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INTERFACE RECONSTRUCTION ALGORITHM THAT IS

SECOND-ORDER ACCURATE IN THE MAX NORM
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In an article recently published in this journal the author proved there exists a
two-dimensional, volume-of-fluid interface reconstruction method that is second-
order accurate in the max norm. However, that article did not include an example
of such an algorithm. This article contains a description of a two-dimensional,
volume-of-fluid interface reconstruction method that is second-order accurate
in the max norm, provided the curve that one is reconstructing is two times
continuously differentiable and the length of the sides of the square grid cells
is less than a constant divided by the maximum of the absolute value of the
curvature of the interface. A computation made with this algorithm is presented
that demonstrates the convergence rate is second-order, as expected.

1. Introduction

Let � ∈ R2 denote a two-dimensional computational domain and take an oriented
curve in � parametrized by z(s)= (x(s), y(s)), where 0 ≤ s ≤ send is arc length.
Let L be a characteristic length of the computational domain �. Cover � with a
grid consisting of square cells each of side 1x ≤ L and let

h = 1x
L

(1)

be a dimensionless parameter that represents the size of a grid cell. Note that h
is bounded above by 1. For the remainder of this article it is to be understood
that quantities such as the arc length s are also nondimensional quantities that
have been obtained by division by L as in (1), and that the curvature κ has been
nondimensionalized by dividing by 1/L .
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The volume-of-fluid interface reconstruction problem is to compute an approxi-
mation z̃(s) to z(s) in � using only the volume fractions 3i j associated with the
curve z on the grid. In this paper the convention will be that the volume fraction3i j

in the i j-th cell is the fraction of material that lies in the i j-th cell on the “outside”
of z(s)— that is, on the side towards which the outward pointing unit normal vector
n to the interface z(s) points.

The purpose of this article is to describe a new volume-of-fluid method for
reconstructing the interface z(s)= (x(s), y(s)) between two materials that is second-
order accurate in the max norm. The main result in [24; 25] is a proof that∣∣ g(x)− g̃i j (x)

∣∣≤ (50
3
κmax+CS

)
h2 for all x ∈ [xi , xi+1], (2)

where (x, g̃i j (x)) is the volume-of-fluid approximation to the interface1 (x, g(x))
described in this paper; κmax is the maximum of the absolute value of the curvature
of the interface in the 3× 3 block of cells Bi j centered on the cell Ci j in which one
wishes to reconstruct the interface; x = xi and x = xi+1 are the x-coordinates of the
left and right edges of the cell Ci j = [xi , xi+1]× [y j , y j+1] in which one wishes to
reconstruct the interface; h =1x/L is the length defined in (1) of the edges of the
square grid cells; and

CS =

√
3

2

{
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√
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κmax+
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)32
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The bound in (2) holds whenever the grid size h and the maximum κmax of the
absolute value of the curvature κ(s) of the interface z(s)

κmax =max
s
|κ(s)| (4)

satisfies2

h ≤ Ch
κmax

, (5)

where

Ch =
1
25
. (6)

1As explained in the following paragraph, it is proven in [24] that the constraint on h in terms of
κmax in (5) ensures that one can reparametrize the interface as y = g(x) or x =G(y) locally about the
cell Ci j = [xi , xi+1]× [y j , y j+1] in which one wishes to reconstruct the interface. For convenience,
in this article the interface will frequently be written as y = g(x) instead of z(s), it being understood
that in some cells the parametrizations has to be x = G(y).

2It is only necessary that this condition be satisfied in a neighborhood of the cell Ci j ; for example,
in the 3× 3 block of cells Bi j centered on the cell Ci j .
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Section 2 of [24] contains a proof that the constraint in (5) on h is sufficient
to ensure that the interface z(s) = (x(s), y(s)) can be written as a single valued
function y = g(x) or x = G(y) on any 3× 3 block of cells Bi j centered on a cell
Ci j which contains a portion of the interface.3

In the algorithm described in this article one uses the row of three cells above
and below Bi j to determine which columns to use in the approximation to the slope
mi j of the piecewise linear approximation

g̃i j (x)= mi j x + bi j (7)

to the interface y = g(x). For this reason one must consider the 5×5 block of cells
B̃i j centered on the cell Ci j . However, as shown in Section 5, once one has rotated
the block B̃i j so that the interface only enters (resp., exits) the 3× 3 subblock Bi j

across its left or top edge (resp., top or right edge); it is not necessary to use the
first and last columns of the larger block of cells B̃i j .

The articles [24; 25] consist solely of a collection of proofs showing that there
exists a volume-of-fluid interface reconstruction algorithm that is second-order
accurate in the max norm; that is, they do not contain an example of such an
algorithm. However, the proofs in [24; 25] are constructive, and the algorithm
described here is based on those proofs. To date, no other volume-of-fluid interface
reconstruction algorithms have been proven to be second-order accurate in the
max norm. Section 6 contains a computational example to demonstrate that this
algorithm produces an approximation to cos x for 0≤ x ≤ π that is a second-order
accurate in the max norm.

A detailed statement of the problem. Suppose that one is given a simply connected
computational domain � ∈ R2 that is divided into two distinct, disjoint regions �1

and �2 such that �1 ∪ �2 = �. Let �1 be referred to as material 1 and �2 as
material 2. (Although these algorithms have historically been known as “volume-
of-fluid” methods, they are frequently used to model the interface between any two
materials, including gases, liquids, solids and any combination thereof; for example,
see [5; 14; 15; 16].)

Let z(s)= (x(s), y(s)), where s is arc length, denote the interface between these
two materials and assume that the interface has been oriented so that as one traverses
the interface with increasing arc length material 1 lies to the right. Cover � with a
uniform square grid of cells, each with side h, and let 3i j denote the fraction of
material 1 in the i j-th cell.

3In that article and this one interfaces that are undergoing topological changes, such as when
a droplet separates into two droplets, are not considered. In order for this algorithm to achieve
second-order accuracy, the interface must be a single-valued C2 function in the 3× 3 block Bi j
surrounding the cell Ci j .
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Each number 3i j satisfies 0 ≤ 3i j ≤ 1 and is called the volume fraction (of
material 1) in the i j-th cell.4 Note that

0<3i j < 1 (8)

if and only if a portion of the interface z(s) lies in the i j -th cell. Similarly, 3i j = 1
means the i j-th cell only contains material 1, and 3i j = 0 means it only contains
material 2.

Consider the following problem. Given only the collection of volume fractions
3i j in the grid covering �, reconstruct z(s); in other words, find a piecewise linear
approximation z̃ to z in each cell Ci j that contains a portion of the interface z(s).
Furthermore, the approximate interface z̃ must have the property that the volume
fractions 3̃i j due to z̃ are identical to the original volume fractions 3i j ; that is,

3̃i j =3i j for all cells Ci j . (9)

An algorithm for finding such an approximation is known as a volume-of-fluid
interface reconstruction method.

The property that 3̃i j =3i j is the principal feature that distinguishes volume-of-
fluid interface reconstruction methods from other interface reconstruction methods.
This ensures that the computational value of the total volume of each material is
conserved. In other words, all volume-of-fluid interface reconstruction methods are
conservative in that they conserve the volume of each material in the computation.
When the underlying numerical method is a conservative finite difference method
that one is using to model a system of hyperbolic conservation laws (e.g., gas
dynamics) this can be essential since, for example, in order to obtain the correct
shock speed it is necessary for all of the conserved quantities to be conserved by the
underlying numerical method [13]. More generally, a necessary condition for the
numerical method to converge to the correct weak solution of a system of hyperbolic
conservation laws is that all of the quantities that are conserved in the underlying
partial differential equation must be conserved by the numerical method [12].

Volume-of-fluid methods have been used by researchers to track material inter-
faces since at least the mid 1970s [18; 19]. Researchers have developed a variety of
volume-of-fluid algorithms for modeling everything from flame propagation [3] to
curvature and solidification [4]. In particular, the problem of developing high-order
accurate volume-of-fluid methods for modeling the curvature and surface tension
of an interface has received a lot of attention [1; 2; 4; 7; 32; 22]. Volume-of-fluid
methods were among the first interface tracking algorithms to be implemented in
codes originally developed at the U.S. National Laboratories, and subsequently

4Even though in two dimensions 3i j is technically an area fraction, the convention is to refer to it
as a volume fraction.
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released to the general public, that were capable of tracking material interfaces in a
variety of complex material flow problems [6; 9; 17; 30; 31]. They continue to be
widely used at these institutions, as well as by the general scientific community.

This article does not contain work concerning the related problem of approximat-
ing the movement of the interface in time, for which one would use a volume-of-fluid
advection algorithm. The interested reader may wish to consult [21; 27; 28] for a
detailed description and analysis of several such algorithms. In this article only the
accuracy that one can obtain when using a volume-of-fluid interface reconstruction
algorithm to approximate a given stationary interface z(s) is considered.

2. Assumptions and definitions

Notation. The center cell Ci j = [xi , xi+1]× [y j , y j+1] is the square grid cell with
side h that contains a portion of the interface z(s) = (x(s), y(s)) for s in some
interval, say s ∈ (sl, sr ), in which one wishes to reconstruct the interface. This is
equivalent to saying that 0<3i j < 1. In what follows the 5× 5 block of square
cells — each with side h — centered on the center cell Ci j , as shown, for example,
in Figure 1, will be denoted B̃i j = [xi−2, xi+3] × [y j−2, y j+3]. In addition, the
subblock of B̃i j which consists of the 3× 3 subblock of cells centered on the cell

xi−2 xi−1 xi xi+1 xi+2 xi+3
xc

|yj−2

yj−1

yj

yj+1

yj+2

yj+3

g(x) = tanh(x)

(xi−2 , yl)

(xi+3, yr)

g̃ij(x) = mij x + bij

Figure 1. In this example the interface is g(x) = tanh(x) and
material 1 lies below the curve. Note that all three of the column
sums are exact, but that for the inverse function x = g−1(y), only
the (horizontal) center column sum is exact. (Exact column sums
are defined in Section 4 below.) The cell in which one wishes to
reconstruct the interface is Ci j , the 3× 3 block of cells centered on
Ci j is Bi j , and the 5× 5 block of cells centered on Ci j is B̃i j .
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Ci j will be denoted Bi j = [xi−1, xi+2] × [y j−1, y j+2], and the 3× 5 subblock of
B̃i j , which is Bi j together with the row of 3 cells Ci−1, j−2, Ci j−2 and Ci+1, j−2

added to its bottom and the row of 3 cells Ci−1, j+2, Ci, j+2 and Ci+1, j+2 added to
its top, will be denoted B̂i j = [xi−1, xi+2] × [y j−2, y j+3]. The coordinates of the
vertical edges of the cells in B̃i j are denoted xi−2, xi−1, xi , xi+1, xi+2 and xi+3 and
the horizontal edges by y j−2, y j−1, y j , y j+1, y j+2 and y j+3 as shown, for example,
in Figure 1.5 It will always be the case that xi+1− xi = h, y j+1− y j = h, etc.

Assumptions concerning the interface. In this article the exact interface

z(s)= ((x(s), y(s))

is assumed to satisfy the following conditions:

I. The interface z is two times continuously differentiable; in other words,

z(s) ∈ C2(�). (10)

II. The grid size h and the maximum value

κmax =max
s
|κ(s)|

of the absolute value of the curvature κ(s) of the interface satisfy the following
constraint in terms of each other:6

h ≤ Ch
κmax

, (11)

where
Ch =

1
25
.

Remark. One can show that the constraint in (11) prevents configurations in which
the interface enters the center cell Ci j , exits it, and then enters it again, before
exiting the 5× 5 block of cells B̃i j , as shown in Figure 2. In particular, one can use
the constraint in (11) to show that the interface does not have hairpin turns which
are on the order of a grid cell. See [24] for a proof of these facts.

Note that it may be possible for the interface to pass through the center cell,
then exit the 3× 3 block Bi j , “wander around the computational domain”, and then
reenter the 3× 3 block Bi j and the center cell Ci j again. The constraint in (11)
simply guarantees that given a point on the interface that lies in the center cell Ci j ,
one can find an orientation of the 3× 3 block Bi j such that locally the interface
can be written as a single-valued function on the interval [xi−1, xi+2] such that the

5Whenever possible, the same notation is used in this article as in [24; 25]. One significant change,
however, is that the lower left corner of the center cell Ci j is now (xi , y j ) rather than (xi−1, y j−1) as
it was denoted in [24].

6See footnote 2.
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xi−1 xi xi+1 xi+2xc

|yj−2

yj−1

yj

yj+1

yj+2

g(x)

(xl, yj+2) (xr, yj+2)

Figure 2. In this example, h = 1 and the interface is the parabola
g(x) = a(x − xc)

2
−

1
2 with a = 9. Consequently, the maximum

curvature of the interface is

κmax = 2a = 18> Ch h−1
=

1
25
,

and hence the constraint on the cell size h in (5) is not satisfied. As
one can see from the figure, the interface enters the 3× 3 block of
cells Bi j through the top edge of the left column, passes through
the center cell Ci j , exits the 3× 3 block of cells Bi j through the
bottom edge of the center column (i.e., the line y = y j−1), and then
passes through Bi j again; the second path being a reflection about
the line x = xc of the first. The constraint on h with respect to
the maximum curvature κmax in (5) ensures that the interface does
not have sharp or “hairpin” turns that are on the scale of the 3× 3
block of cells Bi j , such as the one illustrated here. A finer grid (i.e.,
smaller h) is required in order to resolve curves such as this one.

curve enters the 3× 3 block Bi j , passes through the center cell once — and only
once — and then exits Bi j . It does not prevent the curve from eventually reentering
the center cell after traversing the domain for a large number of cell lengths. In this
article it is assumed that this latter case does not occur.
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3. Rotation of the 5 by 5 block

Given a cell Ci j that contains a portion y = g(x) of the interface, or equivalently, a
cell Ci j in which 0<3i j < 1, assume that the 5× 5 block of cells B̃i j centered on
Ci j has been rotated so that in the rotated coordinate frame the bottom row of cells
in the 3× 5 subblock of cells B̂i j satisfy

3i−1, j−2 = 1, 3i j−2 = 1, 3i+1, j−2 = 1.

This ensures that the interface does not exit the 3×5 subblock of cells B̂i j across its
bottom edge. Not only does this reduce the number of cases that one must consider
in the description of the algorithm, but it also reduces the number of cases one must
consider in the implementation of the algorithm. This is because the Symmetry
Lemma of [24, page 119] states that all configurations of the interface with respect
to the 3× 3 block Bi j are equivalent to the following two cases:

Configuration A: The interface enters Bi j across the left edge of Bi j and exits
across the right edge of Bi j (as shown, for example, in Figure 1).

Configuration B: The interface enters Bi j across the left edge of Bi j and exits
across the top edge of Bi j (as shown, for example, in Figure 4).

Provided only that the interface satisfies the conditions in (5) and (10), these two
cases are equivalent to all of the other ways in which the interface can enter the 3×3
block of cells Bi j , pass through the center cell Ci j , and exit the block Bi j . In other
words, rotating the block Bi j by 0, 90, 180 or 270 degrees and/or interchanging
the direction traversed by the arc length parameter s →−s, one can arrive at a
configuration that is identical to one of the two configurations listed above. This is
a consequence of the Symmetry Lemma cited above.

In the implementation of this algorithm, for the purposes of producing the results
shown in Section 6, the case in which — after the 5× 5 block of cells B̃i j has
been rotated — the interface enters Bi j across the top edge and exits it across the
right edge is also included. In other words, the symmetric image of the example
shown in Figure 4 is also included in this implementation of the algorithm, although
according to the Symmetry Lemma this is not strictly necessary.

During the course of proving the results in [24; 25], or in developing a second-
order accurate volume-of-fluid interface reconstruction method such as the one
described here, it is often necessary to rotate the 5× 5 block of cells B̃i j centered
on Ci j by 90, 180, or 270 degrees and/or reflect the coordinates about one of the
coordinate axes: x→−x or y→−y. No other coordinate transformations besides
one of these three rotations and a possible reversal of one or both of the variables
x→−x and/or y→−y are required in order for the algorithm studied in this article
and the articles in [24; 25] to converge to the exact interface as h→ 0. Furthermore,
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these coordinate transformations are only used to determine a first-order accurate
approximation mi j to g′(xc) in the center cell. The grid covering the domain �
always remains the same.

Thus, if one is using the interface reconstruction algorithm as part of a numer-
ical method to solve a more complex problem than the one posed here (e.g., the
movement of a fluid interface where the underlying fluid flow is a solution of the
Euler or Navier–Stokes equations), it is not necessary to perform these coordinate
transformations on the underlying numerical fluid flow solver. Therefore, unless
noted otherwise, in what follows the interface will always be written y=g(x) and the
coordinates of the edges of the cells in the 3×3 block Bi j will be denoted by xi−1, xi ,
xi+1, xi+2 and y j−1, y j , y j+1, y j+2, it being implicitly understood that a transforma-
tion of the coordinate system as described above may have been performed in order
for this representation of the interface to be valid, and that the names of the variables
x and y might have been interchanged in order to write the interface as y = g(x).

4. Column sums

Let Si−1, Si and Si+1 represent the left, center and right column sums respectively
in the 3× 3 subblock of cells Bi j centered on Ci j :

Si−1 =

j+1∑
j ′= j−1

3i−1, j ′, Si =

j+1∑
j ′= j−1

3i j ′, Si+1 =

j+1∑
j ′= j−1

3i+1, j ′ . (12)

The volume fraction 3i j in the i j-th cell Ci j is a nondimensional way of storing
the volume of material 1 in that cell, while the i-th column sum Si defined above is
a nondimensional way of storing the total volume of material 1 in the column of
three cells centered on the i j-th cell, and similarly for Si−1 and Si+1.

Now consider an arbitrary column consisting of three cells with left edge x = xi

and right edge x = xi+1. Furthermore, assume that the interface can be written
as a function y = g(x) on the interval [xi , xi+1]. Assume also that the interface
enters the column through its left edge, exits the column through its right edge and
does not cross the top or bottom edges of the column, as is the case with each of
the columns Si−1, Si and Si+1 in the 3× 3 subblock of cells Bi j centered on the
cell of interest Ci j shown in the example in Figure 1. Then, in particular, the total
volume of material 1 that occupies the three cells of the center column and lies
below the interface g(x) is equal to the integral of (g(x)− y j−1) over the interval
[xi , xi+1]. This leads to the following relationship between the column sum and
the normalized volume of material 1 in the column:

Si =

j+1∑
j ′= j−1

3i j ′ =
1
h2

∫ xi+1

xi

(g(x)− y j−1) dx . (13)
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This in turn leads to the following definition.

Definition. Assume that the interface y = g(x) enters the i-th column through its
left edge and exits the i-th column through its right edge and does not cross the top
or bottom edges of the column. Then the column sum Si is exact whenever (13)
holds. Integrals such as the one on the right in (13) will be referred to as the
normalized integral of g in the i-th column.7

Given the 3× 3 block of cells Bi j surrounding a cell Ci j that contains a portion
y = g(x) of the interface, the accuracy of the algorithm described in this paper is
based on how well the column sums Si−1, Si and Si+1 approximate the normalized
integral of g in the (i − 1)-st, i-th, and (i + 1)-st column. This is because if two of
the column sums Si+α and Si+β with α, β = 1, 0,−1 and α 6= β are exact, then the
slope

mi j =
Si+β − Si+α

β −α
(14)

will be a first-order accurate approximation to g′(xc), where xc =
1
2(xi+1 − xi ),

as shown in (18) below. (This is Theorem 23 in [24].) It then follows that the
piecewise linear approximation

g̃i j (x)= mi j x + bi j (15)

to the portion of the interface g(x) in Ci j is pointwise second-order accurate, as
shown in (19) below. (This is Theorem 24 in [24].) Therefore, one should use one
of the following three slopes for mi j in (15):

ml
i j = (Si − Si−1), mc

i j =
1
2(Si+1− Si−1), mr

i j = (Si+1− Si ). (16)

Example 1. In order to see why one of the three slopes in (16) will be the best
choice for mi j , consider the case when the interface is a line g(x) = m x + b. In
this case the 3× 3 subblock of cells Bi j has two exact column sums as shown in
Figure 3. Note that in this particular orientation of Bi j , g has two exact column
sums; namely the sums in the first and second columns. It is easy to check that

m =
1
h2

∫ xi

xi−1

(g(x)− y j−1 ) dx −
1
h2

∫ xi−1

xi−2

(g(x)− y j−1 ) dx

= (Si − Si−1)= ml
i j .

7In [24] an exact column sum was mistakenly defined as

Si ≡
j+1∑

j ′= j−1
3i j ′ =

1
h2

∫ xi+1

xi

(g(x)− yj−1h ) dx;

that is, yj−1h appears in the integrand, rather than just yj−1. The correct definition appears here.
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xi−1 xi xi+1 xi+2

yj−1

yj

yj+1

yj+2

g(x)

(xl, yl)

(xr, yr)

Figure 3. Here the interface g is a line g(x) = m x + b that has
two exact column sums; namely the sums in the first and second
columns. In this case the slope ml

i j from (16) is exactly equal to the
slope m of the interface: ml

i j = m. It is always the case that when
the exact interface is a line on a grid of square cells one can find an
orientation of the 3× 3 block of cells Bi j such that at least one of
the divided differences of the column sums in (16) is exact.

In this example the divided difference ml
i j of the column sums Si−1 and Si is

exactly equal to the slope m of the exact interface. In fact, it is always the case that
when the exact interface is a line and the grid consists of square cells, one can find
an orientation of the 3×3 subblock of cells Bi j such that at least one of the divided
differences of the column sums in (16) is exact. For example, note that in the case
shown in Figure 3 one could rotate the 3× 3 block of cells 90 degrees clockwise
and then the correct slope to use when forming the piecewise linear approximation
g̃i j (x)= mi j x + bi j would be mi j = mr

i j in the rotated coordinate frame. One can
easily check that this choice for mi j would again be exactly equal to the slope m of
the exact interface (in the rotated coordinate frame).

Example 2. However, as demonstrated in Example 2 of [25], there are instances
in which the interface satisfies (5) but the center column sum Si is not exact. An
example was shown in Figure 4. All of the work in [25] is devoted to showing
that when the interface satisfies (5), the center column sum Si will still be exact to



210 ELBRIDGE GERRY PUCKETT

xi−1 xi xi+1 xi+2xc

|yj−1

yj

yj+1

yj+2

•(xl, yl)

•
(xr, yr)

•
(xm, ym)

g(x)

Figure 4. An example of a circular interface g(x) that satisfies (5),
but for which the center column sum is not exact in any of the four
standard orientations of the grid. Consequently, any approximation
mi j to the slope g′(xc) of the form (14) must have a center column
sum Si that is not exact. (See [25, Example 2] for more details.)
Theorem 4 of [25] states that if (5) is satisfied, then the error
between the column sum Si and the normalized integral of g over
the center column is O(h); that is, (5) implies that (17) holds. This
suffices to ensure that (18) is true, and hence that (19) is true.

O(h):8 ∣∣∣∣Si −
1
h2

∫ xi+1

xi

(g(x)− y j−1) dx
∣∣∣∣≤ CSh, (17)

where CS is defined in (3). This is sufficient for either the left- or the right-sided
difference in (16) to satisfy

|mi j − g′(xc)| ≤
(26

3
κmax+CS

)
h, (18)

where κmax is defined in (4). This, in turn, is sufficient for the piecewise linear
volume-of-fluid approximation g̃i j = mi j x + bi j to still be second-order accurate

8In [24] the definition that the center column sum is exact to O(h) was mistakenly defined as∣∣∣∣Si −
1

h2

∫ xi+1

xi

(g(x)− yj−1h )dx
∣∣∣∣≤ CSh,

that is, yj−1h appears in the integrand, rather than just yj−1. The correct definition appears here.
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in the max norm:

| g(x)− g̃i j (x)| ≤
(50

3
κmax+CS

)
h2 for all x ∈ [xi , xi+1]. (19)

See Section 4 of [24] for proofs of (18) and (19).

To summarize, once the 5×5 block of cells B̃i j centered on the cell Ci j in which
one wishes to reconstruct the interface has been rotated as described in Section 3,
the interface reconstruction algorithm is based on choosing the slope mi j of the
piecewise linear approximation g̃i j = mi j x + bi j to the interface g(x) to be one
of the three divided differences of the column sums Si−1, Si and Si+1 from the
3× 3 subblock Bi j centered on the cell Ci j as shown in (16). The best choice is
when both column sums are exact, which — provided that the condition in (5) is
satisfied — is true in all but one case.

This one case is the one in which the interface g satisfies (5) yet exits the i-th
column Si across its top edge as shown in Figure 4. (In this particular case the
interface is always monotonically increasing.) Example 2 of [25] demonstrates
that this case can occur for any value of h, no matter how small. However, in [25]
it is proven that when this case occurs, one of the two divided differences of
column sums, ml

i j or mr
i j , will still satisfy (18). Thus, choosing this quantity for

the slope mi j in g̃i j = mi j x + bi j still yields a pointwise second-order accurate
approximation to g; that is, the bound in (19) remains true. The following section
contains a description of an algorithm for determining which of these cases is
present, and hence which of the slopes in (16) — the first or the third — will yield a
second-order accurate approximation to the interface in Ci j .

5. A description of the algorithm

Before proceeding one should note that there are a variety of ways to implement
this algorithm. In particular, one can implement it so that it is not necessary rotate
the 5× 5 block B̃i j . The description given here was chosen because it seems to be
the easiest one to follow. Furthermore this is the way in which the algorithm was
implemented in order to produce the computational results shown in Section 6.

There are two steps involved in computing the approximation g̃i j (x) to the
interface g(x) in a given cell Ci j .

I. Determine the slope mi j of the piecewise linear approximation

g̃i j (x)= mi j x + bi j

to the interface g(x) in the cell Ci j .

II. Determine the y-intercept bi j of g̃i j (x).
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Step I. Given that the 5×5 block B̃i j has been placed in the configuration described
in Section 3 above, one need only consider the five cases listed below; namely
Cases 1(a), 1(b) and Cases 2–4. From the discussion on column sums in Section 4
it is apparent that one needs two column sums that are either exact, or a left (resp.,
right) column sum that is exact and a center column sum that is exact to O(h) as
shown, for example, in Figure 4 (page 210).

The constraint in (5) on the interface z(s) ensures that, once the 5× 5 block of
cells B̃i j has been rotated as described above, only the following cases can occur:

(1) The center column sum Si is exact to O(h), and hence satisfies (17), as shown,
for example, in Figure 4, and one of the following two cases hold:

(a) The left column sum Si−1 is exact, in which case one uses the left-sided
divided difference:

mi j = ml
i j = Si − Si−1. (20)

(b) The right column sum Si−1 is exact, in which case one uses the right-sided
divided difference:

mi j = mr
i j = Si+1− Si . (21)

(2) All three column sums Si−1, Si and Si+1 are exact as shown, for example, in
Figure 1. In this case one uses the centered difference of the left and right
column sums:

mi j = mc
i j =

1
2(Si+1− Si−1). (22)

(3) The left column sum Si−1 and center column sum Si are exact. In this case
one uses the left-sided divided difference:

mi j = ml
i j = Si − Si−1. (23)

(4) The center column Si and right column sum Si+1 are exact. In this case one
uses the right-sided divided difference:

mi j = mr
i j = Si+1− Si . (24)

The various theorems and lemmas in [24; 25] prove that in each of the above
cases the formulas in (20)–(24) result in a first-order accurate approximation mi j to
the first derivative g′(xc) of the interface at the point xc =

1
2(xi + xi+1), as shown

in Equation (18).
Next is a description of the algorithm that one uses to obtain the correct slope

given only the volume fraction information in the 3× 5 block of cells B̂i j .
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The algorithm to choose the slopes. Once the 5× 5 block B̃i j has been rotated
as described in Section 3, one only uses the 3× 5 portion B̂i j of B̃i j to make the
decision as to which of the cases listed above one uses for that particular cell Ci j .
The algorithm for selecting the slope is as follows.

Case 1: (The center column sum Si is not exact, but is exact to O(h).) First one
checks the cell Ci j+2. If 3i j+2 > 0, then the cell above the center column
contains some material 1 and hence the center column sum Si is not exact.
However, by Theorem 4 of [25] the condition on h in (5) ensures that Si is
exact to O(h). Therefore, one next checks the left column sum Si−1 and right
column sum Si+1 to determine which column sum is exact, and hence which
difference one will use; that is, Case 1(a) or 1(b) from the list above. (The
constraint in (5) will ensure that the column sums Si−1 and Si+1 are not both
exact, but one of them will be.)

Case 1(a): If 3i−1, j+2 = 0, the left column sum Si−1 is exact, and hence
one uses the left-sided difference:

mi j = ml
i j = Si − Si−1.

Case 1(b): Otherwise, it must be the case that 3i+1, j+2 = 0, and hence the
right column sum is exact. Therefore, one uses the right-sided difference:

mi j = mr
i j = Si+1− Si .

Case 2: (The center column sum must be exact.) Otherwise, 3i, j+2 = 0, and
hence the center column sum Si is exact. In this case one first checks to see
which of the left and right column sums are exact. If both are exact, then one
uses a centered difference. Otherwise one uses a one-sided difference with the
center column and whichever of the left or right column sums is exact.

Case 2(a): If 3i−1, j+2 = 0 and 3i+1, j+2 = 0, then both the left column
sum Si−1 and the right column sum Si+1 are exact. Therefore, one uses a
centered difference, since it is one order more accurate than a one sided
difference:

mi j = mc
i j =

1
2(Si+1− Si−1).

Case 2(b): If only 3i−1, j+2 = 0, and hence the right column sum Si+1 is
not exact, then one uses the left-sided difference:

mi j = ml
i j = Si − Si−1.

Case 2(c): Otherwise, if only 3i+1, j+2 = 0, and hence the left column sum
Si−1 is not exact, then one uses the right-sided difference:

mi j = mr
i j = Si+1− Si .
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Step II. Once the slope mi j has been found the constraint

3̃i j (g̃)=3i j (g),

where 3̃i j (g̃) denotes the fraction of material 1 in the i j-th cell due to g̃, imme-
diately determines bi j . In other words, once the 5× 5 block of cells B̃i j has been
appropriately rotated, bi j is a single valued function of 3̃i j (g̃) and mi j :

bi j = bi j (3̃i j (g̃),mi j ).

There are a variety of formulas one can employ to determine bi j given mi j .
For example, there is an approach that is based on representing the boundary of
the portion of the cell Ci j that contains material 1 by directed line segments and
using the divergence theorem to compute the volume fraction 3i j developed by
S. G. Roberts and used in [26]. There is the approach developed by J. S. Saltzman
and used in [23] that is based on employing a coordinate system in which the
approximate interface g̃i j (x) is given by

nx
i j x + ny

i j y = σ,

where ni j = (nx
i j , ny

i j ) is the unit normal to g̃i j (x) that points away from the material
1 and σ is the distance from g̃i j to (xi , y j ), the lower left hand corner of the cell Ci j .
In work with Kothe et al. [8; 10; 32; 11], M. W. Williams developed algorithms for
working on three-dimensional hexahedral and other unstructured meshes. Details
of this work may also be found in Williams’ Ph.D. thesis [33]. Finally, an article
by Scardovelli and Zaleski [29] describes a collection of formulas one may use on
two and three dimensional rectangular grids.

The algorithm that was used to compute the computational example shown in
Section 6 of this article is based on determining which of the three polygons the
approximate interface g̃i j (x) forms when it passes through the cell Ci j :

(1) a triangle,

(2) the complement of a triangle in a square, and

(3) a trapezoid.

In other words, material 1 is contained in a region that has the shape of one of the
three polygons listed above.

Given the volume fraction 3i j — and hence the volume9 Vi j of material 1 in the
i j-th cell — and the slope mi j , one can write down algebraic formulas for each of
these polygons. In this way the polygon with the correct volume is readily identified,
and with it the point of intersection of the approximate interface g̃i j (x) with two of

9As previously noted, strictly speaking one is given the area of material 1 in the i j-th cell. By
convention this area is referred to as the volume of material 1 in the i j-th cell.
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the four grid lines: x = xi , x = xi+1, y = y j and y = y j+1 that form the edges of
the cell Ci j . Given this information, the y-intercept bi j is easily found.

Note that several of the other algorithms for representing the approximate inter-
face listed above allow one to design the method so that it is not necessary to rotate
the 5× 5 block of cells B̃i j . However, the implementation of such an algorithm
may be more complex than the one described here.

6. A computational example

Table 1 contains the max norm error from a computation in which the interface
reconstruction algorithm described in this paper is used to approximate cos x for
0≤ x ≤ π on square grids with cell sizes varying from 32−1 to 4096−1. The error
reported in the table is computed according to the formula

l∞error=max
Ci j

{
max

x∈[xi ,xi+1]

∣∣ g(x)− g̃i j (x)
∣∣}, (25)

where maxx∈[xi ,xi+1]

∣∣ g(x)− g̃i j (x)
∣∣ is computed at 1000 points between the end-

points xl (resp., xr ) at which the curve g(x) enters (resp., exits) the cell Ci j and the
outer maximum in (25) is taken over all cells Ci j that satisfy 0<3i j < 1.

The third column contains the error (25) for the cell size reported in the second
column. The fourth column contains the theoretical error bound from [25], which
is quoted in Equation (2) (and also in Equation (26) below). Note that for all values
of 1x the actual error is two orders of magnitude less than the theoretical error
bound.

The last column of Table 1 contains the convergence rate. For a particular value
of 1x = 2−k , the convergence rate is defined to be the rate at which the error would
have to decrease in going from 1x = 2−(k−1) to 1x = 2−k in order to achieve the

k cell size l∞ theoretical convergence
1x = 2−k error error bound rate

05 32−1 1.07·10−4 8.43·10−2 2.19
06 64−1 2.67·10−5 2.11·10−2 2.00
07 128−1 7.26·10−6 5.27·10−3 1.88
08 256−1 1.80·10−6 1.32·10−3 2.02
09 512−1 4.45·10−7 3.29·10−4 2.01
10 1024−1 1.12·10−7 5.95·10−5 1.99
11 2048−1 2.83·10−8 2.06·10−5 1.99
12 4096−1 7.13·10−9 5.14·10−6 1.99

Table 1. The max norm of the error from the computation of cos x
for 0≤ x ≤ π .
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error that is shown for 1x = 2−k . In other words,

convergence rate in the row with 1x = 2−k
:= log2

(
error(2−(k−1))

error(2−k)

)
,

where error(2−k) denotes the error in the max norm when 1x = 2−k . It is apparent
that the error in the max norm decreases at a rate commensurate with a method that
is second-order accurate in the max norm as claimed.

7. Conclusions

The main result of [24; 25] is a proof that

|g(x)− g̃i j (x)| ≤
(50

3
κmax+CS

)
h2 for all x ∈ [xi , xi+1], (26)

where g̃i j (x) is the volume-of-fluid approximation to the interface g(x) in the cell
Ci j that is described in this paper, κmax is the maximum curvature of the interface
as defined in (4), xi and xi+1 denote the left and right edges respectively of the cell
Ci j , h is the length of each side of the square grid cell Ci j and

CS =

√
3

2

{
(2
√

2− 1)4
√
κmax+

(
1−

7 (1+
√

2)
20

)32
3
(
√
κmax)

3
}2
.

The bound in (26) holds whenever the grid size h and the maximum value

κmax =max
s
|κ(s)|

of the curvature κ(s) of the interface z(s) in the 3× 3 block of cells Bi j satisfies

h ≤ Ch
κmax

, where Ch =
1
25
. (27)

However, in [24; 25] there are no examples of algorithms for finding the volume-
of-fluid approximation g̃i j (x) in each cell Ci j which contains a portion of the
interface. This article contains a description of one such algorithm. This algorithm
is new and has not appeared previously in the scientific literature. As shown in
Table 1 the computations to approximate cos x on the interval [0, π] shown in
Section 6 are consistent with the theoretical error bounds in [24; 25]. In other
words, the computational approximation of cos x made with this new algorithm is
consistent with the claim that it is second order accurate in the max norm provided
that the interface g ∈ C2 and (27) is satisfied.

It may be possible for the interface to pass through the center cell, then exit the
3× 3 block Bi j , wander around the computational domain, and reenter the 3× 3
block Bi j and the center cell Ci j again. For the purposes of this paper it is assumed
that this does not happen. When implementing the algorithm described in this paper,
one can design the code to automatically check for such cases and flag the 3× 3
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block Bi j for grid refinement, so that no cell contains two instances of the interface
in a configuration such as the one just described.

In [21] J. E. Pilliod and Puckett described two volume-of-fluid interface recon-
struction algorithms they had developed, and which they named the Least Squares
Volume-of-Fluid Interface Reconstruction Algorithm (LVIRA) and the Efficient Least
Squares Volume-of-Fluid Interface Reconstruction Algorithm (ELVIRA). They then
presented computations with these algorithms on both C2 and C0 interfaces. When
the underlying exact solution was a circle, the LVIRA and ELVIRA algorithms
were shown to be second-order accurate in the max norm.

In all of the other computations they computed the errors in the averaged l1

norm; that is, the l1 norm averaged over 1000 random perturbations of the problem.
For example, the l1 error reported in approximating a circle was an average of
the errors obtained when approximating 1000 different unit circles in which the
center of the circle was chosen at random. They then compared the errors with
errors obtained when they used several other widely used volume-of-fluid interface
reconstruction algorithms such as SLIC [19] and the method developed by Parker
and Youngs [20]. The only other algorithm that was close to being second-order
accurate in the averaged l1 norm consisted of taking the centered difference for the
slope — that is, mi j = mc

i j , where mc
i j is defined in (16).

It is not clear whether the proofs in [24; 25] apply to the LVIRA and ELVIRA
algorithms. Hence, it is not clear whether LVIRA and ELVIRA are second-order
accurate in the max norm, or in the l1 and l2 norms when the errors are not averaged
over many computations. Future work should include a study of this issue and
a direct comparison between the algorithm presented here and the LVIRA and
ELVIRA algorithms.

One should also note that both the LVIRA and ELVIRA algorithms, as well as the
algorithm presented here, reconstruct lines exactly. It is an open problem to prove
whether or not this is a sufficient condition for the algorithm to be second-order
accurate when the underlying interface is C2.

Corollary 22 in [24] states that the algorithm presented in this paper with slope
mi j = 0 (i.e., the piecewise constant or “stair-step” volume-of-fluid interface recon-
struction algorithm) will be first-order accurate whenever the interface is C1 rather
than C2. (See footnote 10 in [24] regarding how smooth the interface must be in
order to prove Corollary 22.) Future work should include an exploration of how
well the algorithm presented here approximates interfaces that are less than C2.

Finally, when the interface reconstruction algorithm is coupled to an adaptive
mesh refinement algorithm, the parameter

Hmax = Ch(κmax)
−1,

where κmax is the maximum curvature of the interface over the 3× 3 block of cells



218 ELBRIDGE GERRY PUCKETT

Bi j centered on a given cell Ci j , can be used to develop a criterion for determining
when to increase the resolution of the grid. Namely, the computation of the interface
in Ci j is under-resolved whenever

h > Hmax,

and hence the grid needs to be refined in a neighborhood of the block Bi j .
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