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AN EMBEDDED BOUNDARY METHOD
FOR THE NAVIER–STOKES EQUATIONS

ON A TIME-DEPENDENT DOMAIN

GREGORY H. MILLER AND DAVID TREBOTICH

We present a new conservative Cartesian grid embedded boundary method for
the solution of the incompressible Navier–Stokes equations in a time-dependent
domain. It is a Godunov-projection fractional step scheme in which hyperbolic
advection and a variety of implicit and explicit Helmholtz operations are per-
formed on time-stationary domains. The transfer of data from one fixed domain
to another uses third-order interpolation. The method is second order accurate
in L1 and first order in L∞. The algorithm is verified on flow geometries with
prescribed boundary motion.

1. Introduction

The incompressible Navier–Stokes equations on a time-dependent domain

∂u
∂t
+ u · ∇u =−∇P + ν1u (1.1a)

∇ · u = 0 (1.1b)

approximate fluid behavior in a range of important applications. Here u(x, t) is
the velocity of the fluid, whose density is assumed to be unity, x is the spatial
coordinate, t is time, P is pressure, and ν is the kinematic viscosity. We are partic-
ularly concerned with reaction-diffusion equations in porous media where reactive
transport can alter the subsurface pore structure due to precipitation or dissolution.
Other motivating applications include the dynamics of biological membranes and
lipid bilayer analogs, and modeling rod-climbing and die-swell behavior of certain
viscoelastic fluids. In these examples, the evolution of the fluid domain is coupled

This material is based upon work supported by the National Science Foundation under grant number
DMS-0810939, and is supported as part of the Center for Nanoscale Control of Geologic CO2, an
Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office
of Basic Energy Sciences, and the Office of Advanced Scientific Computing, under Award Number
DE-AC02-05CH11231, and by DOE grant number DE-SC0001981.
MSC2010: 35Q30, 35R37, 65M08.
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2 GREGORY H. MILLER AND DAVID TREBOTICH

to the motion of the fluid. Prescribed domain motion occurs in pumps, stirred
vessels, and other mechanical systems.

There are two categories of approaches to discretizing moving domains: (i) grid-
ding schemes that conform to the domain boundary, e.g., unstructured grids obey-
ing Lagrangian dynamics; and (ii) structured, Cartesian grids where the domain
influences the solution through a forcing as in the immersed boundary method [30]
or the immersed interface method [19], or through cut cell methods where the finite
volume quadrature is modified on those Cartesian cells overlain by the domain
boundary, otherwise known as embedded boundary methods. Cut cell methods
are confronted by a small-cell stability problem: finite volume discretizations are
unstable on cells whose volume fraction vanishes. Approaches to this problem
include cell merging techniques (Noh’s “blending” [27]), the h-box technique that
references a cell of nonvanishing size [2], and hybridization — use of a stable but
nonconservative quadrature with subsequent reestablishment of conservation in a
neighborhood [4]. Our approach is an embedded boundary method, with cut-cell
stability through hybridization. This strategy has proven accurate, robust, and scal-
able in large scale simulations of reactive transport in fixed irregular domains [33].

Projection methods [7; 9; 8] use the unique Hodge decomposition of a vector
field to determine the divergence-free component, and the gradient of a potential
that can be associated with the pressure gradient. Godunov-projection methods
are fractional step methods that first compute an intermediate velocity with a high-
order Godunov approach, which is made discrete divergence-free by a Hodge pro-
jection. Other approaches can achieve high order without reference to the interme-
diate state, for example computation of u · ∇u via an Adams–Bashforth approach.
Our approach is based on the second-order projection method of Bell et al. [1],
with a second-order unsplit Godunov method for the intermediate velocity [11],
and using approximate projections after Lai [17]. For hyperbolic flow problems,
high-order Godunov methods do a superior job of resolving steep gradients. Min-
ion and Brown [3] compare a number of approaches to solving incompressible
Navier–Stokes. Their examples show that the Godunov-projection approach does
a good job of resolving incompressible Navier–Stokes flows with steep gradients
without introducing spurious high-frequency oscillations created by some other
approaches. This is a significant benefit for reacting flows where steep gradients
exist and reaction rates can be sensitive to high-frequency oscillation.

There have been many recent developments in projection methods for the mov-
ing domain Navier–Stokes problem. Pan and coworkers [28] use a Godunov-
projection method with multiblock structured ALE (arbitrary Lagrangian–Eulerian)
grids. Udaykumar et al. [39] use an Adams–Bashforth projection approach with
finite volume discretization. They locate the interface with Lagrangian marker
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particles, and address the small cell problem with cell merging. Marella et al. [22]
employ a similar method, with interface information derived from a discrete level
set. Tan et al. [36] also use level sets to represent the interface, and combine the
immersed interface method with an Adams–Bashforth projection method. Liau
et al. [20] combine an Adams–Bashforth projection method with the immersed
boundary method. Chiu et al. [5] use the immersed boundary method with a
different second-order projection discretization. All of these methods claim or
demonstrate second-order accuracy. Strict conservation is necessary to accurately
capture wave behavior [18], a property essential for combustion and reactive flows.
Such conservation is readily obtained with ALE and finite volume methods but is
a very delicate issue for immersed boundary methods [16].

In this work we present a new conservative Godunov-projection method on
Cartesian grids for the solution of the incompressible Navier–Stokes equations
(1.1a) on a time-dependent domain �(t), with boundary conditions

u = s(x, t) (1.2a)

on moving walls, where s is the velocity of the boundary;

u = uin(x, t) (1.2b)

on inflow boundaries; and

n · ∇u = 0 (1.2c)

on outflow boundaries where n is normal to the domain boundary. We represent
the domain boundary as the zero of a distance function level set, and derive all
geometric descriptions at the moving front from the discrete level set. In this work,
the boundary motion is prescribed.

We discretize space in uniform Cartesian cells which we label with index i , an
integer vector in D space dimensions. The center of cell i has spatial coordinate
x = h(i + 1

2 1) where h is the length of the cell, and 1 is the vector of ones in ZD .
Time is discretized in uniform increments 1t , and tn

= n1t is the time at step n.
un

i denotes the value of fluid velocity u at the center of cell i at time tn , and with
ed the d-th unit basis vector, un+1/2

i+1/2ed
denotes the fluid velocity at the half time step

tn+1/2 and the center of i’s cell face in direction +d. With this discretization, an
outline of the approach is:

(1) Extrapolate un
i to �n+1/2 , the fluid domain at time tn+1/2 . For those cells i in

�n+1/2 \�n (Figures 1 and 2), this extrapolation is based on the algorithm pro-
posed by McCorquodale et al. [25]: three cells, whose centers together with
i are collinear and approximately aligned with the interface normal, define a
quadratic interpolation function determining ui .
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Figure 1. Newly uncovered cells. Domain boundary δ�n is shown with a dashed curve;
�n is the enclosed volume, and domain boundary δ�n+1 is shown with the solid curve.
The region�n+1

\�n (shaded) contains fluid at tn+1 but not at tn ; it is a newly uncovered
region. If a cell contains a newly uncovered region, and also contains fluid at time tn ,
then the value of the field in �n+1 is copied from the same cell in �n . But, if a newly
uncovered region does not contain tn values, the values in the extended domain must be
estimated by extrapolation. Such cells are indicated with check marks.

Figure 2. Extrapolation to newly uncovered cells. δ�n is shown as a dashed curve, and
δ�n+1 is a solid curve. Symbol X indicates the cell center of a newly uncovered cell.
The arrow is aligned with the vector comprised of values 0 and ±1 that is most nearly
parallel the normal to δ�n+1. Points along that arrow (open circles) are used to construct
a quadratic, i.e., third-order, extrapolation polynomial.

(2) On �n+1/2 , use high-order Godunov methods to compute time- and edge-
centered values un+1/2

i+1/2e j
, j = 1, . . . , D [11], and make this field discrete

divergence-free with a MAC projection [15].

(3) Compute a nonconservative but stable flux difference, a conservative but un-
stable flux difference, and a stable hybrid flux difference for the hyperbolic
treatment of ut =−u · ∇u [4].
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(4) Modify the hybrid field u · ∇u so that it obeys global conservation, i.e., so
that ut + u · ∇u= 0 is equivalent to the mathematically identical conservation
form ut +∇ · (uu)= 0 in the weak sense.

(5) Extrapolate u · ∇u and lagged estimate ∇Pn− 1
2 to �n+1. On �n+1 solve the

heat equation ut = ν1u+ f with source term f =−∇P − u · ∇u;

ũ = LTGA
(
un, −(∇P)n−1/2 − (u · ∇u)n+1/2

)
, (1.3)

where LTGA is a particular discretization of the heat operator defined later by
(2.49).

(6) Make un+1 discrete divergence free with a cell-centered projection P (to be
defined by (2.6)). The projection computes ∇Pn+1/2 on �n+1:

u∗ = ũ+1t (∇P)n−1/2, (1.4a)

un+1
=P(u∗), (1.4b)

(∇P)n+1/2 =
1
1t
(I −P)(u∗). (1.4c)

In Section 2 additional details of the algorithm will be presented, with emphasis
on those aspects that are new to this work. We will emphasize the algorithm as
implemented on a single grid. The components of this algorithm have been shown
elsewhere to operate on a hierarchy of nested grids, enabling an adaptive mesh
capability. Our implementation includes this capability, and runs in 2D and 3D with
SIMD parallelism. A numerical demonstration of convergence rates is presented
in Section 3.

2. Algorithm details

In Section 2.1 the existence of a Hodge decomposition for the moving domain
problem is described. This discussion justifies the projections used in outline steps
(2) and (6). The implementation of the projection for cell-centered u has been
described in [37] and implementation details related to adaptive meshes are given
by [23; 24].

Next, in Section 2.2 the high-order Godunov approach to computing edge- and
time-centered values un+1/2

i+1/2ed
, outline step (2), is described.

In Section 2.3 the treatment of u · ∇u as a hyperbolic update is described. This
includes the stable and conservative forms mentioned in outline step (3), and the
conservation property enforced in outline step (4).

The moving domain heat problem employed in outline step (5) was first pub-
lished by McCorquodale et al. [25]. They demonstrate numerically that on a single
domain �n+1 one can discretize the heat problem on time interval [tn, tn+1

], using
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specially constructed boundary conditions and extrapolated source terms and initial
conditions. In Section 2.4 we present a theoretical justification for that method.

Finally, in Section 2.5 we present some details on the construction of geometric
terms used to define the quadratures underlying the solution to Poisson’s equa-
tion (projection), the Helmholtz equation (heat), and the treatment of u · ∇u as a
hyperbolic source term on a moving domain. We use an idea due to Ligocki et
al. [21] that derives geometric information using a hierarchical application of the
divergence theorem. Our implementation is entirely new and differs from theirs
by including some relevant inequality constraints. The specialization of that ap-
proach is described in the case that the primary source of geometric information is
a discretized distance function.

2.1. Hodge projection on a moving domain. To implement a projection method
on a moving domain, Trebotich and Colella [12; 37] decompose a vector field w
into three components:

w = v+∇θ︸ ︷︷ ︸
u

+∇φ, (2.1a)

1θ = 0, (2.1b)

∇ · v = 0. (2.1c)

In the context of incompressible Navier–Stokes, u is a divergence-free velocity
field, consisting of a vorticity-carrying component v and an incompressible poten-
tial flow ∇θ . ∇φ is the gradient of a potential, which can be used to determine
∇P . The boundary conditions for this decomposition are

(1) moving walls:

n · v = 0, (2.2a)

n · ∇θ = n · s, (2.2b)

n · ∇φ = n · (w− s); (2.2c)

(2) inflow boundaries:

v = 0, (2.3a)

n · ∇θ = u0(x, t) (prescribed), (2.3b)

n · ∇φ = n · (w− u0); (2.3c)

(3) outflow boundaries:

n · ∇v = 0, (2.4a)

n · ∇θ = ūout, (2.4b)

φ = 0. (2.4c)
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Here ūout is the average outflow velocity given by conservation over the entire
domain. These boundary conditions with u= v+∇θ are equivalent to the boundary
conditions (1.2) of our problem. The Trebotich–Colella decomposition is solvable:
the θ equation is well posed without null space, and w−∇θ has boundary condi-
tions compatible with the Hodge decomposition (e.g., [6]). Therefore, v, ∇θ and
∇φ can be determined uniquely. A projection in this framework is accomplished by

φ : 1φ =∇ · (w−∇θ), (2.5a)

v = (w−∇θ)−∇φ. (2.5b)

The existence of decomposition (2.1a) does not require explicit determination
of potential θ . Instead,

φ : 1φ =1(φ+ θ)=∇ ·w, (2.6a)

u = w−∇φ, (2.6b)

or
u =P(w), (2.6c)

follows directly by application of (2.1b) to (2.5). The boundary conditions for
projection (2.6) are

(1) moving walls:

n · u = n · s, (2.7a)

n · ∇φ = n · (w− s); (2.7b)

(2) inflow boundaries:

n · u = u0(x, t) (prescribed), (2.8a)

n · ∇φ = n · (w− u0); (2.8b)

(3) outflow boundaries:

n · ∇u = 0, (2.9a)

φ = 0. (2.9b)

These match (1.2) on u, and for φ are identical to (2.1a).
Trebotich and Colella raise two concerns regarding the application of the Hodge

decomposition to moving domains [12; 37]. The first is over boundary conditions,
but as shown above, the existence of their velocity decomposition makes a Hodge
decomposition with boundary conditions (2.7)–(2.9) viable. Second, they object
to the use of a discrete projection that does not commute with the discrete PDE
operators. While it is true that these discrete operators do not commute because of
the boundary conditions on the discrete divergence, that property is not essential
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to the success of the method. If we assume that the mixed derivative uxt exists
and is C0, then the differential operators ∇· and ∂/∂t commute [35] and, without
recourse to discretization, the governing PDE gives

1P =∇ · (ν1u− u · ∇u) (2.10)

with boundary condition

n · ∇P = n ·
(
ν1u− u · ∇u−

∂u
∂t

)
. (2.11)

This assumption on uxt is required as well in the fixed-domain case (e.g., [8, Equa-
tion (2′)]).

If

w = u∗ ≈ un
+1t (ν1u− u · ∇u)n+1/2 (2.12a)

= un+1
+1t∇Pn+1/2 +O(1t3)+O(h2) (2.12b)

(see (1.4a)), then with φ ≈1t P and u = s on δ�, the linear problems

φ : 1φ =∇ ·w, (2.13a)

n · ∇φ =1tn · ∇Pn+1/2 on δ�n+1, (2.13b)

n ·w = n · [sn+1
+1t∇Pn+1/2] on δ�n+1 (2.13c)

and

φ : 1φ =∇ ·w, (2.14a)

n · ∇φ = 0 on δ�n+1, (2.14b)

n ·w = n · sn+1 on δ�n+1 (2.14c)

are equivalent to O(1t3)+ O(h2). The former (2.13) is the physical problem to
be solved; the latter (2.14) is the Hodge decomposition we implement, and whose
existence and uniqueness is addressed above. This approach amounts to placing the
inhomogeneous boundary condition due to the moving domain in the divergence of
velocity on the right-hand side of the Poisson’s equation and solving the homoge-
neous (Neumann) problem for the pressure. The same approach maps true inflow
conditions to n ·w = u0 and n · ∇φ = 0. For the outflow, conditions n · ∇w = 0
and φ = 0 are literal. This discussion has used the time centering corresponding to
the cell-centered projection of outline step (6). The MAC projection (outline step
(2)) is entirely analogous.

2.2. High-order Godunov advection. The computation of un+1/2
i+1/2ed

is based on an
adaptation of the embedded boundary method for hyperbolic PDEs [11]. It is a
three-step process:
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I. In the first step, cell-centered velocities un
i are averaged to edges un

i+1/2ed
, and

this velocity field is used to resolve Riemann problems in an advective calcu-
lation. First, the velocity is extrapolated to faces with upwind characteristics:

u±d
i = un

i ±
1
2

min
(

1∓ (ed · un
i )
1t
h
, 1
)
(δd un)i +

1t
2
(ν1un)i . (2.15)

This initial extrapolation does not include transverse derivatives or the pres-
sure gradient. δ is a difference operator using van Leer [40] limiting:

δd(u)=
{
δvL

d (u) if (u i+ed − u i )(u i − u i−ed ) > 0,
0 otherwise,

(2.16)

δvL
d (u)= sign(u i+ed − u i−ed )

×min
(
2
∣∣u i − u i−ed

∣∣ , 2
∣∣u i+ed − u i

∣∣ , 1
2

∣∣u i+ed − u i−ed

∣∣). (2.17)

Further, u+d
i is the value of velocity extrapolated to the right side of cell i

in direction d , and u−d
i+ed

is the value extrapolated to the same edge from cell
i + ed . A single-valued result is obtained by resolving the Riemann problem,
which amounts to upwinding:

ūn+1/2
i+1/2ed

=


u+d

i if (ed · u)ni+1/2ed
> 0,

u−d
i+ed

if (ed · u)ni+1/2ed
< 0,

1
2

(
u+d

i + u−d
i+ed

)
if (ed · u)ni+1/2ed

= 0.

(2.18)

The output of this Riemann problem is used to provide transverse flux cor-
rections. In 2D (see Figure 3),

u±d
i := u±d

i −
1t
2h

(
ūn+1/2

i+1/2ed′
− ūn+1/2

i−1/2ed′

)
(ed · un

i ), d ′ 6= d, (2.19)

followed by another Riemann solution. In 3D the transverse flux correction
is more complicated [32].

II. A discrete MAC projection is used to make the advected velocities divergence-
free:

8 : 18=∇ · ū; (∇ · ū)i =
1
h

∑
d

(
ūn+1/2

i+1/2ed
− ūn+1/2

i−1/2ed

)
, (2.20a)

ed · u = ed · ū−∇d8. (2.20b)

This projection only affects the normal component of the edge velocities.

III. The third step repeats step I, but the velocity used to judge upwind direction in
the Riemann problem is the divergence-free edge velocity computed in step II.
In this step the normal velocity components are not changed, but the transverse
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Figure 3. Transverse flux correction in 2D. Double-valued edge states u±d are indicated
by filled circles, and single-valued states ū are indicated by open circles. Differences in ū
across a given cell provide flux correction to the states u±d associated with that cell, but
in transverse directions.

ones are. Finally, these transverse components are corrected to account for the
pressure gradient computed in II. In 2D,

ed ′ · u
n+1/2
i+1/2ed

:= ed ′ · u
n+1/2
i+1/2ed

−
1
4

[
(∇d ′8)i+1/2ed′

+ (∇d ′8)i+ed+1/2ed′

+ (∇d ′8)i−1/2ed′
+ (∇d ′8)i+ed−1/2ed′

]
, (2.21)

where d ′ 6= d is the transverse direction. The generalization to 3D is straight-
forward.

The extension of this algorithm to embedded boundary geometries is described
in [11]. One change is to employ one-sided differences where the data does not
support centered stencils. Another concerns the determination of so-called covered-
edge values. Covered edges are those edges of irregular cells which are not in con-
tact with the fluid. For these edges, the upwind characteristic tracing step provides
a single edge value on the fluid side of the edge. The value on the side opposite the
fluid is obtained by extrapolation from edge values interior to the domain (Figure 4);
see [11, §5.2] for details.

2.3. Hyperbolic step. We are interested here in a formulation of u · ∇u that is
consistent with the hyperbolic split of the Navier–Stokes equations

∂u
∂t
+∇ · F = 0 (2.22)

with F ≡ uu, ∇ · F = u · ∇u when ∇ · u = 0. For this hyperbolic equation, one
has a discretization

un+1
nonconservative = un

−
1t
h
(DF)nc (2.23)
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Figure 4. Covered edge calculation, illustrated in 2D for the case of ŷ-side edges. Closed
circles indicate edge values calculated by the 1D advection algorithm described here,
though modified to use one-sided differences near boundaries. The open circle indicates
an exterior covered edge, in this case on the right side of an edge. This right-edge covered
value is extrapolated from right-edge uncovered values by interpolation (dashed line), and
extrapolation in the direction of the interface normal (arrow), using the cell-centered gra-
dient. When the uncovered values are modified to account for transverse flux correction,
this calculation is repeated so the covered edge value also includes transverse corrections.

with DF a flux difference which we approximate by

(DF)nc
i =

D∑
d

1
h

(
un+1/2

d,i+1/2ed
un+1/2

i+1/2ed
− un+1/2

d,i−1/2ed
un+1/2

i−1/2ed

)
. (2.24)

This discretization is second-order accurate in regular cells, but not consistent in
cut cells. It is stable in both cases.

A conservative discretization of the conservation law on the irregular control
volume comes from the space-time integration over the fluid in an irregular cell:

0=
∫ tn+1

tn
dt
∫
�i (t)

dV
(
∂

∂t
,∇
)
· (u, F)

≈ κn+1
i hDun+1

i − κn
i hDun

i

+1thD−1
D∑
d

(
αi+1/2ed Fd,i+1/2ed−αi−1/2ed Fd,i−1/2ed

)
+Ai,EBni,E B ·(u, F)i,EB,

(2.25)

where

�i (t)=�(t)∩ [h i, h(i + 1)] (2.26)

is the fluid-occupied volume of cell i at time t . Subscript EB denotes that the object
is located on the embedded boundary, and EB will be used also as an abbreviation.
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Here κ denotes a volume fraction,

κn
i =

1
hD

∫
�i (tn)

dV ; (2.27)

α a space-time area fraction (also known as “aperture”),

αi−1/2ed =
1

hD−11t

∫ tn+1

tn
dt
∫
δ�i (t)∩{x|xd=hid }

d A; (2.28)

and AEB is the space-time area of the EB. nEB is the unit normal in RD+1. The
D+ 1 components of AEBnEB can be determined from the condition div(ei )= 0
for each of the D+ 1 directions i , giving

κn+1
i u

cent

n+1
i = κn

i u
cent

n
i −

1t
h

D∑
d

(αi+1/2ed Fd,i+1/2ed −αi−1/2ed Fd,i−1/2ed )

− (κn
i − κ

n+1
i )ui,EB−

1t
h

D∑
d

(αi−1/2ed −αi+1/2ed )Fd,i,EB. (2.29)

Here we have written u
cent

to emphasize that the centering is at the centroid x
cent

for
(2.29) to be consistent (Figure 5);

x
cent

n
i =

1
hDκn

i

∫
�i (tn)

xdV . (2.30)

However, the elliptic operators we use are based on a cell-centered discretization
u
cc

, which suggests the modification

u
cc

n+1
i − u

cc
n
i =−

1t
h
(DF)c, (2.31)

x

t

Figure 5. Centerings: centers (open circles) and centroids (crosses). In regular domains,
the discretization relies on centered quantities. A convergent stencil in irregular domains
uses centroid-centered quantities.
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(DF)c=
1

κn+1
i

[
h
1t

(
κn

i (xcc
−x

cent
)ni ·(∇u)ni −κ

n+1
i (x

cc
−x

cent
)n+1

i ·(∇u)ni +(κ
n+1
i −κn

i )ucc
n
i

)
+

D∑
d

(αi+1/2ed Fd,i+1/2ed −αi−1/2ed Fd,i−1/2ed )

+
h
1t
(κn

i−κ
n+1
i )ui,EB+

D∑
d

(αi−1/2ed−αi+1/2ed )Fd,i,EB

]
. (2.32)

Equation (2.31) has O(h) discretization error in irregular cells (when κ < 1), and
is second-order in regular cells. The velocity at the centroid of the EB is s(x, t),
the prescribed boundary condition (1.2a). Fluxes at the centroids of cell faces are
calculated by interpolating the velocity field to the centroid

x
cent i−1/2ed =

1
hD−11tαi−1/2ed

∫ tn+1

tn
dt
∫
δ�i (t)∩{x|xd=hid }

x d A, (2.33a)

t
cent i−1/2ed =

1
hD−11tαi−1/2ed

∫ tn+1

tn
tdt
∫
δ�i (t)∩{x|xd=hid }

d Ak. (2.33b)

The data interpolated is taken from all available data in a 5D-cell region centered
at the point where F is required. This makes F on an irregular edge, say i + 1/2ed

independent of the cell, i or i + ed , that shares it. Interpolation is second order
in space and time, and implemented by solving an overdetermined set of linear
equations with Householder decomposition.

To make the method stable we employ the hybridized flux difference

un+1
= un

−
1t
h

(
κn+1(DF)c+ (1− κn+1)(DF)nc) . (2.34)

In the limit that cells become regular on [tn, tn+1
] the conservative, nonconserva-

tive, and hybrid flux differences are all equivalent to the stable second-order result,
and (2.34) reduces to (2.31).

The generalized mass difference is redistributed. The mass excess is

δm = hDκn+1(un+1
− un+1

unstable)

=1thD−1κn+1(1− κn+1)
(
(DF)c− (DF)nc) . (2.35)

The negative of this quantity is to be distributed in a volume-weighted sense to
neighboring cells [4; 29; 26]. Let ũ be un+1 evaluated by (2.34), then modified
by redistribution. Then (un

− ũ)/1t is what we refer to in outline step (4) as a
conservation-preserving calculation of u · ∇u.
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2.4. The time-dependent heat problem. For the problem

ut = K1u+ f x ∈�(t), (2.36a)

u(x, tn)= u0(x) x ∈�(tn), (2.36b)

u(x, t)= ubc(x, t) x on δ�(t), (2.36c)

McCorquodale et al. [25] propose the following algorithm:

(1) Interpolate the boundary conditions ubc(x, tn) to the boundary δ�n+1 with

uinterp
bc (x′)= ubc(x, tn)+ (x′− x) · ∇u0(x′, tn), (2.37)

where x′ on δ�n+1, x on 1�n , and |x− x′| is O(h). Specifically, let i be the
cell containing x, and let i ′ be the cell containing x′. For a given i , cell i ′ is
chosen to be the neighbor of i with greatest boundary area (Figure 6).

(2) On δ�n+1, boundary conditions for any time in [tn, tn+1
] are obtained by

linear interpolation of uinterp
bc (x) and ubc(x, tn+1).

(3) Extrapolate u0 to �n+1 using the approach described in outline step (1).

(4) Extrapolate f (x, tn+1/2) from �n+1/2 to �n+1 with this same procedure.

(5) On �n+1, solve the heat equation by the method of Twizell et al. [38]:

un+1
= (I −µ11t1h

1)
−1(I −µ21t1h

2)
−1

×
(
(I +µ31t1h

3)u
n,extrap

+ (I +µ41t1h
4)1t f n+1/2,extrap), (2.38)

with µ1 = µ2 = 1− 1/
√

2, µ3 =
√

2− 1, and µ4 =
√

2− 3/2. Here un,extrap

is the field u centered at time tn , but extrapolated from �n to �n+1, and

Figure 6. Extrapolation of boundary conditions. The dashed curve is δ�n , and boundary
conditions are known at the centroid of EB segments in each cell. The solid curve is
δ�n+1, and boundary conditions are needed at the centroids of this EB in each cell. For
each tn+1 centroid (e.g., the open circle), the neighboring cell with the greatest boundary
area is chosen. In this picture there are two candidates (closed circles). The boundary
condition is then extrapolated using the inner product of the cell-centered gradient in the
tn cell and the relative coordinates (arrow).
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likewise f n+1/2,extrap is the source term f centered at tn+1/2 and extrapolated
from �n+1/2 to �n+1. 1h

1 is the discrete Laplacian on �n+1 with boundary
conditions at tn+1; 1h

2 has boundary conditions at tn+1
−µ11t (by interpola-

tion); and 1h
3 has boundary conditions at tn . The boundary conditions on 1h

4
are homogeneous Dirichlet.

A justification of this algorithm follows.
The ODE

u′ = A(t)u+ f (t) (2.39)

has solution

un+1
= R(1t)un

+ R(1t)
∫ 1t

0
R−1(s) f (s) ds, (2.40)

where R is an integrating factor:

R(1t)= exp
(∫ tn

+1t

tn
A(τ ) dτ

)
. (2.41)

Expanding A in a Taylor series,

A(tn
+ s)=

∞∑
i=0

Ai si , (2.42)

facilitates constructing an approximation to R:

R(1t)≈
1+µ3α31t

(1−µ1α11t)(1−µ2α21t)
, (2.43)

where

µ1 = µ2 = 1− 1/
√

2, (2.44a)

µ3 =
√

2− 1. (2.44b)

These coefficients µi minimize the discretization error of this approximation in the
case that A is independent of time, which is the case described by Twizell et al. [38].
(Those authors introduce a factor ε of order machine precision to lift the degeneracy
of (2.44a) and enable a partial fraction representation of (2.43). McCorquodale et
al. [25] include this ε factor but do not use partial fractions.) The factors αi are
different time centerings of A(t):

α1 = A0+ A1c11t, (2.45a)

α2 = A0+ A1c21t, (2.45b)

α3 = A0+ A1c31t, (2.45c)
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with coefficients ci to be determined. When A is time-varying, the approximation
to R(1t) differs from (2.41) by O(1t3) provided

(c1+ c2)(2−
√

2)+ 2c3(
√

2− 1)= 1. (2.46)

The solution (see [25])

c1 = 1, (2.47a)

c2 = 1/
√

2, (2.47b)

c3 = 0 (2.47c)

satisfies this consistency requirement, but not uniquely. Expanding f (t) in a Taylor
series about tn+1/2 leads to a discretization of that source term. Combined,

un+1
= (1−µ1α11t)−1(1−µ2α21t)−1

×
(
(1+µ3α31t)un

+ (1+µ4α41t)1t f n+1/2) , (2.48)

where µ4 =
√

2− 3/2, and α4 is an arbitrary centering of A.
The choice c1 = 1 is optimal in that the final implicit solve will satisfy its given

boundary conditions exactly. An interpretation of this result is that the α3 operation
carries un to un+µ3 , then the α2 operation carries the solution to un+1−µ1 , with the
final operation α1 terminating at un+1. This suggests that 0≤ c3 ≤ µ3/2 in order
that µ3 ≤ c2 ≤ µ3+µ2, i.e., that the boundary conditions lie within the interval of
the associated operation.

Connecting ODE (2.39) to the heat PDE by the method of lines, this analysis
suggests

un+1
= (I −µ1L11t)−1(I −µ2L21t)−1

×
(
(I +µ3L31t)un

+ (I +µ4L41t)1t f n+1/2
)
, (2.49a)

which we abbreviate as

un+1
= LTGA

(
un, f n+1/2

)
: (2.49b)

the solution at tn+1 to ut = Lu+ f . When L is a negative definite operator, this
discretization is L0 stable and second-order accurate in time. Since

µ1+µ2+µ3 = 1,

the principle of superposition requires that boundary conditions on L4 be homo-
geneous. It remains to be shown that all operators Li can be discretized on the
domain �n+1 to O(h2). The operators Li must be centered correctly, as given by
(2.45) and (2.47), to second-order in time, except for L4, which may be first-order
in time.
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Consider the heat equation

ut = K1u+ f, (2.50)

u(x, 0)= u0(x),
u(x, t)= ubc(x, t) on δ�.

Let x0 be a point on δ�, and let x1 be an arbitrary point O(h) away from x0. Then
a Taylor series expansion gives

u(x1, t)= u(x0, t)+ (x1
− x0) · ∇u(x0, 0)+O(h2)+O(h1t). (2.51)

Therefore, if �n+1 and �(t) are close (in the sense that for any point x on
δ�n+1 there is a point x′ on δ�(t) with |x− x′| = O(h)), and if one uses Dirichlet
boundary conditions on �n+1 given by

ubc(xn+1, t) := ubc(x(t), t)+ (xn+1
− x(t)) · ∇u0,

and if 1t ∝ h, then the solution at x(t) on δ�(t) will be obtained to second order
in h.

The solution on the interior of a domain � is a linear functional of its boundary
conditions, initial conditions, and forcing. For example,

u(x, t)=
∫
�

dV ′G(x | x′, t)u0(x′)+
∫ t

0
dt ′
∫
�

dV ′G(x | x′, t−t ′) f (x′, t ′)

+

∫ t

0
dt ′
∫
δ�

d S′n′ · ∇ ′G(x′ | x, t − t ′)ubc(x′, t ′) (2.52)

solves (2.50), where G is the Green’s function solving

G t = K1G+ δ(x− x′), (2.53)

G(x | x′, 0)= 0,

G(x | x′, t)= 0 for all x on δ�.

Therefore, on a domain � differing from �n+1 by O(h), where u0 and f are con-
tinued by high-order interpolation, and where ubc is second-order accurate, the
solution interior to � will be second-order accurate. Solved by a discrete method,
the error will be the lower of the order of the method or h2, in the present case
O(h2)+O(1t) for the solution by forward or backward Euler, and O(h2)+O(1t2)

embedded in the Twizell et al. framework (2.49a).
The discretization of this heat solver is based on the conservative but unstable

discretization of the Laplacian for time-stationary geometries

1u =∇ · F, F =∇u, (2.54a)

un+1
= un
+Li (u), (2.54b)
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Li (u)=
ν1t
κi h

D∑
d

((
αi+1/2ed Fn+1/2

i+1/2ed
−αi−1/2ed Fn+1/2

i−1/2ed

)
+
(
αi−1/2ed−αi+1/2ed

)
Fd,i,EB

)
.

(2.54c)

Note that while Li is unstable in the limit κi → 0, κi Li is stable. The overall
sequence can be written in a stable manner as follows:

ψ1
= κ(I +µ4L) f n+1/2, (2.55a)

ψ2
= κ(I +µ3L)un, (2.55b)

ψ3
=1tψ1

+ψ2, (2.55c)

ψ4
= [κ(I −µ2L)]−1 ψ3, (2.55d)

ψ5
= κψ4, (2.55e)

un+1
= [κ(I −µ1L)]−1 ψ5. (2.55f)

2.5. Computation of space-time geometry. We base our geometry calculation on
a hierarchical application of the divergence theorem proposed by Ligocki et al. [21],
here specialized to the case where geometric information is to be determined from
cell- and time-centered discrete values of a level set function ψ . This method as-
sumes only that ψ is a sufficiently differentiable level set, not necessarily a distance
function.

2.5.1. Governing equations. In D dimensions use the multiindex convention

x p
= x p1

1 x p2
2 · · · x

pD
D , (2.56a)

p! = p1!p2! · · · pD! , (2.56b)

∇
r
=
∂r1

∂xr1
1

∂r2

∂xr2
2
· · ·

∂rD

∂xrD
D
, (2.56c)

and in this application all components of a multiindex are nonnegative. We will
say multiindex integer p is even if all pi are even, and for the magnitude, P =
| p| =

∑
pi , etc.

Consider the volume integral of ∇ · (x ped)= pd x p−ed with the divergence the-
orem:

pd

∫
V

x p−ed dV =
∫

A+d

x pd A−
∫

A−d

x pd A+
∫

AEB

x pn · edd A (2.57)

where EB denotes the embedded boundary, and n is the unit normal vector. With
the boundary having curvature, n is spatially varying. Account for this spatial
variance with a truncated Taylor series:
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pd

∫
V

x p−ed dV − nd

∫
AEB

x pd A

=

∫
A+d

x pd A−
∫

A−d

x pd A+
∑

1≤|r|≤R

∇
rnd

r!

∫
AEB

x r+ pd A+O(hD+R+P). (2.58)

Here V designates a generalized volume, and A designates a codimension-1 sub-
space — a generalized area. In (2.58), n is the normal to the EB in the space
of volume V . This equation expresses moments on [−h/2, h/2]D and on the
codimension-1 EB in terms of higher moments on lower-dimensional spaces. Each
of these lower-dimensional spaces can be analyzed with a similar specialization of
(2.58). For example, if the area Ad+ is bounded by subspaces L (lines), we have

pd ′

∫
Ad+

x p−ed′d A− nd ′

∫
LEB

x pd L

=

∫
L+d′

x pd L −
∫

L−d′
x pd L +

∑
1≤|r|≤R

∇
rnd ′

r!

∫
LEB

x r+ pd L +O(hD′+R+P), (2.59)

where n is the interface normal in the subspace Ad+ , and D′= D−1 if we consider
pd (the component of p in the dimension orthogonal to space Ad+) to be zero. (This
assumption can be made without loss of generality. If M( p) is a given moment on
surface Ad± with pd = 0, then M( p+ ked) = (±h/2)k M( p): the generation of
moments for which pd 6= 0 is trivial.) Equation (2.58) can be applied as many times
as needed until the subspaces contain trivial normal vectors n: when the space V
of (2.58) is 1D, the normal vector is ±1 and has no derivative.

To interpret the order D′+ R+ P , begin by specifying S as the desired order of
accuracy. On the original space R = S− 1, and P = 0, 1 is required at a minimum
to obtain the centroid of the EB. However, with R = 1 and P = 1, EB moments
with P = 2 are required on the right hand sides. This causes the maximum P , Pmax,
to depend on S and D′ in a systematic way:

Pmax(D′)= S− 1+ [D−max(D′, 2)] D ≥ 2, (2.60)

and, for each magnitude P = 0, . . . , Pmax,

R =max(S− 1− P, 0). (2.61)

Table 1 displays some convergence results in multiple dimensions for the case
S = 2.

2.5.2. Order of operations. For each dimension, the system of equations implied
by (2.58) is overdetermined and nonsingular. Ligocki et al. propose evaluating this
hierarchical system in a particular way, grouping equations on a common subspace
and with common P . This makes each overdetermined set small, minimizing the
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2D
1/h error rate

16 –8.143 · 10−4

32 –2.226 · 10−4 1.87
64 –5.409 · 10−5 2.04

128 –1.378 · 10−5 1.97

(2+1)D
1/h error rate

16 –6.705 · 10−5

32 –1.796 · 10−5 1.90
64 –4.416 · 10−6 2.02

128 –1.115 · 10−6 1.98

3D
1/h error rate

16 –3.108 · 10−3

32 –7.873 · 10−4 1.98
64 –1.958 · 10−4 2.01

128 –4.898 · 10−5 2.00

(3+1)D
1/h error rate

16 –2.107 · 10−4

32 –5.330 · 10−5 1.98
64 –1.327 · 10−5 2.01

128 –3.315 · 10−6 2.00

Table 1. Convergence of EB area for sections of a hypersphere for order S = 2. In 2D
the area of a unit circle is computed on one quadrant. In 3D, the area of a unit sphere
in one octant. In 2+1D, a section of the unit sphere from the midplane to x2 = 1/16. In
3+1D, the area of a unit hypersphere from the midplane to x3 = 1/16. Calculations used
cell-centered values of the signed distance function to derive all quantities.

cumulative cost of the associated linear algebra. Here, we first describe the order of
operation as described by Ligocki et al., then discuss constraints and modifications
to the operation order that are made to accommodate them.

To illustrate these ideas, consider the 2D case. Let us write as a subscript [··]
to indicate that the volume being integrated over is [−h/2, h/2] × [−h/2, h/2],
and [+·] to indicate the +x0 edge on which the integral runs [−h/2, h/2] in the
x1 direction (Figure 7). We will write (p0 p1) to represent a given moment. Thus,

a

b c

df

e
[··][-·]

[·-]

[·+]

[+·]

{·
·}

Figure 7. Notation for 2D example. The fluid region abcde is denoted [··]; the EB {··},
e f , separates the fluid from the shaded exterior region de f . The 1D subregion [+.] is the
line segment cd, etc. The calculation begins with P = 0 moments on the 1D subregions,
e.g., (00)[·−]= a f , then the P = 1 moments; e.g., (10)[·−]= x2

f /2−h2/8, and (01)[·−]=
−(a f )h/2 which is simply (00)[·−] multiplied by the x1 coordinate of the edge, −h/2.
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(10)[·−] is the first x moment of the bottom edge of the cell.
In support of the 2D computation, we need the P = 0 and P = 1 moments over

each edge (each of the four 1D bounding spaces). These quantities are determined
by interpolation of the discrete level set data using stencils and methods described
below (Section 2.5.4).

Once these 1D moments are known, one can proceed to evaluate the moments
in 2D. In volume [··] we are interested in the P = 0 moment (00)[··] which gives
the volume fraction. We are also interested in the P = 0 and P = 1 moments over
the EB, which together specify the centroid. The EB in volume [··] will be written
{··}. The first block of equations come from (2.58) with P = 1. In order, these are
from p = (1, 0) with d = 0, then d = 1, followed by p = (0, 1) with d = 0, then
d = 1:

1(00)[··]− n0[··](10){··} = (10)[+·]− (10)[−·],

−n1[··](10){··} = (10)[·+]− (10)[·−],

−n0[··](01){··} = (01)[+·]− (01)[−·],

1(00)[··]− n1[··](01){··} = (01)[·+]− (01)[·−].

(2.62)

With the unknowns on the left hand side, there are 4 equations to determine 3
variables. The next set of equations come from (2.58) with P = 0, p= (0, 0), with
d = 0 followed by d = 1:

−n0[··](00){··} = (00)[+·]− (00)[−·]+ n(10)
0[··](10){··}+ n(01)

0[··](01){··},

−n1[··](00){··} = (00)[·+]− (00)[·−]+ n(10)
1[··](10){··}+ n(01)

1[··](01){··};
(2.63)

two equations in one unknown. This system requires the normal and its gradient,
which may be constructed from a degree-2 Taylor series expansion of the level set.

From these computations, volume fraction, centroids and apertures are, e.g.,

κ =
(00)[··]

h2 , (2.64)

xcent
[−·]
=

1
(00)[−·]

(
(10)[−·]
(01)[−·]

)
, (2.65)

xcent
{··}
=

1
(00){··}

(
(10){··}
(01){··}

)
, (2.66)

α[−·] =
(00)[−·]

h
; (2.67)

see (2.27), (2.33a), (2.28). While an EB area is calculated by this method, finite
volume discretizations use the projected area and the normal that come from the
requirement that ∇ · (ei )= 0 [29].
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Figure 8. Recentering to improve accuracy. When the 1D edges of a given volume are
evaluated, the intersections of the edges with ψ = 0 are discovered (filled circles). In the
evaluation of higher-dimensional volumes, here a 2D face, the mean of the intersection
points of those edges associated with this face gives a centering point (open circle) which
approximates the centroid of the EB.

Ligocki (personal communication) noted that the quality of the least squares
solutions can be dramatically improved by recentering the calculation from the
center of a given [−h/2, h/2]D volume to a point close to the centroid of the EB.
Specifically, we recenter the linear equation systems and the constraint equations
prior to solution of the over-determined data fitting equations by Householder re-
duction, then recenter the computed result to the center of the given volume. The
estimated centroid is the average of the intersections of ψ = 0 with the 1D edges
of the volume being evaluated (Figure 8).

2.5.3. Incorporation of constraints. The moments appearing in this expansion are
subject to certain inequality constraints. If p̄ is even, then the corresponding vol-
ume integral is nonnegative and, if not on the EB, can be bounded from above:

0≤
∫

V
x p̄dV ≤

h P+D p!
2P( p+ 1)!

. (2.68)

If p differs from an even multiindex p̄ by addition of a unit basis vector e j , then

min
V
(x j )

∫
V

x p̄dV ≤
∫

V
x p̄+e j dV ≤max

V
(x j )

∫
V

x p̄dV, (2.69)

by the mean value theorem.
In the second-order 2D example above, simple positivity constraints are

(00)[··] ≥ 0, (2.70a)

(00){··} ≥ 0, (2.70b)

and there is a physical constraint

(00)[··] ≤ h2
; (2.70c)
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volume fraction is positive but less than or equal to one, and the EB area is positive.
Constraints of the second type are

−
h
2
(00){··} ≤ (10){··} ≤+

h
2
(00){··}, (2.71a)

−
h
2
(00){··} ≤ (01){··} ≤+

h
2
(00){··}. (2.71b)

Constraints of type (2.68) can be implemented with any organization of the
divergence theorem hierarchy. However, to incorporate those derived from the
mean value theorem (2.69) while minimizing the overall least squares problem, it
is necessary to solve for all necessary moments of a given volume simultaneously.
This can be seen by noting that constraints (2.71) combine EB area values (00){··}
and EB moment values (10){··} and (01){··} which are determined in different blocks
(2.63) and (2.62), respectively, of the Ligocki et al. algorithm.

Incorporation of constraints in that setting means that the first linear system
is solved without constraints, then constraints may be incorporated in subsequent
solves. This would be analogous to weighing system (2.62) in preference to (2.63).
This relative priority cannot be justified. To correct this weighting problem we
solve simultaneously for all moments of a given subspace: (i) 1D moments as
above, (ii) solve system (2.62), (2.63) together. We explicitly weigh each equation
by h−P so that, unconstrained, they carry similar weights as in the Ligocki et
al. method.

All linear systems are solved with Householder Q R reduction. The constrained
least squares problem is equivalent to the constrained positive definite quadratic
programming problem solved by Goldfarb and Idnani [13; 14]: minimize

(Ax− b)T (Ax− b)

with respect to x subject to linear inequality constraints. Their method begins
with the Cholesky LLT decomposition of the Hessian ATA, and with Q unitary
the setup phase of their method is trivial: L = RT , the transpose of R from the
Householder decomposition. The quadratic form (Ax− b)T (Ax− b) never need
be explicitly constructed.

2.5.4. Stencils. Here algorithms are described that determine the moments on 1D
subspaces, and derivatives of the normal vector, from cell- and time-centered level
set discretizations.

Nominally, we assume that the EB ψ = 0 will intersect each 1D edge at most
once. If this is true, then interpolated values of ψ at the corners of a cell determine
which edges are intersected by the EB, which are covered (by the wall), and which
are regular. It is important to the robustness of the method that these corner values
be accurate, and that each edge’s notion of the corner be identical: the corner
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(a) (b) (c)

(a) (b) (c)

Figure 9. Stencils for the construction of 1D moments for the case where all dimensions
are spatial, illustrated in 2D for the case of order S = 3 or 4. To achieve a final order S,
stencils of half width K = dS/2e are constructed. (a) To compute the moments on the left
edge of the center cell (bold line), a stencil consists of 2K points transverse to the edge,
and 2K +1 points in the direction of the edge (open circles). The first step is to interpolate
to the line in the transverse direction. The points being interpolated lie on the dashed lines,
and the resulting interpolants are given by crosses. The calculation of the derivatives of
n for the center cell is based on a least squares fit of all (2K + 1)D cells (the squares) to
determine Taylor coefficients in a centered expansion of ψ . (b) The top 2K interpolants
are interpolated to deduce the value at the top end of the bold line segment (filled circle).
The polynomial given by this filled circle and the bottom 2K crosses is identical to the
polynomial given by all crosses alone, so the top cross may be dropped when the filled
circle is added to the list of support points. Similarly, the bottom 2K points are used to
interpolate the value at the bottom of the line segment. The result is that the corner values
of the cell are computed from a symmetric (2K )D set of points, and for all cells that share
a given corner the stencil is identical (e.g., the value at the corner indicated by the filled
circle is determined by the set of points in the bold square, regardless of the edge under
consideration). (c) The resulting 2K + 1 interpolation points — equivalently, the 2K + 1
crosses of part (a) — define an interpolation polynomial whose roots are the intersection
of ψ = 0 with the given edge.

x

t

n+1

n

x

t

n+1

n

(a) (b)

Figure 10. Stencils for the case where one dimension is temporal, illustrated in 1D+1D
for the case of order S= 4. Let K =dS/2e. Because data is centered at time levels, stencils
for time and space edges are different. (a) To find moments on a temporal edge (bold
line segment) S time levels are interpolated (crosses) each from 2K spatial interpolations
(circles on dashed lines). (b) For a spatial edge, data on a single time level is treated by
the stencil described in Figure 9. To evaluate derivatives of ψ at the center of a space-time
volume, the stencil uses 2K + 1 points in each spatial direction and S+ 1 time levels.



BOUNDARY METHOD FOR NAVIER–STOKES ON A TIME-DEPENDENT DOMAIN 25

values must be cell- and edge-invariant. In order that quantities like the aperture α
be invariant, it is also important that the intersection point of ψ = 0 with a given
edge be cell-invariant. These symmetry considerations impact the interpolation
algorithms by rounding up the stencil width in some cases.

To compute the moments on 1D edges, one finds the intersection of the edge
with ψ = 0 (say a point ζ ), then constructs the moments explicitly. In a frame
where the cell center is at the origin, one has, for example,

(p0 p1)[−·] =

(
−

h
2

)p0

×

{∫ ζ
−h/2 y p1dy if ny =−1,∫ h/2
ζ

y p1dy if ny =+1,
(2.72)

The intersection point ζ is determined by constructing an interpolating poly-
nomial using data interpolated to the line coincident with the edge. We seek its
roots with bisection until Smale’s criterion [34] indicates that Newton–Raphson
will converge quadratically. Roots are then refined with Newton–Raphson.

For the general case of arbitrary dimension D and arbitrary order S, O(hS) ac-
curacy on the 1-dimensional subspaces requires an interpolation polynomial with
S support points. The symmetry invariance requirement of the method modifies
this stencil. If K = dS/2e, then 2K support points are required in the transverse
direction and 2K + 1 in the normal direction (Figure 9).

The support requirements in the case of space-time interpolation are simpler
since data exists on the time edges so interpolation to integer time levels is not
required (Figure 10).

To achieve order S accuracy, S− 1 order derivatives of the normal vector are
required, which are based on S order derivatives of the discrete level set using

n( p)
=

d p

dx p
∇ψ

√
(∇ψ) · (∇ψ)

. (2.73)

These derivatives are based on a Taylor series centered at the center of the relevant
subspace, fit to data with stencil width S+ 1. Where possible the stencil is made
symmetric by rounding up to width 2K + 1.

2.5.5. Underresolved and nonconforming geometry. Underresolved geometries may
fail under the standard algorithm. The geometry in Figure 11 will fail because
the interpolated value of ψ at the corners of the square cell are all positive. The
algorithm therefore misses the fact that the EB crosses the left edge twice. One
way to detect these problems is to estimate the minimum and maximum values of
ψ on the cell. If these have different signs, then the cell is irregular even when the
corner values have uniform sign, and even if ψ is not a distance function.

An algorithm to estimate the range of values the differentiable function ψ takes
on the cell is given by Rivlin [31]. The basic idea is to sample the domain �i by
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Figure 11. Irregular cells whose interpolated corner values have uniform sign. In this
example, the cell is a square of length h and ψ = 0 is a circle centered 51/2h units to the
left of the cell center. The radius is chosen so the circle intersects the left cell boundary at
±h/4. The area to be measured is ≈ 2.08× 10−3h2.

overlaying it with a grid of length δ. If ψ(ξ) is an extremum in cell i , and xk is a
point on the δ-grid, then

ψ(xk)= ψ(ξ)+
∑
|r|=2

(xk− ξ)
r

r!
ψ r(χ), (2.74a)

max
x∈�i
|ψ(x)−ψ(ξ)| ≤1≡

δ2

4
max
χ

∑
|r|=2

1
r!
|ψ (r)(χ)| (2.74b)

for some χ ∈ [xk, ξ ], and so

min
x∈�i

ψ(x) >min
xk
ψ(xk)−1, (2.75a)

max
x∈�i

ψ(x) <min
xk
ψ(xk)+1. (2.75b)

We estimate 1 using the Taylor series, which we center at the center of cell �i :

ψ(x)=
∑

P

∑
| p|=P

x p

p!
ψ ( p)(0), (2.76a)

1=
δ2

4
max
χ

∑
|r|=2

1
r!

∣∣∣∣∑
P

∑
| p|=P

χ p−r

( p− r)!
ψ ( p)(0)

∣∣∣∣, (2.76b)

≤
δ2

4

∑
|r|=2

1
r!

∑
P

∑
| p|=P

(1
2 h) p−r

( p− r)!
∣∣ψ ( p)(0)

∣∣ (2.76c)

where h is the vector cell edge lengths. In support of (2.73), derivatives of ψ
through order S are known. So, for any order S ≥ 2 sufficient information will be
available to employ Rivlin’s method. Given a desired tolerance 1, (i) approximate
the Taylor series by least squares, (ii) estimate δ from (2.76c), then compute the



BOUNDARY METHOD FOR NAVIER–STOKES ON A TIME-DEPENDENT DOMAIN 27

order S relative error

2 –0.595
3 –0.0281
4 –0.0304
5 0.00832
6 –0.000256

Table 2. Relative area error (Ah
− A)/A (where A is exact and Ah is computed) using

one level of bisection to resolve Figure 11. Without subdivision, the relative error is 1.

bounds by sampling the polynomial. If the product of bounds ψminψmax is negative,
then subdivision is applied. Otherwise, the cell is regular κ = 1 or covered κ = 0.

For the situation in Figure 11, a single bisection (in all directions) permits iden-
tification of the cell as an irregular one. The resulting volume calculations are
summarized in Table 2.

3. Results

We demonstrate the method and show its convergence by computing the flow past
a sphere in a bounded domain, Figure 12. In arbitrary units, the domain has length
4 and height 2. The top and bottom boundaries are stationary no-slip walls, the
right boundary is outflow, and the left domain boundary is inflow with velocity
having a Poiseuille profile with maximum velocity 1.5. Viscosity is 0.1. A sphere
centered at (1, 1) obstructs the flow. Its radius depends on time as

0.2+ 0.1 cosωt,

with ω = π/1.2. The finest discretization of the domain is 1024× 512, with 1t =
1.5× 10−3 fixed. To determine rates of convergence we also use coarser grids:
a 512× 256 grid with δt = 3.0× 10−3, etc., through the coarsest discretization

Figure 12. Flow past a shrinking sphere on 2:1 domain. Circles represent initial and final
sphere surface. Curves are streamlines. Color corresponds to |u| from 0 (blue) to 1.7 (red).
Note that the streamlines attach to the sphere because it is moving. Times are 0.6 and 1.2,
respectively.
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Nx ‖ux error‖∞ rate ‖ux error‖1 rate

64/128 5.28× 10−1 4.37× 10−3

128/256 2.24× 10−1 1.24 9.24× 10−4 2.24
256/512 8.76× 10−2 1.35 2.22× 10−4 2.06

512/1024 4.64× 10−2 0.92 5.36× 10−5 2.05

Nx ‖u y error‖∞ rate ‖u y error‖1 rate

64/128 4.01× 10−1 3.12× 10−3

128/256 1.86× 10−1 1.11 7.07× 10−4 2.14
256/512 8.28× 10−2 1.16 1.68× 10−4 2.07

512/1024 3.97× 10−2 1.06 3.95× 10−5 2.09

Table 3. Richardson error convergence study for flow past a shrinking sphere.

of 64× 32 with 1t = 2.4× 10−2. The maximum CFL over the course of this
simulation is 0.8.

Errors and rates of convergence are shown in Table 3 after 352 time steps on the
finest grid through 22 time steps on the coarsest. In L1 the velocity is second-order
accurate, while in L∞ it is first-order. The errors reported are Richardson estimates
obtained by comparing computations with different resolution:

‖u‖h,2h
1 =

1
V

∫
�

|uh
− u2h

|dV =
∑

i κi |uh
− u2h

|i∑
i κi

, (3.1a)

‖u‖h,2h
∞
=max

x∈�
|uh
− u2h

| =max
i
|uh
− u2h

|i . (3.1b)

In these expressions, i is a cell index in the 2h-grid, and

|uh
− u2h

|i =

∣∣∣∣u2h
i −

1
2D

∑
j

κh
j

κ2h
i

uh
j

∣∣∣∣ (3.2)

with the sum being over h-grid cells j that lie in the 2h-grid cell. The convergence
rate is given by

r =
1

ln 2
ln
‖u‖2h,4h

‖u‖h,2h . (3.3)

The first-order convergence in L∞ is expected because of the discretization error
of the quadrature formula (2.31) for the hyperbolic part of the governing equations.
As anticipated by Colella [10], the truncation error in irregularly shaped finite vol-
umes is lower order than regularly shaped volumes. Thus, any fully conservative
and consistent finite volume hyperbolic method based on a quadrature rule consist-
ing of one point per bounding surface will be first-order in L∞. This expectation
applies also to approaches like cell merging.
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SLENDER BODY THEORY FOR STOKES FLOWS WITH
REGULARIZED FORCES

RICARDO CORTEZ AND MICHAEL NICHOLAS

Existing slender body theories for the dynamics of a thin tube in a Stokes flow
differ in the way the asymptotic errors depend on a small parameter defined as
the radius of the body over its length. Examples are the theory of Lighthill, that
of Keller and Rubinow, and that of Johnson. Slender body theory is revisited here
in the more general setting of forces which are localized but smoothly varying
within a small neighborhood of the filament centerline, rather than delta distribu-
tions along the centerline. Physically, this means that the forces are smoothly dis-
tributed over the cross-section of the body. The regularity in the forces produces
a final expression that has built-in smoothing which helps eliminate instabilities
encountered in computations with unsmoothed formulas. Consistency with stan-
dard theories is verified in the limit as the smoothing parameter vanishes, where
the original expressions are recovered. In addition, an expression for the fluid
velocity at locations off the slender body is derived and used to compute the flow
around a filament.

1. Introduction

Slender body theories give asymptotic solutions of slender bodies (thin tubular
bodies) in a viscous fluid where the small parameter of the expansion is the radius
a∗ of the tube divided by its length L∗. The goal is to develop an asymptotic
formula that relates the velocity of the slender body’s surface to forces that are
consistent with that motion and are exerted along the centerline (see Figure 1). In
our derivation, we nondimensionalize all spatial variables by the length of the tube,
L∗, so that a= a∗/L∗ is the dimensionless slenderness parameter. In all derivations,
the tube dimensionless length is taken to be 1 and we consider a tube with constant
circular cross sections (constant a).

Different versions of the theory were developed independently in the 1970’s by
Lighthill [17] and by Keller and Rubinow [16] using stokeslets and dipole distribu-
tions. Johnson developed a slender body theory based on Wu’s exact solution of the
flow around a spheroidal body (see [13]). Later Johnson [15] made improvements

MSC2000: 76D07, 76Z99.
Keywords: slender body theory, Stokes flow.

33



34 RICARDO CORTEZ AND MICHAEL NICHOLAS

2a
X (σ )

X (σ0)

x

�
�	

r

r0

Figure 1. Schematic of a portion of the slender body. All spatial variables are scaled by
the tube length so that a is a dimensionless slenderness parameter.

to the theories by adding higher order singularities near the slender body endpoints.
Slender body formulations of this type have been used in numerous applications;
our focus is on biological ones such as ciliary motion [11; 12], and swimming
flagella [13].

The Keller–Rubinow slender body formulation [16] relies on the exact cancel-
lation of integrals that have the same asymptotic singularity. While this is a math-
ematically elegant formulation, its numerical implementation is unstable to high
wave number perturbations [20; 24]. Generally, it is not possible to achieve the
same singularity cancellation numerically without problems related to cancellation
errors and instability. Roughly speaking, to overcome this problem and stabilize
the computation, the integrands in [20; 24] were regularized by replacing r−1 with
(r2
+ δ2)−1/2 using a clever choice of δ that preserved the order of the asymptotic

expansion of the final formula.
In Lighthill’s theory [17; 18; 19], a portion of the filament containing the singu-

larity is removed from the integration and replaced with a local term. The remain-
ing integral is no longer singular but care must be taken in the numerical evaluation
of it since the kernel has large gradients near the endpoints of the removed piece.
A drawback of this formulation is that removing a piece of the integration curve
interrupts the periodicity of the problem for a closed filament, eliminating the ben-
efits of the trapezoid rule in periodic domains or the use of spectral methods to
approximate the integral.

We address these issues here by re-deriving both theories for the case of force
and dipole fields distributed not as delta distributions along the centerline of the
body, but distributed over the cross-section of the slender body. This is accom-
plished by defining a smooth localized spherically symmetric function φδ(r) (like
a narrow Gaussian with standard deviation proportional to the slender body radius)
centered at every point X (s) of the body centerline and letting the force be given by
F(x)= f (s)φδ(|x−X (s)|). While the maximum of the force is at the centerline of
the slender body, the force is distributed over the entire cross-section of the body,
which leads to a regular expression for the velocity of the body. This implies that
the regularized Lighthill formulation can be implemented without removing the
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piece of the curve where the singularity was. The regularization parameter, δ, is
also dimensionless after scaling by the tube length, and is assumed to satisfy δ ∼ a.

The solution of the Stokes equations for regularized forces and dipoles is derived
in Section 2, including the specific regularizing functions that are used. This solu-
tion is used to generate the near-field and far-field expansions for the asymptotic
solution. Section 3 contains the derivation of Lighthill’s theory for regularized
forces and shows that the final expression collapses to Lighthill’s formula when the
regularization parameter δ vanishes. However, for δ > 0, additional simplifications
to the final formula are possible that circumvent the drawbacks discussed above.
Section 4 shows the matched asymptotic analysis corresponding to Keller and Rubi-
now’s theory, including simplifications to the final expression for δ > 0. In Section 5
we show validation studies and numerical simulations that compare the two theories
both in the case of a closed filament as well as the case of a swimming organism.

2. The flow due to regularized forces

The incompressible Stokes equations in R3 are

µ1u =∇ p− F, (1)

∇ · u = 0, (2)

where µ is the fluid viscosity, u is the fluid velocity, p is the pressure, and F is the
body force. The boundary conditions associated with the flow are:

u(x)= v(σ ) for x on the surface of the slender body at cross section σ,

u(x)→ 0 as |x| →∞,

where v(σ ) is a translational velocity of the cross section at σ .
Consider the problem in (1)–(2) in the case when the force exerted by the fila-

ment on the fluid is given by the function F(x)= f φδ(x), where φδ is a radially
symmetric smooth function whose integral over R3 is 1. For example, φδ may be
a normal density function with standard deviation proportional to the parameter δ.
The function φδ provides the spatial dependence of the body force. The follow-
ing definitions will be convenient for the derivation of the exact solution of these
equations.

Definitions. Let the regularized Green’s function Gδ(x) be the free-space solution
of 1Gδ = φδ and let Bδ(x) be the free-space solution of 1Bδ = Gδ.

The function Gδ(x) is a smooth function that is bounded everywhere and closely
approximates the Green’s function G(x) = −(4π |x|)−1 for |x| > δ. Similarly
Bδ(x) is smooth and approximates B(x)=−|x|/8π , the solution of the equation
1B(x)= G(x).
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Taking the divergence of (1) and using (2) we have that ∇ · F =1p, which gives

p(x)= f · ∇Gδ(x). (3)

The equation for u now becomes µ1u = ( f · ∇)∇Gδ − f φδ, whose particular
solution is

µu(x)= ( f · ∇)∇Bδ(x)− f Gδ(x).

This is referred to as regularized stokeslet flow. To this particular solution one
can add [Dφδ − (D · ∇)∇Gδ], which represents a regularized dipole flow whose
divergence is zero everywhere and is harmonic outside the support of φδ. In this
way we obtain the more general solution

µu(x)= ( f · ∇)∇Bδ(x)− f Gδ(x)+ Dφδ − (D · ∇)∇Gδ +µU, (4)

where U is a constant flow that may depend on f and D.
Using the fact that Gδ and Bδ are radially symmetric, (4) can be written as

8πµ(u(x)−U)= f
H1(|x|)
|x|

+( f ·x)x
H2(|x|)
|x|3

−2D
H3(|x|)
|x|3

+6(D ·x)x
H4(|x|)
|x|5

where the smoothing functions depend on the blob φδ. They are defined by the
relations

H1(r)= 8π
(
B ′δ(r)− rGδ(r)

)
, H2(r)= 8π

(
r B ′′δ (r)− B ′δ(r)

)
,

H3(r)= 4πr2(G ′δ(r)− rφδ(r)
)
, H4(r)= 4

3πr2(G ′δ(r)− rG ′′δ (r)
)
.

One can check that for fixed δ > 0 we have

• limr→∞ Hk(r)= 1, for k = 1, 2, 3, 4;

• for r � δ,

H1(r)= O
(r
δ

)
, H2(r)= O

((r
δ

)3)
, H3(r)= O

((r
δ

)3)
, H4(r)= O

((r
δ

)5)
.

The velocity formula has been derived for arbitrary isolated force f and dipole
strength D. In the case of a filament given by X (σ ), where σ is the arclength
parameter with 0≤ σ ≤ 1, the velocity at any point x is given by

8πµ(u(x)−U)

=

∫ 1

0
f (σ )

H1(r)
r
+ ( f · r)r

H2(r)
r3 − 2D(σ )

H3(r)
r3 + 6(D · r)r

H4(r)
r5 dσ, (5)

where r = x− X (σ ) and r = |r|. The constant field U and the dipole strength dis-
tribution D(σ ) give the degrees of freedom needed to enforce boundary conditions
at |x| →∞ and at the filament surface.
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2.1. Choice of blob function. Before proceeding we need to choose the regular-
izing function. Throughout the paper we will use radially symmetric blobs with
infinite support. It turns out to be convenient (although not necessary) to choose
one regularization for the stokeslets and a different one for the dipoles [1] in order
to achieve simplified expressions. Using

φδ(r)=
15δ4

8π(r2+ δ2)7/2
and ψ(r)=

3δ2

4π(r2+ δ2)5/2
, (6)

for the stokeslets and dipoles, respectively, the functions in (5) are

H1(r)= r
(

1
√

r2+δ2
+

δ2

(r2+δ2)3/2

)
, H2(r)= r

(
1

√
r2+δ2

−
δ2

(r2+δ2)3/2

)
,

H3(r)= r3
(

1
(r2+δ2)3/2

−
3δ2

(r2+δ2)5/2

)
, H4(r)=

r5

(r2+δ2)5/2

(7)

and are shown in Figure 2. Other choices of regularization are possible, including
Gaussians and functions with compact support. In all cases, the regularization
parameter δ is chosen to be δ = O(a).
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Figure 2. Graphs of the smoothing functions H1–H4 as functions of r/δ.
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3. Lighthill’s theory

We consider first a construction of the slender body velocity following the strategy
in [17; 18; 19]. In Lighthill’s theory, it is sufficient to choose the constant flow
U = 0 and to consider the evaluation of the velocity at a point x on the surface of
the slender body. The velocity is given by (5):

8πµu(x)

=

∫ 1

0
f (σ )

H1(r)
r
+ ( f · r)r

H2(r)
r3 − 2D(σ )

H3(r)
r3 + 6(D · r)r

H4(r)
r5 dσ,

where r = x− X (σ ).
Specifically, consider the integral evaluated on the surface of the cross-section

at σ = σ0 and select an intermediate length scale represented by q with a� q � 1
and make the following assumptions:

(1) q is large enough that for r > q, the dipole contribution is negligible due to
the high singularity, and the stokeslet contribution does not vary significantly
on the cross-section at σ0.

(2) q is small enough that the portion of the slender body corresponding to |σ −
σ0| < q is straight (has zero curvature), and f (σ ) and D(σ ) do not vary
significantly from their values at σ0.

Although the velocity formula above is evaluated at a point x on the surface of
the slender body, the goal is to reduce this formula to one that is evaluated at the
centerline point X (σ0), corresponding to the center of the cross-section containing
x. The result would be an expression involving only centerline points but consis-
tent with the correct boundary conditions on the surface of the slender body. The
velocity expression will be separated into two pieces: the near field corresponding
to |σ − σ0|< q and the far field. The first assumption will be used to simplify the
far field and the second one to simplify the near field.

Let b̂ be a unit vector normal to the centerline at X (σ0) and write (see Figure 1)

x = X (σ0)+ a b̂, r0 = X (σ0)− X (σ ), r = x− X (σ ).

3.1. The far field. The far field is expressed as∫
|r|>q

f (σ )
H1(r)

r
+ ( f · r)r

H2(r)
r3 − 2D(σ )

H3(r)
r3 + 6(D · r)r

H4(r)
r5 dσ .

In the far field, the dipole contribution is insignificant and the stokeslet contribu-
tion is independent of the evaluation point on the cross-section centered at X (σ0).
Consequently, one choose D = 0 and r = r0 in the integral above to get

8πµu f ar (σ0)=

∫
|r0|>q

f (σ )
H1(r0)

r0
+ ( f · r0)r0

H2(r0)

r3
0

dσ + O(a). (8)
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The error term in this equation is due to the fact that

( f · r)r = ( f0 · r0)r0+ a[( f0 · b̂)r0+ ( f0 · r0)b̂] + a2( f0 · b̂)b̂. (9)

and that in the far field of point X (σ0) the shape of the slender body is arbitrary so
there is no reason to expect any cancellation from symmetries.

3.2. The near field. Now, the near-field contribution is given by

8πµunear(σ0)

=

∫
|r|<q

f (σ )
H1(r)

r
+ ( f · r)r

H2(r)
r3 − 2D(σ )

H3(r)
r3 + 6(D · r)r

H4(r)
r5 dσ.

We consider q small enough that the force does not vary significantly from f (σ0)

and the dipole strength does not vary significantly from D(σ0). Then for a straight
filament, the vector r0 = (σ0−σ)s is an odd function, so that the term proportional
to a in (9) will provide no contribution to the integral. We are left with

8πµunear(σ0)=

∫
|r|<q

(
f0

H1(r)
r
+
(
( f0 · r0)r0+ a2( f0 · b̂)b̂

)H2(r)
r3

− 2D0
H3(r)

r3 + 6
(
(D0 · r0)r0+ a2(D0 · b̂)b̂

)H4(r)
r5

)
dσ.

In order for the entire cross-section of the filament at σ0 to move with the same
velocity, the integral cannot depend on the vector b̂, which is a unit vector normal
to the filament at σ0 but otherwise arbitrary. We therefore enforce the condition
that ∫

|r|<q
( f0 · b̂)b̂

H2(r)
r3 + 6(D0 · b̂)b̂

H4(r)
r5 dσ = 0,

which is used to determine the strength of the dipole D0 as a function of f0. This
approach is exactly analogous to the problem of a sphere moving at constant veloc-
ity in a Stokes fluid. A single stokeslet at the center of the sphere is not sufficient to
provide the correct velocity, but a stokeslet plus a dipole at the center will suffice,
provided the dipole strength is related to the stokeslet strength in a way that cancels
the dependence on the evaluation point on the surface [2].

Computing the last integral exactly and neglecting terms containing O(a2/q2)

and O(δ2/q2), we have that

2
(a2+ δ2)

( f0 · b̂)b̂+
8

(a2+ δ2)2
(D0 · b̂)b̂= 0

from which we deduce that

D0 =−
a2
+δ2

4
fn, (10)
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where fn := f0− ( f0 · s)srepresents the component of f0 normal to the filament.
Note that the dipole strength is strictly normal to the filament; it does not have a
tangential component.

The near-field velocity is thus given by

8πµunear(σ0)

=

∫
|r|<q

f0
H1(r)

r
+ ( f0 · r0)r0

H2(r)
r3 − 2D0

H3(r)
r3 + 6(D0 · r0)r0

H4(r)
r5 dσ.

Before proceeding, we decompose the force into its normal and tangential com-
ponents, f0 = fn + fτ , and note that to leading order, r0 = (σ0 − σ)s, so that
( f0 · r0)r0 = (σ − σ0)

2 fτ . Using (10), we get

8πµunear(σ0)= 2( fn + 2 fτ )
[

ln
2q
β
−

a2

2β2

]
+ 2 fn

[
1−

δ2

2β2

]
+ O(ε2), (11)

where we have defined β2
= a2
+ δ2 and ε =max(a/q, δ/q).

At this point, one can combine (8) and (11) to get the velocity. However, there
is something unattractive about these expressions: they depend on a choice of q.
But aside from some scaling requirements, q is arbitrary.

Lighthill devised a way to eliminate this ambiguity in a way that can be adjusted
to the present context. Since the far field is simply the integral of the stokeslet field,
we compute to leading order for any number θ satisfying 0< θ < q ,∫
θ<r0<q

f0
H1(r0)

r0
+ ( f0 · r0)r0

H2(r0)

r3
0

dσ

= 2( fn + 2 fτ ) ln
2q

θ +
√
θ2+ δ2

+ 2 fn

[
1−

θ
√
θ2+ δ2

]
and since (11) can be written as

8πµunear(σ0)= 2( fn + 2 fτ ) ln
2q

βea2/2β2 + 2 fn

[
1−

δ2

2β2

]
,

we can define the number θ by making the identification

θ +
√
θ2+ δ2 = βea2/2β2

,

so that

8πµunear(σ0)

= 2 fn

[
θ

√
θ2+ δ2

−
δ2

2β2

]
+

∫
θ<r0<q

f0
H1(r0)

r0
+ ( f0 · r0)r0

H2(r0)

r3
0

dσ .

By writing the near field in this way and adding it to the far field in (8), we get
a final expression which is independent of q:
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8πµu(σ0)= 2 fn

[
1−

2δ2

β2ea2/β2
+ δ2
−
δ2

2β2

]
+

∫
θ<r0

f (σ )
H1(r0)

r0
+ ( f · r0)r0

H2(r0)

r3
0

dσ, (12)

where r0 = X (σ0)− X (σ ), r0 = |r0|, β2
= a2
+ δ2, and

θ =
1

2β

(
β2ea2/2β2

− δ2e−a2/2β2)
.

Formula (12) indicates that the velocity of the filament at X (σ0) has two con-
tributions. One is the integral of the regularized stokeslet field evaluated at the
centerline, with the portion |σ − σ0|< θ excluded. The other one is a local term
proportional to the component of force normal to the filament at σ0.

3.3. The limit δ → 0. Notice that as the regularization δ vanishes, we have that
β→a and therefore θ→θ0=a

√
e/2≈0.824a. In this limit, H1(r)→1, H2(r)→1

and the local term reduces to 2 fn , so that the entire expression for velocity is in
agreement with Lighthill’s basic theorem of flagellar hydrodynamics [18; 19]. The
expression derived here is therefore more general since it includes the previously
developed case of delta force distributions and extends it to the case of regular
forces distributed over the body’s cross-section. Figure 3 shows the relative size
of the bracketed expression in the local term of (12) and of the parameter θ as
functions of the regularization parameter δ.
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3.4. Simplifications for δ > 0. In the case δ= 0, the excluded part of the integral in
(12) is necessary because the stokeslet field is not integrable in any neighborhood
of σ0. For a closed filament, spectral methods are efficient numerical techniques
for computing the integral accurately; however, the missing piece of the integral
gets in the way of an efficient implementation of such methods. However, in the
regularized case (when δ > 0), the velocity expression is integrable and one can
write it as the integral from σ = 0 to σ = 1 by simply adding and subtracting the
excluded piece. By assumption in the region |σ − σ0|< θ , the force is considered
constant: f (σ )= f0 and ( f · r0)r0 = r2

0 fτ . After some simplification we have

8πµu(σ0)= 2 fn

[
1−

δ2

2β2

]
− ( fn + 2 fτ )

[
2 ln(β/δ)+ 1−

δ2

β2

]
+

∫ 1

0

f (σ )
√

r2
0 + δ

2
+

( f · r0)r0

r2
0

√

r2
0 + δ

2
dσ, (13)

where r0 = X (σ0)− X (σ ), r0 = |r0|, and β2
= a2
+ δ2.

This formula shows that the integral is that of the standard stokeslet but with the
singular factor 1/r replaced by 1/

√
r2+ δ2. The regularization of the forces is also

expected to impact the local terms in the velocity since it is in a neighborhood of the
centerline where the forces are most significantly changed. The final formula shows
the appropriate form of the local terms in order for the velocity to be consistent
with these forces.

4. Keller–Rubinow theory

Lighthill’s slender body theory is developed in such a way that the errors depend
linearly on the body radius. Keller and Rubinow’s theory [16] develops the rela-
tionship between velocity and force with errors O(a2 ln a) in regions away from
the endpoints. In order to achieve this improvement, the near-field and far-field
flows are evaluated at fluid locations rather than at a point on the slender body
surface. The two expressions are then matched asymptotically at an intermediate
distance. In this section, it will be convenient to start with (5) and set the dipole
strength equal to a multiple of the force, D = A f .

4.1. The far field. Let x be a point in the fluid far from the slender body. For the
far field solution we consider a flow which decays to zero as |x| →∞. In this case
it is possible to choose A = 0 and U = 0 to get

8πµu(x)=
∫ 1

0
f (σ )

H1(r)
r
+ ( f (σ ) · r)r

H2(r)
r3 dσ (14)

where r = x− X (σ ) and r = |r|.
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4.2. The near field. We now consider a point x0 in the fluid so close to the slender
body that the latter can be viewed as a long, thin, straight cylinder of radius a.
Without loss of generality we assume that it extends in the ẑ direction from z =−q
to z = q and that the evaluation point is given by

x0 = (x, y, 0),

with |x0| = ρ � q. The forces acting along the straight tube are assumed to be
constant and equal to f0. Then the velocity at x0 satisfies

8πµ(u(x0)−U)

=

∫ q

−q
f0

(
H1(| y|)
| y|

−
2AH3(| y|)
| y|3

)
+( f0 · y) y

(
H2(| y|)
| y|3

+
6AH4(| y|)
| y|5

)
dz, (15)

where
y = x0− (0, 0, z)= (x, y,−z).

In order to simplify the notation, let s be a unit vector in the positive ẑ direction
(tangent to the filament). Then

( f0 · y) y = ( f0 · x0) x0− z [( f0 · x0) s+ ( f0· s) x0]+ z2( f0· s)s.

Using the specific form of the functions H1(r)–H4(r) in (7), we find that the
inner velocity is given by (see Appendix A):

8πµ(u(x0)−U)= f
[

ln
4q2

|x0|2+ δ2 +
2δ2

|x0|2+ δ2 − 2A
(

2|x0|
2
− δ2

(|x0|2+ δ2)2
−

1
q2

)]
+ ( f · x0)x0

[
2

|x0|2+ δ2 + 6A
4

3(|x0|2+ δ2)2

]
+ ( f · s)s

[
ln

4q2

|x0|2+ δ2 − 2+ 6A
(

2
3(|x0|2+ δ2)

−
1
q2

)]
.

4.2.1. No-slip boundary condition. We consider the slender body velocity given
by the unknown v(σ0). The goal is to develop an expression for v(σ0). The near-
field boundary condition must be consistent with a uniform velocity at every point
of a cross-section of the slender body. Then we must impose the condition u(x0)=

v(σ0) for all x0 with magnitude ρ = a (i.e. on the surface of the slender body). For
this we notice that the second term on the right side of the last equation is the only
one that is not radially symmetric. This leads us to choose

A =−
a2
+ δ2

4
.

With this value of A we can solve for the constant flow U in terms of v(σ0) and
substitute it back. The final inner velocity expression at a point x0 in the fluid is
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8πµu(x0)

= 8πµv(σ0)− ( f0+ ( f0 · s)s)
(

ln
|x0|

2
+ δ2

a2+ δ2 +
(|x0|

2
− δ2)(|x0|

2
− a2)

(|x0|2+ δ2)2

)
+ 2( f0· s)s

|x0|
2(|x0|

2
− a2)

(|x0|2+ δ2)2
+ 2( f0 · x0)x0

|x0|
2
− a2

(|x0|2+ δ2)2
. (16)

4.3. Matching. The fluid velocity obtained from the inner expansion (16) is bounded
as the filament is approached, i.e., as |x0| → a. However, it grows logarithmically
as |x0| increases. The outer expansion velocity given by (14) also has a logarithmic
term as x approaches a point X (σ0) on the filament. To match the solutions at an
intermediate distance, let x0= x− X (σ0) with |x0| = ρ and assume δ∼ a� ρ� 1.
Here X (σ0) is the point on the filament which is closest to x and s is the unit tangent
at X (σ0). Then dropping the higher order terms in O(a2/ρ2) and O(δ2/ρ2), the
inner expansion becomes

8πµu(x)

= 8πµv(σ0)− ( f0+ ( f0 · s)s)
[

ln
ρ2
+ δ2

a2+ δ2 + 1
]
+ 2( f0· s)s+

2( f0 · x0)x0

ρ2 .

The outer expansion velocity is given by (14), which we rewrite as

8πµu(x)=
∫ 1

0
J (r, ρ, δ, f (σ )) dσ , (17)

where r = x− X (σ ). Setting the two expressions equal to each other we get∫ 1

0
J (r, ρ, δ, f (σ )) dσ

= 8πµv(σ0)− ( f0+ ( f0 · s)s)
[

ln
ρ2
+ δ2

a2+ δ2 + 1
]
+ 2( f0· s)s+

2( f0 · x0)x0

ρ2 .

The inner expansion of the far field is found by expanding the left-hand side of
this equation in powers of ρ (see Appendix B). This yields∫ 1

0

(
J (r0, 0, δ, f (σ ))− f0

H1(|σ − σ0|)

|σ − σ0|
− ( f0· s)s

H2(|σ − σ0|)

|σ − σ0|

)
dσ

+ ( f0+ ( f0· s)s)
[
ln(4σ0(1− σ0))− ln(ρ2

+ δ2)
]
− 2( f0· s)s+

2( f0 · x0)x0

ρ2

= 8πµv(σ0)− ( f0+ ( f0 · s)s)
[

ln
ρ2
+ δ2

a2+ δ2 + 1
]
+ 2( f0· s)s+

2( f0 · x0)x0

ρ2 ,

(18)

where r0 = X (σ0)− X (σ ).
Since x0 is an arbitrary point where the asymptotic matching is done, the final

result should not depend on it (or on its magnitude ρ). Fortunately all the terms
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containing ρ cancel out of the last equation so that the change of variables t =σ−σ0

gives

8πµv(σ0)=

∫ 1−σ0

−σ0

(
f (σ0+ t) H1(r0)

r0
−

f0 H1(|t |)
|t |

+
( f (σ0+ t) · r0)r0 H2(r0)

r3
0

−
( f0· s)s H2(|t |)

|t |

)
dt

+ ( f0+ ( f0· s)s)
[
ln(4σ0(1− σ0))− ln

(
a2
+ δ2)

+ 1
]
− 4( f0· s)s. (19)

Our velocity formula can be simplified using the functions H1–H4 in (7) (see
Appendix C) so that up to O(δ2 ln δ) the final expression for the filament velocity
becomes

8πµv(σ0)=

∫ 1−σ0

−σ0

f (σ0+ t)
√

r2
0 + δ

2
+
( f (σ0+ t) · r0)r0

r2
0

√

r2
0 + δ

2
−

f0+ ( f0· s)s
√

t2+ δ2
dt

+ ( f0+ ( f0· s)s)
[
ln(4σ0(1− σ0))− ln

(
a2
+ δ2)]

− ( f0+ ( f0· s)s)+ 2( f0− ( f0· s)s), (20)

where r0 = X (σ0)− X (t). This is the regularized Keller–Rubinow formula.

4.4. The limit δ → 0. The first integral in (20) can be evaluated even when δ = 0
because its singular behavior has been explicitly extracted. It is easy to see that in
the limit δ→ 0, the expression in (20) converges to the one obtained in [16]:

8πµv(σ0)=

∫ 1−σ0

−σ0

f (σ0+ t)
r0

+
( f (σ0+ t) · r0)r0

r3
0

−
f0+ ( f0· s)s
|t |

dt

+ ( f0+ ( f0· s)s)
[
ln(4σ0(1− σ0))− ln a2]

− ( f0+ ( f0 · s)s)+ 2( f0− ( f0 · s)s).

4.5. Simplifications for δ > 0. We note that since none of the functions in (20) is
singular, one can evaluate the third term of the integral explicitly and include the
result as part of the local terms, leaving only the integral of the stokeslet kernel as
in the case of Lighthill’s theory, (13). This also provides a way of comparing the
two theories directly. The result is

8πµv(σ0)

=2 fn−( fn+2 fτ ) [2 ln(β/δ)+ 1]+
∫ 1−σ0

−σ0

f (σ0+t)
√

r2
0 + δ

2
+
( f (σ0+t) · r0)r0

r2
0

√

r2
0 + δ

2
dt. (21)

This expression, found by the method of matched asymptotics, can be compared
with (13), which was found by different means. The differences appear only in the
local terms. We note that this final expression does not rely on the cancellation of
singular terms.
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In computations, although (21) does not contain singularities, the function is
nearly singular (or spiky) so that there is a computational advantage to using (20)
instead of (21).

4.6. The velocity of the fluid. The velocity field at an arbitrary point x in the fluid
can also be evaluated using the asymptotic matching. The fluid velocity is given
by the sum of the inner solution, (16), and the outer solution, (14), minus the inner
expansion of the outer solution, given by the left-hand side of (18). After some
cancellation, the final expression is

8πµu(x)=
∫ 1

0
f (t)

H1(r)
r
+ ( f (t) · r)r

H2(r)
r3 dt

+ f (s)
[

1−
(|x0|

2
−δ2)(|x0|

2
−a2)

(|x0|2+ δ2)2

]
−( f · s)s

a2
+ δ2

|x0|2+δ2 −2( f · x0)x0
a2
+ δ2

(|x0|2+δ2)2
,

(22)

where r = x − X (s + t), r = |r|, and x0 = x − X (s). Here X (s) is the filament
point closest to x.

4.7. Periodic filaments. Equation (20) is valid for points along the filament that
are far from the endpoints s = 0 and s = 1 relative to δ. In the case of a periodic
filament, the choice of parametrization should be irrelevant. Therefore the equation
can be evaluated at a valid point, say s = 1/2, and the result should be valid for
any point on the filament. The forces f (t) and parametrization X (t) are periodic
functions but one last modification is necessary because the function 1/

√
t2+ δ2,

which appears in the integrand of (20), is not periodic in t . In order to replace it
with a periodic function, we use the identity∫ 1/2

−1/2

1
√

t2+ δ2
dt =

∫ 1/2

−1/2

dt
√

(1/π2) sin2(π t)+ δ2
− ln(16/π2)+ O(δ2 ln δ).

So, for a periodic filament, the final expression is

8πµv(s)=
∫ 1/2

−1/2

f (s+ t)
(|r0|2+ δ2)1/2

+
( f (s+ t) · r0)r0

|r0|2 (|r0|2+ δ2)1/2
−
[ f (s)+ ( f · s)s]
√

π−2 sin2(π t)+ δ2
dt

+ 2( f − ( f · s)s)− ( f + ( f · s)s)
[

ln
(a2
+ δ2)π2

16
+ 1

]
. (23)

We use this formulation, rather than (20), for periodic filaments.
We note that in this case, the local terms (outside the integral in (23)) can also

be written as

2( f − ( f · s)s)− ( f + ( f · s)s)
[

ln(a2)+ 1+ ln
π2(a2

+ δ2)

16a2

]
.



SLENDER BODY THEORY FOR STOKES FLOWS WITH REGULARIZED FORCES 47

It is clear that the choice of δ affects significantly the local drag. This is to be
expected, since the regularization mostly affects the near-field velocity. However,
it turns out that the local terms are exactly equal to the ones in [16], i.e.,

2( f − ( f · s)s)− ( f + ( f · s)s)(ln a2
+ 1),

if δ is chosen so that ln π
2(a2
+δ2)

16a2 = 0, or approximately δ = 0.788124a.

5. Numerical examples

5.1. Validation studies. We consider first two validation studies by computing the
velocity of the fluid around a translating slender body. The first test problem is that
of a torus with centerline radius R = 1/2π and cross-sectional radius a. The torus
is slender when ε = a/R = 2πa� 1. We consider here a torus translating in an
arbitrary direction. The second validation study is that of a straight slender body
of length 1 and radius a.

5.1.1. A slender torus. Consider a torus whose centerline is in the xy-plane. This
is a particularly good test problem since the geometry of the slender body is that of
a cylindrical tube with constant cross-section, which is exactly what our formulas
have assumed. There is no exact solution; however, by placing various funda-
mental solutions along the centerline, Johnson and Wu [14] developed O(ε2 log ε)
asymptotic approximations to fluid velocities under various conditions. They give
asymptotic formulas for the force per unit length on the centerline of the torus that
produces a given translation. We make two comparisons. First, we compute forces
by setting the centerline velocity to the prescribed value and using either (13) for
Lighthill or (21) for Keller–Rubinow to solve for the forces. We also compute the
centerline velocity when using the forces from [14] in the regularized theories. Sec-
ond, we compute the fluid velocity using the regularized Keller–Rubinow formula
(22) and compare with the results from [14].

In the first comparison, we set the centerline velocity to a constant and invert
a trapezoid rule discretization of (13) to solve for the forces in Lighthill’s theory.
We do the same with (21) to solve for the forces in Keller–Rubinow’s theory. The
force per unit length is then compared with its asymptotic value given in [14]. The
results for a horizontal translation velocity (0, 1, 0) are shown in Table 1 and for
a vertical translation velocity (0, 0, 1) in Table 2. Recall that δ is a numerical
parameter for the regularization of the integrals, and therefore should be related
to the discretization size of the centerline. In these examples we discretize the
centerline with N points in such a way that the point separation is approximately
equal to the tube cross-section a; then δ is chosen proportional to 1/N . The tables
show results for two different values of δ for each slenderness value. The tables
show that both theories give comparable results for the normal component of the
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a F J W
n F K R

n F L
n F J W

t F K R
t F L

t numerical parameters

0.01 2.2370
2.2539 2.2814

1.4213
1.4415 1.3822 N = 100, δ = 0.5/N

2.2177 2.2351 1.4008 1.3624 N = 100, δ = 0.4/N

0.005 2.0149
2.0300 2.0453

1.2058
1.2191 1.1808 N = 200, δ = 0.5/N

1.9982 2.0080 1.1916 1.1665 N = 200, δ = 0.4/N

0.0025 1.8245
1.8373 1.8468

1.0533
1.0630 1.0360 N = 400, δ = 0.5/N

1.8104 1.8166 1.0428 1.0249 N = 400, δ = 0.4/N

0.00125 1.6636
1.6745 1.6809

0.93775
0.94528 0.92500 N = 800, δ = 0.5/N

1.6517 1.6559 0.92956 0.91605 N = 800, δ = 0.4/N

Table 1. Comparison of the resultant force per unit length for the case of a torus of
centerline radius R = 1/2π and cross-sectional radius a translating horizontally (in the
y-direction) with unit speed. The slenderness parameter defined in [14] is ε = 2πa. The
forces shown are for the normal and tangential components (subscripts) from [14] (JW),
regularized Keller–Rubinow (KR), and regularized Lighthill (L). The number of points N
discretizing the centerline is varied so that the point separation equals a. The Lighthill
forces were found by inverting (13) while the Keller–Rubinow forces were found by in-
verting (21).

force. The Keller–Rubinow theory gives slightly better results for the tangential
force and the given discretization parameters. By comparing (13) and (21), one
can see that the dependence of the normal component of force on the velocity is
identical for both theories, while there is a difference in the tangential component

a F J W
n F K R

n F L
n numerical parameters

0.01 2.3503
2.3729 2.3729 N = 100, δ = 0.5/N
2.3259 2.3259 N = 100, δ = 0.4/N

0.005 2.0806
2.0982 2.0982 N = 200, δ = 0.5/N
2.0614 2.0614 N = 200, δ = 0.4/N

0.0025 1.8664
1.8805 1.8805 N = 400, δ = 0.5/N
1.8509 1.8509 N = 400, δ = 0.4/N

0.00125 1.6922
1.7038 1.7038 N = 800, δ = 0.5/N
1.6795 1.6795 N = 800, δ = 0.4/N

Table 2. Comparison of the resultant force per unit length for the case of a torus of
centerline radius R = 1/2π and cross-sectional radius a translating vertically (in the z-
direction) with unit speed. The slenderness parameter defined in [14] is ε = 2πa. The
forces shown are for normal to the tube in the z-direction from [14] (JW), regularized
Keller–Rubinow (KR), and regularized Lighthill (L). The number of points N discretizing
the centerline is varied so that the point separation equals a. The Lighthill forces were
found by inverting (13) while the Keller–Rubinow forces were found by inverting (21).
Notice that these two equations are identical for the normal component of force since
they only differ in the tangential force component. This example has zero tangential force
so the two theories give the same answers.
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Figure 4. Centerline velocity of the torus as a function of δ when the force per unit length
applied is the one given in [14] for a torus moving horizontally with constant velocity
(u, v, w)= (0, 1, 0). The solid curve corresponds to the Lighthill theory and the dashed
curve to the Keller–Rubinow theory. N is the number of quadrature points along the
centerline that were required to numerically resolve the integrals for the given value of δ.

of force. The test problem in Table 2 results in strictly normal force, which is why
both theories give the same solution.

A different comparison was performed by using the values of the force per unit
length given in [14] and applying those forces in the regularized theories. Although
one expects the forces from each theory to be similar for a given centerline veloc-
ity boundary condition, they are not identical. So, using the asymptotic forces
from [14] in the regularized theories does not guarantee the correct centerline ve-
locity. We set a = 0.01 and use the asymptotic forces to compute the centerline
velocities from (12) and (21) for different values of δ. The results for the torus
translating horizontally in the y direction are shown in Figure 4. The solid curve
corresponds to the Lighthill theory and the dashed curve to the Keller–Rubinow
theory. For a = 0.01, the asymptotic error in [14] is O(ε2 log ε) ≈ 0.011 where
ε = 2πa, which indicates that the velocity values are acceptable for δ ∈ (0, a/4].
The figure also shows the number N of quadrature points on the centerline required
to resolve the integrals for each δ. Note that N can be extremely large for δ ≈ 0;
however, if we use, say, the value δ = 0.25a, we can benefit tremendously by re-
ducing the number of quadrature points due to the regularization of the integrands.

Finally, we compute the velocity in the fluid using the Keller–Rubinow theory,
(22), and compare it to the asymptotic formula given in [14]. Figure 5 shows the
y-component of the fluid velocity along the line (x, 0, 0) where x varies form the
surface of the torus to a distance of about 10a. The left panel shows the result for
a = 0.01, a value that allows the computation of the integrals with N = 200 points
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Figure 5. Fluid velocities resulting from tori moving horizontally with constant velocity
(u, v, w)= (0, 1, 0). The tori are given by centerline radius R = 1/2π and cross-sectional
radius a = 0.01 (left) and a = 0.001 (right). The plots show the y component of velocity
v at points (x, 0, 0) as x varies from the torus surface to x = 10a. The velocities for the
Johnson and Wu theory [14] are shown as circles. The solid line represents the veloci-
ties for the regularized Keller–Rubinow theory with δ = 0.4/N and N = 200 (left) and
N = 2000 (right).

on the centerline. The right panel shows the results for a = 0.001 and N = 2000. In
this case, the forces used in the Keller–Rubinow theory were computed by inverting
(21) by enforcing the velocity boundary condition on a curve on the outer surface
of the torus (the curve corresponding to r = R+ a, z = 0). The circles represent
the asymptotic theory in [14] while the solid line is from Keller–Rubinow. Note
that the agreement is better for the more slender torus.

5.1.2. A straight slender body. The second validation problem is the one of a
straight slender filament of unit length. Chwang and Wu [4] developed an exact
solution for the translation of a prolate spheroid, which we use as a reference. We
emphasize that our formulas have been derived for a cylindrical tube of constant
circular cross-section, as depicted in Figure 6, so the geometry is not exactly the
same as the solution in [4]. For this reason, we cannot expect our solution to
converge to the one in [4]; however, a qualitative comparison is instructive. For
the regularized theories, we use a slender cylinder whose axis coincides with the
x-axis and whose radius is a = 0.01. The reference is the exact solution for the
prolate spheroid 4x2

+ (y2
+ z2)/a2

= 1. The two slender bodies have the same
cross section when x = 0 only as shown in Figure 6. At other values of x , the
cylinder is wider than the prolate spheroid. We invert a discrete version of (22)
based on the trapezoid rule with N = 401 points, enforcing the velocity boundary
condition of (u, v, w)= (1, 1, 0) on the surface of the cylinder (y = a).

We then select points in the fluid along a straight line perpendicular to the slender
bodies and emanating from the center of them, given by (0, y, 0) for y ∈ [a, 10a]
(see Figure 6 for reference). We compute the fluid velocity there using both the
regularized Keller–Rubinow theory for the cylindrical tube and the exact solution of
Chwang and Wu for the prolate spheroid. The results are shown on the left panel of
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Figure 6. Difference in the shape of slender bodies. Panel (a) shows the prolate spheroid
for which an exact solution is known [4]. Panel (b) shows the shape addressed in our work.
The figures use a radius of a = 0.025 for visualization purposes. The cross-sections are
equal only at x = 0.
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Figure 7. Fluid velocities resulting from a straight slender body moving with constant
velocity (u, v, w)= (1, 1, 0). The axis of the slender body is the x axis. The length of the
body is 1 and the radius is a = 0.01. The number of quadrature points was N = 401 and
δ = 0.5/N . The left panel shows the x and the y components of velocity (u, v) at points
(0, y, 0) for y ∈ [a, 10a]. The right panel shows the same velocity components at points
(0.25, y, 0), at a cross section halfway between the center and the nose of the tube. The
solid curves are from the regularized Keller–Rubinow theory while the dashed lines are
the exact solution of a prolate spheroid given in [4].

Figure 7. The solid curves are for the straight cylinder using the regularized Keller–
Rubinow theory and the dashed curves are the exact prolate spheroid solution. The
right panel of the figure shows similar results but computing the fluid velocity along
the line (0.25, y, 0) for a ≤ y ≤ 10a, which is halfway between the center and the
nose of the slender bodies. Here we do not expect the solutions to agree due to the
fact that the two slender bodies are different. Specifically, the velocities given by
Chwang and Wu are not equal to 1 at the point (0.25, a, 0) since that is not on the
surface of the prolate spheroid, but it is on the surface of the slender cylinder. In
spite of this, the curves agree qualitatively.

5.2. Application: Closed filaments. We apply both theories to the problem of
closed filaments with a normal force proportional to curvature. Our filaments are
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Figure 8. A closed filament r = 1+ B cos(nθ) with normal forces at various times with
B = 0.2, N = 64, n = 3. The slender body radius was a = 0.1 and the regularization
parameter set to δ = 0.1. The dashed lines correspond to Lighthill’s theory, and the solid
lines are results for the Keller–Rubinow method.

defined in cylindrical coordinates by

r = 1+ B cos(nθ) and z = 0

for various integers n, and we assign a force

F(θ, t)=− 1
10
κ(θ, t)ν(θ, t)

(
L(t)− 3π

2

)
where κ(θ, t) is the curvature of the filament, ν(θ, t) is the inward unit normal,
and L(t) is the arclength of the filament. We expect such forces to restore the
filaments to circular shapes. The filaments are discretized using N points and
the forces are computed at those locations. Since the filaments and forces are
smooth and periodic, we approximate derivatives along the filament using FFT
interpolation and evaluate the integrals with a trapezoid rule. We update positions
at each time step with a Runge-Kutta method. Results for both the Lighthill and
Keller–Rubinow theories, (13) and (23) respectively, can be seen in Figure 8 for
r = 1+ B cos(nθ) with B = 0.2, N = 64, n = 3. The slender body radius was
a = 0.1 and the regularization parameter set to δ = 0.1. The differences in the
shapes are due to the local terms in the expressions since the integrals are identical.
The figure shows that for this set of parameters, the filament approaches the circular
shape faster with Lighthill’s method.

It has been noted in the Introduction that subtracting the singularity of the Keller–
Rubinow integral like in (20) or (23) can lead to numerical instabilities in filaments
with high frequency components. This is the case when the parameter δ is chosen
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Figure 9. Solution at time t = 1 using the regularized theory of Keller–Rubinow, (21).
The closed filament was given initially by r = 1+ B cos(nθ) with B = 0.3, N = 64, n = 5.
The slender body radius was a = 0.1 and two different regularizations were used. Note
the formation of instabilities in the filament with less regularization.

too small for the regularization to provide stability. Figure 9 shows a closed fila-
ment with wave number n = 5 after a short simulation time using two different
values of the regularization parameter δ. The smaller value is too small to prevent
instabilities. Figure 10 shows that the filament computation remains stable for
long times when the larger regularization parameter is used. The computations
were done using (23).

!! !"#$ " "#$ ! !#$

!!

!"#$

"

"#$

!

!! !"#$ " "#$ ! !#$

!!

!"#%

!"#&

!"#'

!"#(

"

"#(

"#'

"#&

"#%

!

!! !"#$ " "#$ !

!!

!"#%

!"#&

!"#'

!"#(

"

"#(

"#'

"#&

"#%

!

t = 0 t = 1 t = 2

!! !"#$ " "#$ !

!!

!"#%

!"#&

!"#'

!"#(

"

"#(

"#'

"#&

"#%

!

!! !"#$ " "#$ !

!"#%

!"#&

!"#'

!"#(

"

"#(

"#'

"#&

"#%

!! !"#$ !"#% !"#& !"#' " "#' "#& "#% "#$ !

!"#$

!"#%

!"#&

!"#'

"

"#'

"#&

"#%

"#$

t = 3 t = 5 t = 10

Figure 10. Solution at various times using the regularized theory of Keller and Rubinow,
(21). The closed filament was given initially by r = 1+ B cos(nθ) with B = 0.3, N = 64,
n = 5. The slender body radius was a = 0.1 and the regularization parameter set to δ = 0.1.
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5.3. Application: Swimming organism. Biological applications of slender body
theory also call for open filaments such as in the case of cilia or flagella. Sperm
swimming in an infinite fluid, for example, often exhibit planar beat in which a
wave travels along the flagellum from head to tail. Internal mechanisms in the
flagellum produce time-dependent forces along it that result in swimming motions
through interactions with the fluid. Relevant mathematical analysis and computa-
tional modeling of swimming “filaments” or cylindrical tubes can be found in [10;
23; 3; 4; 14; 6]. Our goal is to show the applicability of our result to this type
of motion, so we present an idealized swimming microorganism modeled as a
single sinusoidal filament with growing amplitude from head to tail. Simulations
of the motion and flow field around flagella in which the shape was represented
parametrically are found, for example, in [7; 9; 22; 21].

In time, the organism moves according to a traveling wave translating down the
body. There are two types of forces involved. The organism is defined by N points
equally distributed along the length which lies in the xy-plane so that the organism
points are (xk, yk, 0) for k = 1, 2, . . . , N . Consecutive points are connected by
springs whose resting lengths are given by their initial position. The first type
of force is the spring force (Hooke’s law) that develops as the end points of the
springs move causing them to contract or stretch. The second type of force is due to
an imposed time-dependent curvature of the filament consistent with the idealized
shape

y(x)= Y0 x sin
(2π

L
(x − t)

)
, 0≤ x ≤ L .

This is done by writing a discrete energy function

Eh(x1, y1, . . . , xk, yk, . . . , xN , yN )=
h
2

S1

N∑
n=1

(
(Exn+1− Exn)× (Exn − Exn−1)

h3 − κn

)2

where h is the separation between contiguous points, S1 is a constant and κn is the
target curvature at point n. The cross product is known to approximate curvature [9].
Then the curvature force is defined as

EFk =−

(
∂Eh

∂xk
,
∂Eh

∂yk
, 0
)
.

By defining forces this way, we guarantee that the net force and net torque are
identically zero. More details of this force can be found in [9; 8; 5]. The goal of
this example is show an application of the methodology developed here even if the
biological aspects are not developed.

The flagellum is defined by N points equally distributed along the length. Their
velocities are computed using the trapezoid rule on the Keller–Rubinow integral
in (21), and the position is updated at each time step with Euler’s method. The
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Figure 11. Snapshots of the flagella at different times. The motion is governed by (21),
and the fluid velocities are calculated using (22). For these calculations, the length of the
flagella is L = 0.75, and we have used N = 20 nodes with δ = 2h = 2L/(N − 1) and

a = 2δ.

fluid velocities are computed using the trapezoid rule on the integral in (22). All
necessary derivatives along the filament are calculated with simple finite differ-
ences. Figure 11 shows the results for the parameters L = 0.75, N = 20, δ =
2h = 2L/(N − 1) and a = 2δ. This results in a dimensionless oscillation period
of T = 0.75 so that the snapshots in the figure cover more than two periods. The
time step was set to 1t = 10−5. All frames cover exactly the same spatial domain
so that the swimming motion (leftward) of the organism is appreciable. The fluid
motion in the plane of the organism shows the rotations that are typical of this
motion [9; 8; 5].

6. Conclusions

We have derived a regularized formulation of the slender body theories developed
by Lighthill and by Keller and Rubinow. The main purpose is to provide a modified
version of each theory that retains the asymptotic order of the original formula but
results in expressions that are more amenable to computation. Specifically, the
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Keller and Rubinow theory relies on the exact cancellation of singular functions,
which is not possible to accomplish numerically without some type of regulariza-
tion. In the case of Lighthill’s theory, the advantage of our approach is that the gap
that is removed from the line integral can be restored. The uninterrupted integral
along the centerline of the slender body is important especially in closed filaments
where one can take advantage of the periodicity of the problem using high-order
quadratures.

The results show that both regularized theories result in the same integral along
the filament, (13) and (21), which allows a direct comparison between them. The
two theories differ by the local terms only due to the way in which they are derived
and the order of the asymptotic expansions. The regularization parameter δ should
be considered a numerical parameter that removes the singularity of the original
expressions in a way that maintains the asymptotic order and stabilizes the com-
putation of the integrals. The validation studies show that comparable results can
be obtained with δ ≈ 0 and δ = O(a) while the latter case provides a substantial
advantage in the number of quadrature points needed to compute the resulting
integrals accurately. We show by example that sufficient regularization (i.e. large
enough δ) is necessary to stabilize high wave numbers in the representation of the
filaments.

The theory presented here involves regularized stokeslets and dipoles along the
centerline of the slender body. The inclusion of other elements, such as rotlets for
a torque load, is also possible since regularized versions of them are available [1].

Appendix A: Details of the inner velocity expansion

To compute the inner velocity in (15), we will need the following approximations
for |x0| = ρ� q:

J1 =

∫ q

−q

H1(
√
|x0|2+ z2) dz

(|x0|2+ z2)1/2
≈ ln

4q2

|x0|2+ δ2 +
2δ2

|x0|2+ δ2 +

(
|x0|

2
− δ2

)
2q2

J2a =

∫ q

−q

H3(
√
|x0|2+ z2) dz

(|x0|2+ z2)3/2
≈

2(|x0|
2
− δ2)

(|x0|2+ δ2)2
−

1
q2

J2b =

∫ q

−q

H2(
√
|x0|2+ z2) dz

(|x0|2+ z2)3/2
≈

2
(|x0|2+ δ2)

−
1
q2

J3 =

∫ q

−q

H4(
√
|x0|2+ z2) dz

(|x0|2+ z2)5/2
≈

4
3(|x0|2+ δ2)2

−
1

2q4

J4 =

∫ q

−q

zH2(
√
|x0|2+ z2)dz

(|x0|2+ z2)3/2
= 0
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J5 =

∫ q

−q

zH4(
√
|x0|2+ z2)dz

(|x0|2+ z2)5/2
= 0

J6 =

∫ q

−q

z2 H2(
√
|x0|2+ z2) dz

(|x0|2+ z2)3/2
≈ ln

4q2

|x0|2+ δ2 − 2+
3(|x0|

2
+ δ2)

2q2

J7 =

∫ q

−q

z2 H4(
√
|x0|2+ z2) dz

(|x0|2+ z2)5/2
≈

2
3(|x0|2+ δ2)

−
1
q2

Neglecting terms of order O(a2/q2), O(δ2/q2) and O(|x0|
2/q2), the velocity

can be written as

8πµ(u(x0)−U)= f (J1−2AJ2a)+ ( f · x0)x0 (J2b+6AJ3)+ ( f · s)s (J6+6AJ7)

= f
[

ln
4q2

|x0|2+δ2 +
2δ2

|x0|2+δ2 −2A
(

2|x0|
2
−δ2

(|x0|2+δ2)2
−

1
q2

)]
+ ( f · x0)x0

[
2

|x0|2+δ2 +6A
(

4
3(|x0|2+δ2)2

)]
+ ( f · s)s

[
ln

4q2

|x0|2+δ2 −2+6A
(

2
3(|x0|2+δ2)

−
1
q2

)]
.

When the evaluation point is on the surface, |x0| = a, the velocity must be
independent of the particular surface point, so that the coefficient of ( f · x0)x0

must vanish. This leads to

A =−
a2
+ δ2

4
,

so that this choice of A is consistent with the boundary conditions at the filament
surface, we have for |x0| = a

8πµU = 8πµv(s)− ( f + ( f · s)s)
[

ln
4q2

a2+ δ2 + 1
]
+ 4( f · s)s,

and the final velocity expression is (16):

8πµu(x0)=8πµv(σ0)−( f0+( f0·s)s)
[

ln
|x0|

2
+ δ2

a2+ δ2 +
(|x0|

2
− δ2)(|x0|

2
− a2)

(|x0|2+ δ2)2

]
+ 2( f0· s)s

|x0|
2(|x0|

2
− a2)

(|x0|2+ δ2)2
+ 2( f0 · x0)x0

|x0|
2
− a2

(|x0|2+ δ2)2
+ O(ε2),

where

ε =max
(
|x0|

q
,
δ

q

)
.
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Appendix B: Matching

Consider the matching equation∫ 1

0
J (r, ρ, δ, f (σ )) dσ

= 8πµv(s)− ( f + ( f · s)s)
[

ln
ρ2
+ δ2

a2+ δ2 + 1
]
+ 2( f · s)s+

2( f · x0)x0

ρ2 . (24)

Since the terms containing ρ came from integrals J1, J2b and J6, it is natural to
consider writing∫ 1

0
J (r, ρ, δ, f (σ )) dσ

=

∫ 1

0

(
J (r, ρ, δ, f (σ ))− f (s)K1(ρ, δ)−( f·x0)x0K2(ρ, δ)−( f·s)sK3(ρ, δ)

)
dσ

+

∫ 1

0
[ f (s)K1(ρ, δ)+ ( f · x0)x0K2(ρ, δ)+ ( f · s)sK3(ρ, δ)]dσ , (25)

where, setting t = σ − s, we define

K1(ρ, δ)=
H1(

√
t2+ ρ2)

(t2+ ρ2)1/2
, K2(ρ, δ)=

H2(
√

t2+ ρ2)

(t2+ ρ2)3/2
,

K3(ρ, δ)=
H2(

√
t2+ ρ2) t2

(t2+ ρ2)3/2
.

We approximate the first integral on the right-hand side of (25) by setting ρ = 0 so
that the outer solution is approximated by∫ 1

0
J (r, ρ, δ, f (σ )) dσ

≈

∫ 1

0
[J (r0, 0, δ, f (σ ))− f (s)K1(0, δ)− ( f · s)sK3(0, δ)]dσ

+

∫ 1

0
[ f (s)K1(ρ, δ)+ ( f · x0)x0K2(ρ, δ)+ ( f · s)sK3(ρ, δ)]dσ, (26)

where r0 = X (s)− X (s+ t).
Then, by using the integrals∫ 1

0
K1(ρ, δ) dσ =

∫ 1−s

−s

(t2
+ ρ2
+ 2δ2) dt

(t2+ ρ2+ δ2)3/2

= ln(4s(1− s))− ln(ρ2
+ δ2)+ O(ρ2)+ O(δ2),∫ 1

0
K2(ρ, δ) dσ =

∫ 1−s

−s

dt
(t2+ ρ2+ δ2)3/2

=
2

ρ2+ δ2 + O(ρ2)=
2
ρ2 + O(ρ2)+ O(δ2/ρ2),
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0
K3(ρ, δ) dσ =

∫ 1−s

−s

t2 dt
(t2+ ρ2+ δ2)3/2

= ln(4s(1− s))− 2− ln(ρ2
+ δ2)+ O(ρ2),

(see the expressions in (7)), Equation (24) becomes∫ 1

0

(
J (r0, 0, δ, f (σ ))− f0K1(0, δ)− ( f0· s)sK3(0, δ)

)
dσ

+ ( f0+ ( f0· s)s)
[
ln(4s(1− s))− ln(ρ2

+ δ2)
]
− 2( f0· s)s+

2( f0 · x0)x0

ρ2

= 8πµv(s)− ( f0+ ( f0· s)s)
[

ln
ρ2
+ δ2

a2+ δ2 + 1
]
+ 2( f0· s)s+

2( f0 · x0)x0

ρ2 .

Appendix C: Simplifying the velocity expression

The filament velocity formula (19) can be simplified by using (7) and the identity∫ 1−s

−s

dt
(t2+ a2+ δ2)1/2

= ln(4s(1− s))− ln
(
a2
+ δ2)

+ O(a2
+ δ2);

we can write the filament velocity as

8πµv(s)=
∫ 1−s

−s

f (s+ t)
(|r0|2+ δ2)1/2

+
( f (s+ t) · r0)r0

|r0|2 (|r0|2+ δ2)1/2
−

f (s)+ ( f · s)s
(t2+ δ2)1/2

dt

+ δ2
∫ 1−s

−s

f (s+ t)
(|r0|2+ δ2)3/2

−
( f (s+ t) · r0)r0

|r0|2 (|r0|2+ δ2)3/2
−

f (s)− ( f · s)s
(t2+ δ2)3/2

dt

+

∫ 1−s

−s

f (s)+ ( f · s)s
(t2+ a2+ δ2)1/2

dt − ( f + ( f · s)s)+ 2( f − ( f · s)s),

where r0 = X (s)− X (s+ t).
Lemma 6.1 below shows that the second integral in this expression is O(δ2 ln δ),

so that the final expression for the filament velocity up to this order is

8πµv(s)=
∫ 1−s

−s

f (s+ t)
(|r0|2+ δ2)1/2

+
( f (s+ t) · r0)r0

|r0|2 (|r0|2+ δ2)1/2
−

f (s)+ ( f · s)s
(t2+ δ2)1/2

dt

+

∫ 1−s

−s

f (s)+ ( f · s)s
(t2+ a2+ δ2)1/2

dt − ( f + ( f · s)s)+ 2( f − ( f · s)s).

Lemma 6.1. Let a filament be defined by the curve X (t), where t is the arclength
parameter. Let f (t) be a smooth function, r(t)= X (t)− X (0) and δ� `. Then

I (δ)= δ2
∫ `

−`

f (t)
(|r|2+ δ2)3/2

−
f (0)

(t2+ δ2)3/2
dt =−

( 1
4 K 2

0 f0+ f ′′0
)
δ2 ln δ+ O(δ2)

where f0 = f (0), f ′0 = f ′(0), f ′′0 = f ′′(0) and K0 is the filament curvature at X (0).
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Proof. Consider first the integral

I1(δ)= δ
2
∫ `

0

f (t)
(|r(t)|2+ δ2)3/2

dt

and write for t � 1

r(t)= t τ̂ + 1
2 t2K0n̂+ 1

6 t3 (K ′0n̂− K 2
0 τ̂ )+ O(t4),

|r(t)|2 = r · r = t2
−

1
12 K 2

0 t4
+ O(t5),

|r(t)| = t − 1
24 K 2

0 t3
+ O(t4),

|r(t)|t = 1− 1
8 K 2

0 t2
+ O(t3).

where τ̂ and n̂ are the tangent and normal unit vectors at X (0). Using these expres-
sions we write for t � 1

f (t)= f0+ t f ′0+
1
2 t2 f ′′0 + O(t3)

= f0|r(t)|t
[
1+ 1

8 K 2
0 |r(t)|

2]
+ f ′0|r(t)||r(t)|t +

1
2 f ′′0 |r(t)|

2
|r(t)|t + O(t3)

= |r(t)|t
[

f0+ |r(t)| f ′0+
1
2 |r(t)|

2 ( f ′′0 +
1
4 K 2

0 f0
)]
+ O(t3)

= |r(t)|t A(|r(t)|)+ O(t3).

Then

I1(δ)= δ
2
∫ `

0

f (t)− |r(t)|t A(|r(t)|)
(|r(t)|2+ δ2)3/2

dt + δ2
∫ `

0

|r(t)|t A(|r(t)|)
(|r(t)|2+ δ2)3/2

dt

= J1(δ)+ J2(δ).

By construction we know that J1(δ) = O(δ2). On the other hand, we can let
y = |r(t)| and write

J2(δ)= δ
2
∫ R

0

A(y)
(y2+ δ2)3/2

dy

where R = |r(`)|. So

J2(δ)= f0

∫ R

0

δ2

(y2+ δ2)3/2
dy+ f ′0

∫ R

0

δ2 y
(y2+ δ2)3/2

dy

+
1
2

(
f ′′0 +

1
4 K 2

0 f0
) ∫ R

0

δ2 y2

(y2+ δ2)3/2
dy

or

J2(δ)= f0
R

√
R2+ δ2

− f ′0

[
δ2

√
R2+ δ2

− δ

]
+

1
2

(
f ′′0 +

1
4 K 2

0 f0
)[
δ2 ln

(
R+

√
R2+ δ2

)
− δ2 ln δ−

δ2 R
√

R2+ δ2

]
.
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Now the second half of the original integral is

I2(δ)= δ
2
∫ 0

−`

f (t)
(|r(t)|2+ δ2)3/2

dt = δ2
∫ `

0

f (−t)
(|r(−t)|2+ δ2)3/2

dt .

Using the same approach we conclude that

I2(δ)= f0
P

√
P2+ δ2

+ f ′0

[
δ2

√
P2+ δ2

− δ

]
+

1
2

(
f ′′0 +

1
4 K 2

0 f0
) [
δ2 ln

(
P +

√
P2+ δ2

)
− δ2 ln δ−

δ2 P
√

P2+ δ2

]
+ O(δ2),

where P = |r(−`)|.
Combining the results we have

I (δ)= f0

[
R

√
R2+δ2

+
P

√
P2+δ2

−
2`

√
`2+δ2

]
+ f ′0

[
δ2

√
P2+δ2

−
δ2

√
R2+δ2

]
+

1
2

(
f ′′0 +

1
4 K 2

0 f0
)[
δ2 ln

(
P +

√
P2+δ2

)
+ δ2 ln

(
R+

√
R2+δ2

)
− 2δ2 ln δ−

δ2 P
√

P2+δ2
−

δ2 R
√

R2+δ2

]
+ O(δ2)

=−
(

f ′′0 +
1
4 K 2

0 f0
)
δ2 ln δ+ O(δ2). �
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We present a numerical method to compute expectations of functionals of a
piecewise deterministic Markov process. We discuss time dependent functionals
as well as deterministic time horizon problems. Our approach is based on the
quantization of an underlying discrete-time Markov chain. We obtain bounds
for the rate of convergence of the algorithm. The approximation we propose is
easily computable and is flexible with respect to some of the parameters defining
the problem. An example illustrates the paper.
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1. Introduction

The aim of this paper is to propose a practical numerical method to approximate
some expectations related to a piecewise deterministic Markov process thanks to
the quantization of a discrete-time Markov chain naturally embedded within the
continuous-time process.

Piecewise deterministic Markov processes (PDMP’s) have been introduced by
M. H. A. Davis in [5] as a general class of stochastic models. PDMP’s are a
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family of Markov processes involving deterministic motion punctuated by random
jumps. The motion depends on three local characteristics namely the flow ˆ, the
jump rate � and the transition measure Q, which specifies the postjump location.
Starting from the point x, the motion of the process follows the flow ˆ.x; t/ until
the first jump time T1, which occurs either spontaneously in a Poisson-like fashion
with rate �.ˆ.x; t// or when the flow ˆ.x; t/ hits the boundary of the state space.
In either case, the location of the process at the jump time T1 is selected by the
transition measure Q.ˆ.x;T1/; � / and the motion restarts from this new point XT1

denoted by Z1. We define similarly the time S2 until the next jump, T2 D T1CS2

with the next postjump location defined by Z2 DXT2
and so on. Thus, associated

to the PDMP we have the discrete-time Markov chain .Zn;Sn/n2N, given by the
postjump locations and the interjump times. A suitable choice of the state space
and the local characteristics ˆ, � and Q provides stochastic models covering a
great number of problems of operations research as described in [5, Section 33].

We are interested in the approximation of expectations of the form

Ex

�Z TN

0

l.Xt / dt C

NX
jD1

c.XT�
j
/1fXT�

j
2@Eg

�

where .Xt /t�0 is a PDMP and l and c are some nonnegative, real-valued, bounded
functions and @E is the boundary of the domain. Such expectations are discussed
by M. H. A. Davis in [5, Chapter 3]. They often appear as cost or reward functions
in optimization problems. The first term is referred to as the running cost while
the second may be called the boundary jump cost. Besides, they are quite general
since Davis shows how a “wide variety of apparently different functionals” can be
obtained from the above specific form. For example, this wide variety includes
quantities such as a mean exit time and even, for any fixed t � 0, the distribution
of Xt (that is, Ex Œ1F .Xt /� where F is a measurable set).

There are surprisingly few works in the literature devoted to the actual computa-
tion of such expectations, using other means than direct Monte Carlo simulations.
Davis showed that these expectations satisfy integrodifferential equations. How-
ever, the set of partial differential equations that is obtained is unusual. Roughly
speaking, these differential equations are basically transport equations with a non-
constant velocity and they are coupled by the boundary conditions and by some
integral terms involving kernels that are derived from the properties of the underly-
ing stochastic process. The main difficulty comes from the fact that the domains on
which the equations have to be solved vary from one equation to another making
their numerical resolution highly problem specific. Another similar approach has
been recently investigated in [4; 7]. It is based on a discretization of the Chapman
Kolmogorov equations satisfied by the distribution of the process .Xt /t�0. The
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authors propose an approximation of such expectations based on finite volume
methods. Unfortunately, their method is only valid if there are no jumps at the
boundary. Our approach is completely different and does not rely on differential
equations, but on the fact that such expectations can be computed by iterating
an integral operator G. This operator only involves the embedded Markov chain
.Zn;Sn/n2N and conditional expectations. It is therefore natural to propose a com-
putational method based on the quantization of this Markov chain, following the
same idea as [6].

There exists an extensive literature on quantization methods for random vari-
ables and processes. The interested reader may for instance consult [8], [9] and
the references within. Quantization methods have been developed recently in nu-
merical probability or optimal stochastic control with applications in finance (see
[1; 2; 9], for instance). The quantization of a random variable X consists in finding
a finite grid such that the projection yX of X on this grid minimizes some Lp norm
of the difference X � yX . Roughly speaking, such a grid will have more points in the
areas of high density of X . As explained for instance in [9, Section 3], under some
Lipschitz-continuity conditions, bounds for the rate of convergence of functionals
of the quantized process towards the original process are available.

In the present work, we develop a numerical method to compute expectations
of functionals of the above form where the cost functions l and c satisfy some
Lipschitz-continuity conditions. We first recall the results presented by Davis ac-
cording to whom, the above expectation may be computed by iterating an operator
denoted by G. Consequently, it appears natural to follow the idea developed in [6]
namely to express the operator G in terms of the underlying discrete-time Markov
chain .Zn;Sn/n2N and to replace it by its quantized approximation. Moreover, in
order to prove the convergence of our algorithm, we replace the indicator function
1fXT�

j
2@Eg contained within the functional by some Lipschitz continuous approx-

imation. Bounds for the rate of convergence are then obtained. However, and this
is the main contribution of this paper, we then tackle two important aspects that
had not been investigated in [6].

The first aspect consists in allowing c and l to be time-dependent functions,
although still Lipschitz continuous, so that we may compute expectations of the
form

Ex

�Z TN

0

l.Xt ; t/ dt C

NX
jD1

c.XT�
j
;Tj /1fXT�

j
2@Eg

�
:

This important generalization has huge applicative consequences. For instance, it
allows discounted cost or reward functions such as l.x; t/D e�ıt l.x/ and c.x; t/D

e�ıtc.x/ where ı is some interest rate. To compute the above expectation, our
strategy consists in considering, as suggested by Davis in [5], the time-augmented
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process zXt D .Xt ; t/. Therefore, a natural way to deal with the time-dependent
problem is to apply our previous approximation scheme to the time-augmented
process . zXt /t�0. However, it is far from obvious, that the assumptions required
by our numerical method still hold for this new PDMP . zXt /t�0.

The second important generalization is to consider the deterministic time hori-
zon problem. Indeed, it seems crucial, regarding the applications, to be able to
approximate

Ex

� Z tf

0

l.Xt ; t/ dt C
X

Tf�tf

c.XT�
f
;Tf /1fXT�

f
2@Eg

�

for some fixed tf > 0 regardless of how many jumps occur before this determin-
istic time. To compute this quantity, we start by choosing a time N such that
P .TN < tf / be small so that the previous expectation boils down to

Ex

�Z TN

0

l.Xt ; t/1ft�tf gdt C

NX
jD1

c.XT�
j
;Tj /1fXT�

j
2@Eg1fTj�tf g

�
:

At first sight, this functional seems to be of the previous form. Yet, one must recall
that Lipschitz continuity conditions have been made concerning the cost functions
so that the indicator functions 1f��tf g prevent a direct application of the earlier
results. We deal with the two indicator functions in two different ways. On the one
hand, we prove that it is possible to relax the regularity condition on the running
cost function so that our algorithm still converges in spite of the first indicator
function. On the other hand, since the same reasoning cannot be applied to the
indicator function within the boundary jump cost term, we bound it between two
Lipschitz continuous functions. This provides bounds for the expectation of the
deterministic time horizon functional.

An important advantage of our method is that it is flexible. Indeed, as pointed
out in [1], a quantization based method is “obstacle free” which means, in our case,
that it produces, once and for all, a discretization of the process independently of
the functions l and c since the quantization grids merely depend on the dynamics
of the process. They are only computed once, stored off-line and may therefore
serve many purposes. Once they have been obtained, we are able to approximate
very easily and quickly any of the expectations described earlier. This flexibility
is definitely an important advantage of our scheme over standard methods such
as Monte Carlo simulations since, with such methods, we would have to run the
whole algorithm for each expectation we want to compute. This point is illustrated
in Section 6 where we easily solve an optimization problem that would be very
laboriously handled by Monte Carlo simulations.
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The paper is organized as follows. We first recall, in Section 2, the definition
of a PDMP and state our assumptions. In Section 3, we introduce the recursive
method to compute the expectation. Section 4 presents the approximation scheme
and a bound for the rate of convergence. The main contribution of the paper lies in
Section 5, which contains generalizations to time-dependent parameters and deter-
ministic time-horizon problems. The paper is illustrated by a numerical example
in Section 6; a conclusion (Section 7) is followed by some appendixes containing
technical results.

2. Definitions and assumptions

For all metric space E, we denote by B.E/ its Borel �-field and B.E/ the set of
real-valued, bounded and measurable functions defined on E. For a; b 2 R, set
a^ b Dmin.a; b/, a_ b Dmax.a; b/, and aC D a_ 0.

Definition of a PDMP. In this first section, let us define a piecewise deterministic
Markov process and introduce some general assumptions. Let M be a finite set
called the set of the modes that will represent the different regimes of evolution of
the PDMP. For each m 2M , the process evolves in Em, an open subset of Rd . Let

E D
˚
.m; �/;m 2M; � 2Em

	
:

This is the state space of the process .Xt /t2RC D .mt ; �t /t2RC . Let @E be its
boundary and E its closure and for any subset Y of E, Y c denotes its complement.

A PDMP is defined by its local characteristics .ˆm; �m;Qm/m2M .

� For each m 2M , ˆm W R
d �R! Rd is a continuous function called the flow

in mode m. For all t 2 R, ˆm. � ; t/ is an homeomorphism and t !ˆm. � ; t/

is a semigroup; i.e., for all � 2 Rd , ˆm.�; t C s/D ˆm.ˆm.�; s/; t/. For all
x D .m; �/ 2E, define the deterministic exit time from E:

t�.x/D inf
˚
t > 0 such that ˆm.�; t/ 2 @Em

	
:

We use here and throughout the convention inf ∅DC1.

� For all m 2 M , the jump rate �m W Em ! RC is measurable, and for all
.m; �/ 2E, there exists � > 0 such thatZ �

0

�m.ˆm.�; t// dt <C1:

� For all m 2M , Qm is a Markov kernel on .B.E/;Em/ that satisfies

Qm.�; f.m; �/g
c/D 1 for all � 2Em:
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From these characteristics, it can be shown (see [5]) that there exists a filtered
probability space .�;F;Ft ; .Px/x2E/ on which a process .Xt /t2RC is defined.
Its motion, starting from a point x 2E, may be constructed as follows. Let T1 be
a nonnegative random variable with survival function

Px.T1 > t/D

�
e�ƒ.x;t/ if 0� t < t�.x/;

0 if t � t�.x/;

where for x D .m; �/ 2E and t 2 Œ0; t�.x/�,

ƒ.x; t/D

Z t

0

�m.ˆm.�; s// ds:

One then chooses an E-valued random variable Z1 according to the distribution
Qm.ˆm.�;T1/; � /. The trajectory of Xt for t � T1 is

Xt D

�
.m; ˆm.�; t// if t < T1;

Z1 if t D T1:

Starting from the point XT1
DZ1, one then selects in a similar way S2 D T2�T1

the time between T1 and the next jump, Z2 the next postjump location and so on.
Davis shows, in [5], that the process so defined is a strong Markov process .Xt /t�0

with jump times .Tn/n2N (with T0 D 0). The process .‚n/n2N D .Zn;Sn/n2N

where Zn D XTn
is the postjump location and Sn D Tn �Tn�1 (with S0 D 0) is

the n-th interjump time is clearly a discrete-time Markov chain.
The following assumption about the jump-times is standard (see [5, Section 24],

for example):

Assumption 2.1. For all .x; t/ 2E �RC, Ex

�P
k 1fTk<tg

�
<C1.

It implies in particular that Tk goes to infinity a.s. when k goes to infinity.

Notation and assumptions. For notational convenience, any function h defined on
E will be identified with its component functions hm defined on Em. Thus, one
may write

h.x/D hm.�/ when x D .m; �/ 2E:

We also define a generalized flow ˆ WE �RC!E such that

ˆ.x; t/D .m; ˆm.�; t// when x D .m; �/ 2E:

Define on E the following distance, for x D .m; �/ and x0 D .m0; �0/ 2E:

jx�x0j D

�
C1 if m¤m0;

j� � �0j otherwise.
(1)
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For any function w in B.E/, introduce the notation

Qw.x/D

Z
E

w.y/Q.x; dy/, Cw D sup
x2E

jw.x/j;

and for any Lipschitz continuous function w in B.E/, denote by Œw�E , or if there
is no ambiguity by Œw�, its Lipschitz constant:

Œw�E D sup
x¤y2E

jw.x/�w.y/j

jx�yj
;

with the convention 1

1
D 0.

Remark 2.2. For w 2 B.E/ and from the definition of the distance on E, one has
Œw�Dmaxm2M Œwm�.

Definition 2.3. Denote by Lc.E/ the set of functions w 2B.E/ that are Lipschitz
continuous along the flow; i.e., the real-valued, bounded, measurable functions
defined on E and satisfying the following conditions:

� For all x 2 E, the map w.ˆ.x; � // W Œ0; t�.x//! R is continuous, and the
limit limt!t�.x/w.ˆ.x; t// exists and is denoted by w

�
ˆ.x; t�.x//

�
.

� There exists Œw�E
1
2 RC such that for all x;y 2E and t 2 Œ0; t�.x/^ t�.y/�,

one has ˇ̌
w.ˆ.x; t//�w.ˆ.y; t//

ˇ̌
� Œw�E1 jx�yj:

� There exists Œw�E
2
2 RC such that for all x 2E and t;u 2 Œ0; t�.x/�, one hasˇ̌

w.ˆ.x; t//�w.ˆ.x;u//
ˇ̌
� Œw�E2 jt �uj:

� There exists Œw�E� 2 RC such that for all x;y 2E, one hasˇ̌
w.ˆ.x; t�.x///�w.ˆ.y; t�.y///

ˇ̌
� Œw�E� jx�yj:

Denote by Lc.@E/ the set of real-valued, bounded, measurable functions de-
fined on @E satisfying the following condition:

� There exists Œw�@E� 2 RC such that for all x;y 2E, one hasˇ̌
w.ˆ.x; t�.x///�w.ˆ.y; t�.y///

ˇ̌
� Œw�@E� jx�yj:

Remark 2.4. When there is no ambiguity, we will use the notation Œw�i instead of
Œw�Ei for i 2 f1; 2;�g and Œw�� instead of Œw�@E� .

Remark 2.5. In Definition 2.3, we used the generalized flow for notational conve-
nience. For instance, the definition of Œw�1 is equivalent to the following: for all
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m 2M , there exists Œwm�1 2 RC such that for all �; �0 2Em and t 2 Œ0; t�.m; �/^

t�.m; �0/�, one hasˇ̌
wm.ˆm.�; t//�wm.ˆm.�

0; t//
ˇ̌
� Œwm�1j� � �

0
j:

Let Œw�1 Dmaxm2M Œwm�1.

Definition 2.6. For all u � 0, denote by Lu
c .E/ the set of functions w 2 B.E/

Lipschitz continuous along the flow until time u; i.e., the real-valued, bounded,
measurable functions defined on E and satisfying the following conditions:

� For all x2E, the mapw.ˆ.x; � // W Œ0; t�.x/^u/!R is continuous. If t�.x/�

u, then limt!t�.x/w.ˆ.x; t// exists and is denoted by w
�
ˆ.x; t�.x//

�
.

� There exists Œw�E;u
1
2RC such that for all x;y 2E and t 2 Œ0; t�.x/^t�.y/^u�,

one has ˇ̌
w.ˆ.x; t//�w.ˆ.y; t//

ˇ̌
� Œw�

E;u
1
jx�yj:

� There exists Œw�E;u
2
2 RC such that for all x 2E and t; t 0 2 Œ0; t�.x/^u�, one

has ˇ̌
w.ˆ.x; t//�w.ˆ.x; t 0//

ˇ̌
� Œw�

E;u
2
jt � t 0j:

� There exists Œw�E;u� 2RC such that for all x;y 2E, if t�.x/�u and t�.y/�u,
one has ˇ̌

w.ˆ.x; t�.x///�w.ˆ.y; t�.y///
ˇ̌
� Œw�

E;u
� jx�yj:

Remark 2.7. For all u � u0, one has Lu0

c .E/ � Lu
c .E/ with Œw�E;ui � Œw�

E;u0

i

where i 2 f1; 2;�g.

Remark 2.8. Definitions 2.3 and 2.6 correspond respectively to the Lipschitz and
local Lipschitz continuity along the flow that is, along the trajectories of the process.
They can be replaced by (local) Lipschitz assumptions on the flow ˆ, t� and w in
the classical sense.

We will require the following assumptions.

Assumption 2.9. The jump rate � is bounded and there exists Œ��1 2 RC such that
for all x;y 2E and t 2 Œ0; t�.x/^ t�.y/�, one hasˇ̌

�.ˆ.x; t//��.ˆ.y; t//
ˇ̌
� Œ��1jx�yj:

Assumption 2.10. The deterministic exit time from E, denoted by t�, is assumed
to be bounded and Lipschitz continuous on E.

Remark 2.11. Since the deterministic exit time t� is bounded by Ct� , one may
notice that Lu

c .E/ for u� Ct� is no other than Lc.E/.
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Remark 2.12. In most practical applications, the physical properties of the system
ensure that either t� is bounded, or the problem has a natural finite deterministic
time horizon tf . In the latter case, there is no loss of generality in considering that
t� is bounded by this deterministic time horizon. This leads to replacing Ct� by tf .
An example of such a situation is presented in an industrial example in Section 6.2.

Assumption 2.13. The Markov kernel Q is Lipschitz in the following sense: there
exists ŒQ� 2 RC such that for all u� 0 and for all function w 2Lu

c .E/, one has

(1) for all x;y 2E and t 2 Œ0; t�.x/^ t�.y/^u/,ˇ̌
Qw.ˆ.x; t//�Qw.ˆ.y; t//

ˇ̌
� ŒQ� Œw�

E;u
1
jx�yj:

(2) for all x;y 2E such that t�.x/_ t�.y/� u,ˇ̌
Qw.ˆ.x; t�.x///�Qw.ˆ.y; t�.y///

ˇ̌
� ŒQ�

�
Œw�

E;u
� C Œw�

E;u
1

�
jx�yj:

Remark 2.14. Assumption 2.13 is slightly more restrictive that its counterpart in
[6] (Assumption 2.5), because of the introduction of the state space Lu

c .E/. This is
to ensure that the time-augmented process still satisfies a similar assumption; see
Section 5.1.

3. Expectation

From now on, we will assume that Z0Dx a.s. for some x 2E. For all fixed N 2N�,
we intend to numerically approximate the quantity

JN .l; c/.x/DEx

�Z TN

0

l.Xt / dt C

NX
jD1

c.XT�
j
/1fXT�

j
2@Eg

�
; (2)

where l 2B.E/, c 2B.@E/ and Xt� is the left limit of Xt . Thus, XT�
j

is the j -th
prejump location. Since the boundary jumps occur exactly at the deterministic exit
times from E, one has,

JN .l; c/.x/DEx

�Z TN

0

l.Xt / dt C

NX
jD1

c
�
ˆ.Zj�1; t

�.Zj�1//
�
1fSjDt�.Zj�1/g

�
:

In many applications, JN .l; c/.x/ appears as a cost or a reward function. The first
term, that depends on l , is called the running cost and the second one, that depends
on c, is the boundary jump cost.

The rest of this section is devoted to formulating the expectation above in a way
that will allow us to derive a numerical computation method. The Lipschitz con-
tinuity property will be a crucial point when it comes to proving the convergence
of our approximation scheme. For this reason, the first step of our approxima-
tion is to replace the indicator function in JN .l; c/.x/ by a Lipschitz continuous
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function. Then we present a recursive method yielding the required expectation.
This recursive formulation will be the basis of our numerical method.

3.1. Lipschitz continuity. We introduce a regularity assumption on l and c.

Assumption 3.1. We assume that l 2Lc.E/ and c 2Lc.@E/.

Moreover, we replace the indicator function in JN .l; c/.x/ by a Lipschitz con-
tinuous function ıA, with A> 0. Let then

J A
N .l; c/.x/DEx

�Z TN

0

l.Xt / dt C

NX
jD1

c
�
ˆ.Zj�1; t

�.Zj�1//
�
ıA.Zj�1;Sj /

�
;

where ıA is a triangular approximation of the indicator function. It is defined on
E �R by

ıA.x; t/D

8̂̂̂<̂
ˆ̂:

A
�
t �

�
t�.x/�

1

A

��
for t 2

h
t�.x/�

1

A
I t�.x/

i
;

�A
�
t �

�
t�.x/C

1

A

��
for t 2

h
t�.x/I t�.x/C

1

A

i
;

0 otherwise:

For all x 2 E, the function ıA.x; t/ goes to 1ftDt�.x/g when A goes to in-
finity. The following proposition proves the convergence of J A

N
.l; c/.x/ towards

JN .l; c/.x/ with an error bound.

Proposition 3.2. For all x 2E, A> 0, N 2 N�, l 2Lc.E/ and c 2Lc.@E/, one
has ˇ̌

J A
N .l; c/.x/�JN .l; c/.x/

ˇ̌
�

NCcC�

A
:

Proof. For all x 2E, one hasˇ̌
J A

N .l; c/.x/�JN .l; c/.x/
ˇ̌

D

ˇ̌̌̌
Ex

� NX
jD1

c
�
ˆ.Zj�1; t

�.Zj�1//
��
ıA.Zj�1;Sj /� 1fSjDt�.Zj�1/g

��ˇ̌̌̌

� Cc

NX
jD1

Ex

�
jıA.Zj�1;Sj /� 1fSjDt�.Zj�1/gj

�
� Cc

NX
jD1

Ex

�
E
�
jıA.Zj�1;Sj /�1fSjDt�.Zj�1/gj

ˇ̌
Zj�1

��
:

We recall that the conditional law of Sj with respect to Zj�1 has density

s! �
�
ˆ.Zj�1; s/

�
e�ƒ.Zj�1;s/
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on Œ0I t�.Zj�1// and puts the weight e�ƒ.Zj�1;t
�.Zj�1// on the point t�.Zj�1/.

We also recall that � is bounded thanks to Assumption 2.9. Finally, one hasˇ̌
J A

N .l; c/.x/�JN .l; c/.x/
ˇ̌

� Cc

NX
jD1

Ex

�Z t�.Zj�1/

t�.Zj�1/�
1
A

ıA.Zj�1; s/�
�
ˆ.Zj�1; s/

�
e�ƒ.Zj�1;s/ds

�

�
NCcC�

A
:

Hence the result. �

Consequently to this proposition, we consider, from now on, the approximation
of J A

N
.l; c/.x/ for some fixed A, large enough to ensure that the previous error is

as small as required. The suitable choice of A will be discussed in Section 4.2.

3.2. Recursive formulation. Davis shows in [5, Section 32] that the expectation
J A

N
.l; c/.x/ we are interested in is obtained by merely iterating an operator that

we will denote by G. The rest of this section is dedicated to presenting this method
from which we will derive our approximation scheme in Section 4.

Definition 3.3. Introduce the functions L, C and F defined for all x 2 E and
t 2 Œ0I t�.x/� by

L.x; t/D

Z t

0

l
�
ˆ.x; s/

�
ds;

C.x; t/D c
�
ˆ.x; t�.x//

�
ıA.x; t/;

F.x; t/DL.x; t/CC.x; t/;

along with the operator G: B.E/! B.E/ given by

Gw.x/DEx

�
F.x;S1/Cw.Z1/

�
:

Definition 3.4. Define the sequence of functions .vk/0�k�N in B.E/ by

vN .x/D 0; vk.x/DGvkC1.x/:

Davis then shows in [5, Equation 32.33] that, for all k 2 f0; : : : ;N g,

vN�k.x/DEx

�Z Tk

0

l.Xt / dt C

kX
jD1

c
�
ˆ.Zj�1; t

�.Zj�1//
�
ıA.Zj�1;Sj /

�
:

Thus, the quantity J A
N
.l; c/.x/ we intend to approximate is none other than v0.x/.
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Notice that, thanks to the Markov property of the chain .Zn;Sn/n2N, one has
for all k 2 f0; : : : ;N � 1g,

Gw.x/DE
�
F.Zk ;SkC1/Cw.ZkC1/

ˇ̌
Zk D x

�
: (3)

Hence, for all k 2 f0; : : : ;N g, let Vk D vk.Zk/ so that one has

VN D 0; Vk DE
�
F.Zk ;SkC1/CVkC1

ˇ̌
Zk

�
:

This backward recursion provides the required quantity

V0 D J A
N .l; c/.x/:

Hence, we need to approximate the sequence of random variables .Vk/0�k�N .
This sequence satisfies a recursion that only depends on the chain .Zk ;Sk/0�k�N .
Therefore, it appears natural to propose an approximation scheme based on a dis-
cretization of this chain .Zk ;Sk/0�k�N , called quantization, similarly to the ideas
developed in [6] and [3].

4. Approximation scheme

Let us now turn to the approximation scheme itself. We explained in the previous
section how the expectation we are interested in stems from the iteration of the
operator G that only depends on the discrete-time Markov chain .Zk ;Sk/0�k�N .
The first step of our numerical method is therefore to discretize this chain in order
to approximate the operator G.

4.1. Quantization of the chain .Zk;Sk/k�N . Our approximation method is based
on the quantization of the underlying discrete time Markov chain .‚k/k�N D

.Zk ;Sk/k�N . This quantization consists in finding an optimally designed dis-
cretization of the process to provide for each step k the best possible approximation
of ‚k by a random variable y‚k which state space has a finite and fixed number
of points. Here, optimal means that the distance between ‚k and y‚k in a suitably
chosen Lp norm is minimal. For details on the quantization methods, we mainly
refer to [9] but the interested reader can also consult [1], [2] and the references
therein.

More precisely, consider X an Rq-valued random variable such that kXkp <1
and let K be a fixed integer. The optimal Lp-quantization of the random variable
X consists in finding the best possible Lp-approximation of X by a random vector
yX 2 fx1; : : : ;xK g taking at most K values: This procedure consists of two steps:

(1) Find a finite weighted grid � � Rq with � D fx1; : : : ;xK g.

(2) Set yX D yX� where yX� D proj�.X / with proj� denotes the closest neighbor
projection on � .
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The asymptotic properties of the Lp-quantization are given by the following
result; see [9], for example.

Theorem 4.1. If EŒjX jpC�� <C1 for some � > 0 then one has

lim
K!1

Kp=q min
j�j�K

kX � yX�
k

p
p D Jp;q

Z
jhjq=.qCp/.u/ du;

where the law of X is PX .du/D h.u/�q.du/C� with � ? �q , Jp;q a constant and
�q the Lebesgue measure in Rq .

Remark that X needs to have finite moments up to the order p C � to ensure
the above convergence. In this work, we used the CLVQ quantization algorithm
described in [1], Section 3.

There exists a similar procedure for the optimal quantization of a Markov chain
fXkgk2N. There are two approaches to provide the quantized approximation of a
Markov chain. The first one, based on the quantization at each time k of the random
variable Xk is called the marginal quantization. The second one that enhances the
preservation of the Markov property is called Markovian quantization. Remark
that for the latter, the quantized Markov process is not homogeneous. These two
methods are described in details in [9, Section 3]. In this work, we used the mar-
ginal quantization approach for simplicity reasons.

The quantization algorithm provides for each time step 0� k �N a finite grid
�k of E �RC as well as the transition matrices . yQk/0�k�N�1 from �k to �kC1.
Let p � 1 such that for all k � N , Zk and Sk have finite moments at least up
to order p and let proj�k

be the closest-neighbor projection from E � RC onto
�k (for the distance associated to norm p). The quantized process .y‚k/k�N D

. yZk ; ySk/k�N takes values for each k in the finite grid �k of E�RC and is defined
by

. yZk ; ySk/D proj�k
.Zk ;Sk/: (4)

Moreover, we also denote by �Z
k

and �S
k

, respectively, the projections of �k on
E and RC.

Some important remarks must be made concerning the quantization. On the one
hand, the optimal quantization has nice convergence properties stated by Theorem
4.1. Indeed, the Lp-quantization error k‚k �

y‚kkp goes to zero when the number
of points in the grids goes to infinity. However, on the other hand, the Markov
property is not maintained by the algorithm and the quantized process is generally
not Markovian. Although the quantized process can be easily transformed into a
Markov chain (see [9]), this chain will not be homogeneous. It must be pointed
out that the quantized process .y‚k/k2N depends on the starting point ‚0 of the
process.
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In practice, we begin with the computation of the quantization grids which
merely requires to be able to simulate the process. This step is quite time-consuming,
especially when the number of points in the quantization grids is large. However,
the grids are only computed once and for all and may be stored off-line. What is
more, they only depend on the dynamics of the process, not on the cost functions
l and c. Hence, the same grids may be used to compute different expectations
of functionals as long as they are related to the same process. Our schemes are
then based on the following simple idea: we replace the process by its quantized
approximation within the operator G. The approximation is thus obtained in a very
simple way since the quantized process has finite state space.

4.2. Approximation of the expectation and rate of convergence. We now use the
quantization of the process .‚k/k�N D .Zk ;Sk/k�N . In order to approximate
the random variables .Vk/k�N , we introduce a quantized version of the operator
G. Notice that the quantized process is no longer an homogeneous Markov chain
so that we have different operators for each time step k. Their definitions naturally
stem from a remark made in the previous section: recall that for all k 2 f1; : : : ;N g

and x 2E,

Gw.x/DE
�
F.Zk�1;Sk/Cw.Zk/

ˇ̌
Zk�1 D x

�
:

Definition 4.2. For all k 2 f1; : : : ;N g, w 2 B.�Z
k
/ and z 2 �Z

k�1
, let

yGkw.z/DE
�
F.z; ySk/Cw. yZk/

ˇ̌
yZk�1 D z

�
:

Introduce also the functions . Ovk/0�k�N by

OvN .z/D 0 for all z 2 �Z
N ;

Ovk.z/D yGkC1 OvkC1.z/ for all k 2 f0; : : : ;N � 1g and z 2 �Z
k :
:

Finally, for all k 2 f0; : : : ;N g, let

yVk D Ovk. yZk/:

Remark 4.3. The conditional expectation in yGkw.z/ is a finite sum. Thus, the
numerical computation of the sequence . yVk/k will be easily performed as soon as
the quantized process .y‚k/k�N has been obtained.

Remark 4.4. We have assumed that Z0 D x a.s. Thus, the quantization algorithm
provides that yZ0 D x a.s. too. Consequently, the random variable yV0 D Ov0. yZ0/ is,
in fact, deterministic.

The following theorem states the convergence of yV0 towards V0 D J A
N
.l; c/.x/

and provides a bound for the rate of convergence.
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Theorem 4.5. For all k 2 f0; : : : ;N g, one has vk 2Lc.E/. Moreover, the approx-
imation error satisfies

jJN .l; c/.x/� yV0j � "N .l; c;X;A/;

where

"N .l; c;X;A/D

N�1X
kD0

�
2ŒvkC1�kZkC1�

yZkC1kpC
�
2Œvk �C ŒF �1

�
kZk�

yZkkp

C ŒF �2kSkC1�
ySkC1kp

�
C

NCcC�

A

with

ŒF �1 D Ct� Œl �1C Œc��CAŒt ��Cc ;

ŒF �2 D Cl CACc :

Cvn
� n

�
Ct�Cl CCc

�
;

Œvn�1 � eCt�C�
�
K.A; vn�1/C nCt� Œ��1.Ct�Cl CCc/

�
CCt� Œl �1;

Œvn�2 � eCt�C�
�
Ct�ClC�C 2Cl CC�Cc C .2n� 1/C�.Ct�Cl CCc/

�
CCl ;

Œvn�� � Œvn�1C Œt
�� Œvn�2;

Œvn� �K.A; vn�1/;

and for allw 2Lc.E/, K.A; w/DE1CE2ACE3Œw�1CE4CwC ŒQ� Œw��, where

E1 D 2Œl �1Ct� CCl

�
Œt��C 2C 2

t� Œ��1
�
C Œc��.1CCt�C�/

CCc

�
2Œ��1Ct� CC�C 2

t� Œ��1C 2Œt��C�
�
;

E2 D CcCt�C�Œt
��;

E3 D .1CCt�C�/ŒQ�;

E4 D 2C�Œt
��CCt� Œ��1.2CCt�C�/:

The choice of A. Proposition 3.2 suggests that A should be as large as possible.
However, the constants ŒF �1, ŒF �2 and Œvn� that appear in the bound of the approx-
imation error proposed by the above Theorem 4.5 grow linearly with A. Thus,
in order to control this error, it is necessary that the order of magnitude of the
quantization error k‚k �

y‚kkp be at most 1=A.
The convergence of the approximation scheme can be derived from Theorem 4.5.

Indeed, on the one hand, one must remind that V0 D J A
N
.l; c/.x/ is the expectation

we intended to approximate and on the other hand, k‚k �
y‚kkp may become

arbitrarily small when the number of points in the quantization grids goes to infinity
(see [9], for example). An outline of the proof is presented in Appendix C.
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5. Time-dependent functionals

We now turn to the main contribution of this paper and present two generaliza-
tions of the previous problem. On the one hand, we will consider time-dependent
functionals of the form

Ex

�Z TN

0

l.Xt ; t/ dt C

NX
jD1

c.XT�
j
;Tj /1fXT�

j
2@Eg

�
where l and c are Lipschitz continuous functions. On the other hand, we wish to
replace the random time horizon TN by a deterministic one, denoted by tf :

Ex

�Z tf

0

l.Xt ; t/ dt C
X

Tj�tf

c.XT�
j
;Tj /1fXT�

j
2@Eg

�
:

We will reason as follows. As suggested by Davis in [5], we will introduce a trans-
formation . zXt /t�0 of the initial process .Xt /t�0 by including the time variable
into the state space: . zXt /D .Xt ; t/. Indeed, we will see that both the expectation
of the time-dependent functional and the one with deterministic time horizon are
no other than expectations of time invariant functionals for the time-augmented
process . zXt /t�0. We therefore intend to apply the previously exposed approxima-
tion scheme to this new PDMP. However, it is far from obvious that the Lipschitz
continuity assumptions 2.9, 2.13 and 2.10 still hold for this new process.

Thus, the rest of this section is organized as follows. First, we recall the precise
definition of the time-augmented process and prove that it satisfies the Lipschitz
continuity assumptions required by our approximation scheme. Then, we will see
that the time-dependent functional case corresponds to a time invariant functional
for the new transformed process and may therefore be obtained thanks to the earlier
method. Finally, we consider the deterministic time horizon problem that features
an additional hurdle namely the presence of non-Lipschitz continuous indicator
functions.

5.1. The time-augmented process. Davis suggests, in [5, Section 31], that the case
of the time-dependent functionals may be treated by introducing the time variable
within the state space. Thus, it will be possible to apply our previous numerical
method to the time-augmented process. However, and this is what we discuss in
this section, it is necessary to check whether the Lipschitz continuity assumptions
still hold. We first recall the definition of the time-augmented process given by
Davis.

Definition 5.1. Introduce the new state space

zE DE �RC
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equipped with the norm defined by: for all � D .x; t/, � 0 D .x0; t 0/ 2 zE, let

j� � � 0j D jx�x0jC jt � t 0j (5)

where the norm on E is given by (1). On this state space, we define the process

zXt D .Xt ; t/:

The local characteristics of the PDMP . zXt /t�0, denoted by .Q�; zQ; ẑ /, are given
for all � D .x; t/ 2 zE by8̂<̂

:
Q�.�/D �.x/;

ẑ .�; s/D
�
ˆ.x; s/; t C s

�
for s � t�.x/,

zQ
�
�;A� ftg

�
DQ.x;A/ for all A 2B.E/.

Moreover, we naturally define for all � D .x; t/ 2 zE

Qt�.�/D inffs > 0 such that ẑ .�; s/ 2 @ zEg D t�.x/

Clearly, Assumptions 2.9 and 2.10 still hold with ŒQ��1 D Œ��1 and Œ Qt�� D Œt��.
However, proving Assumption 2.13 is more intricate. We start with the following
lemma.

Lemma 5.2. Let u; t � 0 and w 2 Lu
c .
zE/. Denote by wt the function of B.E/

defined by wt D w. � ; t/. One has then wt 2Lt^u
c .E/ with

Œwt �
E;t^u
1

� Œw�
zE;u

1
;

Œwt �
E;t^u
2

� Œw�
zE;u

1
C Œw�

zE;u
2

;

Œwt �
E;t^u
� � .1C Œt��/Œw�

zE;u
� :

Proof. Let u; t � 0 and w 2Lu
c .
zE/. For x;x0 2E and s � t�.x/^ t�.x0/^ t ^u,

one hasˇ̌
wt .ˆ.x; s//�wt .ˆ.x

0; s//
ˇ̌
D
ˇ̌
w
�
ẑ ..x; t � s/; s/

�
�w

�
ẑ ..x0; t � s/; s/

�ˇ̌
:

We now use the fact that w 2Lu
c .
zE/ which yields since s � uˇ̌

wt .ˆ.x; s//�wt .ˆ.x
0; s//

ˇ̌
� Œw�

zE;u
1

ˇ̌
.x; t � s/� .x0; t � s/j D Œw�

zE;u
1

ˇ̌
x�x0

ˇ̌
:

Hence, Œwt �
E;t^u
1

� Œw�
zE;u

1
, and similarly one obtains Œwt �

E;t^u
2

� Œw�
zE;u

1
C Œw�

zE;u
2

.
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On the other hand, for x;x0 2E such that t�.x/_ t�.x0/� t ^u, one hasˇ̌
wt .ˆ.x; t

�.x///�wt .ˆ.x
0; t�.x0///

ˇ̌
D
ˇ̌
w
�
ẑ ..x; t � t�.x//; t�.x//

�
�w

�
ẑ ..x0; t � t�.x0//; t�.x0//

�ˇ̌
D

ˇ̌̌
w
�
ẑ
�
.x; t � t�.x//; Qt�.x; t � t�.x//

��
�w

�
ẑ
�
.x0; t � t�.x0//; Qt�.x0; t � t�.x0//

��ˇ̌̌
I

moreover since w 2Lu
c .
zE/ and Qt�.x; t � t�.x//_ Qt�.x0; t � t�.x0//� u one hasˇ̌

wt .ˆ.x; t
�.x///�wt .ˆ.x

0; t�.x0///
ˇ̌
� Œw�

zE;u
�

ˇ̌
.x; t � t�.x//� .x0; t � t�.x0//

ˇ̌
:

We conclude thanks to the Lipschitz continuity assumption 2.10 on t�, which
yields

ˇ̌
.x; t�t�.x//�.x0; t�t�.x0//

ˇ̌
� .1CŒt��/jx�x0j. One obtains Œwt �

E;t^u
� �

Œw�
zE;u
�

�
1C Œt��

�
and wt 2Lt^u

c .E/. �

The next proposition proves that Assumption 2.13 holds for the time-augmented
process . zX /t�0.

Proposition 5.3. Let w 2Lu
c .
zE/.

(1) For all �, � 0 2 zE and s 2 Œ0; Qt�.�/^ Qt�.� 0/^u�,ˇ̌
zQw
�
ẑ .�; s/

�
� zQw

�
ẑ .� 0; s/

�ˇ̌
� .ŒQ�_ 1/Œw�

zE;u
1
j� � � 0j:

(2) For all �, � 0 2 zE such that Qt�.�/_ Qt�.� 0/� u,ˇ̌
zQw
�
ẑ .�; Qt�.�//

�
� zQw

�
ẑ .� 0; Qt�.� 0//

�ˇ̌
� .ŒQ�_ 1/.1C Œt��/

�
Œw�
zE;u
� C Œw�

zE;u
1

�
j� � � 0j:

In other words, Assumption 2.13 is satisfied with Œ zQ�D .ŒQ�_ 1/.1C Œt��/.

Proof. As in the previous lemma, for all t � 0, we will denote by wt the function
of B.E/ defined by wt D w. � ; t/. For � D .x; t/ 2 zE and w 2 Lu

c .
zE/, one has,

by the definition of zQ,

zQw.�/D

Z
�02 zE

w.� 0/ zQ
�
.x; t/; d� 0

�
D

Z
z2E

w.z; t/Q
�
x; dz

�
DQwt .x/: (6)

We may now check the regularity assumption on zQ. Let � D .x; t/ and � 0 D
.x0; t 0/ 2 zE. Let s 2 Œ0I Qt�.�/^ Qt�.� 0/^ u�. Thanks to the definition of ẑ and (6)
one hasˇ̌
zQw. ẑ .�; s//� zQw. ẑ .� 0; s//

ˇ̌
D
ˇ̌
zQw.ˆ.x; s/; t C s/� zQw.ˆ.x0; s/; t 0C s/

ˇ̌
D
ˇ̌
QwtCs.ˆ.x; s//�Qwt 0Cs.ˆ.x

0; s//
ˇ̌
:
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We split this into the sum of two differences:ˇ̌
QwtCs.ˆ.x; s//�Qwt 0Cs.ˆ.x

0; s//
ˇ̌

�
ˇ̌
QwtCs.ˆ.x; s//�QwtCs.ˆ.x

0; s//
ˇ̌
C
ˇ̌
Q.wtCs �wt 0Cs/.ˆ.x

0; s//
ˇ̌
:

On the one hand, we recall that thanks to Lemma 5.2, wtCs 2 L
.tCs/^u
c .E/, so

that, since s � .t C s/^u, we may use the Lipschitz continuity assumption 2.13
on Q and the first term is bounded as follows:ˇ̌

QwtCs.ˆ.x; s//�QwtCs.ˆ.x
0; s//

ˇ̌
� ŒQ� ŒwtCs �

E;.tCs/^u
1

jx�x0j:

Lemma 5.2 also provides ŒwtCs �
E;.tCs/^u
1

� Œw�
zE;u

1
. On the other hand, and more

basically, the second term in the equation above satisfiesˇ̌
Q.wtCs �wt 0Cs/.ˆ.x

0; s//
ˇ̌
� Œw�

zE;u
1
jt � t 0j:

We obtain ˇ̌
zQw
�
ẑ .�; s/

�
� zQw

�
ẑ .� 0; s

�
/
ˇ̌
� .ŒQ�_ 1/Œw�

zE;u
1
j� � � 0j:

We reason similarly to bound
ˇ̌
zQw
�
ẑ .�; Qt�.�//

�
� zQw

�
ẑ .� 0; Qt�.� 0//

�ˇ̌
, where

� D .x; t/ and � 0D .x0; t 0/2 zE are such that Qt�.�/_ Qt�.� 0/� u. Equation (6) yieldsˇ̌
zQw
�
ẑ .�; Qt�.�//

�
� zQw

�
ẑ .� 0; Qt�.� 0//

�ˇ̌
D
ˇ̌
QwtCt�.x/

�
ˆ.x; t�.x//

�
�Qwt 0Ct�.x0/

�
ˆ.x0; t�.x0//

�ˇ̌
;

which we now split as follows:ˇ̌
QwtCt�.x/

�
ˆ.x; t�.x//

�
�Qwt 0Ct�.x0/

�
ˆ.x0; t�.x0//

�ˇ̌
�
ˇ̌
QwtCt�.x/

�
ˆ.x; t�.x//

�
�QwtCt�.x/

�
ˆ.x0; t�.x0//

�ˇ̌
C
ˇ̌
.QwtCt�.x/�Qwt 0Ct�.x0//

�
ˆ.x0; t�.x0//

�ˇ̌
:

Thanks to Lemma 5.2, wtCt�.x/ 2L
.tCt�.x//^u
c .E/. We assume, without loss of

generality, that t�.x/ � t�.x0/, so t�.x/ _ t�.x0/ � .t C t�.x// ^ u. Therefore,
the first term in the above equation is bounded, thanks to the Lipschitz continuity
assumption 2.13 on Q and Lemma 5.2, by

ŒQ�
�
.1C Œt��/Œw�

zE;u
� C Œw�

zE;u
1

�
jx�x0j:

It is more straightfoward to obtain a bound for the second term, of the form

Œw�
zE;u

1

ˇ̌
t � t 0C t�.x/� t�.x0/

ˇ̌
� Œw�

zE;u
1

�
jt � t 0jC Œt��jx�x0j

�
:
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We obtainˇ̌
zQw
�
ẑ .�; Qt�.�//

�
� zQw

�
ẑ .� 0; Qt�.� 0//

�ˇ̌
� ŒQ�.1C Œt��/Œw�

zE;u
� jx�x0jC Œw�

zE;u
1

�
ŒQ�jx�x0jC jt � t 0jC Œt��jx�x0j

�
�
�
ŒQ�_ 1

��
1C Œt��

��
Œw�
zE;u
� C Œw�

zE;u
1

�
j� � � 0j:

Hence the result. �

Consequently, we may apply our numerical method to the time-augmented pro-
cess . zXt /t�0. In other words, for l 2Lc. zE/, c 2Lc.@ zE/ and � 2 zE, our approxi-
mation scheme may be used to compute

zJN .l; c/.�/DE�

�Z TN

0

l. zXt / dt C

NX
jD1

c. zXT�
j
/1
f zXT�

j
2@ zEg

�
: (7)

We will now see that the time-dependent functional and the deterministic time
horizon problems boil down to computing such quantities zJN .l; c/.�/ for suitably
chosen functions l and c.

5.2. Lipschitz continuous cost functions. We first consider the time-dependent
functional problem with Lipschitz continuous cost functions. Thus, let then l 2

Lc. zE/, c 2Lc.@ zE/ and x 2E, we wish to compute

Ex

�Z TN

0

l.Xt ; t/ dt C

NX
jD1

c.XT�
j
;Tj /1fXT�

j
2@Eg

�
:

It is straightforward to show that this quantity may be expressed using the time-
augmented process starting from the point �0 D .x; 0/. Indeed, one has

zJN .l; c/.�0/DEx

�Z TN

0

l.Xt ; t/ dt C

NX
jD1

c.XT�
j
;Tj /1fXT�

j
2@Eg

�
;

where zJN .l; c/.�0/ is given by (7). Although they are time-dependent, the cost
functions l and c are seen, in the left-hand side term, as time invariant functions of
the time-augmented process. The expectation of the time-dependent functional is
therefore obtained by computing the expectation of a time invariant functional for
the transformed PDMP thanks to the approximation scheme described in Section 4.
This is what expresses the following theorem, which proof stems from the previous
discussion.

Theorem 5.4. Let l 2Lc. zE/ and c 2Lc.@ zE/ and apply the approximation scheme
described in Section 4 to the time-augmented process . zXt /t�0, one has then
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ˇ̌̌̌
Ex

�Z TN

0

l.Xt ; t/ dt C

NX
jD1

c.XT�
j
;Tj /1fXT�

j
2@Eg

�
� yV0

ˇ̌̌̌
� "N .l; c; zX ;A/;

where we denote by "N .l; c; zX ;A/ the bound of the approximation error provided
by Theorem 4.5 when our approximation scheme is applied with cost functions l

and c to the time-augmented process . zXt /t�0.

Remark 5.5. The quantity "N .l; c; zX ;A/ is computed with respect to the process
. zXt /t�0 instead of .Xt /t�0, as presented in Theorem 4.5, so that

"N .l; c; zX ;A/D

N�1X
kD0

�
2ŒvkC1�

zE
k zZkC1�

bzZkC1kp

C
�
2Œvk �

zE
C ŒF �01C ŒF �

00
1A
�
k zZk �

bzZkkp

C
�
ŒF �02CAŒF �002

�
k zSkC1�

bzSkC1kp

�
C

NCcC�

A
:

where . zZk ; zSk/k2N denotes the sequence of the postjump locations and the inter-
jump times of the time-augmented process . zXt /t�0, and where

ŒF �01 D Ct� Œl �
zE

1 C Œc�
zE
� ;

ŒF �001 D Œt
��Cc ;

ŒF �02 D Cl ;

ŒF �002 D Cc ;

Cvn
� n

�
Ct�Cl CCc

�
;

Œvn�
zE

1 � eCt�C�
�
zK.A; vn�1/C nCt� Œ��1.Ct�Cl CCc/

�
CCt� Œl �

zE
1 ;

Œvn�
zE

2 � eCt�C�
�
Ct�ClC�C 2Cl CC�Cc C .2n� 1/C�.Ct�Cl CCc/

�
CCl ;

Œvn�
zE
� � Œvn�

zE
1 C Œt

�� Œvn�
zE

2 ;

Œvn�
zE
� zK.A; vn�1/;

and for all w 2Lc.E/ we have

zK.A; w/D zE1CE2AC zE3Œw�
zE

1 CE4CwC Œ zQ� Œw�
zE
� ;

where
Œ zQ�D .ŒQ�_ 1/.1C Œt��/;

zE1 D 2Œl �
zE

1 Ct� CCl

�
Œt��C 2C 2

t� Œ��1
�
C Œc�

zE
� .1CCt�C�/

CCc

�
2Œ��1Ct� CC�C 2

t� Œ��1C 2Œt��C�
�
;

E2 D CcCt�C�Œt
��;
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zE3 D .1CCt�C�/Œ zQ�;

E4 D 2C�Œt
��CCt� Œ��1.2CCt�C�/:

5.3. Deterministic time horizon. In the context of applications, it seems relevant
to consider a deterministic time horizon tf . For instance, one may want to estimate
a mean cost over a given period no matter how many jumps occur during this period.
Actually, we will choose a time horizon of the form tf ^TN with N large enough
to ensure the N -th jump will occur after time tf with high probability: in other
words, that Px.TN < tf / be close to zero. For a discussion concerning the choice
of such N , and in particular a theoretical bound of the probability Px.TN < tf /,
we refer to [3]. Simply notice that in practice, this probability may be estimated
through Monte Carlo simulations. We thus intend to approximate the following
quantity for l 2Lc. zE/, c 2Lc.@ zE/ and x 2E:

Ex

� Z TN^tf

0

l.Xt ; t/ dt C
X

Tj�tf

c.XT�
j
;Tj /1fXT�

j
2@Eg

�

DEx

� Z TN

0

l.Xt ; t/1ft�tf gdt C

NX
jD1

c.XT�
j
;Tj /1fXT�

j
2@Eg1fTj�tf g

�
:

The natural approach would consist in killing the process at time tf as Davis sug-
gests in [5, Section 31], and applying our method to the new process. However,
the killed process will not necessarily fulfill our Lipschitz continuity assumptions
because of the discontinuity introduced at time tf .

A second idea would then be to use the previous results, to consider the time-
augmented process, and to define Ql.x; t/D l.x; t/1ft�tf g and Qc.x; t/Dc.x; t/1ft�tf g.
However, a similar problem appears. Indeed, such functions Ql and Qc are not Lips-
chitz continuous and our numerical method requires this assumption. In the rest of
this section, we will see how to overcome this drawback. On the one hand, we prove
that the Lipschitz continuity condition on l may be relaxed so that our numerical
method may be used directly to approximate zJN .Ql ; c/ for any c 2Lc.@ zE/. On the
other hand, in the general case, we will deal with the non-Lipschitz continuity of
Qc by bounding it between two Lipschitz continuous functions.

5.3.1. Direct estimation of the running cost term. Let us explain how the Lips-
chitz continuity condition on the running cost function may be relaxed so that
Theorem 4.5, stating the convergence of our approximation scheme, remains true
when the running cost function is Ql.x; t/ D l.x; t/1ft�tf g with l 2 Lc. zE/ and
the boundary jump cost function is c 2Lc.@ zE/ (although with slightly different
constants in the bound of the convergence rate). Indeed, the running cost function
Ql appears inside an integral that will have a regularizing effect allowing us to derive
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the required Lipschitz property of the functional in spite of the discontinuity of Ql .
Details are provided in Appendix B.

Consequently, our approximation scheme may be used to compute zJN .Ql ; c/.�/

for any � 2 zE. We recall that zJN is defined by (7) and that for all x 2E, one has

zJN .Ql ; c/.x; 0/DEx

�Z TN^tf

0

l.Xt ; t/ dt C

NX
jD1

c.XT�
j
;Tj /1fXT�

j
2@Eg

�
:

We now turn to the indicator function 1fTj�tf g required within the boundary jump
cost term.

5.3.2. Bounds of the boundary jump cost term. We explained how the Lipschitz
continuity condition on l may be relaxed. However, when it comes to c, this con-
dition cannot be avoided and our numerical method cannot be used directly with
Qc.x; t/D c.x; t/1ft�tf g. We overcome this drawback by using Lipschitz continuous
approximations of the indicator function. Indeed, for B > 0, we introduce the real-
valued functions uB and NuB defined on R by

uB.t/D

8<:
1 if t < tf � 1=B,
�B.t�tf / if tf � 1=B � t < tf ,
0 if tf � t ,

NuB.t/D

8<:
1 if t < tf ,
�B.t�tf /C 1 if tf � t < tf C 1=B,
0 if tf C 1=B � t .

The following lemma is straightforward.

Lemma 5.6. For all t � 0, limB!C1 uB.t/ D 1Œ0Itf /.t/ and limB!C1 NuB.t/ D

1Œ0Itf �.t/. Furthermore, for all B > 0, uB and NuB are Lipschitz continuous with
Lipschitz constant B. Moreover,

ˇ̌
uB �1Œ0Itf �

ˇ̌
� 1,

ˇ̌
NuB �1Œ0Itf �

ˇ̌
� 1 and

uB � 1Œ0Itf � � NuB:

Thus, define for l 2Lc. zE/

Ql.x; t/D l.x; t/1ft�tf g (8)

and for c 2Lc.@ zE/ and for all B > 0,

cB.x; t/D c.x; t/uB.t/ and NcB.x; t/D c.x; t/ NuB.t/: (9)

We now check that these functions satisfy our Lipschitz continuity conditions.

Proposition 5.7. The functions cB and NcB belong to Lc.@ zE/ with ŒcB ��; Œ NcB �� �

Œc��CBCc.1_ Œt
��/.
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Proof. We prove the result for cB , the other case being similar. For all � D
.x; t/; � 0 D .x0; t 0/ 2 zE, one hasˇ̌
cB

�
ẑ .�; t�.�//

�
� cB

�
ẑ .� 0; t�.� 0//

�ˇ̌
D
ˇ̌
c
�
ẑ .�; Qt�.�//

�
uB.t C Qt�.�//� c

�
ẑ .� 0; Qt�.� 0//

�
uB.t

0
C Qt�.� 0//

ˇ̌
� Œc��j� � �

0
jCCc

ˇ̌
uB.t C Qt�.�//�uB.t

0
C Qt�.� 0//

ˇ̌
� Œc��j� � �

0
jCCcB

�
jt � t 0jC Œ Qt��jx�x0j

�
�
�
Œc��CCcB.1_ Œt��/

�
j� � � 0j:

Hence the result. �
Therefore, the functions cB and NcB are acceptable boundary jump cost functions

and we may bound the deterministic horizon expectation by

zJN .Ql ; cB/.x; 0/�Ex

�Z TN

0

l.Xt /1ft�tf gdt C

NX
jD1

c.XT�
j
/1fXT�

j
2@Eg1fTj�tf g

�
� zJN .Ql ; NcB/.x; 0/:

The following proposition provides the convergence of the bounds.

Proposition 5.8. For all x 2E, one has

lim
B!C1

zJN .Ql ; cB/.x; 0/

D lim
B!C1

zJN .Ql ; NcB/.x; 0/

DEx

�Z TN^tf

0

l.Xt ; t/ dt C

NX
jD1

c.XT�
j
;Tj /1fXT�

j
2@Eg1fTj�tf g

�
:

Convergence holds for every tf > 0 in the case of zJN .Ql ; NcB/.x; 0/ but only for
almost every tf > 0 with respect to the Lebesgue measure on R in the case of
zJN .Ql ; cB/.x; 0/.

Proof. Let x 2E. We first consider zJN .Ql ; NcB/.x; 0/.ˇ̌̌̌
Ex

� NX
jD1

c.XT�
j
;Tj /1fXT�

j
2@Eg1fTj�tf g�

NX
jD1

NcB.XT�
j
;Tj /1fXT�

j
2@Eg

�ˇ̌̌̌

�Ex

� NX
jD1

ˇ̌
c.XT�

j
;Tj /

ˇ̌ ˇ̌
1fTj�tf g� NuB.Tj /

ˇ̌�

� CcEx

� NX
jD1

1
ftf<Tj�tfC

1
B
g

�
� Cc

NX
jD1

�
'j

�
tf C

1

B

�
�'j .tf /

�
;
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where 'j is the distribution function of Tj . For all j � N , the summand in this
last expression goes to 0 as B!C1, since 'j is right-continuous; this shows the
required convergence.

We now turn to the case of zJN .Ql ; cB/.x; 0/. Similar computations yield

ˇ̌̌̌
Ex

� NX
jD1

c.XT�
j
;Tj /1fXT�

j
2@Eg1fTj�tf g�

NX
jD1

cB.XT�
j
;Tj /1fXT�

j
2@Eg

�ˇ̌̌̌

� Cc

NX
jD1

�
'j .tf /�'j

�
tf �

1

B

��
:

One cannot conclude as in the previous case, since 'j need not be left-continuous.
We therefore assume that tf is not an atom of any of the laws of the random
variables Tj . Then, for all j � N , the summand on the right-hand side tends
to 0 as B!C1, and the result follows. Indeed, the set of the atoms of Tj is at
most countable, so the convergence holds for almost every tf with respect to the
Lebesgue measure on R. �

5.3.3. Bounds in the general case. The previous results show that the deterministic
horizon expectation may be bounded by applying our numerical method with Ql and
successively cB and NcB . In other words, we have shown:

Theorem 5.9. Let l 2 Lc. zE/ and c 2 Lc.@ zE/. Let .V k;B/0�k�N (respectively
.V k;B/0�k�N ) be the sequence of random variables .Vk/0�k�N described in
Section 4 when applying our approximation scheme to the time-augmented pro-
cess . zXt /t�0 with cost functions Ql and cB (respectively NcB) defined by (8) and (9).
The bounds of the approximation error provided by Theorem 4.5 are respectively
denoted by

"N .l; cB; zX ;A;B/ and "N .l; NcB; zX ;A;B/:

One has then

V 0;B � "N .l; cB; zX ;A;B/

�Ex

�Z TN^tf

0

l.Xt ; t/ dt C

NX
jD1

c.XT�
j
;Tj /1fXT�

j
2@Eg1fTj�tf g

�
� V 0;BC "N .l; NcB; zX ;A;B/:

Remark 5.10. In the previous theorem, the quantity "N .l; cB; zX ;A;B/ (and sim-
ilarly "N .l; NcB; zX ;A;B/) is computed with respect to the process . zXt /t�0 instead
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of .Xt /t�0 as presented in Theorem 4.5 so that one has

"N .l; cB; zX ;A;B/

D

N�1X
kD0

�
2ŒvkC1�

zE
k zZkC1�

bzZkC1kp
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�
2Œvk �
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C ŒF �01C ŒF �
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1AC ŒF �0001 B

�
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bzZkkp

C
�
ŒF �02C ŒF �

00
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�
k zSkC1�

bzSkC1kp

�
C

NCcC�

A
:

where . zZk ; zSk/k2N denotes the sequence of the postjump locations and the inter-
jump times of the time-augmented process . zXt /t�0 and with

ŒF �0001 D Cc.1_ Œt
��/;

Œvn�
zE

1 � eCt�C�
�
zK.A;B; vn�1/C nCt� Œ��1.Ct�Cl CCc/

�
CCt� Œl �

zE
1 ;

Œvn�
zE
� zK.A;B; vn�1/;

and for all w 2Lc.E/ we have

zK.A;B; w/DE01CE002BCE2AC zE3Œw�
zE

1 CE4CwC Œ zQ� Œw�
zE
� ;

where
E01 D 2Œl �

zE
1 Ct� CCl

�
Œt��C 2C 2

t� Œ��1
�
C Œc�

zE
� .1CCt�C�/

CCc

�
2Œ��1Ct� CC�C 2

t� Œ��1C 2Œt��C�
�
;

E001 D Cc.1_ Œt
��/.1CCt�C�/

The other constants remain unchanged; see Remark 5.5 for their expressions.

Furthermore, it is important to stress the fact that applying twice our numerical
method does not increase significantly the computing time. Indeed, the computa-
tion of the quantization grids is, by far, the most costly step. These grids, that only
depend on the dynamics of the process, may be stored off-line and used for the
approximation of both bounds.

The choice of B. We now discuss the choice of the parameter B, the discussion is
quite similar to the one concerning the choice of A in Section 4.2. Proposition 5.8
suggests that B should be chosen as large as possible. However, choosing a large
value for B will lead to large Lipschitz constants that will decrease the sharpness
of the bounds "N .l; cB; zX / and "N .l; NcB; zX / for the approximation error provided
by Theorem 4.5. Indeed, it is easy to check that Œvn� grows linearly with B (see
the precise expressions of the Lipschitz constants above). Thus, in order to control
the error proposed by Theorem 4.5, it is necessary that the order of magnitude of
the quantization error k‚n�

y‚nkp be at most 1=B.
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6. Numerical results

6.1. A repair workshop model. We now present a repair workshop model adapted
from [5, Section 21].

In a factory, a machine produces goods which daily value is r.x/, where x 2 Œ0I 1�

represents a parameter of evolution of the machine, a setting chosen by the operator.
For instance, x may be some load or some pace imposed on the machine. This ma-
chine, initially working, may break down with an age-dependent hazard rate �.t/
and is then sent to the workshop for repair. Besides, the factory’s management has
decided that, whenever the machine has worked for a whole year without requiring
repair, it is sent to the workshop for maintenance. The daily cost of maintenance is
q.x/, while the daily cost of a repairs is p.x/, with reasonably p.x/ > q.x/. We
assume that after a repair or maintenance, both lasting a fixed time s, the machine
is totally repaired and is not worn down.

We therefore consider three modes: the machine is working (m D 1), being
repaired (mD 2), or undergoing maintenance (mD 3). The state of the process at
time t will be denoted by Xt D .mt ; �t ; t/, where �t is the time since the last change
of mode. (This component is required since the hazard rate � is age-dependent.)
The state space is ED

�
f1g�Œ0I 365��RC

�
[
�
f2g�Œ0I s��RC

�
[
�
f3g�Œ0I s��RC

�
.

In each mode, the flow is ˆm

�
.�; t/;u

�
D .�Cu; t Cu/. Concerning the transition

kernel, one sees from the previous discussion that, for instance, from the point
.1; �; t/, the process can jump to the point .2; 0; t/ if � < 365 and the jump is
forced to .3; 0; t/ if � D 365. Figure 1 presents the state space and an example of
trajectory of the process.

z4

z3

z1
z0

z2

m=1 365 7 7m=2 m=3

Figure 1. An example trajectory. The process starts from the point Z0 in mode mD 1

(machine in service). The machine may be sent to the workshop for repairs (mD 2) or
for maintenance (mD 3/.
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Our aim is to find the value of the setting x that maximizes the expected total
benefits B.x/, that is, the discounted value (for an interest rate �) of production
minus maintenance and reparation costs over a period tf D 5 years:

B� D sup
x2Œ0I1�

B.x/;

where

B.x/DE.1;0;0/

�Z tf

0

e��t
�
r.x/1fmtD1g�p.x/1fmtD2g� q.x/1fmtD3g

�
dt

�
:

We will use the following values r.x/D x, p.x/D 100x2, q.x/D 5, sD 7 days,
�D 0:03

365
and � represents a Weibull distribution with parameters ˛D 2 et ˇD 600.

Our assumptions clearly hold so that we may run our numerical method. We
first need to find N 2 N such that P.1;0;0/.TN < tf / be small. Monte Carlo
simulations lead to the value N D 18. For a fixed x 2 Œ0I 1�, we will therefore
compute zJN .Ql ; 0/.1; 0; 0/ where Ql.m; �; t/ D e��t

�
r.x/1fmD1g � p.x/1fmD2g �

q.x/1fmD3g

�
1ft�tf g. Finally, notice that we could have chosen r , p and q slightly

more generally by allowing them to be time-dependent.
It is important to stress the fact that, once the Markov chain associated to the

process is quantized, we will be able to compute the approximation of B.x/ almost
instantly for any x 2 Œ0I 1� because the same grids are used for every computation.
Thanks to this flexibility, we are able to draw the function x ! B.x/ and, thus,
to solve the above optimization problem very easily. This is a very important
advantage of our method. Indeed, if we computed B.x/ through standard methods
such as Monte Carlo simulations, we would have to repeat the whole algorithm
again and again for each value of x and solving the optimization problem would
be intractable.

The following figure represents the approximation of the function B computed
on a constant step grid of Œ0I 1� with step 10�2. This leads to the solution of the
earlier optimization problem. Indeed, we obtain B� D B.x�/ D 537:84 where
x� D 0:78 is the value of the setting x that maximizes the benefits of the factory.

Now let x D 0:78. The following table presents the values of yVN , which are the
approximations of B.x/, for different number of points in the quantization grids.
A reference value BMonte Carlo D 537:69 is obtained via the Monte Carlo method
(108 simulations).

Points in the quantization grids yVN relative error to 537:69

20 points 542.14 0.83%
50 points 539.57 0.35%
100 points 538.24 0.10%
500 points 537.84 0.03%



NUMERICAL EXPECTATIONS OF PIECEWISE DETERMINISTIC MARKOV PROCESSES 91

Bmax

xmax
−200

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−100

0

100

200

300

400

500

600

Figure 2. The function B drawn with 500 points in the quantization grids.

From a computational time point of view, we have already explained that the
computation of large quantization grids is, by far, the most costly step since it may
take up to several hours whereas the approximation of the expectation that follows
is then almost instantaneous. However, we may notice, in the above table, that
grids containing only 50 points yield a quite accurate result with merely 0.35%
error. Such grids only require a few minutes to be designed.

Remark 6.1. We already noticed that the same grids may serve several purposes.
For instance, we may also have been interested in the computation of the mean
time spent by the machine in the workshop by taking l.m; �; t/D 1fm2f2I3gg.

6.2. A corrosion model. We consider here a corrosion model for an aluminum
metallic structure. This example was provided by Astrium. It concerns a small
structure within a strategic ballistic missile. The missile is stored successively in
three different environments which are more or less corrosive. It is made to have
potentially large storage durations. The requirement for security is very strong.
The mechanical stress exerted on the structure depends in part on its thickness. A
loss of thickness will cause an overconstraint and therefore increase the risk of
rupture. It is thus crucial to study the evolution of the thickness of the structure
over time.

Let us describe more precisely the usage profile of the missile. It is stored
successively in three different environments: the workshop (mD 1), the submarine
in operation (mD 2) and the submarine in dry-dock (mD 3). This is because the
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structure must be equipped and used in a given order. Then it goes back to the work-
shop and so on. The missile stays in each environment during a random duration
with exponential distribution. Its parameter �m depends on the environment. The
degradation law for the thickness loss then depends on the environment through
two parameters, a deterministic transition period �m and a random corrosion rate
� uniformly distributed within a given range. Typically, the workshop and dry-
dock are the most corrosive environments but the time spent in operation is more
important. The randomness of the corrosion rate accounts for small variations and
uncertainties in the corrosiveness of each environment.

In each environment m 2 f1I 2I 3g, the thickness loss dm evolves in time as

dm.�; s/D �
�
sC �m.e

�s=.2�m/� 1/
�
: (10)

Here are the numerical values of the parameters of the corrosion model:

environment 1 environment 2 environment 3

�m (h�1) .17520/�1 .131400/�1 .8760/�1

�m (h) 30000 200000 40000
� (mm/h) Œ10�6; 10�5� Œ10�7; 10�6� Œ10�6; 10�5�

Initially, the structure is in environment m D 1 and the thickness loss is null.
One draws the corrosion rate �0 uniformly distributed in the interval Œ10�6; 10�5�

and the time of the first change of environment T1 exponentially distributed with
parameter �1 D .17520/�1 hours�1. The corrosion starts according to (10) so that,
for all 0 � t � T1, the loss of thickness is d1.�0; t/. The structure then moves to
environment 2 and the process restarts similarly: a new corrosion rate �T1

is drawn
according to an uniform law on Œ10�7; 10�6�, the time of the second jump T2 is
drawn so that T2�T1 is exponentially distributed with parameter �2D .131400/�1

hours�1 and for T1 � t � T2, the loss of thickness is d1.�0;T1/Cd2.�T1
; t �T1/

and so on.
At each change of environment, a new corrosion rate � is drawn according to a

uniform law on the corresponding interval. The thickness loss, however, evolves
continuously.

We are interested in computing the mean loss of thickness in environment 2 until
a given time tf D 18 years.

Modeling by PDMP.

The state space E. The loss of thickness will be modeled by a PDMP whose modes
are the different environments. Let then M D f1; 2; 3g. The PDMP .Xt /t�0 will
contain the following components: the mode m 2M , the loss of thickness d , the
time since the last jump s (this is to ensure that the Markov property is satisfied),
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the corrosion rate � and the time t (since we consider the time-augmented process).
Clearly, one has always s � t , so we can reasonably consider the state space

E D
˚
.m; d; s; �; t/ 2M �RC �RC � Œ10�7

I 10�5��RC such that s � t
	
:

The flow ˆ. The flow is given for all u� 0 by

ˆ.

0BBBB@
m

d

s

�

t

1CCCCA ;u/D
0BBBB@

m

d C dm.�; sCu/� dm.�; s/

sCu

�

t Cu

1CCCCA :

The transition kernel Q. Let us now study the jumps of this process. When the
process jumps from a point x D .m; d; s; �; t/ 2E, m becomes mC 1 modulo 3
(denoted mC 1Œ3�/, d and t remain unchanged, s becomes 0. Only � is randomly
drawn, according to a uniform law on an interval Œ�minI �max� that depends on the
new mode. One has then for w 2 B.E/, x D .m; d; s; �; t/ 2E, and u� 0,

Qw
�
ˆ.

0BBBB@
m

d

s

�

t

1CCCCA ;u/�DQw

0BBBB@
cm

dCdm.�; sCu/�dm.�; s/

sCu

�

tCu

1CCCCA

D
1

�max� �min

Z �max

�min

w

0BBBB@
mC 1Œ3�

d C dm.�; sCu/� dm.�; s/

0

Q�

t Cu

1CCCCA d Q�: (11)

The cost function l . The function l 2 B.E/ will be the cost function to compute
the mean loss of thickness in mode 2. It is defined as follows: for all x D

.m; d; s; �; t/ 2E and u� 0,

l.ˆ.x;u//D �
�
1� 1

2
e�.sCu/=.2�m/

�
1fmD2g D

d

du

�
dm.�; sCu/

�
1fmD2g: (12)

One then defines Ql.ˆ.x;u//D l.ˆ.x;u//1ftCu�tf g, so that

L.x;u/D

Z u

0

Ql
�
ˆ.x;u0/

�
du0 D

Z u^.tf�t/C

0

l
�
ˆ.x;u0/

�
du0

D
�
dm.�; sCu^ .tf � t/C/� dm.�; s/

�
1fmD2gI
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that is indeed the thickness lost in mode 2 from the point x D .m; d; s; �; t/ during
a time u^ .tf � t/C.

The assumptions. Assumptions 2.1 and 2.9 are clearly satisfied. It is easy to check,
from (12), that l 2Lc.E/, so Assumption 3.1 holds.

We now turn to Assumption 2.13 and we will see that, although it does not hold
for any function w 2 Lvc .E/, it holds for a sufficiently big subclass of functions.
We first need to make a remark. Recall that for all x D .m; d; s; �; t/ 2 E and
for all k 2 f0; : : : ;N g, one has vN�k.x/DExbigl Œ

R Tk

0 l
�
ˆ.x;u/

�
1ftCu�tf gdu

�
.

Therefore, for all k 2 f0; : : : ;N g the function vk as well as the function Ql satisfy

x D .m; d; s; �; t/ 2E and t � tf D) w.x/D 0: (13)

The next step consists in proving that Assumption 2.13, although it is not sat-
isfied for any function w 2 Lvc .E/, holds for any function w 2 Lvc .E/ that also
satisfies condition (13). This is done in Lemma 6.2 and it is sufficient because
in the proof of the theorem that ensures the convergence of our approximation
scheme, Assumption 2.13 is only used with the functions .vk/k2f0;:::;N g that do
satisfy condition (13).

Lemma 6.2. There exists ŒQ� 2 RC such that for all v � 0 and w 2 Lvc .E/ that
satisfies condition (13), one has for all x, x0 2E and 0� u� v,ˇ̌

Qw
�
ˆ.x;u/

�
�Qw

�
ˆ.x0;u/

�ˇ̌
� ŒQ� Œw�

E;v
1
jx�x0j:

Proof. Let xD .m; d; s; �; t/ and x0D .m0; d 0; s0; �0; t 0/2E with for instance t � t 0.
First we may choose mDm0; otherwise, jx � x0j D C1 and there is nothing to
prove. Now, we are facing three different cases:

� If tf � tCu� t 0Cu, then one has Qw
�
ˆ.x;u/

�
DQw

�
ˆ.x0;u/

�
D 0 because

w satisfies condition (13) and there is nothing to prove.

� If t Cu� tf � t 0Cu, notice that

Qw
�
ˆ.x0;u/

�
DQw

�
ˆ..m0; d 0; s0; �0; tf /;u/

�
D 0

(this stems from condition (13)), so that we are reduced to the following case.

� We assume from now on that t C u � t 0 C u � tf . We now intend to boundˇ̌
Qw

�
ˆ.x;u/

�
�Qw

�
ˆ.x0;u/

�ˇ̌
. It is clear from (11) that we only need to prove

that the function .�; s/! dm.�; s/, defined by (10), is Lipschitz continuous with
respect to both its variables on the set Œ10�7I 10�5�� Œ0I tf �. Indeed, we have s � t

and s0 � t 0 so that s; s0; sCu; s0Cu� tf . Standard computations yield

jdm.�; s/� dm.�
0; s0/j � sj�� �0jC 3

2
�0js� s0j � tf j�� �

0jC
3
2
10�5js� s0j:

Hence the result. �



NUMERICAL EXPECTATIONS OF PIECEWISE DETERMINISTIC MARKOV PROCESSES 95

Assumption 2.10 is not satisfied because in our corrosion model, one has t�.x/D

C1 for all x 2 E. Besides, we may notice that the previous proof would have
been more straightforward if t� had been bounded. Indeed in that case, we would
have had s; s0; sCu; s0Cu�Ct� and the introduction of condition (13) would have
been unnecessary. Nevertheless, we have been able to overcome the drawback of
having t� unbounded by noticing that somehow the deterministic time horizon tf
plays the part of the missing Ct� . This is the meaning of condition (13): roughly
speaking, we do not consider what happens beyond tf .

More generally, we will now see that in our deterministic time horizon problem,
the boundedness of t� may be dropped and our results remain true replacing Ct�

by tf . This is clear in the case of Proposition A.2 because the function Ql satisfies
the condition (13). Proposition A.7 remains also true replacing Ct� by tf . Indeed,
on the one hand, it is clear that L.x;u/ � tf Cl . On the other hand, when com-
puting jvn.ˆ.x;u//� vn.ˆ.x

0;u0//j, we are facing three cases, as in the proof of
Lemma 6.2:

� If tf � u� u0, one has

vn.ˆ.x;u//D vn.ˆ.x
0;u0//D 0;

by condition (13).

� If u� tf � u0, one hasˇ̌
vn.ˆ.x;u//� vn.ˆ.x

0;u0//
ˇ̌
D
ˇ̌
vn.ˆ.x;u//� vn.ˆ.x

0; tf //
ˇ̌
;

since vn.ˆ.x
0;u0// D vn.ˆ.x

0; tf // D 0 (condition (13) once again), so that we
are reduced to the next case.

� If u � u0 � tf , the computations remain unchanged and tf replaces Ct� as a
bound for u and u0.

Numerical results. The table below presents the values of the loss of thickness in
environment 2 obtained through our approximation scheme with quantization grids
of varying fineness, as well as the relative deviation with respect to the Monte Carlo
value of 0.036755, obtained with 108 simulations.

Quantization grids yV0 error Quantization grids yV0 error
20 points 0.038386 4.43% 2000 points 0.037041 0.77%
50 points 0.037804 2.85% 4000 points 0.037007 0.69%

100 points 0.037525 2.09% 6000 points 0.036973 0.57%
200 points 0.037421 1.81% 8000 points 0.036944 0.49%
500 points 0.037264 1.38% 10000 points 0.036911 0.40%

1000 points 0.037160 1.10% 12000 points 0.036897 0.36%
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Figure 3. Log-log plot of error when approximating the loss of thickness in environ-
ment 2 versus number of points in the quantization grids. The empirical convergence rate,
estimated through a regression model, is �0:35.

Figure 3 presents respectively the empirical convergence rate. The convergence
rate, estimated through a regression model is �0:35. This is roughly the same
order of magnitude as the rate of convergence of the optimal quantizer (see for
instance [9]) since here the dimension is 3 (indeed, m is deterministic and s D 0

immediately after a jump so that we only quantize the variables �, d and t ).
Finally, we show here the CPU time to compute the expectations from the quan-

tization grids (computations are run with Matlab R2010b on a MacBook Pro 2.66
GHz i7 processor). The CPU time for 108 Monte Carlo simulations was approxi-
mately 16 000 s. It can be seen that, once the quantization grids are obtained, our
approximation scheme performs very fast.

Quantization grids CPU time (s) Quantization grids CPU time (s)
20 points 0.0059 2000 points 1.5
50 points 0.0085 4000 points 5.6

100 points 0.014 6000 points 13
200 points 0.034 8000 points 24
500 points 0.12 10000 points 35

1000 points 0.37 12000 points 54
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7. Conclusion

We have presented an efficient and easy to implement numerical method to approxi-
mate expectations of functionals of piecewise deterministic Markov processes. We
proved the convergence of our algorithm with bounds for the rate of convergence.

Although our method concerns time invariant functionals, we proved that we
are able to tackle time-dependent problems such as Lipschitz continuous time-
dependent functionals or deterministic time horizon expectations. Indeed, we proved
that, thanks to the introduction of the time-augmented process, time-dependent
problems may be seen, paradoxically, as special cases of the time invariant situa-
tion.

Our method is easy to implement because it merely requires to be able to simu-
late the process. Furthermore, although the computation of the quantization grids
may be quite time-consuming, it may be performed preliminarily because the grids
only depend on the dynamics of the process and not on the cost functions l and c.
Therefore, they may be stored off-line and serve several purposes. As illustrated by
the examples presented in Section 6, storing the grids provides to our approxima-
tion scheme efficiency and flexibility. Indeed, the computation of the expectation
can be performed very quickly once the grids are available. Thus, if one decides for
instance to modify the functional, the same grids may be used so that the new result
is obtained very quickly. This flexibility is an important advantage over standard
Monte Carlo simulations.

Appendix A. Lipschitz continuity of F , G and vn

The first lemma and the first proposition of this section present mainly the Lipschitz
continuity of the functions ıA and F . They are stated without proof because they
are quite straightforward.

Lemma A.1. The function ıA is Lipschitz continuous with respect to both its vari-
ables; i.e., for all x, y 2E and u, t 2 R, one has

jıA.x; t/� ıA.y; t/j �AŒt��jx�yj;

jıA.x; t/� ıA.x;u/j �Ajt �uj;

Moreover, one has for all x 2E and t; s � 0 such that t C s � t�.x/,

ıA.ˆ.x; s/; t/D ıA.x; t C s/:

Proposition A.2. The function F introduced in Definition 3.3, is Lipschitz continu-
ous with respect to both its variables. For all x, y 2E and u; v 2 Œ0I t�.x/^ t�.y/�,
one has

jF.x;u/�F.y; v/j � ŒF �1jx�yjC ŒF �2ju� vj;
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with

ŒF �1 D Ct� Œl �1C Œc��CAŒt��Cc ; ŒF �2 D Cl CACc :

The next two lemmas are adapted from [6], the second one being a special case
of Lemma A.1 there. Thus, they are stated without proof.

Lemma A.3. For h 2Lc.E/, .x;y/ 2E2, and t � t�.x/^ t�.y/ˇ̌̌̌Z t�.x/

t

h.ˆ.x; s//e�ƒ.x;s/ds�

Z t�.y/

t

h.ˆ.y; s//e�ƒ.y;s/ds

ˇ̌̌̌
�
�
Ct� Œh�1C .C

2
t� Œ��1C Œt

��/Ch

�
jx�yj:

Lemma A.4. For h 2Lc.@E/ [Lc.E/ and x;y 2E, one hasˇ̌
e�ƒ.x;t

�.x//h
�
ˆ.x; t�.x//

�
� e�ƒ.y;t

�.y//h
�
ˆ.y; t�.y//

�ˇ̌
�
�
Œh��CCh

�
Ct� Œ��1C Œt

��C�
��
jx�yj:

The following notation will be convenient later on. For w 2Lc.E/, x 2E and
t 2 Œ0I t�.x/�, we define

Gtw.x/DEx

��
F.x;S1/Cw.Z1/

�
1fS1�tg

�
DEx

��
L.x;S1/CC.x;S1/Cw.Z1/

�
1fS1�tg

�
:

In particular, G0 DG. Since we know the law of .Z1;S1/, it can be shown that

Gtw.x/D ‡1.x/C‡2.x/C‡3.x/C‡4.x/C‡5.x/; (14)

with

‡1.x/D e�ƒ.x;t/
Z t

0

l ıˆ.x; s/ ds;

‡2.x/D

Z t�.x/

t

l ıˆ.x; s/e�ƒ.x;s/ds:

‡3.x/D c ıˆ.x; t�.x//

Z t�.x/

t

ıA.x; s/� ıˆ.x; s/e�ƒ.x;s/ds;

‡4.x/D

Z t�.x/

t

�
�Qw

�
ıˆ.x; s/e�ƒ.x;s/ds;

‡5.x/D e�ƒ.x;t
�.x//

�
QwC c

�
ıˆ.x; t�.x//:

Proposition A.5. For w 2Lc.E/, .x;y/ 2E2 and t 2 Œ0I t�.x/^ t�.y/�, one hasˇ̌
Gtw.x/�Gtw.y/

ˇ̌
�K.A; w/jx�yj;
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where K.A; w/DE1CE2ACE3Œw�1CE4CwC ŒQ� Œw��, with

E1 D 2Œl �1Ct� CCl

�
Œt��C 2C 2

t� Œ��1
�
C Œc��.1CCt�C�/

CCc

�
2Œ��1Ct� CC�C 2

t� Œ��1C 2Œt��C�
�
;

E2 D CcCt�C�Œt
��;

E3 D .1CCt�C�/ŒQ�;

E4 D 2C�Œt
��CCt� Œ��1.2CCt�C�/:

Proof. Let w 2Lc.E/, .x;y/ 2E2 and t 2 Œ0I t�.x/^ t�.y/�. In view of (14), we
naturally split jGtw.x/�Gyw.y/j into the sum of five differences.

The first one, j‡1.x/�‡1.y/j, is bounded by

j‡1.x/�‡1.y/j � Ct�Cl

ˇ̌
e�ƒ.x;t/� e�ƒ.y;t/

ˇ̌
C

Z t

0

�
l ıˆ.x; s/� l ıˆ.y; s/

�
ds

�
�
C 2

t�Cl Œ��1CCt� Œl �1
�
jx�yj:

The differences j‡2.x/�‡2.y/j and j‡4.x/�‡4.y/j can be bounded thanks
to Lemma A.3, with successively hD l and hD �Qw. Notice that C�Qw � C�Cw
and Œ�Qw�1 � C�ŒQ� Œw�1CCw Œ��1.

For the difference of the ‡5 terms, we use Lemma A.4 with hDQwCc. Notice
that CQwCc � CwCCc and that ŒQwC c�� � ŒQ�

�
Œw��C Œw�1

�
C Œc��.

Finally, to bound j‡3.x/�‡3.y/j, we assume without loss of generality that
t�.x/� t�.y/ and we have

j‡3.x/�‡3.y/j

� Cc

Z t�.x/

t

ˇ̌
ıA.x; s/� ıˆ.x; s/e�ƒ.x;s/� ıA.y; s/� ıˆ.y; s/e�ƒ.y;s/

ˇ̌
ds

CCc

Z t�.y/

t�.x/

ˇ̌
ıA.y; s/� ıˆ.y; s/e�ƒ.y;s/

ˇ̌
dsC Œc��Ct�C�jx�yj

� Cc

Z t�.x/

t

�
C�
ˇ̌
ıA.x; s/�ıA.y; s/

ˇ̌
C Œ��1jx�yjCC�

ˇ̌
e�ƒ.x;s/� e�ƒ.y;s/

ˇ̌�
ds

CCc Œt
��C�jx�yjC Œc��Ct�C�jx�yj

�
�
CcCt�

�
C�AŒt��C Œ��1CC�Ct� Œ��1

�
CCc Œt

��C�C Œc��Ct�C�
�
jx�yj:

The result follows. �

The next lemma is stated without proof, as it is very close to [5, Lemma 51.7].

Lemma A.6. For all x 2E and t 2 Œ0I t�.x/�, one has

vn.ˆ.x; t//D eƒ.x;t/Gtvn�1.x/�

Z t

0

l ıˆ.x; s/ ds:
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Proposition A.7. For all n 2 f0; 1; : : : ;N g, one has vn 2Lc.E/ and

Cvn
� n

�
Ct�Cl CCc

�
;

Œvn�1 � eCt�C�
�
K.A; vn�1/C nCt� Œ��1.Ct�Cl CCc/

�
CCt� Œl �1;

Œvn�2 � eCt�C�
�
Ct�ClC�C 2Cl CC�Cc C .2n� 1/C�.Ct�Cl CCc/

�
CCl ;

Œvn�� � Œvn�1C Œt
�� Œvn�2;

Œvn� �K.A; vn�1/;

Proof. Recall that for x 2E, one has from Definition 3.3

vn.x/DGvn�1.x/DEx ŒL.x;S1/�CEx ŒC.x;S1/�CEx Œvn�1.Z1/�:

Thus, Cvn
� Ct�Cl CCc CCvn�1

� n
�
ct�Cl CCc

�
by induction.

Let us now turn to Œvn�1. Lemma A.6 yields

jvn.ˆ.x; t//� vn.ˆ.y; t//j

� jeƒ.x;t/Gtvn�1.x/�eƒ.y;t/Gtvn�1.y/jC

Z t

0

ˇ̌
l ıˆ.x; s/� l ıˆ.y; s/

ˇ̌
ds

� eƒ.x;t/
ˇ̌
Gtvn�1.x/�Gtvn�1.y/

ˇ̌
C
ˇ̌
Gtvn�1.y/

ˇ̌ ˇ̌
eƒ.x;t/� eƒ.y;t/

ˇ̌
CCt� Œl �1jx�yj:

The result follows using Proposition A.5 and noticing that

ƒ.x; t/� Ct�C�;

jGtvn�1.y/j � Ct�Cl CCc CCvn�1
� n.Ct�Cl CCc/;

jeƒ.x;t/� eƒ.y;t/j � eCt�C�Ct� Œ��1jx�yj:

We now turn to Œvn�2. For x 2E and s, t 2 Œ0; t�.x/� with s � t , one has

ˇ̌
vn.ˆ.x; t//� vn.ˆ.x; s//

ˇ̌
� eƒ.x;t/

ˇ̌
Gtvn�1.x/�Gsvn�1.x/

ˇ̌
C
ˇ̌
Gsvn�1.x/

ˇ̌ ˇ̌
eƒ.x;t/� eƒ.x;s/

ˇ̌
CCl jt � sj:
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Moreover, from (14), one hasˇ̌
Gtvn�1.x/�Gsvn�1.x/

ˇ̌
�Ex

�
jF.x;S1/C vn�1.Z1/j 1fs�S1<tg

�
�

ˇ̌̌̌
e�ƒ.x;t/

Z t

0

l.ˆ.x;u// du� e�ƒ.x;s/
Z s

0

l.ˆ.x;u// du

ˇ̌̌̌
C

Z t

s

ˇ̌
l.ˆ.x;u//e�ƒ.x;u/

ˇ̌
du

C
ˇ̌
c ıˆ.x; t�.x//

ˇ̌ Z t

s

ˇ̌
ıA.x;u/� ıˆ.x;u/e�ƒ.x;u/

ˇ̌
du

C

Z t

s

ˇ̌
.�Qvn�1/ ıˆ.x;u/e

�ƒ.x;u/
ˇ̌
du

�
�
Ct�Cl

ˇ̌
e�ƒ.x;t/� e�ƒ.x;s/

ˇ̌
CCl jt � sj

�
C .Cl jt � sj/

C .CcC�jt � sj/C .C�Cvn�1
jt � sj/

and

jeƒ.x;t/� eƒ.x;s/j � eCt�C�C�jt � sj:

Finally, the bound for Œvn� is a direct consequence from Proposition A.5. �

Appendix B. Relaxed assumption on the running cost function

In this section, we consider the approximation applied to the time-augmented
process so that the local characteristics are ẑ , Q� and zQ defined in Section 5.1.
Moreover, we consider a function l 2Lc. zE/ and we define Ql 2 B. zE/ by

for all � D .x; t/ 2 zE, Ql.�/D l.x; t/1ft�tf g:

We intend to prove that the convergence of our approximation scheme, stated by
Theorem 4.5, remains true if we choose Ql as the running cost function even though
it does not fulfill the required Lipschitz conditions, i.e., Ql 62 Lc. zE/. Indeed, the
Lipschitz continuity of l is used four times in the proof of the theorem, once in
Proposition A.2, twice in Proposition A.5 (when bounding the difference of the ‡1

terms and the one of the ‡2 ones) and once in Proposition A.7 (when bounding
Œvn�1). In each case, the Lipschitz continuity of the running cost function l is used
to bound a term of the formZ s0

s

ˇ̌
Ql ı ẑ .�;u/� Ql ı ẑ .� 0;u/

ˇ̌
du (15)
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for �, � 0 2 zE and s, s0 2 Œ0I Qt�.�/^ Qt�.� 0/�, or of the formZ Qt�.�/^Qt�.�0/
s

ˇ̌
Ql ı ẑ .�;u/e�

zƒ.�;u/
� Ql ı ẑ .� 0;u/e�

zƒ.�0;u/
ˇ̌
du (16)

for �, � 0 2 zE and s 2 Œ0I Qt�.�/ ^ Qt�.� 0/� and where we use the natural notation
zƒ.�;u/D

R u
0
Q�. ẑ .�; v// dv. Concerning this second form, Equation (16), notice

thatZ Qt�.�/^Qt�.�0/
s

ˇ̌
Ql ı ẑ .�;u/e�

zƒ.�;u/
� Ql ı ẑ .� 0;u/e�

zƒ.�0;u/
ˇ̌
du

�

Z Qt�.�/^Qt�.�0/
s

ˇ̌
Ql ı ẑ .�;u/� Ql ı ẑ .� 0;u/

ˇ̌
du

CCl

Z Qt�.�/^Qt�.�0/
s

ˇ̌
e�
zƒ.�;u/

� e�
zƒ.�0;u/

ˇ̌
du

�

Z Qt�.�/^Qt�.�0/
s

ˇ̌
Ql ı ẑ .�;u/� Ql ı ẑ .� 0;u/

ˇ̌
duCClC

2
t� Œ��1j� � �

0
j;

so that, to ensure that Theorem 4.5 remains true with Ql as the running cost function,
it is sufficient to be able to bound terms of the form (15). This is done in the
following lemma.

Lemma B.1. For � D .x; t/; � 0 D .x0; t 0/ 2 zE and s 2 Œ0I Qt�.�/^ Qt�.� 0/�, one hasZ s

0

ˇ̌̌
Ql ı ẑ .�;u/� Ql ı ẑ .� 0;u/

ˇ̌̌
du� .Ct� Œl �1CCl/j� � �

0
j:

Proof. Let � D .x; t/; � 0 D .x0; t 0/ 2 zE and s 2 Œ0I Qt�.�/^ Qt�.� 0/�. One hasZ s

0

ˇ̌
Ql ı ẑ .�;u/� Ql ı ẑ .� 0;u/

ˇ̌
du

�

Z s

0

ˇ̌
l ı ẑ .�;u/1ftCu�tf g� l ı ẑ .� 0;u/1ft 0Cu�tf g

ˇ̌
du

�

Z s

0

ˇ̌
l ı ẑ .�;u/� l ı ẑ .� 0;u/

ˇ̌
duCCl

Z s

0

ˇ̌
1ftCu�tf g�1ft 0Cu�tf g

ˇ̌
du

The left-hand side term is bounded by Ct� Œl �1j� � �
0j since l 2 Lc. zE/. For the

right-hand side term, assume without loss of generality that t � t 0, one hasˇ̌
1ftCu�tf g� 1ft 0Cu�tf g

ˇ̌
D
ˇ̌
1ft�tf�ug� 1ft 0�tf�ug

ˇ̌
D 1ft�tf�u<t 0�tf g;

so that the right-hand side term is bounded by Cl jt � t 0j � Cl j� � �
0j. The result

follows. �
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Theorem 4.5 remains true if we choose Ql as the running cost function. One only
needs to slightly modify the Lipschitz constants given in propositions A.2, A.5 and
A.7. The terms Ct� Œl �1 have to be replaced by Ct� Œl �1CCl .

Appendix C. Proof of Theorem 4.5

The Lipschitz continuity of the functions vk is proved by Proposition A.7. Now
let A> 0 and notice that

jJN .l; c/.x/� yV0j � jJN .l; c/.x/�V0jC jV0�
yV0j:

Proposition 3.2 says that jJN .l; c/.x/�V0j �NCcC�=A since V0 D J A
N
.l; c/.x/.

We now have to bound jV0�
yV0j.

Some of the arguments of the proof are similar to the ones used in Theorem 5.1
from [6], thus we will not develop the details of the proof. Recall that kVN �

yVN kp D 0 and let k 2 f0; : : : ;N � 1g. In order to bound the approximation error,
let us split it into three terms kVk �

yVkkp �„1C„2C„3, where

„1 D kvk.Zk/� vk. yZk/kp;

„2 D kGvkC1. yZk/� yGkC1vkC1. yZk/kp;

„3 D k
yGkC1vkC1. yZk/� yGkC1 OvkC1. yZk/kp:

The theorem is then a direct consequence from the three following lemmas, stated
without proof, that provide bounds for each of these three terms.

Lemma C.1. The first term, „1, is bounded by

kvk.Zk/� vk. yZk/kp � Œvk �kZk �
yZkkp:

Lemma C.2. The second term, „2, is bounded byGvkC1. yZk/� yGkC1vkC1. yZk/


p

� ŒvkC1�kZkC1�
yZkC1kpC

�
Œvk �C ŒF �1

�
kZk�

yZkkpC ŒF �2kSkC1�
ySkC1kp:

Lemma C.3. The third term, „3, is bounded by yGkC1vkC1. yZk/� yGkC1 OvkC1. yZk/


p

� ŒvkC1�kZkC1�
yZkC1kpCkVkC1�

yVkC1kp:
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TOWARD AN EFFICIENT PARALLEL IN TIME METHOD FOR
PARTIAL DIFFERENTIAL EQUATIONS

MATTHEW EMMETT AND MICHAEL L. MINION

A new method for the parallelization of numerical methods for partial differ-
ential equations (PDEs) in the temporal direction is presented. The method is
iterative with each iteration consisting of deferred correction sweeps performed
alternately on fine and coarse space-time discretizations. The coarse grid prob-
lems are formulated using a space-time analog of the full approximation scheme
popular in multigrid methods for nonlinear equations. The current approach is
intended to provide an additional avenue for parallelization for PDE simulations
that are already saturated in the spatial dimensions. Numerical results and tim-
ings on PDEs in one, two, and three space dimensions demonstrate the potential
for the approach to provide efficient parallelization in the temporal direction.

1. Introduction

The last decade has seen an increase in research into the parallelization of numerical
methods for ordinary and partial differential equations in the temporal direction be-
ginning with the introduction of the parareal algorithm in 2001 [20] and the related
PITA scheme in 2003 [11]. Both parareal and PITA are iterative methods where,
in each iteration, each processor (corresponding to distinct time steps) uses both an
accurate (or fine) method and a less computationally expensive (or coarse) method
to propagate an improved solution through the time domain. Parallel speedup can
be achieved because the fine solutions can be computed in parallel.

The main drawback of the parareal algorithm is that it has low parallel efficiency.
Specifically, the parallel efficiency is formally bounded above by 1/K , where K

Emmett was supported by the Director, DOE Office of Science, Office of Advanced Scientific Com-
puting Research, Office of Mathematics, Information, and Computational Sciences, Applied Math-
ematical Sciences Program, under contract DE-SC0004011. Minion’s work was supported by the
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Applied Mathematical Sciences Program, under contract DE-SC0004011 and by the National Sci-
ence Foundation under contract DMS-0854961.
MSC2010: 65M99.
Keywords: parallel computing, time parallel, ordinary differential equations, partial differential

equations, deferred corrections, parareal.
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is the number of iterations needed to converge to the desired accuracy. Since K
must be at least 2 for any meaningful stopping criteria, the efficiency of parareal
is always less than 1

2 , and in practice can be much worse, particularly if many
processors are used, or high temporal accuracy is desired.

For the parallel solution of partial differential equations (PDEs), parallelization
in the spatial dimensions is well established, and hence temporal parallelization is
only attractive if the temporal parallel efficiency exceeds that of (additional) spatial
parallelization. In [21; 24] a method for the parallelization of ordinary differential
equations (ODEs) is presented, similar in structure to the parareal method but uti-
lizing a defect or deferred correction strategy in place of standard methods for
ODEs as in parareal. Both the fine and coarse propagators in parareal are cast as
spectral deferred correction (SDC) [10] sweeps using different temporal resolutions
to improve the solution on each time step. Hence the method described in [21; 24]
can be heuristically thought of in two different ways:

(1) A modification of the parareal algorithm that replaces direct solves in each
iteration with a deferred correction procedure applied to solutions generated
at previous iterations to reduce the cost of each parareal iteration.

(2) A time parallel version of the SDC method that incorporates a coarse and fine
temporal discretization to achieve better parallel efficiency.

In this paper, the ideas introduced in [21; 24] are extended to the temporal
parallelization of partial differential equations (PDEs). The key difference between
the ODE method and the PDE method is that coarsening can be done in both space
and time in the coarse discretization. This observation has been made previously
for both the parareal and hybrid parareal/SDC methods [3; 2; 12; 13; 24], although
details of how best to translate information from the coarse and fine discretizations
have not been extensively explored. Furthermore, for the parareal method, reducing
the cost of the coarse propagator does not alter the fact that the parallel efficiency
is bounded by 1/K . Here we present a procedure for using coarse grid information
based on the full approximation scheme (FAS) technique developed for the solution
of nonlinear equations by multigrid methods [8] that increases the accuracy of the
coarse grid SDC sweeps. Hence the method introduced here can be considered a
parallel full approximation scheme in space and time (or PFASST for short).

The numerical techniques used in the construction of the PFASST method are
reviewed in Section 2, and the details of how these techniques are synthesized
to construct the PFASST algorithm are outlined in Section 3. The computational
cost and theoretical parallel efficiency and speedup of the PFASST algorithm is
discussed in Section 4, followed by numerical results confirming the convergence
properties and efficiency in Section 5. Finally, a short discussion of the current
results and future research directions can be found in Section 6.
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2. Method components

In this section, the components used to construct the PFASST algorithm are re-
viewed. First, a short description of spectral deferred corrections is presented
and the method is cast in a concise notational formulation used later on. Then
a description of the parareal and hybrid parareal/SDC method from [21; 24] is
provided. Finally a short review of the full approximation scheme is included.

2.1. Spectral deferred corrections. Spectral deferred correction (SDC) methods
are variants of the traditional defect correction methods (or the closely related
deferred correction methods) for ODEs introduced in the 1960s [30; 26; 27; 9;
29; 4]. SDC is introduced in [10], and the method has been modified and analyzed
extensively since (see [22; 23; 19; 18; 17], for instance).

For the following description, consider the ODE initial value problem

u′(t)= f (t, u(t)), u(0)= u0, (1)

where t ∈ [0, T ]; u0, u(t)∈CN ; and f :R×CN
→CN . In the numerical examples

presented in Section 5, a method of lines discretization based on a pseudospectral
approach is used to reduce the PDE in question to a large system of ODEs. To
describe SDC, it is convenient to use the equivalent Picard integral form of (1):

u(t)= u0+

∫ t

0
f
(
τ, u(τ )

)
dτ. (2)

As with traditional deferred correction methods, a single time step [tn, tn+1] is
divided into a set of intermediate substeps by defining intermediate points tm ∈
[tn, tn+1]. In SDC, the intermediate points tm correspond to the nodes in Gaussian
quadrature rules. Here Gauss–Lobatto rules are used so that t = [t0, . . . , tM ] (with
tn = t0 < · · ·< tM = tn+1) corresponds to the Gauss–Lobatto quadrature rule with
M + 1 nodes (which has order 2M).

SDC constructs higher-order accurate solutions within one full time step by it-
eratively approximating a series of correction equations at the intermediate nodes
using lower-order methods. One attractive feature of SDC methods is that, since
only lower-order methods are required, one can construct methods that employ
operator splitting and/or multirate time-stepping and still achieve higher-order ac-
curacy. (See [6; 22; 18; 7], for instance.)

The SDC method begins by computing a provisional solution U0
=[U 0

1 , . . . ,U
0
M ],

at each of the intermediate nodes with U 0
m ≈ u(tm). As described below, this initial

approximation can be simply the solution at the beginning of the time step repli-
cated at each node. The method then proceeds iteratively. Let Uk

= [U k
1 , . . . ,U

k
M ]

denote the vector of solution values at each point t1 . . . tM and SDC iteration k,
and Fk

= [ f (t0,U k
0 ), . . . , f (tM ,U k

M)] the vector of function values at each point
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t0 . . . tM and SDC iteration k. Note that Uk has M entries but Fk has M + 1. To
compute the approximations Uk+1, one first computes the approximate integrals

Sm+1
m Fk

=

M∑
j=0

qm, j f (t j ,U k
j )≈

∫ tm+1

tm
f
(
τ,U k(τ )

)
dτ (3)

for m = 0 . . .M − 1. These approximations can be calculated by a matrix-vector
multiplication by the M ×M + 1 spectral integration matrix S with entries qm, j .
For a system of ODEs of size N , the integration matrix is applied component-wise,
and hence S must be defined as the Kronecker product of the scalar integration
matrix with the N × N identity matrix (see discussion in [14]).

Using these values, a first-order implicit time-stepping method similar to back-
ward Euler for computing U k+1 at each substep can be written

U k+1
m+1 =U k+1

m +1tm
[

f (tm+1,U k+1
m+1)− f (tm+1,U k

m+1)
]
+ Sm+1

m Fk, (4)

where 1tm = tm+1− tm . The computational cost of each substep is essentially that
of backward Euler (although if an iterative method is used to solve the implicit
system, a very good initial guess is provided by the solution at iteration k). The
process of solving (4) at each node tm is referred to here as an SDC sweep.

The accuracy of the solution generated after k SDC sweeps done with such a
first-order method is formally O(1tk) as long as the spectral integration rule (here
Gauss–Lobatto) is at least order k. In fact, if SDC converges, it converges to the
solution of the spectral collocation or implicit Runge–Kutta method

U = U0+1t SF, (5)

where U0 = [U0, . . . ,U0]. Hence SDC can be considered as an iterative method for
solving the spectral collocation formulation. (See [14] for a technique to accelerate
this convergence.)

For equations which can be split into stiff and nonstiff pieces, the above method
is easily modified to create semi-implicit or IMEX schemes. Consider the ODE

u′(t)= f
(
t, u(t)

)
= fE

(
t, u(t)

)
+ f I

(
t, u(t)

)
, u(0)= u0. (6)

The first term on the right-hand side is assumed to be nonstiff (and hence treated
explicitly), and the second is assumed to be stiff (and hence treated implicitly).
Equation (4) can be easily modified to give a semi-implicit scheme:

U k+1
m+1 =U k+1

m +1tm
[

f I (tm+1,U k+1
m+1)− f I (tm+1,U k

m+1)
]

+1tm
[

fE(tm,U k+1
m )− fE(tm,U k

m)
]
+ Sm+1

m Fk . (7)

Note that unlike semi-implicit or IMEX schemes based on Runge–Kutta (see
[28; 1; 25; 15; 5], for instance), it is straightforward to construct semi-implicit
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SDC schemes with very high formal order of accuracy. This semi-implicit form is
used for all of the numerical examples presented in Section 5.

Following the ideas introduced in [14], we can write an SDC sweep more com-
pactly by using matrix notation. Specifically, one can write all M steps of the
forward Euler time-stepping scheme as

U = U0+1t SE F, (8)

where the M ×M + 1 matrix SE has entries

SE(i, j)=
{
1t j/1t if j ≤ i,
0 otherwise.

(9)

Likewise, all M steps of the backward Euler scheme can be written

U = U0+1t SI F, (10)

where the M ×M + 1 matrix SI has entries

SI (i, j)=
{
1t j−1/1t if 1< j ≤ i + 1,
0 otherwise.

(11)

The matrices SE and SI are also first order approximations to the integration matrix
S that arise from using either the left-hand or right-hand rectangle rule approxima-
tion to the integrals Sm+1

m defined in (3).
Furthermore, let S̃E = S− SE and S̃I = S− SI . Then, one SDC sweep using

the semi-implicit time-stepping scheme in (7) can be compactly expressed as

Uk+1
= U0+1t SE Fk+1

+1t SI Fk+1
+1t (S̃E + S̃I )Fk . (12)

2.2. Parareal and SDC. The parareal method for the temporal parallelization of
ODEs and PDEs was introduced in 2001 by Lions, Maday, and Turinici [20] and
has sparked renewed interest in the construction of time parallel methods. In the
parareal method, the time interval of interest [0, T ] is divided into N intervals with
each interval being assigned to a different processor. On each interval [tn, tn+1] for
n = 0 . . . N − 1, the parareal method iteratively computes a succession of approxi-
mations U k

n+1 ≈ u(tn+1), where k denotes the iteration number.
The parareal algorithm can be described in terms of two numerical approxima-

tion methods typically denoted by G and F. Both G and F propagate an initial
value Un ≈ u(tn) by approximating the solution to (2) from tn to tn+1 and can
in principle be any self-starting ODE method. However, in order for the parareal
method to be efficient, it must be the case that the G propagator is computationally
less expensive than the F propagator, and hence G is typically a low-order method.
Since the overall accuracy of parareal is limited by the accuracy of the F propagator,
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F is typically higher-order and in addition may use a smaller time step than G. For
these reasons, G is referred to as the coarse propagator and F the fine propagator.

The parareal method begins by computing a first approximation in serial, U 0
n+1

for n = 0 . . . N − 1, often performed with the coarse propagator G, i.e.,

U 0
n+1 = G(tn+1, tn,U 0

n ) (13)

with U 0
0 = u(0). Alternatively, one could use the parareal method with a coarser

time discretization to compute the initial approximation [2]. The parareal method
proceeds iteratively, alternating between the parallel computation of F(tn+1, tn,U k

n )

and an update of the initial conditions at each processor of the form

U k+1
n+1 = G(tn+1, tn,U k+1

n )+F(tn+1, tn,U k
n )−G(tn+1, tn,U k

n ) (14)

for n = 0 . . . N − 1. Although this step has serial dependencies, the computations
on independent processors can be scheduled so that each processor can begin the
computation of the new G value G(tn+1, tn,U k+1

n ) as soon as F(tn+1, tn,U k
n ) has

been computed and the new starting value U k+1
n has been received from processor

n− 1 [24]. The calculation in (14), which requires computing the G propagator, is
referred to as here the G correction sweep.

Note that after k iterations of the parareal method, the solution U k
m for m ≤ k

is exactly equal to the numerical solution given by using the F propagator in a
serial manner. Hence after N iterations the parareal solution is exactly equal to
applying F in serial, but in practice the iterations converge more quickly for large
N . Since each iteration of the parareal method requires the application of both F

and G (plus the cost of communication between processors), the parareal method
can only provide parallel speedup compared to the using F in serial if the number
of iterations required to converge to the specified criteria (denoted here by K ) is
significantly less than N .

The dominant cost of the parareal method is the computation of F in each it-
eration. It has been well documented that the parallel efficiency of parareal is
bounded by 1/K where K is the number of iterations needed to converge. In [21;
24] a hybrid parareal/SDC method is introduced that replaces the F propagator in
parareal with a deferred correction sweep using the solution from the last iteration
(and the new initial value U k+1

n ). This reduces the cost of the F propagator in two
ways. First, instead of using many steps of a standard method like Runge–Kutta,
the same level of accuracy can be achieved by one step of SDC due to the spectral
accuracy of SDC methods. Second, the SDC sweep has a computational cost of
approximately M steps of a first-order method, rather than many steps of a higher-
order method. In effect, the high-cost of SDC per time step is amortized over the
parallel iterations.
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Furthermore, a connection between the parareal correction sweep defined by
(14) and an SDC sweep is explained in [21; 24]. Hence the hybrid parareal/SDC
method also casts the G correction sweep in (14) as an SDC sweep, which not only
provides an updated starting value for the next processor, but can also be used to
further improve the solution in the interval [tn, tn+1]. The numerical experiments
in [24] suggest that the hybrid parareal/SDC strategy has similar convergence be-
havior as standard parareal, but with a reduced parallel cost and higher parallel
efficiency. Specifically, the parallel efficiency (as compared to the serial SDC
method) is bounded not by 1/K , but Ks/K p where Ks is the number of iterations
required of the serial SDC method to converge to a given tolerance and K p is the
number of iterations for the parallel iterations to converge.

Note there are some disadvantages to the parareal/SDC hybrid approach. Be-
cause F and G in parareal are only used to provide solutions at the values tn ,
parareal can be used in a “black-box” fashion with standard time integration meth-
ods. The gain in efficiency in the parareal/SDC approach requires that SDC be
adopted as the time integration method, although there is still a great deal of flexi-
bility in how the coarse and fine SDC sweeps are formulated (that is in fact one of
the aforementioned advantages of SDC). Also, the parareal/SDC approach requires
that both coarse and fine function values be stored at the intermediate nodes (how-
ever, the storage required is similar to that of higher-order Runge–Kutta methods).

2.3. Full approximation scheme. As mentioned above, when parallelizing PDEs
in the temporal direction, an obvious way to reduce the cost of the coarse propaga-
tor in parareal or a hybrid parareal/SDC approach is to reduce both the temporal
and spatial resolution. In the hybrid parareal/SDC method, it is desirable to use
information from the coarse SDC sweep to not only improve the initial condition
passed forward in time to the next processor, but also to improve the fine resolution
solution on the same processor. To do so, the coarse resolution problem must be
initialized including fine information, and the coarse resolution solution must be
interpolated somehow (in both time and space) once computed. In the PFASST
algorithm described in the next section, the coarse and fine resolution solutions
are connected in the same manner as the full approximation scheme (FAS) method
popular in multigrid methods for nonlinear problems (see [8], for instance). In
fact, although only two resolutions are used here, the PFASST method could be
extended to use a hierarchy of fine and coarse space-time grids, reminiscent of
multigrid methods. Results along these lines will be reported in the future.

To review the FAS procedure, consider a nonlinear equation of the form

A(x)= b, (15)

where the solution vector x and the right side b correspond to spatial discretizations
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of some function. Given an approximate solution x̃, the corresponding residual
equation is

A(x̃+ e)= r + A(x̃), (16)

where e is the error and r = b− A(x̃) is the residual. In a multigrid approach,
the residual equation (16) is solved on a coarser discretization level by introducing
an operator T G

F that restricts solutions at the fine resolution to the coarse. Then,
assuming AG is an appropriate approximation to A on the coarse level, the coarse
residual equation becomes

AG(x̃G
+ eG)= AG(x̃G)+ rG

= AG(x̃G)+ T G
F
(
b− A(x̃)

)
(17)

= bG
+ AG(x̃G)− T G

F A(x̃), (18)

where superscript G denotes the coarse level. With yG
= x̃G

+ eG , the coarse FAS
residual equation becomes

AG( yG)= bG
+ τ , (19)

with the FAS correction term

τ = AG(x̃G)− T G
F A(x̃). (20)

The addition of the FAS correction allows the coarse solution to attain a similar
degree of accuracy as the fine solution, but at the resolution of the coarse level [8].
In particular, if the fine residual is zero (i.e., x̃ is the fine solution), the FAS cor-
rected coarse equation (19) becomes AG( yG)= AG(x̃G), and the coarse solution
yG is the restriction of the fine solution.

Once the coarse solution yG has been computed, the fine approximate solution
is improved using an interpolation operator T F

G

x̃ = T F
G ( yG

− x̃G). (21)

Returning to SDC methods, the FAS correction for coarse SDC iterations is
determined by considering SDC as an iterative method for solving the collocation
formulation given by (5), which can be written

U −1t SF = U0, (22)

where U0, S, and F are defined as in Section 2.1. Therefore, combining (20) and
(22), the FAS correction for coarse SDC iterations is given by

τ =1t
(
SG FG

− T G
F SF

)
, (23)

where SG is the integration matrix defined by the coarse nodes, FG is the vector
of function values at the coarse level, and T G

F is a space-time restriction operator.
This allows the coarse SDC iterations to achieve the accuracy of the fine SDC
iterations at the resolution of the coarse level, and ultimately allows the PFASST
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algorithm to achieve similar accuracy as a serial computation performed on the
fine level. The numerical experiments in Section 5 confirm the benefit of using the
FAS correction term in the coarse SDC sweep.

3. PFASST

At this point we have reviewed the main ingredients of the PFASST algorithm:
SDC, time parallel iterations, and FAS. Now we describe how these ingredients
are combined to form the PFASST algorithm. As in parareal, the time interval of
interest [0, T ] is divided into N uniform intervals [tn, tn+1] which are assigned to
the processors Pn where n = 0 . . . N − 1. Each interval is subdivided by defining
M + 1 fine SDC nodes tn = [tn,0 · · · tn,M ] such that tn = tn,0 < · · · < tn,M = tn+1;
and M̃+1 coarse SDC nodes t̃n such that tn = t̃n,0 < · · ·< t̃n,M̃ = tn+1. The coarse
SDC nodes t̃n are chosen to be a subset of the fine SDC nodes tn to facilitate
interpolation and restriction between the coarse and fine levels. The solution at
the m-th fine node on processor Pn during iteration k is denoted U k

n,m . Similarly,
the solution at the m̃-th coarse node on processor Pn during iteration k is denoted
Ũ k

n,m̃ . For brevity let

Uk
n = [U

k
n,1, · · · ,U

k
n,M ] and Fk

n = [ f (tn,0,U
k
n,0), · · · , f (tn,M ,U k

n,M)],

with analogous notation for the coarse level (marked with a tilde). Note that the
use of point injection as the coarsening procedure with Gaussian quadrature nodes
means that the coarse nodes may not correspond to Gaussian nodes. This is further
discussed at the beginning of Section 5.

3.1. Initialization. In the parareal method, the processors are typically initialized
by using the coarse grid propagator in serial to yield a low-accuracy initial con-
dition for each processor. This means in practice that all processors except the
first are idle until passed an initial condition from the previous processor. Here
we employ a different initialization scheme wherein each processor begins coarse
SDC sweeps during this idle time. Hence the number of coarse iterations (SDC
sweeps) done on processor Pn in the initialization is equal to n rather than 1. This
has the same total computational cost of doing one SDC sweep per processor in
serial, but the additional SDC sweeps can improve the accuracy of the solution
significantly, as will be demonstrated in Section 5.

Specifically, the initial data u(0) is spread to each processor Pn and stored in
the fine level at each fine SDC node so that U 0

n,m = u(0) for n = 0 . . . N − 1 and
m = 0 . . .M . Next, the fine values U0

n are restricted to the coarse level and stored
in Ũ0,0

n , where the two superscripts denote PFASST iteration and initialization
iteration, respectively. Before beginning the initialization iterations, the function
values F0

n and F̃0,0
n are computed and used to form the first FAS correction τ 0

n .
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The initialization iterations for j = 1 . . . n on processor Pn are comprised of the
following steps:

(1) Receive the new initial value Ũ 0, j
n,0 from processor Pn−1 if n > 0 and j > 1.

(2) Perform one or more coarse SDC sweeps using the values F̃0, j−1
n computed

previously and the FAS correction τ 0
n . This will yield updated values Ũ0, j

n

and F̃0, j
n .

(3) Send Ũ 0, j
n,M̃

to processor Pn+1 (if n < N − 1). This will be received as the new

initial condition Ũ 0, j+1
n+1,0 in the next iteration.

After processor Pn is finished computing the value Ũ 0,n
n,M̃ and sending it to Pn+1,

the correction Ũ0,n
n − Ũ0,0

n is interpolated to the fine grid to yield the initial value
U0

n . The PFASST iterations on each processor are then begun immediately with
this initial value.

3.2. PFASST iterations. The PFASST iterations for k = 1 . . . K on each processor
Pn proceed as follows. Assuming that the fine solution and function values Uk−1

n
and Fk−1

n are available, the iterations are comprised of the following steps:

(1) Perform one fine SDC sweep using the values Fk−1
n . This will yield provi-

sional updated values Uk′
n and Fk′

n .

(2) Restrict the fine values Uk′
n to the coarse nodes to form Ũk′

n and compute F̃k′
n .

(3) Compute the FAS correction τ k
n using Fk′

n and F̃k′
n .

(4) Receive the new initial value U k
n,0 from processor Pn−1 if n > 0.

(5) Perform nG coarse SDC sweeps beginning with the values F̃k′
n , the FAS cor-

rection τ k
n , and the restriction of the new initial value Ũ k

n,0. This will yield
new values Ũk

n and F̃k
n .

(6) Interpolate the coarse correction Ũ k′

n,M̃
−Ũ k

n,M̃
(in space only) and add to U k′

n,M
to yield the updated value U k

n,M .

(7) Send U k
n,M to processor Pn+1 (if n < N − 1). This will be received as the new

initial condition U k+1
n+1,0 in the next iteration.

(8) Interpolate the coarse grid correction Ũk′
n − Ũk

n in space and time at the re-
maining fine time nodes (0<m < M) and add to Uk′

n to yield Uk
n . Recompute

new values Fk
n

The majority of the overhead associated with FAS is done in step 8 above, which
is delayed until after the new initial condition is sent in step 7. This minimizes the
amount of computation done between receiving a new initial condition from the
previous processor (step 4) and sending the data forward (step 7). Pseudocode for
the PFASST algorithm can be found in the Appendix.
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4. Parallel speedup and efficiency

In this section, the theoretical parallel efficiency and speedup of the PFASST algo-
rithm are examined. In the implementation used for the numerical results presented
here, the PFASST method will converge to the collocation formulation (22) using
one time step per processor. The number of substeps used in the fine SDC method
is denoted again by M (which is the number of fine SDC nodes used minus one).
Let ηF denote the cost of the method used for each substep of the fine SDC sweep.
Likewise, let ηG and M̃ be the corresponding constants for the coarse SDC sweep.
Further, define ϒF = MηF and ϒG = M̃ηG to be the cost of one fine/coarse SDC
sweep (assuming that the cost of computing the integration term used in the sweep
is negligible). Let nG denote the number of coarse SDC sweeps performed per
PFASST iteration. To take into consideration the overhead of parallelization, we
define γF and γG as the cost of sending a coarse and fine solution from one proces-
sor to the next. Finally, we define ϒO as the cost of the interpolation and restriction
done in FAS.

If the PFASST iterations converge to the required accuracy in K p iterations, the
total cost on N processors is

C p = NnGϒG + (N − 1)γG + K p(ϒF + nGϒG +ϒO+ γF ). (24)

For simplicity, the communication costs γG and γF (which are relatively small in
the numerical experiments in Section 5) are treated as overhead and are included
in the ϒO term hereafter.

Let Ks denote the number of SDC iterations needed to compute the solution to
the desired accuracy in serial using the fine SDC nodes. Then the cost of the serial
SDC method will be approximately Cs = N KsϒF . Therefore, the parallel speedup
S of the PFASST algorithm is

S =
Cs

C p
=

N KsϒF

NnGϒG + K p(ϒF + nGϒG +ϒO)
. (25)

Defining α = ϒG/ϒF and β = ϒO/ϒF , (25) becomes

S =
N

NnGα

Ks
+

K p

Ks
(1+ nGα+β)

(26)

which gives a parallel efficiency of

E =
1

NnGα

Ks
+

K p

Ks
(1+ nGα+β)

. (27)

To achieve a parallel efficiency that is close to 1, the two quantities NnGα/Ks

and K p/Ks should be as small as possible. If the coarsening ratio between the
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coarse and fine grids is two in both time and space, and the implicit solves in the
method have a cost proportional to the total number of grid points in the problem,
then the cost ratio α between the coarse and fine SDC sweeps is approximately
1/2D+1, where D is the spatial dimension of the problem. This means that the
NnGα/Ks term is well approximated by NnG/(2D+1Ks). Furthermore, since in
each PFASST iteration both coarse and fine SDC sweeps are done, K p/Ks can
actually be less than one (as shown in Section 5). The numerical experiments also
show that increasing the number of coarse SDC sweeps, nG , reduces K p, but at the
cost of increasing all terms containing α. Finally, it should be noted that the cost of
the overhead from the FAS procedure (and communication) signified by ϒO is not
necessarily small. Since in the numerical tests presented here, both the evaluation
of the function values and the interpolation in FAS are done with the FFT, β is in
fact close to 1.

In contrast to the standard parareal method, note that the efficiency is not au-
tomatically bounded above by E < 1/K p but rather E < Ks/K p. That is, by
combining the SDC and parareal iterations into one hybrid parareal/SDC iteration,
the bound on the parallel efficiency is relaxed by a factor of Ks when compared to
the standard parareal method.

5. Numerical examples

In this section numerical results are presented to demonstrate the performance of
the PFASST method for several PDEs of varying complexity. Since we are most
interested in temporal errors, a pseudospectral discretization in space is used for
all examples to minimize spatial errors. Also periodic boundary conditions are
prescribed so that the discrete fast Fourier transform (FFT) can be used to evaluate
the spectral derivatives and to interpolate in space. Temporal interpolation is done
using standard polynomial interpolation from coarse nodes to fine. In both space
and time, coarse grids are formed by taking every other fine point, so that the
restriction operator is simply point-wise injection.

In the numerical tests that follow, the convergence of PFASST iterates is at
times compared with the convergence of a serial SDC method. For the serial SDC
method, the number of iterations reported refers to how many SDC sweeps are
performed during each time step. This relates to the order of the method since
each SDC sweep raises the formal order of accuracy by one, up to the accuracy of
the underlying quadrature rule. In all cases, the errors reported are computed by
comparing to a temporally resolved run on the fine grid (i.e., the solution of the
discretized ODE and not the solution to the underlying PDE).

In all the examples below, the fine nodes in time correspond to either 9 or 5
Gauss–Lobatto nodes. Hence there are 5 or 3 coarse nodes respectively. When
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9 nodes are used on the fine level, the 5 coarse nodes do not correspond to the
Lobatto nodes, and hence the underlying quadrature rule is of order 6 instead of
order 8. For 5 fine nodes, the 3 coarse nodes are the Lobatto nodes (Simpson’s rule).
When errors from serial SDC runs on coarse nodes are reported, the nodes used
correspond to the coarse PFASST level and not the coarse Lobatto rule. One could
instead interpolate the solutions in time to coarse Lobatto nodes or use Clenshaw–
Curtis quadrature nodes at each level so that coarse and fine nodes correspond.
Numerical experiments (not reported here) suggest the convergence of the PFASST
iterations is not improved when using Clenshaw–Curtis nodes, and the accuracy of
the fine solution is reduced. A more careful examination of the impact of different
interpolation and restriction strategies in space and time is in preparation.

5.1. Viscous Burger’s equation. In the first set of examples, the convergence of
the PFASST iterates are examined on a simple one-dimensional equation, namely
the viscous Burger’s (VB) equation

ut + uux = νuxx , (28)

where ν = 0.005 is the diffusion constant. The VB equation (28) is split into
explicit and implicit parts according to fE =−uux and f I = νuxx in (6). That is,
the nonlinear advection term is treated explicitly while the linear diffusion term is
treated implicitly. The domain is the unit interval, and the initial conditions are

u0(x)= e−(x−0.5)2/σ , (29)

with σ = 0.004, so that the solution has a full spatial spectrum. The periodic
images of the Gaussian are included in the initial condition to ensure it is spatially
smooth. The spatial discretization is chosen so that the solution is resolved on the
fine and coarse resolutions: 512 points are used on the fine grid and 256 on the
coarse. The temporal discretizations are done with 5 Gauss–Lobatto SDC nodes
on the fine level, and 3 Gauss–Lobatto SDC nodes on the coarse level. Analysis of
the performance of PFASST when the coarse level is not well-resolved is ongoing
and will be presented elsewhere.

For the VB test, 64 processors are used with the time step on each processor
being 1t = 0.08/64. Note that the real part of the quantity −1tν(2πkmax)

2, where
kmax is the largest Fourier wave number, is approximately −15.16 on the fine grid.
Hence the use of a semi-implicit method (as opposed to a fully explicit method)
avoids a substantial time step restriction.

Figure 1 shows the convergence of the PFASST algorithm and the serial SDC
method for the VB test. The error is computed for each SDC and PFASST iteration
at the end of each time step, and therefore the horizontal axis corresponds to the
time step, which in turn corresponds to the processor number in the PFASST case.
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Figure 1. Maximum absolute error versus time (processor) for several PFASST iterations
applied to the VB equation. The left and right panels correspond to one and two coarse
SDC sweeps per PFASST iteration respectively. Each PFASST line represents the error
at the end of the corresponding PFASST iteration, with 0 representing the solution after
initialization. The G and F serial lines represent the error of serial SDC runs on the coarse
and fine space-time discretizations with varying numbers of SDC sweeps (iterations) per
time step.

Again, keep in mind that the number of iterations reported for the serial SDC runs
refers to how many SDC sweeps are performed during each time step of the serial
method. The PFASST algorithm is run using nG = 1 (left panel) and nG = 2 (right
panel) coarse SDC sweeps per iteration. Several observations can be made from
the data.

Concerning the convergence of the serial SDC method, note first that the mini-
mum error is reached after 4 SDC iterations for the coarse grid, which is in agree-
ment with the formal fourth-order accuracy expected with 3 Gauss–Lobatto nodes.
Similarly, the fine serial SDC method very nearly attains minimum error after 8
iterations, which again is consistent with the formal eighth-order accuracy. Note
that the convergence of SDC to the collocation solution can be slower for very
stiff problems [14], as is the case for the examples in Section 5.2. Because of
the spectral accuracy of the SDC method, the fine solution with 5 Gauss–Lobatto
nodes is substantially more accurate than the coarse.

Turning to the convergence of the PFASST algorithm, the first thing to note is
that the PFASST iterates do converge to the converged SDC solution on the fine
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grid. Next, note that using two coarse SDC sweeps per PFASST iteration in this
example reduces the total number of iterations needed to obtain a highly accurate
solution from 9 iterations to 4 iterations, albeit at a higher cost per iteration. This
behavior is similar to the parareal algorithm in that the overall speed of convergence
of the algorithm depends on the accuracy of the coarse propagator [24]. Although
not shown here, it has been observed that using multiple fine SDC sweeps per
iteration does not have a significant effect on the rate of convergence of the PFASST
algorithm for this example.

Note the effect of the iterative initialization procedure described in Section 3.1.
The error after initialization (labeled 0 in each panel) is significantly less than that
produced using the corresponding number of serial coarse SDC sweeps (one in the
left panel and two in the right) at later times. Of course for the first processor, the
initialization is exactly equivalent to the first step of a serial SDC method.

Figure 2 compares the convergence of the PFASST algorithm and serial SDC
runs by considering error versus iteration computed at the final time. Additional
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Figure 2. Maximum absolute error, residual, and change in fine initial condition com-
puted at the final time interval for several PFASST iterations applied to the VB equation.
The left and right panels correspond respectively to one and two coarse SDC sweeps per
coarse PFASST iteration. The G and F serial lines represent the error of serial SDC runs
on the coarse and fine space-time discretizations with varying numbers of SDC sweeps
(iterations) per time step.
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data corresponding to the residual and the maximum change in the initial condition
at each processor is also included. It is again apparent that the PFASST algorithm
achieves the accuracy of the fine serial run despite the relatively poor temporal
accuracy of the coarse resolution. Also, the convergence of the PFASST algorithm
is accelerated by using two coarse SDC sweeps per iteration. Since the problem is
well-resolved at the finest level, the residual and change in initial condition are good
indicators of the error at each iteration, until the accuracy of the time integration
scheme is reached. Using the residual and change in initial condition to adaptively
control the number of PFASST iterations performed will be explored elsewhere.

To demonstrate the importance of including the FAS correction term in the
coarse sweeps, the above test was rerun omitting the FAS correction term defined in
(23). Figure 3 shows the convergence of the algorithm without FAS corrections. It
is clear that when FAS corrections are not included, the algorithm can only achieve
accuracy comparable to the coarse level.

Finally, Figure 4 shows how the performance of the PFASST algorithm depends
on the numbers of processors for the VB example. The left panel shows the conver-
gence results for four different numbers of processors with the final time fixed (so
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Figure 3. Maximum absolute error, residual, and change in fine initial condition com-
puted at the final time for several PFASST iterations for the VB equation without FAS
corrections. This figure should be compared to Figure 2.
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Figure 4. Maximum absolute error computed at the final time for several PFASST itera-
tions and number of processors for the VB equation. The left panel shows PFASST errors
at the final time for a fixed final time. The right panel shows PFASST errors at the final
time for a fixed time step.

that the time step decreases as the number of processors increases). The right panel
shows the convergence for the same numbers of processors with a fixed time step
(so that the final integration time increases as the number of processors increases).

When the final time is fixed (left panel) the convergence of the PFASST algo-
rithm improves as N increases in that the number of PFASST iterations required
to achieve a given level of accuracy decreases. When the time step is fixed (right
panel) the convergence is similar for each run despite the difference in simulation
time. In summary, for this example the convergence depends largely on the time
step used, not on the number of processors.

5.2. The Kuramoto–Silvashinsky equation. Next, the performance of the PFASST
algorithm is explored for the Kuramoto–Silvashinsky equation

ut +
1
2 |∇u|2+∇2u+∇4u = 0, (30)

where the solution u is a function of two space variables and time. The KS equation
arises as a model for interfacial instabilities in a variety of physical contexts and
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has been shown to exhibit nontrivial dynamical behavior, both spatially and tempo-
rally, including chaos [16]. It contains a nonlinear term and high-order derivatives
which, from a numerical perspective, make it a challenging equation to solve as it
is nonlinear, very stiff, and highly sensitive to changes in the initial conditions or
numerical error.

The KS equation (30) is split into explicit and implicit parts according to fE =

−
1
2 |∇u|2 and f I = −∇

2u − ∇4u in (6). That is, the nonlinear term is treated
explicitly while the linear antidiffusion and hyper-diffusion terms are treated im-
plicitly. As with the VB equation, periodic boundary conditions are used, all spatial
operators are evaluated spectrally, and the computational grid is chosen so that the
solution is fairly well resolved on the fine grid. The domain size used throughout is
a two-dimensional square domain with sides of length L = 100.0, with 512 points
in each dimension on the fine grid and 256 on the coarse. The initial condition used
throughout is shown in Figure 5. This initial condition was obtained by running
the KS equation from a simple initial condition with only three Fourier modes to a
final time of approximately 97, and subsequently removing high frequency modes
(magnitude of wave-number greater than 121). This produces an initial condition
with a broad spectrum of Fourier modes but without any fast initial transients. The
temporal discretization uses 9 Gauss–Lobatto SDC nodes on the fine level, and 5
nodes on the coarse level. Note that the coarse nodes do not correspond to the
5-point Gauss–Lobatto rule.

Figure 5. Initial condition for the KS and AD equation examples.
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Figure 6. Maximum absolute error versus time (processor) for several PFASST iterations
applied to the KS equation. The left and right panels show PFASST errors for one and
two coarse SDC sweeps per PFASST iteration respectively. Each PFASST line represents
the error at the end of the corresponding PFASST iteration, with 0 representing the solu-
tion after initialization. The G and F serial lines represent the error of serial SDC runs
on the coarse and fine space-time discretizations with varying numbers of SDC sweeps
(iterations) per time step.

For the KS test, 32 processors are used with the time step on each being 1t =
1.0/32. Figures 6 and 7 compare the convergence of the PFASST algorithm and
serial SDC runs by considering the error versus processor (or simulation time) for
each PFASST iteration, and the error versus iteration at the final time, respectively.

The results for KS shown in Figures 6 and 7 are qualitatively the same as those
for VB shown in Figures 1 and 2. Again one can note the benefit of the iterative ini-
tialization procedure for the PFASST algorithm in that the error after initialization
is considerably lower than a serial SDC method with the corresponding number of
sweeps (except for at the first processor where they are identical). Note also that
the PFASST method converges faster when using nG = 2 coarse SDC sweeps per
iteration instead of one, and this can improve the parallel efficiency (as discussed
in Section 5.3).

For the KS equation, the minimum error achieved by both the serial and parallel
methods is higher than in the VB case despite the use of 9 fine nodes for the KS
equation instead of 5 for VB. To highlight the difficulty inherent in the parallel
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Figure 7. Maximum absolute error, residual, and change in fine initial condition com-
puted at the final time for PFASST iterations applied to the KS equation. The left and right
panels correspond to one and two coarse SDC sweeps per PFASST iteration respectively.
The G and F serial lines represent the error of serial SDC runs on the coarse and fine
space-time discretizations with varying numbers of SDC sweeps (iterations) per time step.

numerical approximations of the KS equation, a final numerical experiment is per-
formed using the same initial conditions as the KS example (Figure 5), but with a
simpler linear advection-diffusion equation

ut +∇ · u = ν∇2u (31)

with ν = 0.02. The domain size, spatial discretization, and temporal discretiza-
tion are the same as in the KS example. Figure 8 shows the convergence of the
PFASST algorithm for this linear advection/diffusion (AD) equation. It is clear
that PFASST converges much faster than in the KS example, specifically in four
and two iterations for one and two coarse SDC sweeps per iteration respectively.

5.3. Parallel timing results. The results in Section 5.2 show that the PFASST algo-
rithm exhibits reasonable convergence behavior for a selection of PDEs in simple
geometries. In this section, the parallel speedup and efficiency of the PFASST
algorithm are explored. The PFASST algorithm has been implemented in F90
using MPI for communication between processors. The timing results correspond
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Figure 8. Maximum absolute error versus iteration at the final time for PFASST iterations
applied to the AD equation. The left and right panels correspond to one and two coarse
SDC sweeps per PFASST iteration respectively.

to numerical experiments performed using 8 and 16 processors on a multicore
UNIX machine with 2× 8 2GHz AMD Opteron cores, and run times reported
were computed using the MPI wtime command. Preliminary timings have also
been performed on a distributed memory cluster using up to 512 cores. Initial
results suggest that communication costs across interconnects do not significantly
impact the efficiency of the PFASST method. A more thorough analysis of these
costs will be presented elsewhere.

For the following tests, the PFASST method is applied to a scalar VB equation
(28) in three dimensions

ut + u∇ · u = ν∇2u, (32)

hereafter referred to as the 3d NAD equation. The spatial resolution is 128 points
in each dimension on the fine grid and 64 on the coarse. The initial condition used
was a periodic image of

u0(x)= (4πν)−3/2e−(x−0.5)2/(4πν). (33)

The parameter values used were ν = 0.02 and Tend = 0.002. The temporal dis-
cretizations are done with 5 Gauss–Lobatto SDC nodes on the fine level, and 3
Gauss–Lobatto SDC nodes on the coarse level.



126 MATTHEW EMMETT AND MICHAEL L. MINION

1 2 3 4 5 6 7 8
processor

0

10

20

30

40

50
ti
m

e
(s

)

F G
overhead communication
initialization iteration

Figure 9. PFASST iteration timings for the third NAD equation on 8 processors. For all
series except the predictor, each line corresponds to a different PFASST iteration from 1

to 8.

Figure 9 shows a timing breakdown of PFASST iterations for the 3d NAD
equation using 8 processors. As expected, the predictor time grows linearly with
the processor number. This “burn-in” time is unavoidable, but the slope could be
reduced by introducing even coarser levels in the iterative initialization procedure.
The ratio of the cost of fine to coarse SDC sweeps (denoted by α in Section 4)
is approximately 16, which is consistent with a factor of two coarsening in both
time and space. The communication cost associated with passing the fine solution
forward in time from Pn to Pn+1 is greater than the cost of a coarse SDC sweep,
but less than that of a fine SDC sweep. Finally, the overhead of interpolation and
restriction performed to compute the FAS correction is slightly more costly than
a fine SDC sweep (i.e., β > 1). This is because the FFT is used for both spatial
interpolation and the “explicit” computation of the nonlinear advective terms.

Table 1 shows the parallel speedup and efficiency of the PFASST algorithm for
the 3d NAD equation. The number of iterations used for each method was chosen
so that the accuracy of the solution at the final time was consistent between the runs
and approximately equal to 10−13. The number of PFASST iterations required is
less than the number of serial SDC iterations required since, during each PFASST
iteration, at least two SDC sweeps are performed (one on the fine level and one or
more on the coarse level). That is, K p/Ks is less than one (see (26)). The parallel
speedup and efficiency achieved are well predicted by the theoretical formulas (26)
and (27).
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method processors iterations time speedup efficiency

Serial SDC 1t = Tend/8 7 SDC 1115.34s
PFASST, one G sweep 8 5 PFASST 310.47s 3.59 0.45
PFASST, two G sweeps 8 3 PFASST 212.48s 5.25 0.66
Serial SDC 1t = Tend/16 5 SDC 1606.69s
PFASST, one G sweep 16 4 PFASST 216.20s 7.43 0.46
PFASST, two G sweeps 16 3 PFASST 202.13s 7.95 0.50

Table 1. Parallel speedup and efficiency of the PFASST algorithm for the 3d NAD equation.
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Figure 10. Maximum absolute error for the serial and PFASST iterations computed at
the final time for the 3d NAD equation used for parallel timings.

Figure 10 compares the convergence of the PFASST runs and serial SDC runs
by considering error versus iteration for the 3d NAD equation computed at the
final time. All runs eventually achieve an accuracy of roughly 10−13. This figure
justifies the number of iterations used to perform the timings in Table 1.

6. Discussion

The preliminary results included in the previous section suggest that it is possible
to achieve reasonable parallel efficiency in the temporal direction. Hence for PDE
computations for which spatial parallelization has been saturated, parallelizing in
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time appears attractive. Efforts to implement the PFASST algorithm within an
existing spatial parallelization infrastructure are underway and will be reported on
in the future. For problems in which many more time steps are desired than pro-
cessor groups available, an algorithm for terminating the iterations at one time step
so that the processors can begin computation on a new time step will be required.
There are also several other immediate research directions we are pursuing that
may increase the efficiency of the PFASST approach.

The test problems examined in this paper use spectrally accurate derivative and
interpolation operators so that the convergence of the temporal scheme is easy to
identify. One drawback of this approach is that the relative cost of interpolation
and recomputing explicit function values in the FAS procedure is high. Of obvious
interest is the performance of the PFASST method on problems discretized with
finite-differences, finite-volumes, or finite-elements. Also, the performance of the
PFASST approach on hyperbolic problems or those dominated by dispersive waves
has not yet been fully investigated.

For the pseudospectral discretization used throughout the test cases here, the
implicit equation at each substep is solved directly using the FFT. In practice, such
equations for PDEs are usually solved using an iterative method such as a Krylov
subspace or multigrid method. When combined with the PFASST algorithm, an-
other avenue for a further gain in efficiency for PDEs employing iterative solvers
is to reduce or vary the number of iterations of the implicit solver in different
parts of the algorithm. For example, it may not be necessary to solve implicit
equations within SDC substeps to full precision at every iteration, although it is
difficult to predict a priori how a reduction in spatial solver accuracy will affect
the convergence of the time parallel iterations.

Finally, the two-level method used in the paper can be easily extended to multi-
ple levels as in standard multigrid methods. Such a method then resembles a space-
time multigrid method where the “relaxation” operator in the temporal direction is
an SDC sweep. Analysis and numerical testing of such a multilevel approach is
ongoing.

Appendix: Pseudocode for the PFASST algorithm

See Figure 11 for a scheduling diagram of the algorithm.

Initialization on processor Pn.
Spread initial condition and compute FAS correction
SET: U0,0

= u(0), and evaluate F0,0

RESTRICT: fine U0,0 to coarse Ũ0,0, and evaluate F̃0,0

COMPUTE: FAS correction τ 0 between F0,0 and F̃0,0

FOR j = 0, . . . , n− 1:
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Figure 11. Cost diagram for the PFASST method with two space/time discretizations
and the new iterative initialization procedure. Thinner darker rectangles correspond to
coarse SDC sweeps, while finer correspond to fine SDC sweeps. Dots correspond to
communication between processors.

Get new coarse initial value, sweep, and send forward
IF j > 0 and n > 0:

RECEIVE: Ũ 0, j
0 = Ũ 0, j

M̃
from Pn−1

SWEEP: perform one SDC sweep with Ũ0, j and F̃0, j

UPDATE: during sweep, update Ũ0, j+1 and evaluate F̃0, j+1 appropriately
IF n < N − 1:

SEND: Ũ 0, j+1
M̃

to Pn+1

PFASST iterations on processor Pn.

SET: Ũ0 to last coarse initialization Ũ0,n−1, and evaluate F̃0

INTERPOLATE: coarse correction Ũ0
− Ũ0,0 to fine U0, and evaluate F0

FOR k = 1, . . . , K
Sweep on fine level, restrict, and compute FAS correction
SWEEP: perform one SDC sweep with Uk−1 and Fk−1

UPDATE: during sweep, update Uk and evaluate Fk appropriately
RESTRICT: fine Uk to coarse Ũk , and evaluate F̃k

COMPUTE: FAS correction τ k between Fk and F̃k

Receive new fine initial condition, restrict
IF n > 0:

RECEIVE: U k
0 =U k

M from Pn−1

RESTRICT: fine U k
0 to coarse Ũ k

0
Sweep on coarse level, interpolate final value, and send forward
SWEEP: perform one SDC sweep with Ũk , F̃k , and τ k
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UPDATE: during sweep, update Ũk and evaluate F̃k appropriately
INTERPOLATE: coarse correction Ũ k

M̃
− Ũ k−1

M̃
to fine U k

M
IF n < N − 1:

SEND: U k
M to Pn+1

Interpolate coarse to fine and set initial condition
INTERPOLATE: coarse correction Ũk

− Ũk−1 to fine Uk , and evaluate Fk
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