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We present a numerical method for computing the signed distance to a piecewise-
smooth surface defined as the zero set of a function. It is based on a marching
method by Kim (2001) and a hybrid discretization of first- and second-order
discretizations of the signed distance function equation. If the solution is smooth
at a point and at all of the points in the domain of dependence of that point, the
solution is second-order accurate; otherwise, the method is first-order accurate,
and computes the correct entropy solution in the presence of kinks in the initial
surface.

1. Introduction

Let 0 be a continuous, piecewise smooth (D−1)-dimensional manifold in RD

defined implicitly as the zero set of a function, that is, there is a continuous piecewise
smooth φ defined on some ε-neighborhood of 0 such that

0 = {x : φ(x)= 0}. (1)

We also assume that ∇φ is bounded and piecewise smooth on 0, and that there is a
constant c > 0 such that |∇φ(x0)| ≥ c at all points, x0 ∈ 0 where ∇φ is defined.
At such points, n̂, the unit normal to 0, is given by

n̂=
∇φ

|∇φ|
.

Given such a surface 0, we can define the signed distance function ψ

ψ(x)= s min
x′∈0
|x− x′| = sdist(x, 0), (2)

where s is defined to be the positive on one side of 0 and negative on the other. If
x0 ∈ 0, is a point at which the minimum in the right-hand side of (2) is achieved,
and 0 is smooth at that point, then, s = sign((x− x0) ·∇φ(x0)). If 0 is not smooth
at that point, then s is the single value taken on by sign((x − x′) · ∇φ(x′)) at all
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points sufficiently close to x0 such that ∇φ(x′) is defined. In any case, s =±1 on
RD
−0 and changes only at 0.

If ψ(x) is smooth, then ψ satisfies the signed distance function equation.

|∇ψ(x)| = 1. (3)

In that case, solutions to the signed distance function equation satisfy the character-
istic equations

dx
dσ
= w, x(0)= x0,

dw

dσ
= 0, w(0)= (∇ψ)(x0),

dψ
dσ
= 1, ψ(0)= ψ(x(0)),

where σ denotes arc length. These equations can be solved analytically to obtain

x(σ )= x(0)+σ(∇ψ)(x(0)), w(σ )=(∇ψ)(x(0)), ψ(σ )=ψ(x(0))+σ, (4)

that is, the curves are straight lines in (x, ψ) space, while w = ∇ψ is constant
along each trajectory.

The characteristic form of the equations suggest that signed-distance functions
can be constructed incrementally. Given that ψ is known on �r = {x : |ψ(x)| ≤ r},
then one can extend ψ to �r+δ using (4). It is easy to show that this reasoning
extends to nonsmooth signed distance functions, that is, ones defined by (2). Fast
marching methods [13; 7] are numerical methods for computing the signed distance
function based on this observation. Fast marching methods have two components:

(1) A discretization of the signed distance function equation that permits the
calculation of the signed distance at a given grid point by using a stencil of
nearby values that have already been computed.

(2) A marching algorithm, which is a method for determining the order in which
grid values are to be computed.

For example, the method in [7; 13] uses a first-order accurate discretization of the
signed distance function equation, and a marching algorithm based on computing,
at each step, the value of ψ that has the minimum magnitude among all of the
uncomputed values adjacent to valid values.

A number of problems in numerical simulation related to implicit function
representation of surfaces require the computation of the signed distance from a
given surface; see [14; 2]. The motivating application for this paper is the use of
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narrow-band level-set methods for representing the propagation of fronts in large-
scale fluid dynamics simulations combined with second-order accurate volume-of-
fluid methods [4] for discretizing the PDE on either side of the front. This imposes
two requirements that have not been simultaneously met by previous methods. The
first is the use of a marching method that is a good match for adaptive and parallel
implementation based on patch-based domain decomposition. We impose this
requirement for compatibility with the software frameworks typically used for high-
performance implementations of block-structured adaptive grid methods. In such an
approach, the construction of a solution is based on steps that update independently
the points on a collection of rectangles whose disjoint union covers the domain,
interleaved with steps that communicate ghost cell data. The marching method in
[7; 13; 6] does not fit into this category: it is specified as a serial algorithm, in
that the values on a grid are computed one at a time, with the next value/location
determined by the previously computed values. Not only is this a poor match for
the block-structured software frameworks, but it also imposes a serial bottleneck
in a parallel computation. The second requirement is that we obtain a solution
that is second-order accurate at all points whose domain of dependence includes
no singularities, since the volume-of-fluid discretizations requires that level of
accuracy [12; 5; 11]. In all cases, the solution should converge to a signed-distance
function, even in regions whose domain of dependence include discontinuities in
the derivatives. While second-order accurate algorithms have been proposed [14;
3; 9; 10; 15], not a great deal of attention has been paid to distinguishing between
converging and diverging characteristics for an initial surface that contains kinks in
the context of second-order accurate methods.

In the present work, we present a method that meets our requirements. We use a
variation on the global marching method in [8]. Given the values at grid points in
�r , we compute simultaneously and independently all of the grid values in �r+δ,
where δ is comparable to the mesh spacing. Since the method computes the solution
at a large number of points independently as local functions of the previously
computed values in �r , the method maps naturally onto a block-structured domain-
decomposition implementation. Second, our discretization of the signed distance
function equation is analogous to the construction of the fluxes for a second-order
Godunov method for a scalar conservation law. It is a hybridization of a high-order
and low-order method, where the choice of hybridization coefficient is based on a
local curvature calculation. The high-order method is a straightforward difference
approximation to the characteristic form of the equations (4). The low-order method
is similar to the method in [7; 13] but uses a least-squares approach for computing
∇ψ based on different approximations depending on whether the characteristics are
locally converging or diverging. The choice of δ is based on a condition analogous
to a Courant–Friedrichs–Lewy (CFL) condition under which all the points in the



84 PETER SCHWARTZ AND PHILLIP COLELLA

high-order stencil should be available for computing the value of ψ at a grid point.
The use of a least-squares algorithm for approximating the gradient in the low-order
method involving all of the valid nearest neighbors maximizes the likelihood that
there will be sufficient valid points for computing the low-order estimate for ψ
when it is needed.

The resulting method is second-order accurate in regions where the solution is
smooth, and characteristics trace back to portions of the original surface 0 that are
smooth. If there are kinks in the original surface or that form away from the original
surface due to convergence of characteristics, the method is first-order accurate in
the range of influence of the kinks. The method appears to provide solutions that
satisfy the entropy condition, correctly distinguishing between the two directions
of propagation from kinks in the original surface. The solution on the side of the
surface corresponding to converging characteristics propagates as a kink, while the
solution on the side corresponding to diverging characteristics takes the form of a
centered expansion fan.

2. Kim’s global marching method

We discretize the problem to a grid consisting of equally spaced points in ZD. We
denote the grid-spacing by h. Given

φi = φ(ih),

where i ∈ ZD and ih in a ε−neighborhood of 0, we wish to compute

ψi ≈ ψ(ih) , |ψi | ≤ R. (5)

Our marching algorithm for computing such solutions is given in the box on the
next page.

Here the function E(ψ,�valid, i) computes a value for ψ at i using only the set
of values {ψi } that have been computed on �valid. E can be undefined, for example,
if there are insufficient points in a neighborhood of i to perform the computation.
The quantity σ is a CFL number for the marching method, and depends on the
details of E. In determining which points over which to iterate in the for loop, we
have assumed that σ < 1. The computation in the for loop can be performed in
parallel using a domain-decomposition strategy over the points adjacent to the valid
region denoted by ⋃

s:|sd |≤1

(�valid
+ s)−�valid.

In principle, the method described here could iterate an arbitrarily large number of
times before updating r . For the discretization method described in the next section,
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�new
=∅

r = ε+ σh
while r ≤ R do

for i ∈
⋃

s:|sd |≤1(�
valid
+ s)−�valid do

if E(ψ, v, �valid, i) is defined then
(ψ̃ i , ṽi )= E(ψ, v, �valid, i)
if |ψ̃ i | ≤ r then
�new += {i}
numUpdate += 1

end if
end if

end for
�valid += �new

ψ = ψ̃ , v = ṽ on �new

�new
=∅

if numUpdate= 0 then
r += σh

end if
numUpdate = 0

end while

The global marching method. In each iteration of the while loop, we compute
the solution to on points adjacent to �r−σh ⊆�

valid
⊆�r independently of the

other values being computed in that iteration. After there are no longer any
points to compute, we increment r→ r + σh.

we have observed that numUpdate= 0 on the third iteration, so we could replace
the while loop by one performing a fixed number of iterations before updating r .

3. Discretizing the signed distance function equation

In this section, we define the discretization of the signed distance function equation
used to define E. It is computed as a linear combination of a low-order (first-order)
method and a high-order (second-order) method, with the hybridization coefficient
depending on the local curvature. This approach is analogous to that taken in
constructing fluxes for hyperbolic conservation laws. The low-order method is
based on a least-squares discretization of the gradient that distinguishes between
locally converging and diverging characteristics. The signed distance function (3) is
used to determine the free parameter in the gradient corresponding to the unknown
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value of 9. This step is similar to that used in [13] and [7]. The high-order method
is based on solving the characteristic form of the equations.

3.1. Least-squares discretization. Given a collection of points p ∈ P ⊂ ZD, we
have the following relationship between the values of the distance function, ψ , and
the gradient:

1
h

(
ψ(ih)−ψ((i + p)h)

)
=− p · ∇ψ + O(h) for p ∈ P . (6)

If P has D linearly independent elements, then we can use (6) as the starting
point for deriving a first-order accurate method for computing solutions to (3).
Given

ψi+ p ≈ ψ((i + p)h) for p ∈ P, (7)

we define ψ̃ ≈ ψ(ih), v ≈ (∇ψ)(ih) as satisfying a least-squares solution to the
coupled equations:

Av =−
1
h
(ψ̃ϒ −9), (8)

where the unknown ψ̃ is viewed as a free parameter, to be determined later, and

9 = (ψi+ p1, ψi+ p2, . . . ψi+ pr )
T , (9)

A = ( p1, p2, . . . pr )
T , (10)

ϒ = (1, 1, . . . 1)T . (11)

Since A is of rank D, the least-squares solution to (8) is given by

v =−(AT A)−1 AT 1
h
(ψ̃ϒ −9)=

ψ̃−ψ

`
n̂− (ω2− (ω2 · n̂)n̂), (12)

where

ω1 =−
1
h
(AT A)−1 ATϒ, ω2 =−

1
h
(AT A)−1 AT9,

`=
1
‖ω1‖

, n̂= ω1`, ψ̄ = (ω2 ·ω1)`
2
= ψ(ih− `n̂)+ O(h2).

(13)

We assume here that ω1 is not the zero vector. If ω1 = ω1(P)= 0, then the least-
squares problem does not produce a value for ψ̃ , although the expression (12) for
the gradient is still well-defined.

Following [7; 13], the condition ‖v‖2 = 1 leads to a quadratic equation for ψ̃ :

(ψ̃ −ψ)2+ `2
‖(ω2− (ω2 · n̂)n̂)‖2 = `2. (14)

If (14) has two real roots, we choose the root for which |ψ̃ |> |ψ |. If (14) has no
real roots, we set ψ̃ = ψ .
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We denote by L(ψ, i, h, P) the value of ψ̃ obtained from the least-squares
algorithm above. We can then define

EL(ψ,�valid, i, h)= (ψ L , vL), (15)

ψ L
=

{
si minB |L(ψ, i, h, B)| if κi < 0 or ω1 = 0,
L(ψ, i, h, P) if κi ≥ 0 and ω1 6= 0,

(16)

P = U ∩ (�valid
− i), (A, 9,ω1)= (A(P),9(P),ω1(P)), (17)

vL
=−(AAT )−1 AT 1

h
(ψ Lϒ −9). (18)

In (17) we have introduced U = {u : |ud − id | ≤ 1}. The minimum in (16) is over
the collection of all sets B of pairs of adjacent points (if D= 2) or 2× 2 blocks of
points (if D= 3) contained in U such that B+ i ⊂�valid. The quantity κ is a local
estimate of the curvature:

κi =min
t

si (1
hψ)i+t , (19)

where 1h is the 2D+ 1-point centered-difference discretization of Laplacian, and
the minimum is taken over all points t ∈ [−2 . . . 2]D such that the stencil for 1h

evaluated at i + t is contained in �valid. The minimum assumption for EL to be
defined is that at least one of the B in (16) is defined, and at least one of the 1hψ

in (19) is defined. Otherwise, EL is undefined.
We use the two different least-squares algorithm depending on the sign of the

curvature in order to obtain the correct distance function in the neighborhood of a
kink. If the curvature is negative, the characteristics are converging, and the distance
function is the minimum over as many candidates as possible based on using the
least-squares algorithm on 2D−1 points, analogous to choosing the minimum over
multiple distinct characteristics that might be reaching the same point. If the
curvature is positive, the characteristics are diverging, and the use of the single
stencil involving all of the valid points in U + i leads to interpolated intermediate
values for ψ and n̂, analogous to sampling inside a centered rarefaction fan in
computing a flux for Godunov’s method at a sonic point.

3.2. A second-order accurate method. We define a function that computes a sec-
ond order approximation to the distance function and the gradient of the distance
function. In the following, let π = ψ, v denote the field that we wish to compute
at i /∈ �valid, assuming that π is known on �valid. We also assume that we know
v̂ ≈ (∇ψ)(ih). The calculation of

π̄ = Q(π, i, v̂, h)≈ π(ih) (20)

is given as follows.
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1. Compute x̄, the first point along the ray {ih− si v̂δ : δ > 0} that intersects a
coordinate plane of gridpoints:

x̄ = ih− si h
v̂

v̂max
, (21)

where v̂max is the component of v̂ whose magnitude is largest, with dmax the
corresponding coordinate direction.

2. Compute a quadratic interpolant in the coordinate plane containing x̄:

j =
⌊

x̄/h− 1
2(u− edmax)

⌋
, ȳ = x̄− jh, (22)

π̄ = π j +
∑

d 6=dmax

(
∂π

∂xd
ȳd +

1
2
∂2π

∂x2
d

ȳ2
d

)
+

∂2π

∂xd1∂xd2

ȳd1 ȳd2, (23)

where all of the derivatives are evaluated at jh. The last term in (23) is defined
only for D= 3 and d1 6= d2, d1, d2 6= dmax. We denote by ed the unit vector in
the dth coordinate direction, and u = (1 . . . 1), both elements of ZD.

The derivatives appearing in the sum in (23) are computed using second-order
accurate centered differences at jh, assuming j , j ± ed

∈ �valid. The mixed
derivative is approximated by the average of centered differences:

∂2π

∂xd1∂xd2

≈
1
N

∑
(D2

d1,d2
π) j+s/2 (24)

where

(D2
d1,d2

π)k+ed1/2+ed1/2 =
1
h2 (πk+πk+ed1+ed1 −πk+ed1 −πk+ed2 ) (25)

is defined if k, k+ ed1 , k+ ed2 , k+ ed1 + ed2 are all in �valid. The sum in (24) is
taken over all s of the form α1ed1 +α2ed2 , α1 =±1, α2 =±1 for which (D2

d1,d2
) is

defined, and N is the number of terms in the sum.
Given the function Q defined above, we can define a second-order accurate

discretization of the characteristic form of the equations (4) at ih. We iterate twice
to obtain a sufficiently accurate computation of v, computing v̂ at the point i using
the least-squares algorithm defined in the previous section, and then

v̂ := Q(v, �valid, i, v̂, h), vH
= Q(v, �valid, i, v̂, h). (26)

We then use vH to compute ψH :

ψH
= Q(ψ,�valid, i, v̂H , h)+ si h

∣∣∣∣ vH

vH
max

∣∣∣∣. (27)

We denote by EH the resulting second-order accurate method for computing ψ, v:

EH (φ, v, �valid, i)≡ (ψH , vH ). (28)
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If the low-order method is defined, and the points required for the various evaluations
of Q are defined, then (28) is defined. Otherwise, it is undefined.

3.3. Hybridization. We hybridize the low- and high-order methods based on the
magnitude of the curvature. Assuming both EL and EH are defined, we compute

(ψ L , vL)= EL(ψ, v, �valid, i), (29)

(ψH , vH )= EH (ψ, v, �valid, i), (30)

E(ψ, v, �valid, i)=
(
(1− ηi )ψ

H
+ ηiψ

L , (1− η2
i )v

H
+ η2

i v
L), (31)

where the hybridization parameter η is given by

ηi =

{
1 if h|1hψ |max > C,

h/C |1hψ |max otherwise,
(32)

|1hψ |max =max
t
|(1hψ)i+t |, (33)

where the range over which the max is taken is the same as in (19). If the high-order
value EH (ψ, v, �valid, i) is not defined, but the low-order value is, then

E(ψ, v, �valid, i)= EL(ψ, v, �valid, i). (34)

If the low order value is not defined, then E(ψ, v, �valid, i) is not defined. The
constant C is an empirically determined parameter, independent of h. In our
numerical experiments, C = 1.

If σ < 1/
√

5, and we replace the values of ψ , v on grid points in �r with those
of a smooth distance function ψe, it is possible to show that, for sufficiently small
h, both EH and EL are defined for all grid points in �r+σh and that

ψH
i = ψ

e(ih)+ O(h3), vH
=∇ψe(ih)+ O(h3), (35)

ψ L
i = ψ

e(ih)+ O(h2), vL
=∇ψe(ih)+ O(h), (36)

from which it follows that

E(ψ, v, �valid, i)= (ψe(ih),∇ψe(ih))+ O(h3). (37)

Thus we expect that the global error in our solution will be O(h2). This also explains
why we use η2, rather than η, to hybridize the gradient calculation. Otherwise, we
would introduce an O(h2) contribution to the error in the gradient at every step,
leading to a first-order accurate method for the gradient, and hence for ψ . In the
neighborhood of kinks in the level sets of ψ , the value of the curvature is O(h−1),
and we will use the low-order method, leading to a first-order accurate method in
the range of influence of the kinks.
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3.4. Initialization. We now describe the method we use to provide test problems
with an initial, narrow band three or four cells wide. We are given an initial
representation of the surface by a discretized implicit function, from which we
construct the distance function and the gradient of the distance function an O(h)
distance. If the surface is smooth, then our initialization procedure is an O(h2)

approximation to the distance function. If the characteristics cross near the surface
or the surface is not smooth, then the initialization reduces to a first-order accurate
method within the range of influence of the kink.

We require some more notation. Denote by (G0φ) the centered difference
approximation to the gradient of φ. Given a grid location i , let

d =
φi

‖(G0φ)i‖
.

Let P⊂� denote i and its neighbors. Let

m i =min
p∈P
‖(G0φ) p‖, Mi =max

p∈P
‖(G0φ) p‖. (38)

We choose a nondimensional parameter, ε, independent of h and attempt to detect
a discontinuity in the gradient by checking whether M exceeds m by an amount
greater than ε. If so, we make a robust but lower order estimate of the gradient:

if 1−
m i

Mi
≥ ε, then v = (G0φ) p : ‖(G0φ) p‖ = Mi . (39)

In our numerical experiments, ε = 1/(2
√

2). Alternatively, if

1−
m i

Mi
< ε, (40)

then we define a point,

x0 = ih− d
(G0φ)i

‖(G0φ)i‖
. (41)

At x0 we biquadratically interpolate an estimate of the gradient v. Finally, we
use root-finding in the direction v to make an estimate of the distance.

4. Numerical results

For our fast marching problems, we always compute the max norm of the error.
Where useful, we also compute the L1 and the L2- norm of the solution error.

For a discrete variable, ζ , the max norm is given by

‖ζ‖∞ =max
i
|ζi |. (42)
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L1 norm rate L2 norm rate L∞ norm rate

4.4566e-02 1.0240e-02 2.1393e-02
1.0592e-02 2.07 2.4083e-03 2.08 5.9743e-03 1.84

Table 1. Solution error for 2D curve in polar coordinates: h = 1
100

and 1
200 .

The L p-norm is given by

‖ζ‖p =

(∑
i

|(ζi )
phD

)1/p

. (43)

For all of the test problems that follow we have used a marching parameter of
σ = 1/(2

√
5).

Our first test problem uses the implicit function r = 2 cos 4θ + 7. The domain
has a lower left corner with coordinates (−10,−10,−10) and an upper right corner
with coordinates (10, 10, 10). The initial bandwidth is approximately six grid cells
wide at all resolutions. The final bandwidth is approximately 1.2. Calculations were
performed on grids with h = 1

100 , 1
200 , and 1

400 . Richardson error extrapolation was
used to calculate the results presented in Table 1. The solution is shown in Figure 1
and the error is shown in Figure 2.

Figure 1. Curve in polar coordinates.
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Figure 2. Error for a curve given in polar coordinates.

Our second test problem has as its zero-level set a surface of revolution. The
domain has a lower left corner with coordinates (−10,−10,−10) and an upper
right corner with coordinates (10, 10, 10). The surface is centered at (0, 0, 0)
and obtained by rotating the function r = 2 cos 2θ + 7 around the y-axis. The
initial bandwidth is approximately six grid cells wide at all resolutions. The final
bandwidth is 1.5. Calculations were performed on grids with h = 1

100 , 1
200 , and 1

400 .
Richardson error estimation was used to calculate the results presented in Table 2.
Slices of the error are presented in Figure 3.

Our next example uses as an implicit function whose zero set is the surface of a
cube. In this case, to test the robustness of the algorithm we initialized the annular
region to the wrong weak solution of the signed distance function equation. In
particular, where the characteristics diverge we do not round the corners in the
initial narrow band. Nonetheless our algorithm extends this initial data to a distance
function.

In this example, the initial band has a diameter of about four grid cells at the
coarse resolution. The final bandwidth is about two and one half times the diameter

L1 norm rate L2 norm rate L∞ norm rate

7.0725 e-01 1.5893 e-02 7.2842e-04
1.2275 e-01 2.52 3.0446 e-03 2.38 1.813 e-04 2.00

Table 2. Solution error for surface of revolution: h = 1
100 and 1

200 .
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Figure 3. Slices of the error for a surface of revolution.

of the initial band. Since the only error occurs in places where the gradient is
discontinuous, we present the max norm of the error in Table 3.

Our final example uses an implicit function generated by taking the union of
parallelepipeds. The zero-set is in the shape of a cube whose corners are removed.
Two-dimensional slices are in the shape of a cross. This example tests cases where
characteristics meet at a corner as well cases where the characteristics diverge at a
corner.

In this problem the domain has a lower left corner with coordinates (0, 0) and
an upper right corner with coordinates (1, 1). The initial band is approximately six
cells in diameter at all resolutions. The final bandwidth is 0.15. Since the errors
only occur in places where the gradient is discontinuous, we present the max norm
of the error in Table 4. The error is in Figure 4. Three isosurfaces, including the
zero level set, are presented in Figures 5–7.

L∞ norm rate

0.00493
0.00260 0.92
0.0013 1.0

Table 3. Solution error for distance to a cube: h = 1
50 , 1

100 , and 1
200 .
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L∞ norm rate

.00120

.000580 1.05

Table 4. Solution error for distance to a union of parallelepipeds:
h = 1

50 , 1
100 , and 1

200 .

Figure 4. Slices of the error for a union of parallelepipeds.

Figure 5. The zero isosurface of the union of parallelepipeds.
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Figure 6. An interior isosurface (at a distance =−0.12 from the
zero set) of the union of parallelepipeds.

Figure 7. An exterior isosurface (at a distance = 0.12 from the
zero set) of the union of parallelepipeds.

5. Conclusion

We have described a numerical method for solving the signed distance function
equation that is second-order accurate at points whose domain of dependence
includes no singularities, which is useful for second-order accurate volume-of-
fluid discretizations. A salient feature of our algorithm is the hybridization of a
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high-order and low-order method, where the choice of hybridization coefficient is
based on a local curvature calculation. The resulting calculation appears to provide
solutions that satisfy the entropy condition, correctly distinguishing between the
two directions of propagation from kinks in the original surface. In addition, we use
a marching method that is a good match for adaptive and parallel implementation
based on patch-based domain decomposition, which is the software framework
typically used for high-performance implementations of block-structured adaptive
grid methods.

Our future work will focus on tracking moving fronts in hyperbolic problems.
In these problems, the motion of the interface naturally decomposes into advection
by a vector velocity combined with motion of the interface normal to itself at a
known scalar speed. The importance of the signed distance function equation may
be observed in the special case where the vector velocity is zero and the scalar
speed is spatially constant. In this context, a method of solving the Hamilton–Jacobi
equation reduces to a method for computing the signed distance function, up to a
relabeling of contours, which leads to the conclusion that numerical methods for
Hamilton–Jacobi can be no more accurate than the associated solution to the signed
distance function equation. Considering the general front-tracking problem, one
may begin by extending velocities and scalar speeds in the normal direction off
the interface by solving the transport equation, as was done in [1]. Established
algorithms for advection may be employed for the velocity component of the
motion, while an algorithm for solving the signed distance function equation may
be employed for motion given by scalar speeds.
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Yvon Maday Université Pierre et Marie Curie, France
maday@ann.jussieu.fr

James Sethian University of California, Berkeley, USA
sethian@math.berkeley.edu

Juan Luis Vázquez Universidad Autónoma de Madrid, Spain
juanluis.vazquez@uam.es

Alfio Quarteroni Ecole Polytech. Féd. Lausanne, Switzerland
alfio.quarteroni@epfl.ch

Eitan Tadmor University of Maryland, USA
etadmor@cscamm.umd.edu

Denis Talay INRIA, France
denis.talay@inria.fr

PRODUCTION

apde@mathscipub.org

Paulo Ney de Souza, Production Manager Sheila Newbery, Production Editor Silvio Levy, Senior Production Editor

See inside back cover or pjm.math.berkeley.edu/camcos for submission instructions.

The subscription price for 2010 is US $70/year for the electronic version, and $100/year for print and electronic. Subscriptions, requests
for back issues from the last three years and changes of subscribers address should be sent to Mathematical Sciences Publishers,
Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA.

Communications in Applied Mathematics and Computational Science, at Mathematical Sciences Publishers, Department of Mathemat-
ics, University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA
94704, and additional mailing offices.

CAMCoS peer-review and production is managed by EditFLOW™ from Mathematical Sciences Publishers.

PUBLISHED BY
mathematical sciences publishers

http://www.mathscipub.org
A NON-PROFIT CORPORATION

Typeset in LATEX
Copyright ©2010 by Mathematical Sciences Publishers

http://pjm.math.berkeley.edu/camcos
mailto:jbbell@lbl.gov
mailto:berger@cs.nyu.edu
mailto:chorin@math.berkeley.edu
mailto:pcolella@lbl.gov
mailto:const@cs.uchicago.edu
mailto:maksymilian.dryja@acn.waw.pl
mailto:forest@amath.unc.edu
mailto:greengard@cims.nyu.edu
mailto:rupert.klein@pik-potsdam.de
mailto:nigel@uiuc.edu
mailto:ghoniem@mit.edu
mailto:raz@math.huji.ac.il
mailto:rjl@amath.washington.edu
mailto:luskin@umn.edu
mailto:maday@ann.jussieu.fr
mailto:sethian@math.berkeley.edu
mailto:juanluis.vazquez@uam.es
mailto:alfio.quarteroni@epfl.ch
mailto:etadmor@cscamm.umd.edu
mailto:denis.talay@inria.fr
mailto:apde@mathscipub.org
http://pjm.math.berkeley.edu/camcos
http://www.mathscipub.org
http://www.mathscipub.org


Communications in Applied Mathematics
and Computational Science

vol. 5 no. 1 2010

1FETI and BDD preconditioners for Stokes–Mortar–Darcy Systems
Juan Galvis and Marcus Sarkis

31A cut-cell method for simulating spatial models of biochemical reaction
networks in arbitrary geometries

Wanda Strychalski, David Adalsteinsson and Timothy

Elston

55An urn model associated with Jacobi polynomials
F. Alberto Grünbaum

65Ensemble samplers with affine invariance
Jonathan Goodman and Jonathan Weare

81A second-order accurate method for solving the signed distance function
equation

Peter Schwartz and Phillip Colella

99On the second-order accuracy of volume-of-fluid interface reconstruction
algorithms: convergence in the max norm

Elbridge Gerry Puckett

C
om

m
unications

in
A

pplied
M

athem
atics

and
C

om
putationalScience

vol.5,
no.1

2010

http://dx.doi.org/10.2140/camcos.2010.5.1
http://dx.doi.org/10.2140/camcos.2010.5.31
http://dx.doi.org/10.2140/camcos.2010.5.31
http://dx.doi.org/10.2140/camcos.2010.5.55
http://dx.doi.org/10.2140/camcos.2010.5.65
http://dx.doi.org/10.2140/camcos.2010.5.99
http://dx.doi.org/10.2140/camcos.2010.5.99

	1. Introduction
	2. Kim's global marching method
	3. Discretizing the signed distance function equation
	3.1. Least-squares discretization
	3.2. A second-order accurate method
	3.3. Hybridization
	3.4. Initialization

	4. Numerical results
	5. Conclusion
	References
	
	

