to −∞, increases to +∞, or is independent of β, depending on
the sign of [m− (n+ 1− N )ν].

In practice, we often wish to start with N , ν, n, m and α0 and determine T and
|β| from these. However, not all values of α0 are compatible with a given set of
indices. The bifurcation rules are summarized in Table 1.

Solving (A.3) for α yields

α =


1−

(N −α0)m+ n(N − n)ν
Nm

, n < N ,

1−
(N −α0)m+ (n+ 1− N )(n+ 1)ν

[m− (n+ 1− N )ν]N
, n ≥ N .

(A.4)

The corresponding period is given by

T =


2πm

Nn(N − n)
, n < N ,

2π
( m

n+1−N − ν
)

N (n+ 1+ N −α0)
, n ≥ N .

(A.5)
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In the indeterminate cases {n ≥ N , m = (n+1− N )ν, α0 = n+1+ N }, any α ≤ 1
is allowed and formula (A.1) should be used to determine T .

If we express n, n′, m and m′ in terms of N , ν, N ′, ν ′, then (A.1) and (A.3) give

T =
2π(Nν ′− N ′ν)
N ′(N − N ′)N

, α0 = α
∗

0 − (1−α)N ,

T ′ =
2π(Nν ′− N ′ν)

N ′(N − N ′)[N + (1−α′)N ′]
, α′0 = α

∗

0 −
ν ′− ν

Nν ′− N ′ν
(N ′)2(1−α′),

(A.6)

where

α∗0 =
N 2ν ′− (N ′)2ν

Nν ′− N ′ν
, α =

1− 3|β|2

1− |β|2
, α′ =

1− 3|β ′|2

1− |β ′|2
.

We note that the two traveling waves reduce to the same constant function when
β → 0 and β ′ → 0, which is further evidence that a single sheet of nontrivial
solutions connects these two families of traveling waves.

Appendix B. Proof of Theorem 3

As explained in Remark 4, x0 and t0 are spatial and temporal phase shifts, so we
may set them to zero without loss of generality. We can express the solution directly
in terms of the elementary symmetric functions via

u(x, t)= α0+

N∑
l=1

φ(x;βl(t))= α0+

N∑
l=1

4 Re
{ ∞∑

k=1

βl(t)keikx
}

= α0+

N∑
l=1

4 Re
{ z

z−βl(t)
− 1

}
= α0+ 4 Re

{ z∂z P(z)
P(z)

− N
}
, (z = e−i x).

(B.1)

(1) N ≥ 1, ν ∈ Z, n ≥ 1, m ≥ 1

(2) if n < N then
• m ∈ nν+ NZ

• α0 ≤ N + n(N − n)ν/m

(3) if n ≥ N then
• m ∈ (n+ 1)ν+ NZ

• if m > (n+ 1− N )ν then α0 ≤ N + (n+ 1− N )(n+ 1)ν/m
• if m < (n+ 1− N )ν then α0 ≥ N + (n+ 1− N )(n+ 1)ν/m
• if m = (n+ 1− N )ν then α0 = n+ 1+ N

Table 1. Bifurcation rules governing which values of α0 are com-
patible with the bifurcation indices (N , ν, n,m).
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Next we derive algebraic expressions relating A, B, C , α0, ω, N , N ′, ν and ν ′ by
substituting (B.1) into the Benjamin–Ono equation (1). To this end, we include the
time dependence of P in the notation and write (B.1) in the form

u(x, t)= α0+ 2
( i∂x g

g
− N

)
+ 2

(
−i∂x h

h
− N

)
, (B.2)

where

g(x, t)= P(e−i x , e−iωt), h(x, t)= g(x, t), (B.3)

P(z, λ)= zN
+ Aλν

′

zN−N ′
+ Bλν−ν

′

zN ′
+Cλν . (B.4)

Note that P is a polynomial in z and a Laurent polynomial in λ (as ν and ν ′ may
be negative). We may assume ω > 0; if not, we can change the sign of ω without
changing the solution by replacing (A, B, ν, ν ′, N ′) by (B, A,−ν, ν ′−ν, N − N ′).
Assuming the roots βl(t) of z 7→ P(z, e−iωt) remain inside the unit disk 1 for all
t , we have( i∂x g

g
−N

)
=

N∑
l=1

∞∑
k=1

βl(t)keikx
⇒ Hu=2

(∂x g
g
+Ni

)
+2
(∂x h

h
−Ni

)
. (B.5)

Using (B.2) and ∂t(∂x g/g)= ∂x(∂t g/g), (a technique we learned by studying the
bilinear formalism approach of [32; 26]), the equation 1/2 (ut − Huxx + uux)= 0
becomes

∂x

[
i
(∂t g

g
−
∂t h
h

)
− ∂x

(∂x g
g
+
∂x h
h

)
+

1
4

(
(α0− 4N )+ 2i

(∂x g
g
−
∂x h
h

))2
]
= 0.

(B.6)
The expression in brackets must be a constant, which we denote by γ . We now
write

Pjk = (z∂z)
j (λ∂λ)

k P(z, λ)
∣∣∣ z=e−i x

λ=e−iωt
(B.7)

so that, for example, ∂t g =−iωP01 and ∂x h = i P̄10. Equation (B.6) then becomes

γ P00 P̄00+ P̄00[P20+ωP01+ (α0− 4N )P10]

+ P00[P̄20+ω P̄01+ (α0− 4N )P̄10] + 2P10 P̄10 = 0, (B.8)

where we have absorbed 1
4(α0− 4N )2 into γ . This equation may be written

e1[[zNλ−ν]] + e2[[zN−2N ′λ2ν′−ν
]] + e3[[zN−N ′λν

′
−ν
]] + e4[[zN ′λ−ν

′

]] + e5 = 0,

where [[a]] = a+ ā = 2 Re{a},

e1 = [γ +νω+N 2
+ (α0−4N )N ]C, e2 = [γ +νω+N 2

+ (α0−4N )N ]AB,
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and, after setting γ = (3N −α0)N − νω to achieve e1 = e2 = 0,

e3=[(N ′)2−2N N ′+N ′α0−ν
′ω]B+[(N ′)2+2N N ′−N ′α0+ν

′ω]AC=0, (B.9)

e4 = [3N 2
− 4N N ′+ (N ′)2− (N − N ′)α0+ (ν− ν

′)ω]BC

−[N 2
− (N ′)2− (N − N ′)α0+ (ν− ν

′)ω]A = 0, (B.10)

e5 = (Nα0− νω− N 2)+[(2N ′− N )α0+ (ν−2ν ′)ω+3N 2
−8N N ′+4(N ′)2]B2

+[(N−2N ′)α0+4(N ′)2−N 2
+(2ν ′−ν)ω]A2

+[(3N−α0)N+νω]C2
=0. (B.11)

Using a computer algebra system, it is easy to check that (B.9)–(B.11) hold when
A, B, C , α0 and ω are defined as in (62). When ρ ′ = 0, we have A = B = 0 and
C =

√
ρ/(N + ρ) so that

βl(t)=
N
√
−Cλν = N

√
−Ce−ict , c =

ων

N
=

N ′(N − N ′)ν
m

= α0− N
1− 3C2

1−C2 ,

where each βl is assigned a distinct N -th root of −C . By (5), this is an N-hump
traveling wave with speed index ν and period T = 2π/ω. Similarly, when ρ = 0,
we have B = C = 0 and A =

√
ρ ′/(N ′+ ρ ′) so that

βl(t)=
{

N ′
√
−Ae−ict , l ≤ N ′

0, l > N ′

}
,

c =
ων ′

N ′
=
(N − N ′)(N + 2ρ ′)ν ′

m
= α0− N ′

1− 3A2

1− A2 ,

which is an N ′-hump traveling wave with speed index ν ′ and period T = 2π/ω.
Finally, we show that the roots of P( · , λ) are inside the unit disk for any λ on

the unit circle, S1. We will use Rouché’s theorem [1]. Let

f1(z)= zN
+ Aλν

′

zN−N ′
+ Bλν−ν

′

zN ′
+Cλν,

f2(z)= zN
+ Aλν

′

zN−N ′,

f3(z)= zN
+ Bλν−ν

′

zN ′ .

From (62), we see that {A, B,C} ⊆ [0, 1), A ≥ BC , B ≥ C A and C ≥ AB. Thus,

d2(z) := | f2(z)|2− | f1(z)− f2(z)|2 = |λ−ν
′

zN ′
+ A|2− |Bλ−ν

′

zN ′
+C |2

= 1+ A2
− B2

−C2
+ 2(A− BC) cos θ ≥ (1− A)2− (B−C)2, (B.12)

where λ−ν
′

zN ′
= eiθ . Similarly,

d3 := | f3(z)|2− | f1(z)− f3(z)|2 ≥ (1− B)2− (A−C)2. (B.13)
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Note that

B ≤ A, C ≤ B ⇒ B−C ≤ B− AB < 1− A ⇒ d2(z) > 0 for z ∈ S1,

B ≤ A, C > B ⇒ |C − A|< 1− B ⇒ d3(z) > 0 for z ∈ S1,

A ≤ B, C ≤ A ⇒ A−C ≤ A− AB < 1− B ⇒ d3(z) > 0 for z ∈ S1,

A ≤ B, C > A ⇒ |C − B|< 1− A ⇒ d2(z) > 0 for z ∈ S1.

Thus, in all cases, f1(z)= P(z, λ) has the same number of zeros inside S1 as f2(z)
or f3(z), which each have N roots inside S1. Since f1(z) is a polynomial of degree
N , all the roots are inside S1.
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A PHASE TRANSITION APPROACH TO DETECTING
SINGULARITIES OF PARTIAL DIFFERENTIAL EQUATIONS

PANAGIOTIS STINIS

We present a mesh refinement algorithm for detecting singularities of time-
dependent partial differential equations. The algorithm is inspired by renormal-
ization constructions used in statistical mechanics to evaluate the properties of
a system near a critical point, that is, a phase transition. The main idea behind
the algorithm is to treat the occurrence of singularities of time-dependent partial
differential equations as phase transitions.

The algorithm assumes the knowledge of an accurate reduced model. In
particular, we need only assume that we know the functional form of the reduced
model, that is, the terms appearing in the reduced model, but not necessarily their
coefficients. We provide a way of computing the necessary coefficients on the fly
as needed.

We show how the mesh refinement algorithm can be used to calculate the
blow-up rate as we approach the singularity. This calculation can be done in
three different ways: (i) the direct approach where one monitors the blowing-up
quantity as it approaches the singularity and uses the data to calculate the blow-
up rate; (ii) the “phase transition” approach (à la Wilson) where one treats the
singularity as a fixed point of the renormalization flow equation and proceeds to
compute the blow-up rate via an analysis in the vicinity of the fixed point, and
(iii) the “scaling” approach (à la Widom–Kadanoff) where one postulates the
existence of scaling laws for different quantities close to the singularity, computes
the associated exponents and then uses them to estimate the blow-up rate. Our
algorithm allows a unified presentation of these three approaches.

The inviscid Burgers and the supercritical focusing Schrödinger equations are
used as instructive examples to illustrate the constructions.

Introduction

The problem of how to construct mesh refinement methods and how to approach
more efficiently possible singularities of partial differential equations has attracted
considerable attention [1; 3; 2; 6; 7; 14]. At the same time, the problem of

MSC2000: 35L67, 65M50, 65M70, 76B99.
Keywords: singularities, partial differential equations, mesh refinement, phase transition,

renormalization, blow-up, dimension reduction.
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constructing dimensionally reduced models for large systems of ordinary differential
equations (this covers the case of partial differential equations after discretization
or series expansion of the solution) has also received considerable attention; see,
for example, the review papers [11; 10]. The construction of an accurate reduced
model has advantages beyond the obvious one of predicting the correct behavior
for a reduced set of variables.

We present here an algorithm that is based on dimensional reduction and which
can be used to perform mesh refinement and investigate possibly singular solu-
tions of partial differential equations (see also [16]). The algorithm is inspired by
constructions used in statistical mechanics to evaluate the properties of a system
near a critical point [12; 5] (a critical point is a value for the controlling parameter
of a system at which the behavior of the system changes abruptly). The idea
underlying the computation of the properties at criticality is that while the form of
the reduced system equations is important, one can extract even more information
by looking at how the form of the reduced system is related to the form of the
original (full dimensional) system [17; 18]. We extend this idea to the study of
(possibly) singular solutions of partial differential equations by treating time as the
controlling parameter and the instant of occurrence of a singularity as a critical
value for the parameter, that is, a critical point.

Our approach has two advantages: (i) it provides a way of accurately monitoring
the progress of a simulation towards underresolution, thus offering as a byproduct
the time of occurrence of the possible singularity; (ii) it allows the formulation of a
mesh refinement scheme that is able to reach the equation’s window of interesting
dynamics much more efficiently than an algorithm that simply starts with the
maximum available resolution.

The mesh refinement algorithm can be used to calculate the blow-up rate as we
approach the singularity. This calculation can be done in three different ways: (i)
the direct approach where one monitors the blowing-up quantity as it approaches the
singularity and uses the data to calculate the blow-up rate; (ii) the “phase transition”
approach (à la Wilson) [12] where one treats the singularity as a fixed point of
the renormalization flow equation and proceeds to compute the blow-up rate via
an analysis in the vicinity of the fixed point, and (iii) the “scaling” approach (à
la Widom–Kadanoff) [5] where one postulates the existence of scaling laws for
different quantities close to the singularity, computes the associated exponents
and then uses them to estimate the blow-up rate. Our algorithm allows a unified
presentation of these three approaches.

The task of investigating numerically the appearance of a singularity is subtle.
Clearly, since all calculations are performed with finite resolution and a singularity
involves an infinity of active scales we can only come as close to the singularity
as our resolution will allow. On a related note, a partial differential equation may
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exhibit near-singular solutions, that is, solutions which involve a large but not infinite
number of active scales. From the point of view of computation a near-singular
solution may appear as a singular one if we cannot afford enough computational
power to fully resolve the near-singular solution. This possibility should be kept
in mind before deciding that a singular solution is indeed present. In other words,
given adequate resolution we can eliminate the possibility of a singularity. But it
may be very hard to prove through a finite calculation that a singularity exists (we
come back to these points in Sections 2 and 3).

The paper is organized as follows. In Section 1 we present the ideas behind
the construction of the algorithm. In Section 2 we present the mesh refinement
algorithm. In Section 3 we provide numerical results for the inviscid Burgers
equation. In Section 4 we provide numerical results for the supercritical focusing
Schrödinger equation. Section 5 shows how one can use the mesh refinement
algorithm to compute the blow-up rate as a critical exponent, i.e. using solely
properties of a renormalization (coarse-graining) process in the vicinity of the
singularity. Section 6 contains a discussion of the results and some directions for
future work.

1. The main construction

Suppose that we are interested in the possible development of singularities in the
solution v(x, t) of a partial differential equation (PDE)

vt + H(t, x, v, vx , . . . )= 0,

where H is a (generally) nonlinear operator and x ∈ D ⊆ Rd (the constructions
extend readily to the case of systems of partial differential equations). After spatial
discretization or expansion of the solution in series, the PDE transforms into a system
of ordinary differential equations (ODEs). For simplicity we restrict ourselves to
the case of periodic boundary conditions, so that a Fourier expansion of the solution
leads to a system of ODEs for the Fourier coefficients. To simulate the system for
the Fourier coefficients, we need to truncate at some point the Fourier expansion.
Let F ∪G denote the set of Fourier modes retained in the series, where we have
split the Fourier modes in two sets, F and G. We call the modes in F resolved
and the modes in G unresolved. One can construct, in principle, an exact reduced
model for the modes in F , for example, through the Mori–Zwanzig formalism [8]
(we do not deal here with the complications of constructing a good reduced model).

The main idea behind the algorithm is that the evolution of moments of the
reduced set of modes, for example lp norms of the modes in F , should be the same
whether computed from the full or the reduced system. This is a generalization to
time-dependent systems of the principle used in the theory of equilibrium phase
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transitions to compute the critical exponents [12; 15]. The idea underlying the
computation of the critical exponents is that while the form of the reduced system of
equations is important, one can extract even more information by looking at how the
form of the reduced system is related to the form of the original (full dimensional)
system. We extend this idea to the study of (possibly) singular solutions of partial
differential equations by treating time as the controlling parameter and the instant of
occurrence of a singularity as a critical value for the parameter, that is, a critical point.
We note that even though our motivation for the present construction came from
the theory of equilibrium phase transitions, we do not advocate that a singularity
is a phase transition in the conventional sense. It can be thought of as a transition
from a strong solution to an appropriately defined weak solution but one does not
have to push the analogy further. We want to point out here that the problem we
are addressing is different from the subject known as dynamic critical phenomena
[12, Chapter 8]. There, one is interested in the computation of time-dependent
quantities as a controlling parameter, other than time, reaches its critical value. In
our case, time is the controlling parameter and we are interested in the behavior of
the solution as time reaches a critical value.

The above arguments can be made more precise. The original system of equations
for the modes F ∪G is given by

du(t)
dt
= R(t, u(t)),

where u = ({uk}), k ∈ F ∪ G is the vector of Fourier coefficients of u and R is
the Fourier transform of the operator H . The system should be supplemented
with an initial condition u(0) = u0. The vector of Fourier coefficients can be
written as u = (û, ũ), where û are the resolved modes (those in F) and ũ the
unresolved ones (those in G). Similarly, for the right hand sides (RHS) we have
R(t, u)= (R̂(t, u), R̃(t, u)). Note that the RHS of the resolved modes involves both
resolved and unresolved modes. In anticipation of the construction of a reduced
model we can rewrite the RHS as R(t, u) = R(0)(t, u) = (R̂(0)(t, u), R̃(0)(t, u)).
Recall that the main idea behind the current mesh refinement approach is to construct
a reduced model for the modes in F and compare the evolution of these modes
by the reduced model to the evolution of the same modes by the full system. In
general, when one constructs a reduced model, additional terms appear on the RHS
of the equations of the reduced model. The role of these additional terms is to
account for the interactions between the resolved and unresolved modes, since the
unresolved modes no longer appear explicitly in the reduced model. As is standard
in renormalization theory [5], one can augment the RHS of the equations in the full
system by including such additional terms. That is accomplished by multiplying
each of these additional terms by a zero coefficient. In this way, the reduced and
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full systems’ RHSs have the same functional form. In particular, for each mode uk ,
k ∈ F ∪G, we can rewrite R(0)k (t, u) as

R(0)k (t, u(t))=
m∑

i=1

a(0)i R(0)ik (t, u(t)),

where R(0)1k (t, u(t)) = R(0)k (t, u(t)) and R(0)ik (t, u(t)), for i = 2, . . . ,m are of the
same functional form as the additional terms which appear in the reduced model.
This is easy to do by taking a(0)1 = 1 and a(0)i = 0, for i = 2, . . . ,m. Thus, the
equation for the mode uk , k ∈ F ∪G is written as

duk(t)
dt
= Rk(t, u)= R(0)k (t, u(t))=

m∑
i=1

a(0)i R(0)ik (t, u(t)). (1)

Correspondingly, the reduced model for the mode u′k , k ∈ F is given by

du′k(t)
dt
= R(1)k (t, û′(t))=

m∑
i=1

a(1)i R(1)ik (t, û′(t)), (2)

with initial condition u′k(0)= u0k . We repeat that the functions R(1)ik , i = 1, . . . ,m,
k ∈ F, have the same form as the functions R(0)ik , i = 1, . . . ,m, k ∈ F, but they
depend only on the reduced set of modes F . Dimensional reduction transforms
the vector a(0) = (a(0)1 , . . . , a(0)m ) to a(1) = (a(1)1 , . . . , a(1)m ). This allows one to
determine the relation of the full to the reduced system by focusing on the change
of the vector a(0) to a(1). Also, the vectors a(0) and a(1) do not have to be constant
in time. This does not change the analysis that follows.

Define m quantities Êi , i = 1, . . . ,m, involving only modes in F . For example,
these could be L p norms of the reduced set of modes. To proceed we require that
these quantities’ rates of change be the same when computed from (1) and (2), i.e.,

d Êi (û)
dt

=
d Êi (û′)

dt
, i = 1, . . . ,m. (3)

Note that similar conditions, albeit time-independent, lie at the heart of the renor-
malization group theory for equilibrium systems [5, page 154]. In fact, it is these
conditions that allow the definition and calculation of the (renormalization) matrix
whose eigenvalues are used to calculate the critical exponents. In the current
(time-dependent) setting, the renormalization matrix is defined by differentiating
d Êi (û)/dt with respect to a(0) and using (3) to obtain

∂

∂a(0)j

(d Êi (û)
dt

)
=

m∑
k=1

∂

∂a(1)k

(d Êi (û′)
dt

)∂a(1)k

∂a(0)j

, i, j = 1, . . . ,m. (4)
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We define the renormalization matrix Mk j =
∂a(1)k

∂a(0)j

, k, j = 1, . . . ,m, and the matri-
ces

Ak j =
∂

∂a(0)j

(d Êk(û)
dt

)
and Bk j =

∂

∂a(1)j

(d Êk(û′)
dt

)
, k, j = 1, . . . ,m.

Equation (4) can be written in matrix form as

A = M B. (5)

The entries of A describe the contributions of the different terms appearing on the
RHS of the full system to the rate of change of Ei . The same can be said for the
entries of matrix B and the reduced model.

The eigenvalues of the matrix M contain information about the behavior of the
reduced system relative to the full system. In fact, they measure whether the full
and reduced systems deviate or approach. In the renormalization theory of critical
phenomena, the eigenvalues of M at the critical point are used to analyze the system
properties close to criticality. The analysis is based on the assumption that the
eigenvalues of M change slowly near the critical point so that even if one cannot
compute exactly on the critical point, it is possible to get an accurate estimate of
them by computations near the critical point. Then, one performs a linear stability
analysis near the fixed point and computes the system properties. The situation in
the case of singularities of PDEs is different. In this case, the eigenvalues of M
vary most rapidly near the singularity, due to the full system’s rapid deterioration.
Thus, we are not able to use linear stability analysis near the singularity. However,
we are still able to extract the relevant blow-up rates (see Section 5).

1.1. An instructive example. We use the one-dimensional inviscid Burgers equa-
tion as an instructive example for the constructions presented in this section. The
equation is given by

ut + uux = 0. (6)

This equation should be supplemented with an initial condition u(x, 0)= u0(x) and
boundary conditions. We solve (6) in the interval [0, 2π ] with periodic boundary
conditions. This allows us to expand the solution in Fourier series

uM(x, t)=
∑

k∈F∪G

uk(t)eikx ,

where F ∪ G = [−M/2,M/2 − 1]. We have written the set of Fourier modes
as the union of two sets in anticipation of the construction of the reduced model
comprising only of the modes in F = [−N/2, N/2 − 1], where N < M . The
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equation of motion for the Fourier mode uk becomes

duk

dt
=−

ik
2

∑
p+q=k

p,q∈F∪G

u puq . (7)

1.1.1. The t-model. We need to choose a reduced model for the modes in F . We
use a reduced model, known as the t-model, which follows correctly the behavior of
the solution to the inviscid Burgers equation even after the formation of shocks [4;
13]. The t-model was first derived in the context of statistical irreversible mechanics
[9] and was later analyzed in [4; 13]. It is based on the assumption of the absence
of time scale separation between the resolved and unresolved modes. We will use
the same model for the case with nonzero viscosity and comment on its validity
when appropriate. For a mode u′k in F the model is given by

d
dt

u′k =−
ik
2

∑
p+q=k

p∈F, q∈F

u′pu′q −
ik
2

∑
p+q=k

p∈F, q∈G

u′p

[
−t

iq
2

∑
r+s=q

r∈F, s∈F

u′r u′s

]

−
ik
2

∑
p+q=k

p∈G, q∈F

[
−t

i p
2

∑
r+s=p

r∈F, s∈F

u′r u′s

]
u′q . (8)

The first term on the RHS of (8) is of the same form as the first term in (7), except
that the term in (8) is defined only for the modes in F . The viscous term is the
same. The third and fourth terms in (8) are not present in (7). They are cubic in
the Fourier modes and they are effecting the drain of energy out of the modes in
F . We should note here that the cubic terms in the t-model do not depend on the
viscosity. To conform with the notation introduced earlier we rewrite (8) as

d
dt

u′k = a(1)1

[
−

ik
2

∑
p+q=k

p∈F, q∈F

u′pu′q

]

+ a(1)2

[
−

ik
2

∑
p+q=k

p∈F, q∈G

u′p

[
−t

iq
2

∑
r+s=q

r∈F, s∈F

u′r u′s

]
−

ik
2

∑
p+q=k

p∈G, q∈F

[
−t

i p
2

∑
r+s=p

r∈F, s∈F

u′r u′s

]
u′q

]
,

where a(1)1 = 1 and a(1)2 = 1. We rewrite Equation (7) as

duk

dt
= a(0)1

[
−

ik
2

∑
p+q=k

p,q∈F∪G

u puq

]
+ a(0)2

[
−

ik
2

∑
p+q=k

p∈F∪G, q∈I

u p

[
−t

iq
2

∑
r+s=q

r∈F∪G, s∈F∪G

ur us

]

−
ik
2

∑
p+q=k

p∈I, q∈F∪G

[
−t

i p
2

∑
r+s=p

r∈F∪G, s∈F∪G

ur us

]
uq

]
,
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where a(0)1 = 1 and a(0)2 = 0. The reader should note that we have introduced a new
set of modes I . This is the set of unresolved modes for the full system. The reason
for introducing the set I is that, as is the case in renormalization formulations, the
terms appearing in the RHS of the equations at the different levels of resolution
should be of the same functional form. The difference between the different levels
of resolution should be only in the range of modes used. Since the t-model involves
a quadratic convolution sum with one index in the resolved range and the other in
the unresolved range, we should use the same functional form when constructing the
corresponding term for the full system. Thus, this term should involve a convolution
sum with one index in the range F ∪G and the other in I .

Further, define

R̂(0)1k (t, û(t))=−
ik
2

∑
p+q=k

p,q∈F∪G

u puq ,

R̂(0)2k (t, û(t))

=−
ik
2

∑
p+q=k

p∈F∪G, q∈I

u p

[
−t

iq
2

∑
r+s=q

r∈F∪G, s∈F∪G

ur us

]
−

ik
2

∑
p+q=k

p∈I, q∈F∪G

[
−t

i p
2

∑
r+s=p

r∈F∪G, s∈F∪G

ur us

]
uq .

Also, define

R̂(1)1k (t, û′(t))=−
ik
2

∑
p+q=k
p,q∈F

u′pu′q ,

R̂(1)2k (t, û′(t))

=−
ik
2

∑
p+q=k

p∈F, q∈G

u′p

[
−t

iq
2

∑
r+s=q

r∈F, s∈F

u′r u′s

]
−

ik
2

∑
p+q=k

p∈G, q∈F

[
−t

i p
2

∑
r+s=p

r∈F, s∈F

u′r u′s

]
u′q .

Thus, the equations of motion for the resolved modes in the full system and the
reduced model can be written as

duk

dt
=

2∑
i=1

a(0)i R̂(0)ik (t, u(t)) (9)

and
du′k
dt
=

2∑
i=1

a(1)i R̂(1)ik (t, û′(t)). (10)

To proceed, we need to define the quantities Êi , i = 1, . . . ,m. In our case, m = 2
and we need to define Ê1 and Ê2. The choice of the Êi is not unique. We chose for
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our experiments Ê1 =
∑

k∈F |uk |
2 and Ê2 =

∑
k∈F |uk |

4. The rates of change of
the Êi are given for the full system by

d Ê1

dt
=

∑
k∈F

a(0)1 2 Re(R̂(0)1k (t, û(t))u∗k)+ a(0)2 2 Re(R̂(0)2k (t, û(t))u∗k)

and

d Ê2

dt
=

∑
k∈F

a(0)1 2 Re(2R̂(0)1k (t, û(t))|uk |
2u∗k)+ a(0)2 2 Re(2R̂(0)2k (t, û(t))|uk |

2u∗k),

where u∗k is the complex conjugate of uk . Similarly, for the reduced system we have

d Ê1

dt
=

∑
k∈F

a(1)1 2 Re(R̂(1)1k (t, û′(t))u′∗k )+ a(1)2 2 Re(R̂(1)2k (t, û′(t))u′∗k )

and

d Ê2

dt
=

∑
k∈F

a(1)1 2 Re(2R̂(1)1k (t, û′(t))|u′k |
2u′∗k )+ a(1)2 2 Re(2R̂(1)2k (t, û′(t))|u′k |

2u′∗k ).

The equations for the rates of change of the Êi can be used for the computation of
the 2× 2 matrices A and B through the relations (4).

2. The mesh refinement algorithm

We continue our presentation with the mesh refinement algorithm. The construction
in the previous section requires the exact knowledge of an accurate reduced model.
This means the knowledge of both the functional form of the reduced model and
the associated coefficient vector a(1). In fact, it is possible to relax this constraint
by requiring the knowledge only of the functional form of the reduced model,
that is, knowledge of the vector R̂(1) but not of a(1). This can be considered as
a time-dependent generalization of the Swendsen renormalization algorithm (for
example, see the nice presentation in [5, Chapter 5]), even though here we do not
have a statistical framework. The Swendsen algorithm is based on the observation
that knowledge of only the functional form of the reduced model but not necessarily
of the associated coefficient vector a(1) is enough for computing quantities of the
reduced system. In particular, the matrix B can be calculated by using the resolved
modes’ values as computed from the full system.

As we have mentioned before, the entries of B describe the contributions of the
different terms appearing on the RHS of the reduced system to the rate of change of
Ei (the same for the entries of matrix A and the full model). The determinant of the
matrix B measures whether there is need for the reduced system to transfer energy
to smaller scales. The time instant when det B becomes nonzero, TB, signals the
onset of energy transfer from the modes in F to the modes in G. The determinant of
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the matrix A measures whether there is need for the full system to transfer energy to
smaller scales. The time instant when det A becomes nonzero, TA, signals the onset
of underresolution of the full system. The time interval [TB, TA) is our window
of opportunity to refine the mesh, without losing accuracy and without wasting
computational resources. We will use the value of det B as a criterion to decide
when it is time to refine the mesh.

Note that if there exists a singularity, the interval 1T = TA− TB will shrink to
zero as we increase the resolution. The converse is not necessarily true. If 1T
appears to converge to zero as we increase the resolution does not mean that there
certainly exists a singularity. Since all the calculations are finite, there is only a
maximum resolution that we can afford. It may well be that an even larger, and
presently unattainable, resolution could reveal that there is no singularity.

Mesh refinement algorithm.

(1) Choose a value for TOL . For this value of TOL run a mesh refinement
calculation, starting, say, from Nstart modes to Nfinal modes. For example,
let Nstart = 32 and double at each refinement until, say, Nfinal = 256 modes.
Record the values of the quantities Êi , i = 1, . . . ,m when N = Nfinal and
| det B| = TOL . Let’s call this simulation S1.

(2) For the same value of TOL run a calculation with Nstart = Nfinal modes (for
the example Nstart = Nfinal = 256). Record the values of the quantities Êi ,
i = 1, . . . ,m when | det B| = TOL . Let’s call this simulation S2.

(3) Compare to within how many digits of accuracy the quantities Êi , i =1, . . . ,m
computed from S1 and S2 agree. If the agreement is to within a specified
accuracy, say five digits, then choose this value of TOL . If the agreement is
in fewer digits, then decrease TOL (more stringent criterion) and repeat until
agreement is met.

(4) Use the above decided value of TOL to perform a mesh refinement calculation
with a larger magnification ratio, i.e. a larger value for the ratio Nfinal/Nstart.

The agreement in digits of accuracy between S1 and S2 depends on the form of the
terms chosen for the reduced model. Even though we do not know the coefficients
of the reduced model, knowledge of the correct functional form of the terms can
affect significantly the accuracy of the results. This situation is well known in
the numerical study of critical exponents in equilibrium phase transitions; see [5,
Chapter 5].

2.1. How to compute the coefficients of the reduced model. When we only know
the functional form of the terms appearing in the reduced model but not their
coefficients it is not possible to evolve a reduced system. We present a way of
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actually computing the coefficients of the reduced model as needed. If the quantities
Êi , i = 1, . . . ,m are, for example, L p norms of the Fourier modes, then we can
multiply (2) with appropriate quantities and combine with (3) to get

d Ê1(û)
dt

=

m∑
i=1

a(1)i Û (1)
i1 (t, û(t)),

d Ê2(û)
dt

=

m∑
i=1

a(1)i Û (1)
i2 (t, û(t)),

· · · = · · ·

d Êm(û)
dt

=

m∑
i=1

a(1)i Û (1)
im (t, û(t)),

where Û (1)
i j , i, j = 1, . . . ,m are the new RHS functions that appear. Note that the

RHS of the equations above does not involve primed quantities. The reason is that
here the reduced quantities are computed by using the values of the resolved modes
from the full system. The above system of equations is a linear system of equations
for the vector of coefficients a(1). In fact, the matrix of the system is the transpose
BT of the matrix B. The linear system can be written as

BT a(1) = e, (11)

where e= (d Ê1(û)/dt, . . . , d Êm(û)/dt). This system of equations can provide us
with the time evolution of the vector a(1).

The determination of coefficients for the reduced model through the system (11)
is a time-dependent version of the method of moments. We specify the coefficients
of the reduced model so that the reduced model reproduces the rates of change of a
finite number of moments of the solution. This construction can actually be used as
an adaptive way of determining a reduced model if one has access to experimental
values of the rates of change of a finite number of moments. Suppose that we are
conducting a real world experiment where we can compute the values of a finite
number of moments on a coarse grid only. Then we can use the system (11) at
predetermined instants to update a model defined on the coarse grid. Results of this
construction will be presented elsewhere.

3. Numerical results for the inviscid Burgers equation

We present numerical results of the mesh refinement algorithm for the inviscid
Burgers equation with the initial condition u(x, 0)= sin(x). This initial condition
leads to a singularity forming at time Tc= 1. Figure 1 contains results about the time
spent between refinement steps and the time reached with the maximum allowed
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Figure 1. Top: Time spent between refinement steps for differ-
ent tolerance values. Bottom: Time reached with the maximum
allowed resolution.

resolution. We start from a resolution Nstart = 32 and allow a maximum resolution
of Nfinal = 8192. We present results for two values of the tolerance TOL1= 10−16

and TOL2 = 10−6. When the tolerance criterion is less strict the algorithm can
reach later times before running out of resolution.

In Figure 2 we compare the velocity field produced by the algorithm with
Nstart = 32, Nfinal = 8192 and TOL1= 10−16 with the velocity field produced by
the algorithm with Nstart = Nfinal = 8192 and the same tolerance. It is obvious that
the results are in very good agreement. However, the mesh refinement calculation
was about 240 times faster. The final time reached by the algorithm is T = 0.962.
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Figure 2. Comparison of the velocity field produced at the time
of termination of the mesh refinement algorithm for two differ-
ent magnification ratios. The first simulation has Nstart = 32 and
Nfinalg = 8192 while the second has Nstart = Nfinalg = 8192.

3.1. The direct approach to calculating the blow-up rate. A mesh refinement
algorithm can be used not only to approach a potential singularity but also estimate
the rate at which the solution or some function of it blows-up. We restrict ourselves
to the case of an algebraic (in time) singularity, meaning that some function of
the solution diverges as ∼ |Tc− T |−γ , where γ > 0. Let us assume for a moment
that Tc is known. One obvious way of estimating γ, is to run the mesh refinement
algorithm and store the values of the blow-up quantity, say, ξn , n = 1, . . . , N ,
and the instant Tn at which each refinement took place. Then, one can plot (in
log-log) the values of the blow-up quantity at the different refinement instants Tn

as a function of the distance from the singularity Tc− Tn and estimate the slope of
the curve. That would provide us with the blow-up rate. Before we proceed, we
have to address the issue of the value of Tc which is, in general, unknown. Thus,
the value of Tc has to be calculated from the algorithm. It is simple to see that
small errors in the estimation of Tc can lead to huge errors in the estimation of the
blow-up rate. One way of estimating Tc is the following: for different choices of
Tc, plot, in log-log coordinates, the values of the blow-up quantity at the refinement
instants Tn as a function of the distance from the singularity Tc− Tn and pick the
value of Tc for which this plot is a straight line. This can be decided by monitoring
the value of the correlation coefficient for a linear regression.

We present results of the above construction for the inviscid Burgers equation
with the initial condition u(x, 0)= sin(x). This initial condition leads to a singularity
forming at time Tc = 1. The maximum absolute value of the velocity gradient blows
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velocity gradient max |∂u/∂x |n and (1− Tn)

−1 for the different
refinement steps (indexed by n).

up as (1−T )−1. Figure 3 shows the log-log plot of the maximum absolute value of
the velocity gradient max |∂u/∂x |n and of the inverse distance from the singularity
time (1− Tn)

−1 as recorded at the different refinement steps Tn . The slope of the
curve is γ = 1± 10−8. Note that the minute error in the estimate shows that the
refinement algorithm keeps the calculation well-resolved even very close to the
singularity. The calculations were performed using the mesh refinement algorithm
of Section 2 with the refinement tolerance criterion TOL = det B set to 10−10. We
should note that for this value of TOL , the value of det A for the full system is
still much smaller than the double precision roundoff threshold of 10−16. For this
calculation we set Nstart = 32 and Nfinal = 131072 and the algorithm terminated at
time T = 0.996. The mesh refinement is about 3000 times faster than a calculation
with Nstart = Nfinal = 131072.

4. Numerical results for the supercritical focusing Schrödinger equation

We continue with numerical results about the supercritical focusing Schrödinger
equation. The focusing Schrödinger equation is given by

i ∂u/∂t +1u+ |u|2σu = 0, where σ > 0. (12)

The equation needs to be supplemented by an initial condition u(x, 0)= u0(x) and
boundary conditions. It has been conjectured by Zakharov [19] that in d dimensions,
when σ > 2/d , and for a sufficiently large initial condition, the solution of (12) will
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blow-up at a finite time T , and the behavior of the solution close to the blow-up
time is given by

u(x, t)= ((2κ(T − t))−1/2(1/σ+iω/κ)Q((2κ(T − t))−1/2
|x |),

where Q(ξ) is a complex-valued function with appropriate decay properties and κ
and ω are parameters to be determined. For the maximum of the solution we have

max |u(x, t)| ∼ (T − t)−1/(2σ) as t→ T .

Although the mathematical theory is not yet complete, overwhelming evidence from
numerical and formal analytical calculations suggests that the conjecture is true.
Here, we restrict attention to the one-dimensional case and to periodic boundary
conditions in the domain [0, 2π ]. In the one-dimensional case, according to the
conjecture, the solution exhibits an algebraic finite time blow-up when σ > 2. Here
we present results for the case σ = 3. In the numerical experiments we used the
initial condition

u0(x, 0)= i A exp(−(x −π)2),

for different values of A. For this initial condition we have max |u0(x)|= A at x=π .
Figure 4 shows the initial condition for A = 1.35 and the solution as computed by
the mesh refinement algorithm with Nstart = 48 and Nfinal = 10368. The tolerance
criterion TOL = det B was set to 10−16. The algorithm was implemented with the
t-model for the reduced system as in the case of inviscid Burgers.

Table 1 contains the estimated blow-up exponents for the maximum of the
solution for different values of A. For A = 1.242 the mesh refinement algorithm
does not run out of resolution which signals the absence of a singularity. For all the
other cases and for Nstart = 48 and Nfinal = 10368, the mesh refinement algorithm
was about 200 times faster than a calculation performed with Nstart= Nfinal= 10368.
Unlike the case of the inviscid Burgers equation, here we cannot estimate beforehand
the exact time T of the blow-up. We do that in the way proposed in the previous
section. In particular, for different choices of T, we calculated the correlation
coefficient of the linear fit (in log-log coordinates), of the values of the blow-up
quantity as a function of the distance from the singularity T − t and picked the
value of T for which the correlation coefficient is largest. For all the cases shown
in Table 1 the correlation coefficient is about 0.999999999. The algorithm is able
to approach the estimated singularity instant T to within 5× 10−5 units of time.
The conjectured blow-up exponent for the maximum of the solution when σ = 3
is 1/2σ = 1/6 ∼ 0.1667. The relative deviation of the estimated values of the
exponent relative to the conjectured value of the exponent is within 1 percent for
all the values of A examined except for A = 1.8 and A = 2.
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max |u0(x)| Est. exp. α |Rel. dev.| (%) Sing. form

1.242 — — —

1.243 0.1652 0.90 (T − t)−α

1.250 0.1648 1.14
1.255 0.1654 0.78
1.260 0.1649 1.08
1.300 0.1655 0.72
1.350 0.1662 0.30
1.500 0.1678 0.66
1.600 0.1691 1.44
1.800 0.1727 (0.1684) 3.60 (1.01)
2.000 0.1766 (0.1696) 5.93 (1.74)

Table 1. Estimated blow-up exponents for the supercritical (σ = 3)
Schrödinger equation. The relative deviation is from the conjec-
tured value of 1/2σ = 1/6∼ 0.1667.

We would like to make a comment about the discrepancy for A= 1.8 and A= 2.
It is to be expected that if one keeps the same maximum resolution while increasing
the magnitude of the initial condition, i.e. the value of A, after some value of A the
algorithm runs out of resolution before it can come close enough to the singularity
for the asymptotic behavior to settle in. To elucidate this point we also ran the mesh
refinement algorithm with Nfinal = 34992 for A = 1.8 and A = 2. The estimated
values of the blow-up exponent are included in Table 1 in parentheses. As we see,
if one uses large enough resolution, the relative deviation of the estimated values of
the exponent relative to the conjectured value of the exponent decreases again to
within 1 percent. Note that for Nstart = 48 and Nfinal = 34992 the mesh refinement
algorithm is about 400 times faster than a calculation with Nstart = Nfinal = 34992.
As expected, the acceleration factor increases when Nfinal/Nstart increases.

5. Calculation of the blow-up rate as a critical exponent

As we have said, we are also interested in showing how the blow-up rate estimate
can be obtained using properties of a renormalization flow, that is, a coarse-graining
process. There are two ways to do that: (i) Wilson’s or “phase transition” approach,
where one treats the singularity as a fixed point of a renormalization transformation
and computes the blow-up rate by analysis in the vicinity of the fixed point, and
(ii) the Widom–Kadanoff or “scaling approach”, where one assumes the existence
of certain scaling laws in the vicinity of the singularity and then combines them to
obtain the blow-up rate.
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Figure 4. Supercritical (σ = 3) Schrödinger equation with
max |u0(x)| = 1.35.

5.1. The “phase transition” approach. The key idea is that a series of successive
refinement steps (going to smaller and smaller scales) can be seen (approximately)
as a coarse-graining process in reverse. Thus, one can run the mesh refinement
algorithm, compute and store the coefficients of the reduced model at each refine-
ment step and then use them to reconstruct the renormalization flow from smaller to
larger scales. In this case, the smallest scale that the refinement algorithm reached is
the starting scale of the renormalization flow. For the case of a time-dependent PDE
the mesh refinement algorithm allows us to get closer and closer to the singularity
instant Tc. Thus, the renormalization procedure will take us further and further
away from Tc.

There are two ways to show how the renormalization flow can be used to compute
the blow-up rate. The first, the “phase transition” approach, assumes that the phase
transition is a fixed point of the renormalization flow and proceeds with an analysis
near the fixed point [5, pages 124–27]. However, as we mentioned in the discussion
following (5), we do not use a linear stability analysis because the eigenvalues of
M vary most rapidly near the fixed point. Instead, we deal with the full (nonlinear)
renormalization flow.

The second way, the “scaling” approach, is just a manipulation of different
scaling laws assumed to hold asymptotically near the singularity. Of course, both
lead to the same expression for the blow-up rate. We choose to present both since
it elucidates further the connection between the techniques presented in this paper
and those used in the theory of equilibrium phase transitions.

We start our presentation of the blow-up rate calculation with the phase transition
approach [5]. Let us suppose that near the singularity instant Tc a quantity ξ
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behaves as |Tc− T |−γ . For the case of Burgers this would be the maximum of the
velocity gradient, that is, max |∂u/∂x |. We want to find the value of γ . As we have
said we assume that we have computed and stored a sequence of coefficients for
the reduced model, the associated length scale, the value of the blow-up quantity
and the time of occurrence of the refinement step. Then, by simply reversing
the sequence indexing, we have the necessary quantities for the description of a
renormalization flow which starts close to Tc and moves further away with every
coarse-graining step. Since every renormalization step brings us further away from
the critical point Tc, the values of the blow-up quantity become smaller with every
renormalization step. Thus, if we coarse-grain the length scale at which we probe
the problem by a factor of b at each step (where b > 1), then ξn+1 = ξn/bβ2, with
β2 > 0. This implies ξn ∼ l−β2

n and thus β2 can be computed from the refinement
algorithm data collected. The coefficient of the reduced model which monitors the
deviation of the full and reduced model will increase with each renormalization
step, that is, αn+1 = αnbβ1 , with β1 > 0. This implies αn ∼ lβ1

n and β1 can also be
computed from the collected data. Moreover, repeated application of the recursive
relation for the coefficient αn gives αn = α0(bβ1)n . This relation is the analog of
the recursive relation derived in the theory of phase transitions by linearization of
the renormalization flow around the critical (fixed) point. Here we did not resort to
a linearization procedure. To proceed, we need to estimate the behavior of α0, the
starting point of the renormalization flow. In the theory of phase transitions, the
behavior of the coefficient α0 is assumed to be linear in |Tc− T |. However, there is
no a priori reason for such a behavior. We assume that α0 = C2|Tc− T |δ, where δ
can also be computed from the collected data.

Let us summarize what we have obtained so far. As we renormalize, the blow-up
quantity decreases and the reduced model coefficient that monitors the deviation of
the full and reduced model increases. Following the phase transition approach we
thus assume that if we take enough renormalization steps then we have

ξ

C1(bβ2)n
= u and C2|Tc− T |δ(bβ1)n = v,

where u, v are quantities of the same order and C1,C2 are constants that depend
on the initial conditions. We can eliminate n in the above two relations and get

ξ ∼ |Tc− T |−γ , with γ =
δβ2

β1
.

Thus, we have expressed the blow-up rate exponent γ as a function of scaling
exponents that are associated with properties of the renormalization flow.

Before we conclude with this approach, we need to make one more comment.
We have said before that the phase transition approach treats the singularity as a
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fixed point of the renormalization flow. To do that one has to construct a differential
equation for the evolution of the coefficient α with respect to l. Note that by the
way we have defined it, α is dimensionless. The equation for its evolution with
changes in l is given by l ∂α/∂l = β(α) [5]. The RHS of the equation is called
the beta function and its zeros determine the fixed points of the renormalization
flow. Since α = Clβ1, for some constant C, we have l ∂α/∂l = Cβ1lβ1 . So, the
beta function is β(α)= Cβ1lβ1 = β1α. So, the only fixed point of the beta function
is α = 0. If β1 > 0 then α = 0 corresponds to l = 0, that is, the zero scale. But
this is exactly the active scale reached at the instant that the singularity occurs.
So, the singularity is indeed a fixed point of the renormalization flow as long as
β1 > 0. Moreover, if β1 > 0, this fixed point is unstable, so that if we start close to
it, the renormalization flow will take us further away. This is indeed the case for
the Burgers equation, as we show numerically in the next section.

This concludes the phase transition approach.

5.2. The “scaling” approach. We conclude with the “scaling” approach which
is based on direct combination of the different scaling laws associated with the
renormalization flow. Indeed, let ξ ∼ |Tc − T |−γ

′

, where γ ′ is the blow-up rate
exponent to be estimated. If we assume that near Tc we have ξ ∼ l−β2, α ∼ lβ1 and
α ∼ |Tc− T |δ, we can use the renormalization flow to estimate β1, β2 and δ. Then
a straightforward combination of the three scaling laws leads to γ ′ = δβ2/β1. So,
γ ′ = γ and as expected this approach leads to the same expression for the blow-up
rate exponent as the phase transition approach.

Figures 5-7 show how one can use the above construction to estimate the blow-up
rate γ from renormalization flow quantities. Recall that the coefficient of the reduced
model that monitors the deviation of the reduced and full systems is a(n)2 . Also,
that the index n appearing in the figures is used now to count the renormalization
steps which are the opposite of the refinement steps. The length scale ln at which
we probe the system for the different renormalization steps is the length scale of
the reduced model. This means that if we have a full system calculation with Nn

modes, then ln = 22π/Nn, since the reduced model has half the resolution of the
full system.

From the data we estimate the exponents

β2 = 0.670± 0.001, β1 = 0.739± 0.007, δ = 1.1026± 10−8.

From these estimates we get γ ′ = 1± 0.01. Thus, when we compute the blow-up
rate using solely renormalization flow quantities, the estimation error is larger than
when computing this rate directly. This is to be expected since we had to combine
three empirically determined scaling laws, each one of which comes with its own
error and also relies entirely on the adequacy of the reduced model. Nevertheless,
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the accuracy obtained is acceptable and moreover, it highlights the accuracy of the
t-model for this equation.

Finally, since β1 = 0.739 > 0, we conclude that the singularity is an unstable
fixed point of the renormalization flow (see discussion at the end of Section 5.1).
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6. Conclusions and future work

We have presented a mesh refinement algorithm, inspired by renormalization con-
structions in critical phenomena, which allows the efficient location and approach
of a possible singularity. The algorithm assumes knowledge of an accurate reduced
model. In particular, it assumes knowledge of the functional form of the reduced
model but not of the actual coefficients. We provide a way of computing the
necessary coefficients on the fly as needed. On a theoretical level, the algorithm
can be used to study the behavior of (near-) singular solutions. On the practical
side, it can be used as a mesh refinement tool.

We have only examined the simple case of periodic boundary conditions under
uniform mesh refinement. We plan to extend the constructions presented here to a
real space formulation allowing the treatment of nonperiodic boundary conditions
and more complicated geometries. In that case, one can divide the domain into
subdomains and apply the mesh refinement algorithm individually in the different
subdomains. In addition, the algorithm can be modified to perform mesh-coarsening
after the computationally intensive time interval of the simulation has passed.

The original motivation behind the development of the algorithm was the open
problem of the formation of singularities in finite time for the incompressible Euler
and Navier–Stokes equations of fluid mechanics. In addition to helping with the
issue of singularity formation, we hope that the algorithm can be of use in the
simulation of real world flows by allowing a better assessment of the onset of
underresolution.
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