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OPTIMAL STABILITY POLYNOMIALS FOR NUMERICAL
INTEGRATION OF INITIAL VALUE PROBLEMS
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We consider the problem of finding optimally stable polynomial approximations
to the exponential for application to one-step integration of initial value ordinary
and partial differential equations. The objective is to find the largest stable step
size and corresponding method for a given problem when the spectrum of the ini-
tial value problem is known. The problem is expressed in terms of a general least
deviation feasibility problem. Its solution is obtained by a new fast, accurate, and
robust algorithm based on convex optimization techniques. Global convergence
of the algorithm is proven in the case that the order of approximation is one and
in the case that the spectrum encloses a starlike region. Examples demonstrate
the effectiveness of the proposed algorithm even when these conditions are not
satisfied.

1. Stability of Runge–Kutta methods

Runge–Kutta methods are among the most widely used types of numerical integra-
tors for solving initial value ordinary and partial differential equations. The time
step size should be taken as large as possible since the cost of solving an initial value
problem (IVP) up to a fixed final time is proportional to the number of steps that
must be taken. In practical computation, the time step is often limited by stability
and accuracy constraints. Either accuracy, stability, or both may be limiting factors
for a given problem; see [24, Section 7.5] for a discussion. The linear stability and
accuracy of an explicit Runge–Kutta method are characterized completely by the
so-called stability polynomial of the method, which in turn dictates the acceptable
step size [6; 12]. In this work we present an approach for constructing a stability
polynomial that allows the largest absolutely stable step size for a given problem.

The problem of finding optimal stability polynomials is of fundamental im-
portance in the numerical solution of initial value problems, and its solution or
approximation has been studied by many authors for several decades Indeed, it
is closely related to the problem of finding polynomials of least deviation, which
goes back to the work of Chebyshev. A nice review of much of the early work on
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Runge–Kutta stability regions can be found in [44]. The most-studied cases are
those where the eigenvalues lie on the negative real axis [1; 3; 2; 4; 38; 23; 25; 27;
33; 35; 36; 43; 8], on the imaginary axis [21; 20; 22; 26; 43; 32; 46], or in a disk of
the form |z+w| ≤ w [15; 46]. Many results and optimal polynomials, both exact
and numerical, are available for these cases. Some authors have considered the
solution of Problem 1 for other spectra corresponding to PDE semidiscretizations
[17; 31; 38; 26; 28; 39].

Two very recent works serve to illustrate both the progress that has been made
in solving these problems with nonlinear programming, and the challenges that re-
main. In [39], optimal schemes are sought for integration of discontinuous Galerkin
discretizations of wave equations, where the optimality criteria considered include
both accuracy and stability measures. The approach used there is based on sequen-
tial quadratic programming (local optimization) with many initial guesses. The
authors consider methods of at most fourth order and situations with s − p ≤ 4
“because the cost of the optimization procedure becomes prohibitive for a higher
number of free parameters.” In [28], optimally stable polynomials are found for
certain spectra of interest for 2 ≤ p ≤ 4 and (in a remarkable feat!) s as large
as 14. The new methods obtained achieve a 40–50% improvement in efficiency for
discontinuous Galerkin integration of the 3D Maxwell equations. The optimization
approach employed therein is again a direct search algorithm that does not guaran-
tee a globally optimal solution but “typically converges. . . within a few minutes”.
However, it was apparently unable to find solutions for s > 14 or p > 4. The
method we present in the next section can rapidly find solutions for significantly
larger values of s, p, and is provably globally convergent under certain assumptions
(introduced in Section 2).

In the remainder of this section, we review the stability concepts for Runge–
Kutta methods and formulate the stability optimization problem. Our optimization
approach, described in Section 2, is based on reformulating the stability optimiza-
tion problem in terms of a sequence of convex subproblems and using bisection. We
examine the theoretical properties of the proposed algorithm and prove its global
convergence for two important cases.

A key element of our optimization algorithm is the use of numerical convex
optimization techniques. We avoid a poorly conditioned numerical formulation
by posing the problem in terms of a polynomial basis that is well-conditioned
when sampled over a particular region of the complex plane. These numerical
considerations, which become particularly important when the number of stages
of the method is allowed to be very large, are discussed in Section 3.

In Section 4 we apply our algorithm to several examples of complex spectra.
Cases where optimal results are known provide verification of the algorithm, and
many new or improved results are provided.
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Determination of the stability polynomial is only half of the puzzle of designing
optimal explicit Runge–Kutta methods. The other half is the determination of
the Butcher coefficients. While simply finding methods with a desired stability
polynomial is straightforward, many additional challenges arise in that context; for
instance, additional nonlinear order conditions, internal stability, storage, and em-
bedded error estimators. All of these concerns can be dealt with using the software
package RK-opt [19], which also includes the algorithm presented herein. The
development of full Runge–Kutta methods based on optimal stability polynomials,
using the present approach and additional tools from RK-opt, is conducted in [30].

1.1. The stability polynomial. A linear, constant-coefficient initial value problem
takes the form

u′(t)= Lu, u(0)= u0, (1)

where u(t) : R→ RN and L ∈ RN×N . When applied to the linear IVP (1), any
Runge–Kutta method reduces to an iteration of the form

un = R(hL)un−1, (2)

where h is the step size and un is a numerical approximation to u(nh). The stability
function R(z) depends only on the coefficients of the Runge–Kutta method; see [9,
Section 4.3], [6], [12]. In general, the stability function of an s-stage explicit
Runge–Kutta method is a polynomial of degree s

R(z)=
s∑

j=0

a j z j . (3)

Recall that the exact solution of (1) is u(t) = exp(t L)u0. Thus, if the method is
accurate to order p, the stability polynomial must be identical to the exponential
function up to terms of at least order p:

a j =
1
j !

for 0≤ j ≤ p. (4)

1.2. Absolute stability. The stability polynomial governs the local propagation of
errors, since any perturbation to the solution will be multiplied by R(z) at each
subsequent step. The propagation of errors thus depends on ‖R(hL)‖, which leads
us to define the absolute stability region

S = {z ∈ C : |R(z)| ≤ 1}. (5)

For example, the stability region of the classical fourth-order method is shown in
Figure 1(b).
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given an initial value problem (1), let 3 ∈ C denote the spectrum of the matrix
L . We say the iteration (2) is absolutely stable if

hλ ∈ S for all λ ∈3. (6)

Condition (6) implies that un remains bounded for all n. More importantly, (6) is
a necessary condition for stable propagation of errors. Thus the maximum stable
step size is given by

hstable =max{h ≥ 0 : |R(hλ)| ≤ 1 for λ ∈3}. (7)

Note that for nonnormal L , it may be important to consider the pseudospectrum
rather than the spectrum; see Section 4.3.

As an example, consider the advection equation

∂

∂t
u(x, t)+

∂

∂x
u(x, t)= 0, x ∈ (0,M),

discretized in space by first-order upwind differencing with spatial mesh size 1x

U ′i (t)=−
Ui (t)−Ui−1(t)

1x
, 0≤ i ≤ N ,

with periodic boundary condition U0(t) = UN (t). This is a linear IVP (1) with
L a circulant bidiagonal matrix. The eigenvalues of L are plotted in Figure 1(a)
for 1x = 1, N = M = 20. To integrate this system with the classical fourth-order
Runge–Kutta method, the time step size must be taken small enough that the scaled
spectrum {hλi } lies inside the stability region. Figure 1(c) shows the (maximally)
scaled spectrum superimposed on the stability region.
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Figure 1. (a) Spectrum of first-order upwind difference matrix using N = 20 points in space.
(b) Stability region of the classical fourth-order Runge–Kutta method. (c) Scaled spectrum
hλ with h = 1.39. (d) Scaled spectrum hλ for optimal ten-stage method with h = 6.54.
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The motivation for this work is that a larger stable step size can be obtained by
using a Runge–Kutta method with a larger region of absolute stability. Figure 1(d)
shows the stability region of an optimized ten-stage Runge–Kutta method of order
four that allows a much larger step size. The ten-stage method was obtained using
the technique that is the focus of this work. Since the cost of taking one step is
typically proportional to the number of stages s, we can compare the efficiency of
methods with different numbers of stages by considering the effective step size h/s.
Normalizing in this manner, it turns out that the ten-stage method is nearly twice
as fast as the traditional four-stage method.

1.3. Design of optimal stability polynomials. We now consider the problem of
choosing a stability polynomial so as to maximize the step size under which given
stability constraints are satisfied. The objective function f (x) is simply the step
size h. The stability conditions yield nonlinear inequality constraints. Typically
one also wishes to impose a minimal order of accuracy. The monomial basis
representation (3) of R(z) is then convenient because the first p+ 1 coefficients
{a0, a1, . . . , ap} of the stability polynomial are simply taken to satisfy the order
conditions (4). As a result, the space of decision variables has dimension s+ 1− p,
and is comprised of the coefficients {ap+1, ap+2, . . . , as}, as well as the step size
h. Then the problem can be written as

Problem 1 (stability optimization). Given 3⊂ C, order p, and number of stages
s,

maximize
ap+1,ap+2,...,as ,h

h

subject to |R(hλ)| − 1≤ 0 for all λ ∈3.

We use Hopt to denote the solution of Problem 1 (the optimal step size) and Ropt

to denote the optimal polynomial.
The set 3 may be finite, corresponding to a finite-dimensional ODE system

or PDE semidiscretization, or infinite (but bounded), corresponding to a PDE or
perhaps its semidiscretization in the limit of infinitesimal mesh width. In the latter
case, Problem 1 is a semi-infinite program (SIP). In Section 4 we approach this by
using a finite discretization of 3; for a discussion of this and other approaches to
semi-infinite programming, see [13].

2. An efficient algorithm for design of globally optimal stability polynomials

Evidently, finding the global solution of Problem 1 is in general quite challenging.
Although sophisticated optimization algorithms such as the interior point method
can guarantee polynomial time solutions to convex problems, and convex program-
ming techniques are valuable in efficiently seeking minima, the stability constraints
in Problem 1 are nonconvex. As a result, suboptimal local minima may exist and
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certificates of optimality may require either approximations to the solution of the
problem or greater than polynomial time. See [5] for an overview of convex opti-
mization programming techniques, and [29] for an introduction to approximation
algorithms and local search heuristics for nonconvex problems.

2.1. Reformulation in terms of the least deviation problem. The primary theoret-
ical advance leading to the new results in this paper is a reformulation of Problem 1.
Note that Problem 1 is nonconvex for s > 2 since R(hλ) is a nonconvex function
in h.

Instead of asking for the maximum stable step size we now ask, for a given
step size h, how small the maximum modulus of R(hλ) can be. This leads to a
generalization of the classical least deviation problem.

Problem 2 (least deviation). Given 3⊂ C, h ∈ R+ and p, s ∈ N

minimize
ap+1,ap+2,...,as

max
λ∈3

(
|R(hλ| − 1

)
.

We denote the solution of Problem 2 by rp,s(h,3), or simply r(h,3). Note
that |R(z)| is convex with respect to a j , since R(z) is linear in the a j . Therefore,
Problem 2 is convex. Problem 1 can be formulated in terms of Problem 2:

Problem 3 (reformulation of Problem 1). Given 3⊂ C, and p, s ∈ N,

maximize
ap+1,ap+2,...,as

h

subject to rp,s(h,3)≤ 0.

2.2. Solution via bisection. Although Problem 3 is not known to be convex, it is
an optimization in a single variable. It is natural then to apply a bisection approach,
as outlined in Algorithm 1.

Algorithm 1 (simple bisection).
Select hmax (see Section 2.3)
hmin = 0
while hmax− hmin > ε do

h = (hmax+ hmin)/2
Solve Problem 2
if rp,s(h,3)≤ 0 then

hmin = h
else

hmax = h
end if

end while
return Hε = hmin
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Since r(0,3)=−1 and limh→∞ r(h,3)=+∞, then there exists hmax > 0 such
that r(h,3)= 0 for some h ∈ [hmin, hmax]. Global convergence of the algorithm
is assured only if the following condition holds:

rp,s(h0,3)= 0 =⇒ rp,s(h,3)≤ 0 for all 0≤ h ≤ h0. (8)

We now consider conditions under which condition (8) can be established. We
have the following important case.

Theorem 1 (global convergence when p = 1). Let p = 1, 3 ⊂ C and s ≥ 1.
Take hmax large enough so that r(hmax,3) > 0. Let Hopt denote the solution of
Problem 1. Then the output of Algorithm 1 satisfies

lim
ε→0

Hε = Hopt.

Proof. Since r(0,3)= 0< r(hmax,3) and r(h,3) is continuous in h, it is sufficient
to prove that condition (8) holds. We have |Ropt(Hoptλ)| ≤ 1 for all λ ∈3. We will
show that there exists Rµ(z)=

∑s
j=0 a j (µ)z j such that a0 = a1 = 1 and

|Rµ(µHoptλ)| ≤ 1 for all λ ∈3 and 0≤ µ≤ 1.

Let â j be the coefficients of the optimal polynomial:

Ropt(z)= 1+ z+
s∑

j=2

â j z j ,

and set
a j (µ)= µ

1− j â j .

Then

Rµ(µHoptλ)= 1+µHoptλ+

s∑
j=2

µ1− j â jµ
j H j

optλ
j
= 1+µ

( s∑
j=1

â j H j
optλ

j
)

= 1+µ(Ropt(Hoptλ)− 1),

where we have defined â1 = 1. Define gλ(µ)= Rµ(µHoptλ). Then gλ(µ) is linear
in µ and has the property that, for λ ∈ 3, |gλ(0)| = 1 and |gλ(1)| ≤ 1 (by the
definition of Hopt, Ropt). Thus by convexity |g(µ)| ≤ 1 for 0≤ µ≤ 1. �

For p > 1, condition (8) does not necessarily hold. For example, take s = p = 4;
then the stability polynomial (3) is uniquely defined as the degree-four Taylor ap-
proximation of the exponential, corresponding to the classical fourth-order Runge–
Kutta method that we saw in the introduction. Its stability region is plotted in
Figure 1(b). Taking, e.g., λ= 0.21+ 2.3i , one finds |R(λ)|< 1 but |R(λ/2)|> 1.
Although this example shows that Algorithm 1 might formally fail, it concerns
only the trivial case s = p in which there is only one possible choice of stability
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polynomial. We have searched without success for a situation with s > p for which
condition (8) is violated.

2.3. Selection of hmax. The bisection algorithm requires as input an initial hmax

such that r(hmax,3) > 0. Theoretical values can be obtained using the classical
upper bound of 2s2/x if3 encloses a negative real interval [x, 0], or using the upper
bound given in [34] if 3 encloses an ellipse in the left half-plane. Alternatively,
one could start with a guess and successively double it until r(hmax,3) > 0 is
satisfied. Since evaluation of r(h,3) is typically quite fast, finding a tight initial
hmax is not an essential concern.

2.4. Convergence for starlike regions. In many important applications the rele-
vant set 3 is an infinite set; for instance, if we wish to design a method for some
PDE semidiscretization that will be stable for any spatial discretization size. In
this case, Problem 1 is a semi-infinite program (SIP) as it involves infinitely many
constraints. Furthermore, 3 is often a closed curve whose interior is starlike with
respect to the origin; for example, upwind semidiscretizations of hyperbolic PDEs
have this property. Recall that a region S is starlike if t ∈ S implies µt ∈ S for all
0≤ µ≤ 1.

Lemma 1. Let 3 ∈ C be a closed curve passing through the origin and enclosing
a starlike region. Let r(h,3) denote the solution of Problem 2. Then condition (8)
holds.

Proof. Let 3 be as stated in the lemma. Suppose r(h0,3) = 0 for some h0 > 0;
then there exists R(z) such that |R(hλ)| ≤ 1 for all λ ∈ 3. According to the
maximum principle, the stability region of R(z) must contain the region enclosed
by 3. Choose h such that 0 ≤ h ≤ h0; then h3 lies in the region enclosed by 3,
so |R(hλ)| ≤ 1 for λ ∈3. �

The proof of Lemma 1 relies crucially on 3 being an infinite set, but in practice
we numerically solve Problem 2 with only finitely many constraints. To this end
we introduce a sequence of discretizations 3n with the following properties:

1. 3n ⊂3.

2. n1 ≤ n2 =⇒3n1 ⊂3n2 .

3. limn→∞3n =3.

4. limn→∞ νn = 0 where νn denotes the maximum distance from a point in 3 to
the set 3n:

νn =max
γ∈3

min
λ∈3n
|γ − λ|.

For instance, 3n can be taken as an equispaced (in terms of arc-length, say) sam-
pling of n points.
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By modifying Algorithm 1, we can approximate the solution of the semi-infinite
programming problem for starlike regions to arbitrary accuracy. At each step we
solve Problem 2 with 3n replacing 3. The key to the modified algorithm is to only
increase hmin after obtaining a certificate of feasibility. This is done by using the
Lipschitz constant of R(z) over a domain including h3 (denoted by L(R, h3)) to
ensure that |R(h3)| ≤ 1. The modified algorithm is stated as Algorithm 2.

Algorithm 2 (bisection for SIP).
hmin = 0
hmax = 2s2/max |λ|
n = n0

while hmax− hmin > ε do
h = (hmax+ hmin)/2 F Bisect
Solve Problem 2
if r(h,3n) < 0 and νn <−2r/L(R, h3) then F Certifies that r(h,3) < 0

hmin = h
else if r(h,3n) > 0 then F Certifies that r(h,3) > 0

hmax = h
else F r(h,3n)≤ 0

n← 2n F Reduce the discretization spacing
end if

end while
return Hε = hmin

The following lemma, which characterizes the behavior of Algorithm 2, holds
whether or not the interior of 3 is starlike.

Lemma 2. Let h[k] denote the value of h after k iterations of the loop in Algorithm 2.
Then either

• Algorithm 2 terminates after a finite time with outputs satisfying r(hmin,3)≤ 0,
r(hmax,3) > 0; or

• there exists j <∞ such that r(h[ j],3)= 0 and h[k] = h[ j] for all j ≥ k.

Proof. First suppose that r(h[ j],3) = 0 for some j . Then neither feasibility nor
infeasibility can be certified for this value of h, so h[k] = h[ j] for all j ≥ k.

On the other hand, suppose that r(h[k],3) 6= 0 for all k. The algorithm will
terminate as long as, for each h[k], either feasibility or infeasibility can be certified
for large enough n. If r(h[k],3) > 0, then necessarily r(h[k],3n) > 0 for large
enough n, so infeasibility will be certified. We will show that if r(h[k],3) < 0,
then for large enough n the condition

νn <−2r/L(R, h3) (9)
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must be satisfied. Since r(h,3n) ≤ r(h,3) is bounded away from zero and
limn→∞ νn = 0, (9) must be satisfied for large enough n unless the Lipschitz con-
stant L(R, h3) is unbounded (with with respect to n) for some fixed h. Suppose
by way of contradiction that this is the case, and let R[1], R[2], . . . denote the
corresponding sequence of optimal polynomials. Then the norm of the vector of
coefficients a[i]j appearing in R[i] must also grow without bound as i →∞. By
Lemma 3, this implies that |R[i](z)| is unbounded except for at most s points z ∈ C.
But this contradicts the condition |R[i](hλ)| ≤ 1 for λ ∈3n when n > s. Thus, for
large enough n we must have νn <−2r/L(R, h3). �

In practical application, r(h,3) = 0 will not be detected, due to numerical
errors; see Section 3.1. For this reason, in the next theorem we simply assume that
Algorithm 2 terminates. We also require the following technical result.

Lemma 3. Let R[1], R[2], . . . be a sequence of polynomials of degree at most s
(s ∈ N fixed) and denote the coefficients of R[i] by a[i]j ∈ C (i ∈ N, 0≤ j ≤ s):

R[i](z)=
s∑

j=0

a[i]j z j , z ∈ C.

Further, let a[i] := (a[i]0 , a[i]1 , . . . , a[i]s )
T and suppose that the sequence ‖a[i]‖ is

unbounded in R. Then the sequences R[i](z) are unbounded for all but at most s
points z ∈ C.

Proof. Suppose to the contrary there are s + 1 distinct complex numbers, say,
z0, z1, . . . , zs such that the vectors ri := (R[i](z0), R[i](z1), . . . , R[i](zs))

T (i ∈ N)
are bounded in Cs+1. Let V denote the (s + 1)× (s + 1) Vandermonde matrix
whose kth row (0 ≤ k ≤ s + 1) is (1, zk, z2

k, . . . , zs
k). Then V is invertible and we

have a[i] = V−1ri (i ∈ N), so if |||·||| denotes the induced matrix norm, then

‖a[i]‖ = ‖V−1ri‖ ≤ |||V−1
||| ‖ri‖.

But, by assumption, the right side is bounded, whereas the left side is not. �

Theorem 2 (global convergence for strictly starlike regions). Let 3 be a closed
curve that encloses a region that is starlike with respect to the origin. Suppose that
Algorithm 2 terminates for all small enough ε, and let Hε denote the value returned
by Algorithm 2 for a given ε. Let Hopt denote the solution of Problem 1. Then

lim
ε→0

Hε = Hopt.

Proof. Due to the assumptions and Lemma 2, we have that r(hmin,3) < 0 <
r(hmax,3). Then Lemma 1 implies that hmin < Hopt < hmax. Noting that also
hmax− hmin < ε, the result follows. �
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Despite the lack of a general global convergence proof, Algorithm 1 works very
well in practice even for general 3 when p > 1. In all cases we have tested and
for which the true Hopt is known (see Section 4), Algorithm 1 appears to converge
to the globally optimal solution. Furthermore, Algorithm 1 is very fast. For these
reasons, we consider the (much slower) Algorithm 2 to be of primarily theoretical
interest, and we base our practical implementation on Algorithm 1.

3. Numerical implementation

We have made a prototype implementation of Algorithm 1 in Matlab. The imple-
mentation relies heavily on the CVX package [11; 10], a Matlab-based modeling
system for convex optimization, which in turn relies on the interior-point solvers
SeDuMi [37] and SDPT3 [42]. The least deviation problem (Problem 2) can be
succinctly stated in four lines of the CVX problem language, and for many cases
is solved in under a second by either of the core solvers.

Our implementation re-attempts failed solves (see Section 3.2) with the alternate
interfaced solver. In our test cases, we observed that the SDPT3 interior-point
solver was slower, but more robust than SeDuMi. Consequently, our prototype
implementation uses SDPT3 by default.

Using the resulting implementation, we were able to successfully solve problems
to within 0.1% accuracy or better with scaled eigenvalue magnitudes |hλ| as large
as 4000. As an example, comparing with results of [4] for spectra on the real axis
with p = 3, s = 27, our results are accurate to 6 significant digits.

3.1. Feasibility threshold. In practice, CVX often returns a small positive objec-
tive (r ≈ 10−7) for values of h that are just feasible. Hence the bisection step is
accepted if r < ε where ε� 1. The results are generally insensitive (up to the first
few digits) to the choice of ε over a large range of values; we have used ε = 10−7

for all results in this work. The accuracy that can be achieved is eventually limited
by the need to choose a suitable value ε.

3.2. Conditioning and change of basis. Unfortunately, for large values of hλ, the
numerical solution of Problem 2 becomes difficult due to ill-conditioning of the
constraint matrix. Observe from (3) that the constrained quantities R(hλ) are re-
lated to the decision variables a j through multiplication by a Vandermonde matrix.
Vandermonde matrices are known to be ill-conditioned for most choices of abscis-
sas. For very large hλ, the resulting CVX problem cannot be reliably solved by
either of the core solvers.

A first approach to reducing the condition number of the constraint matrix is
to rescale the monomial basis. We have found that a more robust approach for
many types of spectra can be obtained by choosing a basis that is approximately
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orthogonal over the given spectrum {3}. Thus we seek a solution of the form

R(z)=
s∑

j=0

a j Q j (z), where Q j (z)=
j∑

k=0

b jkzk . (10)

Here Q j (z) is a degree- j polynomial chosen to give a well-conditioned constraint
matrix. The drawback of not using the monomial basis is that the dimension of
the problem is s + 1 (rather than s + 1− p) and we must now impose the order
conditions explicitly:

s∑
j=0

a j b jk =
1
k!

for k = 0, 1, . . . , p. (11)

Consequently, using a nonmonomial basis increases the number of design variables
in the problem and introduces an equality constraint matrix B ∈ Rp×s that is rela-
tively small (when p� s), but usually very poorly conditioned. However, it can
dramatically improve the conditioning of the inequality constraints.

The choice of the basis Q j (z) is a challenging problem in general. In the
special case of a negative real spectrum, an obvious choice is the Chebyshev
polynomials (of the first kind) T j , shifted and scaled to the domain [hx, 0] where
x =minλ∈3 Re(λ), via an affine map:

Q j (z)= T j

(
1+

2z
hx

)
. (12)

The motivation for using this basis is that |Q j (hλ)| ≤ 1 for all λ ∈ [hx, 0]. This
basis is also suggested by the fact that Q j (z) is the optimal stability polynomial
in terms of negative real axis inclusion for p = 1, s = j . In Section 4, we will
see that this choice of basis works well for more general spectra when the largest
magnitude eigenvalues lie near the negative real axis.

As an example, we consider a spectrum of 3200 equally spaced values λ in the
interval [−1, 0]. Figure 2 shows the relative error as well as the condition number
of the 3200× s inequality constraint matrix obtained by using the monomial (3)
and Chebyshev (12) bases for p = 1 and s ranging from 2 through 50. The optimal
objective value is h = 2s2, and the condition number of the inequality constraint
matrix is measured for the feasibility problem at this value. The condition number
of the monomial basis scales exponentially, while the condition number of the
Chebyshev basis constraint matrix has a weak linear dependence on s. Typically,
the solver is accurate until the condition number reaches about 1016. This supports
the hypothesis that it is the conditioning of the inequality constraint matrix that
leads to failure of the solver. The Chebyshev basis keeps the condition number
small and yields accurate answers even for very large values of h.
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Figure 2. Condition number of principal constraint matrix and relative solution accuracy
versus optimal step size. The points along a given curve correspond to different choices of
s. The values plotted correspond to s = 2, 3, . . . , 9, 10, 15, 20, . . . , 45, 50 and a spectrum
of 3200 equally spaced values in the interval [−1, 0]. The constraint matrix is formed
using the optimal value h = 2s2. The Chebyshev basis keeps the condition number small
and yields accurate answers even for very large values of h.

4. Examples

We now demonstrate the effectiveness of our algorithm by applying it to determine
optimally stable polynomials (i.e., solve Problem 1) for various types of spectra.
As stated above, we use Algorithm 1 for its simplicity, speed, and effectiveness.
When 3 corresponds to an infinite set, we approximate it by a fine discretization.

4.1. Verification. In this section, we apply our algorithm to some well-studied
cases with known exact or approximate results in order to verify its accuracy and
correctness. In addition to the real axis, imaginary axis, and disk cases below, we
have successfully recovered the results of [28]. Our algorithm succeeds in finding
the globally optimal solution in every case for which it is known, except in some
cases of extremely large step sizes for which the underlying solvers (SDPT3 and
SeDuMi) eventually fail.

Negative real axis inclusion. Here we consider the largest h such that [−h, 0] ∈ S
by taking 3= [−1, 0]. This is the most heavily studied case in the literature, as it
applies to the semidiscretization of parabolic PDEs and a large increase of Hopt is
possible when s is increased (see, e.g., [33; 44; 27; 4; 35]). For first-order accurate
methods (p = 1), the optimal polynomials are just shifted Chebyshev polynomials,
and the optimal timestep is Hopt = 2s2. Many special analytical and numerical
techniques have been developed for this case; the most powerful seems to be that
of Bogatyrev [4].

We apply our algorithm to a discretization of 3 (using 6400 evenly spaced
points) and using the shifted and scaled Chebyshev basis (12). Results for up
to s = 40 are shown in Table 1 (note that we list Hopt/s2 for easy comparison,
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Hopt/s2

Stages p = 1 p = 2 p = 3 p = 4 p = 10

1 2.000
2 2.000 0.500
3 2.000 0.696 0.279
4 2.000 0.753 0.377 0.174
5 2.000 0.778 0.421 0.242
6 2.000 0.792 0.446 0.277
7 2.000 0.800 0.460 0.298
8 2.000 0.805 0.470 0.311
9 2.000 0.809 0.476 0.321

10 2.000 0.811 0.481 0.327 0.051
15 2.000 0.817 0.492 0.343 0.089
20 2.000 0.819 0.496 0.349 0.120
25 2.000 0.820 0.498 0.352 0.125
30 2.001 0.821 0.499 0.353 0.129
35 2.000 0.821 0.499 0.354 0.132
40 2.000 0.821 0.500 0.355 0.132

Table 1. Scaled size of real axis interval inclusion for optimized methods.

since Hopt is approximately proportional to s2 in this case). We include results
for p = 10 to demonstrate the algorithm’s ability to handle high-order methods.
For p = 1 and 2, the values computed here match those available in the literature
[43]. Most of the values for p = 3, 4 and 10 are new results. Figure 3 shows some
examples of stability regions for optimal methods. As observed in the literature,
it seems that Hopt/s2 tends to a constant (that depends only on p) as s increases.
For large values of s, some results in the table have an error of about 10−3 due to
inaccuracies in the numerical results provided by the interior point solvers.

Imaginary axis inclusion. Next we consider the largest h such that [−ih, ih] ∈ S
by taking 3= xi, x ∈ [−1, 1]. Optimal polynomials for imaginary axis inclusion

140 120 100 80 60 40 20 0
10

0

10

p = 4

s = 20

140 120 100 80 60 40 20 0
10

0

10

p = 10

s = 20

Figure 3. Stability regions of some optimal methods for real axis inclusion.
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Hopt/s
Stages p = 1 p = 2 p = 3 p = 4

2 0.500
3 0.667 0.667 0.577
4 0.750 0.708 0.708 0.707
5 0.800 0.800 0.783 0.693
6 0.833 0.817 0.815 0.816
7 0.857 0.857 0.849 0.813
8 0.875 0.866 0.866 0.866
9 0.889 0.889 0.884 0.864

10 0.900 0.895 0.895 0.894
15 0.933 0.933 0.932 0.925
20 0.950 0.949 0.949 0.949
25 0.960 0.960 0.959 0.957
30 0.967 0.966 0.966 0.966
35 0.971 0.971 0.971 0.970
40 0.975 0.975 0.975 0.975
45 0.978 0.978 0.978 0.977
50 0.980 0.980 0.980 0.980

Table 2. Scaled size of imaginary axis inclusion for optimized methods.

have also been studied by many authors, and a number of exact results are known
or conjectured [43; 46; 20; 21; 22; 44]. We again approximate the problem, taking
N = 3200 evenly spaced values in the interval [0, i] (note that stability regions are
necessarily symmetric about the real axis since R(z) has real coefficients). We use
a “rotated” Chebyshev basis defined by

Q j (z)= i j T j

(
i z
hx

)
,

where x =maxi (| Im(λi )|). Like the Chebyshev basis for the negative real axis, this
basis dramatically improves the robustness of the algorithm for imaginary spectra.
Table 2 shows the optimal effective step sizes. In agreement with [43; 21], we find
H = s−1 for p= 1 (all s) and for p= 2 (s odd). We also find H = s−1 for p= 1
and s even, which was conjectured in [46] and confirmed in [44]. We find

Hopt =
√

s(s− 2)

for p = 2 and s even, strongly suggesting that the polynomials given in [20] are
optimal for these cases; on the other hand, our results show that those polynomials,
while third order accurate, are not optimal for p = 3 and s odd. Figure 4 shows
some examples of stability regions for optimal methods.
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Figure 4. Stability regions of some optimal methods for imaginary axis inclusion.

Disk inclusion. In the literature, attention has been paid to stability regions that
include the disk

D(h)= {z : |1+ z/h| ≤ 1}, (13)

for the largest possible h. As far as we know, the optimal result for p= 1 (Hopt= s)
was first proved in [15]. The optimal result for p= 2 (Hopt= s−1) was first proved
in [46]. Both results have been unwittingly rediscovered by later authors. For p> 2,
no exact results are available.

We use the basis

Q j (z)=
(

1+
z
h

) j
.

Note that Q j (z) is the optimal polynomial for the case s = j , p= 1. This basis can
also be motivated by recalling that Vandermonde matrices are perfectly conditioned
when the points involved are equally spaced on the unit circle. Our basis can be
obtained by taking the monomial basis and applying an affine transformation that
shifts the unit circle to the disk (13). This basis greatly improves the robustness of
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Figure 5. Relative size of largest disk that can be included in the stability region (scaled
by the number of stages).
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Figure 6. Stability regions of some optimal methods for disk inclusion.

the algorithm for this particular spectrum. We show results for p ≤ 4 in Figure 5.
For p = 3 and s = 5, 6, our results give a small improvement over those of [16].
Some examples of optimal stability regions are plotted in Figure 6.

4.2. Spectrum with a gap. We now demonstrate the effectiveness of our method
for more general spectra. First we consider the case of a dissipative problem with
two time scales, one much faster than the other. This type of problem was the
motivation for the development of projective integrators in [8]. Following the ideas
outlined there we consider

3= {z : |z| = 1,R(z)≤ 0} ∪ {z : |z−α| = 1}. (14)

We take α = 20 and use the shifted and scaled Chebyshev basis (12). Results are
shown in Figures 7 and 8. A dramatic increase in efficiency is achieved by adding
a few extra stages.

Figure 7. Optimal effective step size for spectrum with a gap (14) with α = 20.
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Figure 8. Optimal stability region for p = 1, s = 6, α = 20 (stable step size ≈ 1.975).

4.3. Legendre pseudospectral discretization. Next we consider a system obtained
from semidiscretization of the advection equation on the interval [−1, 1] with ho-
mogeneous Dirichlet boundary condition:

ut = ux , u(t, x = 1)= 0.

The semidiscretization is based on pseudospectral collocation at points given by
the zeros of the Legendre polynomials; we take N = 50 points. The semidiscrete
system takes the form (1), where L is the Legendre differentiation matrix, whose
eigenvalues are shown in Figure 9(a). We compute an optimally stable polynomial
based on the spectrum of the matrix, taking s = 7 and p = 1. The stability region
of the resulting method is plotted in Figure 9(c). Using an appropriate step size,
all the scaled eigenvalues of L lie in the stability region. However, this method is
unstable in practice for any positive step size; Figure 9(e) shows an example of a
computed solution after three steps, where the initial condition is a Gaussian. The
resulting instability is nonmodal, meaning that it does not correspond to any of the
eigenvectors of L (compare [41, Figure 31.2]).

This discretization is now well-known as an example of nonnormality [41, Chap-
ters 30–32]. Due to the nonnormality, it is necessary to consider pseudospectra in
order to design an appropriate integration scheme. The ε-pseudospectrum (see
[41]) is the set

{z ∈ C : ‖(z I − L)−1
‖2 > 1/ε}.

The ε-pseudospectrum (for ε= 2) is shown with the eigenvalues in Figure 9(b); note
that the pseudospectrum includes small islands around the isolated eigenvalues,
though they are not visible at the scale plotted. The instability observed above
occurs because the stability region does not contain an interval on the imaginary
axis about the origin, whereas the pseudospectrum includes such an interval.

We now compute an optimally stable integrator based on the 2-pseudospectrum.
This pseudospectrum is computed using an approach proposed in [40, Section 20],
with sampling on a fine grid. In order to reduce the number of constraints and
speed up the solution, we compute the convex hull of the resulting set and apply
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Figure 9. Results for the Legendre differentiation matrix with N = 50. Top row: eigenval-
ues (a) and eigenvalues with pseudospectrum (b). The boundary of the 2-pseudospectrum
is plotted. Middle row: Optimized stability region based on eigenvalues (c) and on the
pseudospectrum (d). Bottom row: Solution computed with method based on spectrum (e)
and with method based on pseudospectrum (f).
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our algorithm. The resulting stability region is shown in Figure 9(d). It is remark-
ably well adapted; notice the two isolated roots that ensure stability of the modes
corresponding to the extremal imaginary eigenvalues. We have verified that this
method produces a stable solution, in agreement with theory (see Chapter 32 of
[41]); Figure 9(f) shows an example of a solution computed with this method. The
initial Gaussian pulse advects to the left.

4.4. Thin rectangles. A major application of explicit Runge–Kutta methods with
many stages is the solution of moderately stiff advection-reaction-diffusion prob-
lems [14; 45]. For such problems, the stability region must include not only a large
interval on the negative real axis, but also some region around it, due to convective
terms. If centered differences are used for the advective terms, it is natural to
require that a small interval on the imaginary axis be included. Hence, one may be
interested in methods that contain a rectangular region

3κ = {λ ∈ C : −β ≤ Im(λ)≤ β, −κ ≤ Re(λ)≤ 0}. (15)

for given κ, β. Most methods in the literature do not satisfy this requirement (with
the notable exception of those in [47]. Most available approaches for devising
methods with extended real axis stability (including those of [38]) cannot be ap-
plied to such regions. Because of this, most existing methods are applicable only
if upwind differencing is applied to convective terms [45; 38].

For this example, rather than parametrizing by the step size h, we assume that
a desired step size h and imaginary axis limit β are given based on the convective
terms, which generally require small step sizes for accurate resolution. We seek to
find (for given s, p) the polynomial (3) that includes 3κ for κ as large as possible.
This could correspond to selection of an optimal integrator based on the ratio of
convective and diffusive scales (roughly speaking, the Reynolds number). Since
the desired stability region lies relatively near the negative real axis, we use the
shifted and scaled Chebyshev basis (12).

Stability regions of some optimal methods are shown in Figure 10. The out-
line of the included rectangle is superimposed in black. The stability region for
β = 10, s = 20, shown in Figure 10 is especially interesting as it is very nearly
rectangular. A closeup view of the upper boundary is shown in Figure 11. These
regions appear to satisfy the hypothesis stated in [38] that their boundary is tangent
to the prescribed boundary at s− p points in the upper half plane.

5. Discussion

The approach described here can speed up the integration of IVPs for which

• explicit Runge–Kutta methods are appropriate;
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Figure 11. Closeup view of upper boundary of the rectangular stability region plotted in Figure 10.

• the spectrum of the problem is known or can be approximated; and

• stability is the limiting factor in choosing the step size.

Although we have considered only linear initial value problems, we expect our
approach to be useful in designing integrators for nonlinear problems via the usual
approach of considering the spectrum of the Jacobian. A first successful application
of our approach to nonlinear PDEs appears in [30].
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The amount of speedup depends strongly on the spectrum of the problem, and
can range from a few percent to several times or more. Based on past work and on
results presented in Section 4, we expect that the most substantial gains in efficiency
will be realized for systems whose spectra have large negative real parts, such as for
semidiscretization of PDEs with significant diffusive or moderately stiff reaction
components. As demonstrated in Section 4, worthwhile improvements may also be
attained for general systems, and especially for systems whose spectrum contains
gaps.

The work presented here suggests several extensions and areas for further study.
For very high polynomial degree, the convex subproblems required by our algo-
rithm exhibit poor numerical conditioning. We have proposed a first improvement
by change of basis, but further improvements in this regard could increase the
robustness and accuracy of the algorithm. It seems likely that our algorithm ex-
hibits global convergence in general circumstances beyond those for which we
have proven convergence. The question of why bisection seems to always lead
to globally optimal solutions merits further investigation. While we have focused
primarily on design of the stability properties of a scheme, the same approach
can be used to optimize accuracy efficiency, which is a focus of future work. Our
algorithm can also be applied in other ways; for instance, it could be used to impose
a specific desired amount of dissipation for use in multigrid or as a kind of filtering.

One of the most remarkable aspects of our algorithm is its speed, which opens
up the potential for a new kind of adaptive time stepping in which the time inte-
gration method itself is designed on-the-fly during the computation. For nonlinear
problems, the method could be adapted, for instance, when a significant change in
the spectrum of the linearized semidiscretization is detected. Whereas traditional
automatic integrators dynamically adjust the step size and scheme order, choosing
from a small set of preselected methods, our algorithm could be used as the basis for
an implementation that also automatically adjusts details of the stability polynomial
at each step. Practical implementation of this idea is dependent on the ability to
efficiently approximate this spectrum and might require an implementation of our
algorithm in a compiled language.

The problem of determining optimal polynomials subject to convex constraints
is very general. Convex optimization techniques have already been exploited to
solve similar problems in filter design [7], and will likely find further applications
in numerical analysis.

Companion website

The codes used in producing the numerical results in this paper are available at
http://www.runmycode.org/CompanionSite/Site158 [18].

http://www.runmycode.org/CompanionSite/Site158
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