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ON THE ORIGIN OF DIVERGENCE ERRORS
IN MHD SIMULATIONS

AND CONSEQUENCES FOR NUMERICAL SCHEMES

FRIEDEMANN KEMM

This paper investigates the origin of divergence errors in MHD simulations. For
that purpose, we introduce the concept of discrete involutions for discretized
conservation laws. This is done in analogue to the concept of involutions for
hyperbolic conservation laws, introduced by Dafermos. By exploring the con-
nection between discrete involutions and resonance, especially for constrained
transport like MHD, we identify the lack of positive central viscosity and the
assumption of one-dimensional physics in the calculation of intercell fluxes as
the main sources of divergence errors. As an example of the consequences for
numerical schemes, we give a hint how to modify Roe-type schemes in order to
decrease the divergence errors considerably and, thus, stabilize the scheme.

1. Introduction

Hyperbolic conservation laws are usually equipped with additional conditions. Most
important is the existence of a convex entropy, which singles out the physical relevant
solution out of the large set of possible weak solutions. Sometimes, especially when
there is no convex entropy, or the system degenerates into a weakly or resonant
hyperbolic system, other laws have to be included to find physical solutions. In the
first case (convex entropy), the additional law is for an additional variable, namely
the entropy, which depends on the state variables, but is no state variable itself. In
the latter case, we have additional partial differential equations for the state variables
themselves. In the first case the additional law is a partial differential equation
or inequality of evolution type, usually a conservation law itself, in the second
it is a first-order nonevolutionary constraint. These additional constraints are, as
Dafermos points out [10; 9], involutions for the underlying system of conservation
laws. So the resulting system, which includes both, the evolution system and the
condition, has more equations than unknowns. If the involution is satisfied by the

MSC2010: primary 76W05, 39A12, 35L45, 35L65, 35L80; secondary 35N10, 65M06, 39A70,
65Z05.
Keywords: involutions, constraint, magnetohydrodynamics, plasma physics, Maxwell equations,
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2 FRIEDEMANN KEMM

initial state for the evolution equations, it is satisfied by the solution of the evolution
system for all times. Thus, in the continuous setting, the constraint is merely a
condition on the initial state.

These constraints play an important role in many branches of physics, the most
famous of which is the area of electromagnetic modeling and plasma physics.
Here we face constraints for the electric field as well as for the magnetic field. In
numerical simulations this may cause severe problems, because in general it is
impossible to reproduce these conditions exactly. This results in unphysical forces
and thus completely useless solutions [6; 36], especially in magnetohydrodynamics
(MHD). In MHD many codes fail completely. But this is not the case with all
numerical schemes.

First, there are approaches that are designed to model the constraint numerically.
Many of them are done on staggered grids [3; 4; 14]. Some newer approaches also
work on collocated grids [41; 43; 40; 31; 32; 33; 16; 15; 45] or in the context of
discontinuous Galerkin schemes [5]. Usually, this class of schemes is referred to as
constrained transport schemes.

A second family of schemes are based on a modification of the system of partial
differential equations which makes the constraint part of the evolution system itself.
In the context of plasma physics, a popular approach is to transport the involution
term, in this case the divergence of the magnetic field, with the flow velocity. This
was first suggested for numerical simulations by Brackbill and Barnes [6] and put
forward by employing Godunov’s full symmetrizable form1 of the MHD equations
[20] by Powell et al. [38; 39]. In [16; 15; 45], this approach is even combined
with constrained transport. Another possibility is to apply a kind of a generalized
Lagrange multiplier approach [36], a method which can show up in several variants:
resulting in a Hodge-projection scheme, resulting in a parabolic treatment of the
involution term as was suggested by Marder [30], resulting in a hyperbolic system —
the involution term is radiated with an artificial speed out of the computational
domain [35; 34] — or it results in a treatment of the involution in the manner of a
telegraph equation [12; 27]. (Crockett et al. [8] even combine the Marder approach
with a Hodge-projection method.) In the context of electromagnetic models and
plasma physics these approaches are usually referred to as divergence cleaning.

A third class is that of schemes that are stable without any modification or
special discretization technique. This is the case in many physical contexts. For
magnetohydrodynamics it is only reported very scarcely. But still there are some
examples: The scheme of Zachary, Malagoli and Colella [46], an upwind method,
published already in 1994, has this property. Another example is the scheme

1It is interesting to note that this form was first discovered by Godunov [20] as symmetrizable
form of MHD and then rediscovered by Powell et al. [38] as Galilean invariant form of MHD. Since it
has an entropy [20; 10], one would not need any involution for the system.
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presented by Balbás and Tadmor[2], which on the contrary is a central scheme.
They still need some intermediate cleaning steps to obtain physical relevant solutions,
but only at a few time steps in a long interval [46; 1]. Both schemes have in common
that they discretize the full equations, while most schemes, for the computation
of intercell fluxes, employ one-dimensional physics in the direction of the normal
of the cell face. This shows that there is something special in discretizing the
multidimensional equations directly.

Therefore, in this study, we push forward the investigations started in [25]
and take a closer look at involutions and their relation to constrained transport
and resonance. We also take a closer look at the discretization of conservation
laws in terms of finite differences for the partial derivatives in the equations. We
define discrete analogues of the most important types of involutions and look for
sufficient conditions for the existence of discrete involutions to a given discretized
conservation law. We single out a class of linear schemes for which the discrete
involutions are exact. We consider the interplay between discrete involutions and
resonance, and we study the role of central numerical viscosity and the assumption
of one-dimensional physics in the computation of intercell fluxes. As a result,
applying full physics in the computation of intercell fluxes and a suitable amount
of central viscosity on the resonant wave lead to a stable scheme also in the MHD
context. As an example, we show how to apply the Harten entropy fix in a smart
way to adjust the viscosity on the resonant wave. There are still some divergence
errors, but the work needed in divergence cleaning can be considerably reduced.

The plan of the paper is as follows. We start with an overview of the concept of
involutions and its connections to resonance and constrained transport. Section 3
presents a theory for discrete involutions. Also some standard schemes are investi-
gated whether they yield exact or only approximate involutions. The key is a shift
in the interpretation of numerical schemes. Some terms, traditionally considered
to be part of the spatial discretization, are identified to be essentially part of the
time discretization. This helps us in Section 4 to investigate the interplay between
discrete involutions, resonance, central numerical viscosity, and the assumption
of one-dimensional physics. Also we show numerical evidence of the theoretical
results (Section 4.4). In this course, we present, as an example, a modification of
the Roe-scheme which minimizes the production of divergence errors.

2. Hyperbolic conservation laws with involutions

2.1. Definition and a sufficient condition. Our starting point is the general conser-
vation law

qt +∇ · F(q)= 0, (1)

where q denotes the vector of conserved quantities and F = (F1, F2, . . . ) denotes
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the flux. The Fi are the directional fluxes in the (space) directions given by the
standard unit vectors ei . The corresponding flux Jacobians will be denoted by Ai .

The system (1) is called hyperbolic if for all directions

n=
∑

i

ni ei ,

where ‖n‖ = 1, the corresponding flux Jacobian

An =
∑

i

ni Ai

is diagonalizable with real eigenvalues. It is called strictly hyperbolic if, in addition,
all eigenvalues are distinct. If it is not diagonalizable but still all eigenvalues are
real it is called weakly hyperbolic or resonant hyperbolic. In this survey we restrict
the analysis to systems which are, at least, weakly hyperbolic.

If the system (1) can be rewritten as(
G̃(q̃)

)
t +∇ · F̃(q̃)= 0, (2)

with symmetric Jacobians of G and the Fi , then the conservation law is called
symmetrizable and the quasilinear form of (2) is called its symmetric form. As a
consequence, such a system is always fully and never resonant or weakly hyperbolic.

Dafermos [10, p. 9] notes that a system of conservation laws is endowed with
nontrivial balance laws, such as an entropy law, if and only if it is symmetrizable.
The MHD equations, among others, are not symmetrizable. For some states q,
the system is resonant hyperbolic. Godunov [18; 19; 20] discovered an extended
system that is symmetrizable and has an entropy law, but at the price of giving
up conservation. As Tóth [44] points out, in numerical schemes, this may lead to
wrong jump conditions. As another way to deal with the lack of an entropy law,
Dafermos [10, pp. 69 ff.] offers the concept of involutions.

The system (1) has an involution if there exist constant matrices Mi such that
the condition ∑

i

Mi qxi = 0, (3)

also called the involution of system (1), holds true for all times if it is satisfied by
the initial data.

In his work on hyperbolic systems with involutions, Dafermos [9; 10] concen-
trates on a subclass that includes most of the physically relevant cases:

Theorem 1. Let the system (1) and matrices Mi be given. If the directional fluxes
fulfill the antisymmetric condition

Mi Fj +Mj Fi = 0, i, j = 1, 2, . . . , (4)
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then ∑
i

Mi qxi

is an involution of system (1) and satisfies the additional condition

∂

∂t

(∑
i

Mi qxi

)
= 0. (5)

As a consequence,
∑

i Mi qxi not only constitutes an involution of (1), but in
addition is constant in time, independently of the initial state. This shows that (4)
is a rather strong condition. But, as Section 2.2 shows, many important systems
satisfy condition (4). In the following sections this is used to find discrete analogues
for the concept of involutions. For the understanding of the following sections, it is
necessary to understand the proof of Theorem 1. In summary, the proof consists in
four steps:

1. Apply
∑

i Mi ∂/∂xi to the conservation law (1).

2. Constant matrices commute with partial derivatives.

3. Partial derivatives commute with each other.

4. Due to condition (4) all terms including fluxes vanish.

In more detail, we find after application of step 1.∑
i

Mi
∂

∂xi

∂

∂t
q+

∑
i

Mi
∂

∂xi

∑
j

∂

∂x j
Fj (q)= 0.

Now we make use of the facts 2. and 3. to obtain

∂

∂t

(∑
i

Mi
∂

∂xi
q
)
+

∑
i, j

∂2

∂xi∂x j
Mi Fj (q)= 0.

Since the operator ∂2/∂xi∂x j is symmetric and, according to (4), Mi Fj (q) is
antisymmetric, the last sum vanishes, which completes the proof. �

2.2. Examples of hyperbolic systems with involutions. Several examples of sys-
tems with involutions satisfying (4) can be found in [9; 10] and in the studies by
Torrilhon and Fey [43; 41; 42]. Here we present only few of them:

As an introductory example, Dafermos [10] presents the equations for isentropic
processes of thermoelastic nonconductors of heat:

Ft −∇v = 0,
vt −∇ · T (F)= 0,

(6)
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with the deformation gradient F, velocity v, and the stress tensor T . Since the time
evolution of the deformation gradient F is a gradient, it is curl-free. Therefore
∇ × F is an involution for system (6). The matrices Mi (i = 1, . . . , 3) are in R3×6,
and, while the right half is zero, the left half reads as

M left
1 =

 0 0 0
0 0 −1
0 1 0

, M left
2 =

 0 0 1
0 0 0
−1 0 0

, M left
3 =

 0 −1 0
1 0 0
0 0 0

. (7)

With these matrices, condition (4) is satisfied.
An important hyperbolic system with involution is given by the vacuum Maxwell

equations

Et − c2(∇ × B)=−
j
ε0
, (8)

Bt + (∇ × E)= 0, (9)

∇ · E =
q
ε0
, (10)

∇ · B = 0, (11)

with the electric field E, magnetic induction B, electric current j , charge density q ,
speed of light c, and the constants ε0 and µ0. In the absence of electric charge and
current this is a homogeneous hyperbolic conservation law, where the divergence
of both fields, E and B is preserved. The matrices involved in condition (3) and (4)
are

Mi =

(eT
i 0T

0T eT
i

)
. (12)

Since the models of plasma-physics are obtained by using the Maxwell equations,
they also inherit the involutions. In the MHD equations no evolution equation for the
electric field is included. Thus, only the divergence of the magnetic field is inherited
as an involution. The full equations of ideal compressible magnetohydrodynamics
are

ρt +∇ · [ρv] = 0, (13)

(ρv)t +∇ ·
[
ρv ◦ v+ (p+ 1

2 B2)I − B ◦ B
]
= 0, (14)

Bt +∇ ·
[
B ◦ v− v ◦ B

]
= 0, (15)

et +∇ ·
[
(e+ p+ 1

2 B2)v− B(v · B)
]
= 0, (16)

∇ · B = 0. (17)

The last equation, (17), is the involution for the evolution system (13)–(16). The
asymmetric condition (4) is satisfied with Mi = (0, 0, 0, 0, eT

i , 0). Thus, the MHD
equations nicely fit into the framework given by Dafermos [9; 10].
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In [17], Gilman argues that the classical “shallow water” equations of geophysical
fluid dynamics should be useful for studying the global dynamics of the solar
tachocline and demonstrates the existence of an MHD analog that would allow
taking into account the strong toroidal magnetic field likely to be present there. So
he presents a derivation analogous to that for the classical shallow water equations
and comes up with the following system of shallow water magnetohydrodynamics
(SMHD)

ht +∇ · [hv] = 0,

(hv)t +∇ ·
[
hv ◦ v− h B ◦ B+ 1

2 gh2 I
]
= 0,

(h B)t −∇ ×
[
v× (h B)

]
= 0,

(18)

with the involution
∇ · (h B)= 0. (19)

This inherits most of its behavior from the original MHD system (13)–(16). The
main difference is that, due to the averaging over the third space dimension, the
magnetic field B is now replaced by h B, where h denotes the height of the fluid
layer under consideration and g is the gravitational constant.

Since the structure of the critical part of the evolution for MHD, and SMHD
is similar, we also consider the linear model problem of Fey and Torrilhon [41],
which resembles the common behavior of those systems in the simplest possible
setting. For a given velocity field v, constant in space and time, we consider

Bt −∇ × (v× B)= 0, (20)

or in divergence form,

Bt +∇ · (B ◦ v− v ◦ B)= 0. (21)

Obviously the asymmetric condition (4) is satisfied with Mi = eT
i and the divergence

of B makes up an involution for the system. This is a model for divergence-
preserving transport.

For the sake of completeness, we also present the model for curl-preserving
transport given by Fey and Torrilhon [41]

Pt +∇(v · P)= 0, (22)

or in divergence form,
Pt +∇ ·

(
[v · P] I

)
= 0. (23)

Here again, it can be seen from the flux form that (4) is satisfied. The matrices Mi

are the same as those presented in (7), and from (22) it is seen that the resulting
involution is ∇ × P .
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The last four systems, MHD, SMHD, and the model systems for constraint
preserving transport, have one point in common: dependent on the velocity field,
they might lose full hyperbolicity. In general they are only weakly, or resonant,
hyperbolic.

2.3. Resonant hyperbolic problems and involutions. In this section we consider
the relation between involutions and resonant hyperbolic systems. It is mentioned
already by Crockett et al. [8] that there is a relation between the divergence condition
for MHD and resonance. Here, we want to study this relation in more detail.

2.3.1. Resonance. In physics, systems which allow for solutions growing unbound-
edly in time, usually are called resonant. The most famous example is the harmonic
oscillator with a periodic exciting force. If the frequency of the excitation meets the
eigenfrequency of the system, the amplitude grows unboundedly. A similar behavior
can be found for weakly hyperbolic systems. The model equations for divergence-
preserving transport (20) provide a nice example of resonance. Following Crockett
et al. [8], let in the two-dimensional case v = (u, v)T = (0, v)T . Then the system
is only weakly hyperbolic and reads as

B1t + vB1 y = 0, (24)

B2t − vB1x = 0. (25)

This means that B1 is transported in y-direction and acts as a source for B2. If B1

varies in x-direction, there is a nonvanishing constant source and, thus, B2 grows
unboundedly with a constant rate. We will go back to this example later.

Of the systems with evolutions provided in the previous section, some are fully
hyperbolic, some are only resonant hyperbolic. Dafermos [10] points out that
system (6) is hyperbolic if the inner energy, which defines the stress tensor, is
rank-one convex. Thus, hyperbolicity depends on the state.

Although in any space direction all wave speeds are ±c, the Maxwell equations
are fully hyperbolic. They allow for no resonant effects except from those introduced
by outer source terms.

In contrast, the MHD and SMHD equations allow for resonant states. By using
the magnetohydrodynamic approximation for the electric field, E ≈−v× B, the
induction equation attains the structure of divergence preserving transport. If we set
B = (B1 = 0, B2, B3)

T , v = (u = 0, v, w)T , i.e., velocity and magnetic field are
perpendicular to the first space direction, then the flux Jacobian in that direction has
zero as a sixfold eigenvalue with five-dimensional eigenspace. The system is only
resonant hyperbolic. Whenever the velocity and the magnetic field are in one plane,
the flux Jacobian in the direction perpendicular to that plane is deficient, the system
is only resonant hyperbolic. A similar situation occurs when the velocity component
parallel to the magnetic field equals ±a, where a is the speed of sound, and the
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magnetic field is a
√
ρ. Then zero is a fourfold eigenvalue with three-dimensional

eigenspace. Again the system is only resonant hyperbolic.
Due to the reduction of the physical problem to two space dimensions, for

the shallow water MHD the same resonance as for MHD occurs when velocity
and magnetic field are parallel. Another resonant case can be found if we have
v = (u = ±cg, v)

T , where cg =
√

B2
1 + gh is the magnetogravitational speed. In

this case, zero is a double eigenvalue with one-dimensional eigenspace.
The model system for divergence preserving transport (20) shares the resonant

behavior, as can be seen at the beginning of this section. The flux Jacobian in
the direction perpendicular to the velocity is deficient, the system is only resonant
hyperbolic. For the model system for curl-preserving transport, the situation is
similar.

We will go into more detail about this in the following sections.

2.4. Relation of involutions to zero eigenvalues and resonance. In this section
we investigate the connection between involutions, zero eigenvalues and resonance
in more detail. First we want to recall some considerations of Dafermos [10]. The
antisymmetric condition (4) is equivalent to

Mi A j +Mj Ai = 0 for all i, j. (26)

If we take the unit vector n = (n1, n2, n3)
T we find for the flux Jacobian An in

direction of n

Mn An =

(∑
i

ni Mi

)(∑
j

n j A j

)
=

∑
i, j

ni n j Mi A j = 0. (27)

As a consequence, the range of An is a subset of the kernel of Mn, and therefore
the dimension of the kernel of An is greater than or equal to the rank of Mn. In
particular, we know that it is at least one. We always have a zero eigenvalue for
systems which satisfy the antisymmetric condition (4), and equality would mean
that the rows of Mn are just the left eigenvectors of An for the zero eigenvalue.
As a consequence, in the case of equality, the zero eigenvalue has a full set of
eigenvectors and, thus, can not destroy the hyperbolicity of the system. An example
of this are the vacuum Maxwell equations with zero as a double eigenvalue and we
have

Mi =

(eT
i 0T

0T eT
i

)
, (28)

which makes up a linearly independent set of two left eigenvectors. In the case that
the range of An is a proper subset of the kernel of Mn things might be worse, as
can be seen with the above example systems.
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If we apply these considerations to the divergence-free transport (20), we find
that the rank of Mn is one for all directions n. But if n⊥ v, there is no transport
in direction of n, and hence, the multiplicity of the zero eigenvalue of An is three.
If v, and thus also An, does not vanish completely the system matrix can not be
diagonalized, because the eigenspace has dimension two. A similar consideration
holds for the curl-free transport (22). In this case, except for v = 0, the rows of Mn
always form a basis of the space of left eigenvectors of An, proving again that both
prototypes for constrained transport are merely resonant hyperbolic.

2.4.1. A quantitative view on resonance for divergence- and curl-preserving trans-
port. For a quantitative view on resonance for divergence-preserving transport, we
revisit the example (20), (21) from the and of Section 2.2 and look at it in more
detail: let in the two-dimensional case v = (u, v)T = (0, v)T . It follows from the
considerations at the beginning of Section 2.4 that A1 is not diagonalizable, so we
can expect resonance phenomena in the first space direction. Since u = 0 and

An = (nT
· v)I − v ◦ n, (29)

we can rewrite the system as

B1t + vB1 y = 0, (30)

B2t + vB2 y = v(B1x + B2 y)= v(∇ · B). (31)

The source is in the evolution equation of the second component of B and is
proportional to the involution ∇ · B. If B is divergence-free there is no resonance
at all. In general the two-dimensional system can be rewritten as

Bt +
∑

i

vi Bxi =−

(∑
j

A j MT
j

)∑
i

Mi Bxi . (32)

Investigating the right side of this equation, we find just the negative of the Powell
correction term [38; 20]. Therefore, if we had added the Powell correction term to
the right side of system (20), we would have obtained a nonresonant, fully hyperbolic
system, in this simple linear case pure advection. In the full MHD equations, the
Powell system, although not pure advection, due to its symmetrizability, is also
fully hyperbolic without any resonance.

In the three-dimensional case there is just one additional factor to include. The
system can be rewritten as

Bt +
∑

i

vi Bxi =−
1
2

(∑
j

A j MT
j

)∑
i

Mi Bxi . (33)

Adding 1
2

(∑
j A j MT

j

)∑
i Mi Bxi to the right side of system (20) would lead to

pure advection and, thus, to a fully hyperbolic system.
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In full MHD in three space dimensions with the usual ordering of the equations,
the addition of 1

2

(∑
j A j MT

j

)∑
i Mi Bxi with Mi = ei+4, makes the resulting

system fully hyperbolic. Nevertheless, for the use in numerical schemes, the
original Powell correction is more convenient due to its simpler form of left and
right eigenvectors. In addition, it is Galilean invariant [38] and there is an entropy
condition [20]. An issue which would affect both approaches is mentioned by
Tóth [44]: In the case of nonvanishing divergence of the magnetic field, the jump
conditions in the Riemann problem are wrong. This is not surprising, since the
system deviates from the real physics by allowing magnetic monopoles2.

In the same way, for curl-preserving transport (22), we get

Pt +
∑

i

vi Pxi =−

(∑
j

A j MT
j

)(∑
i

Mi Pxi

)
, (34)

where the last sum is just the involution. If the constraint is satisfied for the initial
data, curl-preserving transport reduces to pure transport. Otherwise it is a transport
with a source which is a linear function of the involution term. Since the involution
term is constant in time, the source term is also constant in time. All in all the
situation is quite similar to that in divergence preserving transport. Because of that,
and because curl-preserving transport plays a minor part in practical applications,
we won’t go into further detail for that.

3. A discrete analog to the concept of involutions

This section is dedicated to the construction of discrete analogues of the concept
of involutions for discretized conservation laws as well as a discrete analogue of
Theorem 1 and its proof.

For this purpose, we first give some remarks on the notion and notation of finite
difference schemes for hyperbolic conservation laws. This is necessary since the
usual notation doesn’t allow to transfer the results of Section 2.1 to the discrete
case.

After that, we show how this transfer could be accomplished. We give discrete
versions of Theorem 1 for semidiscrete, fully discrete, and a special case of linear
schemes. In this context, we have to introduce exact and approximate discrete
involutions.

Finally, we investigate some standard schemes. Which discrete version of
Theorem 1 will apply to them? Will we find exact or only approximate discrete

2This is in general true for all divergence correction methods. But with the Powell system, the
divergence errors destroy conservation and are transported with the flow instead of being radiated
away like with hyperbolic or mixed type GLM [12]. In fact, as was reported to me by Powell, applying
hyperbolic or mixed type GLM to the symmetrizable system yields the best results.



12 FRIEDEMANN KEMM

involutions? Although rarely used in practice, these schemes are role models for
most of the usual schemes, showing which behavior we have to expect from these
methods.

3.1. On the notion and notation of finite difference schemes for hyperbolic con-
servation laws. In this paper we employ a rather strict, but still general, notion and
notation of finite difference schemes for hyperbolic conservation laws. If I is the
set of all index vectors i involved in the computation, including both, time- and
space-indexes, a difference operator for some time-derivative is given by

∂̂

∂̂t
qj =

1
1t

∑
i∈I

αi, j qi , (35)

where the coefficients αi, j are allowed to be matrix valued and to depend on anything,
they only have to be bounded in time and space, and 1t is some characteristic time
step size. We use the hat to distinguish difference operators from the corresponding
derivatives. The inclusion of 1t into the formula makes the further considerations
more convenient. For space derivatives we write in the same way

∂̂

∂̂xk
qj =

1
1x

∑
i∈I

βk
i, j qi , (36)

where the index k denotes the space direction, and 1x is some characteristic space
step size, for example the minimal inradius of the grid cells. All other differential
operators, like divergence, curl, gradient, mixed or higher derivatives, are discretized
by means of the operators given in (35) and (36), where the difference operator
for each space direction and for the time are fixed. Thus, for example, the second
derivative of some quantity q with respect to direction xk has to be discretized by

∂̂

∂̂xk

(
∂̂

∂̂xk
q
)
.

We introduce this strict notation to be able to transfer the proof of Theorem 1 to the
discrete case. As a consequence of the notation, in the following, the term ∂̂/∂̂t
is merely an abbreviation for any discrete time difference of order q. This can be
done because the difference between any two difference operators of order q is also
O(1tq). For the other partial derivatives a similar consideration holds. This is a
fact which we extensively use in our arguments. With these operators a discretized
hyperbolic conservation law reads as

∂̂

∂̂t
qj +

∑
r

∂̂

ˆ∂xr
Fr (qj )= 0. (37)
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Note that this is not the way the scheme is constructed. But any finite volume
or finite difference scheme can be artificially rewritten in that way. This is also
not the usual notation of discretized hyperbolic conservation laws in the literature.
Normally, a simpler difference operator is chosen and applied to a system, where the
physical flux function F is replaced by a numeric flux function G, which depends
on the state in several grid cells. But this is not suitable for the investigation of
discrete involutions, since we have to rely on the antisymmetric condition (4), which
depends on F and is usually not satisfied if F is replaced by G3. As we will see in
Section 3.2.2, sometimes parts of G have to be considered as a contribution to the
discrete time derivative instead of the space derivative.

3.2. Proofs for discrete involutions. To prove the existence of discrete involutions,
we first have to define them:

Definition 1. If for a discretized hyperbolic conservation law of the form (37) we
have for the discretized involution

∂̂

∂̂t

(∑
l

Ml
∂̂

ˆ∂xl
qj

)
→ 0 (38)

as the time and space step sizes go to zero; this is called an approximate discrete
involution for (37). If we have equality, i.e., if

∂̂

∂̂t

(∑
l

Ml
∂̂

ˆ∂xl
qj

)
= 0, (39)

we call it an exact discrete involution for (37).

We prove three discrete versions of Theorem 1: for the general fully discrete
case, for the semidiscrete case, and finally for a linear special case.

3.2.1. The general fully discrete case. We start with the general fully discrete case.
To prove that the antisymmetric condition (4) is sufficient for the existence of
discrete involutions, we first have to investigate the commutators of the difference
operators given in the previous section.

If we have for some quantity h

∂̂

∂̂x
h j = (hx) j +O(1x p) (40)

3 By applying the concept of numerical flux functions on a one-dimensional equidistant grid,
it would be even possible to write all schemes, including implicit schemes, as (qn+1

i − qn
i )/1t −

(Gn
i+1/2 − Gn

i−1/2)/1x . All details are hidden in the definition of the numerical flux function G.
In the same way, for every computational grid, a difference formulation can be found which only
depends on the grid itself.
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and
∂̂

∂̂t
h j =

1
1t

∑
i∈I

αi, j hi = (ht) j +O(1tq), (41)

we can verify the following:

∂̂

∂̂t

(
∂̂

∂̂x
h
)

j
=

1
1t

∑
i∈I

αi, j
[
(hx)i +O(1x p)

]
(42)

=
∂̂

∂̂t
(hx) j +O

(
1x p

1t

)
= (hxt) j +O(1tq)+O

(
1x p

1t

)
. (43)

Through similar considerations for
∂̂

∂̂x

(
∂̂

∂̂t
h
)

j
, we find for the commutator of both

discrete partial derivatives

∂̂

∂̂t

(
∂̂

∂̂x
h
)

j
−
∂̂

∂̂x

(
∂̂

∂̂t
h
)

j
= O

(
1x p

1t

)
+O

(
1tq

1x

)
. (44)

If for a simulation the time step and space step stay of the same order for all time,
i.e., 1t = Os(1x) (the subscript s means that the order relation between 1t and
1x is symmetric), the commutator (44) simplifies to

∂̂

∂̂t

(
∂̂

∂̂x
h
)

j
−
∂̂

∂̂x

(
∂̂

∂̂t
h
)

j
= O(1xmin{p,q}−1). (45)

But this is not always true, especially when resonance comes into play. If we
consider the commutator of two different discrete space derivatives, say in the x-
and y-directions, and both are of the same order of accuracy, p, we obtain

∂̂

∂̂y

(
∂̂

∂̂x
h
)

j
−
∂̂

∂̂x

(
∂̂

∂̂y
h
)

j
= O(1x p−1). (46)

The commutator of a discrete derivative and a matrix M can be obtained in the
same way. It is

M
∂̂

∂̂t
(h) j −

∂̂

∂̂t
(Mh) j = O(1tq). (47)

Thus, no loss of accuracy is introduced.
With these preparations, the following theorem can be proved:

Theorem 2. Let the (weakly) hyperbolic conservation law

qt +∇ · F(q)= 0 (48)

be given, together with constant matrices Ml satisfying

Ml Fr +Mr Fl = 0 for all l, r = 1, 2, . . . (49)
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Let ∂̂/∂̂t be a time discretization of order q and ∂̂/ ˆ∂xr be space differences of order
p.

If we discretize the conservation system (48) with these discrete operators, then
we obtain the following analogue of (5):

∂̂

∂̂t

(∑
l

Ml
∂̂

ˆ∂xl
qj

)
= O

(
1x p

1t

)
+O

(
1tq

1x

)
+O(1x p−1) for all j . (50)

As a direct consequence, we can state:

Corollary 1. If , in addition to the conditions of Theorem 2, the time and space
step are of the same order, i.e., 1t = O(1x) and 1x = O(1t), then (50) can be
simplified to

∂̂

∂̂t

(∑
l

Ml
∂̂

ˆ∂xl
qj

)
= O(1xmin{p,q}−1) for all j . (51)

This applies to linear systems and, in general, to nonlinear nonresonant systems.
For general nonlinear resonant systems things might be worse. We will consider
the general case in more detail in Section 4.

Proof of Theorem 2. For a fixed index j , the discretized conservation law reads

∂̂

∂̂t
qj +

∑
r

∂̂

ˆ∂xr
Fr (qj )= 0. (52)

Now we apply
∑

l Ml ∂̂/ ˆ∂xl to that system:∑
l

Ml
∂̂

ˆ∂xl

∂̂

∂̂t
qj +

∑
l

Ml
∂̂

ˆ∂xl

∑
r

∂̂

ˆ∂xr
Fr (qj )= 0. (53)

By applying the identities (46) and (47), we find for the double summation term∑
l

Ml
∂̂

ˆ∂xl

∑
r

∂̂

ˆ∂xr
Fr (qj )=

∑
l,r

∂̂

ˆ∂xl

∂̂

ˆ∂xr
Ml Fr (qj )+O(1x p)

=

∑
l,r

∂̂

ˆ∂xr

∂̂

ˆ∂xl
Ml Fr (qj )+O(1x p)+O(1x p−1)

(54)

By using the identities (54) and the antisymmetric condition (49), we get∑
l

Ml
∂̂

ˆ∂xl

∑
r

∂̂

ˆ∂xr
Fr (qj )= O(1x p−1). (55)

Therefore, by using the identities for the commutators (45) and (47), we can
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rewrite (53) as

0=
∑

l

Ml
∂̂

ˆ∂xl

∂̂

∂̂t
qj +O(1x p−1)

=
∂̂

∂̂t

∑
l

Ml
∂̂

ˆ∂xl
qj +O

(
1x p

1t

)
+O

(
1tq

1x

)
+O(1x p−1), (56)

which is equivalent to (50). �

This theory is valid in the case of sufficiently smooth solutions. A numerical
scheme cannot distinguish between discontinuous solutions and smooth solutions
with high gradients. So at the first glance, the theorem directly transfers to that
case. But due to stability reasons, one has to take measures to prevent unphysi-
cal oscillations, which results in the need of some limiting technique, like TVD,
ENO/WENO etc. As a consequence of the application of limiting, the order of the
scheme near discontinuities is lowered. Thus, the estimate (50) is much weaker
near discontinuities than in smooth regions.

3.2.2. The semidiscrete case. For the semidiscrete case, we have to consider the
construction via numerical flux functions in more detail. In the context of finite
volumes, numerical schemes usually are represented in the semidiscrete form

∂

∂t
qj −

∑
k∈K j

Gk(q)= 0, (57)

where K j denotes the set of all cell faces of cell j , and G denotes a numerical
flux function, normal to the cell face. This numerical flux function is allowed to
depend on several qi , i.e., on the values of q in several cells of the computational
grid. Therefore, (57) represents a system of ordinary differential equations in time.
When we solve this, using some standard scheme for ODEs, at a first glance the
discrete time derivative only depends on values in the same space point. But this is
not true for many choices of the numerical flux function G.

We now take a closer look at a typical example: One of the most important
nonlinear schemes is the scheme by Harten, Lax, and van Leer [23], which for our
purposes, is a nice model since it clearly distinguishes between the central and the
upwinding part of the viscous flux. For this, the numerical flux function reads

GHLL(qr , ql)

=
1
2

(
f (qr )+ f (ql)

)
−

1
2

SR + SL

SR − SL

(
f (qr )− f (ql)

)
+

SR SL

SR − SL
(qr − ql) (58)

with some bounding signal speeds SL and SR for the Riemann problem defined
by the states left and right of the cell face, ql and qr . If SR =−SL =1x/1t for
equidistant Cartesian grids, this is just the numerical flux of the Lax–Friedrichs
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scheme. If we have a tighter but still symmetric choice SR =−SL of the bounding
speeds we find the Rusanov– or local Lax–Friedrichs scheme. In (58) there are
three contributions: a symmetric one, that would leave us with central differences
of second order in space, an upwinding term, and another symmetric term, that
does not depend on the flux, but only on the state q itself. The second and third
terms both contribute to the numerical viscosity. If we write the resulting scheme
in the fully discrete difference form

∂̂

∂̂t
qj +∇̂ · F(qj )= 0,

the third term becomes a part of the time difference instead of the space difference.
For the semidiscrete scheme, the central viscosity terms make up an additional sum:

∂

∂t
qj +

∑
r

∂̂

∂xr
Fr (qj )+

∑
k∈K

γk, j qk = 0. (59)

Thus, an analogue of Theorem 2 is true with (50) is replaced by

∂

∂t

(∑
l

Ml
∂̂

∂xl
qj

)
+

∑
k∈K

γk, j

(∑
l

Ml
∂̂

∂xl
qk

)
= O

(
1x p

1t

)
+O

(
1tq

1x

)
+O(1x p−1), (60)

which can be interpreted as a discrete heat equation with a source term of order

O

(
1x p

1t

)
+O

(
1tq

1x

)
+O(1x p−1).

With a suitable choice of the central part of the numerical viscosity, we can expect
the discrete involution to converge to zero in time. With a poor choice, it might
increase in time, even if the right side of (60) vanishes.

3.2.3. A linear special case. In this section, we consider a linear special case, which
allows for exact discrete involutions. As a consequence of the previous sections,
the approximation error in discrete involutions is mainly due to the commutators of
the discrete differential operators. A smaller contribution is due do the commutator
of these operators with the matrices Mi , which make up the involution (3). If
the commutators vanish, the involution is exact. We take a closer look at discrete
differential operators that can be rewritten as

∂̂

∂̂t
h j =

∑
i∈I

α̃i h j+i (61)
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for the time derivative and

∂̂

ˆ∂xl
h j =

∑
i∈I

β̃l
i h j+i , (62)

where i and j are index vectors and I is a set of index vectors. This is a typical
situation on structured grids, staggered or collocated. Here in addition, we require
the coefficients α̃i and β̃k

i to depend only on their index i . Thus, the resulting
scheme for a hyperbolic conservation law is linear. If now the coefficients commute
with each other, for the mixed derivatives, which are just double summations, we
find

∂̂

ˆ∂xl

(
∂̂

∂̂t
h j

)
=
∂̂

∂̂t

(
∂̂

ˆ∂xl
h j

)
. (63)

They commute; the commutator vanishes. For the coefficients to commute with
the Mi we have the additional requirement that the Mi are square matrices or the
coefficients are scalar. So, in most cases we are restricted to scalar coefficients,
especially for divergence preserving transport. With these preparations we can state
the following discrete analogue of 1:

Theorem 3. Let the (weakly) hyperbolic conservation law

qt +∇ · F(q)= 0 (64)

be given, together with constant matrices Mi that satisfy

Ml Fr +Mr Fl = 0 for l, r = 1, 2, . . . . (65)

Furthermore let the linear difference operators

∂̂

ˆ∂xl
qj =

∑
i∈I l

β̃l
i qj+i , (66)

∂̂

∂̂t
qj =

∑
k∈K

α̃kqj+k, (67)

be given, where the coefficients βk and αl
i commute with each other and with the

Mi .
If we discretize the conservation law (64) with the finite difference operators (66)

and (67), then the following analogue of (5) holds true:

∂̂

∂̂t

(∑
l

Ml
∂̂

ˆ∂xl
qj

)
= 0 for all j , (68)

and the discrete involution is exact.
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If we assume the scheme to be constructed by means of numerical flux functions
and consider the semidiscrete form, (68) has to be replaced by

∂

∂t

(∑
l

Ml
∂̂

∂xl
qj

)
+

∑
k∈K

γ̃k

(∑
l

Ml
∂̂

∂xl
qj+k

)
= 0. (69)

This is true if the coefficients β̃l
i arising from the upwind part of the numerical

flux function satisfy the above mentioned requirements: they commute with each
other and with the Mi . If, for example, the HLL flux (58) is applied to a constant
coefficient hyperbolic system, the resulting coefficients β̃l

i are scalar constants.

3.3. Discrete involutions and standard schemes. In the beginning of Section 3,
we raised the question, which type of discrete involutions, if at all, we will find with
standard schemes. Will we find exact ones or only approximate ones? Here we
restrict our study to constant coefficient schemes. Thus, the only remaining question
is: do the coefficients commute. We consider the Lax–Friedrichs, Lax–Wendroff,
and upwind schemes, followed by a remark on the use of Runge–Kutta schemes
for the time discretization. If these schemes are applied to a constant coefficient
hyperbolic system, which means Fi (q)= Ai q, due to the constant signal speeds,
a constant time-step can be chosen, so that not only the coefficients of the space
discretization are constant, but also those of the time difference.

Although the schemes investigated in this section are rarely used in their pure
form, most schemes in practical use are generalizations of these simple methods
and, thus, inherit some of the properties of the underlying linear scheme. The
results will be explored in Section 4 to study the interplay of discrete involutions
and resonance.

3.3.1. The Lax–Friedrichs scheme. The behavior of the Lax–Friedrichs scheme is
best understood if we take a careful look on its derivation. The starting point is the
desire for a simple symmetric scheme. Therefore, the most obvious choice is to
take central differences of second order in space and forward differences in time.
In one space dimension, this leads to the simple explicit scheme

qn+1
k − qn

k

1t
+

F(qn
k+1)− F(qn

k−1)

21x
= 0. (70)

Since this turns out to be unconditionally unstable, one looks for a replacement. In
the Lax–Friedrichs scheme this modification is done in a symmetric way. In the
time discretization, the value qn

k is replaced by the arithmetic mean of its neighbors
in space:

qn+1
k −

1
2(q

n
k+1+ qn

k−1)

1t
+

F(qn
k+1)− F(qn

k−1)

21x
= 0. (71)
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An interesting consequence of this construction is that qn+1
k does not depend on

qn
k . An advantage of this is the possibility to use the scheme in a staggered manner,

meaning that in each time step we toggle between evaluating at odd and even
indexes. This gave rise to the development of the Nessyahu–Tadmor scheme [37].
As a disadvantage, in non-staggered use of the scheme, high-frequency oscillations
are observed [7].

It is possible to rewrite the scheme in the usual conservation form, making the
difference between formulas (70) and (71) part of the numerical flux function. In
the sense of applying discrete difference operators instead of the analytic ones to
the conservation law (1), this would result in an additional, viscous flux. But the
difference, although made part of the numerical flux, still remains part of the time
discretization because the correction term does not include any contributions of the
flux function f ( · ). Thus, we have

∂̂

∂̂t
qk =

qn+1
k −

1
2(q

n
k+1+ qn

k−1)

1t
=

qn+1
k − qn

k

1t
−
1x2

21t

qn
k+1+ 2qn

k + qn
k−1

1x2 . (72)

If we apply this discrete time derivative to a scalar quantity h, the condition

∂̂

∂̂t
hk = 0 for all k (73)

is the same as applying a simple explicit method to the heat equation

ht −
1x2

21t
hxx = 0. (74)

If we solve this heat equation exactly, employing homogeneous Dirichlet conditions
on the boundaries, we find that h converges to zero at any place. If, instead of the
scalar h, we apply Equation (73) to a vector quantity h the same holds true for
every component of h. In several space dimensions, we get a spatial anisotropic
heat equation; for three dimensions it is

ht −
1x2

21t
hxx −

1y2

21t
hyy −

1z2

21t
hzz = 0.

As a consequence, for instance in the case of homogeneous Dirichlet boundary con-
ditions, all components of h converge to zero. Therefore, if we have a conservation
law

qt +∇ · F(q)= 0

with an involution ∑
i

Mi qxi = 0,
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discretized with the Lax–Friedrichs scheme and boundary conditions, which are
consistent with the involution, then∑

i

Mi
∂̂

ˆ∂xi
q

is an exact discrete involution, which even converges to zero in time.
Since the Balbás–Tadmor scheme [2] by its construction is close to the Lax–

Friedrichs scheme, we can already at this point expect that it produces only small
divergence errors, which are even nicely damped away.

We will use this considerations later on to identify in numerical flux functions
the terms which have to be considered a contribution to the discrete time derivative
instead of the space derivative. And we will employ a systematic control on these
terms, namely the central viscosity, to minimize the production of divergence errors
in a standard scheme.

3.3.2. The Lax–Wendroff scheme. To study the Lax–Wendroff scheme, we start
with the simplest possible system of conservation laws: the scalar linear advection
equation

qt + aqx = 0. (75)

The idea for the Lax–Wendroff scheme and its relatives is to start with a Taylor
expansion in time:

q(x, t +1t)= q(x, t)+1tqt(x, t)+ 1
21t2qt t(x, t)+O(1t3). (76)

Using the original conservation law (75) and its time derivative, the time derivatives
in (76) can be replaced by space derivatives:

q(x, t +1t)= q(x, t)− a1tqx(x, t)+ 1
2a21t2qxx(x, t)+O(1t3). (77)

From this we get the Lax–Wendroff scheme by applying standard second-order
central differences for first and second space derivatives. If we use standard upwind
differences of second order, we find the Beam–Warming scheme. The arithmetic
mean of both schemes results in the Fromm scheme.

Let us now concentrate on the Lax–Wendroff scheme. Since, according to the
above choice, we have

∂̂

∂̂x
q j =

q j+1− q j−1

21x
, (78)

for the discrete second space derivative, we would expect

∂̂

∂̂x

(
∂̂

∂̂x
q j

)
=

q j+2− 2q j + q j−2

41x2 . (79)
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But the Lax–Wendroff scheme employs

∂̃

˜∂x2
q j =

q j+1− 2q j + q j−1

1x2 , (80)

which is apparently not the same. To interpret this as a part of the space discretization,
we would have to write it in terms of the difference operator (78). But this is
impossible. Therefore, it is impossible to interpret the viscosity term of the Lax–
Wendroff scheme as a part of the space discretization, even in the simple case of
the one dimensional scalar advection equation. Instead, we have to view it as a part
of the time difference. Thus, the time difference would read as

∂̂

∂̂t
qn

j =
qn+1

j − qn
j

1t
+

1
2

a21t2
qn

j+1− 2qn
j + qn

j−1

1x2

=
1
1t

qn+1
j −

(
1
1t
+ a2 1t2

1x2

)
qn

j +
1
2

a2 1t2

1x2 (q
n
j+1+ qn

j−1).

A similar formula would be found for a one-dimensional linear system of conserva-
tion laws. But then, we would have to replace a by the system matrix A. Thus, the
coefficients in the discrete time derivative become matrix valued. So, Theorem 3
can only be applied to a small number of systems, namely those, for which the
system matrix A and the matrix M which makes up the involution commute.

If we had used (79) instead of (80) for the second derivative, it would have been
possible to interpret the viscous term as a part of the discrete space derivative. But
in the case of a system this, again, leads to matrix valued coefficients — this time
in the discrete space derivative. Thus, the same restrictions apply as for the original
Lax–Wendroff scheme. In addition, for systems in several space directions we
would have to require the matrices Ai for the different space directions to commute
with each other.

For several space dimensions we only show a two-dimensional example,

qt + Aqx + Bqy = 0. (81)

For this the analogue of (77) reads as

q(x, y, t +1t)= q(x, y, t)−1t (Aqx + Bqy)

+
1
21t2(A2qxx + ABqyx + B Aqxy + B2qyy)+O(1t3). (82)

Apparently, the same arguments hold as for one space dimension. If we take the
viscous term as part of the time difference, we can apply Theorem 3, as long as
both of A and B commute with both of the matrices Mx and My making up an
involution of system (81). This extends to higher dimensions in a straight forward
manner.
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If the matrices do not commute, we only find — provided the viscous term is
taken as part of the time difference —∑

l

Ml
∂̂

∂̂t

∂̂

ˆ∂xl
qj = 0. (83)

This is a much weaker condition than (68). In fact, numerical experiments show
that the approximation of the involution is in no way better than for any nonlinear
scheme of the same order.

For the Beam–Warming scheme, the results are quite similar. Now, most second-
order schemes, especially those based on TVD limiters, are constructed by using
weighted means of the Lax–Wendroff, as a central scheme, and the Beam–Warming,
as an upwind scheme. Thus, for these schemes, we can not expect the conditions
of Theorem 3 to hold. The best we can hope for, is an approximate involution in
the sense of Theorems 2 and 1.

3.3.3. The upwind-scheme. For a scalar conservation law, the upwind scheme
assigns a one sided difference operator to each space derivative. This operator
takes into account the upwind direction, i.e., for positive signal speed, backward
differences are used and for negative signal speeds forward differences. In the case
of a linear system, the upwind method is applied to each characteristic field.

The simple case: full upwinding. The simplest case is full upwinding: in each
space direction for all characteristic fields the same upwind direction is found. In
this case all discrete space derivatives ∂̂/ ˆ∂xr are one sided standard differences of
first order, forward or backward, depending on the upwind direction for xr .

The effects of this can be nicely seen, when the scheme is applied to the linearized
induction equation of two-dimensional magnetohydrodynamics:

Bt −∇ × (v× B)= 0, v = (u, v)T ≡ constant, (84)

with positive velocity components u and v. As Fey and Torrilhon [41] point out,
this is an interesting example, modeling most of the important properties of real
MHD, at least in the context of involutions. It is a linear conservation system with
∇ · B as an involution. With the matrices M1 = (1 0) and M2 = (0 1), we find
that it satisfies the conditions for Theorem 1. Thus, with appropriate difference
operators, we will obtain a discrete involution.

In space, we employ two different types of differences. First we use standard
upwind. Since there is only one nonzero wave speed for each space direction, we
end up just with one-sided differences for ∂̂/∂̂x and ∂̂/∂̂y. So we have no matrix
valued coefficients, and the conditions of Theorem 3 are satisfied. For a second
test, we employ the corner transport upwind (CTU) scheme, a variant of standard
upwind, which takes into account the direction of the transport. This results in the
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transverse upwind differences

∂̂

∂̂x
h = (1− cy)

hi, j − hi−1, j

1x
+ cy

hi, j−1− hi−1, j−1

1x
,

∂̂

∂̂ y
h = (1− cx)

hi, j − hi, j−1

1y
+ cx

hi−1, j − hi−1, j−1

1y
,

(85)

where cx and cy denote the directional Courant numbers. In time, we always employ
forward differences of first order. Therefore we expect the involution to be constant
in time.

First example. As initial data, we discretize the divergence-free field B= (B1, B2)
T

with
B1 = cos(2πx +πy), B2 =−2 cos(2πx +πy),

on a 320×320 grid for the square region [−1, 1]× [−1, 1] with periodic boundary
conditions. For the discrete initial values, we employ a rather naive method: we
just evaluate at the cell center. Thus, the initial divergence is not exactly zero. The
results are shown in Figure 1. In the left picture we see that the discrete divergence
measured in upwind differences is constant in time, it sticks to its initial value, if
the standard upwind scheme is used. In the right picture, the same is found for the
divergence measured in transverse differences with the corresponding CTU scheme
employed. Although not depicted here, in both cases not only the norm of the
divergence is constant. The discrete divergence itself is constant, as was predicted
by the above theory.

The divergence measured in central differences, although almost zero in the
initial state, grows to approach the divergence measured in terms of the difference
operator used in the scheme, which is indeed much larger.
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Figure 1. Smooth example: time behavior of the L2-norm of the discrete divergence
for standard upwind (left) and corner transport upwind (right), measured with central
differences, upwind differences, and transverse upwind differences.
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From this, we can draw two important conclusions: First, the usual technique
of projecting the magnetic field to a divergence-free field with respect to some
higher-order central difference is insufficient. The projection should be done with
respect to the difference operator actually used in the scheme. For general nonlinear
systems with changing upwind directions, this is nearby impossible. Especially,
it is impossible to provide a “divergence-free” initial state that is adequate for all
cases. Second, upwind schemes, by their lack of central viscosity, are unable to
damp the divergence error introduced by the initial state.

Second example. As a second example, we present an oblique Riemann-problem,
a piecewise constant initial state with discontinuity normal to (1, 1)T reproduced
on a Cartesian grid. The discontinuity is just the diagonal of the cells it intersects.
For the left and right state and the state in the cells with the discontinuity, we take

Bl =

(
0
0

)
, Br =

(
1
−1

)
, and thus B∗r = B∗l =

(
1/2
−1/2

)
(86)

for the cells intersected by the discontinuity, i.e., we project the data onto the grid
in a finite volume manner. The data are analytically divergence-free. For u, v > 0
they are also discrete divergence-free when we employ upwind differences. For
u > 0, v < 0, they are not.

In Figure 2 it can be seen that also in the discontinuous case the divergence
measured in the differences used in the scheme is constant. Figure 2 also shows
that the initial state has to be divergence-free with respect to the differences used
in the scheme. If not, the divergence will raise pretty soon. The worst results are
obtained, when we do a wrong upwinding (lower row). For linear systems like our
model problem, this is no issue. But for nonlinear systems like full MHD, this adds
a new problem to the lack of exact involutions: Since the upwind direction depends
on the state, it is in general impossible to know the difference operators in advance.
So, the best we can get is an initial divergence in the order of the scheme itself.

The general case. For the investigation of the general case, we start with a one
dimensional situation:

qt + Aqx = 0. (87)

For a hyperbolic conservation law, A can be decomposed into

A= R3L, (88)

where R and L= R−1 are the matrices of the right and left eigenvectors of A and 3

is the diagonal matrix of the eigenvalues of A. By manipulating the entries of 3 one
can easily construct matrices A+, A− and |A| which have the same eigenvectors
as A but differ in their eigenvalues: For A+ all negative eigenvalues are replaced
by zero, for A− the positive ones, and for |A| we replace all eigenvalues by their
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Figure 2. Discontinuous example: time behavior of the L2-norm of the discrete divergence
for standard upwind (left) and corner transport upwind (right), measured with central
differences, upwind differences, and transverse upwind differences. Upper row: original
setting; lower row: sign of v changed.

absolute values. Using these matrices, we can write the resulting discrete space
difference operator as

∂̂

∂̂x
(Aqk)= A+

qk − qk−1

1x
+ A−

qk+1− qk

1x

=
1
1x
[A+qk − A+qk−1+ A−qk+1− A−qk]

=
1
1x
[−A+qk−1+ |A|qk + A−qk+1]

= −
1

21x

[
(|A| + A)qk−1− 2|A|qk + (|A| − A)qk+1

]
. (89)

From these manipulations it can be easily seen that it is impossible to write the
difference operator without matrix valued coefficients. Therefore, Theorem 3
can only be applied if A and the matrix M for the involution commute. In the
multidimensional case, we have to require that all Ar and Ml commute with each
other. Thus, in general, we find no exact involutions for the upwind scheme,
especially when the involution is a divergence.



ORIGIN OF DIVERGENCE ERRORS IN MHD 27

Since most high quality numerical flux functions are based on upwinding, this
implies that in real world computations, we can only expect an approximate involu-
tion in the sense of Theorem 2. In addition, the lack of central viscosity prevents
the scheme from damping the errors in the involution.

3.3.4. A remark on the use of Runge–Kutta schemes. Runge–Kutta schemes play
an important role in numerical simulations of time-dependent problems. They are
also the method of choice for the starting procedure in a multistep scheme like
leapfrog and its variants. Therefore, we are interested in the effects of using them
for systems with involutions.

If the space discretization is done with differences satisfying the conditions of
Theorem 3, then we get

∂

∂t

(∑
l

Ml
∂̂

∂xl
qj

)
= 0. (90)

If a consistent one step method is applied to that, the resulting scheme is involution
preserving. When taken as a starting procedure for leapfrog, it also leads to an
involution preserving scheme.

If the scheme is constructed by means of numeric flux functions, we get for
the semidiscrete involution the expression given in (69) if the requirements given
there are satisfied. This expression includes the central numerical viscosity. It
corresponds to a discretized parabolic equation. When the numerical viscosity is
reasonable, any stable time discretization shows the same behavior as we found in
Section 3.3.1 for the involution in the Lax–Friedrichs scheme.

4. Discrete involutions and resonance

In this section we identify discrete involutions and resonance as the key one needs
to understand how divergence errors arise in MHD simulations and destroy them.

By means of a computational example we show how resonance makes the
estimates for the discrete involution in Theorem 2 worthless. We study the role of
the central viscosity of the scheme and explain why the Balbás–Tadmor scheme [2;
1] and the Zachary–Malagoli–Colella scheme [46] produce only small divergence
errors. In this course, we present a modification of the Roe-solver which shows the
same stability. This modification is not intended to replace divergence cleaning, but
to reduce the errors which have to be swept out of the computational domain.

4.1. The De Sterck test. The De Sterck test [11] is a special configuration for a
shallow water MHD flow. It shows a strong tendency to develop resonant phenomena
and, thus, to single out numerical schemes which are prone to divergence errors.
The test problem imposes a supersonic horizontal grid-aligned inflow on the left
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boundary of a rectangular domain. The initial state in the lower half of the domain,
and also of the left boundary, contains a resonant mode. The initial data in the
upper half are

h = 2, u = 5.5, v = 0, B1 = 0.5, B2 = 0, (91)

and in the lower half

h = 1, u = 4.5, v = 0, B1 = 2, B2 = 0. (92)

The gravitational constant is set to one. Since the discontinuity is aligned with
the grid, the initial data are discrete divergence-free for any reasonable difference
operator. We performed a test on a 200×200 grid for the domain [−1, 1]× [−1, 1]
with the Local Lax–Friedrichs scheme (LLF). The numerical flux over the cell faces
is computed with 1d-physics. This is a widespread approach. In one-dimensional
physics a one-dimensional divergence constraint applies. Thus the equation for h B1,
in the full MHD the equation for B1, can be eliminated. The component h B1, or B1

in full MHD, is constant in space and time and, thus, only a parameter. The reduced
1d-system is fully hyperbolic. When used for multidimensional simulations, this
introduces two difficulties: on each cell face the parameter for the magnetic field
component normal to the face has to be chosen in some way, and we lose control
over part of the viscosity of the scheme, namely the viscosity on the neglected wave.
But this is exactly the wave which is responsible for resonance.

For the first six time steps the absolute value of the resulting fastest wave speed,
u− cg, with the magnetogravitational speed cg =

√

B2
1 + gh is plotted in Figure 3.

It turns out that, in this case, resonance, once initiated, grows very fast. It also
affects the wave speeds, which depend on the magnetic field. When we consider
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Figure 3. Absolute value of u−cg for De Sterck test with LLF based on one-dimensional
physics. First six time steps (top row 1–3, bottom row 4–6). Note the different scaling in
the last picture.
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the estimate for the general discrete involution

∂̂

∂̂t

(∑
l

Ml
∂̂

ˆ∂xl
qj

)
= O

(
1x p

1t

)
+O

(
1tq

1x

)
+O(1x p−1) for all j , (93)

from Theorem 2, we find that the first-order term, O(1x p/1t), is most critical.
The fast growing wave speeds result in a fast decreasing time step. Thus, the
estimate (93) becomes weaker each time step. Divergence errors drive resonance,
and resonance weakens the bound for the growth of the divergence errors.

In computations on Cartesian grids it is common to configure the initial state in a
way that all discontinuities are aligned with the grid. For a piecewise constant initial
state, consistent with the constraint, this means that for any consistent difference
operators the discrete initial state also satisfies the discrete constraint. The involution
can only be violated by rounding errors. Since rounding errors are O(1), the
introduced error in the involution is of order O(1/1x). Grid refinement results in
even stronger resonance phenomena. The numerical viscosity and, thus, the damping
of the resonance is reduced. Hence, for a scheme which fails due to resonance, it is
impossible to improve the situation by grid refinement. The situation is even worse,
as can be verified by the numerical tests in Section 4.4.

4.2. The role of the central numerical viscosity. Already Crockett et al. [8] real-
ized that adding viscosity — in their case by the Marder approach [30] — reduces
resonance effects in MHD. So, we go into that in more detail. To study the role
of central numerical viscosity in more detail we begin with a simple example. In
Figure 4, we show numerical results for the situation described in the beginning
of Section 2.3.1. We trigger resonance by a jump of B1 in the middle of the
computational domain. Apparently the resonance effects are much weaker if we
employ the Lax–Friedrichs scheme instead of the CIR scheme. The main difference
between these two schemes is that the LF scheme is central while the CIR scheme
employs wave wise upwinding. Thus, the LF scheme provides central viscosity,
while the CIR scheme does not.

 0

 5

 10

 15

 20

 25

-0.1 -0.05  0  0.05  0.1

B1

B2

 0

 5

 10

 15

 20

 25

-0.1 -0.05  0  0.05  0.1

B1

B2

 0

 5

 10

 15

 20

 25

-0.1 -0.05  0  0.05  0.1

B1

B2

Figure 4. Effects of resonance: initial condition, result with CIR scheme, result with
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But in the general case, the Lax–Friedrichs scheme, due to its high viscosity, is
not preferable. Therefore, in practical use other schemes based on numerical flux
functions are used. At this point, we reconsider the HLL flux (58):

GHLL(qr , ql)

=
1
2
(

f (qr )+ f (ql)
)
−

1
2

SR + SL

SR − SL

(
f (qr )− f (ql)

)
+

SR SL

SR − SL
(qr − ql). (94)

Obviously, the viscosity terms are closely related to the signal speeds. This is a
general issue [24; 28; 13; 22]. Therefore, in practice, the central viscosity can
not be chosen arbitrarily high. A simple approach is HLL with SL =−SR , which
refers to the local Lax–Friedrichs scheme. This choice imposes a lower bound on
the viscosity for all waves, thus also for the resonant wave4. This is a prototype
for many schemes, which do not explicitly resolve the resonant wave. Both, the
Balbás–Tadmor scheme [2] and the Zachary–Malagoli–Colella scheme [46] belong
to this class.

As a prototype of schemes which, by construction, explicitly resolve all waves,
we consider the Harten entropy fix [21] for the Roe-solver — not to be confused
with the Harten–Hyman entropy fix [22], which allows to impose a lower bound
for the viscosity on each wave separately. It is constructed such that the viscosity
depends smoothly on the wave speeds. Harten replaces the absolute value of an
eigenvalue λ of the Roe matrix by

φ(λ)=

{
|λ| if |λ| ≥ δ,
(λ2
+ δ2)/(2δ) if |λ|< δ,

(95)

where δ is a small parameter. The numerical viscosity is bounded below by δ/2.
Since additional numerical viscosity on a single wave is equivalent to the splitting of
the wave into two weaker waves [28; 22], the optimal, i.e., the maximal admissible,
choice for the parameter is twice the largest absolute value of an eigenvalue of
the Roe matrix: δ = 2 |λmax|. This puts the same amount of viscosity on the wave
as in the LLF scheme. A simpler, but still reasonable choice would be δ = 2 |u|.
The speeds of the waves resulting from the corresponding splitting of the original
resonant wave would be ±λmax or ±u respectively.

4.3. The assumption of one-dimensional physics in flux computations. To study
the role of the assumption of one-dimensional physics in the construction of numer-
ical flux functions, we start with an example. In Section 4.1, we demonstrated the
effects of resonance by applying the LLF scheme with the numerical flux based
on one-dimensional physics to the De Sterck test case. Now we repeat the same
computation without the assumption of one-dimensional physics. The results are

4Since resonance only occurs in certain physical states, it would be more correct to call it the wave
which might become resonant. But for the sake of readability, we stick to this simplistic formulation.
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Figure 5. Absolute value of u− cg for De Sterck test with LLF for full system. First six
time steps (top row 1–3, bottom row 4–6).

presented in Figure 5. As one would expect by the considerations of the previous
section, the resonance is nicely damped. The divergence errors are much smaller
than with the one-dimensional physics in Figure 3. Something got lost by the
assumption of one-dimensional physics. The resulting viscosity seems to be weak
or even antidiffusion on the resonant wave. Thus, in a scheme which uses projection
to prevent divergence errors, the projection has to be done more often to keep the
simulation stable. The work, saved by the easier flux computation, results in a much
higher work for divergence cleaning.

The assumption of one-dimensional physics in the flux computation would, on a
Cartesian grid, imply that all terms including B1x , B2 y and B3z are neglected. In
general, this leads to a modeling error and, thus, to an error of order O(1x−2) in
numerical simulations. But in standard implementations of MHD it is still at least
of order O(1x). This can be verified by the following considerations:

We restrict our analysis to the x-direction in a Cartesian grid. In most codes the
choice of the parameter B1 is done in dependence on its values in the cells next the
cell face at which the flux has to be evaluated. Usually it is taken to be a weighted
mean of these values. Thus, for the resulting full flux function we still have, if
written for some one-dimensional situation, at the i-th interface,

G(qi−l, . . . , qi+k)→ F1(q), if qi+r → q for r =−l, . . . , k. (96)

Hence, the flux function and, by applying the Lax–Wendroff theorem, the scheme
itself is consistent. In smooth regions this implies an order of at least one. In
addition, the error introduced to the antisymmetric condition (4) (when applied to
G instead of F) is small. The actual order of such schemes can only be tested by
measuring the experimental order of convergence (EOC). There is no direct control
on the differences used. As a matter of experience, these schemes are most prone
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to failure due to divergence errors. The schemes by Zachary, Malagoli and Colella
[46] and Balbás and Tadmor [2], mentioned in the introduction, do not employ the
assumption of one-dimensional physics at any place.

For our prototype system, the linearized induction Equation (21) in two space
dimensions, the flux in x-direction is (0, −vB1+ u B2)

T . Let us assume that u is
positive and we employ the upwind scheme. The flux-term u B2 is always treated
with upwind differences. If we take the parameter B1 to be the value in the cell to
the left of the cell face for which the numerical flux is to be computed, we end up
with full upwinding, and, according to Theorem 3, find an exact discrete involution.
If we take the value of B1 from the cell to the right of the cell face, the flux-term
−vB1 is discretized with downwind differences. The conditions of Theorem 3
are not longer valid. If we define ∂̂/∂̂x to be the upwind difference operator and
∂̃/∂̃x to be the downwind operator, the actual discretization for the second flux
component at a fixed grid point xi reads

∂̂

∂̂x
(u B2)i −

∂̃

∂̃x
(vB1)i =

∂̂

∂̂x
(−vB1+ u B2)i −

(
∂̂

∂̂x
−
∂̃

∂̃x

)
(vB1)i

=
∂̂

∂̂x
(−vB1+ u B2)i − v

B1i+1− 2B1i + B1i−1

1x

=
∂̂

∂̂x
(−vB1+ u B2)i − v1x(B1xx i +O(1x2)). (97)

A similar consideration can be made for the y-direction. Summed up, the divergence
error introduced in one time step is of order Os(1x), which means that 1x is in
turn of the same order as the divergence error. If instead of the value to the right of
the cell face, we take a weighted mean with weight α for that value, the error is
just multiplied by α but still of the same order.

This is not too bad. Thus, the main reason for the problems arising from one-
dimensional physics is the loss of control on the numerical viscosity on the resonant
wave.

4.4. Numerical experiments. In this section, we present some numerical experi-
ments5 for the De Sterck test with a Roe-type scheme without the assumption of
one-dimensional physics. Analytically, the problem results in a steady state, which
has been already reached at time t = 0.8. To study the long-term effects, we went
on to time t = 4.8. The left half of Figure 6 gives a comparison of the scheme with
and without entropy fix. As entropy fix, we employ the above mentioned Harten
fix with parameter δ = 2 |λmax| or δ = 2 |u| for the resonant wave and δ = 10−8 for
the other waves. As Figure 6 shows, the effects of the central viscosity introduced

5Numerical experiments in this paper are done with clawpack [29].
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Figure 6. Left: Maximum norm of ∇ · (h B) over time for the De Sterck test problem with
and without Harten fix for first-order computation on 10×10 grid. Right: Maximum norm
of ∇ · (h B) for second order with Harten fix on 200×200 grid with standard MC limiter
and highly compressive limiters.

by the entropy fix are strong. While the computation without the fix does not even
reach the steady state, the computation with the fix survives the whole simulation
without the need of an intermediate projection step. The choice δ = 2 |u| is weaker,
but still yields reasonable results.

The right half of Figure 6 demonstrates the influence of the limiter on the stability.
Although the limiter does not change anything on the resonant wave itself, since
it propagates with zero speed, the choice of limiters for the other waves show
some effect. For short times, the more compressive limiters, see [26], yield better
results. But the unphysical forces arising from the divergence errors are much better
resolved. The better resolution of discontinuities results in steeper gradients and,
thus, in higher divergence errors. In the long-term run, the error exceeds the error
obtained with the classical MC limiter.

Next, we investigate the influence of the grid resolution and the order of the
scheme. On the one hand, a higher grid resolution and a higher order would, by the
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Figure 8. De Sterck test with Harten fix on 200×200 grid for second-order computation
with highly compressive limiters at time t = 0.8 (left) and t = 4.8 right. Upper row: height;
lower row: divergence.

estimate (50) in Theorem 2, we would expect a positive effect. But on the other
hand, the higher resolution and the higher order lower the numerical viscosity and
allow for steeper gradients and, thus, for higher divergence errors near shocks. As
Figure 7 shows, the second argument dominates for the grid resolution. On a fixed
grid, the higher-order scheme performs better.

Finally, Figure 8 presents results of highly resolved computations, 200×200
grid cells, with the second-order schemes. The basic structure of the solution is
preserved even for the long-term run. But the divergence errors have infected all
of the lower half of the computational domain. At the places with the highest
divergence errors, disturbances of the solution can be seen in the contour plot of the
height. The computations with the high resolving limiters in Figure 8 show an area
with severe destruction of the solution. With the MC limiter, this effect is weaker.

The situation is the same as for the schemes by Balbás and Tadmor [2; 1] and
Zachary, Malagoli, and Colella [46]. It is still reasonable to employ some sort
of divergence cleaning. But one can resort to a weaker one. In the case of a
projection to a divergence-free field, the time interval between two projections can
be considerably increased, since the computation is still stable. In a scheme based
on hyperbolic or mixed type GLM divergence cleaning [12], the divergence errors
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which have to be transported out of — and thus through a significant part of — the
computational domain are much smaller.

5. Conclusions and outlook

In this study, we investigated the origin of divergence errors in MHD simulations.
The concept of involutions, introduced by Dafermos [10; 9], turned out to be the key
of understanding of the issue. Especially when, like in MHD, the involutions are
closely related to resonance, their exact reproduction in the discrete case is needed to
prevent the numerical schemes from failing due to unphysical forces. If an involution
satisfies Dafermos’ sufficient condition (4), discrete analogues of Theorem 1 give
quantitative information on the possible errors. For some linear schemes, the
discrete involutions are even exact. The introduction of central viscosity in the
scheme provides a tool to reduce resonant effects. It turns the discrete involution
into a parabolic equation, which damps the involution and, for example in the case
of MHD, the resonance. But this only works if for the computation of the intercell
fluxes the full multidimensional physics is taken into account. If the intercell fluxes
are computed with the assumption of one-dimensional physics, in addition to not
explicitly resolving the resonant wave, we completely neglect it. The resulting
central viscosity cannot be controlled and, thus, be even of the wrong sign. There
is simply no possibility to control it. Employing fluxes with full physics, as in
the Balbás–Tadmor scheme [1] and the Zachary–Malagoli–Colella scheme [46],
considerably stabilizes the scheme. In Roe-type schemes, we can explicitly tune
the amount of central viscosity introduced by the flux function. If we employ
the maximal admissible amount of viscosity on the resonant wave, the scheme
is stable even for very long runs. Due to the disturbances of the solution, which
are caused by the growing divergence errors, it is still reasonable to employ some
sort of divergence cleaning. But one can resort to a weaker one. In the case of
a projection to a divergence-free field, the time interval between two projections
can be considerably increased. The computation is still stable. In a GLM scheme
[12], the disturbances introduced by the transport of divergence errors through the
computational domain are minimized.

In summary, divergence errors in MHD are mainly caused by resonance and a
lack of positive central viscosity in the applied numerical scheme; the latter most
often results from the assumption of one-dimensional physics in the calculation of
intercell fluxes.
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RENORMALIZED REDUCED MODELS FOR SINGULAR PDES

PANOS STINIS

We present a novel way of constructing reduced models for systems of ordinary
differential equations. In particular, the approach combines the concepts of
renormalization and effective field theory developed in the context of high energy
physics and the Mori–Zwanzig formalism of irreversible statistical mechanics.
The reduced models we construct depend on coefficients which measure the
importance of the different terms appearing in the model and need to be estimated.
The proposed approach allows the estimation of these coefficients on the fly by
enforcing the equality of integral quantities of the solution as computed from
the original system and the reduced model. In this way we are able to construct
stable reduced models of higher order than was previously possible. The method
is applied to the problem of computing reduced models for ordinary differential
equation systems resulting from Fourier expansions of singular (or near-singular)
time-dependent partial differential equations. Results for the 1D Burgers and the
3D incompressible Euler equations are used to illustrate the construction. Under
suitable assumptions, one can calculate the higher order terms by a simple and
efficient recursive algorithm.

1. Introduction

Spatial discretizations or Fourier expansions of the solutions of time-dependent par-
tial differential equations (PDEs) lead to systems of ordinary differential equations
(ODEs). The most difficult case arises when the solution of a PDE becomes singular
in finite time. At such instants the solution of the PDE develops activity down to
the zero length scale. A brute force numerical simulation (no matter how large) of
such a solution is bound to fail because the simulation has a finite resolution and
thus will be unable to resolve all the length scales down to the zero scale. When
the solution develops activity at a scale smaller than the smallest scale available to
the simulation, the numerically computed solution becomes underresolved. This
leads to a rapid deterioration of the accuracy of the simulation.

The notion of propagation of activity to smaller and smaller scales depends on
the physical context of the PDE. In some cases, like the 3D Euler or Navier–Stokes
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equations [14], this could mean a cascade of energy to smaller and smaller scales.
In other cases, such as the nonlinear focusing Schrödinger equation [24], this could
mean a cascade of mass to smaller and smaller scales. Irrespective of the specific
physical context, the problem facing the numerical analyst is how to use a finite
simulation and yet prevent the computed solution from suffering a loss of accuracy.
In other words, how to construct a numerical method which reproduces correctly
the features of the solution of the original equation at the length scales that are
available numerically. This is the motivation behind the construction of reduced
models (see [16; 10], for example).

By construction, a reduced model must allow for energy (mass) to escape from
the scales that are accessible to the simulation (called resolved scales or modes)
to the inaccessible scales (called unresolved). The main difficulty in constructing
an accurate reduced model is the need to estimate the correct rate at which activity
is propagated from the resolved to the unresolved scales. The Mori–Zwanzig (MZ)
formalism [8; 9] proceeds by dividing the available resolution into resolved and
unresolved parts. Then, it constructs a reduced model for the resolved scales and uses
the unresolved scales to effect the drain of energy (mass) out of the resolved scales.

Although the MZ formalism allows for the construction, in principle, of an exact
reduced model it has two drawbacks (which are also shared by any other reduction
formalism). First, the reduced model can be, in general, prohibitively expensive
to calculate. The reason is that one must obtain an accurate representation of the
behavior of the unresolved scales before they can be safely eliminated. Obtaining
this representation can be rather costly.

The second drawback is more subtle and has not been adequately appreciated
by the scientific computing community. It is specific to the case of constructing
reduced models for singular PDEs or in general for systems of ordinary differential
equations which are larger than any available numerical resolution. Suppose that
you have to construct a reduced model of a full system which is larger than any
available numerical simulation. Let us call this system S1. Exactly because S1 is
larger than any available numerical simulation, if we want to construct a reduced
model we have to use as a starting point a system, call it S2, whose size is smaller
than the size of S1. Suppose that you start with S2 and use the MZ formalism
(or any other reduction formalism for that matter) and construct an exact reduced
model S3 for a subset of S2. An exact reduced model means that if one evolves S2
and S3 separately, then the behavior of the scales resolved by S3 will be the same
as the behavior of the scales in S3 predicted by the simulation of the system S2.
However, and this is the heart of the problem, since S2 itself will become eventually
underresolved, the exact reduced model S3 will also become underresolved. In
other words, the predictions of the exact reduced model S3 can only be trusted for
as long as the predictions of the system S2 can be trusted. As a result, any reduced
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model that has any chance of being accurate for longer times cannot be exact.
There are examples of inexact reduced models, such as the t-model [9; 3; 20],

coming from the MZ formalism, which have been applied to singular PDEs and
shown numerically to be relatively accurate for long time intervals. However, the
t-model’s accuracy is difficult to assess beforehand and the reason for its relative
success has remained a mystery (see also [6] for an application to the 3D Navier–
Stokes equations which shows that the t-model, while not bad, is in need of some
modification). In order to construct better reduced models we need to incorporate
dynamic information from the full system which will help us decide which of the
terms appearing in the exact reduced model are the ones that are most important.
In this way, we can construct an inexact but accurate reduced model by keeping the
important terms and disregarding the unimportant ones.

The way we propose to address the problem of constructing better reduced models
is to embed the MZ reduced models in a larger class of reduced models which share
the same functional form as the MZ reduced models but have different coefficients
in front of the various terms that appear in the reduced models. Then, one can
estimate these coefficients on the fly while the original system of equations is still
valid. The estimation of the coefficients is achieved by requiring that certain integral
quantities (e.g., lp norms) involving only resolved scales, should acquire the same
values when computed from the original system and the reduced model. Before
the original system ceases to be valid, one reverts to the reduced model with the
various coefficients having their estimated values. We call the proposed approach
the renormalized Mori–Zwanzig (rMZ) algorithm. Note that the constraints used to
obtain the coefficients are the analog of the “matching conditions” used in effective
field theory [15]. Also, the approach is the time-dependent analog of the process of
renormalization used in high energy and condensed matter physics [11; 17].

A special case of the proposed method which utilized only the t-model term
was first presented by the author in [23]. The goal there was to construct a mesh
refinement scheme to allow us to reach the singularity instant more efficiently. For
that purpose the use of only the t-model term was adequate. In the current work, we
not only want to reach the singularity instant but also follow the solution accurately
for later times. This requires the use of higher order terms than the t-model term.
Under suitable assumptions (see Section 2.3.2) we are able to calculate recursively
and efficiently (and with minimal storage requirements) the higher order terms (see
also Sections 3.1 and 3.2).

It is interesting to see to what extent the values (or at least the form) of the
renormalized coefficients for the reduced model can be deduced from analytical
considerations. In Section 3.4 we include some numerical results which hint that
the value of the renormalized coefficients depends on the structure of the initial
condition and the scaling symmetries of the PDE.
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2. Renormalization of Mori–Zwanzig reduced models

In Section 2.1 we set up the notation for the original system and the reduced model in
an abstract way which does not make reference to any specific method for obtaining
the reduced model. In Section 2.2 we show how to obtain the coefficients for the
reduced model. In Section 2.3 we give a brief presentation of the MZ formalism
which allows us to obtain the functional form of the terms appearing in the reduced
model. In Section 2.4 we combine the ideas in Section 2.2 with the MZ formalism
from Section 2.3 to derive the proposed algorithm for computing renormalized MZ
reduced models.

2.1. Full and reduced systems. Suppose that we want to construct a reduced model
for the partial differential equation (PDE)

vt + H(t, x, v, vx , . . . )= 0,

where H is a operator (in general nonlinear) and x ∈ D ⊆ Rd (the construction
extends readily to the case of systems of partial differential equations). After
spatial discretization or expansion of the solution in series, the PDE transforms
into a system of ordinary differential equations (ODEs). For simplicity we restrict
ourselves to the case of periodic boundary conditions, so that a Fourier expansion
of the solution leads to system of ODEs for the Fourier coefficients. To simulate
the system for the Fourier coefficients we need to truncate at some point the Fourier
expansion. Let F ∪G denote the set of Fourier modes retained in the series, where
we have split the Fourier modes in two sets, F and G. We call the modes in F
resolved and the modes in G unresolved. The reduced model involving only the
resolved modes F will be called the reduced system and the system involving both
the resolved and unresolved modes F ∪G will be called the full system.

The main idea behind the algorithm is that the evolution of moments of the
reduced set of modes, for example lp norms of the modes in F , should be the
same whether computed from the full or the reduced system. This requirement will
eventually allow us to compute the coefficients appearing in the reduced model (see
Section 2.2).

The full system of equations for the modes F ∪G is given by

du(t)
dt
= R(t, u(t)),

where u = ({uk}), k ∈ F ∪ G is the vector of Fourier coefficients of u and R is
the Fourier transform of the operator H . The system should be supplemented
with an initial condition u(0) = u0. The vector of Fourier coefficients can be
written as u = (û, ũ), where û are the resolved modes (those in F) and ũ the
unresolved ones (those in G). Similarly, for the right-hand sides (RHS) we have
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R(t, u)= (R̂(t, u), R̃(t, u)). Note that the RHS of the resolved modes involves both
resolved and unresolved modes. In anticipation of the construction of a reduced
model we can rewrite the RHS as R(t, u)= R(0)(t, u)= (R̂(0)(t, u), R̃(0)(t, u)).

In general, when one constructs a reduced model, additional terms appear on the
RHS of the equations of the reduced model (see Section 2.3 for more details). The
role of these additional terms is to account for the interactions between the resolved
and unresolved modes, since the unresolved modes no longer appear explicitly in
the reduced model. As is standard in renormalization theory [4], one can augment
the RHS of the equations in the full system by including such additional terms. That
is accomplished by multiplying each of these additional terms by a zero coefficient.
In this way, the reduced and full systems’ RHSs have the same functional form. In
particular, for each mode uk , k ∈ F ∪G, we can rewrite R(0)k (t, u) as

R(0)k (t, u(t))=
m∑

i=1

a(0)i R(0)ik (t, u(t)),

where R(0)1k (t, u(t))= R(0)k (t, u(t)) and the R(0)ik (t, u(t)), for i = 2, . . . ,m are of the
same functional form as the additional terms which appear in the reduced model.
This is easy to do by taking a(0)1 = 1 and a(0)i = 0, for i = 2, . . . ,m. Thus, the
equation for the mode uk , k ∈ F ∪G is written as

duk(t)
dt
= Rk(t, u)= R(0)k (t, u(t))=

m∑
i=1

a(0)i R(0)ik (t, u(t)) (1)

Correspondingly, the reduced model for the mode u′k , k ∈ F , is given by

du′k(t)
dt
= R(1)k (t, û′(t))=

m∑
i=1

a(1)i R(1)ik (t, û′(t)) (2)

with initial condition u′k(0)= u0k .
Define m quantities Êi , i = 1, . . . ,m involving only modes in F . For example,

these could be lp norms of the reduced set of modes. To proceed we require that
these quantities’ rates of change are the same when computed from (1) and (2):

d Êi (û)
dt

=
d Êi (û′)

dt
, i = 1, . . . ,m. (3)

Similar conditions, albeit time-independent, lie at the heart of the renormalization
group theory for equilibrium systems [4, p. 154]. Also, the conditions (3) are the
analog of the “matching conditions” underlying the construction of effective field
theories [15].
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2.2. How to compute the coefficients of the reduced model. When we only know
the functional form of the terms appearing in the reduced model but not their
coefficients it is not possible to evolve a reduced system. We present a way of
actually computing the coefficients of the reduced model as needed. If the quantities
Êi , i = 1, . . . ,m are, for example, lp norms of the Fourier modes, then we can
multiply Equations (2) with appropriate quantities and combine with Equations (3)
to get

d Êi (û)
dt

=

m∑
j=1

a(1)j Bi j (t, û(t)),

where

Bi j =
∂

∂a(1)j

d Êi (û′)
dt

, i, j = 1, . . . ,m

are the new RHS functions that appear. Note that the RHS of the equations above
does not involve primed quantities. The reason is that here the reduced quantities
are computed by using the values of the resolved modes from the full system.
The above system of equations is a linear system of equations for the vector of
coefficients a(1). The linear system can be written as

Ba(1) = e, (4)

where e=
(
d Ê1(û)/dt, . . . , d Êm(û)/dt

)
. This system of equations can provide us

with the time evolution of the vector a(1).
The determination of coefficients for the reduced model through the system (4)

is a time-dependent version of the method of moments. We specify the coefficients
of the reduced model so that the reduced model reproduces the rates of change of a
finite number of moments of the solution of the original system. This ensures that
each term in the model is properly weighted so that the resulting reduced model
reproduces, at the scales accessible to the reduced model, the dynamics (see (3)) of
the original system.

By construction, the entry Bi j , i, j = 1, . . . ,m, of the matrix B measures the
contribution of the j-th term of the reduced model to the rate of change of Êi . In
fact, the j-th column of the matrix B is comprised of all the contributions of the
j -th term in the reduced model to the rates of change of the different Êi . While the
reduced system has no need to transfer activity from the resolved to the unresolved
scales, the columns of B corresponding to the activity-transferring terms will be
zero (to the numerical precision used). Thus, the matrix B will be singular. This
can be monitored by estimating the rank of the matrix through the Singular Value
Decomposition (SVD) [18]. When the smallest singular value becomes nonzero
for the numerical precision used the reduced system starts transferring activity to
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the unresolved scales. After that instant we can use the system (4) to estimate the
coefficient vector a(1) (see [23] for more details).

2.3. The Mori–Zwanzig formalism. We have presented in the previous section an
abstract way of writing the reduced system which does not make any reference to a
specific method for obtaining the functions R(1)k (t, û′(t)), k ∈ F , appearing on the
RHS of (2). In order to proceed we need to specify the functions R(1)k (t, û′(t)). We
will do that through the Mori–Zwanzig formalism [8; 9].

Suppose we are given the full system

du(t)
dt
= R(t, u(t)), (5)

where u = ({uk}), k ∈ F ∪ G with initial condition u(0) = u0. The system of
ordinary differential equations we are asked to solve can be transformed into a
system of linear partial differential equations

∂φk

∂t
= Lφk, φk(u0, 0)= u0k, k ∈ F ∪G, (6)

where L =
∑

k∈F∪G Rk(u0)∂/∂u0k . The solution of (6) is given by uk(u0, t) =
φk(u0, t). Using semigroup notation we can rewrite (6) as

∂

∂t
et Lu0k = Let Lu0k

Suppose that the vector of initial conditions can be divided as u0 = (û0, ũ0), where
û0 is the vector of the resolved variables and ũ0 is the vector of the unresolved
variables. Let P be an orthogonal projection on the space of functions of û0 and
Q = I − P .

Equation (6) can be rewritten as

∂

∂t
et Lu0k = et L PLu0k + et QL QLu0k +

∫ t

0
e(t−s)L PLes QL QLu0k ds, k ∈ F, (7)

where we have used Dyson’s formula

et L
= et QL

+

∫ t

0
e(t−s)L PLes QL ds. (8)

Equation (7) is the Mori–Zwanzig identity. Note that this relation is exact and is an
alternative way of writing the original PDE. The first term in (7) is usually called
Markovian since it depends only on the values of the variables at the current instant,
the second is called “noise” and the third “memory”. Note that Pet QL QLu0k = 0
and the operator et QL is called the orthogonal dynamics operator [8].
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We can project the Mori–Zwanzig equation (7) and find

∂

∂t
Pet Lu0k = Pet L PLu0k + P

∫ t

0
e(t−s)L PLes QL QLu0k ds. (9)

In order to proceed we need to compute the Markovian term and the memory term.
For the specific projection P we will be using the Markovian term is straightforward
to compute (see the definition of the operator P in Sections 3.1 and 3.2). On the
other hand, the memory term computation is rather involved due to the presence of
the evolution operator et QL . In fact, it is the presence of this operator which makes,
in general, the computation of MZ reduced models prohibitively expensive (see
[10] for a thorough discussion). One can start from (9) and based on assumptions
derive simplified reduced models that are easier to calculate [9; 3; 20; 22].

The memory term integrand in (9) contains two operators evolving on their own
time scales. The full dynamics operator e(t−s)L evolving on a time scale τ f and
the orthogonal dynamics operator es QL evolving on the time-scale τo. There are
three major cases: τ f � τo, τ f ∼ τo, and τ f � τo. The first and last correspond to
very short and very long memory respectively. The case of τ f ∼ τo corresponds
to absence of time-scale separation between the full dynamics and the orthogonal
dynamics. For the problem of constructing reduced models for singular PDEs, it
is plausible to assume absence of time-scale separation between the resolved and
unresolved variables and thus we expect this case to be of relevance.

If we assume that τ f ∼ τo and that both e(t−s)L and es QL are analytic, we can
expand the expression e(t−s)L PLes QL in Taylor series around s = 0. We have

P
∫ t

0
e(t−s)L PLes QL QLu0k ds

= t Pet L PL QLu0k +
1
2 t2 Pet L(PL QL QLu0k − L PL QLu0k)

+
1
6 t3 Pet L(L2 PL QLu0k − 2L PL QL QLu0k

+ PL QL QL QLu0k)+ O(t4). (10)

The terms in the Taylor expansion of e(t−s)L PLes QL beyond the first order (in t)
involve both resolved and unresolved variables. In order to construct a reduced
model which is closed in the resolved variables these terms need to be modified
while retaining the order of accuracy of the model (a way to achieve that is presented
in Section 2.3.3). However, there is a special case for which all the terms in (10)
are closed in the resolved variables. The simplification, if possible, is due to the
small value of the commutator [PL , QL] (see Section 2.3.2).

2.3.1. The commutative case. If [PL , QL] = 0 the only term that remains is the
Markovian one. This can be seen by observing that [PL , QL] = 0 implies that
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[L , QL] = 0. We have

∂

∂t
Pet Lu0k = PLet Lu0k = Pet L Lu0k = Pet L PLu0k + Pet L QLu0k

= Pet L PLu0k + P QLet Lu0k = Pet L PLu0k,

where in the last equation we have used the fact that P Q = 0.

2.3.2. The almost commutative case. We examine the case when [PL , QL] is
small. To see how this affects the computation of the memory term, we proceed
by rewriting the expression for the memory

∫ t
0 e(t−s)L PLes QL QLu0k ds. Through

Dyson’s formula (8) and the linearity of et L the memory term can be written as∫ t

0
e(t−s)L PLes QL QLu0k ds = et L(QLu0k − e−t Let QL QLu0k

)
By the identity I = P + Q and the Baker–Campbell–Hausdorff (BCH) series for
e−t Let QL (see [2], for instance), the above equation can be rewritten as∫ t

0
e(t−s)L PLes QL QLu0k ds = et L(QLu0k − eC(t,u0)QLu0k

)
, (11)

where C(t, u0)=−t PL + 1
2 [−t L , t QL] + · · · with all the higher terms involving

the commutator [−t L , t QL] = −t Lt QL − t QL(−t L). Note that we also have
[−t L , t QL] = [t L , t PL] = [t QL , t PL] = −[t PL , t QL]. Thus

C(t, u0)=−t PL − 1
2 [t PL , t QL] + · · · .

We want to examine when the approximation C(t, u0) ≈ −t PL is acceptable.
From the BCH series we have

e−t Let QL
− e−t PL

=−
1
2 [t PL , t QL] + O(t3). (12)

Depending on the initial conditions, [PL , QL] may be small and thus allow the
simplification of the memory term expression. In Section 3, where we present
numerical results for the 1D Burgers and 3D Euler equations, we comment briefly on
the form of initial conditions that make the commutator [PL , QL] small. However,
a more detailed analysis of the magnitude of [PL , QL] will be presented in a future
publication.

If we assume that [PL , QL] ≈ 0 and thus C(t, u0)≈−t PL , we get from (11)∫ t

0
e(t−s)L PLes QL QLu0k ds ≈ et L(QLu0k − e−t PL QLu0k

)
Expansion of the operator e−t PL in Taylor series around t = 0 gives
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P
∫ t

0
e(t−s)L PLes QL QLu0k ds ≈

∞∑
j=1

(−1) j+1 t j

j !
Pet L(PL) j QLu0k . (13)

One can obtain different simplified models by truncating the series in (13) after
different values of j . In particular, if we omit all the terms after the first one we
obtain the t-model which has been studied thoroughly [9; 3; 20]. Note that, if
we make the assumption [PL , QL] = 0, then the expansion in (10) reduces to the
expansion in (13).

As will be explained in Section 2.4, even if [PL , QL] is very small but still
finite, these simplified models are not guaranteed to be stable. This is reminiscent
of singular perturbation problems where there is change in the qualitative behavior
of the solution when the perturbation parameter changes from zero to nonzero [1].

2.3.3. The noncommutative case. For the sake of completeness, we comment briefly
on the case when [PL , QL] 6= 0 and not small. In this case we need to modify the
terms in the memory expansion to make them closed in the resolved variables while
retaining the accuracy of the model. For example, from (10), if we keep terms up
to the second order (in t) we have

P
∫ t

0
e(t−s)L PLes QL QLu0k ds = t Pet L PL QLu0k

+
1
2 t2 Pet L(PL QL QLu0k − L PL QLu0k

)
+ O(t3). (14)

The term et L L PL QLu0k can be written as Let L PL QLu0k . This term depends
on all the variables, resolved and unresolved. Thus we need to approximate it with a
term that depends only on the resolved variables and still keeps the O(t3) accuracy
of the approximation. To do that we observe that Let L PL QLu0k is the RHS of the
equation for the evolution of the quantity et L PL QLu0k . We have

∂

∂t
et L PL QLu0k = Let L PL QLu0k .

We can apply the (projected) Mori–Zwanzig formalism to this equation and get

∂

∂t
Pet L PL QLu0k = PLet L PL QLu0k = Pet L L PL QLu0k

= Pet L PL PL QLu0k + P
∫ t

0
e(t−s)L PLes QL QL PL QLu0k ds

= Pet L PL PL QLu0k + O(t). (15)

The fact that the memory term is O(t) can be seen by expanding (as before)
the memory integrand e(t−s)L PLes QL QL PL QLu0k in Taylor series around s = 0.
The difference is that now, we retain only the Markovian term in the equation
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for the evolution of et L PL QLu0k . Thus if we substitute in (14) the expression
Pet L PL PL QLu0k + O(t) for Pet L L PL QLu0k we have

P
∫ t

0
e(t−s)L PLes QL QLu0k ds

= t Pet L PL QLu0k +
1
2 t2 Pet L(PL QL QLu0k − PL PL QLu0k

)
+ O(t3). (16)

The last equation results from the multiplication of the O(t) term in (15) with t2

which gives a O(t3) term. What we have gained is that we have expressed the RHS
of the evolution equation for Pet Lu0k as a function only of the resolved variables
while retaining O(t3) accuracy. Similar constructions can be carried out for higher
order terms. Numerical results for this approach will be presented elsewhere (see
also discussion at the end of Section 3.3).

2.4. The renormalized Mori–Zwanzig algorithm. We focus on the case on Mori–
Zwanzig reduced models corresponding to the almost commutative case (see
Section 2.3.2).

As we have already mentioned, the computational advantage of (13) is that
it contains expressions which depend only on the resolved variables. The series
representation of the memory term in (13) is based on the assumption of analyticity
in time of the operator e−t PL . This assumption may be true for small t but it does
not have to hold for larger t . In other words, the Taylor expansion of the operator
e−t PL has, in general, only a finite radius of convergence. Insisting on using the
Taylor expansion of the operator e−t PL as is for later times is dangerous and can lead
to the instability of the reduced model (see also Section 3.3). In fact, when dealing
with full systems coming from discretizations of singular PDEs, the breakdown of
the Taylor expansion of the operator e−t PL is related to the onset of underresolution
on the part of the full system.

To proceed we put the MZ model given by (9) and (13) in the framework of
Section 2.1. To do that we set

R(1)1k = Pet L PLu0k, (17)

R(1)jk = (−1) j t j−1

( j − 1)!
Pet L(PL) j−1 QLu0k, j = 2, . . . . (18)

With this identification we have, in essence, embedded the reduced models derived
through the MZ formalism in a larger class of reduced models which share the
same functional form with the MZ models but which are allowed to have different
coefficients. In the notation of Section 2.1, the original MZ models correspond to
the coefficient vector a(1) = (1, 1, 1, . . . ).

While the original MZ models may suffer from instabilities (see also Section 3.3),
the new models can be made stable by assigning to each term in the reduced model
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the appropriate coefficient. The magnitude of the coefficient of a term reflects the
importance of the term in the reduced model. The values of the coefficients can
now be determined by solving the linear algebraic system (4). This ensures that
the coefficient of each term in the model is properly redefined (renormalized) so
that the resulting reduced model reproduces, at the scales accessible to the reduced
model, the dynamics (see (3)) of the original system.

We are now in a position to state the renormalized Mori–Zwanzig algorithm,
which constructs a reduced model with the necessary coefficients computed on the fly.

Renormalized Mori–Zwanzig (rMz) algorithm.

(1) Choose a number of terms, say m, to keep at the Taylor expansion of the
memory term.

(2) Evolve the full system and compute, at every step, using the SVD, the rank of
the (m+ 1)× (m+ 1) matrix B.

(3) When the smallest singular value σm+1 reaches a value larger than a prescribed
tolerance ε (we assume that the singular values are indexed from largest to
smallest), solve the system (4) for the coefficients.

(4) For the remaining simulation time, switch from the full system to the reduced
model with the estimated values of the coefficients.

To apply the algorithm, we need to specify the quantities Êi , i = 1, . . . ,m.
Also, we need to compute the expression for the Markovian term, as well as the
expressions for the terms in the Taylor expansion of the memory term.

3. Application of rMZ to 1D Burgers and 3D Euler equations

In this section we present results of the rMZ algorithm for the 1D Burgers and the
3D Euler equations.

3.1. 1D Burgers equation.

3.1.1. Setup of the reduced model. We use the 1D inviscid Burgers equation as an
instructive example for the constructions presented in this section. The equation is
given by

ut + uux = 0. (19)

Equation (19) should be supplemented with an initial condition u(x, 0)= u0(x) and
boundary conditions. We solve (19) in the interval [0, 2π ] with periodic boundary
conditions. This allows us to expand the solution in Fourier series

uM(x, t)=
∑

uk(t)eikx ,
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where F ∪ G = [−M/2,M/2 − 1]. We have written the set of Fourier modes
as the union of two sets in anticipation of the construction of the reduced model
comprising only of the modes in F = [−N/2, N/2 − 1], where N < M . The
equation of motion for the Fourier mode uk becomes

duk

dt
=−

ik
2

∑
p+q=k

p,q∈F∪G

u puq . (20)

To conform with the Mori–Zwanzig formalism we set

Rk(u)=−
ik
2

∑
p+q=k

p,q∈F∪G

u puq

and we have
duk

dt
= Rk(u) (21)

for k ∈ F ∪ G. The system (21) is supplemented by the initial condition u0 =

(û0, ũ0) = (û0, 0). We focus on initial conditions where the unresolved Fourier
modes are set to zero. We also define L by

L =
∑

k∈F∪G

Rk(u0)
∂

∂u0k
.

Note that Lu0k = Rk(u0).
We also need to define a projection operator P . For a function h(u0) of all the

variables, the projection operator we will use is defined by

P(h(u))= P(h(û0, ũ0))= h(û0, 0);

that is, it replaces the value of the unresolved variables ũ0 in any function h(u0) by
zero. Note that this choice of projection is consistent with the initial conditions we
have chosen. Also, we define the Markovian term

R̂(1)1 k(û0)= PLu0k = P Rk(u0)=−
ik
2

∑
p+q=k
p,q∈F

û0pû0q .

The Markovian term has the same functional form as the RHS of the full system
but is restricted to a sum over only the resolved modes in F . The full system
conserves the energy 1

2

∑
k∈F∪G |uk |

2 contained in all the modes. Similarly, the
Markovian term of the reduced model does not alter the energy content of the
resolved modes. The necessary energy transfer out of the resolved modes rests
on the memory terms. Based on our choice of projection operator and the scaling
symmetries of the Burgers equation we set N = M/2.
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With the definition of P given above, we find for QLu0k

QLu0k =−
ik
2

∑
p+q=k

q∈G
p∈F

u0pu0q −
ik
2

∑
p+q=k

q∈F
p∈G

u0pu0q −
ik
2

∑
p+q=k

q∈G
p∈G

u0pu0q .

The expression for QLu0k contains three terms which involve at least one wavenum-
ber in the unresolved range G. The terms in the Taylor expansion of the memory
term are given by

R(1)jk = (−1) j t j−1

( j − 1)!
Pet L(PL) j−1 QLu0k, j = 2, . . . .

For the j-th term we have

(PL) j−1 QLu0k

= (PL) j−1
(
−

ik
2

∑
p+q=k

q∈G
p∈F

u0pu0q −
ik
2

∑
p+q=k

q∈F
p∈G

u0pu0q −
ik
2

∑
p+q=k

q∈G
p∈G

u0pu0q

)
. (22)

3.1.2. Recursive computation of the memory terms. The expression in (22) for
(PL) j−1 QLu0k for the j-th term ( j = 2, . . . ) can be computed recursively using a
simple construction based on a Pascal triangle. Note that for our choice of projection
operator P , we have

(PL) j−1
(
−

ik
2

∑
p+q=k

q∈G
p∈G

u0pu0q

)
= 0.

We begin with the (first-order) term for j = 2, which is PL QLu0k . We find

PL QLu0k =−2
ik
2

∑
p+q=k

q∈G
p∈F

Pu0p PLu0q . (23)

The first order term can be computed by convolving the resolved part of Pu0p

with the unresolved part of PLu0q . In practice, all the convolutions sums can be
computed using Fast Fourier Transforms [5]. Note that the expression Pu0p is
linear in the Fourier modes while PLu0q is quadratic. Thus, the convolution sum
in PL QLu0k (including the factor −ik/2) can be denoted by (1r ∗ 2u), where ∗
stands for convolution while r and u stand for the resolved and unresolved parts.
This notation facilitates the recognition of the pattern for the higher order terms.
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With this notation, the first-order term can be written as

PL QLu0k = 2× 1(1r ∗ 2u), (24)

where we have used boldface to denote the coefficient. We continue with the second
order term PL PL QLu0k . We find

PL PL QLu0k = 2
(
−

ik
2

∑
p+q=k

q∈G
p∈F

Pu0p PL PLu0q −
ik
2

∑
p+q=k

q∈G
p∈F

PLPu0p PLu0q

)
. (25)

The convolution sums in this term can be denoted by (1r ∗ 3u) and (2r ∗ 2u). The
second order term can be written as

PL PL QLu0k = 2×
(

1(1r ∗ 3u)+ 1(2r ∗ 2u)
)

(26)

To see the pattern more clearly we need one more term:

PL PL PL QLu0k

= 2
(
−

ik
2

∑
p+q=k

q∈G
p∈F

Pu0p PL PL PLu0q − 2
ik
2

∑
p+q=k

q∈G
p∈F

PLPu0p PL PLu0q

−
ik
2

∑
p+q=k

q∈G
p∈F

PL PLPu0p PLu0q

)
. (27)

The terms in the parenthesis can be denoted by (1r ∗ 4u), (2r ∗ 3u) and (3r ∗ 2u).
The third order term can be written as

PL PL PL QLu0k = 2×
(
1(1r ∗ 4u)+ 2(2r ∗ 3u)+ 1(3r ∗ 2u)

)
. (28)

By examining the expressions in (24)–(28) we see that the memory terms can
be computed as weighted sums of convolution sums where the weights are given
by appropriate Pascal triangle coefficients (the boldface numbers). This was to
be expected since we started with a convolution sum (involving products) of two
functions and each new term in the Taylor series involves a differentiation. Moreover,
the number of convolution sums that need to be added is equal to the order of the
memory term in the Taylor expansion. Also, for each term, the convolution sums
involve expressions whose degree (in Fourier modes) follows an easily discernible
pattern. For the l-th order term in the Taylor series we need the convolution sums
(1r ∗ (l + 1)u), (2r ∗ lu), . . . , (lr ∗ 2u).

Finally, the expressions entering the convolution sums can also be computed
by a Pascal triangle construction. For example, in order to calculate the third
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order term, as can be seen from (27), one needs to compute and store only the
quantities Pu0p, PLu0p, PL PLu0p, PL PL PLu0p for p ∈ F ∪ G. Note that the
quantities Pu0p, PLPu0p and PL PLPu0p which are also needed are the same as
Pu0p, PLu0p and PL PLu0p for the resolved modes and zero for the unresolved
modes. So, they do not need to be stored. They can be quickly constructed when
needed. We see that the storage requirements for the calculation of the memory terms
grows only linearly in the order of the Taylor expansion. Also, the ability to calculate
the needed expressions through FFTs speeds up significantly the calculation of the
various memory terms.

The recursive estimation of the memory terms allows us to calculate memory
terms of very high order efficiently, without having to write down explicitly the
analytical expressions which become very complicated after the first few orders in
the expansion.

3.1.3. Results using rMZ. The construction of the renormalized MZ reduced models
in the previous section assume that the commutator [PL , QL] is small. It is not easy
to estimate the commutator in general. However, from (11) and (12), we see that we
are interested in the magnitude of the quantity et L

[PL , QL]QLu0k . For this quantity
to be zero for all time, we must have [PL , QL]QLu0k ≡ 0; that is, [PL , QL]QLu0k

must be the zero function. This is not possible unless [PL , QL] ≡ 0. However,
we can look for initial conditions u0 such that [PL , QL]QLu0k is small. The
expression for [PL , QL]QLu0k is

[PL , QL]QLu0k = 2
(
−

ik
2

) ∑
p+q=k

q∈F
p∈G

[PL , QL]u0pu0q

+2
(
−

ik
2

) ∑
p+q=k

q∈G
p∈F∪G

PLu0p PLu0q − 2
(
−

ik
2

) ∑
p+q=k

q∈F
p∈G

PLu0p QLu0q , (29)

where

[PL , QL]u0p = 2
(
−

i p
2

) ∑
r+s=p

s∈F
r∈G

PLu0r u0s − 2
(
−

i p
2

) ∑
r+s=p

s∈F
r∈F

QLu0r u0s .

It is straightforward to see from these expressions that if the initial condition is
smooth, in the sense that it contains only a few small wavenumber Fourier modes,
the value of et L

[PL , QL]QLu0k is small. The reason for that is the polynomial
nonlinearity which allows only a finite rate of propagation of activity to higher
wavenumbers. We have used the smoothest possible nontrivial initial condition
which is u0(x)= sin x . This leads to the formation of a standing shock at T = 1.
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Figure 1. 1D Burgers equation: comparison of the evolution of the energy in the resolved
modes computed by the random choice method, the t-model and various rMZ models.

Of course, due to the formation of the shock, the value of et L
[PL , QL]QLu0k

will eventually stop being small. However, it will allow us to renormalize the first
few terms in the memory term expansion and obtain a finite result (see also the
discussion in Section 3.3).

Figure 1 shows the evolution of 1
2

∑
k∈F |uk |

2 (energy) of the resolved modes
computed by reduced models of different orders and the random choice method [7].
All the reduced models use N = 16 Fourier modes while the full system has M = 32
modes. The results of the reduced models are compared to a converged solution of
the random choice method with N = 4096 points. The energy of the random choice
method solution was computed using only N = 16 modes. However, note that
practically all the energy of the random choice method solution is concentrated in
the first few Fourier modes, so even if we had computed the energy for all N = 4096
Fourier modes the results would not have changed. This is to be expected, since for
the initial condition we are using, a standing shock forms at time T = 1 and, thus,
by time T = 100 the only Fourier modes having some energy left in them are the
first few.

The quantities Êi used to set up the linear algebraic system needed to compute
the coefficients of the reduced system are lp norms of the solution. In particular,
for the first order model we use Êi =

∑
k∈F |uk |

2i , i = 1, 2. For the second order
model Êi =

∑
k∈F |uk |

2i , i = 1, 2, 3 and for the third order model Êi =
∑

k∈F |uk |
2i ,

i = 1, 2, 3, 4. In general, for the reduced model of order λ we need λ+1 quantities
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because we also have to compute the coefficient of the Markovian term. All the
calculations are done in double precision. The tolerance ε used to decide when it
is time to switch to the reduced model is set to 10−12. The systems of ordinary
differential equations for the different reduced models were solved using the Runge–
Kutta–Fehlberg method with the step-size control tolerance set to 10−10 [19].

The numerical problem of solving the linear system for the coefficients is hard
because the resulting system has very large condition number and very small
determinant. This happens for three reasons. First, the dominant contribution to the
linear system matrix comes from the Markovian term (except for the contribution
to the rate of change of the Ê1 =

∑
k∈F |uk |

2 which is zero). This means that the
coefficient of the Markovian term is practically 1. Second, the contributions of each
memory term to the rates of change of the different Êi vary dramatically. Third,
the contributions to each Êi by the different memory terms also varies substantially.
Of course, this situation is exacerbated if we use more terms in the expansion. For
the case when we retain up to the third order term in the memory expansion, we
have to deal with condition numbers of the order 1011 and determinant values of
order 10−20. Inevitably, even the use of double precision cannot provide us with an
accurate estimate of the coefficients. Since the linear system matrix is practically
singular (for the numerical precision used) we have chosen to solve the linear system
using the SVD algorithm [18].

A partial remedy to the problem comes from a slight modification in the way
of estimating the coefficients. Since we know that the Markovian term coefficient
is practically 1, we can set it to 1, and subtract the column of contributions of the
Markovian term from the RHS of the linear system. This allows us to reduce the
dimensionality of the linear system to be solved from (λ+1)×(λ+1) to λ×λ. This
practice of subtracting almost equal numbers is not advisable in general because it
leads to loss of significant digits [18]. However, in our case it helps to improve the
results by lowering the condition number of the matrix from about 1011 to about 105.
In , the estimation of the coefficients for the third order model using the reduced
dimension matrix is denoted by “rMZ-reduced 3rd”.

As shown in Figure 1, the rMZ models of first and second order give practically
the same results as the t-model. The third order model gives a slight improvement.
However, when the reduced dimension matrix is used, the energy evolution predicted
by the third order model is practically identical to the correct energy evolution of
the resolved modes predicted by the random choice method. If we increase the
resolution of the reduced model, the numerical problems for the calculation of
higher order coefficients become even more pronounced. This is to be expected,
since a larger resolution means that the renormalized coefficients of the reduced
model will be smaller. Thus, computing them with accuracy is more difficult.
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We have to note that the computation of the higher order coefficients is more
difficult for our choice of initial condition since it only involves one active Fourier
mode. Initial conditions with more active Fourier modes will transfer activity to
the unresolved scales at a higher rate and thus the corresponding renormalized
coefficients will be larger. A detailed study of the behavior of the coefficients for
different initial conditions will be presented elsewhere. For the first order model,
we have already presented in [23] a detailed study about the change of the value of
the renormalized coefficient with resolution up to the order of 105 Fourier modes.
In that work, the renormalized coefficient calculation was used to determine, in a
fixed point analysis, the blow-up exponent.

3.2. Incompressible Euler equations in 3D. Consider the incompressible Euler
equations in 3D with periodic boundary conditions in the cube [0, 2π ]3:

ut + u · ∇u =−∇ p, ∇ · u = 0, (30)

where u(x, t)= (u1(x1, x2, x3, t), u2(x1, x2, x3, t), u3(x1, x2, x3, t)) is the velocity,
p is the pressure and∇= (∂/∂x1, ∂/∂x2, ∂/∂x3). The system in 3.2 is supplemented
with the initial condition u(x, 0)= u0(x) which is also periodic and incompressible
and x = (x1, x2, x3). Since we are working with periodic boundary conditions, we
expand the solution in Fourier series keeping N modes in each spatial direction,

uM(x, t)=
∑

uk(t)eikx ,

where F ∪G = [−M/2,M/2−1]× [−M/2,M/2−1]× [−M/2,M/2−1]. Also
k = (k1, k2, k3) and uk(t)= (u1

k(t), u2
k(t), u3

k(t)).
The equation of motion for the Fourier mode uk becomes

duk

dt
=−i

∑
p+q=k

p,q∈F∪G

k · u p Akuq , (31)

where Ak = I − kkT /|k|2 is the incompressibility projection matrix and I is the
3× 3 identity matrix. The symbol · denotes inner product in R3. The system (31)
is supplemented by the initial condition u0 = {uk(0)} = {u0k}, k ∈ F ∪G, where
u0k are the Fourier coefficients of the initial condition u0(x).

To conform with the MZ formalism we set

Rk(u)=−i
∑

p+q=k
p,q∈F∪G

k · u p Akuq

and we have
duk

dt
= Rk(u) (32)



58 PANOS STINIS

for k ∈ F ∪ G. The system (32) is supplemented by the initial condition u0 =

(û0, ũ0)= (û0, 0). Note that we focus on initial conditions where the unresolved
Fourier modes are set to zero. We also define L by

L =
∑

k∈F∪G

Rk(u0)
∂

∂u0k
.

Note that Lu0k = Rk(u0). Consider the subset

F = [−N/2, N/2− 1]× [−N/2, N/2− 1]× [−N/2, N/2− 1]

for N < M . We will construct the reduced models for the Fourier modes uk with
k ∈ F.

We need to define a projection operator P . For a function h(u0) of all the vari-
ables, the projection operator we will use is defined by P(h(u))= P(h(û0, ũ0))=

h(û0, 0), i.e., it replaces the value of the unresolved variables ũ0 in any function
h(u0) by zero. Note that this choice of projection is consistent with the initial
conditions we have chosen. Based on our choice of projection operator and the
scaling symmetries of the Euler equations we set N = M

2 .
Define

R̂k(û0)= P Rk(u0)=−i
∑

p+q=k
p,q∈F

k · û0p Ak û0q .

The Markovian term has the same functional form as the RHS of the full system but
is restricted to a sum over only the resolved modes in F . The full system conserves
the energy 1

2

∑
k∈F∪G |uk |

2 contained in all the modes. Similarly, the Markovian
term of the reduced model does not alter the energy content of the resolved modes.
The necessary energy transfer out of the resolved modes rests on the memory terms.

With the definition of P given above, we find for QLu0k

QLu0k =−i
∑

p+q=k
q∈G
p∈F

k · u0p Aku0q −
∑

p+q=k
q∈F
p∈G

k · u0p Aku0q − i
∑

p+q=k
q∈G
p∈G

k · u0p Aku0q .

The expression for QLu0k contains three terms which involve at least one wavenum-
ber in the unresolved range G. The terms in the Taylor expansion of the memory
term are given by

R(1)jk = (−1) j t j−1

( j − 1)!
Pet L(PL) j−1 QLu0k, j = 2, . . . .
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Figure 2. 3D Euler equation. Comparison of the evolution of the energy in the resolved
modes computed by the t-model and various rMZ models.

For the j-th term we have

(PL) j−1 QLu0k

= (PL) j−1
(
−i

∑
p+q=k

q∈G
p∈F

k ·u0p Aku0q−i
∑

p+q=k
q∈F
p∈G

k ·u0p Aku0q−i
∑

p+q=k
q∈G
p∈G

k ·u0p Aku0q

)
. (33)

The different terms in the memory expansion can be computed recursively as in
the case of Burgers. However, there is a slight complication because the presence
of the incompressibility operator and of the inner product on the RHS destroys
the commutativity which allowed us in Burgers to group terms (the factor 2 which
appears outside every parenthesis there). This problem can be addressed by a
construction which uses 2 Pascal triangles instead of 1 used in the case of Burgers.
For each order, one adds up the corresponding terms from the 2 Pascal triangles and
obtains the desired memory term. Other than that, the recursive algorithm remains
the same and we omit the details. Also, note that all the higher order terms are
divergence-free by construction.

We have used the same quantities Êi as in the case of Burgers, with the obvious
generalizations, since for 3D Euler we have a 3-dimensional velocity vector instead
of the scalar velocity in Burgers. Also, even though for 3D Euler we have a
3-dimensional vector, we have assumed that the reduced model renormalized coeffi-
cients are the same for all 3 velocities. This is a simplifying assumption. Of course,
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one can use different renormalized coefficients for the different velocities at the
expense of having to solve a larger linear system for the renormalized coefficients.
A detailed study of that case will be presented in future work.

We have used the Taylor–Green initial condition (see [21], for example) which
is given by

u1(x, 0)= sin x1 cos x2 cos x3,

u2(x, 0)=−cos x1 sin x2 cos x3,

u3(x, 0)= 0.

Figure 2 shows the evolution of the energy 1
2

∑
k∈F |uk |

2 of the resolved modes
for different resolutions computed by rMZ reduced models of different orders
and the t-model. We have presented results for the rMZ reduced models using
the reduced linear system matrix approach discussed above to tame the condition
number of the matrix. Based on these results, we make two observations.

First, for 83 resolved modes, the rMZ third order model dissipates energy at a
slower rate than the t-model with 83 resolved modes. This is true not only for the
third order model but also for the first and second order models (we have omitted
those results to avoid cluttering the figure). This slower rate of energy dissipation
compared to the t-model holds also for the case of 163 resolved modes.

The second observation is that the rate of energy dissipation of the rMZ models
is consistent with the rate predicted by the t-model with higher resolution. This is to
be expected since a higher order model should result in a more accurate prediction
of the energy dissipation rate.

The reader may be concerned about the small resolutions used in the numerical
experiments. There are two reasons for that. First, if one keeps several terms in the
memory expansion, then, for a very smooth initial condition like the one we use,
the matrix B becomes even more ill-conditioned for large resolutions. However,
this is not a severe problem. On the contrary, it signifies that most of the higher
order terms should have small coefficients and thus can be safely removed from the
model.

The second reason we have used small resolutions both for Burgers and Euler is
because an accurate reduced model should be able to reproduce the correct energy
content for its resolved scales no matter how small the resolution. For example, for
Burgers, where we know what the energy content should be after the singularity,
we see that the rMZ model with a small resolution (163) indeed reproduces the
correct energy content for this resolution.

3.3. rMZ vs MZ. We show that the renormalized version of the MZ formalism is
advantageous with respect to the original MZ formalism. In particular, we show that
for the same order in the Taylor expansion of the memory term, the renormalized
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Figure 3. Comparison, for 3D Euler, of the value of the energy content of the resolved
modes for the third order renormalized and unrenormalized MZ models.
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Figure 4. Comparison, for 1D Burgers, of the value of the energy content of the resolved
modes for the third order renormalized and unrenormalized MZ models.

algorithm leads to the stabilization of the reduced model. Figure 3 compares, for
the 3D Euler equations, the energy 1

2

∑
k∈F |uk |

2 for 83 resolved modes for the
renormalized and unrenormalized third order models. The unrenormalized model
quickly becomes unstable and loses all predictive ability. Figure 4 compares the
behavior of the renormalized and unrenormalized third order models for Burgers.

The unrenormalized expansion leads to divergence of the predicted energy content
of the resolved modes. This is analogous to the divergences that plagued perturbative
calculations in quantum field theory (QFT) before the advent of renormalization
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[13]. In QFT, the reason for the divergences was that the perturbation expansion
was performed in a quantity (the bare mass, charge etc.) which turns out to be
ill-defined. The process of renormalization replaces the perturbation expansion in
powers of the ill-defined quantity with a perturbation expansion in powers of the
experimentally determined values of this quantity. This allows the subtraction of
the terms that cause divergences and leads to finite results.

In our case, the expansion of the memory of the MZ formalism is ill-defined
because the Taylor expansion at t = 0 breaks down after some time. On the other
hand, the renormalized MZ formalism takes into account dynamic information
from the evolution of the full system (while this system is still valid) and prescribes
to each term in the memory expansion an appropriate coefficient. The coefficient
measures how important this term is. In this way, the divergences are averted and
the results become finite.

We should emphasize that the reason the renormalization of the MZ model works
is the smoothness of the initial condition which renders higher order terms less
and less important. This is reflected in the values of the renormalized coefficients
which decrease with the order of the memory expansion. However, if we attempt to
renormalize the MZ model for an initial condition where all the resolved Fourier
modes are initially nonzero, we find that all the coefficients remain of O(1) as
in the nonrenormalized (and unstable) MZ model. This means that in this case
renormalization cannot help with the stabilization of the reduced model.

The last observation suggests that the road to stable reduced models for the case
when the initial condition has many nonzero Fourier modes may lie in a different
expansion than in a Fourier series. In particular, one may have to expand the solution
in a basis of appropriate collective degrees of freedom so that the initial condition
contains only a few nonzero collective modes. For the case of incompressible flows
these could be vortices or even Beltrami flows [12]. If one can do that, then the
framework presented in the current work will remain applicable.

3.4. Universality of the renormalized coefficients. In the introduction, we hinted
at the possibility that the renormalized coefficients may be determined by two factors:
the ratio of the smallest active scale in the initial condition to the smallest resolvable
scale, and the scaling symmetries of the equation under investigation. Even though
the numerical difficulties with the ill-conditioned linear system matrix do not allow
us at present to study accurately the higher order renormalized coefficients, we have
enough accuracy to study the first order renormalized coefficient both for 1D Burgers
and 3D Euler. Note that the two equations share the same scaling symmetries. Also,
we have chosen for Burgers the initial condition u0(x) = sin x which has only
one active Fourier mode (for k =±1) and for 3D Euler, the Taylor–Green initial
condition which also has only active Fourier modes for ki =±1, i = 1, 2, 3.
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Figure 5. Comparison, for 1D Burgers and 3D Euler, of the value of the renormalized
coefficient for the first order rMZ model for different resolutions. The initial conditions for
Burgers and Euler have only 1 active Fourier mode in each direction.

Figure 5 shows the comparison of the value of the renormalized first-order
coefficient for Burgers and 3D Euler as a function of the ratio of the smallest scale
active in the initial condition to the smallest scale of the reduced model. We make
two observations. First, the values of the renormalized coefficient for the two
equations are in remarkable agreement. Second, from the slope of the linear fit, we
see that the value of the coefficient is practically equal to the ratio of the smallest
scale active in the initial condition to the smallest scale of the reduced model.

Needless to say that one example is not enough to infer the generality of the result
for arbitrary initial conditions. A theoretical explanation of this result is lacking at
the moment. Note that due to the way we have defined the terms in the expansion
of the memory, all the terms have the same dimensions as the Markovian term and
the left-hand side of the equation for each Fourier mode. So, the corresponding
coefficients have to be dimensionless. Thus, we expect the coefficients to depend
on ratios of quantities with the same dimensions. Here we have investigated the
possibility that this ratio is that of the smallest active scale in the initial condition
to the smallest active scale of the reduced model.

We should comment here on the behavior of the rMZ algorithm for the 2D Euler
equations for which the 2D version of the Taylor–Green initial condition is an exact
solution, i.e., a steady state. Exactly because it is a steady state there is no need
for a reduced model. Application of the rMZ algorithm agrees with this. There
is never any need to transfer energy to the unresolved scales and thus, no need to
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switch to a reduced model. The contributions of the different memory terms to
the matrix B are all well below the double precision threshold. This allows the
freedom to assign to the renormalized coefficient the values shown in Figure 5
without incurring any trouble. In other words, the behavior of the solution of the
2D Euler for the Taylor–Green initial condition does not contradict the agreement
for the renormalized coefficient of the 1D Burgers and 3D Euler equations shown
in Figure 5.

4. Conclusions and future work

We have presented a new way of computing reduced models for systems of ordinary
differential equations. The approach combines renormalization and effective field
theory techniques with the Mori–Zwanzig formalism. The constructed reduced
models are stable because they transfer activity out of the resolved scales at a rate
which is dictated by the full system. The consistency between the rate of transfer
activity of the reduced model and the rate of transfer activity dictated by the full
system is the analog of the matching conditions employed in effective field theory.
The matching conditions lead to a redefinition (renormalization) of the coefficients
of a reduced model originally constructed through the Mori–Zwanzig formalism.

The results we have obtained for the 1D Burgers and 3D Euler equations are
rather encouraging. However, we have to deal with the ill-conditioning of the
linear system for the coefficients. We plan to address the problem through various
techniques designed to deal with ill-conditioned matrices. Also, it is very interesting
to study more to what extent the renormalized coefficients are determined by the
structure of the initial condition and the scaling symmetries of the PDE.

We note that the proposed approach can also be applied to the Navier–Stokes
equations [14]. The viscosity starts contributing from the second order memory
term. Also, the inclusion of viscosity does not complicate considerably the recursive
algorithm for the calculation of the higher order terms. The expressions needed
to compute the viscosity contributions can be estimated through terms already
computed in the construction of the inviscid terms.

The approach presented in the current work opens new possibilities for the
construction of accurate and stable reduced models for (large) systems of ordinary
differential equations. It also highlights the affinity between problems of model
reduction in scientific computing and the construction of effective field theories
in high energy physics. We hope that this connection will benefit the problem of
constructing reduced models and will be of use in tackling real world problems
which are impossible to address through brute force calculations.

In conclusion, as Steven Weinberg once put it [25], renormalization is indeed a
good thing.
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LEGENDRE SPECTRAL-COLLOCATION METHOD
FOR VOLTERRA INTEGRAL DIFFERENTIAL EQUATIONS

WITH NONVANISHING DELAY

YANPING CHEN AND ZHENDONG GU

The main purpose of this paper is to propose the Legendre spectral-collocation
method to solve the Volterra integral differential equations with nonvanishing
delay which arise in many problems, such as modeling in biosciences and pop-
ulation. In our method we divide the definition domain of the solution into
several subintervals where the solution is sufficiently smooth. Then we can
use the spectral-collocation method for these equations in each subinterval. We
provide convergence analysis for this method, which shows that the numerical
errors decay exponentially. Numerical examples are presented to confirm these
theoretical results.

1. Introduction

VIDEs (Volterra integral differential equations) with delay arise in many problems,
for example, ecological competition systems [54], modeling in biosciences and
population [1; 9; 26] and models for transmission of disease with immigration of
infectives [10]. Nonlinear Volterra integral and integrodifferential equations with
nonvanishing delay have been used since the 1920s as mathematical models of
population growth and related phenomena in biology. Volterra [46] refined his
earlier predator-prey model to include situations where “historical actions cease
after a certain interval of time” [47]. This leads to a system of nonlinear Volterra

Yanping Chen is the corresponding author.
This work is supported by National Science Foundation of China (11271145), Foundation for
Talent Introduction of Guangdong Provincial University, Specialized Research Fund for the Doc-
toral Program of Higher Education (20114407110009), the Project of Department of Education of
Guangdong Province (2012KJCX0036), Hunan Provincial Innovation Foundation for Postgraduate
(CX2012B241).
PACS: primary 65M70; secondary 45D05, 45J05.
Keywords: Volterra integral differential equations, nonvanishing delay, Legendre spectral-collocation

method, convergence analysis.

67

http://msp.org/camcos
http://dx.doi.org/10.2140/camcos.2013.8-1
http://dx.doi.org/10.2140/camcos.2013.8.67
http://msp.org


68 YANPING CHEN AND ZHENDONG GU

integrodifferential equations with constant delay T0 > 0 (using Volterra’s notation):

N ′1(t)= N1(t)
(
ε1− γ1 N2(t)−

∫ t

t−T0

F1(t − τ)N1(τ ) dτ
)
,

N ′2(t)= N2(t)
(
−ε2+ γ2 N1(t)+

∫ t

t−T0

F2(t − τ)N2(τ ) dτ
)
,

with εi > 0, γi ≥ 0 and continuous Fi (t)≥ 0, where Ni (t)= φi (t), t ≤ 0, i = 1, 2.
N1(t) and N2(t) represent the sizes of two populations (prey and predator) at time
t ≥ 0. These equations can be extended naturally to describe the dynamics of
multispecies ecological systems. A further development of such population models
based on VIDEs can be found in [20].

There exist many numerical methods for the VIDEs with delay, for example,
general linear methods [53], linear multistep methods [5], block-by-block meth-
ods [32], Runge–Kutta methods [6; 7; 21; 29; 38], Petrov–Galerkin methods [31],
piecewise polynomial collocation methods [13; 14; 36; 37]. Brunner investigated
the numerical solution of nonlinear VIDEs with infinite delay in [11] and neutral
VIDEs with constant delay in [12]. The superconvergence of the collocation method
for VIDEs with nonvanishing delay is investigated in [13; 37; 39]. The monograph
by Brunner [13] contains a wealth of material on the theory and numerical methods
for VIDEs, with the focus being on the basic theory of Volterra equations with
delay and the collocation methods and their convergence analysis.

Without the integral terms in VIDEs we obtain DDEs (delay differential equa-
tions). DDE models arise in many problems, such as the growth of tumors [45],
population dynamics [28], hepatitis B virus infection [23], harmful algal blooms in
the presence of toxic substances [16]. More applications of DDEs are described
in [28]. Numerically solving DDEs has many of the same difficulties discussed
for delay VIDEs. Many numerical methods are investigated for DDEs [6; 22; 34;
55]. The monograph by Bellen and Zennaro [8] gives a comprehensive account of
numerical methods for DDEs, with the focus being on (classical and continuous)
Runge–Kutta methods and their asymptotic stability properties which were also
investigated by Baker and Tang [7]. There are some well-developed softwares for
delay differential equations or systems. The popular solver developed by Shampine
and Thompson [40; 44] for DDEs is well tested and user-friendly.

Spectral methods receive considerable attention mainly due to their high accuracy.
Tang, Xu and Cheng [43] proposed a Legendre spectral-collocation method to solve
VIEs (Volterra integral equations) of the second kind whose kernel and solutions
are sufficiently smooth. Chen and Tang [17; 18; 19] proposed and analyzed a Jacobi
spectral-collocation approximation for linear VIEs of the second kind with weakly
singular kernels provided that the underlying solutions of the VIEs are sufficiently
smooth. Then, in [30], the Jacobi spectral-collocation method was extended to
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solve VIEs with Abel-type kernel. Recently, another spectral method, i.e., the
Legendre spectral Galerkin method, was investigated in [48; 52] for VIEs. The
spectral-collocation methods also attract the interest of those people who study the
Volterra-type integral and related functional differential equations (see, e.g., [2; 3;
4; 27; 42; 49; 50; 51]).

However, there is very little literature about the spectral method to solve VIDEs
with nonvanishing delay. The main difficulty in applying the spectral method
to VIDEs with nonvanishing delay is that the solutions of these equations are
not smooth enough at the primary discontinuous points associated with the delay
function. In this paper, we overcome this difficulty and propose a Legendre spectral-
collocation method to solve these equations. In our method we divide the definition
domain into several subintervals according to the primary discontinuous points
associated with the nonvanishing delay function. In each subinterval, where the
solution is smooth enough, we can apply the Legendre spectral-collocation method
to approximate the solution. We provide convergence analysis to show that the
numerical errors decay exponentially. Numerical examples are presented to confirm
this theoretical prediction.

The VIDEs with nonvanishing delay considered in this paper are as follows:

y′(t)= a(t)y(t)+b(t)y(θ(t))+g(t)+
∫ t

0
K1(t, s)y(s) ds+

∫ θ(t)

0
K2(t, s)y(s) ds,

t ∈ (0, T ],
y(t)= φ(t), t ∈ [θ(0), 0]. (1)

In population models, y(t) means the population size at time t . The delay θ(t)
means that the growth of population size depends on the historical action. We
assume that the functions describing the above equation all possess continuous
derivatives of at least order m ≥ 1 on their respective domains; i.e.,

a(t), b(t), g(t) ∈ Cm([0, T ]), φ(t) ∈ Cm([θ(0), 0]),

K1(t, s) ∈ Cm(�1), �1 := {(t, s) : 0≤ s ≤ t ≤ T },

K2(t, s) ∈ Cm(�2), �2 := {(t, s) : θ(0)≤ s ≤ θ(t), 0≤ t ≤ T }, (2)

and the delay function θ will be subject to the following conditions:

θ(t) := t − τ(t), τ ∈ Cm([0, T ]),

τ (t)≥ τ0 > 0 for all t ∈ [0, T ],

θ is strictly increasing on [0, T ]. (3)

The nonvanishing delay θ gives rise to the primary discontinuity points {ξµ} for
the solution of (1): they are determined by the recursion

θ(ξµ)= ξµ−1, µ≥ 0 (ξ−1 := θ(0), ξ0 = 0).
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These points have the uniform separation property

ξµ− ξµ−1 ≥ τ0 > 0 for all µ≥ 0.

For ease of notation we will assume that

T = ξM+1 for some M ≥ 1.

Theorem 4.1.9 in [13] states that the unique solution of (1) is in Cm+1(ξµ, ξµ+1]

for each µ = 0, 1, . . . ,M and is bounded on Z M := {ξµ : µ = 0, 1, . . . ,M} and
hence on [0, T ]. At t = ξµ (µ= 1, . . . ,min{m,M}),

lim
t→ξ−µ

y(µ)(t)= lim
t→ξ+µ

y(µ)(t),

while the (µ+1)-th derivative of y is in general not continuous at ξµ. In addition, if
min{m,M} = m < M , the solution also lies in Cm+1

[ξm, T ]. This motivates us to
apply the spectral-collocation method to approximate the solution on the subinterval
(ξµ, ξµ+1], µ= 0, 1, . . . ,M .

This paper is organized as follows. In Section 2, we introduce the Legendre
spectral-collocation method for VIDEs with nonvanishing delay. Some useful lem-
mas for the convergence analysis will be provided in Section 4, and the convergence
analysis, in both L∞ and L2, will be given in Section 5. Numerical experiments
are carried out in Section 6. Finally, in Section 7, we end with the conclusion and
future work.

2. Legendre spectral-collocation method

For ease of analysis we change the interval [0, T ] to the standard interval [−1, 1].
Precisely we use the variable transformation

t (x)= 1
2 T (x + 1), s(z)= 1

2 T (z+ 1). (4)

Then (1) can be written as

u′(x)= A(x)u(x)+ B(x)u(ϑ(x))+ f (x)

+

∫ x

−1
R1(x, z)u(z) dz+

∫ ϑ(x)

−1
R2(x, z)u(z) dz, x ∈ (−1, 1],

u(x)= ψ(x), x ∈ [ϑ(−1),−1],

(5)

where

u(x) := y(t (x)), A(x) := 1
2 T a(t (x)), B(x) := 1

2 T b(t (x)),

f (x) := 1
2 T g(t (x)), ϑ(x) :=

2
T
θ(t (x))− 1, ψ(x) := φ(t (x)),

R1(x, z) :=
( 1

2 T
)2K1(t (x), s(z)), R2(x, z) :=

( 1
2 T
)2K2(t (x), s(z)). (6)
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The primary discontinuity point ξµ becomes

ηµ := (2ξµ/T )− 1, µ=−1, 0, 1, . . . ,M.

Define
δµ := (ηµ, ηµ+1], µ=−1, 0, . . . ,M.

Set the collocation points as follows:

X N :=

M⋃
µ=0

Xµ, Xµ
:= {xµn : ηµ = xµ0 < xµ1 < · · ·< xµN = ηµ+1}, (7)

where

xµi :=
ηµ+1− ηµ

2
xi +

ηµ+1+ ηµ

2
; (8)

here xi , i = 0, 1, . . . , N , are the N + 1 Legendre Gauss–Lobatto points in the
standard interval [−1, 1]. Then (5) holds at xµi , i = 0, 1, . . . , N , µ= 0, 1, . . . ,M :

u′(xµi )= A(xµi )u(x
µ
i )+ B(xµi )u(ϑ(x

µ
i ))+ f (xµi )

+

∫ xµi

−1
R1(x

µ
i , z)u(z) dz+

∫ ϑ(xµi )

−1
R2(x

µ
i , z)u(z) dz. (9)

We use uµi to approximate u(xµi ), υ
µ
i to approximate u(ϑ(xµi )), ρ

µ
i to approxi-

mate u′(xµi ). Then we can use

uµ(x) :=
N∑

j=0

uµj Fµj (x), x ∈ [ηµ, ηµ+1]

to approximate u|δµ(x), i.e., the restriction of u(x) to the interval [ηµ, ηµ+1].
F j
µ(x), x ∈ [ηµ, ηµ+1], is the j -th Lagrange interpolation basic function associated

with the collocation points xµ0 , xµ1 , . . . , xµN in the interval [ηµ, ηµ+1]. Similarly, we
use

ρµ(x) :=
N∑

j=0

ρ
µ
j Fµj (x), x ∈ [ηµ, ηµ+1]

to approximate u′|δµ(x), i.e., the restriction of u′(x) to the subinterval [ηµ, ηµ+1].
Eventually u(x) can be approximated by

uN (x) := uµ(x) if x ∈ [ηµ, ηµ+1], µ= 0, 1, . . . ,M,

and u′(x) can be approximated by

ρN (x) := ρµ(x) if x ∈ [ηµ, ηµ+1], µ= 0, 1, . . . ,M.
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Then (9) can be approximated by

ρ
µ
i ≈ A(xµi )u

µ
i + B(xµi )υ

µ
i + f (xµi )

+

∫ xµi

−1
R1(x

µ
i , z)uN (z) dz+

∫ ϑ(xµi )

−1
R2(x

µ
i , z)uN (z) dz, (10)

which can be written as

ρ
µ
i ≈ A(xµi )u

µ
i + B(xµi )υ

µ
i + f (xµi )

+

µ−1∑
r=0

∫ ηr+1

ηr

R1(x
µ
i , z)ur (z) dz+

∫ xµi

ηµ

R1(x
µ
i , z)uµ(z) dz

+

µ−2∑
r=0

∫ ηr+1

ηr

R2(x
µ
i , z)ur (z) dz+

∫ ϑ(xµi )

ηµ−1

R2(x
µ
i , z)uµ−1(z) dz. (11)

In order to compute the integral term by the Gauss quadrature rule, we change
the integration interval to the standard interval [−1, 1]. Note that the variable
transformation

z(a, b, v) :=
b− a

2
v+

b+ a
2

, v ∈ [−1, 1] (12)

can change the interval [a, b] to [−1, 1]. For simplicity, we define

zr (v) := z(ηr , ηr+1, v), v ∈ [−1, 1], r ≥ 0. (13)

Using the Gauss quadrature formula to approximate the integration term in (11)
we obtain

ρ
µ
i =A(xµi )u

µ
i +B(xµi )υ

µ
i + f (xµi )+

µ−1∑
r=0

ηr+1−ηr

2

N∑
k=0

R1(x
µ
i , zr (vk))ur (zr (vk))ωk

+
ηµ+1− ηµ

2
xi + 1

2

N∑
k=0

R1(x
µ
i , zµ(z(−1, xi , vk)))uµ(zµ(z(−1, xi , vk)))ωk

+

µ−2∑
r=0

ηr+1− ηr

2

N∑
k=0

R2(x
µ
i , zr (vk))ur (zr (vk))ωk

+
ηµ− ηµ−1

2
ϑ̃(xµi )+ 1

2

N∑
k=0

R2(x
µ
i , zµ−1(z(−1, ϑ̃(xµi ), vk)))

× uµ−1(zµ−1(z(−1, ϑ̃(xµi ), vk)))ωk, (14)

where vk , k = 0, 1, . . . , N , are the N + 1 Legendre Gauss–Lobatto points in the
standard interval [−1, 1], corresponding to the weights ωk , k = 0, 1, . . . , N , and
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ϑ̃(xµi ) :=
2

ηµ− ηµ−1
ϑ(xµi )−

ηµ+ ηµ−1

ηµ− ηµ−1
, µ > 0. (15)

Note that, for j, k = 0, 1, . . . , N , r = 0, 1, . . . ,M ,

Fr
j (zr (vk))= F j (vk)=

{
1, k = j,
0, k 6= j,

Fr
j (zr (z(−1, x, v)))= F j (z(−1, x, v)), (16)

where F j (v) is the j-th Lagrange interpolation basic function associated with the
N + 1 Legendre Gauss–Lobatto points in the standard interval [−1, 1]. Then (14)
can be simplified to

ρ
µ
i = A(xµi )u

µ
i + B(xµi )υ

µ
i + f (xµi )+β(x

µ
i )+ λ(x

µ
i ),

µ= 0, 1, . . . ,M, i = 0, 1, . . . , N , (17)

where

β(xµi ) :=
µ−1∑
r=0

ηr+1− ηr

2
βr

1(x
µ
i )+

ηµ+1− ηµ

2
xi + 1

2
β3(x

µ
i ),

βr
1(x

µ
i ) :=

N∑
k=0

R1(x
µ
i , zr (vk))ur

kωk, r = 0, 1, . . . , µ− 1,

β3(x
µ
i ) :=

N∑
j=0

uµj
N∑

k=0
R1(x

µ
i , zµ(z(−1, xi , vk)))F j (z(−1, xi , vk))ωk,

and

λ(xµi ) :=


ϑ(x0

i )+ 1
2

λ2(x0
i ), µ= 0,

µ−2∑
r=0

ηr+1− ηr

2
λr

1(x
µ
i )+

ηµ− ηµ−1

2
ϑ̃(xµi )+ 1

2
λ3(x

µ
i ), µ > 0,

λr
1(x

µ
i ) :=

N∑
j=0

ur
j R2(x

µ
i , zr (v j ))ω j , r = 0, 1, . . . , µ− 2,

λ2(x0
i ) :=

N∑
k=0

R2(x0
i , z(−1, ϑ(x0

i ), vk))ψ(z(−1, ϑ(x0
i ), vk))ωk,

λ3(x
µ
i ) :=

N∑
j=0

uµ−1
j

N∑
k=0

R2(x
µ
i , zµ−1(z(−1, ϑ̃(xµi ), vk)))F j (z(−1, ϑ̃(xµi ), vk))ωk .

However, the linear systems (17) alone are not enough to find out the un-
known elements. We need two other linear systems associated with uµi , υ

µ
i , ρ

µ
i ,
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i = 0, 1, . . . , N , µ= 0, 1, . . . ,M . Note that

u(xµi )= u(−1)+
∫ xµi

−1
u′(z) dz

= ψ(−1)+
µ−1∑
r=0

ηr+1− ηr

2

∫ 1

−1
u′(zr (v)) dv

+
ηµ+1− ηµ

2
xi + 1

2

∫ 1

−1
u′(zµ(z(−1, xi , v))) dv. (18)

Then we can approximate the above equation by

uµi = ψ(−1)+α1(x
µ
i ), µ= 0, 1, . . . ,M, i = 0, 1, . . . , N , (19)

where

α1(x
µ
i )=

µ−1∑
r=0

ηr+1− ηr

2

N∑
k=0

ρr
kωk

+
ηµ+1− ηµ

2
xi + 1

2

N∑
j=0
ρ
µ
j

N∑
k=0

F j (z(−1, xi , vk))ωk . (20)

Similarly, the equation

u(ϑ(xµi ))= u(−1)+
∫ ϑ(xµi )

−1
u′(z) dz

= ψ(−1)+
µ−2∑
r=0

ηr+1− ηr

2

∫ 1

−1
u′(zr (v)) dv

+
ηµ− ηµ−1

2
ϑ̃(xµi )+ 1

2

∫ 1

−1
u′(zµ−1(z(−1, ϑ̃(xµi ), v))) dv (21)

can be approximated by

υ
µ
i = ψ(−1)+α2(x

µ
i ), µ= 0, 1, . . . ,M, i = 0, 1, . . . , N , (22)

where

α2(x
µ
i )=



ψ(ϑ(x0
i ))−ψ(−1), µ= 0,

µ−2∑
r=0

ηr+1− ηr

2

N∑
k=0

ρr
kωk

+
ηµ−ηµ−1

2
ϑ̃(xµi )+1

2

N∑
j=0
ρ
µ−1
j

N∑
k=0

F j (z(−1, ϑ̃(xµi ), vk))ωk, µ > 0.

Equations (19) and (22) are two linear systems we want to find.
The Legendre spectral-collocation method is to find ρµi , uµi , i = 0, 1, . . . , N ,

µ= 0, 1, 2, . . . ,M , which satisfy (17), (19) and (22). The approximation to y(t)
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is uN (2t/T − 1); the approximation to y′(t) is (2/T )ρN (2t/T − 1). An efficient
computation of F j (s) can be found in [15] or [43].

3. The existence of the solution to the discrete system

In this section we will discuss the existence of the solution to the discrete system
(17), (19) and (22). We write the linear system (17), (19) and (22) into matrix form:

U ′(µ) =8(µ)1 + A(µ)U (µ)
+ R(µ)1 U (µ)

+ B(µ)V (µ),

U (µ)
=8

(µ)

2 +
ηµ+1− ηµ

2
R(µ)3 U ′µ,

V (µ)
=8

(µ)

3 + R(µ)4 U ′µ−1,

(23)

where

U ′(µ) := [ρµ0 , ρ
µ

1 , . . . , ρ
µ
N ]
′,

U (µ)
:= [uµ0 , uµ1 , . . . , uµN ]

′,

V (µ)
:= [υ

µ

0 , υ
µ

1 , . . . , υ
µ
N ]
′, µ > 0,

V (0)
:= [ψ(ϑ(x0

0)), ψ(ϑ(x
0
1)), . . . , ψ(ϑ(x

0
N ))]

′, µ= 0,

8
(µ)

1 := F (µ)+
µ−1∑
r=0

R(r)1 U (r)
+

µ−2∑
r=0

R(r)2 U (r)
+ R(µ)2 U (µ−1), µ > 0,

8
(0)
1 (i) := F (0)(i)+

ϑ(x0
i )+1
2

N∑
k=0

R2(x0
i , z(−1, ϑ(x0

i ), vk))

×ψ(z(−1, ϑ(x0
i ), vk))ωk,

8
(µ)

2 := ψ(−1)[1, 1, . . . , 1]′+
µ−1∑
r=0

R(r)3 U (r),

8
(µ)

3 := ψ(−1)[1, 1, . . . , 1]′+
µ−2∑
r=0

R(r)3 U (r),

F (µ) := [ f (xµ0 ), f (xµ1 ), . . . , f (xµN )]
′,

A(µ) := diag[A(xµ0 ), A(xµ1 ), . . . , A(xµN )],

B(µ) := diag[B(xµ0 ), B(xµ1 ), . . . , B(xµN )],

R(r)j (i, k) :=
ηr+1−ηr

2
R j (x

µ
i , zr (vk))ωk, j = 1, 2, r = 0, 1, . . . , µ−1,

R(r)3 (i, k) :=
ηr+1−ηr

2
ωk, r = 0, 1, . . . , µ−1,

R(µ)1 (i, j) :=
ηµ+1−ηµ

2
xi+1

2

N∑
k=0

R1(x
µ
i , zµ(z(−1, xi , vk)))F j (z(−1, xi , vk))ωk,
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R(µ)2 (i, j) :=
ηµ− ηµ−1

2
ϑ̃(xµi )+ 1

2

N∑
k=0

R2(x
µ
i , zµ−1(z(−1, ϑ̃(xµi ), vk)))

× F j (z(−1, ϑ̃(xµi ), vk))ωk,

R(µ)3 (i, j) :=
xi + 1

2

N∑
k=0

F j (z(−1, xi , vk))ωk,

R(µ)4 (i, j) :=
ηµ− ηµ−1

2
ϑ̃(xµi )+ 1

2

N∑
k=0

F j (z(−1, ϑ̃(xµi ), vk))ωk .

Plugging the second equation in (23) into the first one we obtain
U ′(µ) =8(µ)1 +

ηµ+1− ηµ

2
(A(µ)+ R(µ)1 )R(µ)3 U ′µ

+ (A(µ)+ R(µ)1 )8
(µ)

2 + B(µ)V (µ),

V (µ)
=8

(µ)

3 + R(µ)4 U ′µ−1.

(24)

This discrete system is based on the interval [ηµ, ηµ+1]. The existence of the
solution to (24) depends on the existence of the solution to the first matrix equation
of (24). Since A(t), R1(x, z), F j (z) are continuous on their definition domains, the
elements of the matrices A(µ), R(µ)1 and R(µ)3 , µ = 0, 1, . . . ,M , are all bounded.
The Neumann lemma (see [35, p. 26] or [13, p. 87]) then shows that the inverse of
the matrix

B(µ)
:= I −

ηµ+1− ηµ

2
(A(µ)+ R(µ)1 )R(µ)3

exists whenever
ηµ+1− ηµ

2

∥∥(A(µ)+ R(µ)1 )R(µ)3

∥∥< 1

for some matrix norm. This clearly holds whenever ηµ+1 − ηµ is sufficiently
small. For this aim, we divide the interval [ηµ, ηµ+1] into Mµ + 1 subintervals
[τ
µ
i , τ

µ

i+1] ⊆ [ηµ, ηµ+1], i = 0, 1, . . . ,Mµ, τµ0 = ηµ, τµMµ+1 = ηµ+1. The exact
solution of (1) still possesses continuous derivatives of order m+1 on the subinterval
[τ
µ
i , τ

µ

i+1], i = 0, 1, . . . , Mµ, µ= 0, 1, . . . ,M . Applying the method in Section 2
we use Legendre spectral-collocation method to approximate the exact solution in
the basic subinterval [τµi , τ

µ

i+1].
Observing each step of the proof for convergence analysis in Section 5, we

conclude that the numerical errors decay at an exponential rate no matter how many
basic subintervals [τµi , τ

µ

i+1], i = 0, 1, . . . , Mµ, µ = 0, 1, . . . ,M , we divide the
interval [−1, 1] into. Therefore there exists a constant h0 such that, for all [τµi , τ

µ

i+1]

with τµi+1− τ
µ
i < h0, each matrix

B(iµ)
:= I−

τ
µ

i+1− τ
µ
i

2
(A(iµ)+R(iµ)1 )R(iµ)3 , i = 0, 1, . . . ,Mµ, µ= 0, 1, . . . ,M,
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has a uniformly bounded inverse. This ensures the corresponding discrete system
based on the interval [τµi , τ

µ

i+1] possesses a unique solution.

4. Some useful lemmas

In this section, we will provide some elementary lemmas, which are important
for the derivation of error estimates in Section 5. In order to give the subsequent
lemmas conveniently, we first introduce some spaces. For simplicity, we denote by
∂k

x u(x) the k-th derivative of u; i.e., ∂k
x u(x) := (dku/dxk)(x).

Let (a, b) be a bounded interval of the real line. We denote by L2(a, b) the
space of measurable functions u : (a, b)→ R such that

∫ b
a |u(x)|

2 dx <+∞. It is
a Hilbert space for the inner product

(u, v) :=
∫ b

a
u(x)v(x) dx,

which induces the norm

‖v‖L2(a,b) :=

(∫ b

a
|v(x)|2 dx

)1/2

.

Let m ≥ 1 be an integer. We define H m(a, b) to be the vector space of the
functions v ∈ L2(a, b) such that all the distributions of v of order up to m can be
represented by functions in L2(a, b). In short,

H m(a, b) := {v ∈ L2(a, b) : for 0≤ k ≤ m, ∂k
x v(x) ∈ L2(a, b)}.

H m(a, b) is endowed with the inner product

(u, v)m =
m∑

k=0

∫ b

a
∂k

x u(x)∂k
x v(x) dx

for which H m(a, b) is a Hilbert space. The associated norm is

‖v‖Hm(a,b) := ((v, v)m)
1/2.

In bounding the approximation error from above, only some of the L2 norms
appearing on the right-hand side of the above norm enter into play. Thus, for a
nonnegative integer N , it is convenient to introduce the seminorm

|v|Hm;N (a,b) :=

(
m∑

k=min(m,N+1)
‖∂k

x v(x)‖
2
L2(a,b)

)1/2

,

which implies that if N ≥ m− 1 then |v|Hm;N (a,b) = ‖∂
m
x v‖L2(a,b).

Let 3h denote the collection of subintervals δµ, µ = 0, 1, . . . ,M . Referring
to [25], we define the broken Sobolev space H m(3h) as
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H m(3h) := {u : u|δµ ∈ H m(δµ), µ= 0, 1, . . . ,M}.

The associated norm is

‖u‖Hm(3h) :=

(
m∑

k=0
‖u(k)‖2L2(3h)

)1/2

,

where

‖u(k)‖2L2(3h)
:=

M∑
µ=0
‖∂k

x (u|σµ)‖
2
L2(δµ)

, k = 0, 1, . . . ,m.

For a nonnegative integer N , the associated seminorm is

|u|Hm;N (3h)
:=

(
m∑

k=min(m,N+1)
‖u(k)‖2L2(3h)

)1/2

.

If N ≥ m− 1 then |u|Hm;N (3h)
= ‖u(m)‖L2(3h).

The space L∞(a, b) is the Banach space of measurable functions u that are
bounded outside a set of measure zero, equipped with the norm

‖u‖L∞(a,b) := ess sup
x∈(a,b)

|u(x)|.

We denote by C([a, b]) the space of continuous functions on the interval [a, b].
We define an interpolation operator IN associated with the collocation points X N

as follows: for any continuous function v ∈ C([−1, 1]),

INv(x) := IµN (v|δµ)(x) if x ∈ (ηµ, ηµ+1], 0≤ µ≤ M, (25)

where v|δµ(x) is the restriction of v(x) to the subinterval [ηµ, ηµ+1], and IµN is the
interpolation operator associated with the collocation points Xµ in the subinterval
[ηµ, ηµ+1]; i.e.,

IµN (v|δµ)(x) :=
N∑

j=0
v|δµ(x

µ
j )F

µ
j (x), x ∈ [ηµ, ηµ+1].

Hereafter, C denotes a generic positive constant that is independent of N .

Lemma 1. Assume that u ∈ H m(−1, 1), m ≥ 1, v(x) is a bounded function. Then
there exists a constant C independent of u and v such that, for N ≥ m− 1,

‖u− JN u‖L2(−1,1) ≤ C N−m
‖∂m

x u‖L2(−1,1), (26)

‖u− JN u‖L∞(−1,1) ≤ C N 1/2−m
‖∂m

x u‖L2(−1,1), (27)

sup
N
‖JNv‖L2(−1,1) ≤ C‖v‖L∞(−1,1), (28)

‖JN‖L∞(−1,1) ≤ (2/π) log(N + 1)+ 0.685, (29)

where JN is the interpolation operator associated with the N + 1 Legendre Gauss–
Lobatto points in the interval [−1, 1].
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Proof. Inequalities (26) and (28) can be found in [15; 33; 43], and (29) can be found
in [24]. We only prove (27). Using the Sobolev inequality [15, p. 490], we have

‖u− JN u‖L∞(−1,1) ≤ C‖u− JN u‖1/2L2(−1,1)‖u− JN u‖1/2H1(−1,1).

Applying the result (26) to ‖u− JN u‖1/2L2(−1,1) makes the above inequality become

‖u− JN u‖L∞(−1,1) ≤ C N−m/2
‖∂m

x u‖1/2L2(−1,1)‖u− JN u‖1/2H1(−1,1), (30)

which leads to (27) because ‖u− JN u‖1/2H1(−1,1) can be estimated as follows [15,
p. 289]:

‖u− JN u‖1/2H1(−1,1) ≤ C N (1−m)/2
‖∂m

x u‖1/2L2(−1,1). �

Lemma 2. Assume that u ∈ C([−1, 1])∩ H m(3h). Let IN u be the interpolation
function defined in (25) where N + 1 is the number of collocation points in the
intervals [ηµ, ηµ+1], µ = 0, 1, . . . ,M. Then the following estimates hold for
N ≥ m− 1:

‖u− IN u‖L2(−1,1) ≤ C N−m
‖u(m)‖L2(3h), (31)

‖u− IN u‖L∞(−1,1) ≤ C N 1/2−m
‖u(m)‖L2(3h), (32)

‖IN‖L∞(−1,1) ≤ C log(N + 1), (33)

sup
N
‖IN u‖L2(−1,1) ≤ C‖u‖L∞(−1,1). (34)

Proof. By the definition of IµN we know that the (IµN (u|δµ))(z) is a function defined
on the subinterval [ηµ, ηµ+1]. The variable transformation z = zµ(v) changes it to
be a function valued on the standard interval [−1, 1]; i.e., for v ∈ [−1, 1],

(IµN (u|δµ))(zµ(v))=
N∑

j=0

u|δµ(x
µ
j )F

µ
j (zµ(v))=

N∑
j=0

u|δµ(x
µ
j )F j (v). (35)

The result (16) is used in the derivation of the second equality above. On the other
hand, we note that u|δµ(zµ(v)) is a function defined on the interval [−1, 1]. Its
interpolation polynomial associated with the Legendre Gauss–Lobatto points v j ,
j = 0, 1, . . . , N , in the interval [−1, 1] is

JN (u|δµ(zµ(v)))=
N∑

j=0

u|δµ(zµ(v j ))F j (v), v ∈ [−1, 1]. (36)

Note that v j = x j ; then

zµ(v j )= xµj , j = 0, 1, . . . , N .

Plugging this into the right-hand side of (36) yields
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JN (u|δµ(zµ(v)))=
N∑

j=0

u|δµ(x
µ
j )F j (v), v ∈ [−1, 1]. (37)

Combining (35) with (37) yields

(IµN (u|δµ))(zµ(v))= JN (u|δµ(zµ(v))), v ∈ [−1, 1]. (38)

By (26), we have∫ ηµ+1

ηµ

(u|δµ(z)− IµN (u|δµ)(z))
2 dz

=
ηµ+1− ηµ

2

∫ 1

−1

(
u|δµ(zµ(v))− JN (u|δµ(zµ(v)))

)2 dv

≤ C N−2m
(
ηµ+1− ηµ

2

)2m+1

‖∂m
v (u|δµ(zµ( · )))‖

2
L2(−1,1)

≤ C N−2m
‖∂m

z (u|δµ( · ))‖
2
L2(δµ)

. (39)

This helps to deduce that

‖u−IN u‖2L2(−1,1)=

M∑
µ=0

∫ ηµ+1

ηµ

(u|δµ(z)−IµN (u|δµ)(z))
2 dz

≤C N−2m
M∑
µ=0

‖∂m
z (u|δµ( ·))‖

2
L2(δµ)

=C N−2m
‖u(m)‖2L2(3h)

, (40)

which leads to (31).
Using (27), we have

‖u− IN u‖L∞(−1,1) = max
0≤µ≤M

{∥∥u|δµ(zµ( · ))− JN (u|δµ(zµ( · )))
∥∥

L∞(−1,1)

}
≤ C N 1/2−m max

0≤µ≤M

{
‖∂m
v (u|δµ(zµ( · )))‖L2(−1,1)

}
≤ C N 1/2−m

‖u(m)‖L2(3h). (41)

This is (32).
Now we begin to prove (33). It is evident that

‖IN u‖L∞(−1,1) = max
0≤µ≤M

‖IµN (u|δµ)‖L∞(σµ). (42)

We use (29) to estimate ‖IµN (u|δµ)‖L∞(δµ):

‖IµN (u|δµ)‖L∞(δµ)=‖(I
µ
N (u|δµ))(zµ( ·))‖L∞(−1,1)=‖JN (u|δµ(zµ( ·)))‖L∞(−1,1)

≤C log(N+1)‖u|δµ(zµ( ·))‖L∞(−1,1)=C log(N+1)‖u|δµ‖L∞(δµ)

≤C log(N+1)‖u‖L∞(−1,1), (43)
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which together with (42) give that

‖IN u‖L∞(−1,1) ≤ C log(N + 1)‖u‖L∞(−1,1).

This leads to the desired result (33).
Now we begin to prove (34). The result (28) is useful in the following derivation:

‖IN u‖2L2(−1,1)=

M∑
µ=0

‖IµN (u|δµ)‖
2
L2(δµ)

=

M∑
µ=0

ηµ+1− ηµ

2
‖(IµN (u|δµ))(zµ(·))‖

2
L2(−1,1)

=

M∑
µ=0

ηµ+1− ηµ

2
‖JN (u|δµ(zµ(·)))‖

2
L2(−1,1)

≤C
M∑
µ=0

ηµ+1− ηµ

2
‖u|δµ(zµ(·))‖

2
L∞(−1,1)

≤C
M∑
µ=0

ηµ+1− ηµ

2
‖u‖2L∞(−1,1)≤C‖u‖2L∞(−1,1), (44)

which leads to the desired result (34). Now we have completed the whole proof for
this lemma. �

Lemma 3 [15; 41]. Assume that u ∈ H m(−1, 1) for some m ≥ 1 and ϕ ∈ PN ,
which denotes the space of all polynomials of degree not exceeding N. Then there
exists a constant C independent of N ≥ m− 1 such that∣∣∣∣ ∫ 1

−1
u(x)ϕ(x) dx −

N∑
j=0

u(x j )ϕ(x j )ω j

∣∣∣∣≤ C N−m
‖∂m

x u‖L2(−1,1)‖ϕ‖L2(−1,1),

where x j are the N+1 Legendre Gauss–Lobatto points, with corresponding weights
ω j , j = 0, 1, . . . , N.

Lemma 4 [43]. Suppose 0≤ M <+∞. If a nonnegative integrable function e(x)
satisfies

e(x)≤ v(x)+M
∫ x

−1
e(z) dz,

where v(x) is also a nonnegative integrable function, then

‖e(x)‖L p(−1,1) ≤ C‖v(x)‖L p(−1,1), p = 2,+∞.

5. Convergence analysis

This section is devoted to providing a convergence analysis for the numerical scheme.
The goal is to show that the rate of convergence is exponential; i.e., the spectral
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accuracy can be obtained for the proposed approximations. Firstly, we will carry
out convergence analysis in the L∞(−1, 1) space.

Theorem 1. Let u(x) be the exact solution to (5), uN (x) be the approximate so-
lution, and ρN (x) be the approximate derivative obtained by using the spectral-
collocation schemes (17), (19) and (22). Then, for N ≥ m− 1 sufficiently large,

‖ei (x)‖L∞(−1,1) ≤ C N 1/2−m(R‖u‖L∞(−1,1)+‖u(m+1)
‖L2(3h)

)
, i = 0, 1, (45)

where

e0(x) :=
{

0, x ∈ [ϑ(−1),−1],
u(x)− uN (x), x ∈ (−1, 1],

e1(x) :=
{

0, x ∈ [ϑ(−1),−1],
u′(x)− ρN (x), x ∈ (−1, 1],

and R is a constant dependent on the m-order derivatives of R j (x, z), ψ(z), j=1, 2.

Proof. In each subinterval (ηµ, ηµ+1],µ=0, 1, . . . ,M , the degree of the polynomial
ρN (s) does not exceed N . Then

α1(x
µ
i )=

∫ xµi

−1
ρN (z) dz and α2(x

µ
i )=

∫ ϑ(xµi )

−1
ρN (z) dz, (46)

which implies that

u(xµi )− uµi =
∫ xµi

−1,
e1(z) dz,

u(ϑ(xµi ))− υ
µ
i =

∫ ϑ(xµi )

−1,
e1(z) dz.

(47)

Subtracting (17) from (9) yields

u′(xµi )−ρ
µ
i = A(xµi )

∫ xµi

−1
e1(z) dz+B(xµi )

∫ ϑ(xµi )

−1
e1(z) dz+

∫ xµi

−1
R1(x

µ
i , z)e0(z) dz

+

∫ ϑ(xµi )

−1
R2(x

µ
i , z)e0(z) dz+

1∑
j=0

E j (x
µ
i ), (48)

where, for x ∈ [−1, 1],

E1(x) :=
∫ x

−1
R1(x, z)uN (z) dz−β(x), E0(x) :=

∫ ϑ(x)

−1
R2(x, z)uN (z) dz−λ(x),
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Multiplying by Fµi (x) on both sides of (48) and summing from i = 0 to N , we
obtain that

N∑
i=0

u′(xµi )F
µ
i (x)−

N∑
i=0

ρ
µ
i Fµi (x)

=

N∑
i=0

(
A(xµi )

∫ xµi

−1
e1(z) dz

)
Fµi (x)+

N∑
i=0

(
B(xµi )

∫ ϑ(xµi )

−1
e1(z) dz

)
Fµi (x)

+

N∑
i=0

(∫ xµi

−1
R1(x

µ
i , z)e0(z) dz

)
Fµi (x)+

N∑
i=0

(∫ ϑ(xµi )

−1
R2(x

µ
i , z)e0(z) dz

)
Fµi (x)

+

1∑
j=0

N∑
i=0

E j (x
µ
i )F

µ
i (x), x ∈ [ηµ, ηµ+1]. (49)

By the definitions of IN and ρN (x), we have

IN u′(x)− ρN (x)= IN

(
A(x)

∫ x

−1
e1(z) dz

)
+ IN

(
B(x)

∫ ϑ(x)

−1
e1(z) dz

)
+ IN

(∫ x

−1
R1(x, z)e0(z) dz

)
+ IN

(∫ ϑ(x)

−1
R2(x, z)e0(z) dz

)
+

1∑
j=0

IN E j (x), x ∈ [−1, 1]. (50)

This leads to

e1(x)=
1∑

j=0
IN E j (x)+

6∑
j=2

E j (x)+ A(x)
∫ x

−1
e1(z) dz+ B(x)

∫ ϑ(x)

−1
e1(z) dz

+

∫ x

−1
R1(x, z)e0(z) dz+

∫ ϑ(x)

−1
R2(x, z)e0(z) dz, (51)

where
E2(x) := (I − IN )u′(x),

E3(x) := (IN − I )
∫ x

−1
R1(x, z)e0(z) dz,

E4(x) := (IN − I )
∫ ϑ(x)

−1
R2(x, z)e0(z) dz,

E5(x) := (IN − I )
(

A(x)
∫ x

−1
e1(z) dz

)
,

E6(x) := (IN − I )
(

B(x)
∫ ϑ(x)

−1
e1(z) dz

)
. (52)
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Applying the Dirichlet formula to the last two terms in the right-hand side of (51)
yields ∫ x

−1
R1(x, z)e0(z) dz =

∫ x

−1

[ ∫ x

s
R1(x, z) dz

]
e1(s) ds, (53)∫ ϑ(x)

−1
R2(x, z)e0(z) dz =

∫ ϑ(x)

−1

[ ∫ ϑ(x)

s
R2(x, z) dz

]
e1(s) ds, (54)

which help to deduce that there exist constants C1,C2,C > 0 such that∣∣∣∣A(x)∫ x

−1
e1(z)dz+B(x)

∫ ϑ(x)

−1
e1(z)dz+

∫ x

−1
R1(x, z)e0(z)dz+

∫ ϑ(x)

−1
R2(x, z)e0(z)dz

∣∣∣∣
≤ C1

∫ x

−1
e1(z)dz+C2

∫ ϑ(x)

−1
e1(z)dz ≤ C

∫ x

−1
e1(z)dz. (55)

Then, by Lemma 4, e1(x) in (51) can be estimated as follows:

‖e1(x)‖L∞(−1,1) ≤ C
(

1∑
j=0
‖IN E j (x)‖L∞(−1,1)+

6∑
j=2
‖E j (x)‖L∞(−1,1)

)
. (56)

We estimate each term of the right-hand side of the above inequality one by one.
First we estimate ‖IN E0(x)‖L∞(−1,1). By (33) we have

‖IN E0(x)‖L∞(−1,1) ≤ C log(N + 1)‖E0(x)‖L∞(−1,1). (57)

We estimate ‖E0(x)‖L∞(−1,1). Note that E0(x) can be written as

E0(x)=



∫ ϑ(x)

−1
R2(x, z)ψ(z) dz−

ϑ(x)+1
2

λ2(x), x ∈δ0,

µ−2∑
r=0

(∫ ηr+1

ηr

R2(x, z)ur (z) dz−
ηr+1−ηr

2
λr

1(x)
)

+

∫ ϑ(x)

ηµ−1

R2(x, z)uµ−1(z) dz−
ηµ−ηµ−1

2
ϑ̃(x)+1

2
λ3(x),

x ∈δµ, µ>0.

(58)

Lemma 3 helps to deduce that∣∣∣∣ ∫ ϑ(x)

−1
R2(x, z)ψ(z) dz−

ϑ(x)+ 1
2

λ2(x)
∣∣∣∣

≤ C N−m
∥∥∂m
v

(
R2(x, z(−1, ϑ(x), · ))ψ(z(−1, ϑ(x), · ))

)∥∥
L2(−1,1)

≤ C N−m
∣∣∣∣ϑ(x)+ 1

2

∣∣∣∣m∥∥∂m
z (R2(x, z)ψ(z))|z=z(−1,ϑ(x), · )

∥∥
L2(−1,1)

≤ C N−m
∥∥∂m

z (R2(x, · )ψ( · ))
∥∥

L2(ϑ(x),−1), x ∈ δ0, (59)
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and, for x ∈ δµ, µ > 0,∣∣∣∣ ∫ ηr+1

ηr

R2(x, z)ur (z) dz−
ηr+1− ηr

2
λr

1(x)
∣∣∣∣

≤ C N−m
∣∣∣∣ηr+1− ηr

2

∣∣∣∣∥∥∂m
v (R2(x, zr (x, · )))

∥∥
L2(−1,1)‖ur (zr ( · ))‖L2(−1,1)

≤ C N−m
∣∣∣∣ηr+1− ηr

2

∣∣∣∣m+1/2

‖∂m
z (R2(x, z))|z=zr ( · )‖L2(−1,1)‖ur‖L2(δr )

≤ C N−m
‖∂m

z (R2(x, · ))‖L2(δr )‖ur‖L2(δr ).

(60)

Similarly,∣∣∣∣ ∫ ϑ(x)

ηµ−1

R2(x, z)uµ−1(z) dz−
ηµ− ηµ−1

2
ϑ̃µ−1(x)+ 1

2
λ3(x)

∣∣∣∣
≤ C N−m

‖∂m
z (R2(x, · ))‖L2(ηµ−1,ϑ(x))‖uµ−1‖L2(δµ−1). (61)

By the Cauchy inequality, which states that

µ−1∑
r=0

ar br ≤

(
µ−1∑
r=0

a2
r

)1/2( µ−1∑
r=0

b2
r

)1/2

,

in which we let

ar = ‖∂
m
z (R2(x, · ))‖L2(δr ), br = ‖ur‖L2(δr ), r = 0, 1, . . . , µ− 2,

aµ−1 = ‖∂
m
z (R2(x, · ))‖L2(ηµ−1,ϑ(x)), bµ−1 = ‖uµ−1‖L2(δµ−1),

we have, for x ∈ δµ, µ > 0,

|E0(x)| ≤ C N−m
‖∂m

z (R2(x, · ))‖L2(−1,ϑ(x))‖u
N
‖L2(−1,1)

≤ C N−m
‖∂m

z (R2(x, · ))‖L2(−1,ϑ(x))
(
‖e0‖L∞(−1,1)+‖u‖L∞(−1,1)

)
. (62)

Then
‖E0(x)‖L∞(−1,1) ≤ C N−m R̃2

(
‖e0‖L∞(−1,1)+‖u‖L∞(−1,1)

)
, (63)

where

R̃2 :=max
{

max
x∈δ0
‖∂m

z (R2(x,·)ψ(·))‖L2(ϑ(x),−1), max
x∈[η1,1]

‖∂m
z (R2(x,·))‖L2(−1,ϑ(x))

}
.

Therefore, combining (63) with (57) gives

‖IN E0(x)‖L∞(−1,1) ≤ C N−m log(N + 1)R̃2
(
‖e0‖L∞(−1,1)+‖u‖L∞(−1,1)

)
. (64)

Using the same analysis as for ‖IN E0(x)‖L∞(−1,1), we can obtain the estimate

‖IN E1(x)‖L∞(−1,1) ≤ C N−m log(N + 1)R̃1
(
‖e0‖L∞(−1,1)+‖u‖L∞(−1,1)

)
, (65)
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where
R̃1 := max

x∈[−1,1]
‖∂m

z (R1(x, · ))‖L2(−1,x).

Now we begin to estimate ‖E j (x)‖L∞(−1,1), j = 2, 3, 4, 5, 6. Note that, in each
subinterval δµ, µ = 0, 1, . . . ,M , u′|δµ(x) ∈ H m(δµ). Applying (32) to u′(x), we
have

‖E2(x)‖L∞(−1,1)‖ ≤ C N 1/2−m
‖u(m+1)

‖L2(3h). (66)

Now we begin to estimate ‖E4(x)‖L∞(−1,1). For simplicity of notation, we set

b(x) :=
∫ ϑ(x)

−1
R2(x, z)e0(z) dz.

Applying (32) with m = 1 to b(x) yields

‖(IN − I )b(x)‖L∞(−1,1) ≤ C N−1/2
‖∂1

x b‖L2(−1,1). (67)

Note that

|∂1
x b(x)| =

∣∣∣∣R2(x, ϑ(x))e0(ϑ(x))ϑ ′(x)+
∫ ϑ(x)

−1

∂R2

∂x
(x, z)e0(z) dz

∣∣∣∣
≤ ‖e0‖L∞(−1,1)

∣∣∣∣(R2(x, ϑ(x))ϑ ′(x)+
∫ ϑ(x)

−1

∂R2

∂x
(x, z) dz

)∣∣∣∣
≤ C‖e0‖L∞(−1,1), (68)

which, together with (67), yields

‖E4(x)‖L∞(−1,1) = ‖(IN − I )b(x)‖L∞(−1,1) ≤ C N−1/2
‖e0‖L∞(−1,1). (69)

Similarly,
‖E3(x)‖L∞(−1,1) ≤ C N−1/2

‖e0‖L∞(−1,1),

‖E5(x)‖L∞(−1,1) ≤ C N−1/2
‖e1‖L∞(−1,1),

‖E6(x)‖L∞(−1,1) ≤ C N−1/2
‖e1‖L∞(−1,1).

(70)

Combining (56) with (64), (65), (66), (69) and (70) yields that

‖e1(x)‖L∞(−1,1) ≤ C N−m(log(N + 1)R‖u‖L∞(−1,1)+ N 1/2
‖u(m+1)

‖L2(3h)

)
+C N−1/2

‖e0‖L∞(−1,1), (71)

where
R :=max{R̃1, R̃2}.

Now we need another relation between ‖e1(x)‖L∞(−1,1) and ‖e0‖L∞(−1,1). Mul-
tiplying by Fµi (x) on both sides of (47) and summing from i = 0 to N for
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µ= 0, 1, . . . ,M , we obtain that

e0(x)= E7(x)+ (IN − I )
(∫ x

−1
e1(s) ds

)
+

∫ x

−1
e1(s) ds, (72)

where
E7(x) := (I − IN )u(x).

Then

‖e0‖L∞(−1,1)

≤ C
(
‖E7(x)‖L∞(−1,1)+

∥∥∥∥(IN − I )
(∫ x

−1
e1(s) ds

)∥∥∥∥
L∞(−1,1)

+‖e1‖L∞(−1,1)

)
.

Using (32) for E7(x), and applying (32) with m = 1 to the middle term of the
right-hand side of the above inequality, we have

‖e0‖L∞(−1,1) ≤ C N−m−1/2
‖u(m+1)

‖L2(3h)+C‖e1‖L∞(−1,1). (73)

Plugging the above result into the last term of (71) yields the desired estimate (45)
for e1, which, in turn, substituted into the last term of (73), yields the estimate (45)
for e0. �

Next, we will give the error estimate in the L2(−1, 1) space.

Theorem 2. Let u(x) be the exact solution to (5). Let uN (x) be the approximate
solution, and ρN (x) be the approximate derivative obtained by using the spectral-
collocation schemes (17), (19) and (22). Then, for N ≥ m− 1 sufficiently large,

‖ei‖L2(−1,1) ≤ C N−m R(R+ 1)
(
‖u‖L∞(−1,1)+‖u(m+1)

‖L2(3h)

)
, i = 0, 1. (74)

Proof. By Lemma 4, it follows from (51) and (55) that

‖e1(x)‖L2(−1,1) ≤ C
(

1∑
j=0
‖IN E j (x)‖L2(−1,1)+

6∑
j=2
‖E j (x)‖L2(−1,1)

)
. (75)

We estimate each term on the right of the above inequality one by one. Applying (34)
to E0(x) yields

‖IN E0(x)‖L2(−1,1) ≤ C‖E0(x)‖L∞(−1,1). (76)

Recalling the result (63) and using the result of Theorem 1, we obtain that

‖IN E0(x)‖L2(−1,1) ≤ C N−m R(R+ 1)
(
‖u‖L∞(−1,1)+‖u(m+1)

‖L2(3h)

)
. (77)

Similarly,

‖IN E1(x)‖L2(−1,1) ≤ C N−m R(R+ 1)
(
‖u‖L∞(−1,1)+‖u(m+1)

‖L2(3h)

)
. (78)
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Note that, in each subinterval δµ, µ = 0, 1, . . . ,M , u′|δµ(x) ∈ H m(δµ). Apply-
ing (31) to u′(x), we have

‖E2(x)‖L2(−1,1) ≤ C N−m
‖u(m+1)

‖L2(3h). (79)

Applying the analysis from (67)–(69), using (31) in Lemma 2 with m = 1 for b(x)
yields

‖E4‖L2(−1,1) = ‖(I − IN )b(x)‖L2(−1,1) ≤ C N−1
‖e0‖L∞(−1,1). (80)

Using the estimate for e0 in Theorem 1 makes the above inequality become

‖E4‖L2(−1,1) ≤ C N−m−1/2(R‖u‖∞+‖u(m+1)
‖L2(3h)

)
. (81)

Similarly,

‖E3‖L2(−1,1) ≤ C N−m−1/2(R‖u‖∞+‖u(m+1)
‖L2(3h)

)
. (82)

Using the same analysis from (67)–(69), using (31) in Lemma 2 with m = 1 we
obtain

‖Ei‖L2(−1,1) ≤ C N−1
‖e1‖L∞(−1,1), i = 5, 6. (83)

Combining (75) with (77), (78), (79), (81), (82) and (83) we obtain the estimate (74)
for e1.

Now we begin to estimate ‖e0‖L2(−1,1). From (72) we have

‖e0‖L2(−1,1)≤C
(
‖E7(x)‖L2(−1,1)+

∥∥∥∥(IN− I )
∫ x

−1
e1(s) ds

∥∥∥∥
L2(−1,1)

+‖e1‖L2(−1,1)

)
.

Using (31) for E7(x), and applying (31) with m = 1 to the middle term of the
right-hand side of the above inequality, we have

‖e0‖L2(−1,1) ≤ C N−m−1
‖u(m+1)

‖L2(3h)+C‖e1‖L2(−1,1), (84)

which leads to the estimate (74) for e0 by plugging the result (74) for e1 into the
last term of (84). �

6. Numerical examples

In this section, we give four numerical examples. The first one is the linear case
with smooth solution. The second one is the linear case with solution unsmooth at
the primary discontinuous points. The third one is the nonlinear case. The fourth
one is the case in which the delay is a function of the solution to the equations.
These examples confirm the theoretical results obtained in the previous section.
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Figure 1. Example 1: Errors versus N in L∞ and L2 norms.

Example 1. Consider (1) with

T = 4, a(t)= t, b(t)= t2, K1(t, s)= sin(t + s),

K2(t, s)= cos(t + s), θ(t)= t − 1, φ(t)= et ,

g(t)=et
−tet
−t2et−1

+sin t− 1
2 [e

t(sin 2t−cos 2t)+et−1(cos(2t−1)+sin(2t−1))].

(85)

The corresponding exact solution is y(t)= et , t ∈ (0, T ].

Figure 1 plots the errors for 5≤ N ≤ 20 in both L∞ and L2 norms. Moreover,
the corresponding errors versus several values of N are displayed in Table 1. As
expected, the errors decay exponentially, which confirms our theoretical predictions.
This example shows that our method is also valid for the nonvanishing delay VIDEs
with smooth solution.

Example 2. Consider (1) with

T = 3, a(t)= 0, b(t)= g(t)= et , K1(t, s)= 0,

K2(t, s)= et+s, θ(t)= t −
( 1

2 +
1
2 t
)
, φ(t)= 1.

N 5 8 11 14 17 20

L∞-error for e0 4.04·10−05 1.01·10−09 1.45·10−11 3.11·10−11 2.66·10−12 2.38·10−11

L2-error for e0 1.71·10−05 4.92·10−10 3.44·10−12 7.37·10−12 6.87·10−13 5.81·10−12

L∞-error for e1 2.32·10−04 2.58·10−09 1.30·10−10 2.81·10−10 2.53·10−11 2.20·10−10

L2-error for e1 6.65·10−05 1.10·10−09 3.03·10−11 6.53·10−11 6.09·10−12 5.12·10−11

Table 1. Example 1: Errors versus N in L∞ and L2 norms.
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Figure 2. Example 2: Errors versus N in L∞ and L2 norms.

The corresponding exact solution is

y(t)=
{

et
+

2
3 e−1/2(e3t/2

− 1), t ∈ (0, 1],
y1(t), t ∈ (1, 3],

where

y1(t) := 2
3 e(3t−1)/2

+
8
21 e(7t−5)/4

+
1
2 et
+

1
4 e2t−1

+
16

135 e(9t−7)/4

−
4
15 et−1/2

−
4
9 e(3t−2)/2

+
1
4 e− 40

189 e1/2
−

2
3 e−1/2. (86)

It is worth noting that the solution of this example possesses primary discontinu-
ous points t = 0, 1, where

0= y(k)(0−) 6= y(k)(0+) and y(k)(1−) 6= y(k)(1+), k ≥ 1.

Figure 2 plots the errors for 4≤N ≤24 in both L∞ and L2 norms. The corresponding
errors versus several values of N are displayed in Table 2. The spectral accuracy
is obtained although the solution for the equation is unsmooth at the primary
discontinuous points.

N 4 8 12 16 20 24

L∞-error for e0 3.99·10−01 1.12·10−04 7.43·10−09 7.39·10−13 8.38·10−13 1.89·10−12

L2-error for e0 2.86·10−01 8.06·10−05 5.37·10−09 2.10·10−13 1.42·10−13 1.46·10−13

L∞-error for e1 1.10·10−00 3.42·10−04 2.37·10−08 1.53·10−12 2.50·10−12 5.06·10−12

L2-error for e1 7.65·10−01 2.44·10−04 1.69·10−08 5.39·10−13 2.86·10−13 3.75·10−13

Table 2. Example 2: Errors versus N in L∞ and L2 norms.
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For the nonlinear VIDEs with nonvanishing delay of the form

y′(t)= d(t, y(t), y(θ(t)))+
∫ t

0
K1(t, s, y(s)) ds+

∫ θ(t)

0
K2(t, s, y(s)) ds,

t ∈ (0, T ],

y(t)= φ(t), t ∈ [θ(0), 0], (87)

we can design a spectral-collocation method similar to the linear case. Equation (87)
can be written as

u′(x)= h(x, u(x), u(ϑ(x)))+
∫ x

−1
R1(x, z, u(z)) dz+

∫ ϑ(x)

−1
R2(x, z, u(z)) dz,

z ∈ (−1, 1],

u(x)= ψ(x), x ∈ [ϑ(−1),−1], (88)

where

u(x) := y(t (x)), ϑ(x) :=
2
T
θ(t (x))− 1, ψ(x) := φ(t (x)),

h(x, u(x), u(ϑ(x)))=
T
2

d(t (x), y(t (x)), y(θ(t (x)))),

R1(x, z, u(z)) :=
(

T
2

)2

K1(t (x), s(z), y(s(z))),

R2(x, z, u(z)) :=
(

T
2

)2

K2(t (x), s(z), y(s(z))). (89)

We assume that (88) holds at the collocation points xµi , where i = 0, 1, . . . , n and
µ= 0, 1, . . . ,M :

u′(xµi )= h(xµi , u(xµi ), u(ϑ(xµi )))+
∫ xµi

−1
R1(x

µ
i , z, u(z)) dz

+

∫ ϑ(xµi )

−1
R2(x

µ
i , z, u(z)) dz

= h(xµi , u(xµi ), u(ϑ(xµi )))+
µ−1∑
r=0

∫ ηr+1

ηr

R1(x
µ
i , z, u(z)) dz

+

∫ xµi

ηµ

R1(x
µ
i , z, u(z)) dz

+

µ−2∑
r=0

∫ ηr+1

ηr

R2(x
µ
i , z, u(z)) dz+

∫ ϑ(xµi )

ηµ−1

R2(xi , z)u(z) dz. (90)

We use uµi to approximate u(xµi ), υ
µ
i to approximate u(ϑ(xµi )), ρ

µ
i to approximate

u′(xµi ), i = 0, 1, . . . , N , µ = 0, 1, . . . ,M , and use uN (x) to approximate u(x),
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ρN (x) to approximate u′(x). Similarly to (17), the numerical scheme for (88) is

ρ
µ
i = h(xµi , uµi , υ

µ
i )+$(x

µ
i )+ γ (x

µ
i ), (91)

where

$(xµi )=
µ−1∑
r=0

ηr+1− ηr

2
$ r

1 (x
µ
i )+

ηµ+1− ηµ

2
xi + 1

2
$3(x

µ
i ), µ≥ 0,

$ r
1 (x

µ
i ) :=

N∑
k=0

R1
(
xµi , zr (vk), ur

k
)
ωk, r = 0, 1, . . . , µ− 1,

$3(x
µ
i ) :=

N∑
k=0

R1

(
xµi , zµ(z(−1, xi , vk)),

N∑
j=0

uµj F j (z(−1, xi , vk))

)
ωk,

and

γ (xµi )=


ϑ(x0

i )+ 1
2

γ2(x0
i ), µ= 0,

µ−2∑
r=0

ηr+1− ηr

2
γ r

1 (x
µ
i )+

ηµ− ηµ−1

2
ϑ̃(xµi )+ 1

2
γ3(x

µ
i ), µ > 0,

γ r
1 (x

µ
i ) :=

N∑
k=0

R2
(
xµi , zr (vk), ur

k
)
ωk, r = 0, 1, . . . , µ− 2,

γ2(x0
i ) :=

N∑
k=0

R2
(
x0

i , z(−1, ϑ(x0
i ), vk), ψ(z(−1, ϑ(x0

i ), vk))
)
ωk,

γ3(x
µ
i ) :=

N∑
k=0

R2

(
xµi , zµ−1(z(−1, ϑ̃(xµi ), vk)),

N∑
j=0

uµ−1
j F j (z(−1, ϑ̃(xµi ), vk))

)
ωk .

Combining (19) with (22) and (91), we obtain the numerical scheme for the nonlinear
VIDEs (87).

Example 3. Consider (87) with

T =2, φ(t)=1, θ(t)= t−1, d(t, y(t), y(θ(t)))= y2(θ(t))−1−e2t−1
+2et ,

K1(t, s, y(s))= 0, K2(t, s, y(s))= et+s y2(s). (92)

The corresponding exact solution is

y(t)=
{

et , t ∈ (0, 1],
1
2 e2t−2

−
1
2 e2t−1

+
5
3 et
+

1
12 e4t−3

− t + 1
4 e+ 1

2 , t ∈ (1, 2].

In this example, the primary discontinuous points are t = 0, 1, where

0= y(k)(0−) 6= y(k)(0+) and y(k)(1−) 6= y(k)(1+), k ≥ 1.

Numerical errors versus several values of N are displayed in Table 3 and Figure 3.
These results indicate that the desired spectral accuracy is obtained.
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N 4 8 12 16 20 24

L∞-error for e0 5.67·10−02 1.56·10−05 8.55·10−10 1.15·10−13 1.28·10−13 3.06·10−13

L2-error for e0 3.51·10−02 9.75·10−06 5.36·10−10 3.00·10−14 2.23·10−14 2.24·10−14

L∞-error for e1 2.12·10−01 6.13·10−05 3.40·10−09 3.55·10−13 3.48·10−13 9.02·10−13

L2-error for e1 1.28·10−01 3.80·10−05 2.11·10−09 8.71·10−14 6.06·10−14 6.39·10−14

Table 3. Example 3: Errors versus N in L∞ and L2 norms.
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Figure 3. Example 3: Errors versus N in L∞ and L2 norms.

Example 4. Now we consider the case where the delay is a function of the solution;
i.e.,

y′(t)=d(t, y(t), y(θ(t, y(t))))+
∫ t

0
K1(t, s, y(s)) ds+

∫ θ(t,y(t))

0
K2(t, s, y(s)) ds,

t ∈ [0, T ],

y(t)= φ(t), t ∈ [θ(0, y(0)), 0]. (93)

If we take

T = 2, φ(t)= 2.5, θ(t, y(t))= t − y(t),

d(t, y(t), y(θ(t, y(t))))= y2(t)+ y2(θ(t, y(t)))+ g(t),

g(t)=− 1
2 e−t
−

1
4(e
−t
+ 4)2

−
1
4 et(
−

1
3 e−3t

− 4e−2t
− 16e−t

+
1
3 + 20

)
− (2.5)2

(
t − 1

2 e−t
− 1

)
,

K1(t, s, y(s))= et−s y2(s), K2(t, s, y(s))= y2(s), (94)
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N 2 4 6 8 10 12

L∞-error for e0 3.32·10−02 5.33·10−04 8.78·10−07 2.87·10−09 6.54·10−12 2.22·10−14

L2-error for e0 3.05·10−02 2.50·10−04 7.65·10−07 2.62·10−09 5.91·10−12 1.24·10−14

L∞-error for e1 1.57·10−01 1.14·10−03 1.56·10−06 3.99·10−09 8.29·10−12 3.42·10−14

L2-error for e1 8.73·10−02 6.41·10−04 1.06·10−06 3.16·10−09 6.75·10−12 1.66·10−14

Table 4. Example 4: Errors versus N in L∞ and L2 norms.
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Figure 4. Example 4: Errors versus N in L∞ and L2 norms.

then the corresponding exact solution is

y(t)=
{

2.5, t ∈ [−1, 0],
1
2(e
−t
+ 4), t ∈ (0, 2].

This solution possesses a primary discontinuous point t = 0 where y(k)(0−)= 0
while y(k)(0+)= (−1)k 1

2 , k ≥ 1.

We use the Newton iterative method to solve the nonlinear discrete system
corresponding to this example. Errors versus N are listed in Table 4 and plotted in
Figure 4 from which we can see that the spectral accuracy is obtained. This example
shows that our method can also handle the case where the delay is a function of the
solution.

7. Conclusion and future work

We propose the Legendre spectral-collocation method to solve VIDEs with nonvan-
ishing delay, and provide convergence analysis for the proposed method. Numerical
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examples are provided to confirm the theoretical results that the numerical errors
decay exponentially. The main difficulty in applying the spectral method to VIDEs
with nonvanishing delay is the solution of this equation possesses primary dis-
continuous points associated with the nonvanishing delay function. We overcome
this difficulty by dividing the global definition domain of the solution into several
subintervals where the solution is smooth enough. Then spectral method can be
used to approximate the solution in each subinterval.

Our future work will focus on the spectral method for the Volterra functional
integral and differential integral equation with nonvanishing delay.
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We present an unsplit method for the time-dependent compressible Navier–Stokes
equations in two and three dimensions. We use a conservative, second-order
Godunov algorithm. We use a Cartesian grid, embedded boundary method to
resolve complex boundaries. We solve for viscous and conductive terms with
a second-order semiimplicit algorithm. We demonstrate second-order accuracy
in solutions of smooth problems in smooth geometries and demonstrate robust
behavior for strongly discontinuous initial conditions in complex geometries.

1. Introduction

In this paper, we present an unsplit method for the time-dependent compressible
Navier–Stokes equations in two and three dimensions. This algorithm is an extension
of the algorithm in [9] to flows with viscous and thermal diffusion. The Navier–
Stokes equations contain parabolic terms that arise from conductivity and viscosity.
There are several methods to advance these terms. In [10], for example, a kinetic
energy equation is evolved to get a stable approximation to the viscous term in the
energy equation. This solution is elegant but also difficult to extend to multiple
dimensions. We use a conservative, semiimplicit method in which the hyperbolic
terms are advanced explicitly and the parabolic terms advanced implicitly. This
approach to the compressible Navier–Stokes equations has been used without
embedded boundaries [3; 30; 16; 14; 11]. Our algorithm follows the basic outline in
the mapped grid algorithm presented in [30], in which the velocity and temperature
evolution are split. They use a Crank–Nicolson time evolution with the energy-
momentum coupling term treated explicitly. We use a hybrid approach to energy-
momentum coupling. Also, since Crank–Nicolson has been shown to be marginally
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stable in certain cases [23], we use the L0-stable algorithm presented in [31] for
elliptic coupling. We present our changes to the [31] algorithm that were necessary
to make the linear equations tractable in the presence of small cells. This algorithm
has been implemented with adaptive mesh refinement (AMR) as described in [4; 2].
All our cut cells are refined to the finest level, reducing all coarse-fine interactions
(such as refluxing and coarse-fine interpolation) to exactly those described in [30].

Dragojlovic et al. [12] present a two-dimensional algorithm for viscous, con-
ducting compressible flow with embedded boundaries. They use a split hyperbolic
scheme, explicit updates of the viscous state and the (formally inconsistent) extended
state algorithm developed in [24]. Our algorithm uses an unsplit scheme (as seen
in [8; 25; 1]) and works in two and three dimensions. Ghias et al. [13] present
an immersed boundary method to solve the same set of equations for subsonic
applications. Hartmann et al. [15] present a cut-cell method that uses a form of cell
merging to achieve small-cell stability. Berger et al. [5] survey a wide variety of
these algorithmic permutations. We use redistribution (first presented by Chern et
al. [7]) for small-cell stability. We use the (formally consistent) approach in [9] to
construct extended states. To evaluate viscous fluxes at the embedded boundary we
use the ray-casting algorithm developed in [18] for Poisson’s equation. Also, for
increased stability, we treat the viscous stress and conductivity terms implicitly.

This algorithm is suitable for use in applications where compressibility is im-
portant and the geometries are complex. Our target application is flow inside of
capillary tubes in laser wakefield particle accelerators. In these accelerators, the
pressure and temperature is driven very high along the axis of a capillary tube.
The resulting flow produces a low density core through which lasers are shot. The
capillary is connected to fill tubes which are used to fill the capillary with gas [27;
19; 20; 29]. We present a simplified version of this problem as our example to
demonstrate robustness while acknowledging that other physics in these problems
(such as ionization and magnetization) are very important. We drive a capillary
tube with a large pressure pulse to demonstrate the stability of the algorithm under
extreme conditions. The geometric configuration is derived from the experimental
set-up described in [29].

There are of course many regimes for which the compressible Navier Stokes
equations are relevant. The regime of interest for this algorithm has substantial
compressibility effects (including shocks) as well as substantial viscous effects. We
are also interested in time-accurate (as opposed to steady state calculations). For
algorithm validation,we run several examples which demonstrate the efficacy of the
algorithm in this regime.

First we present convergence tests demonstrating second-order solution error
accuracy in two and three dimensions. For these tests, we use a smooth, subsonic
(M = 0.5) flow inside a sphere. This demonstrates that, even with compressibility
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effects, we get the expected convergence rate for smooth problems.
Next, for more a quantitative validations, we present a boundary layer calculation

and a viscous shock reflection calculation. Charest et al. [6] present a low-Mach-
number algorithm for steady state calculations. They present a boundary layer
calculation that reproduces the behavior of the similarity solution which emerges
from analysis (a Blasius boundary layer profile). We present a similar run which
also reproduces Blasius behavior. This demonstrates that the algorithm has correct
boundary layer behavior.

Glaz et al. [14] present a comparison between inviscid calculations of shock
reflections and experimental results. They show a case where viscous effects cause
substantial changes in the reflection pattern. We present both viscous and inviscid
calculations of the same problem and show good agreement with their results. This
demonstrates, that even in this very complex, time-dependent flow, we compare
well with experiment.

2. Notation

Cartesian grids with embedded boundaries are useful to describe finite-volume
representations of solutions to partial differential equations in the presence of
irregular boundaries. In Figure 1, the gray area represents the region excluded from
the solution domain. The underlying description of space is given by rectangular
control volumes on a Cartesian mesh ϒi =

[
(i − 1

2v)h, (i + 1
2v)h

]
, i ∈ ZD , where

D is the dimensionality of the problem, h is the mesh spacing, and v is the vector
whose entries are all one. Given an irregular domain �, we obtain control volumes
Vi = ϒi ∩� and faces Ai±ed/2 which are the intersection of the boundary of ∂Vi

with the coordinate planes
{

x : xd =
(
id ±

1
2

)
h
}
. We also define AB

i to be the
intersection of the boundary of the irregular domain with the Cartesian control
volume: AB

i = ∂�∩ϒi . For ease of exposition, we will assume here that there is
only one control volume per Cartesian cell. The algorithm described here has been
generalized to allow for boundaries whose width is less that the mesh spacing.

To construct finite-volume methods using this description, we will need several
quantities derived from these geometric objects.

Figure 1. Illustration of cut cells. The shaded area is outside the solution domain.
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• Volume fractions κ and area fraction α:

κi =
|Vi |

hD , αi+es/2 =
|Ai+ed

s /2|

hD−1 , αB
i =
|AB

i |

hD−1 .

• The centroids of the faces and of AB
i ; and n, the average of outward normal of

∂� over AB
i .

xi+ed/2 =
1

|Ai+ 1
2 ed |

∫
Ai+ed/2

x d A− (i + ed/2)h,

x B
i =

1
|AB

i |

∫
AB

i

x d A− ih, ni =
1
|AB

i |

∫
AB

i

n d A.

Here D is the dimension of space and 1≤ d ≤ D. We assume we can compute all
derived quantities to O(h2). With just these geometric descriptors, we can define a
conservative discretization of the divergence operator. Let EF = (F1 . . . F D) be a
function of x, then

∇ · EF ≈
1
|Vi |

∫
Vi

EF dV =
1
|Vi |

∫
∂Vi

EF · n d A.

We discretize the divergence of the flux as

κD(F)i =
1
h

( D∑
d=1

∑
±=+,−

±αi±ed/2 Fd(xi±ed/2)+α
B
i ni · EF(x B

i )

)
, (1)

where (1) is obtained by replacing the normal components of the vector field EF
with the values at the centroids. This converges to the exact divergence by the
relation D(F)i =∇ · F +O(h/κi ) in cells which intersect the embedded boundary
and converges to O(h2) away from the boundary. The elliptic operators in this
calculation all take the form

L(φ)= a(x)φ+ D(F(φ)).

We refer to a in this context as the identity coefficient.

3. System of equations

We are solving the compressible Navier–Stokes equations, given here in conservation
form with hyperbolic terms to the left and elliptic terms to the right.
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∂ρ

∂t
+∇ · (ρu)= 0,

∂(ρu)
∂t
+∇ · (ρuu+ pI )=∇ · σ,

∂(ρE)
∂t
+∇ · (ρuE + u p)=∇ · (σu)+∇ · (ξ(∇T )). (2)

In these equations, ρ is the mass density, u is the velocity, ξ is the thermal con-
ductivity, p is the pressure, and T is the temperature. The shear stress tensor σ is
given by

σ = µ(∇u+∇uT )+ λ(∇ · u)I,

where µ and λ are the viscosity coefficients (typically λ=−2
3µ). The total energy

is given by E = e+ 1
2 |u|

2; the internal energy is given by e = CvT (where Cv
is the specific heat at constant volume). The fluid is assumed to be an ideal gas
(p = Cv(γ − 1)ρT ).

4. Algorithm description

We define U = (ρ, ρu, ρE) and we define L H (U )=∇ · F , the divergence of the
hyperbolic flux. The flux is given by

F =

 ρu
ρuu+ pI
ρuE + u p

 .
The divergence and the fluxes are computed in the same way as in [9]. To summarize,
a Taylor series extrapolation is done to produce second-order (in both space and
time) approximations to the fluxes at the centroids of the faces. A conservative
approximation to the divergence (Dc(F)) is computed using (1). Ideally, we would
use Dc(F) for our hyperbolic divergence. The difficulty with this approach is that
the CFL (Courant–Friedrichs–Lewy) stability constraint on the time step for an
algorithm using the conservative divergence for an explicit update is at best

1t = O
(

h
vmax

i
(κi )

1/D
)
,

where vmax
i is the magnitude of the maximum wave speed for the i-th control volume.

This is the well-known small-cell problem for embedded boundary methods. Instead,
we compute a stable, nonconservative approximation to the divergence (Dnc(F))
using an extended state where necessary and ignoring the embedded boundary. This
extended state is extrapolated from the interior. The effective divergence is

L H (U )= κDc(F)+ (1− κ)Dnc(F).
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The mass difference (δM) between using L H and using only the conservative
divergence Dc(F) is given by

δM = κ(1− κ)(Dc(F)− Dnc(F)).

This mass difference is redistributed to neighboring cells. The redistribution al-
gorithm is described in [7]. This hybrid formulation preserves conservation and
allows this algorithm to be stable using a time step constraint based on full cells.
We compute our time step as follows:

1t =
CF h
W max , (3)

where W max is the maximum wave speed in the problem and CF is the Courant
number (0< CF < 1).

Define Lv to be the elliptic terms in the system of equations

Lv(U )i =

 0
Lm(u)i

Lk(T )i + Ld(u)i

 .
The term Lm is the discretization of the viscous stress term (Lm

∇ · σ ) and is
described in Section 5.3. The term Lk

≈ ∇ · ξ∇T is a discretization of the heat
conduction term and is described in Section 5.2. The term Ld

≈ ∇ · (σu) is the
viscous heating term and is described in Section 5.1.

4.1. Outline. We begin with the state at time U n
= U (n1t), we advance the

solution as follows.

1. Compute U∗, the solution advanced explicitly using only hyperbolic terms.

U∗i =U n
i −1t L H

i (U
n).

This produces the final value of density (ρn+1
= ρ∗). From U∗, we compute u∗

and T ∗, the intermediate values of velocity and temperature (which exclude the
effects of conduction and viscosity).

2. Compute L0-stable approximations to the momentum diffusion Lm(U )=∇ · σ
by advancing the diffusion equation

ρ
∂u
∂t
= Lm(u)

using the method described in Section 5:

un+1
= GLm (ρn+1)u∗.

The symbol G is defined in (6). The stable approximation to Lm(u) is calculated
as
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(Lm(u))n+
1
2 = ρn+1 un+1

− u∗

1t
,

giving us the final value of momentum:

(ρu)n+1
= (ρu)∗+1t(Lm(u))n+

1
2 .

The operator Lm is described in Section 5.3.

3. Using the value of u calculated above, calculate the viscous dissipation of energy
(Ld
≈ ∇ · (σu)) as described in Section 4.2. We then update the energy with the

term
(ρE)∗∗ = (ρE)∗+1t Ld(un+1).

From E∗∗, we compute the intermediate value of temperature T ∗∗.

4. Compute L0-stable approximations to the conduction term

Lk(T )=∇ · ξ∇T

by advancing the diffusion equation

ρCv
∂T
∂t
= Lk(T )

using the method described in Section 5:

T n+1
= GLm (ρn+1Cv)T ∗∗,

where G is described in Equation (6). The stable approximation to Lk(T ) is
computed by

(Lk(T ))n+
1
2 = ρn+1Cv

T n+1
− T ∗∗

1t
,

giving us the final value of energy:

(ρE)n+1
= (ρE)∗∗+1t(Lk(T ))n+

1
2 .

The operator Lk(T ) is described in Section 5.2.

4.2. Viscous dissipation calculation. To avoid small-cell instabilities, we split up
the Ld(U ) into conservative and nonconservative approximations much as we
did with L H . The conservative approximation to Ld,c

= ∇ · (σu) is described in
Section 5.1. The nonconservative form of the operator is given by the volume-
weighted average of the neighbor’s conservative operator evaluations. Define N (i)
to be the set of cells reachable from i by a unit monotone path. The nonconservative
approximation of Ld is

Ld,nc(u)i =
∑

j∈N (i)(κLd,c(u)) j∑
j∈N (i) κj

.
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We use a linear combination of conservative and nonconservative versions of the
divergence to advance the solution:

Ld(U )= κLd,c(u)+ (1− κ)(Ld,nc(u)).

To preserve conservation, we compute the energy difference between this version
and the conservative version:

δE =1tκ(1− κ)(Ld,c
− Ld,nc).

We push this energy correction δE into the solution implicitly. First we set a right
hand side R= 0 and redistribute δE into the cells of R that can be reached by a unit
monotone path (as described in [7]). We then solve for a temperature difference
that can account for this energy using the conduction operator(

ρn+1Cv I −1t Lk)δT
=1t R.

This change in temperature is interpreted as an increment to the energy as follows:

(δE)∗∗ = ρ∗CvδT .

We add (δE)∗∗ into E∗∗.

5. Stable parabolic discretizations

Twizell et al. [31] present a second-order L0-stable algorithm to advance the constant
coefficient heat equation. Given the equation

∂φ

∂t
= νLφ, (4)

their time advance takes the form

φn+1
= (I −µ1L)−1(I −µ2L)−1(I +µ3L)φn, (5)

where µ1, µ2, µ3 are constants. In the present algorithm we have two parabolic
equations of the form

a
∂φ

∂t
= L(φ),

where a = a(x) > 0 is the identity coefficient. Define the operator M(φ)= L(φ)/a.
In the case of our viscous operator (Section 5.3) Mm

= Lm(u)/ρ and the case of
conduction (Section 5.2), Mk(T )= Lk(T )/(ρCv). In both cases, the denominators
are positive and restricted away from zero. In each case, a naive interpretation of
(5) yields

φn+1
= (I −µ1 M)−1(I −µ2 M)−1(I +µ3 M)φn.
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This is problematic in the presence of small cells because this would involve dividing
by the volume fraction to evaluate M (see (1)) and volume fractions here can be
arbitrarily close to zero. Using the matrix identity (AB)−1

= B−1 A−1, we refactor
the preceding equation, obtaining

φn+1
= GL(a)φ = (κaI −µ1κL)−1(κa)(κaI −µ2κL)−1(κaI +µ3κL)φn. (6)

This is the implicit advance we use for stable discretizations of Lm(u) and Lk(T ).

5.1. Viscous heating operator. The viscous heating operator flux is an approxima-
tion to the shear stress dotted with the velocity (Fh

= σ · u):

Fh
= (µ(∇u+∇uT )+ λI∇ · u) · u. (7)

We compute the shear stress as described in Section 5.3. To get face-centered
velocities, we average from neighboring cells:

ui+ed/2 =
1
2(ui+ed + ui ).

At embedded boundaries and domain boundaries we set this flux to zero because
the no slip condition requires that u|∂� = 0. We then can find the conservative
discretization of the operator Ld,c as given by (1).

5.2. Conductivity operator. Our operator for heat conduction

Lk(T )=∇ · (ξ∇T )

is an extension to variable coefficients of the operator described by Schwartz et
al. [28]. The flux at face centers for the discretization in (1) is given by

FT
i+ed/2 = ξi+ed/2

Ti+ed − Ti

1x
.

Since we are representing thermally insulated embedded boundaries, FT
B = 0. Given

these fluxes, discretization of the operator is given by (1).

5.3. Viscous stress operator. For viscous diffusion, we first calculate the cell-
centered gradient of the solution using centered differences:

∂ud1

∂xd2
=

ud1
i+ed2 − ud1

i−ed2

21x
.

The face centered gradient uses this gradient for tangential gradients and differences
normal gradients directly:

(∇u)d
′

i+ed/2 =

{
(1/h)(ui+ed − ui ) if d = d ′,
1
2

(
(∇u)d

′

i+ed + (∇u)d
′

i
)

if d 6= d ′,
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where

(∇u)di =
1

2h
(ui+ed − ui−ed ).

We then construct the flux at the face using the appropriate gradients:

Fv = µ(∇u+∇uT )+ λI∇ · u. (8)

At the embedded boundary, we have a physical boundary condition that u=0. Define
a local coordinate system rotated to align with the normal to the embedded boundary
n̂ and the tangent plane (t̂1, t̂2). The Jacobian J of this rotational transformation is
given by

J =

 n̂
t̂1

t̂2

 .
The transformation between a vector in Cartesian space (v) and a vector in rotated
space (vR) is given by

vR
= Jv.

We start by treating each component of the velocity as a scalar φ. To create our
boundary flux, we use the Johansen extrapolation [18] to compute the normal
gradient of φ, (∇φR,n). We set the tangential components of the gradient of φ to
zero (a consequence of the no-slip condition). So, in the rotated frame (∇φ)R

=

(∇φR,n, 0, 0). We then compute the Cartesian gradient of φ:

∇φ = J−1(∇φ)R.

We then construct the boundary flux using (8). Given these fluxes, discretization of
the operator is given by (1).

5.4. Performance implications of implicit parabolic discretization. The time step
constraint for the present algorithm is given by (3). Since we are advancing our
elliptic terms implicitly, this adds no additional time step constraint. Suppose we
were to advance (4) explicitly:

φn+1
= φn

+ ν1texpL(φn). (9)

In the absence of cut cells, the stability constraint on this method is

1tnoeb
exp <

1x2

2Dν
.

where D is the dimensionality of the problem. For the conductivity operator at
constant density with constant coefficients, this relationship is exact with ν =
ξ/(ρCv).
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To illustrate the performance tradeoff in the design decision to use the implicit
discretization, we compare the number of operator evaluations required to advance
the solution. Define Nexp to be the number of operator evaluations needed to advance
the solution to a fixed time t f using (9):

Nexp =
t f

1texp
.

Define Nimp to be the number of operator evaluations needed to advance the solution
to a fixed time t f using (6). We solve our elliptic equations using multigrid and we
measure how many times the operators are applied. This puts the implicit method
in the worst light possible because coarse and fine applications of the operator
(through multigrid) are counted the same.

The problem in Section 7 is the target application for this algorithm. When we run
this problem with 4 levels of refinement for a final time of 0.7µs (which accounts
for 3 steps at the coarsest level and 48 total steps at all levels), the conductivity
operator is called Nimp = 600 times. For these parameters, the time step restriction
for the explicit advance is 1tnoeb

exp = 2.63·10−10, so an explicit advance would
call the operator Nexp = 2665 times. For problems with less resolution or lower
viscosity, this performance tradeoff can easily flip and make the explicit method
more efficient. In the shock-boundary layer calculation presented in Section 9, for
example, 1tnoeb

exp >1t , which means that the explicit parabolic advance for this case
presents no addition time step constraint in the absence of embedded boundaries.

With embedded boundaries, however, the time step constraint for the explicit
advance (Equation (9)) is far more severe. If κmin is the smallest volume fraction in
the domain, the true time step constraint for the explicit advance is given by

1texp <
1x2(κmin)

2/D

2Dν
.

In this context, let us reconsider the shock-boundary layer calculation for a final
time of 0.57µs (and all other parameters described in Section 9), which is one
time step at the coarsest level and 97 time steps at all levels. The smallest volume
fraction at the finest level of this calculation is κmin = 3.83·10−7, which means that
1texp = 4.26·10−15 and the number of operator evaluations required for stability is
given by Nexp = 1.34·108. The number of operator evaluations we count for our
implicit algorithm is Nimp = 37536. Clearly, in the presence of small cells, the
implicit advance is the more efficient algorithm to advance our elliptic terms.

6. Convergence tests

To test the convergence rate of the algorithm we start with an initial condition
of flow within a sphere (or a circle in two dimensions). All tests are done using
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Richardson extrapolation which means that an average of a finer solution is used
as an exact solution. Define Ah−2h to be a volume-weighted averaging operator.
Given S f to the set of fine volumes which cover a coarse volume i ,

Ah−2h( f )i =

∑
i f ∈S f

κi f f i f∑
i f ∈S f

κi f

.

Uh is defined to be our solution on a grid with resolution h. For an exact solution
U e, we use U e

2h = Ah−2h(Uh) and the error is given by

εh
=U h(t)−U e(t). (10)

The order of convergence $ is estimated by

$ =
log(‖ε2h

‖/‖εh
‖)

log 2
. (11)

We compute the convergence rates using compute using L∞, L1, and L2 norms (all
these norms are defined in [9]). The geometry of the test is a sphere with radius in
the center of a domain of length L . The initial condition of the tests is given by an
axisymmetric Gaussian disturbance f (r)= exp(−30(r/r0− 0.5)2). The maximum
Mach number is set to M = 0.5. Define (x, y, z) to be Cartesian coordinates
in a coordinate system whose origin is the sphere center. Define the distance
r = (x2

+ y2
+ z2)1/2. The velocity is given by u= (−M f (r)y/r0,M f (r)x/r0) in

two dimensions and u = (M f (r)(z− y)/r0,M f (r)(x − z)/r0,M f (r)(y− x)/r0)

in three dimensions. Define v to be the magnitude of the velocity vector. The
density and pressure are given by ρ = γ (1+ v2/r), p = (1+ v2/r). See Table 1
for other solution parameters.

Solution error is a measure of the convergence rate of the solution run to a fixed
time. All refinements were advanced to a fixed time t f = 32µs. The finest solution
was advanced 64 time steps with 1t = 0.5µs. Each successively coarser solution
was advanced half as many steps with twice as big a time step. This results in a
Courant number (CF , see (3)) of approximately 0.1 for full cells. The results of
the solution error test are given in Tables 2 and 3. We demonstrate second-order
accuracy in all norms.

µ= 2.1·10−5 kg/(m s) L = 1.0·10−2 m

λ=−1.4·10−5 kg/(m s) r0 = 4.5·10−3 m

Cv = 3.00·102 J/(kg K) γ = 7
5

ξ = 1.7·10−2 W/(m K)

Table 1. Initial condition set-up for the convergence tests. See text for variable definitions.
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norm variable e4h→2h $ e2h→h

ρ 1.103·10−2 1.980 2.796 ·10−3

L∞ (ρu)x , (ρu)y 2.740·10−3 1.822 7.748 ·10−4

ρE 2.006·10−2 1.978 5.092 ·10−3

ρ 2.519·10−3 1.982 6.377 ·10−4

L1 (ρu)x , (ρu)y 3.645·10−4 1.822 1.031 ·10−4

ρE 4.560·10−3 1.978 1.158 ·10−3

ρ 3.900·10−3 1.978 9.903 ·10−4

L2 (ρu)x , (ρu)y 6.795·10−4 1.824 1.920 ·10−4

ρE 7.066·10−3 1.973 1.801 ·10−3

Table 2. Solution error convergence rates in two dimensions using the L∞-, L1- and
L2-norms for h = 1

1024 cm.

norm variable e4h→2h $ e2h→h

(ρ) 3.536·10−2 1.979 8.968 ·10−3

L∞ (ρu)x , (ρu)y , (ρu)z 7.406·10−3 1.814 2.107 ·10−3

(ρE) 6.887·10−2 1.978 1.748 ·10−2

(ρ) 4.167·10−3 1.986 1.053 ·10−3

L1 (ρu)x , (ρu)y , (ρu)z 4.503·10−4 1.805 1.289 ·10−4

(ρE) 7.767·10−3 1.983 1.965 ·10−3

(ρ) 7.931·10−3 1.982 2.007 ·10−3

L2 (ρu)x , (ρu)y , (ρu)z 1.060·10−3 1.810 3.024 ·10−4

(ρE) 1.495·10−2 1.980 3.790 ·10−3

Table 3. Solution error convergence rates in three dimensions using the L∞-, L1- and
L2-norms for h = 1

1024 cm.

7. Capillary tube simulation

Our target application is the flow inside of capillary tubes in laser wakefield particle
accelerators. We present a simplified version of this problem as our robustness
calculation while acknowledging that other physics in these problems (such as
ionization and magnetization) are very important. Refer to Figure 2. The main
tube (C) and the fill tubes (A) are filled with gas. The experimentalists drive the
core pressure pcore along the axis of the tube to a high value using electrical charge,
leaving the density constant. The resulting flow causes the core to expand and create
a low density, high energy core. In the experiment, the laser (B) is shot through
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A

B

C

Figure 2. Illustration of wakefield accelerator. The main tube (C) and fill tubes (A) are
filled with gas. The pressure and temperature are initialized to high values up along the
axis of the tube. The resulting flow causes this region to expand and create a low density,
high-energy core. A laser (B) is shot through this core.

this low density core. Ideally this core should be cylindrical and have a relatively
flat density profile There is some concern in the community, however, that the fill
tubes can alter the core shape before the laser is shot.

We present both two- and three-dimensional runs that are meant to approximate
to this problem. For a computational geometry we intersect a 200 micron diameter
main tube with a perpendicular fill tube 50 microns in diameter. Figure 3 shows the

Figure 3. Geometric configuration of the three-dimensional example. The core tube’s
diameter is 200 microns; the filler tube’s diameter is 50 microns. The core tube’s length is
1.2 mm; the filler tube’s length is 0.85 mm.

Figure 4. Two-dimensional plot of log ρ after 35µs. The base grid is 2562 and there are 2
levels of refinement, all by a factor of 2. This means the effective grid resolution is 10242.
Though the density profile in the core is relatively flat, the core shape is no longer circular.
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Figure 5. Two-dimensional plot of log ρ after 35µs. The base grid is 128× 64 and there
are 3 levels of refinement, all by a factor of 2. This means the effective grid resolution
is 1024× 512. Though the density profile in the core is relatively flat, the filler tube has
distorted the profile.

Figure 6. Axial slice through three-dimensional run plot of log ρ after 50µs. This is a
one-level calculation with resolution 256× 128× 128. Though the density profile in the
core is relatively flat, the filler tube has distorted the profile.

geometric configuration. Both are filled with argon at 1 Pa, 1 kg/m3. We initialize
the core pressure to be pcore = 20 Pa, leave the density constant and initialize the
velocity everywhere to zero. The core diameter is 100 microns. Figure 4 (on the
previous page) shows a two-dimensional run of the plane normal to the central
tube cutting through a filler tube. We plot the logarithm of density after 35µs.
Though the density profile in the core is relatively flat, the core shape is no longer
circular. Figure 5 shows a two-dimensional run of the plane along the central
tube cutting through a filler tube. We plot the logarithm of density after 35µs.
Though the density profile in the core is relatively flat, the core shape is once again
distorted by the presence of the filler tube. Figure 6 shows an axial slice through
a three-dimensional run after 50µs and shows a similar result. To be clear, since
we do not include any source terms for the effects of ionization or magnetization,
this is greatly simplified approximation. We have, however, managed to show that
purely hydrodynamic effects can distort the shape of the low density core.
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poutside = 1.0 Pa µ= 2.1·10−5 kg/(m s)
pcore = 20.0 Pa λ=−1.4·10−5 kg/(m s)

ρoutside = 1.0 kg/m3 Cv = 3.00·102 J/(kg K)
ρcore = 1.0 kg/m3 ξ = 1.7·10−2 W/(m K)

γ = 5
3

Table 4. Initial condition set-up for capillary tube problem. The initial velocity is zero.

8. Boundary layer similarity solution

Given a semiinfinite flat plate in a flow field at zero incidence to the flow, the
velocity profile over the plate can be calculated using a similarity solution in the
absence of thermal and compressibility effects. Define x to be the distance along
the plate and y to be the distance from the surface of the plate and ν to be the
kinematic viscosity and U = Mc is the incident velocity (refer to Figure 7). The
similarity variable η is given by

η = y

√
U
νx
. (12)

This reduces the equations to a nonlinear ordinary differential equation, the solution
of which is the familiar Blasius boundary layer. See Schlichting [26] or White [32]
for a full exposition of this derivation. Charest et al. [6] present a low-Mach-number
algorithm for steady state calculations. In this calculation, they present a boundary
layer calculation that reproduces the behavior Blasius layer. Berger et al. [5] present
a wide variety of these calculations.

We cut a rectangular grid with a wedge of angle θ . Refer to Figure 8 and Table 5
for the initial and boundary conditions. The density and temperature are set to
constants ρ = ρ0, T = T0 = P0/(RT0). The velocity is set to (U cos θ,U sin θ)
everywhere. The velocity boundary conditions are inflow-outflow left to right (the

U

y

x

u

Figure 7. Formulation of semiinfinite flat plate boundary layer problem. U is the (con-
stant) inflow velocity, x is the distance along the plate and y is the distance above the
plate.
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p0 = 2.4·105 Pa µ= 1.2649·10−2 kg/(m s)
ρ0 = 1.0 kg/m3 λ=−8.4327·10−3 kg/(m s)
L = 3.0 m Cv = 5.00·102 J/(kg K)
D = 8.0 m ξ = 1.7·10−2 W/(m K)
W = 4.0 m ReL = 3.0·104 W/(m K)
M = 0.2 θ = 5◦

γ = 5
3

Table 5. Initial conditions for the boundary layer calculation. The velocity everywhere is
initialized to (Mc cos θ,Mc sin θ). See Figure 8 for variable definitions.

top boundary is an outflow boundary). The boundary conditions at the embedded
boundary begin as slip conditions and become no-slip to simulate the start of the
semiinfinite plate (the cross-hatched region of Figure 8). Our inflow Mach number
is set to M = 0.2 and the viscosity is set to make a Reynolds number ReL = 30000.
Temperature boundary conditions top and bottom are insulated; at the inflow T = T0.
We present two calculations, both with a base grid of 256×256. We refine near the
boundary by a factor of 16 (four levels of refinement, each factor of two) to make
an effective resolution near the boundary of 4096× 4096. The solution is allowed
to run to steady state. We cast rays into the fluid at every point along the boundary
within the local Reynolds number ranges 5000 < Rex < 15000. In Figure 9, we
present a scatter plot of the normalized velocity versus the similarity variable η.
We compare our results to the Blasius profile. We show good agreement with the
similarity solution.

D U = Mc

W
L

D

θ

Figure 8. Initial and boundary conditions for boundary layer calculation. The density
and temperature are set to constants. The velocity is set to (U cos θ,U sin θ) everywhere.
The embedded boundary cuts the grid at an angle θ from the bottom of the domain. The
no-slip condition for velocity is only in effect in the crosshatched region. Values for these
quantities are given in Table 5.
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Figure 9. Results of boundary layer calculation as compared with the Blasius solution.
This is a scatter plot of normalized velocity versus the similarity variable η at two different
resolutions. The magnitude of solution velocity is |u|, c is the sound speed and the
similarity variable η is defined in (12). The Blasius solution is in blue. The solution with
effective resolution of 4096× 4096 is in red. We cast a ray from every point along the
boundary where the local Reynolds number is in the range 5000< Rex < 15000. We plot
every point along every ray. The rays are 30 points long.

9. Shock reflection

Define M to be the Mach number of a shock propagating into a gas at rest. Glaz
et al. [14] present a comparison between inviscid calculations of shock reflections
and experimental results. They show a case where viscous effects cause substantial
changes in the reflection pattern. For M = 7.1 shock reflection from a 49 degree
wedge, they show that the Mach stem is much shorter in the experiment than in
an inviscid calculation. The reason cited for this difference is that the viscosity of
argon varies strongly with temperature and the temperature behind the shock is
quite high (the initial temperature behind the diaphragm is 10265 K). The viscosity
is approximated to vary with the Sutherland’s power law (dynamic viscosity varies
with T 3/2). We use the viscosity shown in Table 6. We compute this viscosity using
the highest value given in [22] and extrapolating to the initial high temperature.
The specific heat and conductivity of argon are left at the room temperature values.
These approximations are sufficient to illustrate the phenomenon.

Refer to Figure 10 for an illustration of the initial conditions. Table 6 has the
numerical values of the inputs. Both calculations have a 128× 64 base grid with
seven levels of adaptive mesh refinement, all by a factor of 2. This makes the
effective resolution 16384× 8192. All embedded boundary cells are refined to the
finest level. This gives resolution at the boundary layer h = 9.1 microns.
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p0 = 1.95·103 Pa Y3 = 7.50·10−2 m
p1 = 7.42·105 Pa µ= 1.21·10−3 kg/(m s)
ρ0 = 3.29·10−2 kg/m3 λ=−8.08·10−4 kg/(m s)
ρ1 = 3.61·10−1 kg/m3 Cv = 3.00·102 J/(kg K)
X1 = 9.0·10−2 m ξ = 1.7·10−2W/(m K)
X2 = 1.0·10−1 m θ = 49◦

X3 = 1.5·10−1 m γ = 5
3

Table 6. Initial condition set-up for shock reflection problem. The initial velocity is zero.
See Figure 10 for variable definitions.

Y3
p1, ρ1 p0, ρ0

θ

X1

X2
X3

Figure 10. Shock tube set-up. The initial velocity is zero. The initial pressures and
densities are tailored to make a M = 7.1 shock. See Table 6 for details.

Figure 11 illustrates the Mach reflection problem. Figure 12 shows the viscous
and inviscid calculations at the same scale after 9.61µs. The viscous calcula-
tion shows an interesting shock-boundary layer interaction, which is magnified in
Figure 14. The shock reflects off of the boundary layer, creating a separation bubble.
This is followed by a compression (from the reflected shock) and boundary layer
reattachment. For steady shocks interacting with laminar boundary layers, this is
the classical lambda shock phenomenon. Both Schlichting [26] and Liepmann et
al. [21] explain this in detail and include a wealth of experimental images. This is
also observed (albeit barely) in the experiment presented in [14]. The interferogram
they show has only two or three density contours in that region which makes the
feature difficult to see.

Figure 12 clearly shows that the viscous boundary layer has reduced the Mach
stem substantially and a density stratification on the left. Recall that the problem
is configured as a shock tube. The initial conditions are zero velocity with a
discontinuity in pressure and density. As the shock moves to the right, a rarefaction
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p1, ρ1 p0, ρ0

L M

L R

Figure 11. Shock reflection illustration. The ratio of the Mach stem length L M to the
shock distance L R is the quantity of interest.

Figure 12. Mass density (kg/m3) in the inviscid (top) and viscous(bottom) calculations of
M = 7.1, with 49◦ shock reflection at 9.6µs. This calculations were run 128× 64 base
grid with seven levels of adaptive mesh refinement, all by a factor of 2. This makes the
effective resolution 16384× 8192. All embedded boundary cells are refined to the finest
level. This gives resolution at the boundary layer h = 9.1 microns.



BOUNDARY METHOD FOR THE COMPRESSIBLE NAVIER–STOKES EQUATIONS 119

Figure 13. Mass density (kg/m3) in the inviscid (top) and viscous (bottom) calculation of
M = 7.1, with 49◦ shock reflection at 9.6µs, zoomed in to show the reflection pattern.

Figure 14. Magnification of the lambda shock-boundary layer pattern in the viscous
calculation. Density (in kg/m3) shown here.

fan moves to the left, producing this density variation. We show the two shock
reflection patterns more closely in Figure 13. For a quantitative look at this reduction,
we refer to the experimental and computational results in [14]. See Figure 11 for
an illustration of the relevant lengths. The ratio of the Mach stem length L M to the
shock distance L R is the quantity of interest:

Rm =
L M

L R
.

Glaz et al. report a value of Rm = 0.07 in their inviscid calculation and Rm = 0.038
for an experimental result (see Figure 10 in [14]). Our inviscid calculation has
Rm = 0.072 and our viscous calculation has Rm = 0.03. We believe that our
agreement is reasonable since not all the experimental set-up information is available
(the time at which the interferogram is taken, for example, is not available). For
more examples of this viscous effect, see Henderson et al. [17].
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10. Conclusion

We have presented a stable, second-order method for solving the two- and three-
dimensional compressible Navier–Stokes equations in the presence of complex
geometries. This semiimplicit method advances parabolic terms implicitly and
hyperbolic terms explicitly. This allows a time step controlled by the CFL constraint
associated with the hyperbolic wave speeds. We demonstrate second-order accuracy
for smooth initial conditions in smooth geometric configurations and robust behavior
in the presence of strong discontinuities and geometric complexity that mimic the
conditions in a plasma wakefield accelerator in the absence of magnetic or ionization
effects. We also show good quantitative agreement with experimental results in a
viscous shock reflection problem and a boundary layer problem.
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SECOND-ORDER ACCURACY OF VOLUME-OF-FLUID
INTERFACE RECONSTRUCTION ALGORITHMS

II: AN IMPROVED CONSTRAINT ON THE CELL SIZE

ELBRIDGE GERRY PUCKETT

In a previous article in this journal the author proved that, given a square grid
of side h covering a two times continuously differentiable simple closed curve
z in the plane, one can construct a pointwise second-order accurate piecewise
linear approximation Qz to z from just the volume fractions due to z in the grid
cells. In the present article the author proves a sufficient condition for Qz to be a
second-order accurate approximation to z in the max norm is h must be bounded
above by 2=.33�max/, where �max is the maximum magnitude of the curvature �
of z. This constraint on h is solely in terms of an intrinsic property of the curve z,
namely �max, which is invariant under rotations and translations of the grid. It is
also far less restrictive than the constraint presented in the previous article. An
important consequence of the proof in the present article is that the max norm of
the difference z� Qz depends linearly on �max.

1. Introduction

The topic of this article is the interface reconstruction problem for a volume-of-fluid
method in two space dimensions. This problem can be described as follows. Let
�� R2 denote a closed and bounded rectangular region in the plane, and let �1

and �2 be disjoint, connected (but not necessary simply connected) relatively open
regions such that�1[�2D� and that�1\�2 is the image of a twice continuously
differentiable simple closed curve in �, denoted by z.s/ D .x.s/;y.s//, where
s is arc length. The regions �1 and �2 contain “material 1” and “‘material 2”,
respectively, where each material may be a thought of as a gas, fluid or solid and z

is the boundary or interface between these two materials.
Let L be a characteristic length of the problem domain � and cover � with a

grid �h consisting of square cells, each of side h� L. Given integers i and j ,
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let xi D ih (resp. yj D j h) denote the location of the i-th vertical (resp. j -th
horizontal) grid line and let .xi ;yj / denote the lower left hand corner of the ij -th
cell

Cij
def
D Œxi ;xiC1�� Œyj ;yjC1� (1)

in the grid.
Denote the fraction of material 1 in the ij -th cell by ƒij . For each i; j the

numberƒij satisfies 0�ƒij � 1 and is called the volume fraction (of material 1) in
the ij -th cell. (Even though in two dimensions ƒij is technically an area fraction,
the convention is to refer to it as a volume fraction.) Thus 0 < ƒij < 1 if and
only if a portion of the interface z.s/ lies in the ij -th cell and ƒij D 1 (resp.
ƒij D 0) if and only if the ij -th cell contains only material 1 (resp. material 2). In
the volume-of-fluid interface reconstruction problem one is asked to determine an
approximation Qz.s/ to z.s/ in � given only the volume fractions ƒij .

Suppose the interface z.s/ passes through the ij -th cell Cij and can be written
as a single-valued function of x in Cij ; that is, for x 2 Œxi ;xiC1� the interface can
be written in the form z.s/D .x.s/;y.s//D .x.s/;g.x.s///. Let Qgij .x/ denote an
approximation to the interface in Cij . Then the max norm of the difference between
the interface .x;g.x// and the approximate interface .x; Qgij .x// in Cij is defined
in the usual way,

kg� Qgijk1.ij/
def
D max

x2Œxi ;xiC1�
jg.x/� Qgij .x/j: (2)

In the event the interface in the ij -th cell can only be expressed as a single-valued
function G.y/ of y2 Œyj ;yjC1� the max norm of the difference between the interface
.G.y/;y/ and the approximate interface . zGij .y/;y/ is defined analogously.

By Theorem A.1 in the Appendix, if the interface z.s/ 2 C 2 .R/ passes through
the ij -th cell Cij and the constraint in (5)–(6) below is satisfied, then it is possible
to represent z.s/ as either a single-valued function y D g.x/ or x DG.y/ of the
independent variable x (resp. y) in the 3� 3 block of cells Bij centered on Cij .
For convenience, in all of the following the interface is assumed to be of the form
y D g.x/ in the block Bij with material 1 lying below the graph of g in Bij ; it
being understood that all of the definitions, results, etc. in this article also apply to
the case in which the interface can only be expressed as a single-valued function
x DG.y/ in Bij . In Section 2.1 I will present an algorithm for determining which
of the four standard rotations of Bij about its center, 0, 90, 180, or 270 degrees,
will orient the block Bij so the interface can be expressed as either y D g.x/ or
x DG.y/ with material 1 lying below the interface.

Let �.s/ denote the curvature of the interface z.s/ and let

�max
def
D max

s
j�.s/j (3)
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denote the maximum of the magnitude of �.s/ in �. The main result of this article
is as follows. If conditions (I)–(V) below hold, then the piecewise linear volume-of-
fluid approximation Qgij .x/ defined in equations (7)–(10) below will approximate
the true interface z.s/D .x.s/;g.x.s// to second-order in h in the max norm,

kg� Qgijk1.ij/ � Cm�maxh2 for all i; j such that 0<ƒij < 1; (4)

where the constant Cm, defined in (59) below, is independent of h and �max. Note
the linear dependence of the bound in (4) on �max.

The following conditions are sufficient to ensure that (4) holds. Note that (II)–
(IV) constitute an algorithm for constructing the piecewise linear approximation Qz
to z. This algorithm is described in detail in [24].

(I) The interface zD .x.s/;y.s// is a two times continuously differentiable simple
closed curve in �.

(II) The grid size h and the maximum magnitude �max of the curvature of the
interface satisfy the following inequality with respect to one another,

h�
Ch

�max
; (5)

where
Ch

def
D

2

33
: (6)

(III) In each cell Cij that contains a portion of the interface .x;g.x// the piecewise
linear approximation

Qgij .x/
def
D mij xC bij (7)

to g in Cij has the same volume fraction ƒij . Qg/ in Cij as does the interface,

ƒij . Qg/Dƒij .g/: (8)

See Figure 1 for an example. Note that, once the slope mij in (7) is given, the
constraint in (8) uniquely determines bij .

(IV) In each cell Cij that contains a portion of the interface, the slope mij of the
piecewise linear approximation Qgij .x/ defined in (7) is given by

mij
def
D

SiC˛ �SiCˇ

˛�ˇ
for some ˛; ˇ D�1; 0; 1 with ˛ ¤ ˇ; (9)

where

SiC˛
def
D

jC1X
j 0Dj�1

ƒiC˛;j 0 and SiCˇ
def
D

jC1X
j 0Dj�1

ƒiCˇ;j 0 (10)

denote two distinct column sums of volume fractions from the 3� 3 block of cells
Bij D Œxi�1;xiC2�� Œyj�1;yjC2� centered on the ij -th cell Cij .
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xi−1 xi xi+1 xi+2xc = 0

|

yc = 0 −

yj−1

yj

yj+1

yj+2

g(x) = tanh(x)

(xi−1, yl)

(xi+2 , yr)

g̃ij(x) = mij x + bij

Figure 1. In this example the interface is g.x/ D tanh.x/ and all three of the column
sums Si�1, Si , and SiC1 are exact. The linear approximation Qgij .x/Dmij xCbij in the
center cell Cij is also plotted, where the slope mij is given by (9) with ˛ D 1 and ˇ D�1

and bij is determined by the constraint ƒij . Qg/Dƒij .g/ in (8).

For ˛ D�1; 0; 1 the column sum SiC˛ is said to be exact if

SiC˛ D
1

h2

Z xiC˛C1

xiC˛

.g.x/�yj�1/ dx: (11)

and exact to O.h/ ifˇ̌̌̌
SiC˛ �

1

h2

Z xiC˛C1

xiC˛

.g.x/�yj�1/ dx

ˇ̌̌̌
� C�maxh; (12)

where C > 0 is a constant, defined in (53) below, which is independent of h and
�max. Column sums are discussed in greater detail in Section 2.2.

(V) Each of the two column sums SiC˛ and SiCˇ in (9), where ˛ ¤ ˇ, is either
exact or exact to O.h/. Thus, by Theorem 23 of [23] the slope mij defined in (9)
is a first-order accurate approximation to g0.xc/,

jmij �g0.xc/j � C�maxh; (13)

where xc denotes the center of the interval Œxi ;xiC1�. It then follows from Theorem 4
on page 152 below that the approximation Qg defined in (7)–(10) is a second-order
accurate approximation to g in Cij ; i.e., the bound in (4) holds in Cij .
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Figure 2. In this example the interface is a line l.x/DmxC b that has two exact column
sums, Si�1 and Si , in the first and second columns of the 3�3 block of cells Bij centered
on the cell Cij . In this case the slope mij defined in (9) with ˛ D 0 and ˇ D�1 is exactly
equal to the slope m of the interface: mij Dm. It is always the case if the true interface is
a line; then one of the four standard rotations of Bij about its center will orient the block
so at least one of the divided differences of the column sums in (9) is exact and hence, the
approximation Qgij to the interface in the center cell Cij defined in (7)–(10) will exactly
equal the interface in that cell, Qgij .x/Dmij xC bij DmxC b D l.x/. In other words,
the approximation Qgij defined in (7)–(10) will always reconstruct a linear interface exactly.

1.1. Remarks concerning conditions (I)–(V).

(1) The proof of (4) is based on showing if the constraint in (5)–(6) holds, then for
all cells Cij that contain a portion of the interface, there are at least two distinct
column sums SiC˛ and SiCˇ , with ˛¤ ˇ, which are either exact or exact to O .h/

in one or more of the four standard rotations of the 3�3 block of cells Bij centered
on Cij . An algorithm for determining which of the four standard rotations of the
block Bij has this property is described in Section 2.1.

(2) The constraint on h in (5) may be viewed as dictating the number of cells
required to produce a pointwise second-order accurate approximation to a circle of
radius r on a grid with cell size h. To see this, note the curvature of the circle is
�max D r�1 and hence, by (5) and (6), one must have

16:5hD C �1
h h� r: (14)

This implies one needs a 35 � 35 square block of cells covering the circle (this
includes a border one cell wide outside the circle) in order to ensure the piecewise
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linear approximation defined in (7)–(10) is a pointwise second-order accurate
approximation to the circle in each cell Cij that contains a portion of the circle.

This could be an overestimate of the number of cells required to achieve pointwise
second-order accuracy. However, if this is so, then it is likely one will need to
employ ideas other than the ones presented in this article, and in [23], in order to
obtain a better result; that is, a larger value for Ch, thereby implying fewer cells are
required to reconstruct a circle of radius r to pointwise second-order accuracy in h.
In other words, the constant of proportionality Ch in (6) appears to be optimal in
the sense that it is about as large as one can obtain with the ideas and techniques
presented here and in [23].

(3) In [23] the constraint that corresponds to (5) is

h�min
˚
QCh�
�1
max; �

�2
max
	
; (15)

where

QCh
def
D C hŒ4�D

p
4�
p

2

4
p

2
p

4� 1
D

p
2� 1

4
p

3
; (16)

where C hŒa� is defined in Equation (A.1) in the Appendix. The principal new result
of this article is the elimination of the much more restrictive (and dimensionally
inconsistent) constraint

h� ��2
max (17)

in (15). Thus, for a given interface z, one can reconstruct z to second-order in h

using a larger value of h than dictated by (17). A notable consequence of this new
proof is that the bound on the error in (4) depends linearly on �max.

A minor change from [23] is the very slight increase in the value of Ch from
Ch D

QCh � .16:73/�1 to Ch D 2=33 D .16:5/�1. The reason for this change is
solely for the purpose of presenting the example in item (2) above in terms of an
integral number of grid cells. The details concerning how Ch and QCh are chosen
appear in the Appendix.

The majority of the work in this article is concerned with proving the more
restrictive constraint in (17) is unnecessary. This involves replacing the arguments
in Sections 3.2–3.4 of [23] with those in Section 4 here. Sections 2.2.2 and 3 of
this article contain a more detailed discussion of the modifications to the argument
in [23] required to eliminate the constraint in (17).

Although it is not necessary to modify the argument in [23] in order to increase
the value of Ch from

�p
2 � 1

�
=
�
4
p

3
�
� .16:73/�1 to Ch D 2=33 D .16:5/�1,

a more general version of Theorem 6 from [23] is presented as Theorem A.1 in
the Appendix in order to clearly show the considerations that influence the choice
of Ch.
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(4) Figure 1 contains an example of the volume-of-fluid approximation Qgij .x/D

mij xC bij defined in (7)–(10) to the interface g.x/D tanh.x/ in the center cell
Cij of a 3 � 3 block of cells in which all three column sums are exact. Hence,
Qgij is a pointwise second-order accurate approximation to g for any choice of
˛; ˇD 1; 0;�1 with ˛¤ˇ in (9) provided bij is chosen so (8) holds, whereƒij .g/

is the volume fraction in Cij lying under the curve g.
Figure 2 contains an example of a linear interface l.x/ D mx C b in which

only two of the column sums, namely, Si�1 and Si , are exact, yet the approximate
interface Qgij D mij x C bij , exactly reproduces the line l if mij is given by (9)
with ˛ D 0 and ˇ D�1 and bij is chosen so ƒij . Qg/Dƒij .l/ where ƒij .l/ is the
volume fraction in Cij lying below the line l . (See Example 1 on page 136 for
additional details.)

Figure 3 contains an example of the arc of a circle, c�.x/ that passes through
the center cell Cij of the 3� 3 block Bij , but for which the center column sum

Figure 3. This figure contains an example of an interface c�.x/, which is a circle that
satisfies (5)–(6), but for which the center column sum is not exact in any of the four
standard rotations of the 3� 3 block of cells Bij centered on the cell Cij . Consequently,
the only reasonable approximation mij to c�

0.xc/ of the form (9) is with ˛D 0 and ˇD�1,
which must necessarily have a nonexact center column sum Si . By Theorem 3 below,
which is the basis for the principal result of this article, if the constraint in (5) and (6) is
satisfied, then the center column sum Si must be exact to O.h/. In other words, in this
case the constraint in (5)–(6) implies (12) (with ˛ D 0) must hold. This is sufficient to
prove (13), namely, jmij � c�

0.xc/j � C�maxh, which is Theorem 23 of [23]. Finally, by
Theorem 4, the approximate interface Qgij .x/ with the slope mij as given above must be a
second-order accurate approximation to c�.x/ in the max norm.
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Si is not exact. However, by Theorem 3 below, Si is exact to O.h/, as defined in
(12). It follows from Theorem 23 of [23] and Theorem 4 in this article that the
approximation to the interface Qgij .x/, with the slope mij given by (9) with ˛ D 0

and ˇ D�1, will still be pointwise second-order accurate in h, even though Si is
only exact to O.h/.

The convention followed in each of these examples is that material 1 lies below
the interface. However, in practice the 3 � 3 block Bij centered on a cell Cij

containing a portion of the interface can have material 1 lying above, below, to
the right or to the left of the interface. In Section 2.1 I present an algorithm for
determining which of the four standard rotations of the 3� 3 block of cells Bij ,
namely, rotation clockwise by 0, 90, 180, or 270 degrees, will orient the block Bij

so material 1 lies below the interface.
Theorem 4, which is the main result of this article, follows from proving that if

(5)–(6) holds, then in at least one of these four standard orientations of the block
Bij there will always exist at least one column sum that is exact and a second
column sum that is either exact or exact to O.h/. A more detailed discussion of
these issues is contained in Section 3.

Figure 1 contains an example in which one orientation of Bij contains three exact
column sums. Figure 2 contains an example in which in two different orientations
of Bij contain two exact column sums. Figure 3 contains an example in which
in two different orientations Bij contain one exact column sum and one column
sum that is exact to O.h/. (Note: rotation of the block Bij in Figure 3 by 180 or
270 degrees clockwise results in a configuration in which material 1 lies above the
interface and therefore, neither (11) nor (12) is true.)

(5) The constraint in (5)–(6) is sufficient to ensure filaments or fingers of the
type shown in Figure 4 will not occur on a grid with cell size h where �max is
the maximum magnitude of curvature of the filament. In this article I have not
attempted to catalog all of the ways in which a filament of width w < h can occur
in an arbitrary C 2 simple closed curve lying in the domain �. It could be that the
constraint in (5)–(6) is sufficient to ensure if the interface is a simple closed curve
in �, then all such filaments will be resolved to pointwise second-order accuracy
in h. However, I have not attempted to prove this here. The result in this article
concerning filaments of the type illustrated in Figure 4 is only a local result. In other
words, in all of what follows I am explicitly excluding interfaces z such that for
two disjoint intervals .sl ; sr / and .Qsl ; Qsr / the two separate portions of the interface
z.s/D .x.s/;y.s// for sl < s < sr and z.Qs/D .x.Qs/;y.Qs// for Qsl < Qs < Qsr , occupy
the same 3� 3 block of cells Bij .

1.2. The volume-of-fluid interface reconstruction problem. Consider the follow-
ing problem. Given only the collection of volume fractions ƒij in the grid �h
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Figure 4. The interface p.x/ is a model of a filament of material 2 contained entirely
within the center column of the 3� 4 block of cells Œxi�1;xiC2�� Œyj�2;yjC1�. In this
example hD1, the interface is the parabola p.x/D32.x�xc/

2C.yj�1�h=2/ and hence,
it follows that �max does not satisfy the constraint in (5)–(6), since �maxD 64> 2=.33h/D

Ch=h. This indicates the filament is underresolved on this grid. In general, the constraint
in (5)–(6) ensures the interface does not have sharp or “hairpin” turns on the scale h of the
cell in which one wants to reconstruct the interface.

covering �, reconstruct z.s/ in the following way. For each cell Cij in �h for
which 0 < ƒij < 1, find a piecewise linear approximation Qz to z as shown, for
example, in Figure 1. Furthermore, the approximate interface Qz must have the
property that the volume fractions Qƒij due to Qz are identical to the volume fractions
ƒij due to z,

Qƒij Dƒij for all cells Cij in �h: (18)

An algorithm for finding such an approximation is known as a piecewise linear
volume-of-fluid interface reconstruction method. More generally, there are volume-
of-fluid interface reconstruction methods that produce other types of approximations
to the interface, such as with piecewise constant [18; 19] and piecewise parabolic
[26] functions. However, this article is only concerned with piecewise linear
approximations to the interface of the form (7).

Although these algorithms have historically been known as “volume-of-fluid”
methods, one can use them to model the interface between any two (or more)
materials, including two gases [7], a gas (or vacuum) and a solid [25], a liquid and
a solid [14], two solids and vacuum [15; 16], or any other combination of materials.
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The design of volume-of-fluid interface reconstruction methods for reconstructing
multiple interfaces in problems with more than two materials, especially a large
number of distinct materials, is currently a very active area of research.

The property (18) that Qƒij Dƒij in all cells in �h is the principal feature that
distinguishes volume-of-fluid interface reconstruction methods from other interface
reconstruction or tracking methods. It ensures the computational value of the total
volume of each material is exact to within machine precision. In other words,
all volume-of-fluid interface reconstruction methods are conservative in that they
conserve the volume of each material in the computation. This is essential if the
interface reconstruction method is part of a conservative finite difference method
designed to approximate solutions of a system of hyperbolic conservation laws
since, for example, in order to obtain the correct shock speed it is necessary for all
of the conserved quantities to be conserved by the underlying numerical method
(e.g., see [12]). More generally, a necessary condition for the numerical method to
converge to the correct weak solution of a system of hyperbolic conservation laws
is all of the quantities conserved in the system of conservation laws must also be
conserved by the numerical method [11; 13].

Volume-of-fluid methods have been used by researchers to track material inter-
faces since at least the mid 1970s (e.g., [18; 19]). Researchers have developed a
variety of volume-of-fluid algorithms for modeling everything from flame propaga-
tion [4] to curvature and solidification [5]. In particular, the problem of developing
high-order accurate volume-of-fluid methods for modeling the curvature and surface
tension of an interface has received a lot of attention [1; 3; 5; 6; 9; 32; 22; 26].
Volume-of-fluid methods were among the first algorithms to be implemented in
codes developed at national laboratories, both in the US [8; 10; 17; 18; 30; 31] and
elsewhere [20; 33; 34; 35], for tracking interfaces in a variety of difficult fluid flow
and material deformation problems.

The present article is only concerned with the accuracy one can obtain using a
volume-of-fluid interface reconstruction algorithm to approximate a given stationary
interface z.s/. The related problem of approximating the movement of the interface
in time, for which one would use a volume-of-fluid advection algorithm is not
addressed here. See, for example, [2; 21; 26; 27; 28] for a description and analysis
of several such algorithms.

2. Essential background material

2.1. Rotation and/or reflection of the 5� 5 block of cells zBij . Given a cell Cij

that contains a portion of the interface it is expedient to consider the 5� 5 block
of cells zBij centered on Cij rotated clockwise by 0, 90, 180, or 270 degrees about
.xc ;yc/ and/or reflected about the vertical line xD xc or the horizontal line yD yc ,
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where .xc ;yc/ is the center of the cell Cij as shown in Figures 2, 3 and 4. (Figure 1
on page 203 of [24] contains an illustration of the 5� 5 block of cells zBij .) This
is because, with the proper choice of one of these four rotations, one can orient
the block zBij so the interface can either be written as a single-valued function
y D g.x/ or xDG.y/ of the independent variable x (resp. y) such that in this new
coordinate frame the column sum Si corresponds to the integral of g.x/� yj�1

(resp. G.y/� xi�1) over the interval Œxi ;xiC1� (resp. Œyj ;yjC1�) and similarly
for the column sums Si�1 and SiC1. I use the reflection about the line x D xc to
transform cases such as the reflection of the case shown in Figure 3 about the line
x D xc into the case shown in Figure 3, and similarly for reflections about the line
y D yc . This enables one to reduce all of the various ways the interface can enter
the 3� 3 block of cells Bij , pass through the center cell Cij , and leave the block
Bij to two canonical cases, namely, Configuration A and Configuration B below.

It is important to note one does not need to perform these coordinate transforma-
tions in order to prove the piecewise linear volume-of-fluid interface reconstruction
algorithm defined in (7)–(10) produces a second-order accurate approximation to
the exact interface. Rather, these coordinate transformations are simply an expedient
that allows one to reduce consideration of all of the various ways the interface can
enter Bij , pass through Cij , and then leave Bij to two canonical cases. This is a
consequence of the symmetry lemma on page 119 of [24], from which it follows
that all such configurations of the interface with respect to the 3� 3 block of cells
Bij are equivalent to one of the following two cases.1

Configuration A: The interface enters Bij across its left edge and exits across its
right edge as shown, for example, in Figure 1. In this case the best slope for one to
use is mij defined by ˛ D 1 and ˇ D �1 in (9), although either of the other two
slopes given by ˛D 0 and ˇD�1 or ˛D 1 and ˇD 0 will also furnish a pointwise
second-order accurate approximation of the form (7)–(10) to the interface in the
center cell Cij .

Configuration B: The interface enters Bij across its left edge and exits across
its top edge as shown, for example, in Figures 2 and 3. In this case one must
use the slope mij in (9) with ˛ D 0 and ˇ D �1 in order to produce a pointwise
second-order accurate approximation of the form (7)–(10) to the interface in the
center cell Cij .

1The symmetry lemma in [23] ensures that if (5)–(6) holds, then each of the ways the interface can
enter the block Bij , pass through the center cell Cij , and exit Bij is equivalent to one of four canonical
cases: I-IV. By Lemma 11 in [23] Case I cannot occur and a rotation of the block Bij clockwise by
90ı transforms Case III into Case II, thereby leaving only Case II, which is Configuration A, and
Case IV, which is Configuration B.
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Note that each 5�5 block of cells zBij centered on a cell Cij containing a portion
of the interface will have its own rotation and/or reflection; that is, the rotation
and/or reflection is only performed locally, solely for the purpose of determining
the slope mij of the approximate interface in the ij -th cell Cij . Different rotations
and/or reflections will, in general, be required for different 5� 5 blocks of cells
centered on different cells Cij that contain parts of the interface. Furthermore,
one only uses these coordinate transformations to determine a first-order accurate
approximation mij to g 0.xc/ in the center cell. The grid �h covering the domain
� always remains the same. Thus, if one is using the interface reconstruction
algorithm as part of a numerical method to solve a more complex problem than the
one posed here, e.g., the movement of a fluid interface where the underlying fluid
flow is a solution of the Euler or Navier–Stokes equations, it is not necessary to
perform a coordinate transformation on the underlying numerical fluid flow solver.

There are a variety of techniques for determining which of the four rotations
and which reflection, if any, will orient the 3� 3 block Bij so the interface can
be written as a single-valued function of one of the independent variables x or y,
such that in the rotated coordinates the column sum Si corresponds to the integral
of g.x/� yj�1 (resp. G.y/� xi�1) over the interval Œxi ;xiC1� (resp. Œyj ;yjC1�)
and similarly for the column sums Si�1 and SiC1. The simplest technique is
probably the algorithm described in Section 3 of [24], a variation of which I will
now describe.

Step I: Given a cell Cij that contains a portion of the interface z.s/, or equivalently,
a cell Cij in which 0<ƒij < 1, rotate the 5� 5 block of cells zBij centered on Cij

together with their associated volume fractions by 0, 90, 180, or 270 degrees so in
the rotated coordinate frame the bottom row of cells in the 5� 5 block zBij satisfy

ƒi�2;j�2D 1; ƒi�1;j�2D 1; ƒi;j�2D 1; ƒiC1;j�2D 1; ƒiC2;j�2D 1:

This ensures that the interface does not cross the bottom edge of the 3� 3 block of
cells Bij .

Step II: Now examine the left and right edges of the 5� 5 block of cells zBij . If

ƒi�2;j�2D 1; ƒi�2;j�1D 1; ƒi�2;j D 1; ƒi�2;jC1D 1; ƒi�2;jC2D 1;

then the interface must cross the top and right-hand edges of the 3�3 block of cells
Bij . In this case reflect the cells together with their associated volume fractions
about the vertical line x D xc in order to orient the block zBij so the interface only
crosses the left-hand and top edges of the 3�3 block Bij as shown in Figures 2 and
3. (Lemma 11 of [23] ensures any interface of the form y D g.x/ on the interval
Œxi�1;xiC2� or x DG.y/ on the interval Œyj�1;yjC2� that satisfies the constraint
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in (5)–(6) cannot enter the block Bij across a given edge, pass through the center
cell Cij , and then exit Bij across the same edge.)

Not only does this procedure reduce the number of cases one must consider during
the course of proving the results in this article and those in [23], it also reduces the
number of cases one must consider in the implementation of the algorithm described
in [24]. In all of what follows I will express the interface as y D g.x/ and, unless
noted otherwise, the coordinates of the edges of the cells in the 3� 3 block Bij

centered on a cell Cij containing the interface will be denoted by xi�1, xi , xiC1,
xiC2 and yj�1, yj , yjC1, yjC2, with it being understood that a transformation of
the coordinate system as described above may have been performed in order for
this representation of the interface to be valid, and that the names of the variables
x and y might have been interchanged in order to write the interface as y D g.x/.

2.2. Column sums. Let Cij be a cell such that 0<ƒij < 1 and assume the 3� 3

block of cells Bij centered on Cij has been rotated by 0, 90, 180, or 270 degrees as
described above, so the interface z.s/ can be expressed as a single-valued function
y D g.x/ or x DG.y/ of the independent variable x (resp. y). Thus, in this new
coordinate frame the column sum Si corresponds to the integral of g.x/�yj�1 (resp.
G.y/� xi�1) over the interval Œxi ;xiC1� (resp. Œyj ;yjC1�) and similarly for the
column sums Si�1 and SiC1. The accuracy of the piecewise linear approximation
to the interface in Cij defined in (7)–(10) depends entirely on the accuracy with
which the column sums Si�1, Si and SiC1 approximate the volume / area under
the interface in their respective columns from the base y D yj�1 of the block Bij

to the interface. The purpose of this section is to give the reader an understanding
of why this must be so.

2.2.1. Exact column sums. Consider the three columns in the 3�3 block of cells Bij

centered on the cell Cij . The column sums Si�1, Si , and SiC1 are a nondimensional
way of storing the total volume / area of material 1 in these three columns. In order
to approximate the portion of the interface g.x/ in the ij -th cell Cij to second-order
in h with the piecewise linear function Qgij .x/ defined in (7), one must use two of
the three column sums in Bij to compute the slope mij of Qgij .x/ as illustrated in
the examples in Figures 1 and 2.

To see why this is so, consider an arbitrary column consisting of three cells with
left edge x D xi and right edge x D xiC1 and assume the interface can be written
as a function y D g.x/ on the interval Œxi ;xiC1�. Assume also the interface enters
the column through its left edge and exits the column through its right edge and
does not cross the top or bottom edges of the column as, for example, is the case
for each of the three columns in the 3� 3 block of cells in Figure 1. Then the total
volume / area of material 1 that occupies the three cells in this particular column
and lies below the interface g.x/ is equal to the integral of g.x/�yj�1 over the
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interval Œxi ;xiC1�. Thus, (11) holds; in other words, the i-th column sum Si is
exact.

Exact column sums are the key to ensuring a volume-of-fluid interface recon-
struction algorithm of the form defined in (7)–(10) is second-order accurate. Given
the 3� 3 block of cells Bij centered on a cell Cij that contains a portion of the
interface y D g.x/, the main result in this article, Theorem 4, is based on how well
the column sums Si�1, Si and SiC1 approximate the normalized integral of g in
that particular column,

This is because, by (9), the slope mij of the piecewise linear approximation Qgij

to the interface g in Cij will be the divided difference of two of these column sums.
In other words, mij is chosen to be one of the following three quantities:

ml
ij D .Si �Si�1/; (19a)

mc
ij D

.SiC1�Si�1/

2
; (19b)

mr
ij D .SiC1�Si/: (19c)

A consequence of Theorem 23 in [23] is if two of the column sums SiC˛ and SiCˇ

for some ˛; ˇ D 1; 0;�1 with ˛ ¤ ˇ are exact, then the slope mij in (9) must
satisfy (13). Consequently, by Theorem 4 below, which is a stronger version of
Theorem 24 in [23], the piecewise linear approximation Qgij .x/ defined in (7)–(10)
will be a pointwise second-order accurate approximation to the true interface g.x/

for all x 2 Œxi ;xiC1�. In fact, Qgij .x/ will be a pointwise second-order accurate
approximation to g.x/ for all x 2 Œxi�1;xiC2�, albeit with a slightly larger constant
multiplying �maxh2.

Example 1. In order to see why the divided difference of two exact column sums
must produce a slope mij that is a first-order accurate approximation to g 0.xc/, the
slope of the interface at the center of the interval Œxi ;xiC1�, consider the case of a
linear interface l.x/DmxCb as shown in Figure 2. In this particular orientation of
the 3�3 block of cells Bij the interface g has two exact column sums; namely, the
first and second ones, Si�1 and Si , where Si denotes the column sum associated
with the interval Œxi ;xiC1� and Si�1 denotes the column sum associated with the
interval Œxi�1;xi �. It is easy to check that

mD
1

h2

Z xiC1

xi

.l.x/�yj�1/ dx�
1

h2

Z xi

xi�1

.l.x/�yj�1/ dx

D .Si �Si�1/Dml
ij :

In this example the divided difference ml
ij in (19a) of the column sums Si�1 and

Si is exactly equal to the slope m of the linear interface l.x/DmxC b and hence,
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since (8) must also hold, the piecewise linear approximation Qgij .x/ defined in (7)
coincides with the true interface l.x/ in Cij ,

jl.x/� Qgij .x/j D 0 for all x 2 Œxi ;xiC1�:

If the exact interface is a line, then it is always the case that in one of the
four standard rotations of the 3� 3 block of cells Bij at least one of the divided
differences of the column sums in (19) is exact. For example, note that in the
case shown in Figure 2 one can rotate the 3 � 3 block of cells Bij 90 degrees
clockwise and in this new orientation the correct slope to use when forming the
piecewise linear approximation Qgij .x/Dmij C bij to the line l.x/DmxC b will
be mij Dmr

ij as defined in (19c), which again exactly equals the slope m of l.x/.
Of course, in general, the divided difference of two of the column sums will not

be precisely equal to the slope of the interface at the midpoint xc of the interval
Œxi ;xiC1� as in the preceding example. However, as a consequence of Theorem 3
below, and Theorem 23 of [23], if h satisfies (5)–(6), one can always find an
orientation of the 3�3 block of cells Bij such that at least two of the column sums
are sufficiently accurate that one of the divided differences in (19) satisfies (13).

Once one has chosen an orientation of the 3�3 block of cells Bij such that at least
two of the column sums are sufficiently accurate that one of the divided differences
in (19) satisfies (13), one uses the constraint in (8), namely, ƒij . Qg/Dƒij .g/, to
form the piecewise linear approximation Qgij .x/Dmij xC bij to the interface. In
other words, given mij , the constraint ƒij . Qg/Dƒij .g/ determines bij .

2.2.2. Column sums that are exact to O.h/. One might expect there exists a value
of Ch that will ensure if the cell size h satisfies the constraint in (5)–(6), then after
one of the four standard rotations of the 3� 3 block Bij about its center, the block
will always have at least two exact column sums. Unfortunately, as the following
example demonstrates, there is no bound of the form (5)–(6) which, for a fixed h,
will ensure a C 2 interface will always have at least two exact column sums in one
of the four standard orientations of the grid.

Example 2. Consider the curve c�.x/ shown in Figure 3 where 0 < � < h is a
small parameter. One can always find a circle c�.x/ that passes through the three
noncollinear points .xl ;yl/D .xi�1;yj C �/, .xm;ym/D .xi C �;yjC1� �/ and
.xr ;yr /D .xiC1� �;yjC2/ as shown in the figure. As �! 0 the arc of the circle
passing through .xl ;yl/, .xm;ym/ and .xr ;yr / tends to the chord connecting
.xl ;yl/ and .xr ;yr / which, since the curvature of the chord is 0, implies the radius
r � of c�.x/ tends to1. Therefore, no matter how small one chooses Ch there exists
�0 > 0, such that the radius r � satisfies h� Chr � , or equivalently, h� Ch

�
��max

��1

for all � � �0. Hence, for � � �0 the circle c�.x/ satisfies (5)–(6). However, since
by construction yj < yl and xr < xiC1, the center column sum will not be exact
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in any of the four standard orientations of the block Bij . Consequently, if one
wants to construct an approximation to c�.x/ based solely on the volume fraction
information contained in the 3� 3 block Bij centered on the cell Cij that contains
the point .xm;ym/ on the interface c�.x/, the best result one can hope for is that
the center column sum Si is exact to O.h/ in the sense defined in (12).

All of the work in Sections 4.1 to 4.3 of this article is devoted to proving if
(5)–(6) holds, then in cases such as the one shown in Figure 3 the error between the
column sum Si and the normalized integral of the interface g.x/ in that column is
O.h/; i.e., the inequality in (12) holds with ˛ D 0, where C > 0, defined in (53)
below, is a global constant independent of h and �max.

In [23], in order to prove if the center cell Si is not exact, but is exact to O.h/,
then one of the divided differences ml

ij or mr
ij is still sufficiently accurate that (13)

must hold, it was necessary to have a more stringent restriction on the cell size
than one of the form (5)–(6).2 This restriction was h� ��2

max, which for �max large
enough is more restrictive than the constraint in (5)–(6). In all of the other ways
in which the interface enters the 3� 3 block Bij , passes through the center cell
Cij and exits the block Bij , the constraint in (5)–(6) is sufficient to prove there
is an orientation of Bij such that at least two of the column sums are exact, and
hence one of the divided differences in (19) satisfies (13). The primary purpose of
this article is to prove if the center column sum Si is not exact the more restrictive
constraint h� ��2

max is not necessary. In other words, if the exact interface g satisfies
(5)–(6), then for every cell Cij that contains a portion of the interface, after one
of the four standard rotations of the 3� 3 block Bij about its center .xc ;yc/ there
are at least two column sums that are sufficiently accurate (meaning either exact or
exact to O.h/), that one of the divided differences in (19) satisfies (13).

The purpose of this article is to show the constraint in (5)–(6) is sufficient to
ensure in cases such as the one shown in Figure 3, the error between the center
column sum Si and the normalized integral of the interface g in the center column
satisfies (12) with ˛ D 0 and hence, the error in the approximation ml

ij to the slope
g 0.xc/ is small enough that (13) still holds. Once this is done, by (13) the slope ml

ij

is a first-order accurate approximation to the first derivative g 0.xc/ of the interface
at the center xc of the interval Œxi ;xiC1�. One can then show the piecewise linear

2A consequence of the proof of Theorem 10 in [23] is if the interface satisfies (5)–(6) and passes
through the center cell Cij of the 3� 3 block of cells Bij , then after one of the four standard rotations
of Bij about its center, either the left or right column sum must be exact. If it is the right column
sum SiC1 that is exact, then reflection of the block Bij about the vertical line x D xc results in the
block being oriented so the left column sum Si�1 is now exact as shown in Figure 3. Thus, it is only
necessary to consider the case in which the center column sum Si is exact to O.h/ and the left column
sum Si is exact, as illustrated in Figure 3.
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approximation Qgij .x/Dml
ij xC bij is a second-order accurate approximation to

the interface g.x/ on the interval Œxi ;xiC1�. This is Theorem 4.

3. An overview of the structure of the proof

Sections 3 and 4 of [23] contain a proof of the following. If h satisfies the constraint
in (15), then by rotating the 3� 3 block of cells Bij centered on Cij by 0, 90, 180,
or 270 degrees clockwise, one can find a coordinate frame in which there are at
least two distinct column sums SiC˛ and SiCˇ such that their divided difference (9)
satisfies (13). Section 3.1 of [23] contains a proof that the constraint h� QChi�

�1
max,

where QCh is defined in (A.6), is sufficient to ensure the interface has two exact
column sums in all but one of the ways in which the interface g enters the 3� 3

block of cells Bij , passes through its center cell Cij , and exits Bij . The exception
is the case in which the center column sum Si is not exact, but only exact to O.h/,
as illustrated in Figure 3. Sections 3.2–3.4 of [23] are devoted to proving that, in
this latter case, the center column sum Si is exact to O.h/. However, the proof
requires the second of the two constraints in (15) above, namely h� ��2

max, to hold.
The purpose of Section 4 is to prove the weaker constraint in (5), with Ch

defined in (6), is sufficient to ensure that in cases such as the one described above,
the center column sum Si is exact to O.h/. This, together with the results from
Section 4 of [23], ensure the approximation Qgij .x/ in (7) is a second-order accurate
approximation in the max norm to g.x/ on the interval Œxi ;xiC1�.

Theorem 4 in Section 5, which is the main result of this article, is a stronger
version of Theorem 24 of [23]. Namely, if h�Ch�

�1
max, then (4) holds. This theorem

in based on the results in Section 4 below.
The terms in the error bound on the right-hand side of (4) that have changed from

Theorem 24 of [23] are the positive constants �max and Cm. In particular, the linear
dependence on �max of the max norm of the difference z� Qz is explicitly displayed
in the present article. In [23] the constant Cm was of the form 50�max=3C CS ,
where CS is a constant, which is independent of �max and h. The new value of Cm

is defined in (59) below.

4. The center column sum Si is exact to O.h/

The purpose of the work in this section is to prove the constraint on h in (5)–(6) is
sufficient to ensure that if the center column sum Si is not exact, then it must be
exact to O.h/. This is the case in which the center column sum is not exact in each
of the four standard orientations of the block Bij as shown, for example, in Figure 3.
The main result of this section is stated explicitly in Theorem 3 below. Note that it
is only necessary to prove this result in one of the four standard orientations of the
grid, since the proof of the other three cases is essentially the same. Note also that
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in this one case the interface g.x/ is monotonically increasing. In Lemma 13 of
[23] it is proven if the interface is a nonmonotonically increasing function of x in
Bij , then the constraint in (5)–(6) is sufficient to ensure it has two exact column
sums, regardless of the manner in which it enters the 3�3 block of cells Bij , passes
through the center cell Cij and exits the block Bij again. See Section 3.1 of [23]
and, in particular, Lemma 13 for details.

Notation. For convenience, in this section the edges of the 3 � 3 block of cells
Bij will be denoted x0, x1, x2, x3, and y0, y1, y2, y3, as shown, for example,
in Figures 5, 6, and 7. Thus, the 3� 3 block Bij will be identified with the 3� 3

block B1;1 D Œx0;x3� � Œy0;y3� and the center cell Cij will be identified with
C1;1 D Œx1;x2�� Œy1;y2�, the center cell of B1;1. Furthermore, in Section 4.1 it
will be convenient to translate the coordinate system so the origin .0; 0/ coincides
with the point .x0;y1/. This results in the following relations, which will be
used in several of the proofs below: .x0;y1/ D .0; 0/, .x1;y2/ D .h; h/, and
.x2;y3/D .2h; 2h/. For example, see Figure 5.

4.1. The comparison circle Qz.s/. To begin, define the parameters 
 and R by



def
D

1

5

s
h�max

Ch

; (20a)

R
def
D 5

s
Chh

�max
; (20b)

where Ch is defined in (6), and note that R
 D h and, since 0< h� Ch�
�1
max,

0< 
 � 1
5
: (21)

Now consider the comparison circle Qz.s/D . Qx.s/; Qy.s//, which is defined by

Qx.s/DR sin.�0C s=R/�R sin�0; (22a)

Qy.s/D�R cos.�0C s=R/CR cos�0; (22b)

where �0 is a parameter defined by

�0 D
�

4
� sin�1 


p
2
: (23)

Note that Qz.s/D . Qx.s/; Qy.s// is a circle with radius R, center .�R sin�0;R cos�0/

and that s is arc length along the circle. In what follows .x; Qc.x// will sometimes be
used to denote the graph of Qz.s/ reparametrized as a function of x, just as .x;g.x//
is sometimes used to denote the graph of the interface z.s/.
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Figure 5. The interface g (shown in blue) is an arbitrary strictly monotonically increasing
function that enters the 3� 3 block Bij through its left edge at the point .x0;yl / with
y1 < yl < y2, passes through the center cell Cij , and exits Bij through the top of its
center column Si at the point .xr ;y3/, with x1 < xr < x2. By Corollary 2 in Section 4.2
if the maximum magnitude �max of the curvature �g of g satisfies �max � Chh�1, then
x2 � xr < QC

p
�maxh3=2, where the constant QC , defined in (32), is independent of h

and �max. The proof is based on forming a comparison function Qz.x/ D .x.s/; Qc.x.s//
(shown in red), which is a circle that passes through the points .x0;y1/ D .0; 0/ and
.x1;y2/D .h; h/, and proving the abscissa Qxr of the point . Qxr ; Qc. Qxr //D . Qxr ;y3/ where
Qc exits the 3� 3 block Bij satisfies x2 � Qxr < QC

p
�maxh3=2. One then uses Theorem 2

in Section 4.2, the “comparison circle theorem”, to prove the interface g must eventually
lie below the graph of Qc in the open interval . Qx0;x2/. This implies Qxr < xr and hence,
x2 � Qxr < x2 �xr < QC

p
�maxh3=2.

Lemma 1. Let

s1 D 2R sin�1 

p

2
; (24a)

s2 DR cos�1.cos�0� 2
 /�R�0; (24b)

s3 DR sin�1.sin�0C 2
 /�R�0: (24c)

Then

Qz.0/D .x0;y1/D .0; 0/; (25a)

Qz.s1/D .x1;y2/D .h; h/; (25b)

Qz.s2/D . Qx.s2/;y3/D . Qxr ; 2h/; (25c)

Qz.s3/D .x2; Qy.s3//D .2h; Qy.s3//: (25d)

The proof is left to the reader.
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Figure 6. To better visualize the upper and lower bounds on the arc between Qz.0/D .0; 0/
and Qz.s2/D . Qx.s2/; 2h/ in Lemma 4, this figure contains an example of the comparison
circle Qz.s/ in the 3� 3 block Bij D B1;1 centered on the cell Cij D C1;1.

Remarks. (a) In (25c) the variable Qxr D Qx.s2/ is the x-coordinate of the point
where the graph of the comparison circle Qz.s/D .x; Qc.x// exits the top of the
3� 3 block Bij . It plays the same role with respect to the function Qz.s/ as
the variable xr plays with respect to the interface z.s/ D .x;g.x//. In the
problem considered in this section only the case xr < x2 D 2h is relevant, for
otherwise the center column sum Si is exact. By Theorem 2 “The Comparison
Circle Theorem” below, the interface .x;g.x// must lie below the comparison
circle .x; Qc.x// for x � x1 D h and hence, xr < x2 implies Qxr < x2.

(b) Note also that Equation (25d) guarantees the comparison circle .x; Qc.x// must
extend all the way to the grid line x D x2, thereby ensuring the comparison
circle will lie above the interface .x;g.x// for all x2 Œx1;x2�. This is illustrated
in Figure 7.

(c) Finally, note the comparison circle Qz.s/ is a monotonically increasing function
of s for s in the interval Œ0; s3� and similarly, when written as a function of
x, .x; Qc.x// is a monotonically increasing function of x for x in the interval
Œx0;x2�D Œ0; 2h�.

The following three lemmas and one corollary concerning the quantities �0 and
s2 will be needed in the proof that x2� Qxr is O.

p
�maxh3=2/ and hence, x2�xr is

also O.
p
�maxh3=2/.
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Lemma 2. (cos�0� sin�0 D 
 ) Let �0 be defined as in (23):

�0 D
�

4
� sin�1 


p
2
:

Then

cos�0� sin�0 D 
: (26)

Proof. Define ˇ by

sinˇ def
D



p

2
so that

�0 D
�

4
� sin�1 


p
2
D
�

4
�ˇ:

Then (26) follows from writing �0 as �=4 � ˇ and applying the trigonometric
identities for the sine and cosine of the difference of two angles:

cos�0� sin�0 D
p

2 sinˇ D 
: �

Figure 7. This figure includes the row of cells that lie above the standard 3� 3 block of
cells Bij DB1;1 centered on Cij DC1;1D Œx1;x2�� Œy1;y2� in which the approximation
to the monotonically increasing interface g, shown in blue, will be constructed. The
difference between the center column sum Si and the exact volume (i.e., exact area) in
Bij under g.x/ is the region in the center column that lies under the graph of g and above
the line y D y3. By Theorem 2 the comparison circle Qc.x/, shown in red, bounds g.x/

from above for all x 2 Œ Qx0;x2�, and hence, allows one to bound the difference between Si

and the integral of g.x/�y0 over Œx1;x2�.
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Lemma 3. (cos�0C sin�0 D
p

2� 
 2) Let �0 be defined as in (23). Then

cos�0C sin�0 D
p

2� 
 2: (27)

Proof. As in the proof of the previous lemma let ˇ be defined by sinˇ D 
=
p

2.
Then (27) is a consequence of the trigonometric identities for the sine and cosine
of the difference of two angles, together with the trigonometric identity

cos.arcsin.x//D
p

1�x2;

as follows:

cos�0C sin�0 D
p

2 cosˇ D
p

2 cos
�

sin�1 

p

2

�
D
p

2� 
 2: �

Lemma 4. (s2 DO.h/) Let s2 be the parameter defined in (24b). Then s2 satisfies�
1C
p

2
�
h< s2 < 4h: (28)

Proof. Recall that s is arc length along the comparison circle Qz.s/D . Qx.s/; Qy.s//
starting at the point Qz.0/ D . Qx.0/; Qy.0// D .x0;y1/ D .0; 0/. The length of the
arc of the comparison circle from Qz.0/ to Qz.s2/ consists of two sections. The first
section is the arc from Qz.0/ to Qz.s1/D .x1;y2/D .h; h/ while the second section
is the arc from Qz.s1/ to Qz.s2/D . Qx.s2/;y3/D . Qxr ;y3/.

The length of the first section is bounded below by the length of the diagonal
joining .0; 0/ and .h; h/, which has length

p
2h, and is bounded above by the sum

of the lengths of the bottom and right edges of the cell that has .0; 0/ and .h; h/
as its opposite corners; i.e., the edge connecting .0; 0/D .x0;y1/ and the corner
.x1;y1/ and the edge connecting .x1;y1/ and the corner .h; h/D .x1;y2/. Since
both of these edges have length h, it follows that the portion of the arc joining Qz.0/
to Qz.s1/ is bounded above by 2h.

Since the point Qz.s2/ lies on the top edge of the 3� 3 block Bij and, since Qz.s/
is a monotonically increasing function of s for 0 � s � s3, Qx.s2/ D Qx2 must lie
between x1 and x2. It follows that a lower bound for the portion of the arc joining
Qz.s1/ to Qz.s2/ is the length of the side of the cell joining the point .h; h/D .x1;y2/

and the point .x1;y3/ on the top edge of Bij D B1;1. Since this edge has length
h, it follows that a lower bound for the length of the arc joining Qz.0/ to Qz.s2/, and
hence a lower bound for s2, is

p
2hC hD .

p
2C 1/h as shown in the inequality

on the left in (28).
One can find an upper bound for the portion of the arc joining Qz.s1/ to Qz.s2/

by using reasoning that is identical to that used to obtain the upper bound on the
portion of the arc joining Qz.0/ to Qz.s1/. This yields an upper bound of 2hC2hD 4h

for the entire length of the arc joining Qz.0/ to Qz.s2/, as shown in the inequality on
the right in (28). �
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The proof of the next theorem depends on the following corollary.

Corollary 1. (� is O.
 /) Let s2 be the parameter defined in (24b) and define � by

�
def
D

s2

R
: (29)

Then � satisfies �
1C
p

2
�

 < � < 4
: (30)

Proof. One obtains the inequality in (30) by multiplying Equation (28) in Lemma 4
by R�1 and recalling that hDR
 . �

The following theorem is the key step in the proof that jx2�xr jDO
�p
�max h3=2

�
.

Theorem 1 (x2 � Qxr < QC
p
�max h3=2). The difference x2 � Qxr is bounded above

by
x2� Qxr < QC

p
�maxh3=2; (31)

where Qxr D Qx.s2/ is defined in (25c) and

QC
def
D

2
p

66

3 � 54

˚
736
p

2� 349
	
� 5:995421: (32)

Remark 1. (a) One of the consequences of replacing the Lemmas, Theorems, and
Corollaries in Sections 3.2–3.4 of [23] with those in Section 4 here is that the term
bounding the difference x2� Qxr in (31) above now depends linearly on

p
�max. As

a result, the term on the right-hand side of (12) and (52) depends linearly on �max,
which in turn leads to a linear dependence of the bounds in (13) and (58) on �max.
The analogous bounds in Theorems 15, 23, and 25 of [23] do not depend linearly
on �max.

(b) As mentioned in Remark 1(a), it is possible that Qxr � x2. In this case, by the
comparison circle theorem below, xr > x2 and hence, the center column sum Si

must be exact. Since the purpose of this section is to prove Si must be exact to
O .h/ if g satisfies (5)–(6) and Si is not exact, the case in which Si is exact, or
equivalently, Qxr � x2, is not of interest here.

Proof. Since the coordinate system has been arranged so the origin .0; 0/ coincides
with the point .x0;y1/ and hence, x2D 2hD y3 (e.g., see Figure 5), it follows that

x2 D 2hD Qy.s2/:

Thus

x2� Qxr D Qy.s2/� Qx.s2/

DR
˚
.cos�0� cos.�0C s2=R//� .� sin�0C sin.�0C s2=R//

	
: (33)
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Since RD 5
p

Chh=�max, it suffices to show that the quantity inside the curly braces
in (33) is O.
 2/DO.h�max=Ch/. One can rewrite (33) as

x2� Qxr DR
˚
.cos�0C sin�0/� .cos.�0C �/C sin.�0C �//

	
DRA; (34)

where �D s2=R was defined in Corollary 1 above. Consider the quantity A obtained
by dividing (34) by R,

AD
˚
.cos�0C sin�0/� .cos.�0C �/C sin.�0C �//

	
: (35)

Now expand cos.�0C�/ and sin.�0C�/ in a Taylor series about cos�0 and sin�0,
respectively, to obtain

AD .cos�0C sin�0/� .cos.�0C �/C sin.�0C �//

D� .cos�0� sin�0/� C .cos�0C sin�0/
�2

2!

C .cos�0� sin�0/
�3

3!
� .cos�0C sin�0/

�4

4!

� .cos�0� sin�0/
�5

5!
C .cos�0C sin�0/

�6

6!

C .cos�0� sin�0/
�7

7!
� .cos�0C sin�0/

�8

8!
C � � � :

This expression for A can be rewritten as

AD�

�
.cos�0� sin�0/� .cos�0C sin�0/

�

2

�
�

C

�
.cos�0� sin�0/� .cos�0C sin�0/

�

4

�
�3

3!

�

�
.cos�0� sin�0/� .cos�0C sin�0/

�

6

�
�5

5!

C

�
.cos�0� sin�0/� .cos�0C sin�0/

�

8

�
�7

7!
C � � � : (36)

Using Lemmas 2 and 3 one can rewrite this series in terms of � and 
 as

AD�
�

 �

�

2

p
2� 
 2

�
� C

�

 �

�

4

p
2� 
 2

�
�3

3!

�

�

 �

�

6

p
2� 
 2

�
�5

5!
C

�

 �

�

8

p
2� 
 2

�
�7

7!
� � � � (37)

The first term, A1, in this series is O.
 2/. To see this note that the upper bound
on � in (30) implies

A1 D

�
�

2

p
2� 
 2� 


�
� <

�
2
p

2� 1
�
4
 2; (38)
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where the upper bound on
p

2� 
 2 follows from 0<
 � 1=5 in (21). Furthermore,
A1 > 0. To see this first note that since � is always positive the sign of A1 depends
only on the terms in parentheses on the right-hand side of the equal sign in (38).
Since � > .1C

p
2/
 > 0 by (30),

A1

�
D

�
�

2

p
2� 
 2� 


�
>

�
.1C
p

2/

2

q
2� 1

25
� 1

�



D

�
7.1C

p
2/

10
� 1

�

 > 0;

(39)

where the lower bound on
p

2� 
 2 >
p

2� 25�1 also follows from (21).
In order to obtain an absolute upper bound on the entire series A in (37), and

thus on x2� Qxr DRA, begin by writing A in the form

ADA1CA2�B;

where

A2 D

�

 �

�

4

p
2� 
 2

�
�3

3!
;

and B is an alternating series of the form

B D b1� b2C b3� � � � ;

with the j -th term bj of this series given by

bj D

�

 �

�

2j C 4

p
2� 
 2

�
� .2jC3/

.2j C 3/!
for j D 1; 2; 3; : : : : (40)

Using the same techniques one uses to derive the upper and lower bounds on A1

in (38) and (39), respectively, one can derive the following upper and lower bounds
for A2,

�
1�
p

2
�.1Cp2/3

6

 4 <A2 D

�

 �

�

4

p
2� 
 2

�
�3

3!

<

�
1�

7.1C
p

2/

20

�
32

3

 4:

(41)

It is apparent from the bounds in (41) that A2 may be either positive or negative,
depending on the values of h and �max.

Now note that each of the terms bj defined in (40) of the series B are positive.
To see this, first note that, since � is positive by (30) , the sign of bj depends only
on the terms in parentheses immediately to the right of the equal sign in (40). For
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example,

b1 D

�

 �

�

6

p
2� 
 2

�
�5

5!
> 0;

since 0< 
 � 1=5, 0< � < 4
 and
p

2� 
 2 <
p

2, and hence,�

 �

�

6

p
2� 
 2

�
>

�
1�

2

3

p
2

�

 > 0: (42)

Similarly, all of the subsequent terms in this series are also positive, since (42)
implies the terms in parentheses immediately to the right of the equal sign in the
definition of bj for j > 1 in (40) must also be positive,�


 �
�

2j C 4

p
2� 
 2

�
>

�

 �

�

6

p
2� 
 2

�
> 0 for all j D 2; 3; 4; : : : :

Furthermore, it is also the case that bj > bjC1 for all j D 1; 2; 3; : : :, since the terms
bj defined in (40) are (strictly) monotonically decreasing when viewed as a function
of j . (To see this recall 
 � 1=5 from (21) and hence, (30) implies � < 4
 � 4=5.)
Finally, since bj > 0 and bj > bjC1 for all j D 1; 2; 3; : : : , it follows that the entire
series B is positive,

B D .b1� b2/C .b3� b4/C .b5� b6/C � � �> 0:

This leads to an absolute upper bound on the series A in (37),

ADA1CA2�B <A1CA2 <
�
2
p

2�1
�
4
 2C

�
1�

7.1C
p

2/

20

�
32

3

 4: (43)

Finally, since 
 D
p

h�max=5
p

Ch, R
 D h and, by (21), 
 2 � 1=25, the upper
bound on x2� Qxr in (31) now follows from (34) and (43),

x2� Qxr DRA�R

��
2
p

2� 1
�
4
 2C

�
1�

7.1C
p

2/

20

�
32

3

 4

�
�

p
33

5
p

2

�
8
p

2� 4C
8

3 � 25

�
13

5
�

7
p

2

5

��
p
�maxh3=2

D QC
p
�maxh3=2: �

4.2. The comparison circle theorem. Suppose the interface .x;g.x// satisfies h�

Ch�
�1
max and xr < x2 where .xr ;y3/ is the point at which g exits the 3� 3 block

of cells Bij . The following theorem states that once g.x/ < Qc.x/ for some x 2

.x0;x2/, then g.x/ must remain below Qc.x/ for all x 2 . Qx0;x2/, where . Qx0; Qy0/

denotes the point where g initially crosses below Qc as illustrated in Figures 5
and 7. An immediate consequence of this theorem is Qxr < xr . Consequently, if
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xr < x2, then Qxr < xr < x2 and hence, x2� xr < x2� Qxr . Since by Theorem 1,
x2 � Qxr < QC

p
�maxh3=2, it follows that x2 � xr < QC

p
�maxh3=2. This, together

with the bound on jg 0.x/j in (A.5a), is sufficient to ensure the error in the center
column sum Si associated with g is O.h/.

Theorem 2 (the comparison circle theorem). Let R as defined in (20b) be the radius
of the comparison circle (22) and let g 2C 2Œx0;x2� be a strictly monotonic function
that satisfies (5), where the constant Ch is defined in (6). Furthermore, assume the
interface g enters the 3�3 block of cells Bij across its left edge at the point .x0;yl/

with y1 < yl < y2, passes through the center cell Cij , and exits Bij through the top
of its center column at the point .xr ;y3/ with x1 < xr < x2. Let . Qx0; Qy0/ denote
the first point at which the graph of g crosses the graph of Qc as shown, for example,
in Figures 5 and 7. Then

g.x/ < Qc.x/ for all x 2 . Qx0;xr �: (44)

Proof. First note that, since the interface g satisfies (5) where Ch is defined by (6),
this ensures the maximum curvature �max of g is bounded above by the curvature
� Qc of the comparison circle,

�max <R�1
D � Qc :

The argument is as follows. Since the interface satisfies (5)–(6), it follows that
�max � Chh�1 and hence,

p
�max �

r
Ch

h
: (45)

Multiplying both sides of (45) by
p
�max yields

�max �

r
Ch�max

h
: (46)

Now, since .5Ch/
�1 D 3:3> 1, we can bound the right-hand side of (46) by

�max �

r
Ch�max

h
<

1

5Ch

r
Ch�max

h
�

1

5

r
�max

Chh
DR�1

D � Qc :

Thus, �max, the maximum magnitude of the curvature of g, is bounded above by
the curvature � Qc DR�1 of the comparison circle and therefore,

�g.x/� �max < �
Qc.x/DR�1 for all x 2 Œx0;x2�: (47)

The inequality in (44) is proven by contradiction. One begins by assuming

g.�/D Qc.�/ for some � 2 . Qx0;xr �, (48)
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and then showing that this implies the maximum curvature �max of g in . Qx0;xr /

must exceed � Qc , thereby contradicting (47). The argument is as follows. Let � denote
the first point in . Qx0;xr � that satisfies (48). Since g.x/ > Qc.x/ for x0 < x < Qx0 and
g.x/ < Qc.x/ for Qx0 < x < � , it follows that

g0. Qx0/ < Qc
0. Qx0/; (49)

However, since, by assumption, g.�/D Qc.�/ for some � > Qx0 (i.e., (48) holds), it
must be the case that eventually g0.x/� Qc 0.x/. Let x� 2 . Qx0; �/ be the first x such
that g0.x�/D Qc 0.x�/ so that

g0.x�/D g0. Qx0/C

Z x�

Qx0

g00.x/ dx D Qc0. Qx0/C

Z x�

Qx0

Qc 00.x/ dx D Qc 0.x�/:

By virtue of (49) this can only be true if g00.x/ > Qc 00.x/ on some subinterval of
. Qx0;x

�/. In particular,
g00.�/ > Qc 00.�/; (50)

for some � 2 . Qx0;x
�/.

Now recall the following three facts.

(1) By assumption g is strictly monotonic and hence, 0<g0.x/ for all x 2 .x0; Qxr �.

(2) For all x 2 . Qx0;x
�/, 0< g0.x/ < Qc 0.x/.

(3) For all x 2 Œx0;x2�, �g.x/D g00.x/
�p

1Cg0.x/2
��3 (e.g., see [29]).

Equation (50) together with items (1)-(3) above imply

�g.�/D
g00.�/�p

1Cg0.�/2
�3 > Qc00.�/�p

1C Qc0.�/2
�3 D � Qc.�/;

which contradicts (47). Therefore, g must be bounded above by the comparison
circle as claimed. �

Corollary 2 (x2 � xr < QC
p
�maxh3=2). Let g 2 C 2Œx0;x3� be a function that

satisfies the assumptions stated in Theorem 2. Then

x2�xr < QC
p
�maxh3=2; (51)

where QC is defined in (32).

Proof. By the Comparison Circle Theorem (Theorem 2) there exists a point Qx0 2

.x0;xr / such that
g.x/ < Qc.x/ for all x 2 . Qx0;xr /:

This implies Qxr < xr , and hence that x2 � xr < x2 � Qxr . Equation (51) follows
immediately from (31) in Theorem 1. �
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4.3. The column sum Si is exact to O.h/.

Theorem 3 (the column sum Si is exact to O.h/). Assume the interface g 2

C 2Œx0;x3� and g is a strictly monotonically increasing function that satisfies the
constraint in (5) with the constant Ch defined in (6). Furthermore, assume g enters
the 3� 3 block of cells Bij D B11 D Œx0;x3�� Œy0;y3� across its left edge at the
point .x0;yl/ with y1 < yl < y2, passes through the center cell Cij D C11 D

Œx1;x2�� Œy1;y2�, and exits Bij through the top of its center column at the point
.xr ;y3/ with x1 < xr < x2 as shown, for example, in Figure 7. Then the error
between the normalized integral of g over the center column and the column sum
Si is O.h/: ˇ̌̌̌

1

h2

Z x2

x1

.g.x/�y0/ dx�Si

ˇ̌̌̌
< C�maxh; (52)

where
C

def
D QC 2; (53)

and QC is defined in (32).

Proof. Since, by assumption,

min
Œx0;xr �

g.x/D yl > y1 > y0;

and the interface is a strictly monotonically increasing function of x on Œx0;x2�, it
follows that

Si D h�2

Z x2

x1

.minfg.x/;y3g�y0/ dx:

The error between the normalized volume (i.e., area) under the interface y D g.x/

in the center column and the center column sum Si is therefore

h�2

Z x2

x1

.g.x/�y0/ dx�Si D h�2

Z x2

xr

.g.x/�y3/ dx: (54)

An example is shown in Figure 7. Thus, it suffices to showˇ̌̌̌Z x2

xr

.g.x/�y3/ dx

ˇ̌̌̌
� C�maxh3: (55)

By (A.5a) jg 0.x/j< 2, which impliesˇ̌̌̌Z x2

xr

.g.x/�y3/ dx

ˇ̌̌̌
�

ˇ̌̌̌Z x2

xr

L.x/ dx

ˇ̌̌̌
; (56)

where L.x/ is the line with slope 2 that passes through the point xr . The region of
integration on the right hand side of (56) is a right triangle with corners .xr ;y3/,
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.x2;y3/, and .x2;y3C 2.x2�xr //, and hence the integral on the right-hand side
of (56) is the area of this triangle, namely .x2�xr /

2. Thus,ˇ̌̌̌Z x2

xr

.g.x/�y3/ dx

ˇ̌̌̌
�

ˇ̌̌̌Z x2

xr

L.x/ dx

ˇ̌̌̌
� .x2�xr /

2 < QC 2�maxih
3
D C�maxih

3;

(57)
where the bound .x2�xr /

2 < QC 2�maxh3 between the third and fourth terms in (57)
follows from Equation (51) in Corollary 2. Equation (52), and hence the theorem,
now follows immediately from (54) and (57). �

5. Second-order accuracy in the max norm

All of the results in Section 4 (“Second-order accuracy in the max norm”) of [23]
now hold provided the interface is a C 2 simple closed curve, the constraint in (5)–(6)
is satisfied, the constant CS in the statement of Theorem 23 in [23] is replaced by
the constant C defined in (53), and the term .50�max=3CCS / that appears in the
statement of Theorem 24 of [23] is replaced by Cm�max, where the constant Cm is
defined in (59) below.

The key theorem that has changed between the two papers is Theorem 15 of
[23]. Theorem 3 above is a stronger version of this theorem. Theorem 3 ensures
that in cases such as the one shown in Figure 3, if the interface is C 2 and the
constraint in (5)–(6) is satisfied, then in some orientation of the 3 � 3 block of
cells Bij centered on the cell Cij in which one wishes to reconstruct the interface,
there is a parametrization of the interface of the form y D g.x/ or x DG.y/, such
that the center column sum Si in the new orientation of the 3� 3 block is exact
to O.h/. This result provides the basis for the main result of this article, namely
Theorem 4 below, which is a stronger version of Theorem 24, the main result of
[23]. As has been the case throughout this article, in the statement of Theorem 4
below the interface Qz.s/ is written in the form yD g.x/ with material 1 lying below
the graph of g, with the understanding the theorem also holds in those cases in
which one must instead express the interface in the form x DG.y/ with material 1
lying below the graph of G.

Theorem 4. Assume the interface g 2 C 2Œxi�1;xiC2� and the grid size h and the
maximum magnitude of the curvature �max of the interface in the 3�3 block of cells
Bij centered on the cell Cij in which one wishes to reconstruct the interface satisfy

h� Ch�
�1
max D

2
33
��1

max: (5)

Then there exists ˛; ˇ D 1; 0;�1 with ˛ ¤ ˇ such that the column sums SiC˛ and
SiCˇ in Bij are either exact or exact to O.h/. Furthermore, let

Qgij .x/Dmij xC bij
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be a piecewise linear approximation to g.x/ for x 2 Œxi ;xiC1� such that g.x/ and
Qgij .x/ have the same volume fraction in the center cell

ƒij .g/Dƒij . Qg/ and mij D
.SiC˛ �SiCˇ/

.˛�ˇ/
:

Then Qgij .x/ is a pointwise, second-order accurate approximation to g.x/ in the
interval Œxi ;xiC1�,ˇ̌

g.x/� Qgij .x/
ˇ̌
�

25
12
�maxh2

CC�maxh2
D Cm�maxh2 for all x 2 Œxi ;xiC1�;

(58)
where

Cm
def
D
˚

25
12
CC

	
; (59)

and the constant C is defined in (53).

Proof. The proof of this theorem is identical to the proof of Theorem 24 in [23]
after one replaces the constant CS defined in equation (89) of [23] with C �max,
where C is defined in (53) above. �

6. Conclusions

This article contains a proof of the following result. Suppose one is given a square
grid with cells of side h covering a closed and bounded rectangle � � R2 and a
C 2 simple closed curve z.s/ in �. If

h� Ch.�max/
�1
D

2
33
.�max/

�1; (5)

where �max is the maximum magnitude of the curvature �.s/ of the interface z in
�. Then in every cell Cij D Œxi ;xiC1�� Œyj ;yjC1� that contains a portion of the
interface there exists a piecewise linear function Qgij .x/ D mij x C bij that is a
second-order accurate approximation to the portion of the interface y D g.x/ that
lies in Cij ,

jg.x/� Qgij .x/j � Cm�maxh2 for all x 2 Œxi ;xiC1�;

where Cm is a constant, defined in (59) above, which is independent of h and �max.
For convenience, the interface z.s/ has been written here as a function y D g.x/

of the independent variable x with it being understood that in some cells it may
be necessary to express the interface as a function x D G.y/ of the independent
variable y. Theorem A.1 in the Appendix ensures if h satisfies the constraint in
(5)–(6), then the interface can be written as a single-valued function of at least one
of the coordinate variables x or y in every 3� 3 block of cells centered on every
cell Cij that contains a portion of the interface.
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In an earlier paper [23] the author proved a similar result, but with a constraint on
the cell size h that was more restrictive than the one in (5)–(6). In order to obtain the
less restrictive constraint on h in (5)–(6) Sections 3.2–3.4 of [23] required extensive
modification. These modifications constitute Section 4 of the present paper.

The algorithm described in [24] is an example of a volume-of-fluid interface
reconstruction algorithm that satisfies conditions (I)–(V) on page 125 of this article
and hence, by Theorem 4 above, produces a pointwise second-order accurate
approximation to the interface z.s/.

Future work in this area should include the analysis of fingers and other regions
of large curvature in both stationary and moving interfaces in an effort to determine
conditions such as (5)–(6) that will ensure all filaments and similar regions are
accurately resolved on grids that satisfy these conditions. Future work should
also include proving the volume-of-fluid interface reconstruction algorithm cou-
pled to a volume-of-fluid advection algorithm produces a second-order accurate
approximation to the solutions of the advection equation.

Appendix: Considerations that affect the value of Ch

Definition. Let a> 2 be a real-valued parameter and define C h Œa� by

C hŒa�
def
D

p
a�
p

2

4
p

2
p

a� 1
: (A.1)

The following theorem is a generalization of Theorem 6 of [23].

Theorem A.1. For sL � s � sR with z.sL/D z.sR/ let s be arclength along the
two times continuously differentiable simple closed curve z.s/ in �. Given some
s0 2 ŒsL; sR � such that

Py2.s0/�
1
2
� Px2.s0/; (A.2)

suppose one wants to reconstruct the interface in a neighborhood of the point
z.s0/D .x.s0/;y.s0//. Let a> 2 be a real-valued parameter as in (A.1) above and
let sl � sL be the greatest number less than s0 and sr � sR be the smallest number
greater than s0 such that

Px2.sl/D
1

a
D Px2.sr /; (A.3)

so a�1 � Px2.s/� 1 for all s 2 Œsl ; sr �. Let x0 D x.s0/ and let

hmax
def
D C hŒa��

�1
max (A.4)

where C hŒa� is defined in (A.1) above. Then one can represent the interface as a
single-valued function y D g.x/ of x on the interval

Œxl ;xr �D Œx0� 2hmax;x0C 2hmax�:
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In addition, for all x 2 Œxl ;xr �,

max
x2Œxl ;xr �

jg 0.x/j �
p

a� 1; (A.5a)

max
x2Œxl ;xr �

jg 00.x/j �
�p

a
�3
�max: (A.5b)

Furthermore, if the roles of Px and Py in (A.2) and (A.3) are reversed, then one can
represent the interface as a single-valued function x D G.y/ of y on the interval
Œyl ;yr � D Œy0 � 2hmax;y0C 2hmax� and the bounds in (A.5) hold on the interval
Œyl ;yr � with the function g.x/ replaced by G.y/.

Proof. Let a> 2 be the parameter in the definition of C h Œa� in (A.1) above. The
proof of this theorem is identical to the proof of Lemmas 3–5 and Theorem 6 in
[23] after one replaces the constants 1=4 and 3=4 in equation (23) in Lemma 3
of [23] with 1=a and .a� 1/=a, respectively, and makes similar substitutions in
Lemmas 4–5 and Theorem 6 of the same. �

Remarks. (1) Theorem 6 of [23] is the special case of Theorem A.1 with aD 4.

(2) If necessary, one can periodically extend the interval ŒxL;xR �
def
D Œx.sL/;x.sR/�

to the interval ŒxL�D;xRCD�, where D D xR �xL, with

y.s˙D/D y.s/ for all s 2 ŒsL; sR �;

in order to ensure one can find sl and sr with sL�D� sl � s0 and s0� s� sRCD

such that (A.3) holds.

(3) In the statement and proof of Lemmas 3–5 and Theorem 6 of [23] the value of
a is aD 4, which yields a value for Ch, which is denoted QCh in this article in order
to avoid confusion, of

QCh
def
D C hŒ4�D

p
4�
p

2

4
p

2
p

4� 1
D

p
2� 1

4
p

3
: (A.6)

(4) The conclusions of Theorem A.1 remain valid if the assumption the interface
z.s/ is a simple closed curve is replaced by the assumption z.sL/ and z.sR/ lie
on the boundary @� of the computational domain �, subject to the assumptions
stated in the second paragraph of (5) on page 130. In addition, one must modify
the proof of Lemma 5 in [23], since in this case there may not be a point sl such
that Px2.sl/D 1=a or sr such that Px2.sr /D 1=a; i.e., (A.3), which is the analog of
equation (37) in [23], may not hold. See the comments concerning Lemma 4 in
item (2) on pages 109–110 of [23] for the reason, if z.sL/ and z.sR/ lie on @�,
then this does not change the conclusions of Theorem A.1.
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(5) If one chooses aD 4:053301, then the constant C hŒa� in (A.1) becomes

Ch
def
D C hŒa�D

p
a�
p

2

4
p

2
p

a� 1
D

2

33
;

and the bound on the first derivative of the interface in (A.5a) becomes

max
x2Œxl ;xr �

jg 0.x/j �
p

a� 1�
p

3:053301< 2: (A.7)

The value of
p

a� 1 in (A.7) is a deliberate overestimate, the purpose of which is
to simplify the bound on the expression in (56) that appears on the right-hand side
of (57), and subsequent expressions that depend on the bound in (52).

(6) Theorem A.1 ensures h is small enough that the interface can always be written
as a single-valued function of one of the independent variables x or y in any 3� 3

block centered on a cell containing a portion of the interface. This places a upper
bound on Ch through (A.3) and (A.4). In addition, Ch is constrained both from
above and below by the need to show inequalities of the form

�max �
g 00.x/�p

a
�3 > Ch

h
; (A.8)

hold in Equations (61), (69), and (78) in the proofs of Lemmas 11–13 of [23],
respectively, where (A.5b) has been used to bound �max from below by g 00=.

p
a/3.

Since in each of Equations (61), (69), and (78) of [23] the bound on g 00 is of the
form

g 00.x/ >
zM

h
for all x 2 Œxi�1;xiC2�; (A.9)

equations (A.1), (A.8), and (A.9) lead to the requirement that a > 2 must satisfy
the following inequality,

4
p

2 zM
p

a� 1�
�p

a
�4
�
p

2
�p

a
�3
: (A.10)

A careful study of this inequality will reveal the range of permissible values for a

and hence, for Ch D C h Œa�, is quite narrow.
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COMPUTATIONAL MODELS OF MATERIAL INTERFACES
FOR THE STUDY OF EXTRACORPOREAL

SHOCK WAVE THERAPY

KIRSTEN FAGNAN, RANDALL J. LEVEQUE AND THOMAS J. MATULA

Extracorporeal shock wave therapy (ESWT) is a noninvasive treatment for a
variety of musculoskeletal ailments. A shock wave is generated in water and
then focused using an acoustic lens or reflector so the energy of the wave is
concentrated in a small treatment region where mechanical stimulation in princi-
ple enhances healing. In this work we have computationally investigated shock
wave propagation in ESWT by solving a Lagrangian form of the isentropic Euler
equations in the fluid and linear elasticity in the bone using high-resolution finite
volume methods. We solve a full three-dimensional system of equations and use
adaptive mesh refinement to concentrate grid cells near the propagating shock.
We can model complex bone geometries, the reflection and mode conversion at
interfaces, and the propagation of the resulting shear stresses generated within
the bone. We discuss the validity of our simplified model and present results
validating this approach.

1. Introduction

Extracorporeal shock wave therapy (ESWT) is a noninvasive treatment for musculo-
skeletal conditions such as bone fractures that fail to heal (nonunions), necrotic
wounds, and strained tendons [55; 40]. In this treatment a shock wave is generated
in water and then focused using an acoustic lens or reflector so that the energy of
the wave is concentrated in a small treatment region. This technique has been used
since the 1980’s, more widely in Europe and Asia than in the US, where it is still
considered experimental and has limited FDA approval.

Although the underlying biological mechanisms are not well understood [42],
the mechanical compressional and/or shear stress caused by the propagating shock
wave is thought to stimulate healing [42; 54; 26; 39; 53; 43; 44; 30; 13; 27; 11;
23]. In addition to stress, a number of other biological mechanisms potentially play
a role in the body’s response to ESWT. The focus of this study, however, is on
mechanical stress deposition and computational tools for studying this phenomenon.
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Computational models for shock wave propagation and focusing can aid in
the study of ESWT. In particular, there are many open questions concerning the
interaction of shock waves with complex three-dimensional geometries such as
bone embedded in tissue. In this paper we present a new method for studying
ESWT that incorporates the fluid and solid materials in a set of coupled, nonlinear
partial differential equations that are solved using high-resolution finite volume
methods. In order to model the wave interaction with complex three-dimensional
geometries, we employed adaptive mesh refinement to concentrate the finest grid
around then propagating shock wave.

Because of the difference in material properties, a wave hitting the tissue/bone
interface will be partially reflected, and the transmitted wave will have a modified
strength and direction of propagation. This can greatly affect the location and size
of the focal region and the peak pressure amplitude. Also, although the shock wave
is primarily a pressure wave in soft tissue (which has a very small shear modulus),
at a bone interface mode conversion takes place and shear waves as well as compres-
sional waves are transmitted into the bone, generating a dynamically applied load.

The medical shock wave devices are similar to those used for extracorporeal
shock wave lithotripsy (ESWL), a widely used nonsurgical treatment for kidney
stones in which the focused shock waves have sufficient amplitude to pulverize
the kidney stone. In shock wave therapy the amplitudes are generally smaller
and the goal is mechanical stimulation rather than destruction, although in some
applications such as the treatment of heterotopic ossifications (HO) (see Section 5.4)
larger amplitudes may be used.

Figure 1 shows the geometry of a laboratory shock wave device modeled on the

Figure 1. Cartoon of the Dornier HM3 Lithotripter. Left: the spherical wave is generated
at F1, reflects off the ellipsoid and the reflected wave focuses at F2. Right: the creation of
the edge waves at the corner of the ellipsoid and the contribution of negative pressure to
the tail of the ESWT pressure wave.
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clinical Dornier HM3 lithotripter. The three-dimensional axisymmetric geometry
consists of an ellipsoidal reflector made out of metal and a cavity filled with water. A
spark plug at the focus of the ellipse marked F1 generates a bubble which collapses
and creates a spherical shock wave that reflects and focuses at F2. The major
and minor axes of the ellipsoid in the HM3 are a = 140 mm and b = 79.8 mm,
respectively. The foci of this ellipse are at (±115, 0, 0) and the reflector is truncated
at 100 mm from F1, or (−10, 0, 0).

In the laboratory, this reflector is immersed in a bath of water and objects can be
placed at the second focus of the ellipsoid, F2. This device is in use at the Center
for Industrial and Medical Ultrasound (CIMU) at the University of Washington
Applied Physics Laboratory and we have used this geometry in order to compare
directly with some laboratory experiments. Some preliminary comparisons were
presented in [19].

Computationally, we use this geometry to calculate the initial condition by solving
two-dimensional axisymmetric Euler equations with the Tammann equation of state
(see Section 2). These initial conditions are then fed into a full three-dimensional
calculation near the focus at F2.

In addition to the HM3, we have also used the geometry of the hand-held
Sanywave device used in clinical studies by our collaborator Dr. Michael Chang.
Some sample calculations related to the study of HOs are presented in Section 5.4.

In each case, the ESWT pressure wave form that is generated has a similar shape.
There is a sharp increase in pressure from atmospheric pressure (∼ 0.1 MPa) to a
peak pressure ranging from 35 to 100 MPa over a very short rise time (∼ 10 ns),
followed by a decrease in pressure to ∼−10 MPa over ∼ 5µs. The negative fluid
pressure in the tail can lead to cavitation bubbles, as discussed below.

Bone healing is thought to be regulated in part by mechanical factors [39; 53; 45;
26; 23; 53]. Several studies have shown that the application of cyclic compressive
and shear displacements can enhance healing through increased callus formation
and ossification [39; 45; 46; 50; 43; 56]. The results also indicate that treatment is
also dependent upon the rate, mode and magnitude of the stress deposition [39], as
well as the gap size [14].

Carter et al. [11], as well as Claes and Heigele [13], proposed a model for skeletal
tissue development based on hydrostatic pressure and tensile displacements [13].
Other research has proposed a different model for skeletal tissue formation based on
shear strain and fluid flow [44; 30]. Augat et al. [2] found that tensile displacements
are not effective in enhancing bone formation. This was further validated when
Isaksson et al. [27] investigated the models in [13; 11; 44; 30] and found that shear
strain and fluid flow, were more accurate predictors of bone growth. However, no
single model was able to predict certain features of the bone formation and healing
process [39], highlighting the need for further research in this area.
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The shear waves generated at the fluid/solid interface have also been shown to
be important in the effective break up of kidney stones [49; 20]. An additional
effect of ESWT is the formation and collapse of cavitation bubbles that can cause
tissue damage. While the shock wave is a compression wave, it is followed by a
rarefaction wave of expansion, and in the tail the fluid pressure typically drops to
negative values. Reflection at interfaces can lead to enhanced regions of expansion
and to sufficiently negative pressures that cavitation bubbles can form [38; 51; 17].

To better understand all of these effects, it is desirable to have a three-dimensional
computational model that can simulate the focusing of nonlinear shock waves and
their interaction with arbitrarily complex interfaces between different materials.

In this paper we present an approach to this problem that has allowed the study of
some of these issues in a simplified context. In particular, we consider an idealized
situation in which soft tissue is replaced by water, ignoring its viscoelastic properties,
and modeled by the nonlinear compressible Euler equations with the Tammann
or Tait equation of state. This has been used for prior ESWT work in water as
well as biological-like materials [28; 41]. Bone is modeled as an isotropic and
homogeneous linear elastic material [21; 29].

In reality, soft tissue and bone are very complex multiscale materials with
microstructures, inhomogeneities, and anisotropic properties. Any attempt to model
the biological effect of shock wave propagation through such materials may require
a more sophisticated and detailed model than used here. However, we believe that
many of the macroscale shock propagation issues discussed above can be adequately
and most efficiently studied with a simplified model of the form considered here,
since the dominant effect we hope to capture is the reflection and transmission of
waves at interfaces between materials.

The compressible Euler equations with the Tammann equation of state (see
Section 2.1) in two-dimensional axisymmetric geometry is used to model the initial
formation of the focusing shock wave. These initial conditions are then fed into
a code that uses a simpler nonlinear model, the Tait equation of state, in a three-
dimensional simulation of the fluid. The compressible fluid equations are written
using a Lagrangian formulation that easily couples to the isotropic linear elasticity
equations used in the bone-like material. The resulting equations have the same
form everywhere, with a different stress-strain relationship in the different materials.

A high-resolution finite volume method is used to solve these equations. We use
the wave-propagation algorithms described in [35] and implemented in Clawpack
[15]. These are Godunov-type methods for the hyperbolic system that use solutions
to the Riemann problem between adjacent grid cells to determine a set of waves
used to update the solution, and second-order correction terms with slope limiters
are added to resolve the nearly discontinuous shock waves with minimal smearing
or nonphysical oscillation.
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These methods are used on a purely rectangular Cartesian grid. Each grid cell has
associated with it a set of material parameters determining the material in the cell,
in a unified manner so that both fluid and solid can be modeled. Complex geometry
is handled by using appropriate averaged values of these parameters in cells that
are cut by the interface. This is described further in Section 4.4. Averaging across
the interface works quite well when the material properties are sufficiently similar
and in Section 4.4 we show that this is the case even for fluid/solid boundaries of
the type we consider.

We also use patch-based adaptive mesh refinement (AMR) to concentrate grid
cells in regions where they are most needed to resolve features of interest. The
Clawpack software contains AMR software in both two and three space dimensions
and this software has been used directly for the two-dimensional axisymmetric com-
putations of the initial shock wave described in Section 5. For the three-dimensional
problem we have used ChomboClaw [10], an interface between Clawpack and
the Chombo code [1] developed at the Lawrence Berkeley National Laboratory
(LBL), which provides an implementation of AMR on parallel machines using MPI.
Using ChomboClaw, the code originally developed using Clawpack was easily
converted into a code that was run on an NSF TeraGrid machine at Texas Advanced
Computing Center (TACC) and tested using up to 128 processors.

Extensive laboratory experiments have been performed on shock wave devices
to measure the wave form of shock waves produced by various devices, the shape
of the focal region, the peak amplitudes of pressure observed in these regions, and
other related quantities. Most of these experiments have been done in a water
tank where the shock wave propagates and focuses in a homogeneous medium
where measurements are easily done, or with phantoms (acrylic objects with well
understood photoelastic properties) that are placed in the water as a proxy for bones
or kidney stones, with instrumentation such as pressure gauges or photographs
used to explore the interaction of the shock wave with the object. In some cases
high-speed photographs of the shock wave have been obtained. Creating phantoms
from clear birefringent materials and using polarized light it is even possible to
photograph the shock wave propagating through the object [48]. We have used
some of these experiments to help validate our numerical approach [19].

Other researchers have also developed computational models for shock wave
therapy and lithotripsy. In prior work the pressure field has been modeled using
linear and nonlinear acoustics as well as the Euler equations with the Tait equation
of state. Hamilton [24] used linear geometrical acoustics, which holds under the
assumption of weak shock strength, to calculate the reflection of the spherical wave.
The diffraction of the wave at the corner of the reflector was calculated using the
Kirchoff integral method. Christopher’s model [12] of the HM3 lithotripter used
Hamilton’s result as a starting point and considered nonplanar sources. Coleman
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et al. [17], Averkiou and Cleveland [3] used models based on the KZK equation.
Tanguay [51] solved the full Euler equations and incorporated cavitation effects as
well as the edge wave.

Our approach differs from these in that we consider the wave propagation in
both the fluid and solid by solving a single set of equations that can model both
materials. This approach allows us to investigate not only compression and tension
effects of ESWT, but also the propagation of shear waves in the solid. Sapozhnikov
and Cleveland [16] have investigated the effect of shear waves on spherical and
cylindrical stones using linear elasticity with a plane wave initial condition. This
initial condition is an unfocused wave, which yields good results for small objects,
but would fail to capture the full ESWT pressure wave interaction with three-
dimensional bone geometries.

2. Model equations

To accurately model shock wave formation and propagation it is generally necessary
to use nonlinear equations of compressible flow. In this work we use nonlinear
equations for compressible liquids in the fluid domain (water or soft tissue) and
linear elasticity in the solid domain (bone). The nonlinear compressible equations
are written in a Lagrangian framework in terms of a reference configuration, as
is done for the linear elasticity equations. This allows both sets of equations to
be written in the same form. We apply finite volume methods to this form of the
equations so that a single computational grid (or set of nested grids with AMR) can
be used over the entire domain. Interfaces between fluid and solid are represented
by choosing averaged material parameters in each grid cell, as discussed further in
Section 4.4.

The system of equations we solve has the general form of a hyperbolic system
of 9 equations

qt + f (q, x, y, z)x + g(q, x, y, z)y + h(q, x, y, z)z = 0, (1)

where the vector q consists of the 6 components of the symmetric strain tensor
followed by the momenta, and the fluxes in general may be spatially varying based
on material properties:

q =
[
ε11 ε22 ε33 ε12 ε23 ε13 ρu ρv ρw

]T
,

f (q, x, y, z)=
[
u 0 0 v/2 0 w/2 σ 11 σ 12 σ 13]T

,

g(q, x, y, z)=
[
0 v 0 u/2 w/2 0 σ 12 σ 22 σ 23]T

,

h(q, x, y, z)=
[
0 0 w 0 v/2 u/2 σ 13 σ 23 σ 33]T

.

(2)

In these expressions, T denotes transposition, ρ = ρ(x, y, z) is the density of the
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material (the “background density” independent of the wave propagating through
the material) and the stress tensor σ = σ(q, x, y, z) is in general a spatially varying
function of q , linear in the solid and nonlinear in the fluid.

Within the fluid domain σ =−pI , where p is the scalar pressure and I is the
identity matrix. The pressure is a nonlinear function of the strain as discussed
further below. In the solid domain, σ is a linear function of ε and is nondiagonal,
allowing us to model the propagation of shear waves as well as compressional
waves.

In Section 2.1 below we present the compressible fluid equations in their standard
Eulerian form (the Euler equations) and discuss two possible equations of state,
the Tammann EOS and the simpler Tait EOS in which the pressure is a function of
density (or strain) alone, allowing us to drop the energy equation from the Euler
equations. Then in Section 2.2 we rewrite these equations in the Lagrangian form
given above. This can be done when modeling ESWT because the deformations are
sufficiently small that the geometric nonlinearity of the equations can be ignored,
adopting a Lagrangian frame and only considering the nonlinearity of the stress-
strain relation as given by the equation of state.

In Section 2.3 we discuss the linear elasticity model used to model bone.

2.1. Compressible fluids in Eulerian form. Much of the previous work on ESWT
has been centered around the use of the Euler equations with the Tait or Tammann
equations of state. These equations of state are typically used for modeling under-
water explosions like the spark plug source of the lithotripter device [24; 28]. In
this section we discuss the full Euler equations and proceed to show why the Tait
equation of state is sufficient for modeling ESWT. Since this equation of state is a
function only of the density, and can be rewritten as a function of strain, we show
in Section 2.2 how it can be modeled within the framework of elasticity, which
enables us to model both the fluid and solid with the single system of equations
given above.

In three space dimensions the Euler equations take the form

∂

∂t


ρ

ρu
ρv

ρw

E

+ ∂

∂x


ρu

ρu2
+ p

ρuv
ρuw

u(E + p)

+ ∂

∂y


ρv

ρuv
ρu2
+ p

ρvw

v(E + p)

+ ∂

∂z


ρv

ρuw
ρvw

ρw2
+ p

w(E + p)

= 0. (3)

The total energy is E = ρe+ 1
2(u

2
+ v2
+w2).

Several of the problems we investigated are axially symmetric and this enabled
us to reduce the three-dimensional equations to a two-dimensional form. If we first
rewrite the equations in cylindrical coordinates (r, θ, z) and assume no variation and
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zero velocity in the θ direction, the system we obtain is reduced to two variables, r
and z. The equations are

∂

∂t


ρ

ρur

ρwz

E

+ ∂

∂r


ρur

ρu2
r + p

ρurwz

ur (E + p)

+ ∂

∂z


ρwz

ρurwz

ρw2
z + p

wz(E + p)

=

−(ρur )/r
−(ρu2

r )/r
−(ρurwz)

ur (E + p)/r

 , (4)

where ur and wz denote the velocities in the r and z directions. These equations
are of the same form as the two-dimensional Euler equations, with the addition
of geometric source terms that are a result of the variable transformation. The
source terms are never evaluate at r = 0 since we are using a finite volume method
where quantities are evaluated at cell-centers, that is, the smallest value of r in a
calculation is 1x/2. We prefer to keep the equations in conservation form, so they
can be efficiently solved using finite volume methods.

In order to solve the system (3) or (4), we need to close the system with a
relation between the pressure and conserved variables. The Tammann EOS [28]
is applicable to a wide range of liquids, even with very strong shock waves. This
equation of state has the form

p = p(ρ, e)= (γ − 1)ρe− γ p∞, (5)

where p, ρ and e are the pressure, density and specific internal energy, respectively,
while γ and p∞ are constants depending on the fluid. If p∞ = 0 this is the standard
EOS for an ideal gas, with γ generally satisfying 1 < γ < 5/3, while for water
γ ≈7.15 and p∞≈300 MPa. For sufficiently weak shocks, this can be approximated
by the Tait equation of state,

p = p(ρ)= B
[(

ρ

ρ0

)n

− 1
]
, (6)

where B is a pressure term that is a weak function of entropy, but is typically treated
as a constant, and corresponds to p∞ from (5) while n corresponds to γ . Here ρ0

is the background density measured at one atmospheric pressure. In our work we
take B = 300 MPa and n = 7.15.

It has been common practice to use the Tait EOS in shock wave therapy and
lithotripsy models [47; 41]. This has been justified by noting studies that show
that entropy changes across the shock are very small even up to pressure jumps
of 200 MPa [41], which is beyond the range used in ESWT. To verify this as-
sumption, we performed computational experiments to compare the Tammann and
Tait equations of state for typical ESWT shock waves. Since we have used the
f-wave approach in our computational model, we can solve (4) with a spatially
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Figure 2. Left: comparison of a pressure wave calculation performed using both the Tait
(blue dashed curve) and Tammann (black curve) equations of state. The results are nearly
identical. Right: Comparison of the pressure pulse at F2 obtained in the Euler calculation
(blue dashed curve) and the Lagrangian calculation (black curve). It is clear that the
two sets of equations give good agreement. The wave in the Lagrangian case is slightly
attenuated, but this may be due to error in initializing the calculation. In these calculations
1x = 0.5 mm.

varying equation of state. We set up an experiment where the resulting shockwave
(generated using the Tammann equation of state), was over 150 MPa. Figure 2,
left, shows the results from this experiment. The black solid curve is the result
from solving with the Tammann EOS in the entire domain. The blue dashed curve
shows the result gotten by switching to the Tait EOS at x = 50. This enabled us to
compare the two equations of state with the exact same initial condition. There is
a small disagreement at x = 50 caused by a slight reflection at the interface due
to the change in the equation of state. Otherwise, the pressure profiles are nearly
identical, giving confidence that the calculations we are interested in can be done
by solving the Euler equations with the Tait equation of state. This allows us to
drop the equation for energy and obtain the simplified system

∂

∂t


ρ

ρu
ρv

ρw

+ ∂

∂x


ρu

ρu2
+ p

ρuv
ρuw

+ ∂

∂y


ρv

ρuv
ρv2
+ p

ρvw

+ ∂

∂z


ρw

ρuw
ρvw

ρw2
+ p

=


0
0
0
0

 . (7)

2.2. Compressible fluids in Lagrangian form. In the case of a fluid where the
shear modulus is zero, the stress tensor can be written as σ(ε) = −pI , where
p is the pressure in the fluid and I is the identity matrix. In the case of ESWT,
the pressure only depends on changes in the density, and we can write p(ε) as a
function of the strain tensor ε. Consider the movement of a material with respect to
a reference configuration and let δ = (δx , δy, δz) be the infinitesimal displacement.
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In three space dimensions, the full strain tensor is

ε =

 δx
x

1
2(δ

x
y + δ

y
x )

1
2(δ

x
z + δ

z
x)

1
2(δ

x
y + δ

y
x ) δ

y
y

1
2(δ

y
z + δ

z
y)

1
2(δ

z
x + δ

x
z )

1
2(δ

z
y + δ

y
z ) δz

z

 , (8)

where subscripts denote partial derivatives.
In the case of small deformations, we have from conservation of mass that

ρ =
ρ0

1+ tr(ε)
(9)

where ρ0 is the equilibrium density.
If we insert this into the Tait equation of state (6) we get

p(ε)= B
[(

1
1+ tr(ε)

)n

− 1
]
. (10)

Using the Lagrangian form is only valid in the case where the displacements
are small, so we calculated the maximum value of the displacements in a two-
dimensional axisymmetric calculation with the Euler equations. We found that for
a maximum peak pressure of 50 MPa, the corresponding maximum velocity was
10−3 m/s. We then calculated the maximum displacement by integrating the velocity
over the time of the calculation and found this to be on the order of 10−5 mm. The
size of the grid cell is on the order of 10−1 mm, so the displacements are 4 orders
of magnitude smaller than the width of the grid cells. It is therefore reasonable
to assume that the density in each grid cell is essentially constant and that the
Lagrangian framework of the elasticity equations will be valid for the fluid.

To test this, we took the same initial condition for the two-dimensional axisym-
metric Euler equations with the Tammann equation of state and the corresponding
two-dimensional axisymmetric Lagrangian form of the equations with the Tait
equation of state and measured the pressure at the focus, F2. The results in Figure 2,
right, demonstrate reasonably good agreement between the two cases, but the
Lagrangian form is slightly attenuated. This may be due to conversion of the initial
condition from the conserved variables in the Euler equations (4) to those in the
elasticity equations (1).

Since the displacements are small, we also considered the possibility that nonlin-
earity in the fluid could be ignored, so we could instead use a linearized version of
the Tait equation of state. Then we would be able to simply use the linear elasticity
equations throughout the domain, in both the fluid and solid materials. If we assume
a small perturbation to the strain, ε + δε, we can expand the Tait EOS (6) as a
Taylor series about ε,
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p(ε+ δε)= p0+ p′(δε)ε+
p′′(δε)

2
ε2
+ · · · . (11)

If we keep the first two terms of the expansion, the EOS has been linearized and we
will call this the linear Tait EOS. Similarly, we will refer to the equation obtained
by keeping the first three terms of the expansion as the quadratic Tait EOS. One-
dimensional tests of both possibilities are shown in Figure 3, for three different wave
amplitudes. For a wave with maximum amplitude less than 3 MPa there is fairly
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Figure 3. Pressure gauge measurement at F2 of different versions of the Tait EOS at
different amplitudes. The triangular markers indicate the full nonlinear Tait EOS, the solid
line is a linearized version and the square markers are a quadratic version. The linearized
versions of the EOS work reasonably well at small amplitudes, but it’s clear from the
bottom figure that as the pressures increase to those observed in ESWT, the full nonlinear
equation of state must be used.
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good agreement, however, as the amplitude is increased, as is required for ESWT,
the linear and quadratic equations of state do not capture the correct behavior. Thus
we used the full Tait EOS in the fluid domain.

2.3. Elasticity equations. In the current work we model bone as a linear isotropic
solid. We use the equations (1) together with Hooke’s law

σ 11
= C11ε

11
+C12ε

22
+C13ε

33, (12)

σ 22
= C21ε

11
+C22ε

22
+C23ε

33, (13)

σ 33
= C31ε

11
+C32ε

22
+C33ε

33, (14)

σ 12
= C44ε

12, (15)

σ 13
= C55ε

13, (16)

σ 23
= C66ε

23, (17)

where the spatially varying scalar coefficients Ci j (x, y, z) are determined by the
properties of the material being modeled. The parameters used for the bone model
were found in [37].

For an isotropic material we can relate the Ci j above to the two Lamé parameters,
λ and µ, that are used to model different elastic materials. Ci i = λ + 2µ for
i = 1, . . . , 3, Ci i = 2µ for i = 4, . . . , 6, and Ci j = λ for i 6= j . Here µ is the shear
modulus and λ+ 2µ is the bulk modulus of the material. Note that the λ here is
different from the λi used to denote the eigenvalues elsewhere in the paper.

Linear elasticity has been used extensively in the literature to model both tra-
becular and cortical bone [29; 21]. Linear viscoelastic models have also been used
for ultrasound wave propagation in bone [22]. Our model could be extended to
orthotropic models, requiring 9 material parameters, as has also been used for bone
modeling; see, for example, [52].

3. Eigenstructure of the hyperbolic system

The full three-dimensional system of equations (1) models both the nonlinear fluid
and the linear elastic bone as described in the preceding sections. This system can
be written in quasilinear form:

qt + A(q, x, y, z)qx + B(q, x, y, z)qy +C(q, x, y, z)qz = 0, (18)

where A, B and C are the Jacobians of the flux functions in the x , y and z directions
respectively. For the multidimensional methods implemented in Clawpack, we need
the solution to the Riemann problem along slices in each coordinate direction. Here
we provide the details for the solution in the x direction, but the solution in the y
and z directions are similar with appropriate permutations to the B and C matrices.
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The corresponding Jacobian for this system in the x direction is:

A(q, x, y, z)=
∂ f (q, x, y, z)

∂x

=−



0 0 0 0 0 0 1
ρ0

0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
2ρ0

0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
2ρ0

σ 11
ε11 σ

11
ε22 σ

11
ε33 0 0 0 0 0 0

0 0 0 σ 12
ε12 0 0 0 0 0

0 0 0 0 0 σ 13
ε13 0 0 0



,

(19)

where σ 11
ε33 , for example, denotes the partial derivative of σ 11 with respect to ε33.

In the linear elastic case this is simply the coefficient C13, but the above form
also applies to the nonlinear compressible equations. The spatial variation in
f (q, x, y, z) and the Jacobian A result from allowing the material parameters such
as density and elastic moduli to vary in space. The Jacobians in the y and z directions
are similar with the entries permuted appropriately.

The eigenvalues for system (19) are

λ1,2
=±

√
σ 11
ε11

ρ0
; λ3,4

=±

√
σ 12
ε12

2ρ0
; λ5,6

=±

√
σ 13
ε13

2ρ0
; λ7,8,9

= 0. (20)

When modeling a fluid where the shear stress is zero, there are seven zero-speed
eigenvalues since σ 12

ε12 = σ
13
ε13 = 0. Only the compressional waves corresponding to

λ1,2 propagate with nonzero speed. Note that the Tait equation of state (10) gives

σ 11
ε11 =

∂σ 11

∂ε11 = Bn
(

1
1+ ε11+ ε22+ ε33

)n+1

=
n(p+ B)
1+ tr ε

. (21)

In the small amplitude acoustic limit ε→ 0, from (20) we obtain the wave speeds

±

√
n(p+ B)

ρ0
, (22)

which are the expected waves speeds for compressional waves in the Lagrangian
form with this equation of state.

For the elastic solid, on the other hand, waves 1 and 2 correspond to P-waves
while waves 4–6 correspond to S-waves, and the expected wave speeds are recovered



172 KIRSTEN FAGNAN, RANDALL J. LEVEQUE AND THOMAS J. MATULA

based on the elastic coefficients given in Section 2.3. For example, in the x direction
the P-wave speeds are

±

√
C11

ρ0
, (23)

and the S-wave speeds are

±

√
C44

2ρ0
and ±

√
C55

2ρ0
. (24)

The corresponding eigenvectors for system (19) are

r1,2
=
[
1 0 0 0 0 0 ±

√
ρ0σ 11

ε11
0 0

]T
,

r3,4
=
[
0 0 0 1 0 0 0 ±

√
2ρ0σ

12
ε12 0

]T
,

r5,6
=
[
0 0 0 0 0 1 0 0 ±

√
2ρ0σ 13

ε13

]T
,

(25)

for the P-waves and S-waves, and

r7
=
[
−σ 11

ε22 σ 11
ε11 0 0 0 0 0 0 0

]T
,

r8
=
[
−σ 11

ε33 0 σ 11
ε11 0 0 0 0 0 0

]T
,

r9
=
[
0 0 0 0 1 0 0 0 0

]T
,

(26)

for the stationary waves.

3.1. Axisymmetric form of the equations. We used the two-dimensional axisym-
metric form of the equations to generate an initial condition for our three-dimen-
sional calculations, as well as for validation of our model.

The three-dimensional equations in cylindrical coordinates are:

εrr
t =

∂u
∂r
, εθθt =

u
r
+

1
r
∂v

∂θ
, εzz

t =
∂w

∂z
,

εr z
t =

1
2

(
∂u
∂z
+
∂w

∂r

)
, εrθ

t =
1
2

(
∂v

∂r
+

1
r
∂u
∂θ
−
v

r

)
, εθ z

t =
1
2r

(
∂w

∂θ
+
∂v

∂z

)
,

ρut =
1
r
∂σ rθ

∂θ
+
∂σ rr

∂r
+
σ rr
− σ θθ

r
+
∂σ r z

∂z
,

ρvt =
1
r
∂σ θθ

∂θ
+
∂σ rθ

∂r
+

2σ rθ

r
+
∂σ zθ

∂z
,

ρwt =
1
r
∂σ zθ

∂θ
+
∂σ zz

∂z
+
∂σ r z

∂r
+
σ r z

r
.

(27)
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If we assume that v = εθ z = εrθ = 0 and there is no variation in the θ direction,
then the system (27) simplifies to

εrr
t =

∂u
∂r
, εθθt =

u
r
, εzz

t =
∂w

∂z
, εr z

t =
1
2

(
∂u
∂z
+
∂w

∂r

)
,

ρut =
∂σ rr

∂r
+
σ rr
− σ θθ

r
+
∂σ r z

∂z
,

ρwt =
∂σ zz

∂z
+
∂σ r z

∂r
+
σ r z

r
.

(28)

It is interesting to note here that the strain in the θθ direction is nonzero and in
this case is called the hoop strain. A uniform radial displacement is not a rigid
body motion, as it would be in the two-dimensional plane strain case, but instead
produces a circumferential strain. This is because the original circumference of the
cylinder is 2πr , but when there is a strain in the radial direction the circumference
grows to 2π(r + ur ), inducing a strain 2πur/2πr = ur/r .

The Jacobian for system (28) in the z direction is

f ′(q)=−



0 0 0 0 1
ρ0

0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1
2ρ0

σ rr
εrr

σ rr
εzz

0 0 0 0

0 0 0 σ r z
εr z

0 0


, (29)

and has an eigenstructure that is equivalent to the two-dimensional elasticity equa-
tions, with the addition of a second zero-speed eigenvalue.

These equations have the structure

qt + f (q)r + g(q)z = S(q, r), (30)

with source terms

εθθt =
u
r
, ρut =

σrr − σθθ

r
, ρwt =

σr z

r
. (31)

In Clawpack, we solve these equations with a fractional-step method. The full
problem is split into two subproblems that are solved independently. We first
solve the homogeneous system obtained by setting S ≡ 0 in (30) using the wave
propagation algorithm described in Section 4, and then solve

qt = S(q, r), (32)

with an appropriate ODE solver. For (31), we use forward Euler.
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4. Numerical methodology

We used the wave-propagation algorithms described in [35] and implemented in
Clawpack [15] to solve the hyperbolic systems of PDEs derived in the preceding
sections. In this section we provide the basic details of the numerical methodology
and the approximate solution to the Riemann problem with a spatially varying flux
function, similar to what was done in [36]. We also discuss computational issues
that require the use of adaptive mesh refinement.

4.1. Riemann solvers and wave-propagation algorithms. Recall that the “Rie-
mann problem” is the initial value problem for a one-dimensional hyperbolic
system of the form

qt + f (q, x)x = 0, (33)

with special initial data consisting of two constant states separated by a discontinuity

q0(x)=
{

Ql if x < 0,
Qr if x > 0.

(34)

If the flux function is spatially varying then we also use a piecewise-defined flux
function with

f (q, x)=
{

fl(q) if x < 0,
fr (q) if x > 0.

(35)

The Riemann problem plays a fundamental role in the theory and computation of
hyperbolic problems, since the Riemann solution consists of waves propagating at
constant speeds and can generally be computed. For nonlinear systems of equations
this is often replaced by an approximate Riemann solver as will be discussed below.

For a linear system of equations qt + A(x)qx = 0 the Riemann solution is easily
computed in terms of the eigenvectors and eigenvalues of the matrices Al to the left
of the interface and Ar to the right of the interface. We begin by discussing the linear
case with a constant matrix A and turn to the variable-coefficient (heterogeneous
media) case in Section 4.3. We assume the matrix A is diagonalizable,

A = R3R−1, (36)

where R is the matrix of eigenvectors and 3 is the diagonal matrix of eigenvalues.
The Riemann solution is computed by decomposing 1Q = Qr − Ql as a linear
combination of eigenvectors of A,

1Q =
m∑

p=1

α pr p, where α = R−11Q. (37)

We denote the p-th wave by Wp = α
pr p, where p = 1, 2, . . . ,m and the number

of waves m is equal to the number of equations in the system.
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We use finite volume methods in which Qn
i represents a cell average of the vector

q in cell i at time tn (still in one space dimension). In Godunov’s method the cell
average is updated by the waves entering the cell from the interfaces to the left and
the right, and each wave updates the cell average by Wp, the jump in q across the
wave, multiplied by the distance the wave propagates over the time step and divided
by the length of the cell, that is, the cell average is updated by (λp1t/1x)Wp. To
express the total update to a cell, it is convenient to define matrices A+ and A− via

A± = R3±R−1, where 3± = diag(λ±p ), (38)

with λ+ =max(λ, 0) and λ− =min(λ, 0). Then the cell average is updated by

Qn+1
i = Qn

i −
1t
1x

(A+1Qi−1/2+ A−1Qi+1/2). (39)

Here 1Qi−1/2= Qi−Qi−1 is the jump across the interface at i−1/2, for example.
For a linear system this is a generalization of the upwind method and is first order
accurate.

Second order accuracy is achieved by adding in correction fluxes:

Qn+1
i = Qn

i −
1t
1x

(A+1Q+ A−1Q)− 1t
1x

(F̃i+1/2− F̃i−1/2), (40)

where

F̃i−1/2 =
1
2

(
1−

∣∣∣∣λp1t
1x

∣∣∣∣)|λp
|W

p
i−1/2. (41)

These terms convert the upwind method into a method of Lax–Wendroff type,
matching terms through 1t2 A2qxx in the Taylor series expansion of the solution
at the end of the time step. This method generates dispersive errors, however, that
can create large nonphysical oscillations near steep gradients or discontinuities in a
solution, such as shock waves. To turn this into a “high-resolution” method, we use
a wave limiter, replacing W

p
i−1/2 in (41) by W̃

p
i−1/2, a limited version of the wave.

The wave W
p
i−1/2 is compared to the corresponding wave from the neighboring

Riemann problem, either W
p
i−3/2 if λp > 0 or W

p
i+1/2 if λp < 0. If the waves are of

comparable magnitude the full correction term is used for accuracy, but if there is a
large discrepancy then the solution is not smooth at this point and a limited version
is applied. See [34] or [35, Chapter 6] for more complete details.

In two or three space dimensions the idea is the same, but now a one-dimensional
Riemann problem must be solved normal to each edge or face of the cell. The
resulting waves update the cell averages and correction fluxes analogous to (41) are
used along with limiters in each direction.

In addition, to achieve second-order accuracy and good stability properties,
it is also necessary to use “transverse Riemann solvers” that further modify the
correction fluxes F̃ at each cell edge. The method described above is based on
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propagating waves normal to each interface. In reality, the waves will propagate in
a multidimensional manner and affect cell averages in cells above and below those
that are directly adjacent to the interface.

In two dimensions, each “fluctuation” such as A−1Qi−1/2, j and A+1Qi−1/2, j

that results from solving a Riemann problem in the x direction is split into two
pieces using the eigenstructure of the coefficient matrix B in the y direction, for
example:

A+1Qi−1/2, j = B−A+1Qi−1/2, j + B+A+1Qi−1/2, j . (42)

These two pieces will modify the correction flux at the edges (i, j − 1/2) and
(i, j + 1/2) respectively to capture the transverse motion of the right-going wave.
Similarly, after solving a normal Riemann problem in the y direction using the B
matrix, transverse problems are solved based on the eigenstructure of A. The net
effect of all these corrections is to incorporate terms modeling the cross-derivative
terms BAqxy and ABqyx of the Taylor series expansion in a properly upwinded
manner. More details can be found in [34] or [35, Chapter 21]. The transverse
correction terms are needed for accuracy, but also have the effect of improving
the stability limit, allowing a Courant number near 1 to be used, relative to the
maximum wave speed in any direction.

In three space dimensions there are two transverse directions for each normal
Riemann solve, and terms modeling C Aqxz , etc. must also be included. Moreover,
“double transverse” terms must be included, splitting the result of a transverse solve
into eigenvectors of the remaining coefficient matrix, and modeling terms such as
BC Aqxzy . The details are presented in [31] and fully implemented in Clawpack.

4.2. The nonlinear fluid Riemann solver. The compressible fluid equations in
Lagrangian form discussed in Section 2.2 can be reduced to the quasilinear form
(18) in which the Jacobian matrices depend only on q (for a spatially uniform fluid).
To apply the wave-propagation algorithm we need to solve the Riemann problem
orthogonal to each cell interface. For nonlinear problems this is usually done using
an approximate Riemann solver, for example, by replacing f (q)x by Âqx , where
the matrix Â at each cell interface is chosen based on the data Ql and Qr to the left
and right. We use the f-wave formulation of the wave-propagation algorithm [4], in
which the jump in flux f (Qr )− f (Ql) is split into eigenvectors of an approximate
Jacobian matrix, rather than the jump in Q. This leads to an algorithm that is
conservative for any choice of approximate Jacobian and also extends naturally to
the case of spatially varying fluxes, as required near the fluid-solid boundary and
discussed further below.

Rather than choose an approximate Jacobian Â and then determining its eigen-
vectors and eigenvalues, we simply choose the set of eigenvectors and associated
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wave speeds based on the data and wave forms expected to result from this data.
These vectors form a matrix R̂ and we then solve R̂β = f (Qr )− f (Ql) for the
vector of wave strengths β. The choice of vectors in R̂ and associated wave speeds
λ̂ implicitly defines the Jacobian approximation Â = R̂3̂R̂−1, but this matrix is
never needed.

The eigenvectors are taken to be the vectors displayed in (25) and (26). Recall
that in the fluid case there are only two nonzero eigenvalues corresponding to
the first two eigenvectors. For the eigenvector corresponding to λ1 < 0 we use
λ1
=−σ 11

ε11 evaluated in the left state Ql , while the eigenvector corresponding to
λ2 > 0 is determined using λ2

= σ 11
ε11 evaluated in the right state Qr . These vectors

have nonzero components only in positions 1 and 7 and so the values of β1 and β2

can be determined by solving a 2× 2 system:[
1 1
ρlλ

1
l ρrλ

2
r

] [
β1

β2

]
=

[
1 f 1

1 f 7

]
. (43)

The solution is

β1
=
ρrλ

2
r1 f 1

−1 f 7

ρrλ2
r − ρlλ

1
l

,

β2
=
1 f 7
− ρlλ

1
l 1 f 1

ρrλ2
r − ρlλ

1
l

.

(44)

The remaining waves do not propagate and do not come into the wave-propagation
algorithm.

4.3. The linear elastic Riemann solver. In the linear elastic material modeling
bone, we take a similar approach and again use the f-wave formulation of the
algorithm. In this case there are six waves with nonzero wave speeds given by the
eigenvectors in (25). The eigenvectors are independent of q in the linear case, but
can be spatially varying to represent varying bone structure, so the coefficients Ci j in
(12) can vary from one grid cell to the next. Similar to the nonlinear case described
above, to compute the decomposition of the flux difference into propagating waves
we define the three left-going eigenvectors r1,3,5 (with the minus sign in (25)) based
on the coefficients in the left state, while the right-going eigenvectors r2,4,6 are
defined using the coefficients in the right state. Note that the flux vector f (q)
from (2), and hence any jump in flux, has zeros in three components which are
easily seen to lead to β7

= β8
= β9 when the flux difference is written as a linear

combination of the eigenvectors, and the six remaining components of the flux
difference uniquely define the coefficients β1 through β6 for the six propagating
waves. The weights β1 and β2 are the same as is (44), and the others are
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β3
=
ρrλ

4
r1 f 4

−1 f 8

ρrλ4
r − ρlλ

3
l

, β4
=
1 f 8
− ρlλ

3
l 1 f 4

ρrλ4
r − ρlλ

4
l

,

β5
=
ρrλ

6
r1 f 6

−1 f 9

ρrλ6
r − ρlλ

5
l

, β6
=
1 f 9
− ρlλ

5
l 1 f 6

ρrλ6
r − ρlλ

5
l

.

(45)

4.4. Interfaces and the Cartesian grid. In ESWT the pressure wave must propa-
gate through a variety of materials, and in general the interfaces between different
materials do not align with the grid. In our calculations we use a Cartesian grid.
To handle grid cells that contain two materials, we perform a weighted average of
the material properties. The stress-strain relationship in the averaged grid cells is
taken to be that from linear elasticity, even if one of the materials is fluid. This
approach is feasible because we use AMR to refine around the interfaces between
the two materials. By using a fine enough grid, we are able to reduce the error
introduced by the weighted average approximation. Figure 4, left, illustrates the
interface between the fluid and the brass reflector from an axisymmetric calculation.
Three grid resolutions are shown in this figure: a coarse grid on the right, a level 2
grid that is refined by a factor of 4 in each direction in the middle, and the finest
grid on the left, where the grid lines are not drawn.

Figure 4, right, shows a comparison between the pressure wave measured at F2
for an AMR calculation versus a single grid calculation. The single grid calculation
took 269 minutes to complete, just over 6 times as long as long as the run using
AMR which finished in 44 minutes. These calculations were performed serially on
a 2.8 GHz dual core AMD Opteron machine with 32 GB of memory. It’s clear that
the two calculations yield comparable pressure waves. The biggest difference is in
the direct wave arriving around t = 150, which is not being resolved in the AMR
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Figure 4. Left: resolution of the ellipsoid reflector with different levels of AMR. Right:
two-dimensional axisymmetric calculation. The second is a comparison of the waveform
obtained using AMR and a uniform grid. The finest grid resolution in the AMR calculation
is the same as the resolution on the uniform grid.
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calculation because we have refined only in the vicinity of the reflected wave of
primary interest.

4.5. Adaptive mesh refinement. The pressure waveform found in ESWT contains
a very thin region of high pressure that can not be resolved without a highly refined
mesh. In Figure 5 we investigated the effect of grid refinement on the shock wave
profile and found that with grid resolution greater than 0.25 mm, the wave form
at F2 was not a shock. Note that near the shock we only expect our method to be
first order, but the solution does converge to a shock as the grid is refined. Our
calculations are done with the adaptive mesh refinement (AMR) in the style of
Colella, Berger and Oliger [5; 8]. The AMR algorithms used in Clawpack are
more fully described in [7]. For the three-dimensional calculations, a similar AMR
algorithm is used, as implemented in Chombo. Here we only briefly review the
main ideas.

The computational domain is covered by a rectangular level-1 grid, typically at a
coarse resolution. Rectangular patches of the grid may be covered by level-2 grids,
refined by some specified refinement ratio in each direction. Since we use explicit
methods, the Courant–Friedrichs–Lewy condition generally requires that the time
step be refined by the same factor on the level-2 grids, so several time steps must
be taken on each level-2 grid for each time step on the level-1 grid. The level 1
grid is advanced first, and for each time step on the level-2 grid, ghost cell values
around the boundary are filled in either by copying from adjacent grids at the same
level, or using space-time interpolation from the level-1 grid for ghost cells that do
not lie in an adjacent grid. This entire procedure is repeated recursively to obtain
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Figure 5. Effect of grid size on shock wave profile. As the grid is refined for the same
initial condition, the shock wave profile steepens. The solution eventually converges to
a profile with the same magnitude, though the convergence rate is only first order near a
discontinuity.
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higher levels of refinement; e.g., some portion of the collection of level-2 grids may
be covered by level-3 grids and so on.

In order to adaptively refine the grid, it is important to specify appropriate
refinement criteria. The perturbations to the strain are small, so gradients in the
strain are too small to use as reliable refinement criteria. However, the small strains
result in large changes in the pressure, so we refine in the area near the pressure
wave. In order to handle the interfaces between two materials, we also use large
gradients in background density as a secondary refinement criterion. Cells that
are flagged as needing refinement are clustered into rectangular patches using the
algorithm of Berger and Rigoutsis [6]. Regridding is done every few steps on each
grid level in order to track propagating waves. Regions are automatically de-refined
once the wave passes by, since cells in these regions are no longer flagged as needing
refinement.

Figure 5 illustrates the behavior of the ESWT waveform as the grid is refined.
What is evident from these experiments is that a coarse grid will not effectively
capture the development of the shock, so around the propagating wave, we need at
least 1x = 0.25 mm resolution. As the wave steepens into a shock, we no longer
expect second order convergence, because in the region around a discontinuity, our
methods are first order. However, since the discontinuities occur in a small region
of the domain, the overall methodology is still second order.

In order to efficiently calculate a reasonable ESWT waveform in three dimensions,
we utilized ChomboClaw [10], which uses the adaptive mesh refinement routines
of CHOMBO with the wave propagation solvers of Clawpack. This code can be
run in parallel using MPI on an NSF TeraGrid computer at TACC.

5. Results

We have used the approach described above to model ESWT pressure waves
interacting with three-dimensional bone geometries comprised of idealized materials.
We have modeled both simple objects that have been used in laboratory experiments
as well as complex three-dimensional geometries extracted from CT scans of
patient data [18]. Here we present results that demonstrate the efficacy of the
Lagrangian formulation, as well as examples of calculations performed using real
three-dimensional geometries.

The calculations were initialized using pressure data obtained from a two-
dimensional axisymmetric calculation where we modeled the full geometry of
the ellipsoidal reflector. The reflector was modeled using linear elasticity with
material properties that can be found in [18]. We assumed the fluid was water with
the corresponding parameters for the Tait equation of state found in Section 2.1.
We saved the data at t = 116µs and used this to restart future calculations. For the
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three-dimensional initial condition, we rotated the two-dimensional data about the
x-axis. The material properties of averaged bone were obtained from [37] and used
in the heterotopic ossification, cylinder and sphere calculations.

We have found in our experiments that interfaces between materials with large
impedance differences have the most significant effect on maximum stress and
energy deposition.

5.1. Reflection and focusing. In Figure 6, we show an axisymmetric calculation
of the ESWT wave propagation and focusing in water alone, in a domain bounded
by the ellipsoidal reflector of the Dornier HM3. Figure 6, top left, shows the initial
spherical propagation of the pressure wave, as well as the grids where the calculation
is being refined. The grid must be refined around the pressure wave as well as the
reflector. Figure 6, top right and bottom left, shows the propagation of the wave and
evolution of the adaptive grid structures. At later times the grid is only being refined
near the pressure wave. The sharp results and absence of spurious oscillations in
the pressure measurement at F2 indicate that AMR together with our Cartesian grid
approach enables us to capture the reflection at the interface.
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Figure 6. Axisymmetric calculation of the pressure pulse generated by a spherical high-
pressure bubble centered z =−115 (the focus F1 of the ellipsoidal reflector). Three levels
of AMR are used and grid lines are shown only on levels 1 and 2. The level-3 grid has a
resolution of 1z = 1r = 0.25 mm. Top left: at t = 10 the pulse has nearly reached the
reflector. Top right: at t = 70 the incident, transmitted, and reflected pulses are visible.
Bottom left: at t = 180 the reflected pulse has focused near z = 115 (the focus F2). Bottom
right: the time history of the pressure at F2. The direct (unreflected) wave passes F2 at
t ≈ 150 and the focused pulse arrives at t ≈ 180.
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5.2. Axisymmetric sphere. We used an axisymmetric test problem in order to
compare the solutions obtained with the two-dimensional and three-dimensional
codes. The initial condition for this experiment was an analytic form for an ESWT
pressure wave used in [49]. In the two-dimensional case, we specified the pressure
as a function of the radial distance from F1(-115,0). In the three-dimensional case,
we rotated the same two-dimensional initial condition about the x-axis. The grid
resolution was 1x = 0.25 mm.

Results with contour lines are shown in Figure 7. The maximum values in each of
the three cases are nearly the same, but there are slight discrepancies in the contour

Figure 7. Results from calculation of a shockwave interacting with an acrylic sphere.
The left column shows two-dimensional axisymmetric results and the right column shows
a corresponding cross section of full three-dimensional calculation. Top: maximum
compression; middle: maximum tension; bottom: maximum shear.
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Figure 8. Comparison of maximum shear stress from two-dimensional and three-
dimensional calculations as a function of x along y = z = 0. The difference in the
results is likely caused by averaging of the initial condition onto the three-dimensional
domain and the boundary conditions on the axisymmetric calculation at r = 0, but the two
calculations predict comparable location and magnitude of maximal shear stress deposition.

lines. Figure 8 shows a one-dimensional slice of the maximum shear calculation in
the two-dimensional and three-dimensional codes, which makes it clear that the
peak of maximal shear stress is in the same location and has the same value. The
general shape of the maximum stress deposition pattern are similar in both cases.
The difference in the two solutions is likely caused by the solid wall boundary
condition that is used at r = 0. Only waves that are propagating normal to that
boundary are perfectly reflected, otherwise some error is generated.

5.3. Nonunions. ESWT has recently been used for the treatment of nonunions or
bone fractures that fail to heal [9]. One question that is of interest to clinicians
is whether or not the angle of treatment has an effect on healing. We assume
that healing is related to the magnitude of stress applied near the treatment area,
although the connection between the applied force and biological response is not
yet understood. In the fluid there is no shear stress. However, at the liquid-solid
interfaces, shear stresses are generated by the shockwave and stimulate motion both
at the surface and within the material. The motion of the biological materials (e.g.,
the periosteum, interstitial fluid, mechanotransduction) is likely to be important in
the healing process [25; 44; 56; 13; 27; 43; 53], and modeling the magnitude and
location of the stress deposition is a good first step toward understanding the shear
and tensile displacements caused by ESWT. We should stress, however, that the
healing mechanisms are not well understood and we are not claiming that magnitude
of the applied stress is the most important or only biological mechanism involved
in the healing process. As mentioned in Section 1, several studies have indicated
that cyclic application of mechanical loading leads to the generation of new bone.
The work of Isaksson et al. [27], indicates that the most accurate predictors for
bone healing are those based on shear strain and fluid flow, however, there is no
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Figure 9. Three-dimensional results for the direct treatment of a complete cylinder. This
figure shows two-dimensional slices of maximum compression, tension and shear along
y = 0 for treatment where the ESWT wave propagates along the x-axis, as indicated by
the arrow. The dot illustrates the location of F2.

single model that can predict all features of the healing process, so more work is
necessary [39].

In an actual treatment, the clinician generally sets up the device so that the focus
is aligned with the ailment. For example, in the case of a broken bone, the clinician
will set up the device so that F2 is in the center of the break. However, given
the heterogeneous media, it is not clear that the maximal stresses will actually be
observed at F2, as would be expected in pure water. We used our model to investigate
the location of maximal stress deposition relative to F2. In these calculations we
considered two different geometries, a complete cylinder, representing the long
shaft of a healthy bone, and a broken cylinder, representing a nonunion. The results
from calculations where the idealized bone was perpendicular to the direction of
the pressure wave front are shown in Figures 9 and 10. We found that the break has
a significant impact on the location of stress deposition.

We used these geometries to perform a variety of experiments. We rotated the
direction of treatment by 45 and 60 degrees relative to the x-axis and calculated
both the magnitude of the maximum compressive, tensile and shear stresses, as
well as the distance from the focus F2 of the device.

In the case of the broken cylinder, the maximum stress deposition in the direct
experiment is similar to that of the unbroken cylinder, except that the there are two
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Figure 10. Three-dimensional results for the direct treatment of a broken cylinder. This
figure shows two-dimensional slices of maximum compression along y = 0 for treatment
along the x-axis, 45-degree rotation and 60-degree rotation about the y-axis. The arrows
indicate the angle of treatment in each case and the dot illustrates the location of F2.

locations of maximal stress deposition on either side of the break. The pressures
in the bone are larger than in the fluid due to reflection at the fluid-solid interface,
so the contours of maximum stress are concentrated on either side of the gap. The
location along the x-axis is nearly the same as in the unbroken cylinder, and the
distances from the ideal focal point, F2, are also similar.

As the angle of treatment is varied, there is less of a shift in the z direction for the
shear and compressive stresses. This is caused by the impedance difference between
the fluid and solid material at the gap, which is located close to F2. If the gap were
shifted along the z-axis from the focal point, there would be a corresponding shift
in the location of maximum shear and compression. Geometrically, the shape of
the regions of compressive and shear stress are quite different from the direct case.
Instead of being an ellipsoidal shape, the regions are compressed into the corner of
the lower-half of the cylinder. Again, this is caused by the impedance jump at the
fluid-solid interface. The region of maximum tension deposition is similar to that
of the unbroken cylinder case, though it is also affected by the gap and the tension
is concentrated on the upper half of the cylinder.

It is clear from the literature [43; 44; 30; 13; 27; 11; 23], that mechanical loading
is important in bone healing. The implication of our computational experiments
is that the angle of treatment will affect stress deposition and therefore may be
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Figure 11. An additional interface calculation showing the more realistic treatment of a
cylinder with a fluid-filled cavity. Left: a slice along z = 0 showing the concentration of
stress in the front of the idealized bone, with additional smaller pockets of maximum stress
due to reflection in the back half of the bone. Right: a slice along y = 0 which further
demonstrates the stress concentration in the first half of the bone. The arrow in the figure at
right indicates the direction of ESWT wave propagation and the dot indicates the location

of F2.

important in treatment optimization. For example, in order to maximize shear
stress at the tissue-bone interface, our preliminary computations indicate that it
might be best to treat the patient at an oblique angle. However, if the goal is to
maximize shear stress in the gap of the broken bone, then treating the patient at a
90-degree angle may be better than treating at either the 45- or 60-degree angle. We
stress however that the biological mechanisms must be better understood and more
experiments must be done in conjunction with laboratory and clinical treatments
before these calculations could be used to make specific clinical recommendations.

In Figure 11 we show two-dimensional slices of a calculation with a more
realistic, but still idealized, long bone geometry. In a the shaft of a long bone, there
is a marrow-filled canal running through the center. Marrow is typically modeled
as a viscoelastic material [37], but for this first approximation we just used a fluid-
filled canal. The impedance difference in the two materials is similar and therefore
illustrates the behavior that we are interested in, the change in maximal stress
deposition. In contrast to the solid cylinder above, the contours of maximal stress
are concentrated in the front side of the hollow cylinder. Figure 11, right, shows
that there are also two regions of additional stress concentration in the backside
of the hollow cylinder. This example highlights the importance in understanding
where these impedance jumps occur in order to optimally treat the patient.
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5.4. Heterotopic ossification. A heterotopic ossification (HO) is a growth of bone-
like material in soft tissue. HOs often grow spontaneously in tissue that has been
traumatized due to injury or amputation. An example of an HO is shown in Figure 12,
left, which shows the pelvis and an HO, using data extracted from a patient’s CT
scan. In this case, the HO has grown around the right hip joint and is inhibiting
the patient’s range of motion. The goal of the HO treatment is not to pulverize the
ossification, but to break up the adhesion between the HO and the joint, in order to
restore the patient’s range of motion. There is no clear division between the HO
and bone in the CT scan because both are composed of materials that have similar
densities. However, the HO does not have the same woven structure that is present
in bone, so the two will likely have different material properties, even though the
densities are similar. This similarity means that we are uncertain as to how strong
the connection or adhesion is between the HO and the bone, which will directly
impact the number of shocks needed to restore the patient’s range of motion.

We are able to use our model to investigate the effect of the angle of treatment on
the observed stresses in the region near the HO. Since the composition and material
properties of the ossification are not well understood, we can also use the model
to vary the material properties of the ossification and investigate the sensitivity of
the results to these parameters. We found that both the strength of the connection
between the HO and bone, as well as the composition of the HO, had a significant
effect on the location of maximum stress in the object [18].

It is challenging to infer anything meaningful from the images in the full three-
dimensional calculation in Figure 12, left, so we have also included a two-dimen-
sional slice of the maximum shear in Figure 12, right. Here the gray regions

Figure 12. Left: the three-dimensional CT patient data illustrating the heterotopic os-
sification (blue) attached to the right hip joint (green). Right: a slice at x = 115 of the
two-dimensional calculation shows how the pockets of fluid lead to stress concentration in
the substructure of the ossification, the dot indicates the location of F2 and the direction of
treatment is into the page.
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represent the bone-like HO material and we assume any gaps are filled with fluid. It
is clear that the interior of the ossification is complex and contains many fluid-filled
pockets that affect, in this case, the location of the maximum shear stress.

Given the complex nature of the HO and subsequent difficulty interpreting the
three-dimensional results, we have also used an idealized ossification to investigate
some facets of the shockwave interaction with the varying material properties. One
example of this is shown in Figure 13, where we have simulated a case where the
ossification (the crescent in the two-dimensional images) is not strongly attached to
the bone (the cylinder) and calculated the maximal shear stress as a result of two
different treatment angles. Figure 13, left, illustrates the result when the ESWT
device is aimed orthogonal to the gap between the HO and the cylinder. Figure 13,
right, is the result when the device is aimed so the shockwaves propagate parallel to
the gap between the HO and bone. It has been indicated that maximum shear stress
is important in causing the HO to break, so it is desirable to deposit the maximum
amount of shear as close to the HO/bone interface as possible. In this case, it is
better to treat the HO in the direction indicated in Figure 13, right, since the shear
stress is concentrated along the gap.

According to our computational results, the pockets of fluid within an HO
and strength of adhesion to the bone surface will affect the stress deposition and
therefore the location of the eventual break in the ossification. Further investigation
is required to be conclusive, but our results indicate that if the fluid pockets are in
the propagation path of the shock wave, they may cause the maximum stresses to
occur away from the adhesion site, making the treatment less effective. In reality,
the composition of the HO is unknown and we do not have a good characterization
for the material properties of the ossifications. However, the strong impedance
mismatch between fluid and bone, as well as the inability of the fluid to support
shear stress, indicate that the presence of fluid-filled pockets will have an effect
on the stress deposition. We should note here that our modeling work does not
take into account the propagation of successive shocks or failure models within
the material, which should ultimately be incorporated in order to the determine the
optimal treatment. This is an area for future work.

6. Conclusion

In this paper we have proposed a new model for ESWT. We have demonstrated
that the Tait equation of state is sufficient for the pressures that arise in ESWT, that
enables us to drop the energy equation from our model. We have shown that the
fluid and solid can be modeled with the same set of Lagrangian equations since
the particle displacements are small. This approach allowed us to utilize existing
numerical methodology, consisting of high-resolution shock-capturing methods
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Figure 13. Calculations for an idealized ossification that demonstrates the difference in
shear stress deposition when treating the HO from different directions. Since the goal
is to disrupt the HO at the interface between the bone and the HO, the figure on the
right indicates that it would be optimal send shock waves parallel to the break, instead of
perpendicular to it. The arrows indicate the direction of ESWT propagation and the dots
indicate the location of F2.

together with adaptive mesh refinement, to efficiently calculate solutions to these
equations for a variety of idealized biological problems. We have also demonstrated
that we can effectively handle interfaces between different materials on Cartesian
grids. Using this methodology we were able to explore, even in geometrically
complicated structures, how the interfaces between the fluid and solid materials
affect the distribution of maximal stress in several problems of clinical interest.
We should note that the models for the biological materials are idealized, so it is
difficult to extrapolate from these experiments to reality without conducting further
experiments.

Maximizing stress in specific regions seems important in both the healing and
destruction of biological tissues. Shear stress is thought to be play a role in the
stimulation of biological tissues [54; 25; 20; 23; 13; 30; 43]. Mechanical loading is
thought to play a role in the formation of bone tissue, and as discussed in Section 1,
shear and compressive displacements generated by loading influence bone healing
[43; 44; 30; 13; 27; 11; 23]. Shear stress is also important in predicting the break
up of kidney stones [49].

The model we have developed has been used to investigate idealized nonunions
and heterotopic ossifications, and we have shown a few examples to illustrate this.
A broader range of calculations are available in [18].
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The focus of this paper has been the effect that material interfaces between tissue
and bone have on the transmission, reflection, and focusing of the shock wave.
Very simple models have been used for the material on each side of the interface:
compressible fluid with a Tait equation of state in the tissue and linear isotropic
elasticity in the bone. We believe that this level of macroscopic modeling can
already reveal interesting features of the stress that may be clinically important.
In particular, focusing may occur in regions displaced from where it would be
observed in pure water, and mode conversion at an interface can generate shear
waves in the bone that are not present in the focusing shock wave in fluid.

To consider the effect of stress on individual osteocytes, a much more detailed
model would be necessary that is beyond the scope of this work. In particular,
this would require modeling the microscale fluid-filled canaliculi within the bone
through which the osteocyte processes extend. Work is currently underway in
this direction, and also on intermediate levels of modeling in which the bone is
modeled as an orthotropic poroelastic material. These equations can be solved
with essentially the same high resolution finite volume methods used here, after
implementing a more complicated Riemann solver [32; 33], and with the same
software for adaptive mesh refinement. Another possible extension is to investigate
viscoelastic tissue models that may be superior to the Tait equation for water that is
currently used.
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